WorldWideScience

Sample records for equation models sems

  1. semPLS: Structural Equation Modeling Using Partial Least Squares

    Directory of Open Access Journals (Sweden)

    Armin Monecke

    2012-05-01

    Full Text Available Structural equation models (SEM are very popular in many disciplines. The partial least squares (PLS approach to SEM offers an alternative to covariance-based SEM, which is especially suited for situations when data is not normally distributed. PLS path modelling is referred to as soft-modeling-technique with minimum demands regarding mea- surement scales, sample sizes and residual distributions. The semPLS package provides the capability to estimate PLS path models within the R programming environment. Different setups for the estimation of factor scores can be used. Furthermore it contains modular methods for computation of bootstrap confidence intervals, model parameters and several quality indices. Various plot functions help to evaluate the model. The well known mobile phone dataset from marketing research is used to demonstrate the features of the package.

  2. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    Science.gov (United States)

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  3. Evaluating Neighborhoods Livability in Nigeria: A Structural Equation Modelling (SEM Approach

    Directory of Open Access Journals (Sweden)

    Sule Abass Iyanda

    2018-01-01

    Full Text Available There is a growing concern about city livability around the world and of particular concern is the aspects of the person-environment relationship which encompasses many characteristics suffice to make a place livable. Extant literature provides livability dimensions such as housing unit characteristics, neighborhood facilities, economic vitality and safety environment. These livability dimensions as well as their attributes found in the extant literature have been reported to have high reliability measurement level. Although, various methods have been applied to examine relationships among the variables however structural equation modeling (SEM has been found more holistic as a modeling technique to understand and explain the relationships that may exist among variable measurements. Structural equation modeling simultaneously performs multivariate analysis including multiple regression, path and factor analysis in the cause-effect relationships between latent constructs. Therefore, this study investigates the key factors of livability of planned residential neighborhoods in Minna, Nigeria with the research objectives of – (a to study the livability level of the selected residential neighborhoods, (b to determine the dimensions and indicators which most influence the level of livability in the selected residential neighborhoods, and (c to reliably test the efficacy of structural equation modeling (SEM in the assessment of livability. The methodology adopted in this study includes- Data collection with the aid of structured questionnaire survey administered to the residents of the study area based on stratified random sampling. The data collected was analyzed with the aid of the Statistical Package for Social Sciences (SPSS 22.0 and AMOS 22.0 software for structural equation modeling (a second-order factor. The study revealed that livability as a second-order factor is indicated by economic vitality, safety environment, neighborhood facilities

  4. Prescriptive Statements and Educational Practice: What Can Structural Equation Modeling (SEM) Offer?

    Science.gov (United States)

    Martin, Andrew J.

    2011-01-01

    Longitudinal structural equation modeling (SEM) can be a basis for making prescriptive statements on educational practice and offers yields over "traditional" statistical techniques under the general linear model. The extent to which prescriptive statements can be made will rely on the appropriate accommodation of key elements of research design,…

  5. The advancement of the built environment research through employment of structural equation modeling (SEM)

    Science.gov (United States)

    Wasilah, S.; Fahmyddin, T.

    2018-03-01

    The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.

  6. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    Science.gov (United States)

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  7. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  8. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  9. Structural Equation Modeling (SEM) for Satisfaction and Dissatisfaction Ratings; Multiple Group Invariance Analysis across Scales with Different Response Format

    Science.gov (United States)

    Mazaheri, Mehrdad; Theuns, Peter

    2009-01-01

    The current study evaluates three hypothesized models on subjective well-being, comprising life domain ratings (LDR), overall satisfaction with life (OSWL), and overall dissatisfaction with life (ODWL), using structural equation modeling (SEM). A sample of 1,310 volunteering students, randomly assigned to six conditions, rated their overall life…

  10. APLIKASI STRUCTURAL EQUATION MODEL (SEM DALAM PENENTUAN ALTERNATIF PENGELOLAAN LINGKUNGAN INDUSTRI KOMPONEN ALAT BERAT BERBASIS PARTISIPASI DAN KEMITRAAN MASYARAKAT

    Directory of Open Access Journals (Sweden)

    Budi Setyo Utomo

    2012-07-01

    Full Text Available As a company engaged in the industrial sector by producing certain components and localized in an industrial area, there will be an impact on the environment. These impacts can be positive in the form of employment, reducing dependence on imported heavy equipment, increase in foreign exchange due to reduced imports and increased exports, increased government revenue from taxes, public facilities improvement and supporting infrastructure, and opening up opportunities for other related industries. These impacts can also be negative in the form of environmental degradation such as noise disturbance, dust, and micro climate change, and changes in social and cultural conditions surrounding the industry. Data analysis was performed descriptively and with the Structural Equation Model (SEM. SEM is a multivariate statistical technique which is a combination of factor analysis and regression analysis (correlation, which aims to test the connections between existing variables in a model, whether it is between the indicator with the construct, or the connections between constructs. SEM model consists of two parts, which is the latent variable model and the observed variable model. In contrast to ordinary regression linking the causality between the observed variables, it is also possible in SEM to identify the causality between latent variables. The results of SEM analysis showed that the developed model has a fairly high level of validity that is shown by the minimum fit chi-square value of 93.15 (P = 0.00029. Based on said model, it shows that the company's performance in waste management is largely determined by employee integrity and objectivity of the new employees followed later by the independence of the employees in waste management. The most important factor that determines the employee integrity in waste management in the model is honesty, individual wisdom, and a sense of responsibility. The most important factor in the employee objectivity

  11. Meta-analysis a structural equation modeling approach

    CERN Document Server

    Cheung, Mike W-L

    2015-01-01

    Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the impo

  12. Handbook of structural equation modeling

    CERN Document Server

    Hoyle, Rick H

    2012-01-01

    The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu

  13. On the Use of Structural Equation Models in Marketing Modeling

    NARCIS (Netherlands)

    Steenkamp, J.E.B.M.; Baumgartner, H.

    2000-01-01

    We reflect on the role of structural equation modeling (SEM) in marketing modeling and managerial decision making. We discuss some benefits provided by SEM and alert marketing modelers to several recent developments in SEM in three areas: measurement analysis, analysis of cross-sectional data, and

  14. The Effect of Nonnormality on CB-SEM and PLS-SEM Path Estimates

    OpenAIRE

    Z. Jannoo; B. W. Yap; N. Auchoybur; M. A. Lazim

    2014-01-01

    The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are nonnormal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and nonnormality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model w...

  15. Assessing the impacts of human activities and climate variations on grassland productivity by partial least squares structural equation modeling (PLS-SEM)

    Institute of Scientific and Technical Information of China (English)

    SHA Zongyao; XIE Yichun; TAN Xicheng; BAI Yongfei; LI Jonathan; LIU Xuefeng

    2017-01-01

    The cause-effect associations between geographical phenomena are an important focus in ecological research.Recent studies in structural equation modeling (SEM) demonstrated the potential for analyzing such associations.We applied the variance-based partial least squares SEM (PLS-SEM) and geographically-weighted regression (GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass (AGB).The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia,China.Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction.The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure.The alleviation may be attributable to vegetation adaptation to high human-climate stresses,to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas.Furthermore,the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations.This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems.

  16. Nutrition, Balance and Fear of Falling as Predictors of Risk for Falls among Filipino Elderly in Nursing Homes: A Structural Equation Model (SEM)

    Science.gov (United States)

    de Guzman, Allan B.; Ines, Joanna Louise C.; Inofinada, Nina Josefa A.; Ituralde, Nielson Louie J.; Janolo, John Robert E.; Jerezo, Jnyv L.; Jhun, Hyae Suk J.

    2013-01-01

    While a number of empirical studies have been conducted regarding risk for falls among the elderly, there is still a paucity of similar studies in a developing country like the Philippines. This study purports to test through Structural Equation Modeling (SEM) a model that shows the interaction between and among nutrition, balance, fear of…

  17. SEM based CARMA time series modeling for arbitrary N

    NARCIS (Netherlands)

    Oud, J.H.L.; Völkle, M.C.; Driver, C.C.

    2018-01-01

    This article explains in detail the state space specification and estimation of first and higher-order autoregressive moving-average models in continuous time (CARMA) in an extended structural equation modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be

  18. Continuous time modeling of panel data by means of SEM

    NARCIS (Netherlands)

    Oud, J.H.L.; Delsing, M.J.M.H.; Montfort, C.A.G.M.; Oud, J.H.L.; Satorra, A.

    2010-01-01

    After a brief history of continuous time modeling and its implementation in panel analysis by means of structural equation modeling (SEM), the problems of discrete time modeling are discussed in detail. This is done by means of the popular cross-lagged panel design. Next, the exact discrete model

  19. A first course in structural equation modeling

    CERN Document Server

    Raykov, Tenko

    2012-01-01

    In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one.Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner's guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software.Highlights of the Second Edition include: Review of latent change (growth) analysis models at an introductory level Coverage of the popular Mplus program Updated examples of LISREL and EQS A CD that contains all of the text's LISREL, EQS, and Mplus examples.A First Course in Structural Equation Modeling is intended as an introductory book for students...

  20. The issue of statistical power for overall model fit in evaluating structural equation models

    Directory of Open Access Journals (Sweden)

    Richard HERMIDA

    2015-06-01

    Full Text Available Statistical power is an important concept for psychological research. However, examining the power of a structural equation model (SEM is rare in practice. This article provides an accessible review of the concept of statistical power for the Root Mean Square Error of Approximation (RMSEA index of overall model fit in structural equation modeling. By way of example, we examine the current state of power in the literature by reviewing studies in top Industrial-Organizational (I/O Psychology journals using SEMs. Results indicate that in many studies, power is very low, which implies acceptance of invalid models. Additionally, we examined methodological situations which may have an influence on statistical power of SEMs. Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study. Finally, results indicated that power is significantly related to model fit statistics used in evaluating SEMs. The results from this quantitative review imply that researchers should be more vigilant with respect to power in structural equation modeling. We therefore conclude by offering methodological best practices to increase confidence in the interpretation of structural equation modeling results with respect to statistical power issues.

  1. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  2. Assessing Actual Visit Behavior through Antecedents of Tourists Satisfaction among International Tourists in Jordan: A Structural Equation Modeling (SEM Approach

    Directory of Open Access Journals (Sweden)

    Ayed Moh’d Al Muala

    2011-06-01

    Full Text Available Jordan tourism industry is facing fluctuating tourist visit provoked by dissatisfaction, high visit risk, low hotel service, or negative Jordan image. This study aims to examine the relationships between the antecedents of tourist satisfaction and actual visit behavior in tourism of Jordan, and the mediating effect of tourist satisfaction (SAT in the relationship between Jordan image (JOM, service climate (SER and actual visit behavior (ACT. A total of 850 international tourists completed a survey that were conducted at southern sites in Jordan. Using structural equation modeling (SEM technique, confirmatory Factor Analysis (CFA was performed to examine the reliability and validity of the measurement, and the structural equation modeling techniques (Amos 6.0 were used to evaluate the casual model. Results of the study demonstrate the strong predictive power and explain of international tourists’ behavior in Jordan. The findings highlighted that the relationship between Jordan image and service climate are significant and positive on actual visit behavior.

  3. Structural equation modeling and natural systems

    Science.gov (United States)

    Grace, James B.

    2006-01-01

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

  4. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, Johan H. L.; Folmer, Henk

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  5. A structural equation approach to models with spatial dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.

    2008-01-01

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  6. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.

    2008-01-01

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  7. What Determines Lean Manufacturing Implementation? A CB-SEM Model

    Directory of Open Access Journals (Sweden)

    Tan Ching Ng

    2018-02-01

    Full Text Available This research aims to ascertain the determinants of effective Lean Manufacturing (LM. In this research, Covariance-based Structural Equation Modeling (CB-SEM analysis will be used in order to analyze the determinants. Through CB-SEM analysis, the significant key determinants can be determined and the direct relationships among determinants can be analyzed. Thus, the findings of this research can act as guidelines for achievement of LM effectiveness, not only providing necessary steps for successful implementation of lean, but also helping lean companies to achieve higher level of lean cost and time savings.

  8. Structural Equation Modeling with Mplus Basic Concepts, Applications, and Programming

    CERN Document Server

    Byrne, Barbara M

    2011-01-01

    Modeled after Barbara Byrne's other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models expl

  9. Model Servqual Dengan Pendekatan Structural Equation Modeling (Studi Pada Mahasiswa Sistem Informasi)

    OpenAIRE

    Nurfaizal, Yusmedi

    2015-01-01

    Penelitian ini berjudul “MODEL SERVQUAL DENGAN PENDEKATAN STRUCTURAL EQUATION MODELING (Studi Pada Mahasiswa Sistem Informasi)”. Tujuan penelitian ini adalah untuk mengetahui model Servqual dengan pendekatan Structural Equation Modeling pada mahasiswa sistem informasi. Peneliti memutuskan untuk mengambil sampel sebanyak 100 responden. Untuk menguji model digunakan analisis SEM. Hasil penelitian menunjukkan bahwa tangibility, reliability responsiveness, assurance dan emphaty mempunyai pengaruh...

  10. Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM

    Science.gov (United States)

    Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman

    2012-01-01

    This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…

  11. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  12. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    Science.gov (United States)

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  13. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  14. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    International Nuclear Information System (INIS)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A.

    2012-01-01

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  15. Principles and practice of structural equation modeling

    CERN Document Server

    Kline, Rex B

    2015-01-01

    Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by ex

  16. ANALISA KUALITAS PELAYANAN BIOSKOP TERHADAP KEPUASAN DAN LOYALITAS PELANGGAN MENGGUNAKAN METODE STRUCTURAL EQUATION MODELING (SEM

    Directory of Open Access Journals (Sweden)

    Mochammad Edo Herokholiqi

    2018-04-01

    Full Text Available Bioskop XYZ adalah salah satu bioskop di wilayah kabupaten Sidoarjo yang mengutamakan kualitas dan kepuasan konsumen dengan terus memberikan layanan terbaik. Target pasar bioskop XYZ adalah masyarakat dengan ekonomi menengah ke bawah. Karena itu, pemilihan lokasi pendirian bioskop ini ialah pada tingkat kabupaten. Berkembangnya teknologi membuat persaingan bioskop semakin ketat baik dari pesaing, pembajakan film, harapan pelanggan meningkat serta bioskop yang masih dibutuhkan sebagai hiburan alternatif. Maka dari itu pengelola bioskop dituntut untuk lebih kreatif menarik pelanggan dengan berbagai cara antara lain dengan meningkatkan pelayanan. Untuk mengetahui pengaruh kualitas layanan terhadap kepuasan dan loyalitas pelanggan, serta pengaruh kepuasan pelanggan terhadap loyalitas pelanggan agar dapat memberikan beberapa usulan kepada bioskop berdasarkan hasil penelitian. Dalam meneliti hubungan variabel seperti permasalahan di atas digunakan metode Structural Equation Modeling (SEM. Hasil dari penelitian yang mengacu pada hasil uji hipotesa yang dilakukan menunjukkan bahwa variabel kualitas layanan berpengaruh terhadap kepuasan pelanggan, variabel kepuasan pelanggan berpengaruh terhadap loyalitas pelanggan namun variabel kualitas layanan tidak berpengaruh terhadap loyalitas pelanggan. Adapun indikator paling berpengaruh positif kualitas layananan yakni perhatian karyawan, pada kepuasan pelanggan yakni perasaan senang pelanggan dan pada variabel loyalitas pelanggan yakni merekomendasikan pada orang lain.

  17. Structural Equation Modeling: Theory and Applications in Forest Management

    Directory of Open Access Journals (Sweden)

    Tzeng Yih Lam

    2012-01-01

    Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.

  18. Guidelines for a graph-theoretic implementation of structural equation modeling

    Science.gov (United States)

    Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William

    2012-01-01

    Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for

  19. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling

    Science.gov (United States)

    Cheung, Mike W. L.; Chan, Wai

    2009-01-01

    Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…

  20. Basic and Advanced Bayesian Structural Equation Modeling With Applications in the Medical and Behavioral Sciences

    CERN Document Server

    Lee, Sik-Yum

    2012-01-01

    This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce

  1. A Methodological Review of Structural Equation Modelling in Higher Education Research

    Science.gov (United States)

    Green, Teegan

    2016-01-01

    Despite increases in the number of articles published in higher education journals using structural equation modelling (SEM), research addressing their statistical sufficiency, methodological appropriateness and quantitative rigour is sparse. In response, this article provides a census of all covariance-based SEM articles published up until 2013…

  2. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    2016-11-01

    Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.

  3. Multiple-Group Analysis Using the sem Package in the R System

    Science.gov (United States)

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  4. On the Nature of SEM Estimates of ARMA Parameters.

    Science.gov (United States)

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2002-01-01

    Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…

  5. Meta-analytic structural equation modelling

    CERN Document Server

    Jak, Suzanne

    2015-01-01

    This book explains how to employ MASEM, the combination of meta-analysis (MA) and structural equation modelling (SEM). It shows how by using MASEM, a single model can be tested to explain the relationships between a set of variables in several studies. This book gives an introduction to MASEM, with a focus on the state of the art approach: the two stage approach of Cheung and Cheung & Chan. Both, the fixed and the random approach to MASEM are illustrated with two applications to real data. All steps that have to be taken to perform the analyses are discussed extensively. All data and syntax files are available online, so that readers can imitate all analyses. By using SEM for meta-analysis, this book shows how to benefit from all available information from all available studies, even if few or none of the studies report about all relationships that feature in the full model of interest.

  6. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    DEFF Research Database (Denmark)

    Salarzadeh Jenatabadi, Hashem; Babashamsi, Peyman; Khajeheian, Datis

    2016-01-01

    There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM) with maximum likelihood and Bayesian predictors. The introduced...

  7. FAKTOR ADOPSI INTERNET MARKETING UNTUK USAHA MIKRO DAN USAHA KECIL MENENGAH (UMKM DI KABUPATEN KUDUS DENGAN SEM (STRUCTURAL EQUATION MODEL DAN FRAMEWORK COBIT 4.1

    Directory of Open Access Journals (Sweden)

    Endang Supriyati

    2013-06-01

    Full Text Available ABSTRAK Pemasaran melalui internet merupakan strategi baru dalam era teknologi informasi saat ini. Teknologi informasi diarahkan untuk mendukung proses bisnis utama dan pendukung yang ada di Usaha Mikro Dan Usaha Kecil Menengah (UMKM. Penelitian ini dilakukan pada UMKM di Kab Kudus yang bergerak di bidang konveksi dan kerajinan bordir. Analisa terhadap Tata Kelola TI diperoleh Domain COBIT yang sesuai yaitu PO5 (Mengukur Investasi TI. Indikator yang dianalisa adalah indikator penggunaan internet marketing. Dari identifikasi ini, kuisioner disebar ke UMKM. Pendekatan Struktural Equation Modeling (SEM digunakan untuk menganalisa secara empiris tentang faktor-faktor yang terkait dengan penggunaan internet marketing dalam memasarkan produk UMKM. Dari hasil penelitian ini menunjukkan bahwa korelasi Internet Marketing dengan PO5 cukup kuat (-0,358 akan tetapi arahnya negatif sehingga semakin kecil pengaturan investasi TI semakin kecil juga penggunaan Internet Marketing. Kata Kunci : UMKM, Internet marketing, COBIT, PO5, SEM

  8. Structural equation modeling in pediatric psychology: overview and review of applications.

    Science.gov (United States)

    Nelson, Timothy D; Aylward, Brandon S; Steele, Ric G

    2008-08-01

    To describe the use of structural equation modeling (SEM) in the Journal of Pediatric Psychology (JPP) and to discuss the usefulness of SEM applications in pediatric psychology research. The use of SEM in JPP between 1997 and 2006 was examined and compared to leading journals in clinical psychology, clinical child psychology, and child development. SEM techniques were used in psychology research, although investigations employing these methods are becoming more prevalent. Despite its infrequent use to date, SEM is a potentially useful tool for advancing pediatric psychology research with a number of advantages over traditional statistical methods.

  9. Structural equation modeling with EQS basic concepts, applications, and programming

    CERN Document Server

    Byrne, Barbara M

    2013-01-01

    Readers who want a less mathematical alternative to the EQS manual will find exactly what they're looking for in this practical text. Written specifically for those with little to no knowledge of structural equation modeling (SEM) or EQS, the author's goal is to provide a non-mathematical introduction to the basic concepts of SEM by applying these principles to EQS, Version 6.1. The book clearly demonstrates a wide variety of SEM/EQS applications that include confirmatory factor analytic and full latent variable models. Written in a "user-friendly" style, the author "walks" the reader through the varied steps involved in the process of testing SEM models: model specification and estimation, assessment of model fit, EQS output, and interpretation of findings. Each of the book's applications is accompanied by: a statement of the hypothesis being tested, a schematic representation of the model, explanations of the EQS input and output files, tips on how to use the pull-down menus, and the data file upon which ...

  10. Using structural equation modeling for network meta-analysis.

    Science.gov (United States)

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison

  11. EXPLORING MEDIATING ROLE OF INSTITUTIONAL IMAGE THROUGH A COMPLETE STRUCTURAL EQUATION MODELING (SEM: A PERSPECTVE OF HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Abu Osman

    2018-06-01

    Full Text Available The prime objective of this study is to investigate the mediating role of institutional image between student satisfaction, program quality, and service quality in the context of higher education. To attain this aim, the Nordic model was used as theoretical foundation of the study. The Structural Equation Modeling (SEM was used to analyze the influence of mediating variable and hypotheses testing. The population of this study was fourth-year business students of nine 'grade one' private universities in Bangladesh. Data (n=310 were gathered from students pursuing studies at different private universities in Bangladesh. The findings of this study revealed that image occupied full mediation role between student satisfaction and service quality. Furthermore, it also disclosed that the direct path of student satisfaction and service quality was not statistically significant. These exceptional findings indicate that academic experts should promote the institutional image, student satisfaction and program quality rigorously in order to enhance service quality of education. The outcomes of this study would provide substantial benefits to both practitioners and academics, especially in the context of private higher education. There is a deficiency of indirect link between student satisfaction, program quality and service quality. This study has integrated institutional image as a mediating variable to fulfill the deficiency between student satisfaction, program quality, and service quality.

  12. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    Science.gov (United States)

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  13. Validation of an employee satisfaction model: A structural equation model approach

    OpenAIRE

    Ophillia Ledimo; Nico Martins

    2015-01-01

    The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM). A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759) permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS) to measure employee satisfaction dimensions. Following the steps of ...

  14. On the specification of structural equation models for ecological systems

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Olff, Han; Scheiner, Samuel M.

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical Concepts using latent variables. In this paper, we discuss characteristics of ecological theory

  15. SEM Based CARMA Time Series Modeling for Arbitrary N.

    Science.gov (United States)

    Oud, Johan H L; Voelkle, Manuel C; Driver, Charles C

    2018-01-01

    This article explains in detail the state space specification and estimation of first and higher-order autoregressive moving-average models in continuous time (CARMA) in an extended structural equation modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be presented in which a single panel model (T = 41 time points) is estimated for a sample of N = 1,000 individuals as well as for samples of N = 100 and N = 50 individuals, followed by estimating 100 separate models for each of the one-hundred N = 1 cases in the N = 100 sample. Furthermore, we will demonstrate how to test the difference between the full panel model and each N = 1 model by means of a subject-group-reproducibility test. Finally, the proposed analyses will be applied in an empirical example, in which the relationships between mood at work and mood at home are studied in a sample of N = 55 women. All analyses are carried out by ctsem, an R-package for continuous time modeling, interfacing to OpenMx.

  16. Incorporating Latent Variables into Discrete Choice Models - A Simultaneous Estimation Approach Using SEM Software

    Directory of Open Access Journals (Sweden)

    Dirk Temme

    2008-12-01

    Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

  17. Family Food Security and Children’s Environment: A Comprehensive Analysis with Structural Equation Modeling

    OpenAIRE

    Che Wan Jasimah bt Wan Mohamed Radzi; Huang Hui; Nur Anisah Binti Mohamed @ A. Rahman; Hashem Salarzadeh Jenatabadi

    2017-01-01

    Structural Equation Modeling (SEM) has been used extensively in sustainability studies to model relationships among latent and manifest variables. This paper provides a tutorial exposition of the SEM approach in food security studies and introduces a basic framework based on family food security and children’s environment sustainability. This framework includes family food security and three main concepts representing children’s environment, including children’s BMI, health, and school perfor...

  18. Sensitivity Analysis in Structural Equation Models: Cases and Their Influence

    Science.gov (United States)

    Pek, Jolynn; MacCallum, Robert C.

    2011-01-01

    The detection of outliers and influential observations is routine practice in linear regression. Despite ongoing extensions and development of case diagnostics in structural equation models (SEM), their application has received limited attention and understanding in practice. The use of case diagnostics informs analysts of the uncertainty of model…

  19. Representing general theoretical concepts in structural equation models: The role of composite variables

    Science.gov (United States)

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  20. ANALISA FAKTOR YANG MEMPENGARUHI KENYAMANAN BERKENDARA PADA PENUMPANG KERETA API TAWANG JAYA MENGGUNAKAN STRUCTURAL EQUATION MODELLING

    Directory of Open Access Journals (Sweden)

    Diana Puspita Sari

    2015-11-01

    Full Text Available Kereta api merupakan salah satu moda transportasi dengan jumlah penumpang yang besar. Pengoperasian kereta api Tawang Jaya merupakan salah satu upaya untuk mengakomodir rute perjalanan Semarang – Jakarta dan sebaliknya. Studi pendahuluan mencatat bahwa telah terjadi ketidaknyamanan pada kereta api Tawang Jaya yang diiringi dengan penurunan jumlah penumpang. Penurunan jumlah penumpang mungkin disebabkan karena ketidaknyamanan, sehingga banyak penumpang yang beraliih menggunakan moda transportasi lain atau kereta jenis lain. Hal ini dibuktikan dengan kenaikan jumlah penumpang kereta kelas bisnis dan eksekutif pada waktu yang bersamaan. Studi ini bertujuan untuk mengetahui persepsi kenyamanan pada perjalanan kereta api Tawang Jaya dengan menggunakan Structural Equation Modelling (SEM menggunakan software AMOS versi 21.0. Pendekatan Structural Equation Modelling (SEM digunakan untuk menjelaskan secara sistematis kenyamanan pelanggan kereta api melalui beberapa faktor (suasana kabin, tempat duduk, gejala mabuk perjalanan, faktor terowongan, keletihan dan kenyamanan berkendara serta menghitung pengaruh dari faktor-faktor tersebut terhadap kenyamanan. Hasil dari penelitian menunjukkan bahwa faktor yang secara langsung berpengaruh signifikan terhadap kenyamanan berkendara adalah suasana kabin dengan bobot sebesar 0.60. Sementara itu faktor yang secara tidak langsung berpengaruh signifikan terhadap kenyamanan berkendara melalui mediasi keletihan adalah tempat duduk dengan bobot sebesar 0.5394.   Kata kunci: kenyamanan; kereta api; structural equation modelling (SEM   Abstract   Railway is one of the transportation vehicle with a large number of passenger. The operation of Tawang Jaya Train is one way to accomodate the route of Semarang – Jakarta and reversed. The pilot study notes that discomfort problem has occured in Tawang Jaya Train and caused decreasing the number of passenger. Decrease in the number of passengers may be caused because of

  1. OpenMx: An Open Source Extended Structural Equation Modeling Framework

    Science.gov (United States)

    Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John

    2011-01-01

    OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…

  2. A Structural Equation Modelling Approach for Massive Blended Synchronous Teacher Training

    Science.gov (United States)

    Kannan, Kalpana; Narayanan, Krishnan

    2015-01-01

    This paper presents a structural equation modelling (SEM) approach for blended synchronous teacher training workshop. It examines the relationship among various factors that influence the Satisfaction (SAT) of participating teachers. Data were collected with the help of a questionnaire from about 500 engineering college teachers. These teachers…

  3. CD-SEM real time bias correction using reference metrology based modeling

    Science.gov (United States)

    Ukraintsev, V.; Banke, W.; Zagorodnev, G.; Archie, C.; Rana, N.; Pavlovsky, V.; Smirnov, V.; Briginas, I.; Katnani, A.; Vaid, A.

    2018-03-01

    Accuracy of patterning impacts yield, IC performance and technology time to market. Accuracy of patterning relies on optical proximity correction (OPC) models built using CD-SEM inputs and intra die critical dimension (CD) control based on CD-SEM. Sub-nanometer measurement uncertainty (MU) of CD-SEM is required for current technologies. Reported design and process related bias variation of CD-SEM is in the range of several nanometers. Reference metrology and numerical modeling are used to correct SEM. Both methods are slow to be used for real time bias correction. We report on real time CD-SEM bias correction using empirical models based on reference metrology (RM) data. Significant amount of currently untapped information (sidewall angle, corner rounding, etc.) is obtainable from SEM waveforms. Using additional RM information provided for specific technology (design rules, materials, processes) CD extraction algorithms can be pre-built and then used in real time for accurate CD extraction from regular CD-SEM images. The art and challenge of SEM modeling is in finding robust correlation between SEM waveform features and bias of CD-SEM as well as in minimizing RM inputs needed to create accurate (within the design and process space) model. The new approach was applied to improve CD-SEM accuracy of 45 nm GATE and 32 nm MET1 OPC 1D models. In both cases MU of the state of the art CD-SEM has been improved by 3x and reduced to a nanometer level. Similar approach can be applied to 2D (end of line, contours, etc.) and 3D (sidewall angle, corner rounding, etc.) cases.

  4. A SEM Model in Assessing the Effect of Convergent, Divergent and Logical Thinking on Students' Understanding of Chemical Phenomena

    Science.gov (United States)

    Stamovlasis, D.; Kypraios, N.; Papageorgiou, G.

    2015-01-01

    In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of chemical change. The instrument comprised items on understanding the structure of substances, chemical changes and their interpretation. The structural relationships among particular groups of items are investigated and analyzed using…

  5. Design and Use of the Simple Event Model (SEM)

    NARCIS (Netherlands)

    van Hage, W.R.; Malaisé, V.; Segers, R.H.; Hollink, L.

    2011-01-01

    Events have become central elements in the representation of data from domains such as history, cultural heritage, multimedia and geography. The Simple Event Model (SEM) is created to model events in these various domains, without making assumptions about the domain-specific vocabularies used. SEM

  6. The relationship between cost estimates reliability and BIM adoption: SEM analysis

    Science.gov (United States)

    Ismail, N. A. A.; Idris, N. H.; Ramli, H.; Rooshdi, R. R. Raja Muhammad; Sahamir, S. R.

    2018-02-01

    This paper presents the usage of Structural Equation Modelling (SEM) approach in analysing the effects of Building Information Modelling (BIM) technology adoption in improving the reliability of cost estimates. Based on the questionnaire survey results, SEM analysis using SPSS-AMOS application examined the relationships between BIM-improved information and cost estimates reliability factors, leading to BIM technology adoption. Six hypotheses were established prior to SEM analysis employing two types of SEM models, namely the Confirmatory Factor Analysis (CFA) model and full structural model. The SEM models were then validated through the assessment on their uni-dimensionality, validity, reliability, and fitness index, in line with the hypotheses tested. The final SEM model fit measures are: P-value=0.000, RMSEA=0.0790.90, TLI=0.956>0.90, NFI=0.935>0.90 and ChiSq/df=2.259; indicating that the overall index values achieved the required level of model fitness. The model supports all the hypotheses evaluated, confirming that all relationship exists amongst the constructs are positive and significant. Ultimately, the analysis verified that most of the respondents foresee better understanding of project input information through BIM visualization, its reliable database and coordinated data, in developing more reliable cost estimates. They also perceive to accelerate their cost estimating task through BIM adoption.

  7. Validation of an employee satisfaction model: A structural equation model approach

    Directory of Open Access Journals (Sweden)

    Ophillia Ledimo

    2015-01-01

    Full Text Available The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM. A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759 permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS to measure employee satisfaction dimensions. Following the steps of SEM analysis, the three domains and latent variables of employee satisfaction were specified as organisational strategy, policies and procedures, and outcomes. Confirmatory factor analysis of the latent variables was conducted, and the path coefficients of the latent variables of the employee satisfaction model indicated a satisfactory fit for all these variables. The goodness-of-fit measure of the model indicated both absolute and incremental goodness-of-fit; confirming the relationships between the latent and manifest variables. It also indicated that the latent variables, organisational strategy, policies and procedures, and outcomes, are the main indicators of employee satisfaction. This study adds to the knowledge base on employee satisfaction and makes recommendations for future research.

  8. Simultaneous-equations Analysis in Regional Science and Economic Geography

    DEFF Research Database (Denmark)

    Mitze, Timo; Stephan, Andreas

    This paper provides an overview over simultaneous equation models (SEM) in the context of analyses based on regional data. We describe various modelling approaches and highlight close link of SEMs to theory and also comment on the advantages and disadvantages of SEMs.We present selected empirical...

  9. An Application of Structural Equation Modeling for Developing Good Teaching Characteristics Ontology

    Science.gov (United States)

    Phiakoksong, Somjin; Niwattanakul, Suphakit; Angskun, Thara

    2013-01-01

    Ontology is a knowledge representation technique which aims to make knowledge explicit by defining the core concepts and their relationships. The Structural Equation Modeling (SEM) is a statistical technique which aims to explore the core factors from empirical data and estimates the relationship between these factors. This article presents an…

  10. AxiSEM3D: a new fast method for global wave propagation in 3-D Earth models with undulating discontinuities

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; van Driel, M.; Al-Attar, D.

    2016-12-01

    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models with laterally heterogeneous media and finite boundary perturbations. Our method is a hybrid of pseudo-spectral and spectral element methods (SEM). We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridional equations, which can be solved by a 2-D spectral element method (based on www.axisem.info). Computational efficiency of our method stems from lateral smoothness of global Earth models (with respect to wavelength) as well as axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. All boundary perturbations that violate geometric spherical symmetry, including Earth's ellipticity, topography and bathymetry, undulations of internal discontinuities such as Moho and CMB, are uniformly considered by means of a Particle Relabeling Transformation.The MPI-based high performance C++ code AxiSEM3D, is now available for forward simulations upon 3-D Earth models with fluid outer core, ellipticity, and both mantle and crustal structures. We show novel benchmarks for global wave solutions in 3-D mantle structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period going down to 5s. It is shown that our method runs up to two orders of magnitude faster than the 3-D SEM for such settings, and such computational advantage scales favourably with seismic frequency. By examining wavefields passing through hypothetical Gaussian plumes of varying sharpness, we identify in model-wavelength space the limits where our method may lose its advantage.

  11. Modeling the Informal Economy in Mexico. A Structural Equation Approach

    OpenAIRE

    Brambila Macias, Jose

    2008-01-01

    This paper uses annual data for the period 1970-2006 in order to estimate and investigate the evolution of the Mexican informal economy. In order to do so, we model the informal economy as a latent variable and try to explain it through relationships between possible cause and indicator variables using structural equation modeling (SEM). Our results indicate that the Mexican informal sector at the beginning of the 1970’s initially accounted for 40 percent of GDP while slightly decreasing to s...

  12. Structural equation modeling analysis of factors influencing architects' trust in project design teams

    Institute of Scientific and Technical Information of China (English)

    DING Zhi-kun; NG Fung-fai; WANG Jia-yuan

    2009-01-01

    This paper describes a structural equation modeling (SEM) analysis of factors influencing architects' trust in project design teams. We undertook a survey of architects, during which we distributed 193 questionnaires in 29 A-level architectural We used Amos 6.0 for SEM to identify significant personal construct based factors affecting interpersonal trust. The results show that only social interaction between architects significantly affects their interpersonal trust. The explained variance of trust is not very high in the model. Therefore, future research should add more factors into the current model. The practical implication is that team managers should promote the social interactions between team members such that the interpersonal trust level between team members can be improved.

  13. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling

    OpenAIRE

    Huang, Hui; Wan Mohamed Radzi, Che Wan Jasimah bt; Salarzadeh Jenatabadi, Hashem

    2017-01-01

    The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child’s food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM) concept. Structural models are analysed in terms of the direct and indirect connections among ...

  14. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  15. Bus Travel Time Deviation Analysis Using Automatic Vehicle Location Data and Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Xiaolin Gong

    2015-01-01

    Full Text Available To investigate the influences of causes of unreliability and bus schedule recovery phenomenon on microscopic segment-level travel time variance, this study adopts Structural Equation Modeling (SEM to specify, estimate, and measure the theoretical proposed models. The SEM model establishes and verifies hypotheses for interrelationships among travel time deviations, departure delays, segment lengths, dwell times, and number of traffic signals and access connections. The finally accepted model demonstrates excellent fitness. Most of the hypotheses are supported by the sample dataset from bus Automatic Vehicle Location system. The SEM model confirms the bus schedule recovery phenomenon. The departure delays at bus terminals and upstream travel time deviations indeed have negative impacts on travel time fluctuation of buses en route. Meanwhile, the segment length directly and negatively impacts travel time variability and inversely positively contributes to the schedule recovery process; this exogenous variable also indirectly and positively influences travel times through the existence of signalized intersections and access connections. This study offers a rational approach to analyzing travel time deviation feature. The SEM model structure and estimation results facilitate the understanding of bus service performance characteristics and provide several implications for bus service planning, management, and operation.

  16. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  17. Multiple regression and beyond an introduction to multiple regression and structural equation modeling

    CERN Document Server

    Keith, Timothy Z

    2014-01-01

    Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.

  18. Piecewise Structural Equation Model (SEM) Disentangles the Environmental Conditions Favoring Diatom Diazotroph Associations (DDAs) in the Western Tropical North Atlantic (WTNA).

    Science.gov (United States)

    Stenegren, Marcus; Berg, Carlo; Padilla, Cory C; David, Stefan-Sebastian; Montoya, Joseph P; Yager, Patricia L; Foster, Rachel A

    2017-01-01

    Diatom diazotroph associations (DDAs) are important components in the world's oceans, especially in the western tropical north Atlantic (WTNA), where blooms have a significant impact on carbon and nitrogen cycling. However, drivers of their abundances and distribution patterns remain unknown. Here, we examined abundance and distribution patterns for two DDA populations in relation to the Amazon River (AR) plume in the WTNA. Quantitative PCR assays, targeting two DDAs (het-1 and het-2) by their symbiont's nifH gene, served as input in a piecewise structural equation model (SEM). Collections were made during high (spring 2010) and low (fall 2011) flow discharges of the AR. The distributions of dissolved nutrients, chlorophyll- a , and DDAs showed coherent patterns indicative of areas influenced by the AR. A symbiotic Hemiaulus hauckii-Richelia (het-2) bloom (>10 6 cells L -1 ) occurred during higher discharge of the AR and was coincident with mesohaline to oceanic (30-35) sea surface salinities (SSS), and regions devoid of dissolved inorganic nitrogen (DIN), low concentrations of both DIP (>0.1 μmol L -1 ) and Si (>1.0 μmol L -1 ). The Richelia (het-1) associated with Rhizosolenia was only present in 2010 and at lower densities (10-1.76 × 10 5 nifH copies L -1 ) than het-2 and limited to regions of oceanic SSS (>36). The het-2 symbiont detected in 2011 was associated with H. membranaceus (>10 3 nifH copies L -1 ) and were restricted to regions with mesohaline SSS (31.8-34.3), immeasurable DIN, moderate DIP (0.1-0.60 μmol L -1 ) and higher Si (4.19-22.1 μmol L -1 ). The piecewise SEM identified a profound direct negative effect of turbidity on the het-2 abundance in spring 2010, while DIP and water turbidity had a more positive influence in fall 2011, corroborating our observations of DDAs at subsurface maximas. We also found a striking difference in the influence of salinity on DDA symbionts suggesting a niche differentiation and preferences in oceanic and

  19. Piecewise Structural Equation Model (SEM Disentangles the Environmental Conditions Favoring Diatom Diazotroph Associations (DDAs in the Western Tropical North Atlantic (WTNA

    Directory of Open Access Journals (Sweden)

    Marcus Stenegren

    2017-05-01

    Full Text Available Diatom diazotroph associations (DDAs are important components in the world’s oceans, especially in the western tropical north Atlantic (WTNA, where blooms have a significant impact on carbon and nitrogen cycling. However, drivers of their abundances and distribution patterns remain unknown. Here, we examined abundance and distribution patterns for two DDA populations in relation to the Amazon River (AR plume in the WTNA. Quantitative PCR assays, targeting two DDAs (het-1 and het-2 by their symbiont’s nifH gene, served as input in a piecewise structural equation model (SEM. Collections were made during high (spring 2010 and low (fall 2011 flow discharges of the AR. The distributions of dissolved nutrients, chlorophyll-a, and DDAs showed coherent patterns indicative of areas influenced by the AR. A symbiotic Hemiaulus hauckii-Richelia (het-2 bloom (>106 cells L-1 occurred during higher discharge of the AR and was coincident with mesohaline to oceanic (30–35 sea surface salinities (SSS, and regions devoid of dissolved inorganic nitrogen (DIN, low concentrations of both DIP (>0.1 μmol L-1 and Si (>1.0 μmol L-1. The Richelia (het-1 associated with Rhizosolenia was only present in 2010 and at lower densities (10-1.76 × 105nifH copies L-1 than het-2 and limited to regions of oceanic SSS (>36. The het-2 symbiont detected in 2011 was associated with H. membranaceus (>103nifH copies L-1 and were restricted to regions with mesohaline SSS (31.8–34.3, immeasurable DIN, moderate DIP (0.1–0.60 μmol L-1 and higher Si (4.19–22.1 μmol L-1. The piecewise SEM identified a profound direct negative effect of turbidity on the het-2 abundance in spring 2010, while DIP and water turbidity had a more positive influence in fall 2011, corroborating our observations of DDAs at subsurface maximas. We also found a striking difference in the influence of salinity on DDA symbionts suggesting a niche differentiation and preferences in oceanic and mesohaline

  20. Local fit evaluation of structural equation models using graphical criteria.

    Science.gov (United States)

    Thoemmes, Felix; Rosseel, Yves; Textor, Johannes

    2018-03-01

    Evaluation of model fit is critically important for every structural equation model (SEM), and sophisticated methods have been developed for this task. Among them are the χ² goodness-of-fit test, decomposition of the χ², derived measures like the popular root mean square error of approximation (RMSEA) or comparative fit index (CFI), or inspection of residuals or modification indices. Many of these methods provide a global approach to model fit evaluation: A single index is computed that quantifies the fit of the entire SEM to the data. In contrast, graphical criteria like d-separation or trek-separation allow derivation of implications that can be used for local fit evaluation, an approach that is hardly ever applied. We provide an overview of local fit evaluation from the viewpoint of SEM practitioners. In the presence of model misfit, local fit evaluation can potentially help in pinpointing where the problem with the model lies. For models that do fit the data, local tests can identify the parts of the model that are corroborated by the data. Local tests can also be conducted before a model is fitted at all, and they can be used even for models that are globally underidentified. We discuss appropriate statistical local tests, and provide applied examples. We also present novel software in R that automates this type of local fit evaluation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Meta-Analysis of the Structural Equation Models' Parameters for the Estimation of Brain Connectivity with fMRI

    Directory of Open Access Journals (Sweden)

    Joan Guàrdia-Olmos

    2018-02-01

    Full Text Available Structural Equation Models (SEM is among of the most extensively applied statistical techniques in the study of human behavior in the fields of Neuroscience and Cognitive Neuroscience. This paper reviews the application of SEM to estimate functional and effective connectivity models in work published since 2001. The articles analyzed were compiled from Journal Citation Reports, PsycInfo, Pubmed, and Scopus, after searching with the following keywords: fMRI, SEMs, and Connectivity.Results: A 100 papers were found, of which 25 were rejected due to a lack of sufficient data on basic aspects of the construction of SEM. The other 75 were included and contained a total of 160 models to analyze, since most papers included more than one model. The analysis of the explained variance (R2 of each model yields an effect of the type of design used, the type of population studied, the type of study, the existence of recursive effects in the model, and the number of paths defined in the model. Along with these comments, a series of recommendations are included for the use of SEM to estimate of functional and effective connectivity models.

  2. A performance measurement using balanced scorecard and structural equation modeling

    Directory of Open Access Journals (Sweden)

    Rosha Makvandi

    2014-02-01

    Full Text Available During the past few years, balanced scorecard (BSC has been widely used as a promising method for performance measurement. BSC studies organizations in terms of four perspectives including customer, internal processes, learning and growth and financial figures. This paper presents a hybrid of BSC and structural equation modeling (SEM to measure the performance of an Iranian university in province of Alborz, Iran. The proposed study of this paper uses this conceptual method, designs a questionnaire and distributes it among some university students and professors. Using SEM technique, the survey analyzes the data and the results indicate that the university did poorly in terms of all four perspectives. The survey extracts necessary target improvement by presenting necessary attributes for performance improvement.

  3. On the specification of structural equation models for ecological systems

    Science.gov (United States)

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the

  4. Determinants of quality of life in patients with fibromyalgia: A structural equation modeling approach.

    Science.gov (United States)

    Lee, Jeong-Won; Lee, Kyung-Eun; Park, Dong-Jin; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Kim, Seong-Kyu; Lee, Yeon-Ah; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Kim, Sang-Hyon; Lee, Shin-Seok

    2017-01-01

    Health-related quality of life (HRQOL) in patients with fibromyalgia (FM) is lower than in patients with other chronic diseases and the general population. Although various factors affect HRQOL, no study has examined a structural equation model of HRQOL as an outcome variable in FM patients. The present study assessed relationships among physical function, social factors, psychological factors, and HRQOL, and the effects of these variables on HRQOL in a hypothesized model using structural equation modeling (SEM). HRQOL was measured using SF-36, and the Fibromyalgia Impact Questionnaire (FIQ) was used to assess physical dysfunction. Social and psychological statuses were assessed using the Beck Depression Inventory (BDI), the State-Trait Anxiety Inventory (STAI), the Arthritis Self-Efficacy Scale (ASES), and the Social Support Scale. SEM analysis was used to test the structural relationships of the model using the AMOS software. Of the 336 patients, 301 (89.6%) were women with an average age of 47.9±10.9 years. The SEM results supported the hypothesized structural model (χ2 = 2.336, df = 3, p = 0.506). The final model showed that Physical Component Summary (PCS) was directly related to self-efficacy and inversely related to FIQ, and that Mental Component Summary (MCS) was inversely related to FIQ, BDI, and STAI. In our model of FM patients, HRQOL was affected by physical, social, and psychological variables. In these patients, higher levels of physical function and self-efficacy can improve the PCS of HRQOL, while physical function, depression, and anxiety negatively affect the MCS of HRQOL.

  5. Determinants of quality of life in patients with fibromyalgia: A structural equation modeling approach.

    Directory of Open Access Journals (Sweden)

    Jeong-Won Lee

    Full Text Available Health-related quality of life (HRQOL in patients with fibromyalgia (FM is lower than in patients with other chronic diseases and the general population. Although various factors affect HRQOL, no study has examined a structural equation model of HRQOL as an outcome variable in FM patients. The present study assessed relationships among physical function, social factors, psychological factors, and HRQOL, and the effects of these variables on HRQOL in a hypothesized model using structural equation modeling (SEM.HRQOL was measured using SF-36, and the Fibromyalgia Impact Questionnaire (FIQ was used to assess physical dysfunction. Social and psychological statuses were assessed using the Beck Depression Inventory (BDI, the State-Trait Anxiety Inventory (STAI, the Arthritis Self-Efficacy Scale (ASES, and the Social Support Scale. SEM analysis was used to test the structural relationships of the model using the AMOS software.Of the 336 patients, 301 (89.6% were women with an average age of 47.9±10.9 years. The SEM results supported the hypothesized structural model (χ2 = 2.336, df = 3, p = 0.506. The final model showed that Physical Component Summary (PCS was directly related to self-efficacy and inversely related to FIQ, and that Mental Component Summary (MCS was inversely related to FIQ, BDI, and STAI.In our model of FM patients, HRQOL was affected by physical, social, and psychological variables. In these patients, higher levels of physical function and self-efficacy can improve the PCS of HRQOL, while physical function, depression, and anxiety negatively affect the MCS of HRQOL.

  6. Item bias detection in the Hospital Anxiety and Depression Scale using structural equation modeling: comparison with other item bias detection methods

    NARCIS (Netherlands)

    Verdam, M.G.E.; Oort, F.J.; Sprangers, M.A.G.

    Purpose Comparison of patient-reported outcomes may be invalidated by the occurrence of item bias, also known as differential item functioning. We show two ways of using structural equation modeling (SEM) to detect item bias: (1) multigroup SEM, which enables the detection of both uniform and

  7. Structural equation modeling in the genetically informative study of the covariation of intelligence, working memory and planning

    Directory of Open Access Journals (Sweden)

    Voronin I.

    2016-01-01

    Full Text Available Structural equation modelling (SEM has become an important tool in behaviour genetic research. The application of SEM for multivariate twin analysis allows revealing the structure of genetic and environmental factors underlying individual differences in human traits. We outline the framework of twin method and SEM, describe SEM implementation of a multivariate twin model and provide an example of a multivariate twin study. The study included 901 adolescent twin pairs from Russia. We measured general cognitive ability and characteristics of working memory and planning. The individual differences in working memory and planning were explained mostly by person-specific environment. The variability of intelligence is related to genes, family environment, and person specific environment. Moderate and weak associations between intelligence, working memory, and planning were entirely explained by shared environmental effects.

  8. A STRUCTURAL EQUATION MODEL-II FOR WORK-LIFE BALANCE OF IT PROFESSIONALS IN CHENNAI

    OpenAIRE

    Rashida A. Banu

    2016-01-01

    The study developed and tested a model of work life balance of IT professionals employing structural equation modeling (SEM) to analyze the relationship between work place support (WPS) and work interference with personal life (WIPL), personal life interference with work (PLIW), satisfaction with work-life balance (SWLB) and improved effectiveness at work (IEW). The model fit the data well and hypotheses are generally supported. WPS and SWLB are negatively related to WIPL and P...

  9. Tourism sector, Travel agencies, and Transport Suppliers: Comparison of Different Estimators in the Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Kovačić Nataša

    2015-11-01

    Full Text Available The paper addresses the effect of external integration (EI with transport suppliers on the efficiency of travel agencies in the tourism sector supply chains. The main aim is the comparison of different estimation methods used in the structural equation modeling (SEM, applied to discover possible relationships between EIs and efficiencies. The latter are calculated by the means of data envelopment analysis (DEA. While designing the structural equation model, the exploratory and confirmatory factor analyses are also used as preliminary statistical procedures. For the estimation of parameters of SEM model, three different methods are explained, analyzed and compared: maximum likelihood (ML method, Bayesian Markov Chain Monte Carlo (BMCMC method, and unweighted least squares (ULS method. The study reveals that all estimation methods calculate comparable estimated parameters. The results also give an evidence of good model fit performance. Besides, the research confirms that the amplified external integration with transport providers leads to increased efficiency of travel agencies, which might be a very interesting finding for the operational management.

  10. Patient Safety and Satisfaction Drivers in Emergency Departments Re-visited - An Empirical Analysis using Structural Equation Modeling

    DEFF Research Database (Denmark)

    Sørup, Christian Michel; Jacobsen, Peter

    2014-01-01

    are entitled safety and satisfaction, waiting time, information delivery, and infrastructure accordingly. As an empirical foundation, a recently published comprehensive survey in 11 Danish EDs is analysed in depth using structural equation modeling (SEM). Consulting the proposed framework, ED decision makers...

  11. Constructing a Measurement in Service Quality for Indian Banks: Structural Equation Modeling Approach

    OpenAIRE

    Anil Kumar; Manoj Kumar Dash

    2013-01-01

    The aim of this paper is to construct a measure in service quality for Indian banks and establishes a causal relationship of service attributes performance with customer satisfaction. The SERVQUAL model is used. The quantification of service quality led to the attempt to construct an index. The index is constructed using Structural Equation Modeling (SEM) and American Customer Satisfaction Index (ACSI) as the underlying frameworks. The analysis is based on data of 200 bank customers from the ...

  12. IT vendor selection model by using structural equation model & analytical hierarchy process

    Science.gov (United States)

    Maitra, Sarit; Dominic, P. D. D.

    2012-11-01

    Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.

  13. A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention

    OpenAIRE

    Ya-Fen Lee; Yun-Yao Chi

    2014-01-01

    The study aims to explore the relationship between risk perception of rockfall and revisit intention using a Structural Equation Modeling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travelers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pa...

  14. Multivariate determinants of self-management in Health Care: assessing Health Empowerment Model by comparison between structural equation and graphical models approaches

    Directory of Open Access Journals (Sweden)

    Filippo Trentini

    2015-03-01

    Full Text Available Backgroung. In public health one debated issue is related to consequences of improper self-management in health care.  Some theoretical models have been proposed in Health Communication theory which highlight how components such general literacy and specific knowledge of the disease might be very important for effective actions in healthcare system.  Methods. This  paper aims at investigating the consistency of Health Empowerment Model by means of both graphical models approach, which is a “data driven” method and a Structural Equation Modeling (SEM approach, which is instead “theory driven”, showing the different information pattern that can be revealed in a health care research context.The analyzed dataset provides data on the relationship between the Health Empowerment Model constructs and the behavioral and health status in 263 chronic low back pain (cLBP patients. We used the graphical models approach to evaluate the dependence structure in a “blind” way, thus learning the structure from the data.Results. From the estimation results dependence structure confirms links design assumed in SEM approach directly from researchers, thus validating the hypotheses which generated the Health Empowerment Model constructs.Conclusions. This models comparison helps in avoiding confirmation bias. In Structural Equation Modeling, we used SPSS AMOS 21 software. Graphical modeling algorithms were implemented in a R software environment.

  15. A STRUCTURAL EQUATION MODEL-II FOR WORK-LIFE BALANCE OF IT PROFESSIONALS IN CHENNAI

    Directory of Open Access Journals (Sweden)

    Rashida A. Banu

    2016-05-01

    Full Text Available The study developed and tested a model of work life balance of IT professionals employing structural equation modeling (SEM to analyze the relationship between work place support (WPS and work interference with personal life (WIPL, personal life interference with work (PLIW, satisfaction with work-life balance (SWLB and improved effectiveness at work (IEW. The model fit the data well and hypotheses are generally supported. WPS and SWLB are negatively related to WIPL and PLIW. However, there is a positive relationship between SWLB and IEW.

  16. A Novel Approach for Assessing the Performance of Sustainable Urbanization Based on Structural Equation Modeling: A China Case Study

    Directory of Open Access Journals (Sweden)

    Liudan Jiao

    2016-09-01

    Full Text Available The rapid urbanization process has brought problems to China, such as traffic congestion, air pollution, water pollution and resources scarcity. Sustainable urbanization is commonly appreciated as an effective way to promote the sustainable development. The proper understanding of the sustainable urbanization performance is critical to provide governments with support in making urban development strategies and policies for guiding the sustainable development. This paper utilizes the method of Structural equation modeling (SEM to establish an assessment model for measuring sustainable urbanization performance. Four unobserved endogenous variables, economic variable, social variable, environment variable and resource variable, and 21 observed endogenous variables comprise the SEM model. A case study of the 31 provinces in China demonstrates the validity of the SEM model and the analysis results indicated that the assessment model could help make more effective policies and strategies for improving urban sustainability by recognizing the statue of sustainable urbanization.

  17. Structural equation models of VMT growth in US urbanised areas.

    Science.gov (United States)

    Ewing, Reid; Hamidi, Shima; Gallivan, Frank; Nelson, Arthur C.; Grace, James B.

    2014-01-01

    Vehicle miles travelled (VMT) is a primary performance indicator for land use and transportation, bringing with it both positive and negative externalities. This study updates and refines previous work on VMT in urbanised areas, using recent data, additional metrics and structural equation modelling (SEM). In a cross-sectional model for 2010, population, income and freeway capacity are positively related to VMT, while gasoline prices, development density and transit service levels are negatively related. Findings of the cross-sectional model are generally confirmed in a more tightly controlled longitudinal study of changes in VMT between 2000 and 2010, the first model of its kind. The cross-sectional and longitudinal models together, plus the transportation literature generally, give us a basis for generalising across studies to arrive at elasticity values of VMT with respect to different urban variables.

  18. The importance of statistical modelling in clinical research : Comparing multidimensional Rasch-, structural equation and linear regression models for analyzing the depression of relatives of psychiatric patients.

    Science.gov (United States)

    Alexandrowicz, Rainer W; Jahn, Rebecca; Friedrich, Fabian; Unger, Anne

    2016-06-01

    Various studies have shown that caregiving relatives of schizophrenic patients are at risk of suffering from depression. These studies differ with respect to the applied statistical methods, which could influence the findings. Therefore, the present study analyzes to which extent different methods may cause differing results. The present study contrasts by means of one data set the results of three different modelling approaches, Rasch Modelling (RM), Structural Equation Modelling (SEM), and Linear Regression Modelling (LRM). The results of the three models varied considerably, reflecting the different assumptions of the respective models. Latent trait models (i. e., RM and SEM) generally provide more convincing results by correcting for measurement error and the RM specifically proves superior for it treats ordered categorical data most adequately.

  19. A model for oral health gradients in children: using structural equation modeling.

    Science.gov (United States)

    Behbahanirad, A; Joulaei, H; Jamali, J; Vossoughi, M; Golkari, A

    2017-03-01

    Detecting the underlying socioeconomic and behavioral determinants is essential for reducing oral health disparities in children. To test a conceptual model in children to explore the interaction amongst social, environmental, behavioral factors and oral health outcomes. This analytic cross-sectional study was performed in 2014-2015 in Shiraz, Iran. The sampling was conducted using a multistage stratified design to represent the whole 6-year-olds in Shiraz County. Participants were 830, 6-year-old first grade primary schoolchildren and their parents. Children were examined to register decayed, missing and filled teeth (dmft) and simplified oral hygiene index (OHI-S). Parents were asked for data on socio-cultural risk factors, oral health behaviors and children's oral health related quality of life (C-OHRQoL). Data on environmental risk factors were collected from several sources. The proposed model, a development of Peterson's, was tested using structural equation modeling (SEM). The tested model could empirically demonstrate the wide range of social and behavioral factors affecting C-OHRQoL. Socioeconomic status (SES) affected the OHRQoL of children through several pathways. Tooth brushing frequency, use of oral health services and consuming cariogenic foods were the mediators, through which SES affected dmft and subsequently C-OHRQoL. Using the modified Petersen's model and SEM, the paths in which different distal and proximal factors affect oral health outcomes in children could be clearly identified. It showed that addressing the underlying social, economic and behavioral determinants is essential for reducing oral health disparities among Iranian children. Copyright© 2017 Dennis Barber Ltd.

  20. ANALISIS STRUCTURAL EQUATION MODELING PADA PENGARUH KEBIASAAN MENGAKSES FACEBOOK TERHADAP KUALITAS HIDUP DAN PRESTASI AKADEMIK MAHASISWA

    Directory of Open Access Journals (Sweden)

    Nalim Nalim

    2014-02-01

    Full Text Available This study tried to determine the effect on quality of life Facebook and students' academic achievement. A total of 210 samples were taken from three universities with proportional multistage random sampling method, while data analysis was conducted using Structural Equation Modeling (SEM with software lisrel 8.80 (student version. The results showed, although according to the investigators alleged that Facebook had a negative impact on quality of life, but the effect was not significant. This is evident from the t value of -1.90 (less than 1.96. Similarly, the structural equation generated, quality of life and Facebook together provide significant influence on academic achievement (with values of t are respectively 0.69 and -0.92. Keywords: structural equation modeling, custom facebook access, quality of life, student academic achievement

  1. Assessing overall patient satisfaction in inflammatory bowel disease using structural equation modeling.

    Science.gov (United States)

    Soares, João-Bruno; Marinho, Ana S; Fernandes, Dália; Moreira Gonçalves, Bruno; Camila-Dias, Cláudia; Gonçalves, Raquel; Magro, Fernando

    2015-08-01

    Structural equation modeling (SEM) is a very popular data-analytic technique for the evaluation of customer satisfaction. We aimed to measure the overall satisfaction of inflammatory bowel disease (IBD) patients with healthcare in Portugal and to define its main determinants using SEM. The study included three steps: (i) specification of a patient satisfaction model that included the following dimensions: Image, Expectations, Facilities, Admission process, Assistant staff, Nursing staff, Medical staff, Treatment, Inpatient care, Outpatient care, Overall quality, Overall satisfaction, and Loyalty; (ii) sample survey from 2000 patients, members of the Portuguese Association of the IBD; and (iii) estimation of the satisfaction model using partial least squares (XLSTAT-PLSPM). We received 498 (25%) valid questionnaires from 324 (66%) patients with Crohn's disease and 162 (33%) patients with ulcerative colitis. Our model provided a substantial explanation for Overall satisfaction (R=0.82). The mean index of overall satisfaction was 74.4 (0-100 scale). The main determinants of Overall satisfaction were the Image (β=0.26), Outpatient care (β=0.23), and Overall quality (β=0.21), whose mean indices were 83, 75, and 81, respectively. Facilities and Inpatient care were the variables with a significant impact on Overall satisfaction and the worst mean indices. SEM is useful for the evaluation of IBD patient satisfaction. The Overall satisfaction of IBD patients with healthcare in Portugal is good, but to increase it, IBD services need to focus on the improvement of Outpatient care, Facilities, and Inpatient care. Our model could be a matrix for a global model of IBD patient satisfaction.

  2. Probability-of-Superiority SEM (PS-SEM—Detecting Probability-Based Multivariate Relationships in Behavioral Research

    Directory of Open Access Journals (Sweden)

    Johnson Ching-Hong Li

    2018-06-01

    Full Text Available In behavioral research, exploring bivariate relationships between variables X and Y based on the concept of probability-of-superiority (PS has received increasing attention. Unlike the conventional, linear-based bivariate relationship (e.g., Pearson's correlation, PS defines that X and Y can be related based on their likelihood—e.g., a student who is above mean in SAT has 63% likelihood of achieving an above-mean college GPA. Despite its increasing attention, the concept of PS is restricted to a simple bivariate scenario (X-Y pair, which hinders the development and application of PS in popular multivariate modeling such as structural equation modeling (SEM. Therefore, this study addresses an empirical-based simulation study that explores the potential of detecting PS-based relationship in SEM, called PS-SEM. The simulation results showed that the proposed PS-SEM method can detect and identify PS-based when data follow PS-based relationships, thereby providing a useful method for researchers to explore PS-based SEM in their studies. Conclusions, implications, and future directions based on the findings are also discussed.

  3. Describing model of empowering managers by applying structural equation modeling: A case study of universities in Ardabil

    Directory of Open Access Journals (Sweden)

    Maryam Ghahremani Germi

    2015-06-01

    Full Text Available Empowerment is still on the agenda as a management concept and has become a widely used management term in the last decade or so. The purpose of this research was describing model of empowering managers by applying structural equation modeling (SEM at Ardabil universities. Two hundred and twenty managers of Ardabil universities including chancellors, managers, and vice presidents of education, research, and studies participated in this study. Clear and challenging goals, evaluation of function, access to resources, and rewarding were investigated. The results indicated that the designed SEM for empowering managers at university reflects a good fitness level. As it stands out, the conceptual model in the society under investigation was used appropriately. Among variables, access to resources with 88 per cent of load factor was known as the affective variable. Evaluation of function containing 51 per cent of load factor was recognized to have less effect. Results of average rating show that evaluation of function and access to resources with 2.62 coefficients stand at first level. Due to this, they had great impact on managers' empowerment. The results of the analysis provided compelling evidence that model of empowering managers was desirable at Ardabil universities.

  4. Are Systemic Manifestations Ascribable to COPD in Smokers? A Structural Equation Modeling Approach.

    Science.gov (United States)

    Boyer, Laurent; Bastuji-Garin, Sylvie; Chouaid, Christos; Housset, Bruno; Le Corvoisier, Philippe; Derumeaux, Geneviève; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge; Audureau, Etienne

    2018-06-05

    Whether the systemic manifestations observed in Chronic Obstructive Pulmonary Disease (COPD) are ascribable to lung dysfunction or direct effects of smoking is in debate. Structural Equations Modeling (SEM), a causal-oriented statistical approach, could help unraveling the pathways involved, by enabling estimation of direct and indirect associations between variables. The objectives of the study was to investigate the relative impact of smoking and COPD on systemic manifestations, inflammation and telomere length. In 292 individuals (103 women; 97 smokers with COPD, 96 smokers without COPD, 99 non-smokers), we used SEM to explore the pathways between smoking (pack-years), lung disease (FEV 1 , K CO ), and the following parameters: arterial stiffness (aortic pulse wave velocity, PWV), bone mineral density (BMD), appendicular skeletal muscle mass (ASMM), grip strength, insulin resistance (HOMA-IR), creatinine clearance (eGFR), blood leukocyte telomere length and inflammatory markers (Luminex assay). All models were adjusted on age and gender. Latent variables were created for systemic inflammation (inflammatory markers) and musculoskeletal parameters (ASMM, grip strength, BMD). SEM showed that most effects of smoking were indirectly mediated by lung dysfunction: e.g. via FEV 1 on musculoskeletal factor, eGFR, HOMA-IR, PWV, telomere length, CRP, white blood cells count (WBC) and inflammation factor, and via K CO on musculoskeletal factor, eGFR and PWV. Direct effects of smoking were limited to CRP and WBC. Models had excellent fit. In conclusion, SEM highlighted the major role of COPD in the occurrence of systemic manifestations while smoking effects were mostly mediated by lung function.

  5. Investigating the Relationships among Metacognitive Strategy Training, Willingness to Read English Medical Texts, and Reading Comprehension Ability Using Structural Equation Modeling

    Science.gov (United States)

    Hassanpour, Masoumeh; Ghonsooly, Behzad; Nooghabi, Mehdi Jabbari; Shafiee, Mohammad Naser

    2017-01-01

    This quasi-experimental study examined the relationship between students' metacognitive awareness and willingness to read English medical texts. So, a model was proposed and tested using structural equation modeling (SEM) with R software. Participants included 98 medical students of two classes. One class was assigned as the control group and the…

  6. Structural equation and log-linear modeling: a comparison of methods in the analysis of a study on caregivers' health

    Directory of Open Access Journals (Sweden)

    Rosenbaum Peter L

    2006-10-01

    Full Text Available Abstract Background In this paper we compare the results in an analysis of determinants of caregivers' health derived from two approaches, a structural equation model and a log-linear model, using the same data set. Methods The data were collected from a cross-sectional population-based sample of 468 families in Ontario, Canada who had a child with cerebral palsy (CP. The self-completed questionnaires and the home-based interviews used in this study included scales reflecting socio-economic status, child and caregiver characteristics, and the physical and psychological well-being of the caregivers. Both analytic models were used to evaluate the relationships between child behaviour, caregiving demands, coping factors, and the well-being of primary caregivers of children with CP. Results The results were compared, together with an assessment of the positive and negative aspects of each approach, including their practical and conceptual implications. Conclusion No important differences were found in the substantive conclusions of the two analyses. The broad confirmation of the Structural Equation Modeling (SEM results by the Log-linear Modeling (LLM provided some reassurance that the SEM had been adequately specified, and that it broadly fitted the data.

  7. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    Science.gov (United States)

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  8. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  9. A structural equation modelling approach to explore the role of B vitamins and immune markers in lung cancer risk.

    Science.gov (United States)

    Baltar, Valéria Troncoso; Xun, Wei W; Johansson, Mattias; Ferrari, Pietro; Chuang, Shu-Chun; Relton, Caroline; Ueland, Per Magne; Midttun, Øivind; Slimani, Nadia; Jenab, Mazda; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; Kaaks, Rudolf; Rohrmann, Sabine; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, Bas; Boshuizen, Hendriek; van Gils, Carla H; Onland-Moret, N Charlotte; Agudo, Antonio; Barricarte, Aurelio; Navarro, Carmen; Rodríguez, Laudina; Castaño, José Maria Huerta; Larrañaga, Nerea; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E; Crowe, Francesca; Gallo, Valentina; Norat, Teresa; Krogh, Vittorio; Masala, Giovanna; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Rasmuson, Torgny; Hallmans, Göran; Roswall, Nina; Tjønneland, Anne; Riboli, Elio; Brennan, Paul; Vineis, Paolo

    2013-08-01

    The one-carbon metabolism (OCM) is considered key in maintaining DNA integrity and regulating gene expression, and may be involved in the process of carcinogenesis. Several B-vitamins and amino acids have been implicated in lung cancer risk, via the OCM directly as well as immune system activation. However it is unclear whether these factors act independently or through complex mechanisms. The current study applies structural equations modelling (SEM) to further disentangle the mechanisms involved in lung carcinogenesis. SEM allows simultaneous estimation of linear relations where a variable can be the outcome in one equation and the predictor in another, as well as allowing estimation using latent variables (factors estimated by correlation matrix). A large number of biomarkers have been analysed from 891 lung cancer cases and 1,747 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Four putative mechanisms in the OCM and immunity were investigated in relation to lung cancer risk: methionine-homocysteine metabolism, folate cycle, transsulfuration, and mechanisms involved in inflammation and immune activation, all adjusted for tobacco exposure. The hypothesized SEM model confirmed a direct and protective effect for factors representing methionine-homocysteine metabolism (p = 0.020) and immune activation (p = 0.021), and an indirect protective effect of folate cycle (p = 0.019), after adjustment for tobacco smoking. In conclusion, our results show that in the investigation of the involvement of the OCM, the folate cycle and immune system in lung carcinogenesis, it is important to consider complex pathways (by applying SEM) rather than the effects of single vitamins or nutrients (e.g. using traditional multiple regression). In our study SEM were able to suggest a greater role of the methionine-homocysteine metabolism and immune activation over other potential mechanisms.

  10. Do associations between employee self-reported organisational assessments and attitudinal outcomes change over time? An analysis of four Veterans Health Administration surveys using structural equation modelling

    CSIR Research Space (South Africa)

    Das, Sonali

    2010-12-01

    Full Text Available and their changes over time. Exposure and outcome measures are employee-assessed in all the surveys. Because it can accommodate both latent and measured variables into the model, Structural Equation Modelling (SEM) is used to capture and quantify the relationship...

  11. Pemodelan Peningkatan Akurasi Estimasi Biaya Dengan Metode Structural Equation Modeling-Partial Least Square Pada Proyek Jalan Provinsi Kalimantan Tengah

    Directory of Open Access Journals (Sweden)

    Yanda Christian

    2018-01-01

    Full Text Available Acceleration of national development increases the number of construction projects in Indonesia, including road projects. The contractor as the service provider in the implementation of the construction work shall have a detailed implementation schedule and project cost budget plan so that the construction work shall not be subject to delays and cost overrun. The main thing that can cause cost overrun is the error in cost estimation. In this study discusses the modeling of increasing the accuracy of cost estimation as well as the development of factors that can improve the accuracy of cost estimation. Validation of research variables was done to experts using Analytical Hierarchy Process (AHP method and modeling using Structural Equation ModelingPartial Least Square (SEM-PLS method to project contractor of Public Works Department of Central Kalimantan Province and National Road Implementation Center XI Unit Work of Central Kalimantan with contract value of project worth 20 Billion to 50 Billion Rupiah Year 2016. The result of variable validation shows the competence variable of estimator, survey, availability of information, calculation of cost estimation and internal company is variable which influence estimation The obtained modeling equation is AEB = 0,129 KE + 0.466 S + 0,191 KI + 0,153 PEB + 0,069 IP + 0,181 ζ. The development of cost estimation is done by improving each influential indicator in each variable and applying development strategies to increase the estimated cost estimation based on SWOT analysis. Keywords : Analytical Hierarchy Process (AHP, cost estimation, road, Structural Equation Modeling-Partial Least Square (SEM-PLS, SWOT analysis.

  12. Analisis Structural Equation Modeling Pada Pengaruh Kebiasaan Mengakses Facebook Terhadap Kualitas Hidup Dan Prestasi Akademik Mahasiswa

    OpenAIRE

    Nalim, Nalim

    2014-01-01

    This study tried to determine the effect on quality of life Facebook and students' academic achievement. A total of 210 samples were taken from three universities with proportional multistage random sampling method, while data analysis was conducted using Structural Equation Modeling (SEM) with software lisrel 8.80 (student version). The results showed, although according to the investigators alleged that Facebook had a negative impact on quality of life, but the effect was not...

  13. Analisis Loyalitas Pelanggan Industri Jasa Pengiriman Menggunakan Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Sarika Zuhri

    2017-01-01

    Full Text Available Customer loyalty is important for both product and service industries. A loyal customer keeps using the company’s product and services. For a shipping service company, retaining existing customers in order to remain faithful will certainly be very crucial. This study was to determine relationship between variables affecting customer loyalty at PT. Pos Indonesia-Banda Aceh, a shipping service industry. The research used Structural Equation Modeling (SEM and with samples of 153 questionnaires obtained through a non-probability sampling technique. By using AMOS software, it can be concluded that the perceived quality does affect customer satisfaction, perceived value has influence on the customer satisfaction, the customer satisfaction is influential to trust and the trust itself has positive influence on customer loyalty.

  14. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  15. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  16. The SEM Risk Behavior (SRB) Model: A New Conceptual Model of how Pornography Influences the Sexual Intentions and HIV Risk Behavior of MSM.

    Science.gov (United States)

    Wilkerson, J Michael; Iantaffi, Alex; Smolenski, Derek J; Brady, Sonya S; Horvath, Keith J; Grey, Jeremy A; Rosser, B R Simon

    2012-01-01

    While the effects of sexually explicit media (SEM) on heterosexuals' sexual intentions and behaviors have been studied, little is known about the consumption and possible influence of SEM among men who have sex with men (MSM). Importantly, conceptual models of how Internet-based SEM influences behavior are lacking. Seventy-nine MSM participated in online focus groups about their SEM viewing preferences and sexual behavior. Twenty-three participants reported recent exposure to a new behavior via SEM. Whether participants modified their sexual intentions and/or engaged in the new behavior depended on three factors: arousal when imagining the behavior, pleasure when attempting the behavior, and trust between sex partners. Based on MSM's experience, we advance a model of how viewing a new sexual behavior in SEM influences sexual intentions and behaviors. The model includes five paths. Three paths result in the maintenance of sexual intentions and behaviors. One path results in a modification of sexual intentions while maintaining previous sexual behaviors, and one path results in a modification of both sexual intentions and behaviors. With this model, researchers have a framework to test associations between SEM consumption and sexual intentions and behavior, and public health programs have a framework to conceptualize SEM-based HIV/STI prevention programs.

  17. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  18. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  19. Mathematical modeling and the two-phase constitutive equations

    International Nuclear Information System (INIS)

    Boure, J.A.

    1975-01-01

    The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr

  20. Do generic strategies impact performance in higher educational institutions? A SEM-based investigation

    OpenAIRE

    Ahlam Mohammad Alzoubi; Okechukwu Lawrence Emeagwali

    2016-01-01

    This study set out to initiate an investigation into the linkage between generic strategy and performance in higher educational institutions and the moderating effect of institution-type. Using structural equation modeling (SEM), it examined the responses of a stratified sample of academics and administrative staff (n= 333) randomly selected from eight universities in northern Cyprus. Findings suggest that while there is a weak effect of differentiation strategy on performance, a strong effec...

  1. Neurological soft signs and their relationships to neurocognitive functions: a re-visit with the structural equation modeling design.

    Directory of Open Access Journals (Sweden)

    Raymond C K Chan

    Full Text Available BACKGROUND: Neurological soft signs and neurocognitive impairments have long been considered important features of schizophrenia. Previous correlational studies have suggested that there is a significant relationship between neurological soft signs and neurocognitive functions. The purpose of the current study was to examine the underlying relationships between these two distinct constructs with structural equation modeling (SEM. METHODS: 118 patients with schizophrenia and 160 healthy controls were recruited for the current study. The abridged version of the Cambridge Neurological Inventory (CNI and a set of neurocognitive function tests were administered to all participants. SEM was then conducted independently in these two samples to examine the relationships between neurological soft signs and neurocognitive functions. RESULTS: Both the measurement and structural models showed that the models fit well to the data in both patients and healthy controls. The structural equations also showed that there were modest to moderate associations among neurological soft signs, executive attention, verbal memory, and visual memory, while the healthy controls showed more limited associations. CONCLUSIONS: The current findings indicate that motor coordination, sensory integration, and disinhibition contribute to the latent construct of neurological soft signs, whereas the subset of neurocognitive function tests contribute to the latent constructs of executive attention, verbal memory, and visual memory in the present sample. Greater evidence of neurological soft signs is associated with more severe impairment of executive attention and memory functions. Clinical and theoretical implications of the model findings are discussed.

  2. Modeling of Individual and Organizational Factors Affecting Traumatic Occupational Injuries Based on the Structural Equation Modeling: A Case Study in Large Construction Industries.

    Science.gov (United States)

    Mohammadfam, Iraj; Soltanzadeh, Ahmad; Moghimbeigi, Abbas; Akbarzadeh, Mehdi

    2016-09-01

    Individual and organizational factors are the factors influencing traumatic occupational injuries. The aim of the present study was the short path analysis of the severity of occupational injuries based on individual and organizational factors. The present cross-sectional analytical study was implemented on traumatic occupational injuries within a ten-year timeframe in 13 large Iranian construction industries. Modeling and data analysis were done using the structural equation modeling (SEM) approach and the IBM SPSS AMOS statistical software version 22.0, respectively. The mean age and working experience of the injured workers were 28.03 ± 5.33 and 4.53 ± 3.82 years, respectively. The portions of construction and installation activities of traumatic occupational injuries were 64.4% and 18.1%, respectively. The SEM findings showed that the individual, organizational and accident type factors significantly were considered as effective factors on occupational injuries' severity (P accidents' severity in large construction industries.

  3. Slave equations for spin models

    International Nuclear Information System (INIS)

    Catterall, S.M.; Drummond, I.T.; Horgan, R.R.

    1992-01-01

    We apply an accelerated Langevin algorithm to the simulation of continuous spin models on the lattice. In conjunction with the evolution equation for the spins we use slave equations to compute estimators for the connected correlation functions of the model. In situations for which the symmetry of the model is sufficiently strongly broken by an external field these estimators work well and yield a signal-to-noise ratio for the Green function at large time separations more favourable than that resulting from the standard method. With the restoration of symmetry, however, the slave equation estimators exhibit an intrinsic instability associated with the growth of a power law tail in the probability distributions for the measured quantities. Once this tail has grown sufficiently strong it results in a divergence of the variance of the estimator which then ceases to be useful for measurement purposes. The instability of the slave equation method in circumstances of weak symmetry breaking precludes its use in determining the mass gap in non-linear sigma models. (orig.)

  4. Differential Equations Models to Study Quorum Sensing.

    Science.gov (United States)

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  5. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2017-02-01

    Full Text Available The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child’s food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM concept. Structural models are analysed in terms of the direct and indirect connections among latent and measurement variables that lead to the child weight indicator. To illustrate the accuracy, fit, reliability and validity of the introduced framework, real data collected from 630 families from Urumqi (Xinjiang, China were considered. The framework includes two categories of data comprising the normal body mass index (BMI range and obesity data. The comparison analysis between two models provides some evidence that in obesity modeling, obesity data must be extracted from the dataset and analysis must be done separately from the normal BMI range. This study may be helpful for researchers interested in childhood obesity modeling based on family environment.

  6. Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector

    International Nuclear Information System (INIS)

    Kelly, Scott

    2011-01-01

    Energy consumption from the residential sector is a complex socio-technical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM) is introduced to calculate the magnitude and significance of explanatory variables on residential energy consumption. The benefit of this approach is that it explains the complex relationships that exist between manifest variables and their overall effect though direct, indirect and total effects. Using the English House Condition Survey (EHCS) consisting of 2531 unique cases, the main drivers behind residential energy consumption are found to be the number of household occupants, floor area, household income, dwelling efficiency (SAP), household heating patterns and living room temperature. In the multivariate case, SAP explains very little of the variance of residential energy consumption. However, this procedure fails to account for simultaneity bias between energy consumption and SAP. Using SEM its shown that dwelling energy efficiency (SAP), has reciprocal causality with dwelling energy consumption and the magnitude of these two effects are calculable. When non-recursivity between SAP and energy consumption is allowed for, SAP is shown to have a negative effect on energy consumption but conversely, homes with a propensity to consume more energy also have higher SAP rates. -- Highlights: → A Structural Equation Model (SEM) is developed to explain residential energy demand. → Key variables that drive residential energy consumption are empirically identified. → Direct, indirect and total effects are determined. → It is found that occupancy and household income are strongly mediated by floor area. → A non-recursive relationship is found to exist between energy consumption and SAP.

  7. Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables.

    Science.gov (United States)

    Yuan, Ke-Hai; Tian, Yubin; Yanagihara, Hirokazu

    2015-06-01

    Survey data typically contain many variables. Structural equation modeling (SEM) is commonly used in analyzing such data. The most widely used statistic for evaluating the adequacy of a SEM model is T ML, a slight modification to the likelihood ratio statistic. Under normality assumption, T ML approximately follows a chi-square distribution when the number of observations (N) is large and the number of items or variables (p) is small. However, in practice, p can be rather large while N is always limited due to not having enough participants. Even with a relatively large N, empirical results show that T ML rejects the correct model too often when p is not too small. Various corrections to T ML have been proposed, but they are mostly heuristic. Following the principle of the Bartlett correction, this paper proposes an empirical approach to correct T ML so that the mean of the resulting statistic approximately equals the degrees of freedom of the nominal chi-square distribution. Results show that empirically corrected statistics follow the nominal chi-square distribution much more closely than previously proposed corrections to T ML, and they control type I errors reasonably well whenever N ≥ max(50,2p). The formulations of the empirically corrected statistics are further used to predict type I errors of T ML as reported in the literature, and they perform well.

  8. Sensitivity analysis for linear structural equation models, longitudinal mediation with latent growth models and blended learning in biostatistics education

    Science.gov (United States)

    Sullivan, Adam John

    In chapter 1, we consider the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are and are not biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one but numerous effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function. In chapter 2, we consider longitudinal mediation with latent growth curves. We define the direct and indirect effects using counterfactuals and consider the assumptions needed for identifiability of those effects. We develop models with a binary treatment/exposure followed by a model where treatment/exposure changes with time allowing for treatment/exposure-mediator interaction. We thus formalize mediation analysis with latent growth curve models using counterfactuals, makes clear the assumptions and extends these methods to allow for exposure mediator interactions. We present and illustrate the techniques with a study on Multiple Sclerosis(MS) and depression. In chapter 3, we report on a pilot study in blended learning that took place during the Fall 2013 and Summer 2014 semesters here at Harvard. We blended the traditional BIO 200: Principles of Biostatistics and created ID 200: Principles of Biostatistics and epidemiology. We used materials from the edX course PH207x: Health in Numbers: Quantitative Methods in Clinical & Public Health Research and used. These materials were used as a video textbook in which students would watch a given number of these videos prior to class. Using surveys as well as exam data we informally assess these blended classes from the student's perspective as well as a comparison of these students with students in another course, BIO 201

  9. Fast food, other food choices and body mass index in teenagers in the United Kingdom (ALSPAC): a structural equation modelling approach.

    Science.gov (United States)

    Fraser, L K; Edwards, K L; Cade, J E; Clarke, G P

    2011-10-01

    To assess the association between the consumption of fast food (FF) and body mass index (BMI) of teenagers in a large UK birth cohort. A structural equation modelling (SEM) approach was chosen to allow direct statistical testing of a theoretical model. SEM is a combination of confirmatory factor and path analysis, which allows for the inclusion of latent (unmeasured) variables. This approach was used to build two models: the effect of FF outlet visits and food choices and the effect of FF exposure on consumption and BMI. A total of 3620 participants had data for height and weight from the age 13 clinic and the frequency of FF outlet visits, and so were included in these analyses. This SEM model of food choices showed that increased frequency of eating at FF outlets is positively associated with higher consumption of unhealthy foods (β=0.29, Pfoods (β=-1.02, Pfoods and were more likely to have higher BMISDS than those teenagers who did not eat frequently at FF restaurants. Teenagers who were exposed to more takeaway foods at home ate more frequently at FF restaurants and eating at FF restaurants was also associated with lower intakes of vegetables and raw fruit in this cohort.

  10. Structural Equation Model for Evaluating Factors Affecting Quality of Social Infrastructure Projects

    Directory of Open Access Journals (Sweden)

    Shahid Hussain

    2018-05-01

    Full Text Available The quality of the constructed social infrastructure project has been considered a necessary measure for the sustainability of projects. Studies on factors affecting project quality have used various techniques and methods to explain the relationships between particular variables. Unexpectedly, Structural Equation Modeling (SEM has acquired very little concern in factors affecting project quality studies. To address this limitation in the body of knowledge, the objective of this study was to apply the SEM approach and build a model that explained and identified the critical factors affecting quality in social infrastructure projects. The authors developed a quantitative approach using smart-PLS version 3.2.7. This study shed light on the views of different experts based on their experience in public construction projects in Pakistan. Particularly, the authors aimed to find out the relationships between construction, stakeholders, materials, design, and external factors, and how these relate to project quality. The findings of this study revealed that the R2 value of the model was scored at 0.749, which meant that the five exogenous latent constructs collectively explained 74.9% of the variance in project quality. The Goodness-of-Fit of the model was 0.458. The construction related factor was the most important out of the five constructs. This study determined that better planning and monitoring and evaluation should be developed to better address and control the quality defects by decision-makers, project managers as well as contractors. These findings might support practitioners and decision makers to focus on quality related problems that might occur in their current or future projects.

  11. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    Science.gov (United States)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  12. School Emphasis on Academic Success: Exploring Changes in Science Performance in Norway between 2007 and 2011 Employing Two-Level SEM

    Science.gov (United States)

    Nilsen, Trude; Gustafsson, Jan-Eric

    2014-01-01

    We study whether changes in school emphasis on academic success (SEAS) and safe schools (SAFE) may explain the increased science performance in Norway between TIMSS 2007 and 2011. Two-level structural equation modelling (SEM) of merged TIMSS data was used to investigate whether changes in levels of SEAS and SAFE mediate the changes in science…

  13. Structural Equation Modelling in Behavioral Intention to Use Safety Helmet Reminder System

    Directory of Open Access Journals (Sweden)

    Rosli Naida

    2016-01-01

    Full Text Available Motorcycle is one of private transportation which has been widely used in many countries including Malaysia. However, motorcycles are the most dangerous form of motorized transport. Royal Malaysian Police (PDRM statistics recorded that motorcycle is the highest vehicle (45.9% involved in traffic accident compared to other vehicles. The potential cause of the death to the motorcyclist was due to the head injury. One of strategy to mitigate this problem is through proper usage of safety helmet. Therefore, this paper was introduce a new approach on motorcyclist safety by using the Technology Acceptance Model (TAM with additional determinants that contribute to behavioral intention and to increase the proper usage of safety helmets among Malaysian motorcyclists. The Structural Equation Modelling (SEM was used to test the structural TAM proposed. The evaluation for structural model showed the goodness of fit indices are excellent fit. This study found that perceived ease of use, perceived usefulness and social norm are significant towards behavioral intention to use Safety Helmet Reminder System (SHR.

  14. Cognitive aging on latent constructs for visual processing capacity: a novel structural equation modeling framework with causal assumptions based on a theory of visual attention.

    Science.gov (United States)

    Nielsen, Simon; Wilms, L Inge

    2014-01-01

    We examined the effects of normal aging on visual cognition in a sample of 112 healthy adults aged 60-75. A testbattery was designed to capture high-level measures of visual working memory and low-level measures of visuospatial attention and memory. To answer questions of how cognitive aging affects specific aspects of visual processing capacity, we used confirmatory factor analyses in Structural Equation Modeling (SEM; Model 2), informed by functional structures that were modeled with path analyses in SEM (Model 1). The results show that aging effects were selective to measures of visual processing speed compared to visual short-term memory (VSTM) capacity (Model 2). These results are consistent with some studies reporting selective aging effects on processing speed, and inconsistent with other studies reporting aging effects on both processing speed and VSTM capacity. In the discussion we argue that this discrepancy may be mediated by differences in age ranges, and variables of demography. The study demonstrates that SEM is a sensitive method to detect cognitive aging effects even within a narrow age-range, and a useful approach to structure the relationships between measured variables, and the cognitive functional foundation they supposedly represent.

  15. Cognitive ageing on latent constructs for visual processing capacity: A novel Structural Equation Modelling framework with causal assumptions based on A Theory of Visual Attention

    Directory of Open Access Journals (Sweden)

    Simon eNielsen

    2015-01-01

    Full Text Available We examined the effects of normal ageing on visual cognition in a sample of 112 healthy adults aged 60-75. A testbattery was designed to capture high-level measures of visual working memory and low-level measures of visuospatial attention and memory. To answer questions of how cognitive ageing affects specific aspects of visual processing capacity, we used confirmatory factor analyses in Structural Equation Modelling (SEM; Model 2, informed by functional structures that were modelled with path analyses in SEM (Model 1. The results show that ageing effects were selective to measures of visual processing speed compared to visual short-term memory (VSTM capacity (Model 2. These results are consistent with some studies reporting selective ageing effects on processing speed, and inconsistent with other studies reporting ageing effects on both processing speed and VSTM capacity. In the discussion we argue that this discrepancy may be mediated by differences in age ranges, and variables of demography. The study demonstrates that SEM is a sensitive method to detect cognitive ageing effects even within a narrow age-range, and a useful approach to structure the relationships between measured variables, and the cognitive functional foundation they supposedly represent.

  16. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach

    OpenAIRE

    Romero-Ibarguengoitia, Maria Elena; Vadillo-Ortega, Felipe; Caballero, Augusto Enrique; Ibarra-González, Isabel; Herrera-Rosas, Arturo; Serratos-Canales, María Fabiola; León-Hernández, Mireya; González-Chávez, Antonio; Mummidi, Srinivas; Duggirala, Ravindranath; López-Alvarenga, Juan Carlos

    2018-01-01

    Background: Structural equation modeling (SEM) can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD), family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1) If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines woul...

  17. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Xiaodong Cai

    Full Text Available Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this paper, sparse structural equation models (SEMs are employed to integrate both gene expression data and cis-expression quantitative trait loci (cis-eQTL, for modeling gene regulatory networks in accordance with biological evidence about genes regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum likelihood (SML is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL based scheme, and the QTL-directed dependency graph (QDG method. Computer simulations demonstrate that the novel SML algorithm offers significantly better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The SML method is further applied to infer a network of 39 human genes that are related to the immune function and are chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both gene expression and perturbation data to infer gene regulatory networks. An open-source computer program implementing the SML algorithm is freely available upon request.

  18. Formal derivation of a 6 equation macro scale model for two-phase flows - link with the 4 equation macro scale model implemented in Flica 4; Etablissement formel d'un modele diphasique macroscopique a 6 equations - lien avec le modele macroscopique a 4 equations flica 4

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, O

    2008-07-01

    In order to simulate nuclear reactor cores, we presently use the 4 equation model implemented within FLICA4 code. This model is complemented with 2 algebraic closures for thermal disequilibrium and relative velocity between phases. Using such closures, means an 'a priori' knowledge of flows calculated in order to ensure that modelling assumptions apply. In order to improve the degree of universality to our macroscopic modelling, we propose in the report to derive a more general 6 equation model (balance equations for mass, momentum and enthalpy for each phase) for 2-phase flows. We apply the up-scaling procedure (Whitaker, 1999) classically used in porous media analysis to the statistically averaged equations (Aniel-Buchheit et al., 2003). By doing this, we apply the double-averaging procedure (Pedras and De Lemos, 2001 and Pinson et al. 2006): statistical and spatial averages. Then, using weighted averages (analogous to Favre's average) we extend the spatial averaging concept to variable density and 2-phase flows. This approach allows the global recovering of the structure of the systems of equations implemented in industrial codes. Supplementary contributions, such as dispersion, are also highlighted. Mechanical and thermal exchanges between solids and fluid are formally derived. Then, thanks to realistic simplifying assumptions, we show how it is possible to derive the original 4 equation model from the full 6 equation model. (author)

  19. How Use of knowledge, Skills and Cognition Enhance Board Performance in Nigerian market: A SEM-Approach

    Directory of Open Access Journals (Sweden)

    Bashir Mande

    2013-09-01

    Full Text Available This research aims to take steps towards explaining behavioral principle-based board process as factors for effective board performance. Dominant rule-based board structure approach could not transform effective corporate functioning, thus inconclusive. Based on a survey perception of 154 respondents from Nigerian capital market participants, the study employs confirmatory factor analysis (CFA in a structural equation modeling (SEM approach. Other studies used EFA and in developed nations. Replicates and builds upon board process constructs - cognitive conflict, effort norms, use of knowledge and skills, and groupthink. The study concludes that the items are valid measures of the latent constructs and significantly relate to board performance. The paper links corporate governance debates to broader behavioral choices in agency perspective and employs CFA and SEM as alternative approach for the measurement and structural models, in place of the usual exploratory factor analysis (EFA.

  20. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    Science.gov (United States)

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  1. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking.

    Science.gov (United States)

    Martinez, Sydney A; Beebe, Laura A; Thompson, David M; Wagener, Theodore L; Terrell, Deirdra R; Campbell, Janis E

    2018-01-01

    The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking.

  2. Examining the link between patient satisfaction and adherence to HIV care: a structural equation model.

    Directory of Open Access Journals (Sweden)

    Bich N Dang

    Full Text Available INTRODUCTION: Analogous to the business model of customer satisfaction and retention, patient satisfaction could serve as an innovative, patient-centered focus for increasing retention in HIV care and adherence to HAART, and ultimately HIV suppression. OBJECTIVE: To test, through structural equation modeling (SEM, a model of HIV suppression in which patient satisfaction influences HIV suppression indirectly through retention in HIV care and adherence to HAART. METHODS: We conducted a cross-sectional study of adults receiving HIV care at two clinics in Texas. Patient satisfaction was based on two validated items, one adapted from the Consumer Assessment of Healthcare Providers and Systems survey ("Would you recommend this clinic to other patients with HIV? and one adapted from the Delighted-Terrible Scale, ("Overall, how do you feel about the care you got at this clinic in the last 12 months?". A validated, single-item question measured adherence to HAART over the past 4 weeks. Retention in HIV care was based on visit constancy in the year prior to the survey. HIV suppression was defined as plasma HIV RNA <48 copies/mL at the time of the survey. We used SEM to test hypothesized relationships. RESULTS: The analyses included 489 patients (94% of eligible patients. The patient satisfaction score had a mean of 8.5 (median 9.2 on a 0- to 10- point scale. A total of 46% reported "excellent" adherence, 76% had adequate retention, and 70% had HIV suppression. In SEM analyses, patient satisfaction with care influences retention in HIV care and adherence to HAART, which in turn serve as key determinants of HIV suppression (all p<.0001. CONCLUSIONS: Patient satisfaction may have direct effects on retention in HIV care and adherence to HAART. Interventions to improve the care experience, without necessarily targeting objective clinical performance measures, could serve as an innovative method for optimizing HIV outcomes.

  3. Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling

    NARCIS (Netherlands)

    Hesan, R.; Ghorbani, A.; Dignum, M.V.

    2014-01-01

    In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we

  4. Neurocognition, insight and medication nonadherence in schizophrenia: a structural equation modeling approach.

    Directory of Open Access Journals (Sweden)

    Laurent Boyer

    Full Text Available OBJECTIVE: The aim of this study was to examine the complex relationships among neurocognition, insight and nonadherence in patients with schizophrenia. METHODS: DESIGN: Cross-sectional study. INCLUSION CRITERIA: Diagnosis of schizophrenia according to the DSM-IV-TR criteria. DATA COLLECTION: Neurocognition was assessed using a global approach that addressed memory, attention, and executive functions; insight was analyzed using the multidimensional 'Scale to assess Unawareness of Mental Disorder;' and nonadherence was measured using the multidimensional 'Medication Adherence Rating Scale.' ANALYSIS: Structural equation modeling (SEM was applied to examine the non-straightforward relationships among the following latent variables: neurocognition, 'awareness of positive symptoms' and 'negative symptoms', 'awareness of mental disorder' and nonadherence. RESULTS: One hundred and sixty-nine patients were enrolled. The final testing model showed good fit, with normed χ(2 = 1.67, RMSEA = 0.063, CFI = 0.94, and SRMR = 0.092. The SEM revealed significant associations between (1 neurocognition and 'awareness of symptoms,' (2 'awareness of symptoms' and 'awareness of mental disorder' and (3 'awareness of mental disorder' and nonadherence, mainly in the 'attitude toward taking medication' dimension. In contrast, there were no significant links between neurocognition and nonadherence, neurocognition and 'awareness of mental disorder,' and 'awareness of symptoms' and nonadherence. CONCLUSIONS: Our findings support the hypothesis that neurocognition influences 'awareness of symptoms,' which must be integrated into a higher level of insight (i.e., the 'awareness of mental disorder' to have an impact on nonadherence. These findings have important implications for the development of effective strategies to enhance medication adherence.

  5. Random-Effects Models for Meta-Analytic Structural Equation Modeling: Review, Issues, and Illustrations

    Science.gov (United States)

    Cheung, Mike W.-L.; Cheung, Shu Fai

    2016-01-01

    Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…

  6. An Analysis of the Relationship between the Learning Process and Learning Motivation Profiles of Japanese Pharmacy Students Using Structural Equation Modeling.

    Science.gov (United States)

    Yamamura, Shigeo; Takehira, Rieko

    2018-04-23

    Pharmacy students in Japan have to maintain strong motivation to learn for six years during their education. The authors explored the students’ learning structure. All pharmacy students in their 4th through to 6th year at Josai International University participated in the survey. The revised two factor study process questionnaire and science motivation questionnaire II were used to assess their learning process and learning motivation profiles, respectively. Structural equation modeling (SEM) was used to examine a causal relationship between the latent variables in the learning process and those in the learning motivation profile. The learning structure was modeled on the idea that the learning process affects the learning motivation profile of respondents. In the multi-group SEM, the estimated mean of the deep learning to learning motivation profile increased just after their clinical clerkship for 6th year students. This indicated that the clinical experience benefited students’ deep learning, which is probably because the experience of meeting with real patients encourages meaningful learning in pharmacy studies.

  7. Macroscopic balance equations for two-phase flow models

    International Nuclear Information System (INIS)

    Hughes, E.D.

    1979-01-01

    The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)

  8. Introduction to computation and modeling for differential equations

    CERN Document Server

    Edsberg, Lennart

    2008-01-01

    An introduction to scientific computing for differential equationsIntroduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique ""Five-M"" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of h

  9. Differential equation models for sharp threshold dynamics.

    Science.gov (United States)

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  10. Fitting ARMA Time Series by Structural Equation Models.

    Science.gov (United States)

    van Buuren, Stef

    1997-01-01

    This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)

  11. The reservoir model: a differential equation model of psychological regulation.

    Science.gov (United States)

    Deboeck, Pascal R; Bergeman, C S

    2013-06-01

    Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  12. Total Productive Maintenance And Role Of Interpretive Structural Modeling And Structural Equation Modeling In Analyzing Barriers In Its Implementation A Literature Review

    Directory of Open Access Journals (Sweden)

    Prasanth S. Poduval

    2015-08-01

    Full Text Available Abstract - The aim of the authors is to present a review of literature of Total Productive Maintenance and the barriers in implementation of Total Productive Maintenance TPM. The paper begins with a brief description of TPM and the barriers in implementation of TPM. Interpretive Structural Modeling ISM and its role in analyzing the barriers in TPM implementation is explained in brief. Applications of ISM in analyzing issues in various fields are highlighted with special emphasis on TPM. The paper moves on to introduction to Structural Equation Modeling SEM and its role in validating ISM in analyzing barriers in implementation of TPM. The paper concludes with a gap analysis from the current literature research that can be carried out and expected outcomes from the proposed research.

  13. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  14. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    Science.gov (United States)

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  16. The role of self–esteem and passion in determining resilience in athletes: an application of structural equation modelling

    Directory of Open Access Journals (Sweden)

    Nazmi BAYKÖSE

    2017-12-01

    Full Text Available Aim: The aim of this study was to investigate the role of self-esteem and passion in determining resilience in athletes. Material and Methods: 105 females (Xage=19.50±1.45 and 132 males (Xage=21.27±2.76 totally 237 (Xage=20.49±2.44 university athletes voluntarily participated in this study. “Personal Information Form”, “Sport Passion scale”, “Rosenberg Self-Esteem Scale” and “Brief Resilience Scale” were administered to athletes. Descriptive analysis and “Structural Equation Modelling (SEM” was used to test the relationships among resilience with self-esteem, obsessive and harmony passion level in athletes. According to the research results, concerned findings are listed below. Results: According to results of modelling which was conducted by structural equation modelling (SEM using AMOS, regression coefficient were 0.58 (p<0.001 for resilience and self-esteem, 0.56 (p<0.001 for resilience and harmony passion, -0.34 (p<0.001 for resilience and obsessive passion. Conclusion: In conclusion, there was a significant positive relationship among resilience, self-esteem and harmony passion. Furthermore, in conclusion, there was a significant negative relationship between resilience and obsessive passion.

  17. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  18. Analysis of Gene Expression Variance in Schizophrenia Using Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Anna A. Igolkina

    2018-06-01

    Full Text Available Schizophrenia (SCZ is a psychiatric disorder of unknown etiology. There is evidence suggesting that aberrations in neurodevelopment are a significant attribute of schizophrenia pathogenesis and progression. To identify biologically relevant molecular abnormalities affecting neurodevelopment in SCZ we used cultured neural progenitor cells derived from olfactory neuroepithelium (CNON cells. Here, we tested the hypothesis that variance in gene expression differs between individuals from SCZ and control groups. In CNON cells, variance in gene expression was significantly higher in SCZ samples in comparison with control samples. Variance in gene expression was enriched in five molecular pathways: serine biosynthesis, PI3K-Akt, MAPK, neurotrophin and focal adhesion. More than 14% of variance in disease status was explained within the logistic regression model (C-value = 0.70 by predictors accounting for gene expression in 69 genes from these five pathways. Structural equation modeling (SEM was applied to explore how the structure of these five pathways was altered between SCZ patients and controls. Four out of five pathways showed differences in the estimated relationships among genes: between KRAS and NF1, and KRAS and SOS1 in the MAPK pathway; between PSPH and SHMT2 in serine biosynthesis; between AKT3 and TSC2 in the PI3K-Akt signaling pathway; and between CRK and RAPGEF1 in the focal adhesion pathway. Our analysis provides evidence that variance in gene expression is an important characteristic of SCZ, and SEM is a promising method for uncovering altered relationships between specific genes thus suggesting affected gene regulation associated with the disease. We identified altered gene-gene interactions in pathways enriched for genes with increased variance in expression in SCZ. These pathways and loci were previously implicated in SCZ, providing further support for the hypothesis that gene expression variance plays important role in the etiology

  19. A new method of measuring stock market manipulation through structural equation modeling (SEM)

    OpenAIRE

    Maxim, Maruf Rahman; Ashif, Abu Sadat Muhammad

    2017-01-01

    This paper proposes a new model of measuring a latent variable, stock market manipulation. The model bears close resemblance with the literature on economic well-being. It interprets the manipulation of a stock as a latent variable, in the form of a multiple indicators and multiple causes (MIMIC) model. This approach exploits systematic relations between various indicators of manipulation and between manipulation and multiple causes, which allows it to identify the determinants of manipulatio...

  20. Work Ability: using structural equation modeling to assess the effects of aging, health and work on the population of Brazilian municipal employees.

    Science.gov (United States)

    Alcântara, Marcus A; Sampaio, Rosana F; Assunção, Ada Ávila; Silva, Fabiana C Martins

    2014-01-01

    The Work Ability Model has a holistic structure that incorporates individual characteristics, work-related factors and life outside of work. The model has been explored in the context of Finland but still needs to be applied in other countries. The aim of this study was to examine the relationships between age, health, work and work ability in a sample of Brazilian municipal employees. A sample of 5,646 workers answered a web-survey questionnaire that collected information about socio-demographics, health, work characteristics and work ability. Structural equation modeling (SEM) was used to examine the simultaneous relationships between the variables that comprise the Work Ability Model. The sample was predominantly female (68.0%), between 30 and 49 years old (60.0%) and highly educated (66.0%). SEM produced good fit indexes that supported the Work Ability Model. Age was positively related to work ability and negatively related to health. Health and work characteristics positively influenced work ability. The results produced additional support for the conceptualization of work ability as a complex and dynamic phenomenon: a system composed of an individual and various elements of his/her work interact in time and space in a nonlinear way.

  1. Study of a Model Equation in Detonation Theory

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.

    2014-01-01

    Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation

  2. Relationships between hormones and aggressive behavior in green anole lizards: an analysis using structural equation modeling.

    Science.gov (United States)

    Yang, Eun-Jin; Wilczynski, Walter

    2002-09-01

    We investigated the relationship between aggressive behavior and circulating androgens in the context of agonistic social interaction and examined the effect of this interaction on the androgen-aggression relationship in response to a subsequent social challenge in male Anolis carolinensis lizards. Individuals comprising an aggressive encounter group were exposed to an aggressive conspecific male for 10 min per day during a 5-day encounter period, while controls were exposed to a neutral stimulus for the same period. On the sixth day, their responses to an intruder test were observed. At intervals, individuals were sacrificed to monitor plasma androgen levels. Structural equation modeling (SEM) was used to test three a priori interaction models of the relationship between social stimulus, aggressive behavior, and androgen. Model 1 posits that exposure to a social stimulus influences androgen and aggressive behavior independently. In Model 2, a social stimulus triggers aggressive behavior, which in turn increases circulating levels of androgen. In Model 3, exposure to a social stimulus influences circulating androgen levels, which in turn triggers aggressive behavior. During the 5 days of the encounter period, circulating testosterone (T) levels of the aggressive encounter group followed the same pattern as their aggressive behavioral responses, while the control group did not show significant changes in their aggressive behavior or T level. Our SEM results supported Model 2. A means analysis showed that during the intruder test, animals with 5 days of aggressive encounters showed more aggressive responses than did control animals, while their circulating androgen levels did not differ. This further supports Model 2, suggesting that an animal's own aggressive behavior may trigger increases in levels of plasma androgen. Copyright 2002 Elsevier Science (USA)

  3. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  4. SEM-microphotogrammetry, a new take on an old method for generating high-resolution 3D models from SEM images.

    Science.gov (United States)

    Ball, A D; Job, P A; Walker, A E L

    2017-08-01

    The method we present here uses a scanning electron microscope programmed via macros to automatically capture dozens of images at suitable angles to generate accurate, detailed three-dimensional (3D) surface models with micron-scale resolution. We demonstrate that it is possible to use these Scanning Electron Microscope (SEM) images in conjunction with commercially available software originally developed for photogrammetry reconstructions from Digital Single Lens Reflex (DSLR) cameras and to reconstruct 3D models of the specimen. These 3D models can then be exported as polygon meshes and eventually 3D printed. This technique offers the potential to obtain data suitable to reconstruct very tiny features (e.g. diatoms, butterfly scales and mineral fabrics) at nanometre resolution. Ultimately, we foresee this as being a useful tool for better understanding spatial relationships at very high resolution. However, our motivation is also to use it to produce 3D models to be used in public outreach events and exhibitions, especially for the blind or partially sighted. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Modeling alcohol use disorder severity: an integrative structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Nathasha R Moallem

    2013-07-01

    Full Text Available Background: Alcohol dependence is a complex psychological disorder whose phenomenology changes as the disorder progresses. Neuroscience has provided a variety of theories and evidence for the development, maintenance, and severity of addiction; however, clinically, it has been difficult to evaluate alcohol use disorder (AUD severity. Objective: This study seeks to evaluate and validate a data-driven approach to capturing alcohol severity in a community sample. Method: Participants were non-treatment seeking problem drinkers (n = 283. A structural equation modeling (SEM approach was used to (a verify the latent factor structure of the indices of AUD severity; and (b test the relationship between the AUD severity factor and measures of alcohol use, affective symptoms, and motivation to change drinking. Results: The model was found to fit well, with all chosen indices of AUD severity loading significantly and positively onto the severity factor. In addition, the paths from the alcohol use, motivation, and affective factors accounted for 68% of the variance in AUD severity. Greater AUD severity was associated with greater alcohol use, increased affective symptoms, and higher motivation to change.Conclusions: Unlike the categorical diagnostic criteria, the AUD severity factor is comprised of multiple quantitative dimensions of impairment observed across the progression of the disorder. The AUD severity factor was validated by testing it in relation to other outcomes such as alcohol use, affective symptoms, and motivation for change. Clinically, this approach to AUD severity can be used to inform treatment planning and ultimately to improve outcomes.

  6. A discrete model of a modified Burgers' partial differential equation

    Science.gov (United States)

    Mickens, R. E.; Shoosmith, J. N.

    1990-01-01

    A new finite-difference scheme is constructed for a modified Burger's equation. Three special cases of the equation are considered, and the 'exact' difference schemes for the space- and time-independent forms of the equation are presented, along with the diffusion-free case of Burger's equation modeled by a difference equation. The desired difference scheme is then obtained by imposing on any difference model of the initial equation the requirement that, in the appropriate limits, its difference scheme must reduce the results of the obtained equations.

  7. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  8. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  9. Combining region- and network-level brain-behavior relationships in a structural equation model.

    Science.gov (United States)

    Bolt, Taylor; Prince, Emily B; Nomi, Jason S; Messinger, Daniel; Llabre, Maria M; Uddin, Lucina Q

    2018-01-15

    Brain-behavior associations in fMRI studies are typically restricted to a single level of analysis: either a circumscribed brain region-of-interest (ROI) or a larger network of brain regions. However, this common practice may not always account for the interdependencies among ROIs of the same network or potentially unique information at the ROI-level, respectively. To account for both sources of information, we combined measurement and structural components of structural equation modeling (SEM) approaches to empirically derive networks from ROI activity, and to assess the association of both individual ROIs and their respective whole-brain activation networks with task performance using three large task-fMRI datasets and two separate brain parcellation schemes. The results for working memory and relational tasks revealed that well-known ROI-performance associations are either non-significant or reversed when accounting for the ROI's common association with its corresponding network, and that the network as a whole is instead robustly associated with task performance. The results for the arithmetic task revealed that in certain cases, an ROI can be robustly associated with task performance, even when accounting for its associated network. The SEM framework described in this study provides researchers additional flexibility in testing brain-behavior relationships, as well as a principled way to combine ROI- and network-levels of analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  11. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  12. Factors contributing to academic achievement: a Bayesian structure equation modelling study

    Science.gov (United States)

    Payandeh Najafabadi, Amir T.; Omidi Najafabadi, Maryam; Farid-Rohani, Mohammad Reza

    2013-06-01

    In Iran, high school graduates enter university after taking a very difficult entrance exam called the Konkoor. Therefore, only the top-performing students are admitted by universities to continue their bachelor's education in statistics. Surprisingly, statistically, most of such students fall into the following categories: (1) do not succeed in their education despite their excellent performance on the Konkoor and in high school; (2) graduate with a grade point average (GPA) that is considerably lower than their high school GPA; (3) continue their master's education in majors other than statistics and (4) try to find jobs unrelated to statistics. This article employs the well-known and powerful statistical technique, the Bayesian structural equation modelling (SEM), to study the academic success of recent graduates who have studied statistics at Shahid Beheshti University in Iran. This research: (i) considered academic success as a latent variable, which was measured by GPA and other academic success (see below) of students in the target population; (ii) employed the Bayesian SEM, which works properly for small sample sizes and ordinal variables; (iii), which is taken from the literature, developed five main factors that affected academic success and (iv) considered several standard psychological tests and measured characteristics such as 'self-esteem' and 'anxiety'. We then study the impact of such factors on the academic success of the target population. Six factors that positively impact student academic success were identified in the following order of relative impact (from greatest to least): 'Teaching-Evaluation', 'Learner', 'Environment', 'Family', 'Curriculum' and 'Teaching Knowledge'. Particularly, influential variables within each factor have also been noted.

  13. Dynamic data analysis modeling data with differential equations

    CERN Document Server

    Ramsay, James

    2017-01-01

    This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in...

  14. A structural equation modeling of executive functions, IQ and mathematical skills in primary students: Differential effects on number production, mental calculus and arithmetical problems.

    Science.gov (United States)

    Arán Filippetti, Vanessa; Richaud, María Cristina

    2017-10-01

    Though the relationship between executive functions (EFs) and mathematical skills has been well documented, little is known about how both EFs and IQ differentially support diverse math domains in primary students. Inconsistency of results may be due to the statistical techniques employed, specifically, if the analysis is conducted with observed variables, i.e., regression analysis, or at the latent level, i.e., structural equation modeling (SEM). The current study explores the contribution of both EFs and IQ in mathematics through an SEM approach. A total of 118 8- to 12-year-olds were administered measures of EFs, crystallized (Gc) and fluid (Gf) intelligence, and math abilities (i.e., number production, mental calculus and arithmetical problem-solving). Confirmatory factor analysis (CFA) offered support for the three-factor solution of EFs: (1) working memory (WM), (2) shifting, and (3) inhibition. Regarding the relationship among EFs, IQ and math abilities, the results of the SEM analysis showed that (i) WM and age predict number production and mental calculus, and (ii) shifting and sex predict arithmetical problem-solving. In all of the SEM models, EFs partially or totally mediated the relationship between IQ, age and math achievement. These results suggest that EFs differentially supports math abilities in primary-school children and is a more significant predictor of math achievement than IQ level.

  15. The impact of culture and employee-focused criteria on productivity: A structural equation modelling approach

    Science.gov (United States)

    Ab Hamid, Mohd Rashid; Mustafa, Zainol; Mohd Suradi, Nur Riza; Idris, Fazli; Abdullah, Mokhtar

    2013-04-01

    Culture and employee-focused criteria are important factors for the success of any organization. These factors have to be aligned with the productivity initiatives in the organization in order to gear ahead for excellence. Therefore, this article investigated the impact of culture and employee-focused criteria on productivity in Higher Education Institutions (HEIs) in Malaysia using intangible indicators through core values. The hypothesized relationship was tested using Structural Equation Modeling (SEM) with the PLS estimation technique. 429 questionnaires were returned from the target population. The results of the modelling revealed that the PLS estimation confirmed all the hypotheses tested as in the hypothesized model. The results generally support significant relationships between culture values, employee-focused values and productivity-focused values. The study also confirmed the mediating role of employee-focused values for the relationship between culture values and productivity-focused values. In conclusion, the empirically validated results supported the adequacy of the hypothezised model of the impact of culture and employee-focused criteria on productivity in HEI through value-based indicators.

  16. An Analysis of the Relationship between the Learning Process and Learning Motivation Profiles of Japanese Pharmacy Students Using Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Shigeo Yamamura

    2018-04-01

    Full Text Available Pharmacy students in Japan have to maintain strong motivation to learn for six years during their education. The authors explored the students’ learning structure. All pharmacy students in their 4th through to 6th year at Josai International University participated in the survey. The revised two factor study process questionnaire and science motivation questionnaire II were used to assess their learning process and learning motivation profiles, respectively. Structural equation modeling (SEM was used to examine a causal relationship between the latent variables in the learning process and those in the learning motivation profile. The learning structure was modeled on the idea that the learning process affects the learning motivation profile of respondents. In the multi-group SEM, the estimated mean of the deep learning to learning motivation profile increased just after their clinical clerkship for 6th year students. This indicated that the clinical experience benefited students’ deep learning, which is probably because the experience of meeting with real patients encourages meaningful learning in pharmacy studies.

  17. An Empirical Investigation of the Universal Effectiveness of Quality Management Practices: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Young Sik Cho

    2016-05-01

    Full Text Available Institutional theory argues that the isomorphic nature of quality management (QM practices leads to similar QM implementation and performance among QM-embedded firms. However, contingency theory questions such 'universal effectiveness of QM practices'. Considering these conflicting arguments, this study tests samples from the U.S. and China to examine whether the 'universal effectiveness of QM practices’ across national boundaries actually exists. First, the confirmatory factor analysis was performed to examine the validity of the survey instruments developed in this study. Then, the hypotheses were tested using the structural equation modeling (SEM analysis. The SEM test results indicated that the positive effect of behavioral QM on firm performance was more significant in the U.S. sample than in the China sample. The test results also presented that the relative effect of behavioral QM versus technical QM on firm performance was noticeably different in service firms, according to national economic maturity. The study’s findings demonstrated that a firm's contingency factors, such as national economic maturity and industry type, could result in the heterogeneous implementation of the firm’s TQM program; consequently, the findings weakened the 'universal effectiveness of QM practices'.

  18. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  19. Reduction of structured population models to threshold-type delay equations and functional differential equations: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.L. (Arizona State Univ., Tempe (United States))

    1993-01-01

    It is shown by way of a simple example that certain structured population models lead naturally to differential delay equations of the threshold type and that these equations can be transformed in a natural way to functional differential equations. The model examined can be viewed as a model of competition between adults and juveniles of a single population. The results indicate the possibility that this competition leads to instability. 28 refs., 2 figs.

  20. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  1. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  2. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  3. The dispersionless Lax equations and topological minimal models

    International Nuclear Information System (INIS)

    Krichever, I.

    1992-01-01

    It is shown that perturbed rings of the primary chiral fields of the topological minimal models coincide with some particular solutions of the dispersionless Lax equations. The exact formulae for the tree level partition functions, of A n topological minimal models are found. The Virasoro constraints for the analogue of the τ-function of the dispersionless Lax equation corresponding to these models are proved. (orig.)

  4. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    Science.gov (United States)

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  5. Bogomolny equations in certain generalized baby BPS Skyrme models

    Science.gov (United States)

    Stępień, Ł. T.

    2018-01-01

    By using the concept of strong necessary conditions (CSNCs), we derive Bogomolny equations and Bogomol’nyi-Prasad-Sommerfield (BPS) bounds for two certain modifications of the baby BPS Skyrme model: the nonminimal coupling to the gauge field and the k-deformed ungauged model. In particular, we study how the Bogomolny equations and the equation for the potential reflect these two modifications. In both examples, the CSNC method appears to be a very useful tool. We also find certain localized solutions of these Bogomolny equations.

  6. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  7. Revised predictive equations for salt intrusion modelling in estuaries

    NARCIS (Netherlands)

    Gisen, J.I.A.; Savenije, H.H.G.; Nijzink, R.C.

    2015-01-01

    For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equations for the Van der Burgh coefficient $K$ and the dispersion

  8. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  9. Study The role of latent variables in lost working days by Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Meysam Heydari

    2016-12-01

    Full Text Available Background: Based on estimations, each year about 250 million work-related injuries and many temporary or permanent disabilities occur which most are preventable. Oil and Gas industries are among industries with high incidence of injuries in the world. The aim of this study has investigated  the role and effect of different risk management variables on lost working days (LWD in the seismic projects. Methods: This study was a retrospective, cross-sectional and systematic analysis, which was carried out on occupational accidents between 2008-2015(an 8 years period in different seismic projects for oilfield exploration at Dana Energy (Iranian Seismic Company. The preliminary sample size of the study were 487accidents. A systems analysis approach were applied by using root case analysis (RCA and structural equation modeling (SEM. Tools for the data analysis were included, SPSS23 and AMOS23  software. Results: The mean of lost working days (LWD, was calculated 49.57, the final model of structural equation modeling showed that latent variables of, safety and health training factor(-0.33, risk assessment factor(-0.55 and risk control factor (-0.61 as direct causes significantly affected of lost working days (LWD in the seismic industries (p< 0.05. Conclusion: The finding of present study revealed that combination of variables affected in lost working days (LWD. Therefore,the role of these variables in accidents should be investigated and suitable programs should be considered for them.

  10. Schizophrenia as a disconnection syndrome. Studies with functional magnetic resonance imaging and structural equation modeling

    International Nuclear Information System (INIS)

    Schloesser, R.; Wagner, G.; Koehler, S.; Sauer, H.

    2005-01-01

    Aside from characteristic psychopathological symptoms, cognitive deficits are a core feature of schizophrenia. These deficits can only be addressed within the context of widespread functional interactions among different brain areas. To examine these interactions, structural equation modeling (SEM) was used for the analysis of fMRI datasets. In a series of studies, both in antipsychotic-treated and drug-free schizophrenic patients, a pattern of enhanced thalamocortical functional connectivity could be observed as an indicator for possible disruptions of frontostriatal thalamocortical circuitry. Moreover, drug-free patients and those receiving typical antipsychotic drugs were characterized by reduced interhemispheric corticocortical connectivity. This difference relative to normal controls was less in patients under atypical antipsychotic drugs. The results could be interpreted as a beneficial effect of atypical antipsychotic drugs on information processing in schizophrenic patients. The present findings are consistent with the model of schizophrenia as a disconnection syndrome and earlier concepts of ''cognitive dysmetria'' in schizophrenia. (orig.) [de

  11. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  12. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  13. SEM Anthology

    Science.gov (United States)

    Rodgers, Michelle; Zimar, Heather

    2004-01-01

    The "SEM Anthology" is a compilation of articles by more than 30 enrollment management professionals from a variety of institutions across the country. This collection, which has appeared in SEM Monthly over the past year, chronicles Strategic Enrollment Management efforts at campuses nationwide. The book illustrates the successes and challenges…

  14. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  15. Accounting for measurement error in human life history trade-offs using structural equation modeling.

    Science.gov (United States)

    Helle, Samuli

    2018-03-01

    Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.

  16. Smart phone Acceptance among physicians: Application of structural equation modeling in Iranian largest university

    Directory of Open Access Journals (Sweden)

    Nematollahi M.

    2017-03-01

    Full Text Available Background: The present study aimed to determine attitudes and effective factors in the acceptance of smart phones by physicians of the largest University of Medical Sciences in the south of Iran. Methods: This cross-sectional study was performed using Structural Equation Modelling (SEM in 2014. Study participants included 200 physicians working in the hospitals of Shiraz University of Medical Sciences selected through two-stage stratified sampling, but 185 participants completed the study. The study data were collected using a researcher-made questionnaire completed through a 5-point Likert scale. The content validity of the questionnaire was confirmed by a panel of experts, its construct validity by confirmatory factor analysis, and its reliability by Cronbach’s alpha of 0.802. All data analyses were performed using SPSS (version 22 and LISREL (version 8.8. Results: Results showed that most physicians had a desirable attitude towards using smart phones. Besides, the results of SEM indicated a significant relationship between attitude and compatibility, observability, personal experience, voluntariness of use and perceived usefulness. Moreover, some important fitness indices revealed appropriate fitness of the study model (p=0.26, X2 /df=1.35, RMR=0.070, GFI=0.77, AGFI=0.71, NNFI=0.93, CFI=0.94. Conclusion: The results revealed that compatibility, observability, personal experience, voluntariness of use and perceived usefulness were effective in the physicians’ attitude towards using smart phones. Thus, by preparation of the required infrastructures, policymakers in the field of health technology can enhance the utilization of smart phones in hospitals.

  17. Framework for SEM contour analysis

    Science.gov (United States)

    Schneider, L.; Farys, V.; Serret, E.; Fenouillet-Beranger, C.

    2017-03-01

    SEM images provide valuable information about patterning capability. Geometrical properties such as Critical Dimension (CD) can be extracted from them and are used to calibrate OPC models, thus making OPC more robust and reliable. However, there is currently a shortage of appropriate metrology tools to inspect complex two-dimensional patterns in the same way as one would work with simple one-dimensional patterns. In this article we present a full framework for the analysis of SEM images. It has been proven to be fast, reliable and robust for every type of structure, and particularly for two-dimensional structures. To achieve this result, several innovative solutions have been developed and will be presented in the following pages. Firstly, we will present a new noise filter which is used to reduce noise on SEM images, followed by an efficient topography identifier, and finally we will describe the use of a topological skeleton as a measurement tool that can extend CD measurements on all kinds of patterns.

  18. Non-Equilibrium Turbulence and Two-Equation Modeling

    Science.gov (United States)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  19. Eight equation model for arbitrary shaped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2006-01-01

    Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)

  20. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach.

    Science.gov (United States)

    Eldridge, Ronald C; Flanders, W Dana; Bostick, Roberd M; Fedirko, Veronika; Gross, Myron; Thyagarajan, Bharat; Goodman, Michael

    2017-09-01

    Since oxidative stress involves a variety of cellular changes, no single biomarker can serve as a complete measure of this complex biological process. The analytic technique of structural equation modeling (SEM) provides a possible solution to this problem by modelling a latent (unobserved) variable constructed from the covariance of multiple biomarkers. Using three pooled datasets, we modelled a latent oxidative stress variable from five biomarkers related to oxidative stress: F 2 -isoprostanes (FIP), fluorescent oxidation products, mitochondrial DNA copy number, γ-tocopherol (Gtoc) and C-reactive protein (CRP, an inflammation marker closely linked to oxidative stress). We validated the latent variable by assessing its relation to pro- and anti-oxidant exposures. FIP, Gtoc and CRP characterized the latent oxidative stress variable. Obesity, smoking, aspirin use and β-carotene were statistically significantly associated with oxidative stress in the theorized directions; the same exposures were weakly and inconsistently associated with the individual biomarkers. Our results suggest that using SEM with latent variables decreases the biomarker-specific variability, and may produce a better measure of oxidative stress than do single variables. This methodology can be applied to similar areas of research in which a single biomarker is not sufficient to fully describe a complex biological phenomenon.

  1. FIB-SEM tomography in biology.

    Science.gov (United States)

    Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M

    2014-01-01

    Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

  2. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  3. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  4. A combined technique using SEM and TOPSIS for the commercialization capability of R&D project evaluation

    Directory of Open Access Journals (Sweden)

    Charttirot Karaveg

    2015-07-01

    Full Text Available There is a high risk of R&D based innovation being commercialized, especially in the innovation transfer process which is a concern to many entrepreneurs and researchers. The purpose of this research is to develop the criteria of R&D commercialization capability and to propose a combined technique of Structural Equation Modelling (SEM and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS for R&D project evaluation. The research utilized a mixed-method approach. The first phase comprised a qualitative study on commercialization criteria development though the survey research of 272 successful entrepreneurs and researchers in all industrial sectors in Thailand. The data was collected with a structured questionnaire and analyzed by SEM. The second phase was involved with SEM-TOPSIS technique development and a case study of 45 R&D projects in research institutes and incubators for technique validation. The research results reveal that there were six criteria for R&D project commercialization capability, these are arranged according to the significance; marketing, technology, finance, non-financial impact, intellectual property, and human resource. The holistic criteria is presented in decreasing order on the ambiguous subjectivity of the fuzzy-expert system, to help with effectively funding R&D and to prevent a resource meltdown. This study applies SEM to the relative weighting of hierarchical criteria. The TOPSIS approach is employed to rank the alternative performance. An integrated SEM-TOPSIS is proposed for the first time and applied to present R&D projects shown to be effective and feasible in evaluating R&D commercialization capacity.

  5. Advanced SEM imaging

    International Nuclear Information System (INIS)

    Joy, D. C.; Newbury, D. E.

    1998-01-01

    The scanning electron microscope (SEM) represents the most promising tool for metrology, defect review, and for the analysis of ULSI structures, but both fundamental problems such as electron-solid interactions, and practical considerations such as electron-optical constraints, are now setting a limit to performance. This paper examines the directions in which an advanced SEM might be developed to overcome these constraints. The SEM also offers considerable promise as a tool for the high spatial resolution X-ray microanalysis, especially for those situations where a thin cross-section is not practical and first surface analysis is required. The ways in which this capability can be incorporated in an advanced SEM are examined

  6. Advanced SEM imaging

    International Nuclear Information System (INIS)

    Joy, D.C.; Newbury, D.E.; Newbury, D.E.

    1998-01-01

    The scanning electron microscope (SEM) represents the most promising tool for metrology, defect review, and for the analysis of ULSI structures, but both fundamental problems such as electron-solid interactions, and practical considerations such as electron-optical constraints, are now setting a limit to performance. This paper examines the directions in which an advanced SEM might be developed to overcome these constraints. The SEM also offers considerable promise as a tool for the high spatial resolution X-ray microanalysis, especially for those situations where a thin cross-section is not practical and first surface analysis is required. The ways in which this capability can be incorporated in an advanced SEM are examined. copyright 1998 American Institute of Physics

  7. Role of theory of mind and executive function in explaining social intelligence: a structural equation modeling approach.

    Science.gov (United States)

    Yeh, Zai-Ting

    2013-01-01

    Social intelligence is the ability to understand others and the social context effectively and thus to interact with people successfully. Research has suggested that the theory of mind (ToM) and executive function may play important roles in explaining social intelligence. The specific aim of the present study was to test with structural equation modeling (SEM) the hypothesis that performance on ToM tasks is more associated with social intelligence in the elderly than is performance on executive functions. One hundred and seventy-seven participants (age 56-96) completed ToM, executive function, and other basic cognition tasks, and were rated with social intelligence scales. The SEM results showed that ToM and executive function were strongly correlated (0.54); however, only the path coefficient from ToM to social intelligence, and not from executive function, was significant (0.37). ToM performance, but not executive function, was strongly correlated with social intelligence among elderly individuals. ToM and executive function might play different roles in social behavior during normal aging; however, based on the present results, it is possible that ToM might play an important role in social intelligence.

  8. Relations between the kinetic equation and the Langevin models in two-phase flow modelling

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)

  9. A predictive model of days from infection to discharge in patients with healthcare-associated urinary tract infections: a structural equation modelling approach.

    Science.gov (United States)

    Mitchell, B G; Anderson, M; Ferguson, J K

    2017-11-01

    Length of stay (LOS) in hospital is an important component of describing how costs change in relation to healthcare-associated infection and this variable underpins models used to evaluate cost. It this therefore imperative that estimations of LOS associated with infections are performed accurately. To test the relationships between the size of hospital, age, and patient comorbidity on days from admission to infection and days from infection to discharge in patients with a healthcare-associated urinary tract infection (HAUTI), using structural equation modelling (SEM). A non-current cohort study in eight hospitals in New South Wales, Australia. All patients admitted to the hospital for >48 h and who acquired a HAUTI were included. From the 162,503 eligible patient admissions, 2821 (1.73%) acquired a HAUTI. SEM showed that the proposed model had acceptable fit indices for the combined sample (GFI = 1.00; AGFI = 1.00; NFI = 1.00; CFI = 1.00; RMSEA = 0.000). The main findings showed that age of patient had a direct association with days from admission to infection and with days from infection to discharge. Patient comorbidity had direct links to the variables days from admission to infection and days from infection to discharge. Multi-group analysis indicated that the age of male patients was more influential on the factor days from admission to infection when compared to female patients. Furthermore, the number of comorbidities was significantly more influential on days from admission to infection in male patients than in female patients. As the first published study to use SEM to explore a healthcare-associated infection and the predictors of days from infection to discharge in hospital, we can confirm that accounting for the timing of infection during hospitalization is important and that patient comorbidity influences the timing of infection. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Examining the link between patient satisfaction and adherence to HIV care: a structural equation model.

    Science.gov (United States)

    Dang, Bich N; Westbrook, Robert A; Black, William C; Rodriguez-Barradas, Maria C; Giordano, Thomas P

    2013-01-01

    Analogous to the business model of customer satisfaction and retention, patient satisfaction could serve as an innovative, patient-centered focus for increasing retention in HIV care and adherence to HAART, and ultimately HIV suppression. To test, through structural equation modeling (SEM), a model of HIV suppression in which patient satisfaction influences HIV suppression indirectly through retention in HIV care and adherence to HAART. We conducted a cross-sectional study of adults receiving HIV care at two clinics in Texas. Patient satisfaction was based on two validated items, one adapted from the Consumer Assessment of Healthcare Providers and Systems survey ("Would you recommend this clinic to other patients with HIV?) and one adapted from the Delighted-Terrible Scale, ("Overall, how do you feel about the care you got at this clinic in the last 12 months?"). A validated, single-item question measured adherence to HAART over the past 4 weeks. Retention in HIV care was based on visit constancy in the year prior to the survey. HIV suppression was defined as plasma HIV RNA satisfaction score had a mean of 8.5 (median 9.2) on a 0- to 10- point scale. A total of 46% reported "excellent" adherence, 76% had adequate retention, and 70% had HIV suppression. In SEM analyses, patient satisfaction with care influences retention in HIV care and adherence to HAART, which in turn serve as key determinants of HIV suppression (all psatisfaction may have direct effects on retention in HIV care and adherence to HAART. Interventions to improve the care experience, without necessarily targeting objective clinical performance measures, could serve as an innovative method for optimizing HIV outcomes.

  11. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling.

    Science.gov (United States)

    Nock, Nl; Zhang, Lx

    2011-11-29

    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.

  12. on the properties of solutions and some applications on the TOV differential equation with a model of nuclear equation of state

    International Nuclear Information System (INIS)

    Esmail, S.F.H.

    2006-01-01

    the mathematical formulation of numerous physical problems results in differential equations actually non-linear differential equations . in our study we are interested in solutions of differential equations which describe the structure of neutron star in non-relativistic and relativistic cases. the aim of this work is to determine the mass and the radius of a neutron star, by solving the tolmann-oppenheimer-volkoff (TOV) differential equation using different models of the nuclear equation of state (EOS). analytically solutions are obtained for a simple form of the nuclear equation of state of Clayton model and poly trope model. for a more realistic equation of state the TOV differential equation is solved numerically using rung -Kutta method

  13. Factors influencing creep model equation selection

    International Nuclear Information System (INIS)

    Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.

    2008-01-01

    During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets

  14. A Novel Environmental Performance Evaluation of Thailand’s Food Industry Using Structural Equation Modeling and Fuzzy Analytic Hierarchy Techniques

    Directory of Open Access Journals (Sweden)

    Anirut Pipatprapa

    2016-03-01

    Full Text Available Currently, the environment and sustainability are important topics for every industry. The food industry is particularly complicated in this regard because of the dynamic and complex character of food products and their production. This study uses structural equation modeling (SEM and a fuzzy analytic hierarchy process (FAHP to investigate which factors are suitable for evaluating the environmental performance of Thailand’s food industry. A first-stage questionnaire survey was conducted with 178 managers in the food industry that obtained a certificate from the Department of Industrial Work of Thailand to synthesize the performance measurement model and the significance of the relationship between the indicators. A second-stage questionnaire measured 18 experts’ priorities regarding the criteria and sub-factors involved in the different aspects and assessment items regarding environmental performance. SEM showed that quality management, market orientation, and innovation capability have a significantly positive effect on environmental performance. The FAHP showed that the experts were most concerned about quality management, followed by market orientation and innovation capability; the assessment items for quality policy, quality assurance, and customer orientation were of the most concern. The findings of this study can be referenced and support managerial decision making when monitoring environmental performance.

  15. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  16. Structural equation modeling with LISREL, PRELIS, and SIMPLIS basic concepts, applications, and programming

    CERN Document Server

    Byrne, Barbara M

    2013-01-01

    This book illustrates the ease with which various features of LISREL 8 and PRELIS 2 can be implemented in addressing research questions that lend themselves to SEM. Its purpose is threefold: (a) to present a nonmathmatical introduction to basic concepts associated with SEM, (b) to demonstrate basic applications of SEM using both the DOS and Windows versions of LISREL 8, as well as both the LISREL and SIMPLIS lexicons, and (c) to highlight particular features of the LISREL 8 and PRELIS 2 progams that address important caveats related to SEM analyses. This book is intended neither as a text on the topic of SEM, nor as a comprehensive review of the many statistical funcitons available in the LISREL 8 and PRELIS 2 programs. Rather, the intent is to provide a practical guide to SEM using the LISREL approach. As such, the reader is "walked through" a diversity of SEM applications that include both factor analytic and full latent variable models, as well as a variety of data management procedures.

  17. Is the Langevin phase equation an efficient model for oscillating neurons?

    Science.gov (United States)

    Ota, Keisuke; Tsunoda, Takamasa; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2009-12-01

    The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.

  18. Is the Langevin phase equation an efficient model for oscillating neurons?

    International Nuclear Information System (INIS)

    Ota, Keisuke; Tsunoda, Takamasa; Aonishi, Toru; Omori, Toshiaki; Okada, Masato; Watanabe, Shigeo; Miyakawa, Hiroyoshi

    2009-01-01

    The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.

  19. Optimal harvesting for a predator-prey agent-based model using difference equations.

    Science.gov (United States)

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  20. Relationship of amotivation to neurocognition, self-efficacy and functioning in first-episode psychosis: a structural equation modeling approach.

    Science.gov (United States)

    Chang, W C; Kwong, V W Y; Hui, C L M; Chan, S K W; Lee, E H M; Chen, E Y H

    2017-03-01

    Better understanding of the complex interplay among key determinants of functional outcome is crucial to promoting recovery in psychotic disorders. However, this is understudied in the early course of illness. We aimed to examine the relationships among negative symptoms, neurocognition, general self-efficacy and global functioning in first-episode psychosis (FEP) patients using structural equation modeling (SEM). Three hundred and twenty-one Chinese patients aged 26-55 years presenting with FEP to an early intervention program in Hong Kong were recruited. Assessments encompassing symptom profiles, functioning, perceived general self-efficacy and a battery of neurocognitive tests were conducted. Negative symptom measurement was subdivided into amotivation and diminished expression (DE) domain scores based on the ratings in the Scale for the Assessment of Negative Symptoms. An initial SEM model showed no significant association between functioning and DE which was removed from further analysis. A final trimmed model yielded very good model fit (χ2 = 15.48, p = 0.63; comparative fit index = 1.00; root mean square error of approximation amotivation, neurocognition and general self-efficacy had a direct effect on global functioning. Amotivation was also found to mediate a significant indirect effect of neurocognition and general self-efficacy on functioning. Neurocognition was not significantly related to general self-efficacy. Our results indicate a critical intermediary role of amotivation in linking neurocognitive impairment to functioning in FEP. General self-efficacy may represent a promising treatment target for improvement of motivational deficits and functional outcome in the early illness stage.

  1. Half-trek criterion for generic identifiability of linear structural equation models

    NARCIS (Netherlands)

    Foygel, R.; Draisma, J.; Drton, M.

    2012-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  2. Half-trek criterion for generic identifiability of linear structural equation models

    NARCIS (Netherlands)

    Foygel, R.; Draisma, J.; Drton, M.

    2011-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  3. Competition, Innovation, Risk-Taking, and Profitability in the Chinese Banking Sector: An Empirical Analysis Based on Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Ti Hu

    2016-01-01

    Full Text Available We introduce a new perspective to systematically investigate the cause-and-effect relationships among competition, innovation, risk-taking, and profitability in the Chinese banking industry. Our hypotheses are tested by the structural equation modeling (SEM, and the empirical results show that (i risk-taking is positively related to profitability; (ii innovation positively affects both risk-taking and profitability, and the effect of innovation on profitability works both directly and indirectly; (iii competition negatively affects risk-taking but positively affects both innovation and profitability, and the effects of competition on risk-taking and profitability work both directly and indirectly; (iv there is a cascading relationship among market competition and bank innovation, risk-taking, and profitability.

  4. Using structural equation modeling to detect response shift in quality of life in patients with Alzheimer's disease.

    Science.gov (United States)

    Wang, Xuxia; Xu, Xiaomeng; Han, Hongjuan; He, Runlian; Zhou, Liye; Liang, Ruifeng; Yu, Hongmei

    2018-05-03

    ABSTRACTBackground:Our study aims to detect different types of response shifts (RS) and true changes of quality of life (QOL) measurement in patients with Alzheimer's disease (AD) using structural equation modeling (SEM) in domain level. Patients with AD aged over 60 years old were collected from the Department of Neurology and Geriatrics in Taiyuan Central Hospital, China. The 12-item Short Form (SF-12) Health Survey was measured in 238 patients with AD prior to hospitalization and one month following discharge. RS was detected by SEM approach. The statistical process consisted of four steps and fitted four models. We interpreted changes of parameters in models to detect RS and to assess true change. The results showed reprioritization of social functioning (SF) (χ2 = 4.13, p < 0.05), reconceptualization of role limitations due to emotional problems (RE) (χ2 = 17.03, p < 0.001), uniform recalibration of bodily pain (BP) (χ2 = 12.24, p < 0.001), and non-uniform recalibration of mental health (MH) (χ2 = 4.41, p < 0.05), respectively. The true changes of common factors were deteriorated in general physical health (PHYS) (-0.10, χ2 = 8.30, p < 0.005) and improved in general mental health (MENT) (+0.29, χ2 = 20.95, p < 0.001). The effect-sizes of RS were only small. This study showed that patients with AD occurred three types of RS and true changes one month following discharge. RS had effects on the QOL of patients. Better understanding of potential changes in QOL in patients with AD is crucial.

  5. Equation-free modeling unravels the behavior of complex ecological systems

    Science.gov (United States)

    DeAngelis, Donald L.; Yurek, Simeon

    2015-01-01

    Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.

  6. Illness-death model: statistical perspective and differential equations.

    Science.gov (United States)

    Brinks, Ralph; Hoyer, Annika

    2018-01-27

    The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.

  7. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.

    2015-01-01

    Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  8. Generalized Ordinary Differential Equation Models.

    Science.gov (United States)

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  9. Applications of Multilevel Structural Equation Modeling to Cross-Cultural Research

    Science.gov (United States)

    Cheung, Mike W.-L.; Au, Kevin

    2005-01-01

    Multilevel structural equation modeling (MSEM) has been proposed as an extension to structural equation modeling for analyzing data with nested structure. We have begun to see a few applications in cross-cultural research in which MSEM fits well as the statistical model. However, given that cross-cultural studies can only afford collecting data…

  10. Examining the Link between Patient Satisfaction and Adherence to HIV Care: A Structural Equation Model

    Science.gov (United States)

    Dang, Bich N.; Westbrook, Robert A.; Black, William C.; Rodriguez-Barradas, Maria C.; Giordano, Thomas P.

    2013-01-01

    Introduction Analogous to the business model of customer satisfaction and retention, patient satisfaction could serve as an innovative, patient-centered focus for increasing retention in HIV care and adherence to HAART, and ultimately HIV suppression. Objective To test, through structural equation modeling (SEM), a model of HIV suppression in which patient satisfaction influences HIV suppression indirectly through retention in HIV care and adherence to HAART. Methods We conducted a cross-sectional study of adults receiving HIV care at two clinics in Texas. Patient satisfaction was based on two validated items, one adapted from the Consumer Assessment of Healthcare Providers and Systems survey (“Would you recommend this clinic to other patients with HIV?) and one adapted from the Delighted-Terrible Scale, (“Overall, how do you feel about the care you got at this clinic in the last 12 months?”). A validated, single-item question measured adherence to HAART over the past 4 weeks. Retention in HIV care was based on visit constancy in the year prior to the survey. HIV suppression was defined as plasma HIV RNA patient satisfaction score had a mean of 8.5 (median 9.2) on a 0- to 10- point scale. A total of 46% reported “excellent” adherence, 76% had adequate retention, and 70% had HIV suppression. In SEM analyses, patient satisfaction with care influences retention in HIV care and adherence to HAART, which in turn serve as key determinants of HIV suppression (all pPatient satisfaction may have direct effects on retention in HIV care and adherence to HAART. Interventions to improve the care experience, without necessarily targeting objective clinical performance measures, could serve as an innovative method for optimizing HIV outcomes. PMID:23382948

  11. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    International Nuclear Information System (INIS)

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. CUFE at SemEval-2016 Task 4: A Gated Recurrent Model for Sentiment Classification

    KAUST Repository

    Nabil, Mahmoud

    2016-06-16

    In this paper we describe a deep learning system that has been built for SemEval 2016 Task4 (Subtask A and B). In this work we trained a Gated Recurrent Unit (GRU) neural network model on top of two sets of word embeddings: (a) general word embeddings generated from unsupervised neural language model; and (b) task specific word embeddings generated from supervised neural language model that was trained to classify tweets into positive and negative categories. We also added a method for analyzing and splitting multi-words hashtags and appending them to the tweet body before feeding it to our model. Our models achieved 0.58 F1-measure for Subtask A (ranked 12/34) and 0.679 Recall for Subtask B (ranked 12/19).

  13. Model identification using stochastic differential equation grey-box models in diabetes.

    Science.gov (United States)

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik

    2013-03-01

    The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.

  14. Modeling the Relationships between Subdimensions of Environmental Literacy

    Science.gov (United States)

    Genc, Murat; Akilli, Mustafa

    2016-01-01

    The aim of this study is to demonstrate the relationships between subdimensions of environmental literacy using Structural Equation Modeling (SEM). The study was conducted by the analysis of students' answers to questionnaires data using SEM. Initially, Kaiser-Meyer-Olkin and Bartlett's tests were done to test appropriateness of subdimensions to…

  15. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    Science.gov (United States)

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  16. SEM analysis for irradiated materials

    International Nuclear Information System (INIS)

    Liu Xiaosong; Yao Liang

    2008-06-01

    A radiation-proof Scanning Electron Microscope (SEM) system is introduced. It has been widely used in various areas. For analyzing radioactive samples, normal SEM system needs lots of alterations. Based on KYKY-2800B SEM, the sample room, belt line, operating table and aerator were updated. New radiation-proof SEM system has used to analytic surface contaminated samples and RPV materials samples. An elementary means of SEM analysis for radioactive samples was studied, and this examination supported some available references for further irradiated fuel researches. (authors)

  17. Characterization of Yeast Biofilm by Cryo-SEM and FIB-SEM

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Nebesářová, Jana; Růžička, F.; Dluhoš, J.; Krzyžánek, Vladislav

    2013-01-01

    Roč. 19, S2 (2013), s. 226-227 ISSN 1431-9276 R&D Projects: GA MŠk EE.2.3.20.0103; GA TA ČR TE01020118; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 ; RVO:60077344 Keywords : yeast biofilm * cryo-SEM * FIB-SEM Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.757, year: 2013

  18. Psychological pathway to suicidal ideation among people living with HIV/AIDS in China: A structural equation model.

    Science.gov (United States)

    Wang, Wei; Wang, Yuanyuan; Xiao, Chenchang; Yao, Xing; Yang, Yinmei; Yan, Hong; Li, Shiyue

    2017-11-29

    People living with HIV/AIDS (PLWHA) have higher rates of suicide than does the general population. It is critical to interpret the intricate relationships among various psychological variables that increase the risk of suicidal ideation among PLWHA in China. An institutional based cross-sectional study was conducted from Jul to Aug 2016 in Nanjing, China, using a self-reporting questionnaire. A total of 465 PLWHA participated. Sociodemographic, psychological variables and suicide information about the participants were collected. Structural equation modeling (SEM)-path analysis was used to analyze the cross-sectional data. The final structural equation model had a highly satisfactory fit. Among PLWHA, perceived stigma had the greatest accumulated total effect on suicidal ideation, with both a direct effect and indirect effect through self-esteem and depression. Additionally, self-esteem had the second greatest total effect on suicidal ideation and was influenced by social support. Depression contributed directly to suicidal ideation and partly mediated the association of perceived stigma and self-esteem with suicidal ideation. These findings suggest that self-esteem and depression, particularly perceived stigma, play important roles in suicidal ideation among PLWHA. Enhancing personal self-esteem or social support might also reduce perceived stigma and may be an important target for intervention to decrease suicidal ideation among PLWHA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A structural equation modeling approach for the adoption of cloud computing to enhance the Malaysian healthcare sector.

    Science.gov (United States)

    Ratnam, Kalai Anand; Dominic, P D D; Ramayah, T

    2014-08-01

    The investments and costs of infrastructure, communication, medical-related equipments, and software within the global healthcare ecosystem portray a rather significant increase. The emergence of this proliferation is then expected to grow. As a result, information and cross-system communication became challenging due to the detached independent systems and subsystems which are not connected. The overall model fit expending over a sample size of 320 were tested with structural equation modelling (SEM) using AMOS 20.0 as the modelling tool. SPSS 20.0 is used to analyse the descriptive statistics and dimension reliability. Results of the study show that system utilisation and system impact dimension influences the overall level of services of the healthcare providers. In addition to that, the findings also suggest that systems integration and security plays a pivotal role for IT resources in healthcare organisations. Through this study, a basis for investigation on the need to improvise the Malaysian healthcare ecosystem and the introduction of a cloud computing platform to host the national healthcare information exchange has been successfully established.

  20. Stochastic fractional differential equations: Modeling, method and analysis

    International Nuclear Information System (INIS)

    Pedjeu, Jean-C.; Ladde, Gangaram S.

    2012-01-01

    By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.

  1. The lattice Boltzmann model for the second-order Benjamin–Ono equations

    International Nuclear Information System (INIS)

    Lai, Huilin; Ma, Changfeng

    2010-01-01

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations

  2. Using Structural Equation Modelling (SEM) to predict use of ...

    African Journals Online (AJOL)

    mother to child transmission of HIV . It was found to be effective in changing behaviour and studies ... indirectly via intention (willingness) in order to influence the behaviour of coming for VCT. This is because VCT .... similar to those reported in hospital or satellite. (stand-alone) VCT centres, we feel that our findings can also ...

  3. Effects of risk factors for and components of metabolic syndrome on the quality of life of patients with systemic lupus erythematosus: a structural equation modeling approach.

    Science.gov (United States)

    Lee, Jeong-Won; Kang, Ji-Hyoun; Lee, Kyung-Eun; Park, Dong-Jin; Kang, Seong Wook; Kwok, Seung-Ki; Kim, Seong-Kyu; Choe, Jung-Yoon; Kim, Hyoun-Ah; Sung, Yoon-Kyoung; Shin, Kichul; Lee, Sang-Il; Lee, Chang Hoon; Choi, Sung Jae; Lee, Shin-Seok

    2018-01-01

    This study assessed the relationships among the risk factors for and components of metabolic syndrome (MetS) and health-related quality of life (HRQOL) in a hypothesized causal model using structural equation modeling (SEM) in patients with systemic lupus erythematosus (SLE). Of the 505 SLE patients enrolled in the Korean Lupus Network (KORNET registry), 244 had sufficient data to assess the components of MetS at enrollment. Education level, monthly income, corticosteroid dose, Systemic Lupus Erythematosus Disease Activity Index, Physicians' Global Assessment, Beck Depression Inventory, MetS components, and the Short Form-36 at the time of cohort entry were determined. SEM was used to test the causal relationship based on the Analysis of Moment Structure. The average age of the 244 patients was 40.7 ± 11.8 years. The SEM results supported the good fit of the model (χ 2  = 71.629, p = 0.078, RMSEA 0.034, CFI 0.972). The final model showed a direct negative effect of higher socioeconomic status and a positive indirect effect of higher disease activity on MetS, the latter through corticosteroid dose. MetS did not directly impact HRQOL but had an indirect negative impact on it, through depression. In our causal model, MetS risk factors were related to MetS components. The latter had a negative indirect impact on HRQOL, through depression. Clinicians should consider socioeconomic status and medication and seek to modify disease activity, MetS, and depression to improve the HRQOL of SLE patients.

  4. Advanced metrology by offline SEM data processing

    Science.gov (United States)

    Lakcher, Amine; Schneider, Loïc.; Le-Gratiet, Bertrand; Ducoté, Julien; Farys, Vincent; Besacier, Maxime

    2017-06-01

    Today's technology nodes contain more and more complex designs bringing increasing challenges to chip manufacturing process steps. It is necessary to have an efficient metrology to assess process variability of these complex patterns and thus extract relevant data to generate process aware design rules and to improve OPC models. Today process variability is mostly addressed through the analysis of in-line monitoring features which are often designed to support robust measurements and as a consequence are not always very representative of critical design rules. CD-SEM is the main CD metrology technique used in chip manufacturing process but it is challenged when it comes to measure metrics like tip to tip, tip to line, areas or necking in high quantity and with robustness. CD-SEM images contain a lot of information that is not always used in metrology. Suppliers have provided tools that allow engineers to extract the SEM contours of their features and to convert them into a GDS. Contours can be seen as the signature of the shape as it contains all the dimensional data. Thus the methodology is to use the CD-SEM to take high quality images then generate SEM contours and create a data base out of them. Contours are used to feed an offline metrology tool that will process them to extract different metrics. It was shown in two previous papers that it is possible to perform complex measurements on hotspots at different process steps (lithography, etch, copper CMP) by using SEM contours with an in-house offline metrology tool. In the current paper, the methodology presented previously will be expanded to improve its robustness and combined with the use of phylogeny to classify the SEM images according to their geometrical proximities.

  5. Social network usage, shame, guilt and pride among high school students: Model testing

    OpenAIRE

    Doğan, Uğur; Çelik, Eyüp; Karakaş, Yahya

    2016-01-01

    This study was aimed at testing a model which applies structural equation modeling (SEM) to explain social networking sites (SNS) usage. Performing SEM with a sample of 500 high school students (40% male, 60% female), the model examined the relationships among shame, guilt and pride on SNS, such Facebook and Twitter. It was hypothesized that SNS usage was predicted directly by shame and indirectly by pride and guilt. The SEM showed that shame affected SNS usage directly and positively, while ...

  6. Modeling High Frequency Semiconductor Devices Using Maxwell's Equations

    National Research Council Canada - National Science Library

    El-Ghazaly, Samier

    1999-01-01

    .... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...

  7. Testing strong factorial invariance using three-level structural equation modeling

    Directory of Open Access Journals (Sweden)

    Suzanne eJak

    2014-07-01

    Full Text Available Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak, Oort and Dolan (2013 showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling.

  8. Mathematical analysis of partial differential equations modeling electrostatic MEMS

    CERN Document Server

    Esposito, Pierpaolo; Guo, Yujin

    2010-01-01

    Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing "electrostatically actuated" MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems-where the stationary MEMS models fit-are a well-developed

  9. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    Science.gov (United States)

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Recent advances in 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency

    Science.gov (United States)

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…

  12. Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power

    International Nuclear Information System (INIS)

    Huang, Shih-Chieh; Lo, Shang-Lien; Lin, Yen-Ching

    2013-01-01

    Despite numerous researchers having investigating the development of wind power, the correlation between the elements influencing wind power development has often been ignored. Hence, this research hopes to incorporate both structural equation model (SEM) and fuzzy cognitive map (FCM) to identify a mutual relationship between the various elements, so as to provide feasible recommendations for management strategies. Initially, SEM is used for identification of correlation between the elements and indicating their direction and strength. A standardized causal coefficient from SEM was then used to create an FCM illustrating the effect of the status of one component on the status of another component. The research results pointed out that “policy” would be the major challenge faced by wind power development, as well as the main cause for other obstructions. Therefore, under the objective of maximizing economic benefits, short-term strategies can adopt suitable measures for the two dimensions of “technology” and “environment”; and while mid-term strategies must consider the indirect influences from “social” dimension, long-term strategies must work on “policy”. - Highlights: • Apply SEM to explain interrelationships between the obstacles of wind power. • Adopt ‘what if’ simulation analysis to explore the optimal management strategies. • Intermediary variables were existed in the potential paths. • The results prove that correlations do exist between the obstacles. • The “policy aspect” is the main obstacle faced by wind power

  13. Delay Mitigation in the Malaysian Housing Industry: A Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Chang Saar Chai

    2015-01-01

    Full Text Available The housing industry is one of the major contributors to the economy in Malaysia due to the constantly high housing demand. The housing demand has increased due to the rapid growth in population and urbanisation in the country. One of the major challenges in the housing industry is the late delivery of housing supply, which in some instances leads to sick and abandoned housing projects. Despite being extensively investigated, th in a negative impact, there is a strong need to review the housing delay mitigation measures practised in Malaysia. This paper aims to evaluate the current delay mitigation measures and its main objective is to explore the relationship between the mitigation measures and delay in housing via a Structural Equation Modelling (SEM approach. A questionnaire survey through an online survey tool was conducted across 13 states and three Federal Territories in Malaysia. The target respondents are the local authorities, developers, consultants (principal submitting persons and contractors. The findings show that 17 predictive, preventive, organisational or corrective. This paper demonstrates that preventive measures are the most influential mitigation measures for housing delivery delay.

  14. The discretized Schroedinger equation and simple models for semiconductor quantum wells

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Klimeck, Gerhard

    2004-01-01

    The discretized Schroedinger equation is one of the most commonly employed methods for solving one-dimensional quantum mechanics problems on the computer, yet many of its characteristics remain poorly understood. The differences with the continuous Schroedinger equation are generally viewed as shortcomings of the discrete model and are typically described in purely mathematical terms. This is unfortunate since the discretized equation is more productively viewed from the perspective of solid-state physics, which naturally links the discrete model to realistic semiconductor quantum wells and nanoelectronic devices. While the relationship between the discrete model and a one-dimensional tight-binding model has been known for some time, the fact that the discrete Schroedinger equation admits analytic solutions for quantum wells has gone unnoted. Here we present a solution to this new analytically solvable problem. We show that the differences between the discrete and continuous models are due to their fundamentally different bandstructures, and present evidence for our belief that the discrete model is the more physically reasonable one

  15. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  16. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2005-01-01

    The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)

  17. Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models

    Directory of Open Access Journals (Sweden)

    Narcisa Apreutesei

    2014-05-01

    Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.

  18. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap

  19. Applying the theory of planned behavior to self-report dental attendance in Norwegian adults through structural equation modelling approach.

    Science.gov (United States)

    Åstrøm, Anne N; Lie, Stein Atle; Gülcan, Ferda

    2018-05-31

    Understanding factors that affect dental attendance behavior helps in constructing effective oral health campaigns. A socio-cognitive model that adequately explains variance in regular dental attendance has yet to be validated among younger adults in Norway. Focusing a representative sample of younger Norwegian adults, this cross-sectional study provided an empirical test of the Theory of Planned Behavior (TPB) augmented with descriptive norm and action planning and estimated direct and indirect effects of attitudes, subjective norms, descriptive norms, perceived behavioral control and action planning on intended and self-reported regular dental attendance. Self-administered questionnaires provided by 2551, 25-35 year olds, randomly selected from the Norwegian national population registry were used to assess socio-demographic factors, dental attendance as well as the constructs of the augmented TPB model (attitudes, subjective norms, descriptive norms, intention, action planning). A two-stage process of structural equation modelling (SEM) was used to test the augmented TPB model. Confirmatory factor analysis, CFA, confirmed the proposed correlated 6-factor measurement model after re-specification. SEM revealed that attitudes, perceived behavioral control, subjective norms and descriptive norms explained intention. The corresponding standardized regression coefficients were respectively (β = 0.70), (β =0.18), (β = - 0.17) and (β =0.11) (p planning and action planning (β =0.19) predicted dental attendance behavior (p behavioral control on behavior through action planning and through intention and action planning, respectively. The final model explained 64 and 41% of the total variance in intention and dental attendance behavior. The findings support the utility of the TPB, the expanded normative component and action planning in predicting younger adults' intended- and self-reported dental attendance. Interventions targeting young adults' dental

  20. Continuous Time Structural Equation Modeling with R Package ctsem

    Directory of Open Access Journals (Sweden)

    Charles C. Driver

    2017-04-01

    Full Text Available We introduce ctsem, an R package for continuous time structural equation modeling of panel (N > 1 and time series (N = 1 data, using full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel models in the social and behavioural sciences are discrete time models. An assumption of discrete time models is that time intervals between measurements are equal, and that all subjects were assessed at the same intervals. Violations of this assumption are often ignored due to the difficulty of accounting for varying time intervals, therefore parameter estimates can be biased and the time course of effects becomes ambiguous. By using stochastic differential equations to estimate an underlying continuous process, continuous time models allow for any pattern of measurement occasions. By interfacing to OpenMx, ctsem combines the flexible specification of structural equation models with the enhanced data gathering opportunities and improved estimation of continuous time models. ctsem can estimate relationships over time for multiple latent processes, measured by multiple noisy indicators with varying time intervals between observations. Within and between effects are estimated simultaneously by modeling both observed covariates and unobserved heterogeneity. Exogenous shocks with different shapes, group differences, higher order diffusion effects and oscillating processes can all be simply modeled. We first introduce and define continuous time models, then show how to specify and estimate a range of continuous time models using ctsem.

  1. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  2. TBA equations for excited states in the sine-Gordon model

    International Nuclear Information System (INIS)

    Balog, Janos; Hegedus, Arpad

    2004-01-01

    We propose thermodynamic Bethe ansatz (TBA) integral equations for multi-particle soliton (fermion) states in the sine-Gordon (massive Thirring) model. This is based on T-system and Y-system equations, which follow from the Bethe ansatz solution in the light-cone lattice formulation of the model. Even and odd charge sectors are treated on an equal footing, corresponding to periodic and twisted boundary conditions, respectively. The analytic properties of the Y-system functions are conjectured on the basis of the large volume solution of the system, which we find explicitly. A simple relation between the TBA Y-functions and the counting function variable of the alternative non-linear integral equation (Destri-de Vega equation) description of the model is given. At the special value β 2 = 6π of the sine-Gordon coupling, exact expressions for energy and momentum eigenvalues of one-particle states are found

  3. Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation

    International Nuclear Information System (INIS)

    Abanov, Alexander G; Bettelheim, Eldad; Wiegmann, Paul

    2009-01-01

    We develop a hydrodynamic description of the classical Calogero-Sutherland liquid: a Calogero-Sutherland model with an infinite number of particles and a non-vanishing density of particles. The hydrodynamic equations, being written for the density and velocity fields of the liquid, are shown to be a bidirectional analog of the Benjamin-Ono equation. The latter is known to describe internal waves of deep stratified fluids. We show that the bidirectional Benjamin-Ono equation appears as a real reduction of the modified KP hierarchy. We derive the chiral nonlinear equation which appears as a chiral reduction of the bidirectional equation. The conventional Benjamin-Ono equation is a degeneration of the chiral nonlinear equation at large density. We construct multi-phase solutions of the bidirectional Benjamin-Ono equations and of the chiral nonlinear equations

  4. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  5. On the Schroedinger equation for the minisuperspace models

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    2000-01-01

    We obtain a time-dependent Schroedinger equation for the Friedmann-Robertson-Walker (FRW) model interacting with a homogeneous scalar matter field. We show that for this purpose it is necessary to include an additional action invariant under the reparametrization of time. The last one does not change the equations of motion of the system, but changes only the constraint which at the quantum level becomes time-dependent Schroedinger equation. The same procedure is applied to the supersymmetric case and the supersymmetric quantum constraints are obtained, one of them is a square root of the Schroedinger operator

  6. Understanding the Online : Jewellery Retail Market : an integrated model to conduct SEM

    OpenAIRE

    Wu, Yihong

    2013-01-01

    Research into e-commerce is becoming more and more popular; however the jewellery industry is somewhat special. There are very few studies having adapted a strategic marketing perspective on the online jewellery retail market. This study suggested an integrated online marketing strategy which focuses on the search engine marketing (SEM) approach. A detailed procedure of conducting search engine marketing (SEM) is introduced. Through the method of online questionnaires, with the help of soc...

  7. Symplectic discretization for spectral element solution of Maxwell's equations

    International Nuclear Information System (INIS)

    Zhao Yanmin; Dai Guidong; Tang Yifa; Liu Qinghuo

    2009-01-01

    Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.

  8. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  9. A four-equation friction model for water hammer calculation in quasi-rigid pipelines

    International Nuclear Information System (INIS)

    Ghodhbani, Abdelaziz; Haj Taïeb, Ezzeddine

    2017-01-01

    Friction coupling affects water hammer evolution in pipelines according to the initial flow regime. Unsteady friction models are only validated with uncoupled formulation. On the other hand, coupled models such as four-equation model, provide more accurate prediction of water hammer since fluid-structure interaction (FSI) is taken into account, but they are limited to steady-state friction formulation. This paper deals with the creation of the “four-equation friction model” which is based on the incorporation of the unsteady head loss given by an unsteady friction model into the four-equation model. For transient laminar flow cases, the Zielke model is considered. The proposed model is applied to a quasi-rigid pipe with axial moving valve, and then calculated by the method of characteristics (MOC). Damping and shape of the numerical solution are in good agreement with experimental data. Thus, the proposed model can be incorporated into a new computer code. - Highlights: • Both Zielke model and four-equation model are insufficient to predict water hammer. • The four-equation friction model proposed is obtained by incorporating the unsteady head loss in the four-equation model. • The solution obtained by the proposed model is in good agreement with experimental data. • The wave-speed adjustment scheme is more efficient than interpolations schemes.

  10. Understanding the complex determinants of height and adiposity in disadvantaged daycare preschoolers in Salvador, NE Brazil through structural equation modelling.

    Science.gov (United States)

    Lander, Rebecca L; Williams, Sheila M; Costa-Ribeiro, Hugo; Mattos, Angela P; Barreto, Danile L; Houghton, Lisa A; Bailey, Karl B; Lander, Alastair G; Gibson, Rosalind S

    2015-10-23

    Earlier we reported on growth and adiposity in a cross-sectional study of disadvantaged Brazilian preschoolers. Here we extend the work on these children, using structural equation modelling (SEM) to gather information on the complex relationships between the variables influencing height and adiposity. We hope this information will help improve the design and effectiveness of future interventions for preschoolers. In 376 preschoolers aged 3-6 years attending seven philanthropic daycares in Salvador, we used SEM to examine direct and indirect relationships among biological (sex, ethnicity, birth order, maternal height and weight), socio-economic, micronutrient (haemoglobin, serum selenium and zinc), and environmental (helminths, de-worming) variables on height and adiposity, as reflected by Z-scores for height-for-age (HAZ) and body mass index (BMIZ). Of the children, 11 % had HAZ  1. Of their mothers, 8 % had short stature, and 50 % were overweight or obese. Based on standardized regression coefficients, significant direct effects (p growth, helminth infection was a modifiable risk factor directly and indirectly affecting HAZ and BMIZ, respectively. Hence the WHO de-worming recommendation should include preschoolers living in at-risk environments as well as school-aged children.

  11. A structural equation model of the relationship between muscle strength, balance performance, walking endurance and community integration in stroke survivors.

    Directory of Open Access Journals (Sweden)

    P W H Kwong

    Full Text Available To use structural equation modelling (SEM to determine (1 the direct and indirect associations of strength of paretic lower limb muscles with the level of community integration, and (2 the direct association of walking endurance and balance performance with the level of community integration in community-dwelling stroke survivors.In this cross-sectional study of 105 stroke survivors, the Subjective Index of Physical and Social Outcome (SIPSO was used to measure the level of community integration. Lower-limb strength measures included isometric paretic ankle strength and isokinetic paretic knee peak torque. The Berg Balance Scale (BBS and the 6-minute walk test (6MWT were used to evaluate balance performance and walking endurance, respectively.SEM revealed that the distance walked on the 6MWT had the strongest direct association with the SIPSO score (β = 0.41, p <0.001. An increase of one standard deviation in the 6MWT distance resulted in an increase of 0.41 standard deviations in the SIPSO score. Moreover, dorsiflexion strength (β = 0.18, p = 0.044 and the BBS score (β = 0.21, p = 0.021 had direct associations with the SIPSO score.The results of the proposed model suggest that rehabilitation training of community-dwelling stroke survivors could focus on walking endurance, balance performance and dorsiflexor muscle strengthening if the aim is to augment the level of community integration.

  12. Self-Concealment, Social Network Sites Usage, Social Appearance Anxiety, Loneliness of High School Students: A Model Testing

    Science.gov (United States)

    Dogan, Ugur; Çolak, Tugba Seda

    2016-01-01

    This study was tested a model for explain to social networks sites (SNS) usage with structural equation modeling (SEM). Using SEM on a sample of 475 high school students (35% male, 65% female) students, model was investigated the relationship between self-concealment, social appearance anxiety, loneliness on SNS such as Twitter and Facebook usage.…

  13. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  14. Ao leitor sem medo

    Directory of Open Access Journals (Sweden)

    José Eisenberg

    2000-05-01

    Full Text Available O texto resenha Ao leitor sem medo, de Renato Janine Ribeiro (Belo Horizonte, UFMG, 1999.This text is a review of Ao leitor sem medo by Renato Janine Ribeiro (Belo Horizonte, UFMG, 1999

  15. Modified two-fluid model for the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.

    2003-01-01

    This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  16. Calculus for cognitive scientists partial differential equation models

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics.  A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.

  17. Um modelo semântico de publicações eletrônicas | A semantic model for electronic publishing

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Marcondes

    2011-03-01

    Full Text Available Resumo Publicações eletrônicas, apesar dos avanços das Tecnologias da Informação, são ainda calcados no modelo impresso. O formato textual impede que programas possam ser usados para o processamento “semântico” desses conteúdos. È porposto um modelo “semântico” de publicações cientificas eletrônicas, no qual as conclusões contidas no texto do artigo fornecidas por autores e representadas em formato “inteligível” por programas, permitindo recuperação semântica, identificação de indícios de novas descobertas científicas e de incoerências sobre este conhecimento. O modelo se baseia nos conceitos de estrutura profunda, ou semântica, da linguagem (CHOMSKY, 1975, de microestrutura, macroestrutura e superestrutura, (KINTSH, VAN DIJK, 1972, na estrutura retórica de artigos científicos (HUTCHINS, 1977, (GROSS, 1990 e nos elementos de metodologia cientifica, como problema, questão, objetivo, hipótese, experimento e conclusão. Resulta da análise de 89 artigos biomédicos. Foi desenvolvido um protótipo de sistema que implementa parcialmente o modelo. Questionários foram usados com autores para embasar o desenvolvimento do protótipo. O protótipo foi testando com pesquisadores-autores. Foram identificados quatro padrões de raciocínio e encadeamento dos elementos semânticos em artigos científicos. O modelo de conteúdo foi implementado como uma ontologia computacional. Foi desenvolvido e avaliado um protótipo de uma interface web de submissão artigos pelos autores a um sistema eletrônico de publicação de periódicos que implementa o modelo. Palavras-chave publicações eletrônicas; metodológica científica; comunicação científica; representação do conhecimento; ontologias; processamento semântico de conteúdos; e-Ciência Abstract Electronic publishing, although Information Technologies advancements, are still based in the print text model. The textual format prevents programs to semantic process

  18. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  19. Differential equations and integrable models: the SU(3) case

    International Nuclear Information System (INIS)

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  20. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    Science.gov (United States)

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  1. Modelling equation of knee force during instep kicking using ...

    African Journals Online (AJOL)

    This paper presents the biomechanics analysis of the football players, to obtain the equation that relates with the variables and to get the force model equation when the kicking was made. The subjects delivered instep kicking by using the dominant's leg where one subjects using right and left leg. 2 Dimensional analysis ...

  2. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    Science.gov (United States)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  3. It's all a matter of necessity and concern: A structural equation model of adherence to antihypertensive medication.

    Science.gov (United States)

    Wilhelm, Marcel; Rief, Winfried; Doering, Bettina K

    2018-03-01

    Hypertension is often treated pharmacologically, yet adherence is poor. Beliefs about antihypertensive medicine, i.e., the necessity-concern framework (NCF), are valuable for explaining adherence. Therefore, a model structure is transferred from hypercholesterolemia to hypertension, assuming a mediating role of the NCF. Patients with hypertension (n=273) were surveyed online about demographics, health- and treatment-related factors, control beliefs, necessity and concern beliefs about their medication, and adherence. The data were analyzed using structural equation modeling (SEM). Necessity was positively (β=0.26, p=0.009) and concern was negatively (β=-0.51, p=0.020) associated with adherence. The NCF mediated the influence of background variables on adherence. Necessity was associated with comorbidity (β=-0.36, pConcern was associated with side effects (β=0.38, pconcern framework as a mediating factor was confirmed in hypertension, explaining more variance than previous approaches (23%). A personalized, emotionally supportive doctor-patient communication could be key to addressing beliefs about medicine and therefore to increasing adherence. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A lattice Boltzmann model for the Burgers-Fisher equation.

    Science.gov (United States)

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  5. Motivation, strategy, and English as a foreign language vocabulary learning: A structural equation modelling study.

    Science.gov (United States)

    Zhang, Yining; Lin, Chin-Hsi; Zhang, Dongbo; Choi, Yunjeong

    2017-03-01

    In spite of considerable advancements in our understanding of the different factors involved in achieving vocabulary-learning success, the overall pattern and interrelationships of critical factors involved in L2 vocabulary learning - particularly, the mechanisms through which learners regulate their motivation and learning strategies - remain unclear. This study examined L2 vocabulary learning, focusing on the joint influence of different motivational factors and learning strategies on the vocabulary breadth of adolescent learners of English as a foreign language (EFL) in China. The participants were 107 tenth graders (68 females, 39 males) in China. The data were collected via two questionnaires, one assessing students' motivation towards English-vocabulary learning and the other their English vocabulary-learning strategies, along with a test measuring vocabulary breadth. Structural equation modelling (SEM) indicated that learning strategy partially mediated the relationship between motivation (i.e., a composite score of intrinsic and extrinsic motivation) and vocabulary learning. Separate SEM analyses for intrinsic (IM) and extrinsic motivation (EM) revealed that there were significant and positive direct and indirect effects of IM on vocabulary knowledge; and while EM's direct effect over and above that of learning strategies did not achieve significance, its indirect effect was significant and positive. The findings suggest that vocabulary-learning strategies mediate the relationship between motivation and vocabulary knowledge. In addition, IM may have a greater influence on vocabulary learning in foreign-language contexts. © 2016 The British Psychological Society.

  6. Empiric model for mean generation time adjustment factor for classic point kinetics equations

    Energy Technology Data Exchange (ETDEWEB)

    Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C., E-mail: david.goes@poli.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: alessandro@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)

  7. Empiric model for mean generation time adjustment factor for classic point kinetics equations

    International Nuclear Information System (INIS)

    Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C.

    2017-01-01

    Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)

  8. Structural Equation Modeling with the Smartpls

    Directory of Open Access Journals (Sweden)

    Christian M. Ringle

    2014-05-01

    Full Text Available The objective of this article is to present a didactic example of Structural Equation Modeling using the software SmartPLS 2.0 M3. The program mentioned uses the method of Partial Least Squares and seeks to address the following situations frequently observed in marketing research: Absence of symmetric distributions of variables measured by a theory still in its beginning phase or with little “consolidation”, formative models, and/or a limited amount of data. The growing use of SmartPLS has demonstrated its robustness and the applicability of the model in the areas that are being studied. 

  9. THE CONTENT MODEL AND THE EQUATIONS OF MOTION OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2015-06-01

    Full Text Available Purpose. The calculation methods improvement of the electric vehicle curve movement and the cost of electricity with the aim of performance and accuracy of calculations improving are considered in the paper. Methodology. The method is based upon the general principles of mathematical simulation, when a conceptual model of problem domain is created and then a mathematic model is formulated according to the conceptual model. Development of an improved conceptual model of electric vehicles motion is proposed and a corresponding mathematical model is studied. Findings. The authors proposed model in which the vehicle considers as a system of interacting point-like particles with defined interactions under the influence of external forces. As a mathematical model the Euler-Lagrange equation of the second kind is used. Conservative and dissipative forces affecting the system dynamics are considered. Equations for calculating motion of electric vehicles with taking into account the energy consumption are proposed. Originality. In the paper the conceptual model of motion for electric vehicles with distributed masses has been developed as a system of interacting point-like particles. In the easiest case the system has only one degree of freedom. The mathematical model is based on Lagrange equations. The shown approach allows a detailed and physically based description of the electric vehicles dynamics. The derived motion equations for public electric transport are substantially more precise than the equations recommended in textbooks and the reference documentation. The motion equations and energy consumption calculations for transportation of one passenger with a trolleybus are developed. It is shown that the energy consumption depends on the data of vehicle and can increase when the manload is above the certain level. Practical value. The authors received the equations of motion and labour costs in the calculations focused on the use of computer methods

  10. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.

    Science.gov (United States)

    Yang, Xuguang; Shi, Baochang; Chai, Zhenhua

    2014-07-01

    In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although some gradient operators are included in the correction terms, they can be computed efficiently using local computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also performed some simulations of the natural convection in a square cavity, and we found that the results agree well with those reported in the previous work, even at a very high Rayleigh number (Ra = 10(12)).

  11. Working conditions, self-perceived stress, anxiety, depression and quality of life: A structural equation modelling approach

    Directory of Open Access Journals (Sweden)

    Edimansyah Bin

    2008-02-01

    Full Text Available Abstract Background The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. Methods The validated Malay version of the Job Content Questionnaire (JCQ, Depression Anxiety Stress Scales (DASS and the World Health Organization Quality of Life-Brief (WHOQOL-BREF were used. A structural equation modelling (SEM analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. Results The results of the SEM supported the hypothesized structural model (χ2 = 22.801, df = 19, p = 0.246. The final model shows that social support (JCQ was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS. Job demand (JCQ was directly related to stress (DASS and inversely related to the environmental conditions (WHOQOL-BREF. Job control (JCQ was directly related to social relationships (WHOQOL-BREF. Stress (DASS was directly related to anxiety and depression (DASS and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF. Anxiety (DASS was directly related to depression (DASS and inversely related to physical health (WHOQOL-BREF. Depression (DASS was inversely related to the psychological wellbeing (WHOQOL-BREF. Finally, stress, anxiety and depression (DASS mediate the relationships between job demand and social support (JCQ to the 4 factors of WHOQOL-BREF. Conclusion These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases

  12. Working conditions, self-perceived stress, anxiety, depression and quality of life: a structural equation modelling approach.

    Science.gov (United States)

    Rusli, Bin Nordin; Edimansyah, Bin Abdin; Naing, Lin

    2008-02-06

    The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. The validated Malay version of the Job Content Questionnaire (JCQ), Depression Anxiety Stress Scales (DASS) and the World Health Organization Quality of Life-Brief (WHOQOL-BREF) were used. A structural equation modelling (SEM) analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. The results of the SEM supported the hypothesized structural model (chi2 = 22.801, df = 19, p = 0.246). The final model shows that social support (JCQ) was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS). Job demand (JCQ) was directly related to stress (DASS) and inversely related to the environmental conditions (WHOQOL-BREF). Job control (JCQ) was directly related to social relationships (WHOQOL-BREF). Stress (DASS) was directly related to anxiety and depression (DASS) and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF). Anxiety (DASS) was directly related to depression (DASS) and inversely related to physical health (WHOQOL-BREF). Depression (DASS) was inversely related to the psychological wellbeing (WHOQOL-BREF). Finally, stress, anxiety and depression (DASS) mediate the relationships between job demand and social support (JCQ) to the 4 factors of WHOQOL-BREF. These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases the self-perceived quality of life related to

  13. Working conditions, self-perceived stress, anxiety, depression and quality of life: A structural equation modelling approach

    Science.gov (United States)

    Rusli, Bin Nordin; Edimansyah, Bin Abdin; Naing, Lin

    2008-01-01

    Background The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. Methods The validated Malay version of the Job Content Questionnaire (JCQ), Depression Anxiety Stress Scales (DASS) and the World Health Organization Quality of Life-Brief (WHOQOL-BREF) were used. A structural equation modelling (SEM) analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. Results The results of the SEM supported the hypothesized structural model (χ2 = 22.801, df = 19, p = 0.246). The final model shows that social support (JCQ) was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS). Job demand (JCQ) was directly related to stress (DASS) and inversely related to the environmental conditions (WHOQOL-BREF). Job control (JCQ) was directly related to social relationships (WHOQOL-BREF). Stress (DASS) was directly related to anxiety and depression (DASS) and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF). Anxiety (DASS) was directly related to depression (DASS) and inversely related to physical health (WHOQOL-BREF). Depression (DASS) was inversely related to the psychological wellbeing (WHOQOL-BREF). Finally, stress, anxiety and depression (DASS) mediate the relationships between job demand and social support (JCQ) to the 4 factors of WHOQOL-BREF. Conclusion These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases the self

  14. Influence of Biomedical Factors on the Five Viscera Score (FVS on Middle-Aged and Elderly Individuals: Application of Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Taro Tomura

    2015-01-01

    Full Text Available The five viscera score (FVS is a diagnostic scale for traditional Chinese medicine (TCM. The purposes of current study are to elucidate the characteristics of FVS obtained from middle-aged to elderly individuals and to investigate the validity of FVS using biological medical data of middle-aged and elderly individuals. Structural equation modeling (SEM was used to conduct assessments between FVS and medical data. Eighty men and 99 women participated in this study, whose mean ages (SD were 58 ± 7 years in both genders showing no significant difference. FVS of women was significantly higher than that of men in the spleen of the 50s (P=0.019 and liver of the 60s age group (P=0.030. By SEM, the following biomedical factors were found to influence viscera: gender, diastolic blood pressure, and HDL-C for the liver; GLU, GOT, and γ-GTP for the spleen; age, BMI, and HCRP for the lungs; and HbA1c and creatinine clearance for the kidneys. These results provide objective evidence that FVS can be used for TCM diagnosis in middle-aged and elderly individuals.

  15. SEM facility for examination of reactive and radioactive materials

    International Nuclear Information System (INIS)

    Downs, G.L.; Tucker, P.A.

    1977-01-01

    A scanning electron microscope (SEM) facility for the examination of tritium-containing materials is operational at Mound Laboratory. The SEM is installed with the sample chamber incorporated as an integral part of an inert gas glovebox facility to enable easy handling of radioactive and pyrophoric materials. A standard SEM (ETEC Model B-1) was modified to meet dimensional, operational, and safety-related requirements. a glovebox was designed and fabricated which permitted access with the gloves to all parts of the SEM sample chamber to facilitate director and accessory replacement and repairs. A separate console combining the electron optical column and specimen chamber was interfaced to the glovebox by a custom-made, neoprene bellows so that the vibrations normally associated with the blowers and pumps were damped. Photomicrographs of tritiated pyrophoric materials show the usefulness of this facility. Some of the difficulties involved in the investigation of these materials are also discussed. The SEM is also equipped with an energy dispersive x-ray detector (ORTEC) and a Secondary Ion Mass Spectrometer (3M) attachments. This latter attachment allows analysis of secondary ions with masses ranging from 1-300 amu. (Auth.)

  16. Ginzburg-Landau equation as a heuristic model for generating rogue waves

    Science.gov (United States)

    Lechuga, Antonio

    2016-04-01

    Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.

  17. Chaotic attractors in tumor growth and decay: a differential equation model.

    Science.gov (United States)

    Harney, Michael; Yim, Wen-sau

    2015-01-01

    Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.

  18. Search Engine Marketing (SEM): Financial & Competitive Advantages of an Effective Hotel SEM Strategy

    OpenAIRE

    Leora Halpern Lanz

    2015-01-01

    Search Engine Marketing and Optimization (SEO, SEM) are keystones of a hotels marketing strategy, in fact research shows that 90% of travelers start their vacation planning with a Google search. Learn five strategies that can enhance a hotels SEO and SEM strategies to boost bookings.

  19. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  20. Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging.

    Science.gov (United States)

    Schieber, Nicole L; Machado, Pedro; Markert, Sebastian M; Stigloher, Christian; Schwab, Yannick; Steyer, Anna M

    2017-01-01

    Correlative light and electron microscopy (CLEM) is a powerful tool to perform ultrastructural analysis of targeted tissues or cells. The large field of view of the light microscope (LM) enables quick and efficient surveys of the whole specimen. It is also compatible with live imaging, giving access to functional assays. CLEM protocols take advantage of the features to efficiently retrace the position of targeted sites when switching from one modality to the other. They more often rely on anatomical cues that are visible both by light and electron microscopy. We present here a simple workflow where multicellular specimens are embedded in minimal amounts of resin, exposing their surface topology that can be imaged by scanning electron microscopy (SEM). LM and SEM both benefit from a large field of view that can cover whole model organisms. As a result, targeting specific anatomic locations by focused ion beam-SEM (FIB-SEM) tomography becomes straightforward. We illustrate this application on three different model organisms, used in our laboratory: the zebrafish embryo Danio rerio, the marine worm Platynereis dumerilii, and the dauer larva of the nematode Caenorhabditis elegans. Here we focus on the experimental steps to reduce the amount of resin covering the samples and to image the specimens inside an FIB-SEM. We expect this approach to have widespread applications for volume electron microscopy on multiple model organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    Science.gov (United States)

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  3. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    Science.gov (United States)

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  4. Effects of Co-Worker and Supervisor Support on Job Stress and Presenteeism in an Aging Workforce: A Structural Equation Modelling Approach.

    Science.gov (United States)

    Yang, Tianan; Shen, Yu-Ming; Zhu, Mingjing; Liu, Yuanling; Deng, Jianwei; Chen, Qian; See, Lai-Chu

    2015-12-23

    We examined the effects of co-worker and supervisor support on job stress and presenteeism in an aging workforce. Structural equation modelling was used to evaluate data from the 2010 wave of the Health and Retirement Survey in the United States (n = 1649). The level of presenteeism was low and the level of job stress was moderate among aging US workers. SEM revealed that co-worker support and supervisor support were strongly correlated (β = 0.67; p worker support had a significant direct negative effect on job stress (β = -0.10; p employee stress at the workplace, by necessary support at work from colleagues and employers, and by the presence of comfortable interpersonal relationships among colleagues and between employers and employees.

  5. Case Studies of Successful Schoolwide Enrichment Model-Reading (SEM-R) Classroom Implementations. Research Monograph Series. RM10204

    Science.gov (United States)

    Reis, Sally M.; Little, Catherine A.; Fogarty, Elizabeth; Housand, Angela M.; Housand, Brian C.; Sweeny, Sheelah M.; Eckert, Rebecca D.; Muller, Lisa M.

    2010-01-01

    The purpose of this qualitative study was to examine the scaling up of the Schoolwide Enrichment Model in Reading (SEM-R) in 11 elementary and middle schools in geographically diverse sites across the country. Qualitative comparative analysis was used in this study, with multiple data sources compiled into 11 in-depth school case studies…

  6. Fuzzy Control and Connected Region Marking Algorithm-Based SEM Nanomanipulation

    Directory of Open Access Journals (Sweden)

    Dongjie Li

    2012-01-01

    Full Text Available The interactive nanomanipulation platform is established based on fuzzy control and connected region marking (CRM algorithm in SEM. The 3D virtual nanomanipulation model is developed to make up the insufficiency of the 2D SEM image information, which provides the operator with depth and real-time visual feedback information to guide the manipulation. The haptic device Omega3 is used as the master to control the 3D motion of the nanopositioner in master-slave mode and offer the force sensing to the operator controlled with fuzzy control algorithm. Aiming at sensing of force feedback during the nanomanipulation, the collision detection method of the virtual nanomanipulation model and the force rending model are studied to realize the force feedback of nanomanipulation. The CRM algorithm is introduced to process the SEM image which provides effective position data of the objects for updating the virtual environment (VE, and relevant issues such as calibration and update rate of VE are also discussed. Finally, the performance of the platform is validated by the ZnO nanowire manipulation experiments.

  7. Model reduction of multiscale chemical langevin equations: a numerical case study.

    Science.gov (United States)

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

  8. Integral equation models for image restoration: high accuracy methods and fast algorithms

    International Nuclear Information System (INIS)

    Lu, Yao; Shen, Lixin; Xu, Yuesheng

    2010-01-01

    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images

  9. Relationships among mental health status, social context, and demographic characteristics in Taiwanese aboriginal adolescents: a structural equation model.

    Science.gov (United States)

    Yen, Cheng-Fang; Hsu, Chia-Chuang; Liu, Shu-Chun; Huang, Chi-Fen; Ko, Chih-Hung; Yen, Ju-Yu; Cheng, Chung-Ping

    2006-10-01

    The purposes of this study were to examine the relationships among mental health status, demographic characteristics, and social contexts, including family conflict and support, connectedness to school, and affiliation with peers who exhibit delinquent behavior and who use substances, among Taiwanese aboriginal adolescents. A total of 251 aboriginal junior high school students in an isolated mountainous area of southern Taiwan were recruited, and the relationships among mental health status, demographic characteristics, and social contexts among them were examined using a structural equation model (SEM). The SEM revealed that family conflict and support had direct influences on mental health status and connectedness to school. Family conflict had a direct relationship with affiliation with peers who use substances, and family conflict and support were both indirectly linked with affiliation with peers who exhibit delinquent behavior and who used substances; these were mediated by a poor mental health status. Female and older age were directly linked with a poor mental health status and were indirectly linked with a greater number of peers who exhibit delinquent behavior and who use substances via the poor mental health status. Disruptive parenting was directly linked with affiliation with peers who use substances. The authors suggest that those who devise strategies to improve aboriginal adolescents' mental health and discourage substance use should take these relationships among mental health, demographic characteristics, and social contexts into account.

  10. Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM

    International Nuclear Information System (INIS)

    Kieft, Erik; Bosch, Eric

    2008-01-01

    A Monte Carlo tool is presented for the simulation of secondary electron (SE) emission in a scanning electron microscope (SEM). The tool is based on the Geant4 platform of CERN. The modularity of this platform makes it comparatively easy to add and test individual physical models. Our aim has been to develop a flexible and generally applicable tool, while at the same time including a good description of low-energy (<50 eV) interactions of electrons with matter. To this end we have combined Mott cross-sections with phonon-scattering based cross-sections for the elastic scattering of electrons, and we have adopted a dielectric function theory approach for inelastic scattering and generation of SEs. A detailed model of the electromagnetic fields from an actual SEM column has been included in the tool for ray tracing of secondary and backscattered electrons. Our models have been validated against experimental results through comparison of the simulation results with experimental yields, SE spectra and SEM images. It is demonstrated that the resulting simulation package is capable of quantitatively predicting experimental SEM images and is an important tool in building a deeper understanding of SEM imaging.

  11. Projects Delay Factors of Saudi Arabia Construction Industry Using PLS-SEM Path Modelling Approach

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Ismail

    2016-01-01

    Full Text Available This paper presents the development of PLS-SEM Path Model of delay factors of Saudi Arabia construction industry focussing on Mecca City. The model was developed and assessed using SmartPLS v3.0 software and it consists of 37 factors/manifests in 7 groups/independent variables and one dependent variable which is delay of the construction projects. The model was rigorously assessed at measurement and structural components and the outcomes found that the model has achieved the required threshold values. At structural level of the model, among the seven groups, the client and consultant group has the highest impact on construction delay with path coefficient β-value of 0.452 and the project management and contract administration group is having the least impact to the construction delay with β-value of 0.016. The overall model has moderate explaining power ability with R2 value of 0.197 for Saudi Arabia construction industry representation. This model will able to assist practitioners in Mecca city to pay more attention in risk analysis for potential construction delay.

  12. Ising models and soliton equations

    International Nuclear Information System (INIS)

    Perk, J.H.H.; Au-Yang, H.

    1985-01-01

    Several new results for the critical point of correlation functions of the Hirota equation are derived within the two-dimensional Ising model. The recent success of the conformal-invariance approach in the determination of a critical two-spin correration function is analyzed. The two-spin correlation function is predicted to be rotationally invariant and to decay with a power law in this approach. In the approach suggested here systematic corrections due to the underlying lattice breaking the rotational invariance are obtained

  13. Search Engine Marketing (SEM: Financial & Competitive Advantages of an Effective Hotel SEM Strategy

    Directory of Open Access Journals (Sweden)

    Leora Halpern Lanz

    2015-05-01

    Full Text Available Search Engine Marketing and Optimization (SEO, SEM are keystones of a hotels marketing strategy, in fact research shows that 90% of travelers start their vacation planning with a Google search. Learn five strategies that can enhance a hotels SEO and SEM strategies to boost bookings.

  14. Modeling imperfectly repaired system data via grey differential equations with unequal-gapped times

    International Nuclear Information System (INIS)

    Guo Renkuan

    2007-01-01

    In this paper, we argue that grey differential equation models are useful in repairable system modeling. The arguments starts with the review on GM(1,1) model with equal- and unequal-spaced stopping time sequence. In terms of two-stage GM(1,1) filtering, system stopping time can be partitioned into system intrinsic function and repair effect. Furthermore, we propose an approach to use grey differential equation to specify a semi-statistical membership function for system intrinsic function times. Also, we engage an effort to use GM(1,N) model to model system stopping times and the associated operating covariates and propose an unequal-gapped GM(1,N) model for such analysis. Finally, we investigate the GM(1,1)-embed systematic grey equation system modeling of imperfectly repaired system operating data. Practical examples are given in step-by-step manner to illustrate the grey differential equation modeling of repairable system data

  15. Loop equations for multi-cut matrix models

    International Nuclear Information System (INIS)

    Akemann, G.

    1995-03-01

    The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut solution of the hermitian and complex one-matrix model is discussed. (orig.)

  16. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  17. Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots

    Science.gov (United States)

    Yuan, Ke-Hai; Hayashi, Kentaro

    2010-01-01

    This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…

  18. Schizophrenia as a disconnection syndrome. Studies with functional magnetic resonance imaging and structural equation modeling; Schizophrenie als Diskonnektionssyndrom. Studien mit funktioneller Magnetresonanztomographie und Strukturgleichungsmodellen

    Energy Technology Data Exchange (ETDEWEB)

    Schloesser, R. [Universitaet Jena, Psychiatrische Klinik (Germany); Universitaet Jena, Psychiatrische Klinik, Jena (Germany); Wagner, G.; Koehler, S.; Sauer, H. [Universitaet Jena, Psychiatrische Klinik (Germany)

    2005-02-01

    Aside from characteristic psychopathological symptoms, cognitive deficits are a core feature of schizophrenia. These deficits can only be addressed within the context of widespread functional interactions among different brain areas. To examine these interactions, structural equation modeling (SEM) was used for the analysis of fMRI datasets. In a series of studies, both in antipsychotic-treated and drug-free schizophrenic patients, a pattern of enhanced thalamocortical functional connectivity could be observed as an indicator for possible disruptions of frontostriatal thalamocortical circuitry. Moreover, drug-free patients and those receiving typical antipsychotic drugs were characterized by reduced interhemispheric corticocortical connectivity. This difference relative to normal controls was less in patients under atypical antipsychotic drugs. The results could be interpreted as a beneficial effect of atypical antipsychotic drugs on information processing in schizophrenic patients. The present findings are consistent with the model of schizophrenia as a disconnection syndrome and earlier concepts of ''cognitive dysmetria'' in schizophrenia. (orig.) [German] Neben der charakteristischen psychopathologischen Symptomatik stellen kognitive Defizite ein zentrales Merkmal der Schizophrenie dar. Diese Defizite koennen nur im Kontext miteinander interagierender Hirnareale verstanden werden. Zur Untersuchung dieser funktionellen Wechselbeziehungen wurden Strukturgleichungsmodelle (''structural equation modeling'', SEM) zur Auswertung von fMRT-Datensaetzen verwendet. In einer Untersuchungsreihe bei schizophrenen Patienten ergab sich sowohl bei antipsychotisch behandelten als auch bei unbehandelten Patienten ein Muster gesteigerter thalamokortikaler funktioneller Konnektivitaet als Hinweis auf eine moegliche Stoerung fronto-striato-thalamo-kortikaler Regelkreise. Unbehandelte Patienten und Patienten unter typischen Antipsychotika

  19. Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2001-04-01

    To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)

  20. PENGGUNAAN METODE STRUCTURAL EQUATION MODELLING UNTUK ANALISIS FAKTOR YANG MEMPENGARUHI MOTIVASI BELAJAR MAHASISWA FIP UMJ

    Directory of Open Access Journals (Sweden)

    Ririn Widiyasari

    2018-02-01

    Full Text Available Tujuan yang ingin dicapai dalam penelitian ini adalah mengetahui faktor apa saja  yang mempengaruhi motivasi belajar mahasiswa, apakah terdapat pengaruh yang signifikan antara cara belajar, fasilitas belajar dan lingkungan belajar terhadap motivasi belajar mahasiswa, serta faktor mana yang paling berpengaruh terhadap motivasi belajar mahasiswa. Jumlah sampel dalam penelitian ini adalah 192 mahasiswa (FIP UMJ angkatan tahun 2013-2015 yang aktif mengikuti perkuliahan. Metode penelitian yang dilakukan adalah metode kuantitatif survey. Metode pengambilan data menggunakan  kuesioner dengan skala likert. Metode analisis data yang digunakan adalah analisis deskriptif, dan analisis  Structural Equation Modeling (SEM berbantuan program LISREL 8.3. Uji hipotesis yang digunakan dalam penelitian ini adalah uji Chi-square dan uji t. Hasil penelitian menunjukkan bahwa variabel cara belajar memiliki kontribusi yang paling besar, selanjutnya variabel kedua yang berkontribusi meningkatkan motivasi belajar adalah lingkungan belajar dan terakhir fasilitas belajar memberikan pengaruh yang paling kecil terhadap motivasi belajar. Jadi, variabel laten cara belajar dan lingkungan belajar berpengaruh positif terhadap motivasi belajar dan fasilitas belajar berpengaruh negatif terhadap motivasi belajar.

  1. Study of a Model Equation in Detonation Theory

    KAUST Repository

    Faria, Luiz

    2014-04-24

    Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut+ 1/2 (u2-uu (0-, t))x=f (x, u (0-, t)), x > 0, t < 0. It describes a detonation shock at x = 0 with the reaction zone in x > 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. © 2014 Society for Industrial and Applied Mathematics.

  2. Annotated bibliography of structural equation modelling: technical work.

    Science.gov (United States)

    Austin, J T; Wolfle, L M

    1991-05-01

    Researchers must be familiar with a variety of source literature to facilitate the informed use of structural equation modelling. Knowledge can be acquired through the study of an expanding literature found in a diverse set of publishing forums. We propose that structural equation modelling publications can be roughly classified into two groups: (a) technical and (b) substantive applications. Technical materials focus on the procedures rather than substantive conclusions derived from applications. The focus of this article is the former category; included are foundational/major contributions, minor contributions, critical and evaluative reviews, integrations, simulations and computer applications, precursor and historical material, and pedagogical textbooks. After a brief introduction, we annotate 294 articles in the technical category dating back to Sewall Wright (1921).

  3. Population stochastic modelling (PSM)-An R package for mixed-effects models based on stochastic differential equations

    DEFF Research Database (Denmark)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode

    2009-01-01

    are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...

  4. Continuum model of the two-component Becker-Döring equations

    Directory of Open Access Journals (Sweden)

    Ali Reza Soheili

    2004-01-01

    Full Text Available The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum model.

  5. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    Science.gov (United States)

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  6. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto

    2007-01-01

    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  7. Reduction of static field equation of Faddeev model to first order PDE

    International Nuclear Information System (INIS)

    Hirayama, Minoru; Shi Changguang

    2007-01-01

    A method to solve the static field equation of the Faddeev model is presented. For a special combination of the concerned field, we adopt a form which is compatible with the field equation and involves two arbitrary complex functions. As a result, the static field equation is reduced to a set of first order partial differential equations

  8. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  9. River water quality model no. 1 (RWQM1): II. Biochemical process equations

    DEFF Research Database (Denmark)

    Reichert, P.; Borchardt, D.; Henze, Mogens

    2001-01-01

    In this paper, biochemical process equations are presented as a basis for water quality modelling in rivers under aerobic and anoxic conditions. These equations are not new, but they summarise parts of the development over the past 75 years. The primary goals of the presentation are to stimulate...... transformation processes. This paper is part of a series of three papers. In the first paper, the general modelling approach is described; in the present paper, the biochemical process equations of a complex model are presented; and in the third paper, recommendations are given for the selection of a reasonable...

  10. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, L.C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); López-Castro, J.D.; González-Rovira, L. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Escuela Superior de Ingeniería, Laboratorio de Corrosión, Universidad de Cádiz, Puerto Real 11519 (Spain); Vázquez-Martínez, J.M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); Varela-Feria, F.M. [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Marcos, M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); and others

    2017-06-15

    Highlights: • We describe a method to acquire a high-angle tilt series of SEM images that is symmetrical respect to the zero tilt of the sample stage. The method can be applied in any SEM microscope. • Using the method, high-resolution 3D SEM photogrammetry can be applied on planar surfaces. • 3D models of three surfaces patterned with grooves are reconstructed with high resolution using multi-view freeware photogrammetry software as described in LC Gontard et al. Ultramicroscopy, 2016. • From the 3D models roughness parameters are measured • 3D SEM high-resolution photogrammetry is compared with two conventional methods used for roughness characetrization: stereophotogrammetry and contact profilometry. • It provides three-dimensional information with high-resolution that is out of reach for any other metrological technique. - Abstract: We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  11. Analysis list: sem-4 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sem-4 Larvae + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sem-4.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sem-4.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sem...-4.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/sem-4.Larvae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Larvae.gml ...

  12. On singularity formation of a 3D model for incompressible Navier–Stokes equations

    OpenAIRE

    Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu

    2012-01-01

    We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei (2009) in [15] for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier–Stokes equations. One of the main results of this paper is that we prove rigorously th...

  13. Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.

    Science.gov (United States)

    Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J

    2017-03-01

    Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.

  14. Testing strong factorial invariance using three-level structural equation modeling

    NARCIS (Netherlands)

    Jak, Suzanne

    Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias) across groups. Although this approach is

  15. Parameter Estimates in Differential Equation Models for Population Growth

    Science.gov (United States)

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  16. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    Science.gov (United States)

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  17. Molecular interactions of CPC, CPB, CTAB, and EPC biosurfactants in aqueous olive oil mixtures analyzed with physicochemical data and SEM micrographs

    Directory of Open Access Journals (Sweden)

    Man Singh

    2014-12-01

    Full Text Available Structural studies of olive oil–water–biosurfactants mixtures are most attracting for several academic as well as industrial significances. Thus, densities (ρ, viscosities (η, and surface tensions (γ of cetylpyridinium chloride (CPC and bromide (CPB, cetyltrimethylammonium bromide (CTAB and egg-phosphatidylcholine (EPC biosurfactants (BS 2–10 mm kg−1 in olive oil + water mixture in 2 mm kg−1 interval at 310.15 K are reported. The densities were for apparent molal volume (Vϕ/10−6 m3 mol−1, η and γ determinations. The viscosities were fitted in extended Jones–Doles equation for intrinsic viscosity (B, kg mol−1 and slope (D, kg mol−12 derivation. The γ and Vϕ data were regressed for their limiting γ0 andVϕ0 data and the SEMs were illustrated surface morphology. The EPC caused maximum oil–water dissolution as compared to other surfactants. Intramolecular multiple force theory [IMMFT] is proposed to explain molecular interactions of olive oil–water–EPC mixtures with a possible correlation of surface and bulk reorientations with microstructures depicted with SEM. Frictional and cohesive forces as Friccohesity have been noted as driving forces to assert for validity of the IMMFT model and its link with SEM.

  18. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  19. A Study of Enhanced, Higher Order Boussinesq-Type Equations and Their Numerical Modelling

    DEFF Research Database (Denmark)

    Banijamali, Babak

    model is designated for the solution of higher-order Boussinesq-type equations, formulated in terms of the horizontal velocity at an arbitrary depth vector. Various discretisation techniques and grid definitions have been considered in this endeavour, undertaking a detailed analysis of the selected......This project has encompassed efforts in two separate veins: on the one hand, the acquiring of highly accurate model equations of the Boussinesq-type, and on the other hand, the theoretical and practical work in implementing such equations in the form of conventional numerical models, with obvious...... potential for applications to the realm of numerical modelling in coastal engineering. The derivation and analysis of several forms of higher-order in dispersion and non-linearity Boussinesq-type equations have been undertaken, obtaining and investigating the properties of a new and generalised class...

  20. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    2017-02-01

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.

  1. A structural equation model for evaluating user’s intention to adopt internet banking and intention to recommend technology

    Directory of Open Access Journals (Sweden)

    Samar Rahi

    2018-09-01

    Full Text Available Although several prior research projects have focused on the factors that impact on the adoption of information technology, there are limited empirical research works that simultaneously capture technology factors (UTAUT2 and customer specific factors (perceived technology security and intention to recommend helping users adopt internet banking. Thus, the current study aims to develop an integrated technology adoption model with extended UTAUT model and perceived technology security to predict and explain user’s intention to adopt internet banking and intention to recommend internet banking in social networks. A quantitative approach based survey was conducted to collect the data from 398 internet banking users. For statistical analysis, structural equation model (SEM approach was used. Convergence and divergence with earlier findings were found, confirming that performance expectancy, effort expectancy, social influence, hedonic motivation and perceived technology security had significant influence on user’s intention to adopt internet banking. Additionally, IPMA analysis show that among all constructs hedonic motivation and perceived technology security had the highest impact on user’s intention to adopt internet banking. For researcher, this study provides a basis for further refinement of technology adoption model while for practitioner improving security factor (perceived technology security may turn users towards adoption of internet banking.

  2. Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian

    Directory of Open Access Journals (Sweden)

    A. Zabrodin

    2018-02-01

    Full Text Available We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable glN Ruijsenaars–Schneider model. It is based on the first order equations in N+M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars–Schneider model. In the elliptic case it holds M=N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero–Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars–Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero–Moser models arise from ordinary intermediate long wave and Benjamin–Ono equations.

  3. A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers

    Science.gov (United States)

    Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.

    2016-10-01

    Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.

  4. Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Weam Alharbi

    2018-04-01

    Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.

  5. Application of Fokker-Planck equation in positron diffusion trapping model

    International Nuclear Information System (INIS)

    Bartosova, I.; Ballo, P.

    2015-01-01

    This paper is a theoretical prelude to future work involving positron diffusion in solids for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful tool used to study defects present in materials. However, the behavior of positrons in solids is a process hard to describe. Various models have been established to undertake this task. Our preliminary model is based on the Diffusion Trapping Model (DTM) described by partial differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck equation describes the time evolution of the probability density function of velocity of a particle under the influence of various forces. (authors)

  6. Modelling with Difference Equations Supported by GeoGebra: Exploring the Kepler Problem

    Science.gov (United States)

    Kovacs, Zoltan

    2010-01-01

    The use of difference and differential equations in the modelling is a topic usually studied by advanced students in mathematics. However difference and differential equations appear in the school curriculum in many direct or hidden ways. Difference equations first enter in the curriculum when studying arithmetic sequences. Moreover Newtonian…

  7. Determination and evaluation of gas holdup time with the quadratic equation model and comparison with nonlinear equation models for isothermal gas chromatography

    Science.gov (United States)

    Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

    2013-01-01

    Gas holdup time (tM) is a basic parameter in isothermal gas chromatography (GC). Determination and evaluation of tM and retention behaviors of n-alkanes under isothermal GC conditions have been extensively studied since the 1950s, but still remains unresolved. The difference equation (DE) model [J. Chromatogr. A 1260:215–223] reveals retention behaviors of n-alkanes excluding tM, while the quadratic equation (QE) model [J. Chromatogr. A 1260:224–231] including tM is suitable for applications. In the present study, tM values were calculated with the QE model, which is referred to as tMT, evaluated and compared with other three typical nonlinear models. The QE model gives an accurate estimation of tM in isothermal GC. The tMT values are highly accurate, stable, and easy to calculate and use. There is only one tMT value at each GC condition. The proper classification of tM values can clarify their disagreement and facilitate GC retention data standardization for which tMT values are promising reference tM values. PMID:23726077

  8. Insight, self-stigma and psychosocial outcomes in Schizophrenia: a structural equation modelling approach.

    Science.gov (United States)

    Lien, Y-J; Chang, H-A; Kao, Y-C; Tzeng, N-S; Lu, C-W; Loh, C-H

    2018-04-01

    Poor insight is prevalent in patients with schizophrenia and has been associated with acute illness severity, medication non-adherence and poor treatment outcomes. Paradoxically, high insight has been associated with various undesirable outcomes, including low self-esteem, depression and low subjective quality of life (QoL) in patients with schizophrenia. Despite the growing body of studies conducted in Western countries supporting the pernicious effects of improved insight in psychosis, which bases on the level of self-stigma, the effects are unclear in non-Western societies. The current study examined the role of self-stigma in the relationship between insight and psychosocial outcomes in a Chinese population. A total of 170 outpatients with schizophrenia spectrum disorders were recruited from two general university hospitals. Sociodemographic data and clinical variables were recorded and self-report scales were employed to measure self-stigma, depression, insight, self-esteem and subjective QoL. Structural equation modelling (SEM) was used to analyse the cross-sectional data. High levels of self-stigma were reported by 39% of the participants (n = 67). The influences of insight, self-stigma, self-esteem and depression on subjective QoL were confirmed by the SEM results. Our model with the closest fit to the data (χ 2 = 33.28; df = 20; p = 0.03; χ 2/df = 1.66; CFI = 0.98; TLI = 0.97; RMSEA = 0.06) demonstrated that self-stigma might fully mediate the association of insight with low self-esteem, depression and poor subjective QoL. High insight into illness contributed to self-stigma, which caused low self-esteem and depression and, consequently, low QoL. Notably, insight did not directly affect self-esteem, depression or QoL. Furthermore, the association of insight with poor psychosocial outcomes was not moderated by self-stigma. Our findings support the mediating model of insight relevant to the poor psychosocial outcomes of individuals diagnosed with

  9. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    International Nuclear Information System (INIS)

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  10. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD. Structural equation modeling approach.

    Directory of Open Access Journals (Sweden)

    Maria Elena Romero-Ibarguengoitia

    Full Text Available Structural equation modeling (SEM can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD, family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1 If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines would be related to non-alcoholic fatty disease that will induce insulin resistance. 2 If a positive family history of obesity and type 2 diabetes are the major determinants of the metabolomic profile, there would be higher concentration of amino acids and acylcarnitines in patients with this background that will induce obesity and NAFLD which in turn will induce insulin resistance.137 normoglycemic subjects, mean age (SD of 30.61 (8.6 years divided in three groups: BMI30 with absence of NAFLD (G2, n = 24; and BMI>30 with NAFLD (G3, n = 31. Family history of obesity (any was present in 53%. Both models were adjusted in SEM. Family history of obesity predicted obesity but could not predict acylcarnitines and amino acid concentrations (effect size <0.2, but did predict obesity phenotype.Family history of obesity is the major predictor of obesity, and the metabolic abnormalities on amino acids, acylcarnitines, inflammation, insulin resistance, and NAFLD.

  11. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach.

    Science.gov (United States)

    Romero-Ibarguengoitia, Maria Elena; Vadillo-Ortega, Felipe; Caballero, Augusto Enrique; Ibarra-González, Isabel; Herrera-Rosas, Arturo; Serratos-Canales, María Fabiola; León-Hernández, Mireya; González-Chávez, Antonio; Mummidi, Srinivas; Duggirala, Ravindranath; López-Alvarenga, Juan Carlos

    2018-01-01

    Structural equation modeling (SEM) can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD), family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1) If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines would be related to non-alcoholic fatty disease that will induce insulin resistance. 2) If a positive family history of obesity and type 2 diabetes are the major determinants of the metabolomic profile, there would be higher concentration of amino acids and acylcarnitines in patients with this background that will induce obesity and NAFLD which in turn will induce insulin resistance. 137 normoglycemic subjects, mean age (SD) of 30.61 (8.6) years divided in three groups: BMI30 with absence of NAFLD (G2), n = 24; and BMI>30 with NAFLD (G3), n = 31. Family history of obesity (any) was present in 53%. Both models were adjusted in SEM. Family history of obesity predicted obesity but could not predict acylcarnitines and amino acid concentrations (effect size obesity phenotype. Family history of obesity is the major predictor of obesity, and the metabolic abnormalities on amino acids, acylcarnitines, inflammation, insulin resistance, and NAFLD.

  12. Structural Equation Modelling with Three Schemes Estimation of Score Factors on Partial Least Square (Case Study: The Quality Of Education Level SMA/MA in Sumenep Regency)

    Science.gov (United States)

    Anekawati, Anik; Widjanarko Otok, Bambang; Purhadi; Sutikno

    2017-06-01

    Research in education often involves a latent variable. Statistical analysis technique that has the ability to analyze the pattern of relationship among latent variables as well as between latent variables and their indicators is Structural Equation Modeling (SEM). SEM partial least square (PLS) was developed as an alternative if these conditions are met: the theory that underlying the design of the model is weak, does not assume a certain scale measurement, the sample size should not be large and the data does not have the multivariate normal distribution. The purpose of this paper is to compare the results of modeling of the educational quality in high school level (SMA/MA) in Sumenep Regency with structural equation modeling approach partial least square with three schemes estimation of score factors. This paper is a result of explanatory research using secondary data from Sumenep Education Department and Badan Pusat Statistik (BPS) Sumenep which was data of Sumenep in the Figures and the District of Sumenep in the Figures for the year 2015. The unit of observation in this study were districts in Sumenep that consists of 18 districts on the mainland and 9 districts in the islands. There were two endogenous variables and one exogenous variable. Endogenous variables are the quality of education level of SMA/MA (Y1) and school infrastructure (Y2), whereas exogenous variable is socio-economic condition (X1). In this study, There is one improved model which represented by model from path scheme because this model is a consistent, all of its indicators are valid and its the value of R-square increased which is: Y1=0.651Y2. In this model, the quality of education influenced only by the school infrastructure (0.651). The socio-economic condition did not affect neither the school infrastructure nor the quality of education. If the school infrastructure increased 1 point, then the quality of education increased 0.651 point. The quality of education had an R2 of 0

  13. Negative Affectivity Predicts Lower Quality of Life and Metabolic Control in Type 2 Diabetes Patients: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Chiara Conti

    2017-05-01

    Full Text Available Introduction: It is essential to consider the clinical assessment of psychological aspects in patients with Diabetes Mellitus (DM, in order to prevent potentially adverse self-management care behaviors leading to diabetes-related complications, including declining levels of Quality of Life (QoL and negative metabolic control.Purpose: In the framework of Structural Equation Modeling (SEM, the specific aim of this study is to evaluate the influence of distressed personality factors as Negative Affectivity (NA and Social Inhibition (SI on diabetes-related clinical variables (i.e., QoL and glycemic control.Methods: The total sample consists of a clinical sample, including 159 outpatients with Type 2 Diabetes Mellitus (T2DM, and a control group composed of 102 healthy respondents. All participants completed the following self- rating scales: The Type D Scale (DS14 and the World Health Organization QoL Scale (WHOQOLBREF. Furthermore, the participants of the clinical group were assessed for HbA1c, disease duration, and BMI. The observed covariates were BMI, gender, and disease duration, while HbA1c was considered an observed variable.Results: SEM analysis revealed significant differences between groups in regards to the latent construct of NA and the Environmental dimension of QoL. For the clinical sample, SEM showed that NA had a negative impact on both QoL dimensions and metabolic control.Conclusions: Clinical interventions aiming to improve medication adherence in patients with T2DM should include the psychological evaluation of Type D Personality traits, by focusing especially on its component of NA as a significant risk factor leading to negative health outcomes.

  14. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  15. Automated service quality and its behavioural consequences in CRM Environment: A structural equation modeling and causal loop diagramming approach

    Directory of Open Access Journals (Sweden)

    Arup Kumar Baksi

    2012-08-01

    Full Text Available Information technology induced communications (ICTs have revolutionized the operational aspects of service sector and have triggered a perceptual shift in service quality as rapid dis-intermediation has changed the access-mode of services on part of the consumers. ICT-enabled services further stimulated the perception of automated service quality with renewed dimensions and there subsequent significance to influence the behavioural outcomes of the consumers. Customer Relationship Management (CRM has emerged as an offshoot to technological breakthrough as it ensured service-encapsulation by integrating people, process and technology. This paper attempts to explore the relationship between automated service quality and its behavioural consequences in a relatively novel business-philosophy – CRM. The study has been conducted on the largest public sector bank of India - State bank of India (SBI at Kolkata which has successfully completed its decade-long operational automation in the year 2008. The study used structural equation modeling (SEM to justify the proposed model construct and causal loop diagramming (CLD to depict the negative and positive linkages between the variables.

  16. Parametric reduced models for the nonlinear Schrödinger equation.

    Science.gov (United States)

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  17. Modeling blowing snow accumulation downwind of an obstruction: The Ohara Eulerian particle distribution equation

    Science.gov (United States)

    Kinar, N. J.

    2017-05-01

    An equation was proposed to model the height of blowing snow accumulation downwind of an obstacle such as vegetation, a snow fence, a building, or a topographic feature. The equation does not require aerodynamic flow condition parameters such as wind speed, allowing for the spatial distribution of snow to be determined at locations where meteorological data is not available. However, snow particle diffusion, drift, and erosion coefficients must be estimated for application of the equation. These coefficients can be used to provide insight into the relative magnitude of blowing snow processes at a field location. Further research is required to determine efficient methods for coefficient estimation. The equation could be used with other models of wind-transported snow to predict snow accumulation downwind of an obstacle without the need for wind speed adjustments or correction equations. Applications for this equation include the design of snow fences, and the use of this equation with other hydrological models to predict snow distribution, climate change, drought, flooding, and avalanches.

  18. Homogeneous axisymmetric model with a limitting stiff equation of state

    International Nuclear Information System (INIS)

    Korkina, M.P.; Martynenko, V.G.

    1976-01-01

    A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented

  19. Structural-equation models of migration: an example from the Upper Midwest USA.

    Science.gov (United States)

    Cadwallader, M

    1985-01-01

    "To date, most migration models have been specified in terms of a single equation, whereby a set of regional characteristics are used to predict migration rates for various kinds of spatial units. These models are inadequate in at least two respects. First, they omit any causal links between the explanatory variables, thus ignoring indirect effects between these variables and migration. Second, they ignore the possibility of reciprocal causation, or feedback effects, between migration and the explanatory variables...." The author uses data for State Economic Areas to construct a path model and simultaneous-equation model to identify both indirect and feedback effects on migration in the Upper Midwestern United States. "On the basis of the path model, it is suggested that the direct effects of many variables on migration are at least partially offset by the indirect effects, whereas the simultaneous-equation model emphasizes the reciprocal relationship between income and migration." excerpt

  20. A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittent hormone therapy.

    Science.gov (United States)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2014-10-01

    Hormonal therapy with androgen suppression is a common treatment for advanced prostate tumors. The emergence of androgen-independent cells, however, leads to a tumor relapse under a condition of long-term androgen deprivation. Clinical trials suggest that intermittent androgen suppression (IAS) with alternating on- and off-treatment periods can delay the relapse when compared with continuous androgen suppression (CAS). In this paper, we propose a mathematical model for prostate tumor growth under IAS therapy. The model elucidates initial hormone sensitivity, an eventual relapse of a tumor under CAS therapy, and a delay of a relapse under IAS therapy, which are due to the coexistence of androgen-dependent cells, androgen-independent cells resulting from reversible changes by adaptation, and androgen-independent cells resulting from irreversible changes by genetic mutations. The model is formulated as a free boundary problem of partial differential equations that describe the evolution of populations of the abovementioned three types of cells during on-treatment periods and off-treatment periods. Moreover, the model can be transformed into a piecewise linear ordinary differential equation model by introducing three new volume variables, and the study of the resulting model may help to devise optimal IAS schedules.

  1. Ordinary Differential Equation Models for Adoptive Immunotherapy.

    Science.gov (United States)

    Talkington, Anne; Dantoin, Claudia; Durrett, Rick

    2018-05-01

    Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.

  2. Solution of spatially homogeneous model Boltzmann equations by means of Lie groups of transformations

    International Nuclear Information System (INIS)

    Foroutan, A.

    1992-05-01

    The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)

  3. Structural equation modeling identifies markers of damage and function in the aging male Fischer 344 rat.

    Science.gov (United States)

    Grunz-Borgmann, Elizabeth A; Nichols, LaNita A; Wiedmeyer, Charles E; Spagnoli, Sean; Trzeciakowski, Jerome P; Parrish, Alan R

    2016-06-01

    The male Fischer 344 rat is an established model to study progressive renal dysfunction that is similar, but not identical, to chronic kidney disease (CKD) in humans. These studies were designed to assess age-dependent alterations in renal structure and function at late-life timepoints, 16-24 months. Elevations in BUN and plasma creatinine were not significant until 24 months, however, elevations in the more sensitive markers of function, plasma cystatin C and proteinuria, were detectable at 16 and 18 months, respectively. Interestingly, cystatin C levels were not corrected by caloric restriction. Urinary Kim-1, a marker of CKD, was elevated as early as 16 months. Klotho gene expression was significantly decreased at 24 months, but not at earlier timepoints. Alterations in renal structure, glomerulosclerosis and tubulointerstitial fibrosis, were noted at 16 months, with little change from 18 to 24 months. Tubulointerstitial inflammation was increased at 16 months, and remained similar from 18 to 24 months. A SEM (structural equation modeling) model of age-related renal dysfunction suggests that proteinuria is a marker of renal damage, while urinary Kim-1 is a marker of both damage and function. Taken together, these results demonstrate that age-dependent nephropathy begins as early as 16 months and progresses rapidly over the next 8 months. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Multiloop soliton and multibreather solutions of the short pulse model equation

    International Nuclear Information System (INIS)

    Matsuno, Yoshimasa

    2007-01-01

    We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)

  5. Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Guan

    2018-01-01

    Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.

  6. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    Science.gov (United States)

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  7. Critical factors in SEM 3D stereo microscopy

    International Nuclear Information System (INIS)

    Marinello, F; Savio, E; Bariani, P; Horsewell, A; De Chiffre, L

    2008-01-01

    This work addresses dimensional measurements performed with the scanning electron microscope (SEM) using 3D reconstruction of surface topography through stereo-photogrammetry. The paper presents both theoretical and experimental investigations, on the effects of instrumental variables and measurement parameters on reconstruction accuracy. Investigations were performed on a novel sample, specifically developed and implemented for the tests. The description is based on the model function introduced by Piazzesi and adapted for eucentrically tilted stereopairs. Two main classes of influencing factors are recognized: the first one is related to the measurement operation and the instrument set-up; the second concerns the quality of scanned images and represents the major criticality in the application of SEMs for 3D characterizations

  8. A Structural Equation Model of Expertise in College Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  9. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  10. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  11. Asymptotics for Estimating Equations in Hidden Markov Models

    DEFF Research Database (Denmark)

    Hansen, Jørgen Vinsløv; Jensen, Jens Ledet

    Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...

  12. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    Science.gov (United States)

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  13. Do associations between employee self-reported organizational assessments and attitudinal outcomes change over time? An analysis of four Veterans Health Administration surveys using structural equation modelling.

    Science.gov (United States)

    Das, Sonali; Chen, Ming-Hui; Warren, Nicholas; Hodgson, Michael

    2011-12-01

    This paper evaluates relationships between healthcare employees' perceptions of three hospital organizational constructs (Leadership, Support and Resources), and their assessment of two employee-related outcomes (employee satisfaction and retention) and two patient-related outcomes (patient satisfaction and quality of care). Using four all-employee surveys conducted by the Veterans Health Administration in the United States between 1997 and 2006, we examine the strength of these relationships and their changes over time. Exposure and outcome measures are employee-assessed in all the surveys. Because it can accommodate both latent and measured variables into the model, Structural Equation Modelling (SEM) is used to capture and quantify the relationship structure. The aim of the project is to identify possible intervention foci. The analyses revealed that employee-related outcomes are improved by increases in Leadership and Support, and, not surprisingly, the outcome variable of employee satisfaction reduced turnover intention. The employee assessed patient-related outcomes of satisfaction and quality of care were most improved by increases in Resources. Results also indicate that the three organizational constructs and the web of associations characterized by SEM underwent changes over the study period, perhaps in relation to changes in VHA policy emphases, changes in survey wording and other possible unmeasured factors. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one-equation

  15. Computer models for kinetic equations of magnetically confined plasmas

    International Nuclear Information System (INIS)

    Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.

    1987-01-01

    This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method

  16. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Science.gov (United States)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  17. Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory

    International Nuclear Information System (INIS)

    Sanchez, N.; Whiting, B.

    1986-01-01

    The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers

  18. Control of Stochastic Master Equation Models of Genetic Regulatory Networks by Approximating Their Average Behavior

    Science.gov (United States)

    Umut Caglar, Mehmet; Pal, Ranadip

    2010-10-01

    The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology

  19. Application of flexible model in neutron dynamics equations

    International Nuclear Information System (INIS)

    Liu Cheng; Zhao Fuyu; Fu Xiangang

    2009-01-01

    Big errors will occur in the modeling by multimode methodology when the available core physical parameter sets are insufficient. In this paper, the fuzzy logic membership function is introduced to figure out the values of these parameters on any point of lifetime through limited several sets of values, and thus to obtain the neutron dynamics equations on any point of lifetime. In order to overcome the effect of subjectivity in the membership function selection on the parameter calculation, quadratic optimization is carried out to the membership function by genetic algorithm, to result in a more accurate neutron kinetics equation on any point of lifetime. (authors)

  20. Generalised and Fractional Langevin Equations-Implications for Energy Balance Models

    Science.gov (United States)

    Watkins, N. W.; Chapman, S. C.; Chechkin, A.; Ford, I.; Klages, R.; Stainforth, D. A.

    2017-12-01

    Energy Balance Models (EBMs) have a long heritage in climate science, including their use in modelling anomalies in global mean temperature. Many types of EBM have now been studied, and this presentation concerns the stochastic EBMs, which allow direct treatment of climate fluctuations and noise. Some recent stochastic EBMs (e.g. [1]) map on to Langevin's original form of his equation, with temperature anomaly replacing velocity, and other corresponding replacements being made. Considerable sophistication has now been reached in the application of multivariate stochastic Langevin modelling in many areas of climate. Our work is complementary in intent and investigates the Mori-Kubo "Generalised Langevin Equation" (GLE) which incorporates non-Markovian noise and response in a univariate framework, as a tool for modelling GMT [2]. We show how, if it is present, long memory simplifies the GLE to a fractional Langevin equation (FLE). Evidence for long range memory in global temperature, and the success of fractional Gaussian noise in its prediction [5] has already motivated investigation of a power law response model [3,4,5]. We go beyond this work to ask whether an EBM of FLE-type exists, and what its solutions would be. [l] Padilla et al, J. Climate (2011); [2] Watkins, GRL (2013); [3] Rypdal, JGR (2012); [4] Rypdal and Rypdal, J. Climate (2014); [5] Lovejoy et al, ESDD (2015).

  1. Structural equation model for the evaluation of national funding on R&D project of SMEs in consideration with MBNQA criteria.

    Science.gov (United States)

    Sohn, S Y; Gyu Joo, Yong; Kyu Han, Hong

    2007-02-01

    Financial support on the R&D in Science & Technology for SMEs at the governmental level plays a crucial role on the improvement of the national competitiveness. Korea Science & Engineering Foundation (KOSEF) has supported the R&D projects of SMEs with the competitive technology ability by way of the Science and Technology Promotion Fund. In this paper, we propose a structural equation model (SEM) to evaluate the performance of such a funding program in terms of three aspects: output, outcome and impact under given funding inputs, R&D environment of a recipient company, and external evaluation programs of funding organization. We adopt Malcolm Baldrige National Quality Award (MBNQA) criteria to assess the R&D environmental factors of recipient companies. In addition, we test the effect of interim evaluation of the funded project. The proposed model is applied to the real case and is used to identify the best practices as well as to provide feedback information for the improvement of the government funding programs of the R&D projects of SMEs.

  2. Partial differential equation models in the socio-economic sciences

    KAUST Repository

    Burger, Martin; Caffarelli, Luis; Markowich, Peter A.

    2014-01-01

    Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences

  3. The Impact of Managerial and Adaptive Capabilities to Stimulate Organizational Innovation in SMEs: A Complementary PLS–SEM Approach

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ali

    2017-11-01

    Full Text Available The aim of this study is to empirically explore and propose a rigorous model for the positive impact of managerial capability (in terms of decision-making, management style, people development, and succession planning and adaptive capability (in terms of horizon scanning, change management, and resilience on organizational innovation in the context of small and medium-sized enterprises (SMEs. The study uses partial least squares structural equation modeling (PLS–SEM to test the model hypotheses, and importance-performance matrix analysis (IPMA to provide information regarding the significance and relevance of the dimensions of managerial and adaptive capability in explaining organizational innovation in the proposed model. The empirical data is gathered through questionnaires from 210 SMEs. The results show a strong and significant relationship between managerial capability, adaptive capability, and organizational innovation. This study found that all of the dimensions of managerial capability and adaptive capability help to develop and improve the performance of organizational innovation in SMEs. The study concludes with a comprehensive discussion of the research limitations, and provides suggestions for future research.

  4. Coping strategies, satisfaction with life, and quality of life in Crohn's disease: A gender perspective using structural equation modeling analysis.

    Science.gov (United States)

    Sarid, O; Slonim-Nevo, V; Pereg, A; Friger, M; Sergienko, R; Schwartz, D; Greenberg, D; Shahar, I; Chernin, E; Vardi, H; Eidelman, L; Segal, A; Ben-Yakov, G; Gaspar, N; Munteanu, D; Rozental, A; Mushkalo, A; Dizengof, V; Abu-Freha, N; Fich, A; Odes, S

    2017-01-01

    To identify coping strategies and socio-demographics impacting satisfaction with life and quality of life in Crohn's disease (CD). 402 patients completed the Patient Harvey-Bradshaw Index, Brief COPE Inventory, Satisfaction with Life Scale (SWLS), Short Inflammatory Bowel Disease Questionnaire (SIBDQ). We performed structural equation modeling (SEM) of mediators of quality of life and satisfaction with life. The cohort comprised: men 39.3%, women 60.1%; P-HBI 4.75 and 5.74 (p = 0.01). In inactive CD (P-HBI≤4), both genders had SWLS score 23.8; men had SIBDQ score 57.4, women 52.6 (p = 0.001); women reported more use of emotion-focused, problem-focused and dysfunctional coping than men. In active CD, SWLS and SIBDQ scores were reduced, without gender differences; men and women used coping strategies equally. A SEM model (all patients) had a very good fit (X2(6) = 6.68, p = 0.351, X2/df = 1.114, SRMR = 0.045, RMSEA = 0.023, CFI = 0.965). In direct paths, economic status impacted SWLS (β = 0.39) and SIBDQ (β = 0.12), number of children impacted SWLS (β = 0.10), emotion-focused coping impacted SWLS (β = 0.11), dysfunctional coping impacted SWLS (β = -0.25). In an indirect path, economic status impacted dysfunctional coping (β = -0.26), dysfunctional coping impacted SIBDQ (β = -0.36). A model split by gender and disease activity showed that in active CD economic status impacted SIBDQ in men (β = 0.43) more than women (β = 0.26); emotional coping impacted SWLS in women (β = 0.36) more than men (β = 0.14). Gender differences in coping and the impacts of economic status and emotion-focused coping vary with activity of CD. Psychological treatment in the clinic setting might improve satisfaction with life and quality of life in CD patients.

  5. Coping strategies, satisfaction with life, and quality of life in Crohn's disease: A gender perspective using structural equation modeling analysis.

    Directory of Open Access Journals (Sweden)

    O Sarid

    Full Text Available To identify coping strategies and socio-demographics impacting satisfaction with life and quality of life in Crohn's disease (CD.402 patients completed the Patient Harvey-Bradshaw Index, Brief COPE Inventory, Satisfaction with Life Scale (SWLS, Short Inflammatory Bowel Disease Questionnaire (SIBDQ. We performed structural equation modeling (SEM of mediators of quality of life and satisfaction with life.The cohort comprised: men 39.3%, women 60.1%; P-HBI 4.75 and 5.74 (p = 0.01. In inactive CD (P-HBI≤4, both genders had SWLS score 23.8; men had SIBDQ score 57.4, women 52.6 (p = 0.001; women reported more use of emotion-focused, problem-focused and dysfunctional coping than men. In active CD, SWLS and SIBDQ scores were reduced, without gender differences; men and women used coping strategies equally. A SEM model (all patients had a very good fit (X2(6 = 6.68, p = 0.351, X2/df = 1.114, SRMR = 0.045, RMSEA = 0.023, CFI = 0.965. In direct paths, economic status impacted SWLS (β = 0.39 and SIBDQ (β = 0.12, number of children impacted SWLS (β = 0.10, emotion-focused coping impacted SWLS (β = 0.11, dysfunctional coping impacted SWLS (β = -0.25. In an indirect path, economic status impacted dysfunctional coping (β = -0.26, dysfunctional coping impacted SIBDQ (β = -0.36. A model split by gender and disease activity showed that in active CD economic status impacted SIBDQ in men (β = 0.43 more than women (β = 0.26; emotional coping impacted SWLS in women (β = 0.36 more than men (β = 0.14.Gender differences in coping and the impacts of economic status and emotion-focused coping vary with activity of CD. Psychological treatment in the clinic setting might improve satisfaction with life and quality of life in CD patients.

  6. Climate Modeling in the Calculus and Differential Equations Classroom

    Science.gov (United States)

    Kose, Emek; Kunze, Jennifer

    2013-01-01

    Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…

  7. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    Science.gov (United States)

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  8. Solutions of system of P1 equations without use of auxiliary differential equations coupled; Solucoes do sistema de equacoes P1 sem o uso de equacoes diferenciais auxiliares acopladas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  9. Modeling of superconductors based on the timedependent Ginsburg-Landau equations

    Science.gov (United States)

    Grishakov, K. S.; Degtyarenko, P. N.; Degtyarenko, N. N.; Elesin, V. F.; Kruglov, V. S.

    2009-11-01

    Results of modeling of superconductor magnetization process based on a numerical solution of the timedependent Ginsburg-Landau equations are presented. Methods of grid approximation of the equations and method of finite elements are used. Two-dimensional patterns of changes in the order parameter and supercurrent distribution in superconductors are calculated and visualized. The main results are in agreement with the well-known representations for type I and II superconductors.

  10. Role of transformational leadership on employee productivity of teaching hospitals: using structural equation modeling.

    Science.gov (United States)

    Vatankhah, Soudabeh; Alirezaei, Samira; Khosravizadeh, Omid; Mirbahaeddin, Seyyed Elmira; Alikhani, Mahtab; Alipanah, Mobarakeh

    2017-08-01

    In today's transforming world, increased productivity and efficient use of existing facilities are practically beyond a choice and become a necessity. In this line, attention to change and transformation is one of the affecting factors on the growth of productivity in organizations, especially in hospitals. To examine the effect of transformational leadership on the productivity of employees in teaching hospitals affiliated to Iran University of Medical Sciences. This cross-sectional study was conducted on 254 participants from educational and medical centers affiliated to Iran University of Medical Sciences (Tehran, Iran) in 2016. The standard questionnaires of Bass & Avolio and of Hersi & Goldsmith were used to respectively assess transformational leadership and level of productivity. The research assumptions were tested in a significance level of 0.05 by applying descriptive statistics and structural equations modeling (SEM) using SPSS 19 and Amos 24. Results of the fitting indicators of the assessing model after amending includes Chi-square two to degrees of freedom of 2.756, CFI indicator 0.95, IFI indicator 0.92, Root mean square error of approximation (RMSEA) indicator 0.10. These results indicate that the assessing model is well fitting after the amendment. Also, analysis of the model's assumptions and the final model of the research reveals the effect of transformational leadership on employees' productivity with a significance level of 0.83 (p=0.001). This research indicates that the more the leadership and decision-making style in hospitals lean towards transformational mode, the more positive outcomes it brings among employees and the organization due to increased productivity. Therefore, it is essential to pay focused attention to training/educational programs in organizations to create and encourage transformational leadership behaviors which hopefully lead to more productive employees.

  11. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    Science.gov (United States)

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  12. Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching.

    Science.gov (United States)

    Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B; You, Dongjun; Hunter, Michael D; Rehg, James M; Rozga, Agata; Messinger, Daniel S

    2018-06-01

    A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of [Formula: see text] mother-infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children's tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.

  13. Algebraic models for the hierarchy structure of evolution equations at small x

    International Nuclear Information System (INIS)

    Rembiesa, P.; Stasto, A.M.

    2005-01-01

    We explore several models of QCD evolution equations simplified by considering only the rapidity dependence of dipole scattering amplitudes, while provisionally neglecting their dependence on transverse coordinates. Our main focus is on the equations that include the processes of pomeron splittings. We examine the algebraic structures of the governing equation hierarchies, as well as the asymptotic behavior of their solutions in the large-rapidity limit

  14. MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio

    1991-05-01

    MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)

  15. Sexual Arousal and Sexually Explicit Media (SEM)

    DEFF Research Database (Denmark)

    Hald, Gert Martin; Stulhofer, Aleksandar; Lange, Theis

    2018-01-01

    -mainstream and mainstream SEM groups, and (iii) to explore the validity and predictive accuracy of the Non-Mainstream Pornography Arousal Scale (NPAS). METHODS: Online cross-sectional survey of 2,035 regular SEM users in Croatia. MAIN OUTCOMES MEASURES: Patterns of sexual arousal to 27 different SEM themes, sexual...

  16. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  17. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  18. A modified two-fluid model for the application of two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun, X.; Ishii, M.; Kelly, J.

    2003-01-01

    This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  19. A one-step method for modelling longitudinal data with differential equations.

    Science.gov (United States)

    Hu, Yueqin; Treinen, Raymond

    2018-04-06

    Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations. A simulation study indicates that the analytic solutions of differential equations (ASDE) approach obtains unbiased estimates of parameters and their standard errors. Compared with other approaches that estimate derivatives first, ASDE has smaller standard error, larger statistical power and accurate Type I error. Although ASDE obtains biased estimation when the system has sudden phase change, the bias is not serious and a solution is also provided to solve the phase problem. The ASDE method is illustrated and applied to a two-week study on consumers' shopping behaviour after a sale promotion, and to a set of public data tracking participants' grammatical facial expression in sign language. R codes for ASDE, recommendations for sample size and starting values are provided. Limitations and several possible expansions of ASDE are also discussed. © 2018 The British Psychological Society.

  20. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  1. Neutron star models with realistic high-density equations of state

    International Nuclear Information System (INIS)

    Malone, R.C.; Johnson, M.B.; Bethe, H.A.

    1975-01-01

    We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar

  2. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  3. Modelling the heat dynamics of a building using stochastic differential equations

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik

    2000-01-01

    estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  4. Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.

    Science.gov (United States)

    Saveliev, V L; Gorokhovski, M A

    2005-07-01

    On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.

  5. Newtonian nudging for a Richards equation-based distributed hydrological model

    Science.gov (United States)

    Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark

    The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation

  6. Helicobacter pylori seropositivity's association with markers of iron, 1-carbon metabolism, and antioxidant status among US adults: a structural equations modeling approach.

    Directory of Open Access Journals (Sweden)

    May A Beydoun

    Full Text Available We tested a model in which Helicobacter pylori seropositivity (Hps predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status.National Health and Nutrition Examination Surveys (NHANES 1999-2000 cross-sectional data among adults aged 20-85 y were analyzed (n = 3,055. Markers of Hps, iron status (serum ferritin and transferrin saturation (TS; 1-C metabolism (serum folate (FOLserum, B-12, total homocysteine (tHcy, methylmalonic acid (MMA and antioxidant status (vitamins A and E were entered into a structural equations model (SEM.Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites, and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA that were positively associated with antioxidant status (combining serum vitamins A and E. Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox. The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox was estimated at β = -0.006±0.003, p<0.05.In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.

  7. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  8. Spectral-element Method for 3D Marine Controlled-source EM Modeling

    Science.gov (United States)

    Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.

    2017-12-01

    As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).

  9. Model Selection and Risk Estimation with Applications to Nonlinear Ordinary Differential Equation Systems

    DEFF Research Database (Denmark)

    Mikkelsen, Frederik Vissing

    eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various......Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... package, episode. This package incorporates a collection of sparsity inducing penalties into two types of loss functions: a squared loss function relying on numerically solving the equations and an approximate loss function based on inverse collocation methods. The goal of this framework is to provide...

  10. Taking into account the impact of attrition on the assessment of response shift and true change: a multigroup structural equation modeling approach.

    Science.gov (United States)

    Verdam, Mathilde G E; Oort, Frans J; van der Linden, Yvette M; Sprangers, Mirjam A G

    2015-03-01

    Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and 'true change' with the use of an attrition-based multigroup structural equation modeling (SEM) approach. Functional limitations and health impairments were measured in 1,157 cancer patients, who were treated with palliative radiotherapy for painful bone metastases, before [time (T) 0], every week after treatment (T1 through T12), and then monthly for up to 2 years (T13 through T24). To handle missing data due to attrition, the SEM procedure was extended to a multigroup approach, in which we distinguished three groups: short survival (3-5 measurements), medium survival (6-12 measurements), and long survival (>12 measurements). Attrition after third, sixth, and 13th measurement occasions was 11, 24, and 41 %, respectively. Results show that patterns of change in functional limitations and health impairments differ between patients with short, medium, or long survival. Moreover, three response-shift effects were detected: recalibration of 'pain' and 'sickness' and reprioritization of 'physical functioning.' If response-shift effects would not have been taken into account, functional limitations and health impairments would generally be underestimated across measurements. The multigroup SEM approach enables the analysis of data from patients with different patterns of missing data due to attrition. This approach does not only allow for detection of response shift and assessment of true change across measurements, but also allow for detection of differences in response shift and true change across groups of patients with different attrition rates.

  11. Equation-based model for the stock market.

    Science.gov (United States)

    Xavier, Paloma O C; Atman, A P F; de Magalhães, A R Bosco

    2017-09-01

    We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.

  12. Equation-based model for the stock market

    Science.gov (United States)

    Xavier, Paloma O. C.; Atman, A. P. F.; de Magalhães, A. R. Bosco

    2017-09-01

    We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.

  13. Partial differential equation models in macroeconomics.

    Science.gov (United States)

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. A single model procedure for estimating tank calibration equations

    International Nuclear Information System (INIS)

    Liebetrau, A.M.

    1997-10-01

    A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes

  15. Phenomenological neutron star equations of state. 3-window modeling of QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)

    2016-03-15

    We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B} equations of state that are constrained by empirical observations at density n{sub B} ∝ n{sub s} and neutron star radii. At high density, n{sub B} >or similar 5n{sub s}, we use the percolated quark matter equations of state which must be very stiff to pass the two-solar mass constraints. The intermediate domain at 2 equations of state are inferred by interpolating hadronic and percolated quark matter equations of state. Possible forms of the interpolation are severely restricted by the condition on the (square of) speed of sound, 0 ≤ c{sub s}{sup 2} ≤ 1. The characteristics of the 3-window equation of state are compared with those of conventional hybrid and self-bound quark matters. Using a schematic quark model for the percolated domain, it is argued that the two-solar mass constraint requires the model parameters to be as large as their vacuum values, indicating that the gluon dynamics remains strongly non-perturbative to n{sub B} ∝ 10n{sub s}. The hyperon puzzle is also briefly discussed in light of quark descriptions. (orig.)

  16. Working covariance model selection for generalized estimating equations.

    Science.gov (United States)

    Carey, Vincent J; Wang, You-Gan

    2011-11-20

    We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Lead (II) biosorption equilibrium and characterization through FT-IR and SEM-EDAX crosslinked pectin from orange peels

    International Nuclear Information System (INIS)

    Garcia Villegas, Victor R.; Ale Borja, Neptali; Guzman Lezama, Enrique G.; Maldonado Garcia, Holger J.; Yipmantin Ojeda, Andrea G.

    2013-01-01

    Pectic material extracted from orange peels was previously cross-linked to diminish hydration and swelling capacity when pectin is found in aqueous solution medium. Degree of metoxilation (DM), galacturonic acid anhydrous (% AGA) and pKa determination allowed characterizing biosorbent. Maximum sorption capacity was obtained at pH between 4.5 and 5.5. For data processing and statistical treatment informatics Orign 6.0 version program was used. Data from biosorption equilibrium had a better fit on Langmuir sorption equation model, obtaining q max = 186 mg/g as a maximum adsorption capacity. Fourier transform infrared spectroscopy analysis (FT-IR) allowed recognizing characteristic functional groups presents as well as biomass modifications. Biosorbent surface morphologic was studied by scanning electron microscope (SEM) and elemental composition biomass before biosorption process was obtained through Energy-dispersive X-ray spectroscopy (EDAX). (author)

  18. A single-equation study of US petroleum consumption: The role of model specificiation

    International Nuclear Information System (INIS)

    Jones, C.T.

    1993-01-01

    The price responsiveness of US petroleum consumption began to attract a great deal of attention following the unexpected and substantial oil price increases of 1973-74. There have been a number of large, multi-equation econometric studies of US energy demand since then which have focused primarily on estimating short run and long run price and income elasticities of individual energy resources (coal, oil, natural gas ampersand electricity) for various consumer sectors (residential, industrial, commercial). Following these early multi-equation studies there have been several single-equation studies of aggregate US petroleum consumption. When choosing an economic model specification for a single-equation study of aggregate US petroleum consumption, an easily estimated model that will provide unbiased price and income elasticity estimates and yield accurate forecasts is needed. Using Hendry's general-to-simple specification search technique and annual data to obtain a restricted, data-acceptable simplification of a general ADL model yielded GNP and short run price elasticities near the consensus estimates, but a long run price elasticity substantially smaller than existing estimates. Comparisons with three other seemingly acceptable simple-to-general models showed that popular model specifications often involve untested, unacceptable parameter restrictions. These models may also demonstrate poorer forecasting performance. Based on results, the general-to-simple approach appears to offer a more accurate methodology for generating superior forecast models of petroleum consumption and other energy use patterns

  19. Continuum model of the two-component Becker-Döring equations

    OpenAIRE

    Soheili, Ali Reza

    2004-01-01

    The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum m...

  20. FEQinput—An editor for the full equations (FEQ) hydraulic modeling system

    Science.gov (United States)

    Ancalle, David S.; Ancalle, Pablo J.; Domanski, Marian M.

    2017-10-30

    IntroductionThe Full Equations Model (FEQ) is a computer program that solves the full, dynamic equations of motion for one-dimensional unsteady hydraulic flow in open channels and through control structures. As a result, hydrologists have used FEQ to design and operate flood-control structures, delineate inundation maps, and analyze peak-flow impacts. To aid in fighting floods, hydrologists are using the software to develop a system that uses flood-plain models to simulate real-time streamflow.Input files for FEQ are composed of text files that contain large amounts of parameters, data, and instructions that are written in a format exclusive to FEQ. Although documentation exists that can aid in the creation and editing of these input files, new users face a steep learning curve in order to understand the specific format and language of the files.FEQinput provides a set of tools to help a new user overcome the steep learning curve associated with creating and modifying input files for the FEQ hydraulic model and the related utility tool, Full Equations Utilities (FEQUTL).

  1. Notes on TQFT wire models and coherence equations for SU(3) triangular cells

    CERN Document Server

    Coquereaux, R.; Schieber, G.

    2010-01-01

    After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3) at level k. We show how to solve these equations in a number of examples.

  2. Oxford CyberSEM: remote microscopy

    International Nuclear Information System (INIS)

    Rahman, M; Kirkland, A; Cockayne, D; Meyer, R

    2008-01-01

    The Internet has enabled researchers to communicate over vast geographical distances, sharing ideas and documents. e-Science, underpinned by Grid and Web Services, has enabled electronic communications to the next level where, in addition to document sharing, researchers can increasingly control high precision scientific instruments over the network. The Oxford CyberSEM project developed a simple Java applet via which samples placed in a JEOL 5510LV Scanning Electron Microscope (SEM) can be manipulated and examined collaboratively over the Internet. Designed with schoolchildren in mind, CyberSEM does not require any additional hardware or software other than a generic Java-enabled web browser. This paper reflects on both the technical and social challenges in designing real-time systems for controlling scientific equipments in collaborative environments. Furthermore, it proposes potential deployment beyond the classroom setting.

  3. A simplified model for computing equation of state of argon plasma

    International Nuclear Information System (INIS)

    Wang Caixia; Tian Yangmeng

    2006-01-01

    The paper present a simplified new model of computing equation of state and ionization degree of Argon plasma, which based on Thomas-Fermi (TF) statistical model: the authors fitted the numerical results of the ionization potential calculated by Thomas-Fermi statistical model and gained the analytical function of the potential versus the degree of ionization, then calculated the ionization potential and the average degree of ionization for Argon versus temperature and density in local thermal equilibrium case at 10-1000 eV. The results calculated of this simplified model are basically in agreement with several sets of theory data and experimental data. This simplified model can be used to calculation of the equation of state of plasmas mixture and is expected to have a more wide use in the field of EML technology involving the strongly ionized plasmas. (authors)

  4. Effects of floodgates operation on nitrogen transformation in a lake based on structural equation modeling analysis.

    Science.gov (United States)

    Zhu, Longji; Zhou, Haixuan; Xie, Xinyu; Li, Xueke; Zhang, Duoying; Jia, Liming; Wei, Qingbin; Zhao, Yue; Wei, Zimin; Ma, Yingying

    2018-08-01

    Floodgates operation is one of the primary means of flood control in lake development. However, knowledge on the linkages between floodgates operation and nitrogen transformation during the flood season is limited. In this study, water samples from six sampling sites along Lake Xingkai watershed were collected before and after floodgates operation. The causal relationships between environmental factors, bacterioplankton community composition and nitrogen fractions were determined during flood season. We found that concentrations of nitrogen fractions decreased significantly when the floodgates were opened, while the concentrations of total nitrogen (TN) and NO 3 - increased when the floodgates had been shut for a period. Further, we proposed a possible mechanism that the influence of floodgates operation on nitrogen transformation was largely mediated through changes in dissolved organic matter, dissolved oxygen and bacterioplankton community composition as revealed by structural equation modeling (SEM). We conclude that floodgates operation has a high risk for future eutrophication of downstream watershed, although it can reduce nitrogen content temporarily. Therefore, the environmental impacts of floodgates operation should be carefully evaluated before the floodwaters were discharged into downstream watershed. Copyright © 2018. Published by Elsevier B.V.

  5. Contextual Factors Affecting the Innovation Performance of Manufacturing SMEs in Korea: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Ye Seul Choi

    2017-07-01

    Full Text Available This study empirically explores the relationship between innovation performance and the internal and contextual factors driving technological innovation in manufacturing small and medium-sized enterprises (SMEs in metropolitan areas of Korea using structural equation modeling (SEM. Our analysis is based on firm-level data from the Korean Innovation Survey conducted by the Science and Technology Policy Institute in 2012. According to the results, SMEs’ innovation capacity was positively related to technological innovation performance, and SMEs’ skills and technology acquisition is a contextual factor that positively influences their innovation performance. In this process, SMEs’ innovation capacity is a partial mediator between skills and technology acquisition and SMEs’ technological innovation performance. Moreover, the results show that the relationship between government and public policies and SMEs’ innovation performance is mediated by SMEs’ internal innovation capacity. The results imply that both skills and technology acquisition and government and public policies are important contextual factors can increase SMEs’ innovation performance. Based on the results, this study provides implications for policy makers in terms of the policies that provide both direct and support roles in fostering and sustaining innovation, which drives regional economic growth and development.

  6. Modeling Blazar Spectra by Solving an Electron Transport Equation

    Science.gov (United States)

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  7. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Lin-Jie, Chen; Chang-Feng, Ma

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)

  8. Exploratory structural equation modeling of personality data.

    Science.gov (United States)

    Booth, Tom; Hughes, David J

    2014-06-01

    The current article compares the use of exploratory structural equation modeling (ESEM) as an alternative to confirmatory factor analytic (CFA) models in personality research. We compare model fit, factor distinctiveness, and criterion associations of factors derived from ESEM and CFA models. In Sample 1 (n = 336) participants completed the NEO-FFI, the Trait Emotional Intelligence Questionnaire-Short Form, and the Creative Domains Questionnaire. In Sample 2 (n = 425) participants completed the Big Five Inventory and the depression and anxiety scales of the General Health Questionnaire. ESEM models provided better fit than CFA models, but ESEM solutions did not uniformly meet cutoff criteria for model fit. Factor scores derived from ESEM and CFA models correlated highly (.91 to .99), suggesting the additional factor loadings within the ESEM model add little in defining latent factor content. Lastly, criterion associations of each personality factor in CFA and ESEM models were near identical in both inventories. We provide an example of how ESEM and CFA might be used together in improving personality assessment. © The Author(s) 2014.

  9. Applied structural equation modelling for researchers and practitioners using R and Stata for behavioural research

    CERN Document Server

    Ramlall, Indranarain

    2016-01-01

    This book explains in a rigorous, concise and practical manner all the vital components embedded in structural equation modelling. Focusing on R and stata to implement and perform various structural equation models.

  10. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling

    KAUST Repository

    Potsepaev, R.

    2010-09-06

    Existing algorithms of geostatistics for stochastic modelling of reservoir parameters require a mapping (the \\'uvt-transform\\') into the parametric space and reconstruction of a stratigraphic co-ordinate system. The parametric space can be considered to represent a pre-deformed and pre-faulted depositional environment. Existing approximations of this mapping in many cases cause significant distortions to the correlation distances. In this work we propose a coordinate free approach for modelling stochastic textures through the application of stochastic partial differential equations. By avoiding the construction of a uvt-transform and stratigraphic coordinates, one can generate realizations directly in the physical space in the presence of deformations and faults. In particular the solution of the modified Helmholtz equation driven by Gaussian white noise is a zero mean Gaussian stationary random field with exponential correlation function (in 3-D). This equation can be used to generate realizations in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.

  11. Role of transformational leadership on employee productivity of teaching hospitals: using structural equation modeling

    Science.gov (United States)

    Vatankhah, Soudabeh; Alirezaei, Samira; Khosravizadeh, Omid; Mirbahaeddin, Seyyed Elmira; Alikhani, Mahtab; Alipanah, Mobarakeh

    2017-01-01

    Background In today’s transforming world, increased productivity and efficient use of existing facilities are practically beyond a choice and become a necessity. In this line, attention to change and transformation is one of the affecting factors on the growth of productivity in organizations, especially in hospitals. Aim To examine the effect of transformational leadership on the productivity of employees in teaching hospitals affiliated to Iran University of Medical Sciences. Methods This cross-sectional study was conducted on 254 participants from educational and medical centers affiliated to Iran University of Medical Sciences (Tehran, Iran) in 2016. The standard questionnaires of Bass & Avolio and of Hersi & Goldsmith were used to respectively assess transformational leadership and level of productivity. The research assumptions were tested in a significance level of 0.05 by applying descriptive statistics and structural equations modeling (SEM) using SPSS 19 and Amos 24. Results Results of the fitting indicators of the assessing model after amending includes Chi-square two to degrees of freedom of 2.756, CFI indicator 0.95, IFI indicator 0.92, Root mean square error of approximation (RMSEA) indicator 0.10. These results indicate that the assessing model is well fitting after the amendment. Also, analysis of the model’s assumptions and the final model of the research reveals the effect of transformational leadership on employees’ productivity with a significance level of 0.83 (p=0.001). Conclusion This research indicates that the more the leadership and decision-making style in hospitals lean towards transformational mode, the more positive outcomes it brings among employees and the organization due to increased productivity. Therefore, it is essential to pay focused attention to training/educational programs in organizations to create and encourage transformational leadership behaviors which hopefully lead to more productive employees. PMID:28979731

  12. The relationship between quality management practices and organisational performance: A structural equation modelling approach

    Science.gov (United States)

    Jamaluddin, Z.; Razali, A. M.; Mustafa, Z.

    2015-02-01

    The purpose of this paper is to examine the relationship between the quality management practices (QMPs) and organisational performance for the manufacturing industry in Malaysia. In this study, a QMPs and organisational performance framework is developed according to a comprehensive literature review which cover aspects of hard and soft quality factors in manufacturing process environment. A total of 11 hypotheses have been put forward to test the relationship amongst the six constructs, which are management commitment, training, process management, quality tools, continuous improvement and organisational performance. The model is analysed using Structural Equation Modeling (SEM) with AMOS software version 18.0 using Maximum Likelihood (ML) estimation. A total of 480 questionnaires were distributed, and 210 questionnaires were valid for analysis. The results of the modeling analysis using ML estimation indicate that the fits statistics of QMPs and organisational performance model for manufacturing industry is admissible. From the results, it found that the management commitment have significant impact on the training and process management. Similarly, the training had significant effect to the quality tools, process management and continuous improvement. Furthermore, the quality tools have significant influence on the process management and continuous improvement. Likewise, the process management also has a significant impact to the continuous improvement. In addition the continuous improvement has significant influence the organisational performance. However, the results of the study also found that there is no significant relationship between management commitment and quality tools, and between the management commitment and continuous improvement. The results of the study can be used by managers to prioritize the implementation of QMPs. For instances, those practices that are found to have positive impact on organisational performance can be recommended to

  13. A delay differential equation model of follicle waves in women.

    Science.gov (United States)

    Panza, Nicole M; Wright, Andrew A; Selgrade, James F

    2016-01-01

    This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.

  14. Integrable discretizations for the short-wave model of the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.

  15. Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity

    International Nuclear Information System (INIS)

    Yepez, Jeffrey

    2006-01-01

    Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory

  16. Mathematical modelling of tissue formation on the basis of ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Maxim N. Nazarov

    2017-10-01

    Full Text Available A mathematical model is proposed for describing the population dynamics of cellular clusters on the basis of systems of the first-order ordinary differential equations. The main requirement for the construction of model equations was to obtain a formal biological justification for their derivation, as well as proof of their correctness. In addition, for all the parameters involved in the model equations, the presence of biological meaning was guaranteed, as well as the possibility of evaluating them either during the experiment or by using models of intracellular biochemistry. In the desired model the intercellular exchange of a special signal molecules was chosen as the main mechanism for coordination of the tissue growth and new types selection during cell division. For simplicity, all signalling molecules that can create cells of the same type were not considered separately in the model, but were instead combined in a single complex of molecules: a ‘generalized signal’. Such an approach allows us to eventually assign signals as a functions of cell types and introduce their effects in the form of matrices in the models, where the rows are responsible for the types of cells receiving the signals, and the columns for the types of cells emitting signals.

  17. Analytic solution of boundary-value problems for nonstationary model kinetic equations

    International Nuclear Information System (INIS)

    Latyshev, A.V.; Yushkanov, A.A.

    1993-01-01

    A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected

  18. Psychological pathway to suicidal ideation among men who have sex with men in Shanghai, China: A structural equation model.

    Science.gov (United States)

    Li, Rui; Cai, Yong; Wang, Ying; Gan, Feng; Shi, Rong

    2016-12-01

    We aimed to explore the relationships and develop an inter-theoretical model among psychological variables in the progression to suicidal ideation among men who have sex with men (MSM). A cross-sectional study was conducted among 547 MSM in four districts in Shanghai from March to May in 2014. Socio-demographic, psychological, and behavioral information of the participants was collected. A structural equation model (SEM)-Path Analysis was constructed to interpret the intricate relationships among various psychological variables. Suicidal ideation among MSM during the past year was 10.6%. The developed model agreed well with existing suicide models and had a good fit to the data (χ 2 /df = 2.497, comparative fit index = 0.983, root mean squared error of approximation = 0.052). Suicidal ideation was predicted by perceived defeat and entrapment (β = 0.21, p perceived social support (β = 0.34, p Perceived social support fully mediated the relationships among mood states, perceived social status, and perceived defeat and entrapment. MSM with certain types of temperament might be predisposed to a higher perception of defeat and entrapment. Perceived social support can effectively alleviate the negative appraisals and emotions and lower the risk for suicidal ideation among MSM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The horizontally homogeneous model equations of incompressible atmospheric flow in general orthogonal coordinates

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann

    2003-01-01

    The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...

  20. Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations

    Science.gov (United States)

    Padrino, Juan C.; Sprittles, James; Lockerby, Duncan

    2017-11-01

    Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).

  1. Stochastic substitute for coupled rate equations in the modeling of highly ionized transient plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Falquina, R.; Minguez, E.

    1994-01-01

    Plasmas produced by intense laser pulses incident on solid targets often do not satisfy the conditions for local thermodynamic equilibrium, and so cannot be modeled by transport equations relying on equations of state. A proper description involves an excessively large number of coupled rate equations connecting many quantum states of numerous species having different degrees of ionization. Here we pursue a recent suggestion to model the plasma by a few dominant states perturbed by a stochastic driving force. The driving force is taken to be a Poisson impulse process, giving a Langevin equation which is equivalent to a Fokker-Planck equation for the probability density governing the distribution of electron density. An approximate solution to the Langevin equation permits calculation of the characteristic relaxation rate. An exact stationary solution to the Fokker-Planck equation is given as a function of the strength of the stochastic driving force. This stationary solution is used, along with a Laplace transform, to convert the Fokker-Planck equation to one of Schroedinger type. We consider using the classical Hamiltonian formalism and the WKB method to obtain the time-dependent solution

  2. Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation

    Science.gov (United States)

    Wang, D.

    2017-12-01

    The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.

  3. Analysis on the public acceptance of nuclear energy using structural equation model with latent variables

    International Nuclear Information System (INIS)

    Lee, Young Eal

    1996-02-01

    Comparison of the effect of education and public information on the public acceptance of nuclear energy is carried out. For the increase of public acceptance, the correct understanding on the nuclear energy via proper regular school education would be the first basis and the appropriate public information services by utility and unbiased mass media would be the second basis. Subjects that which is more effect in education or information and how much effective quantitatively to improve the public acceptance are derived. Structural Equation Model (SEM) with Latent Variables (LVs) in social science to public attitudes towards nuclear energy is developed. Questionnaire is conducted to respondents who took part in the program of visiting the nuclear power plant opened by OKAEA in 1995. As a result of the analysis, effect of education for correct awareness of nuclear energy is more sensitive to public acceptance than that of information. It is shown that the susceptibility in education factor in influence of radiation on human body and that in information factor persons consider nuclear power plant as an environmental polluter. It is concluded that radiation treatment should be a 'Hand on Experience' and general principle of nuclear power generation should be contained in the educational text book. Education and information should not been independently performed but been carried out simultaneously and mutually aided. It is shown that this modeling approach is useful to make the decision for the long-term nuclear energy policy transparent and successful

  4. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  5. SEM-based characterization techniques

    International Nuclear Information System (INIS)

    Russell, P.E.

    1986-01-01

    The scanning electron microscope is now a common instrument in materials characterization laboratories. The basic role of the SEM as a topographic imaging system has steadily been expanding to include a variety of SEM-based analytical techniques. These techniques cover the range of basic semiconductor materials characterization to live-time device characterization of operating LSI or VLSI devices. This paper introduces many of the more commonly used techniques, describes the modifications or additions to a conventional SEM required to utilize the techniques, and gives examples of the use of such techniques. First, the types of signals available from a sample being irradiated by an electron beam are reviewed. Then, where applicable, the type of spectroscopy or microscopy which has evolved to utilize the various signal types are described. This is followed by specific examples of the use of such techniques to solve problems related to semiconductor technology. Techniques emphasized include: x-ray fluorescence spectroscopy, electron beam induced current (EBIC), stroboscopic voltage analysis, cathodoluminescnece and electron beam IC metrology. Current and future trends of some of the these techniques, as related to the semiconductor industry are discussed

  6. Testing Predictive Models of Technology Integration in Mexico and the United States

    Science.gov (United States)

    Velazquez, Cesareo Morales

    2008-01-01

    Data from Mexico City, Mexico (N = 978) and from Texas, USA (N = 932) were used to test the predictive validity of the teacher professional development component of the Will, Skill, Tool Model of Technology Integration in a cross-cultural context. Structural equation modeling (SEM) was used to test the model. Analyses of these data yielded…

  7. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  8. Quintom models with an equation of state crossing -1

    International Nuclear Information System (INIS)

    Zhao Wen; Zhang Yang

    2006-01-01

    In this paper, we investigate a kind of special quintom model, which is made of a quintessence field φ 1 and a phantom field φ 2 , and the potential function has the form of V(φ 1 2 -φ 2 2 ). This kind of quintom field can be separated into two kinds: the hessence model, which has the state of φ 1 2 >φ 2 2 , and the hantom model with the state φ 1 2 2 2 . We discuss the evolution of these models in the ω-ω ' plane (ω is the state equation of the dark energy, and ω ' is its time derivative in units of Hubble time), and find that according to ω>-1 or ' plane can be divided into four parts. The late time attractor solution, if existing, is always quintessencelike or Λ-like for hessence field, so the big rip does not exist. But for hantom field, its late time attractor solution can be phantomlike or Λ-like, and sometimes, the big rip is unavoidable. Then we consider two special cases: one is the hessence field with an exponential potential, and the other is with a power law potential. We investigate their evolution in the ω-ω ' plane. We also develop a theoretical method of constructing the hessence potential function directly from the effective equation-of-state function ω(z). We apply our method to five kinds of parametrizations of equation-of-state parameter, where ω crossing -1 can exist, and find they all can be realized. At last, we discuss the evolution of the perturbations of the quintom field, and find the perturbations of the quintom δ Q and the metric Φ are all finite even at the state of ω=-1 and ω ' ≠0

  9. Discrete ellipsoidal statistical BGK model and Burnett equations

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei

    2018-06-01

    A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.

  10. 3D reconstruction of SEM images by use of optical photogrammetry software.

    Science.gov (United States)

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dissolution process analysis using model-free Noyes-Whitney integral equation.

    Science.gov (United States)

    Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto

    2013-02-01

    Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  13. E-learning acceptance based on technology acceptance model (TAM)

    African Journals Online (AJOL)

    Data were collected with 95 undergraduate students at Tunku Abdul Rahman University College (TARUC), Johor. Structural Equation Modeling (SEM) was used to analyze the data. Results shown that computer self-efficacyhas significantly effects ease of use, while perceived ease of use significantly affectsintention to use ...

  14. The luminal surface of thyroid cysts in SEM

    DEFF Research Database (Denmark)

    Zelander, T; Kirkeby, S

    1978-01-01

    Four of the five kinds of cells constituting the walls of thyroid cysts can be identified in the SEM. These are cuboidal cells, mucous cells, cells with large granules and ciliated cells. A correlation between SEM and TEM observations is attempted.......Four of the five kinds of cells constituting the walls of thyroid cysts can be identified in the SEM. These are cuboidal cells, mucous cells, cells with large granules and ciliated cells. A correlation between SEM and TEM observations is attempted....

  15. Structuring Consumer Preferences with the SEM Method

    OpenAIRE

    Rosa, Franco

    2002-01-01

    Structuring preferences has been developed with econometric models using functional flexible parametric form and the exploring the perceptions about expressed and latent needs using different multivariate approaches. Purpose of this research is to explore the demand for a new drink using the mean-end chain (MEC) theory and multivariate SEM procedure. The first part is dedicated to description of specialty foods for their capacity to create new niche markets. The MEC theory is introduced to ex...

  16. Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling.

    Science.gov (United States)

    van Erp, Sara; Mulder, Joris; Oberski, Daniel L

    2017-11-27

    Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models and solve some of the issues often encountered in classical maximum likelihood estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error, bias, coverage rates, and quantiles of the estimates. In this article, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors-with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature, and all code for conducting the prior sensitivity analysis is available in the online supplemental materials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Surgery on spinal epidural metastases (SEM) in renal cell carcinoma: a plea for a new paradigm.

    Science.gov (United States)

    Bakker, Nicolaas A; Coppes, Maarten H; Vergeer, Rob A; Kuijlen, Jos M A; Groen, Rob J M

    2014-09-01

    Prediction models for outcome of decompressive surgical resection of spinal epidural metastases (SEM) have in common that they have been developed for all types of SEM, irrespective of the type of primary tumor. It is our experience in clinical practice, however, that these models often fail to accurately predict outcome in the individual patient. To investigate whether decision making could be optimized by applying tumor-specific prediction models. For the proof of concept, we analyzed patients with SEM from renal cell carcinoma that we have operated on. Retrospective chart analysis 2006 to 2012. Twenty-one consecutive patients with symptomatic SEM of renal cell carcinoma. Predictive factors for survival. Next to established predictive factors for survival, we analyzed the predictive value of the Motzer criteria in these patients. The Motzer criteria comprise a specific and validated risk model for survival in patients with renal cell carcinoma. After multivariable analysis, only Motzer intermediate (hazard ratio [HR] 17.4, 95% confidence interval [CI] 1.82-166, p=.01) and high risk (HR 39.3, 95% CI 3.10-499, p=.005) turned out to be significantly associated with survival in patients with renal cell carcinoma that we have operated on. In this study, we have demonstrated that decision making could have been optimized by implementing the Motzer criteria next to established prediction models. We, therefore, suggest that in future, in patients with SEM from renal cell carcinoma, the Motzer criteria are also taken into account. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Are Gestational Age, Birth Weight, and Birth Length Indicators of Favorable Fetal Growth Conditions? A Structural Equation Analysis of Filipino Infants

    OpenAIRE

    Bollen, Kenneth A.; Noble, Mark D.; Adair, Linda S.

    2013-01-01

    The fetal origin hypothesis emphasizes the life-long health impacts of prenatal conditions. Birth weight, birth length, and gestational age are indicators of the fetal environment. However, these variables often have missing data and are subject to random and systematic errors caused by delays in measurement, differences in measurement instruments, and human error. With data from the Cebu (Philippines) Longitudinal Health and Nutrition Survey, we use structural equation models (SEMs), to expl...

  19. Approximating a retarded-advanced differential equation that models human phonation

    Science.gov (United States)

    Teodoro, M. Filomena

    2017-11-01

    In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.

  20. Rate equation modelling of the optically pumped spin-exchange source

    International Nuclear Information System (INIS)

    Stenger, J.; Rith, K.

    1995-01-01

    Sources for spin polarized hydrogen or deuterium, polarized via spin-exchange of a laser optically pumped alkali metal, can be modelled by rate equations. The rate equations for this type of source, operated either with hydrogen or deuterium, are given explicitly with the intention of providing a useful tool for further source optimization and understanding. Laser optical pumping of alkali metal, spin-exchange collisions of hydrogen or deuterium atoms with each other and with alkali metal atoms are included, as well as depolarization due to flow and wall collisions. (orig.)

  1. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  2. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  3. Sexual Arousal and Sexually Explicit Media (SEM): Comparing Patterns of Sexual Arousal to SEM and Sexual Self-Evaluations and Satisfaction Across Gender and Sexual Orientation.

    Science.gov (United States)

    Hald, Gert Martin; Stulhofer, Aleksandar; Lange, Theis

    2018-03-01

    Investigations of patterns of sexual arousal to certain groups of sexually explicit media (SEM) in the general population in non-laboratory settings are rare. Such knowledge could be important to understand more about the relative specificity of sexual arousal in different SEM users. (i) To investigate whether sexual arousal to non-mainstream vs mainstream SEM contents could be categorized across gender and sexual orientation, (ii) to compare levels of SEM-induced sexual arousal, sexual satisfaction, and self-evaluated sexual interests and fantasies between non-mainstream and mainstream SEM groups, and (iii) to explore the validity and predictive accuracy of the Non-Mainstream Pornography Arousal Scale (NPAS). Online cross-sectional survey of 2,035 regular SEM users in Croatia. Patterns of sexual arousal to 27 different SEM themes, sexual satisfaction, and self-evaluations of sexual interests and sexual fantasies. Groups characterized by sexual arousal to non-mainstream SEM could be identified across gender and sexual orientation. These non-mainstream SEM groups reported more SEM use and higher average levels of sexual arousal across the 27 SEM themes assessed compared with mainstream SEM groups. Only few differences were found between non-mainstream and mainstream SEM groups in self-evaluative judgements of sexual interests, sexual fantasies, and sexual satisfaction. The internal validity and predictive accuracy of the NPAS was good across most user groups investigated. The findings suggest that in classified non-mainstream SEM groups, patterns of sexual arousal might be less fixated and category specific than previously assumed. Further, these groups are not more judgmental of their SEM-related sexual arousal patterns than groups characterized by patterns of sexual arousal to more mainstream SEM content. Moreover, accurate identification of non-mainstream SEM group membership is generally possible across gender and sexual orientation using the NPAS. Hald GM

  4. A Multi-Phase Equation of State and Strength Model for Tin

    International Nuclear Information System (INIS)

    Cox, G. A.

    2006-01-01

    This paper considers a multi-phase equation of state and a multi-phase strength model for tin in the β, γ and liquid phases. At a phase transition there are changes in volume, energy, and properties of a material that should be included in an accurate model. The strength model will also be affected by a solid-solid phase transition. For many materials there is a lack of experimental data for strength at high pressures making the derivation of strength parameters for some phases difficult. In the case of tin there are longitudinal sound speed data on the Hugoniot available that have been used here in conjunction with a multi-phase equation of state to derive strength parameters for the γ phase, a phase which does not exist at room temperature and pressure

  5. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  6. Model Identification Using Stochastic Differential Equation Grey-Box Models in Diabetes

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard

    2013-01-01

    are uncorrelated and provides the possibility to pinpoint model deficiencies. METHODS: An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters...... in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. CONCLUSION: This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained...... are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. RESULTS: We found that the transformation of the ODE model into an SDE-GB resulted...

  7. Conditional Correlation Models of Autoregressive Conditional Heteroskedasticity with Nonstationary GARCH Equations

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    -run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange......In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time...... by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long...

  8. Effects of Co-Worker and Supervisor Support on Job Stress and Presenteeism in an Aging Workforce: A Structural Equation Modelling Approach

    Science.gov (United States)

    Yang, Tianan; Shen, Yu-Ming; Zhu, Mingjing; Liu, Yuanling; Deng, Jianwei; Chen, Qian; See, Lai-Chu

    2015-01-01

    We examined the effects of co-worker and supervisor support on job stress and presenteeism in an aging workforce. Structural equation modelling was used to evaluate data from the 2010 wave of the Health and Retirement Survey in the United States (n = 1649). The level of presenteeism was low and the level of job stress was moderate among aging US workers. SEM revealed that co-worker support and supervisor support were strongly correlated (β = 0.67; p Job stress had a significant direct positive effect on presenteeism (β = 0.30; p job stress (β = −0.10; p job stress (β = −0.40; p < 0.001) but not presenteeism. The findings suggest that presenteeism is reduced by increased respect and concern for employee stress at the workplace, by necessary support at work from colleagues and employers, and by the presence of comfortable interpersonal relationships among colleagues and between employers and employees. PMID:26703705

  9. Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations

    Science.gov (United States)

    Ignat'ev, Yu. G.; Samigullina, A. R.

    2017-11-01

    An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.

  10. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  11. Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state

    International Nuclear Information System (INIS)

    Sharov, G.S.

    2016-01-01

    Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r s ( z d ). Among the considered models the best value of χ 2 is achieved for the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.

  12. IS Success Model in E-Learning Context Based on Students' Perceptions

    Science.gov (United States)

    Freeze, Ronald D.; Alshare, Khaled A.; Lane, Peggy L.; Wen, H. Joseph

    2010-01-01

    This study utilized the Information Systems Success (ISS) model in examining e-learning systems success. The study was built on the premise that system quality (SQ) and information quality (IQ) influence system use and user satisfaction, which in turn impact system success. A structural equation model (SEM), using LISREL, was used to test the…

  13. Three-dimensional wave-induced current model equations and radiation stresses

    Science.gov (United States)

    Xia, Hua-yong

    2017-08-01

    After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.

  14. The Cauchy problem for the Bogolyubov hierarchy of equations. The BCS model

    International Nuclear Information System (INIS)

    Vidybida, A.K.

    1975-01-01

    A chain of Bogolyubov's kinetic equations for an infinite quantum system of particles distributed in space with the mean density 1/V and interacting with the BCS model operator is considered as a single abstract equation in some countable normalized space bsup(v) of sequences of integral operators. In this case an unique solution of the Cauchy problem has been obtained at arbitrary initial conditions from bsup(v), stationary solutions of the equation have been derived, and the class of the initial conditions which approach to stationary ones is indicated

  15. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...

  16. Strategic Implications of U.S. Fighter Force Reductions: Air-to-Air Combat Modeling Using Lanchester Equations

    Science.gov (United States)

    2011-06-01

    STRATEGIC IMPLICATIONS OF US FIGHTER FORCE REDUCTIONS: AIR-TO-AIR COMBAT MODELING USING LANCHESTER ...TO-AIR COMBAT MODELING USING LANCHESTER EQUATIONS GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...MODELING USING LANCHESTER EQUATIONS Ronald E. Gilbert, BS, MBA Major, USAF Approved

  17. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  18. How to get rid of W: a latent variables approach to modelling spatially lagged variables

    NARCIS (Netherlands)

    Folmer, H.; Oud, J.

    2008-01-01

    In this paper we propose a structural equation model (SEM) with latent variables to model spatial dependence. Rather than using the spatial weights matrix W, we propose to use latent variables to represent spatial dependence and spillover effects, of which the observed spatially lagged variables are

  19. How to get rid of W : a latent variables approach to modelling spatially lagged variables

    NARCIS (Netherlands)

    Folmer, Henk; Oud, Johan

    2008-01-01

    In this paper we propose a structural equation model (SEM) with latent variables to model spatial dependence. Rather than using the spatial weights matrix W, we propose to use latent variables to represent spatial dependence and spillover effects, of which the observed spatially lagged variables are

  20. Using Structural Equation Modeling to Examine the Effects of Sex and Physical Activity on the Metabolic Syndrome and Health-related Quality of Life Relationship

    Directory of Open Access Journals (Sweden)

    Peter D. Hart

    2018-01-01

    Full Text Available Objectives The purpose of this study was to use structural equation modeling (SEM to investigate the moderating effects of sex and the mediating effects of physical activity (PA on the metabolic syndrome (MetS and health-related quality of life (HRQOL relationship. Methods The 2013-14 NHANES was used and included 1,077 adults 50+ years of age. A latent construct of MetS was created using five observed variables: waist circumference, HDL cholesterol, triglycerides, fasting glucose, and mean arterial pressure. A PA variable was created from self-reported moderate and vigorous recreational activity and converted to quartiles of moderate-to-vigorous PA minutes per week. HRQOL was assessed from a question regarding self-rated general health and dichotomized to indicate poor/good HRQOL. Results The MetS latent model showed adequate fit (χ2/df=2.47, GFI=0.99, CFI=0.99, and RMSEA=0.04 and significantly (P<.001 predicted all observed variables. The structural model also showed adequate fit with significant direct effects of MetS on HRQOL (β= −0.118, P<0.001 and PA on HRQOL (β=0.176, P<0.001. The effect of MetS on HRQOL (β= −0.048, P=0.001 through PA revealed that PA mediates the relationship. The multi-group analysis showed that the structural model was significantly different between males and females, with PA completely mediating the MetS and HRQOL relationship in males and partially mediating the relationship in females. Conclusions Results from this study support the use of SEM for investigating moderating and mediating effects while simultaneously measuring a latent construct. Additionally, PA was a stronger mediator to the MetS and HRQOL relationship in older males than in older females.

  1. Estimating structural equation models with non-normal variables by using transformations

    NARCIS (Netherlands)

    Montfort, van K.; Mooijaart, A.; Meijerink, F.

    2009-01-01

    We discuss structural equation models for non-normal variables. In this situation the maximum likelihood and the generalized least-squares estimates of the model parameters can give incorrect estimates of the standard errors and the associated goodness-of-fit chi-squared statistics. If the sample

  2. Modeling the determinants of Medicaid home care payments for children with special health care needs: A structural equation model approach.

    Science.gov (United States)

    Adepoju, Omolola E; Zhang, Yichen; Phillips, Charles D

    2014-10-01

    The management of children with special needs can be very challenging and expensive. To examine direct and indirect cost drivers of home care expenditures for this vulnerable and expensive population. We retrospectively assessed secondary data on children, ages 4-20, receiving Medicaid Personal Care Services (PCS) (n = 2760). A structural equation model assessed direct and indirect effects of several child characteristics, clinical conditions and functional measures on Medicaid home care payments. The mean age of children was 12.1 years and approximately 60% were female. Almost half of all subjects reported mild, moderate or severe ID diagnosis. The mean ADL score was 5.27 and about 60% of subjects received some type of rehabilitation services. Caseworkers authorized an average of 25.5 h of PCS support per week. The SEM revealed three groups of costs drivers: indirect, direct and direct + indirect. Cognitive problems, health impairments, and age affect expenditures, but they operate completely through other variables. Other elements accumulate effects (externalizing behaviors, PCS hours, and rehabilitation) and send them on a single path to the dependent variable. A few elements exhibit a relatively complex position in the model by having both significant direct and indirect effects on home care expenditures - medical conditions, intellectual disability, region, and ADL function. The most important drivers of home care expenditures are variables that have both meaningful direct and indirect effects. The only one of these factors that may be within the sphere of policy change is the difference among costs in different regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Development of an Economical Interfacing Circuit for Upgrading of SEM Data Printing System

    International Nuclear Information System (INIS)

    Punnachaiya, S.; Thong-Aram, D.

    2002-01-01

    The operating conditions of a Scanning Electron Microscope (SEM) i.e., magnification, accelerating voltage, micron mark and film identification labeling, are very important for the accurate interpretation of a micrograph picture. In the old model SEM, the built-in data printing system for film identification can be inputted only the numerical number. This will be made a confusing problems when various operating conditions were applied in routine work. An economical interfacing circuit, therefore, was developed to upgrade the data printing system for capable of alphanumerical labeling. The developed circuit was tested on both data printing systems of JSM-T220 and JSM-T330 (JEOL SEM). It was found that the interfacing function worked properly and easily installed

  4. Equation-free model reduction for complex dynamical systems

    International Nuclear Information System (INIS)

    Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.

    2010-01-01

    This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)

  5. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis

    Science.gov (United States)

    Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L

    2015-01-01

    Background There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). Methodology We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δkm=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value of the prediction errors for methadone’s extraction and throughput were less than 2%. Conclusion ODE/PDE modeling of methadone’s hemodialysis is a new approach to study methadone’s removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone’s mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model

  6. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis.

    Science.gov (United States)

    Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L

    2015-01-01

    There is a need to have a model to study methadone's losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone's overall intradialytic mass transfer rate coefficient, km ; and, methadone's removal rate, j ME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. The ODE/PDE model revealed a significant increase in the change of methadone's mass transfer with increased dialysate flow rate, %Δkm =18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone's mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone's removal during dialysis. The absolute value of the prediction errors for methadone's extraction and throughput were less than 2%. ODE/PDE modeling of methadone's hemodialysis is a new approach to study methadone's removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone's mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model predictive control during dialysis in humans.

  7. Integral equation models for the inverse problem of biological ion channel distributions

    International Nuclear Information System (INIS)

    French, D A; Groetsch, C W

    2007-01-01

    Olfactory cilia are thin hair-like filaments that extend from olfactory receptor neurons into the nasal mucus. Transduction of an odor into an electrical signal is accomplished by a depolarizing influx of ions through cyclic-nucleotide-gated channels in the membrane that forms the lateral surface of the cilium. In an experimental procedure developed by S. Kleene, a cilium is detached at its base and drawn into a recording pipette. The cilium base is then immersed in a bath of a channel activating agent (cAMP) which is allowed to diffuse into the cilium interior, opening channels as it goes and initiating a transmembrane current. The total current is recorded as a function of time and serves as data for a nonlinear integral equation of the first kind modeling the spatial distribution of ion channels along the length of the cilium. We discuss some linear Fredholm integral equations that result from simplifications of this model. A numerical procedure is proposed for a class of integral equations suggested by this simplified model and numerical results using simulated and laboratory data are presented

  8. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  9. Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa-Holm and Degasperis-Procesi Equations

    International Nuclear Information System (INIS)

    Yang Pei; Li Zhibin; Chen Yong

    2010-01-01

    In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)

  10. q-deformed Weinberg-Salam model and q-deformed Maxwell equations

    International Nuclear Information System (INIS)

    Alavi, S.A.; Sarbishaei, M.; Mokhtari, A.

    2000-01-01

    We study the q-deformation of the gauge part of the Weinberg-Salam model and show that the q-deformed theory involves new interactions. We then obtain q-deformed Maxwell equations from which magnetic monopoles appear naturally. (author)

  11. Sparsity-Based Super Resolution for SEM Images.

    Science.gov (United States)

    Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C

    2017-09-13

    The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.

  12. Equation-of-State Modeling of Phase Equilibria in Petroleum Fluids

    DEFF Research Database (Denmark)

    Jørgensen, Marianne

    1996-01-01

    The Soave-Redlich-Kwong (SRK) equation of state was used to investigate and develop several aspects of the modeling of natural petroleum fluids.A new method was presented for numerical evaluation of PVT experiments. This method was used in the estimation of binary interaction parameters. A comphr......The Soave-Redlich-Kwong (SRK) equation of state was used to investigate and develop several aspects of the modeling of natural petroleum fluids.A new method was presented for numerical evaluation of PVT experiments. This method was used in the estimation of binary interaction parameters....... A comphrensive study of pseudoization procedures is presented. It is concluded that the compared methods exhibit results of comparable accuracy, and that six to eight pseudocomponents are needed for optimal representation of petroleum fluids.Finally, it is investigated how well the EOS can represent the VLLE...

  13. Secondary emission monitor (SEM) grids.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A great variety of Secondary Emission Monitors (SEM) are used all over the PS Complex. At other accelerators they are also called wire-grids, harps, etc. They are used to measure beam density profiles (from which beam size and emittance can be derived) in single-pass locations (not on circulating beams). Top left: two individual wire-planes. Top right: a combination of a horizontal and a vertical wire plane. Bottom left: a ribbon grid in its frame, with connecting wires. Bottom right: a SEM-grid with its insertion/retraction mechanism.

  14. The influence of environment temperature on SEM image quality

    International Nuclear Information System (INIS)

    Chen, Li; Liu, Junshan

    2015-01-01

    As the structure dimension goes down to the nano-scale, it often requires a scanning electron microscope (SEM) to provide image magnification up to 100 000  ×. However, SEM images at such a high magnification usually suffer from high resolution value and low signal-to-noise ratio, which results in low quality of the SEM image. In this paper, the quality of the SEM image is improved by optimizing the environment temperature. The experimental results indicate that at 100 000  ×, the quality of the SEM image is influenced by the environment temperature, whereas at 50 000  × it is not. At 100 000  × the best SEM image quality can be achieved from the environment temperature ranging 292 from 294 K, and the SEM image quality evaluated by the double stimulus continuous quality scale method can increase from grade 1 to grade 5. It is expected that this image quality improving method can be used in routine measurements with ordinary SEMs to get high quality images by optimizing the environment temperature. (paper)

  15. A model for the stochastic origins of Schrodinger's equation

    OpenAIRE

    Davidson, Mark P.

    2001-01-01

    A model for the motion of a charged particle in the vacuum is presented which, although purely classical in concept, yields Schrodinger's equation as a solution. It suggests that the origins of the peculiar and nonclassical features of quantum mechanics are actually inherent in a statistical description of the radiative reactive force.

  16. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis–Menten and approximate kinetic equations

    DEFF Research Database (Denmark)

    Costa, Rafael S.; Machado, Daniel; Rocha, Isabel

    2010-01-01

    , represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action......The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...

  17. Comparison of methods for the analysis of relatively simple mediation models.

    Science.gov (United States)

    Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W

    2017-09-01

    Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.

  18. Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Steinacker, Harold

    2009-01-01

    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.

  19. Structural Equation Modeling with Lisrel: An Initial Vision

    OpenAIRE

    Naresh K Malhotra; Evandro Luiz Lopes; Ricardo Teixeira Veiga

    2014-01-01

    LISREL is considered one of the most robust software packages for Structural Equation Modeling with covariance matrices, while it is also considered complex and difficult to use. In this special issue of the Brazilian Journal of Marketing, we aim to present the main functions of LISREL, its features and, through a didactic example, reduce the perceived difficulty of using it. We also provide helpful guidelines to properly using this technique.

  20. Residents’ Support Intentions and Behaviors Regarding Urban Trees Programs: A Structural Equation Modeling-Multi Group Analysis

    Directory of Open Access Journals (Sweden)

    Zheng Zhao

    2018-01-01

    Full Text Available Urban trees are more about people than trees. Urban trees programs need public support and engagement, from the intentions to support to implement actions in supporting the programs. Built upon the theory of planned behavior and Structural Equation Modeling (SEM, this study uses Beijing as a case study to investigate how subjective norm (cognition of urban trees, attitude (benefits residents’ believe urban trees can provide, and perceived behavioral control (the believed ability of what residents can do affect intention and its transformation into implemented of supporting action. A total of 800 residents were interviewed in 2016 and asked about their opinion of neighborhood trees, park trees, and historical trees, and analyzed, respectively. The results show that subjective norm has a significant positive effect on intentions pertaining to historical and neighborhood trees. Attitudes influence intentions, but its overall influence is much lower than that of the subjective norm, indicating that residents are more likely to be influenced by external factors. The perceived behavioral control has the strongest effect among the three, suggesting the importance of public participation in strengthening intention. The transformation from intention to behavior seems relatively small, especially regarding neighborhood trees, suggesting that perceptions and participation need to be strengthened.