WorldWideScience

Sample records for equation eigenvalue problem

  1. MAIA, Eigenvalues for MHD Equation of Tokamak Plasma Stability Problems

    International Nuclear Information System (INIS)

    Tanaka, Y.; Azumi, M.; Kurita, G.; Tsunematsu, T.; Takeda, T.

    1986-01-01

    1 - Description of program or function: This program solves an eigenvalue problem zBx=Ax where A and B are real block tri-diagonal matrices. This eigenvalue problem is derived from a reduced set of linear resistive MHD equations which is often employed to study tokamak plasma stability problem. 2 - Method of solution: Both the determinant and inverse iteration methods are employed. 3 - Restrictions on the complexity of the problem: The eigenvalue z must be real

  2. Fundaments of transport equation splitting and the eigenvalue problem

    International Nuclear Information System (INIS)

    Stancic, V.

    2000-01-01

    In order to remove some singularities concerning the boundary conditions of one dimensional transport equation, a split form of transport equation describing the forward i.e. μ≥0, and a backward μ<0 directed neutrons is being proposed here. The eigenvalue problem has also been considered here (author)

  3. The eigenvalue problem for a singular quasilinear elliptic equation

    Directory of Open Access Journals (Sweden)

    Benjin Xuan

    2004-02-01

    Full Text Available We show that many results about the eigenvalues and eigenfunctions of a quasilinear elliptic equation in the non-singular case can be extended to the singular case. Among these results, we have the first eigenvalue is associated to a $C^{1,alpha}(Omega$ eigenfunction which is positive and unique (up to a multiplicative constant, that is, the first eigenvalue is simple. Moreover the first eigenvalue is isolated and is the unique positive eigenvalue associated to a non-negative eigenfunction. We also prove some variational properties of the second eigenvalue.

  4. Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media

    Directory of Open Access Journals (Sweden)

    Vicenţiu RăDulescu

    2005-06-01

    Full Text Available We study nonlinear eigenvalue problems of the type −div(a(x∇u=g(λ,x,u in ℝN, where a(x is a degenerate nonnegative weight. We establish the existence of solutions and we obtain information on qualitative properties as multiplicity and location of solutions. Our approach is based on the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality. A specific minimax method is developed without making use of Palais-Smale condition.

  5. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    Science.gov (United States)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  6. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    International Nuclear Information System (INIS)

    Gene Golub; Kwok Ko

    2009-01-01

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  7. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    International Nuclear Information System (INIS)

    Wei, J.; Yang, S.

    2013-01-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  8. Collocation methods for the solution of eigenvalue problems for singular ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Winfried Auzinger

    2006-01-01

    Full Text Available We demonstrate that eigenvalue problems for ordinary differential equations can be recast in a formulation suitable for the solution by polynomial collocation. It is shown that the well-posedness of the two formulations is equivalent in the regular as well as in the singular case. Thus, a collocation code equipped with asymptotically correct error estimation and adaptive mesh selection can be successfully applied to compute the eigenvalues and eigenfunctions efficiently and with reliable control of the accuracy. Numerical examples illustrate this claim.

  9. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

    International Nuclear Information System (INIS)

    Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

    1995-07-01

    In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

  10. The discontinuous finite element method for solving Eigenvalue problems of transport equations

    International Nuclear Information System (INIS)

    Yang, Shulin; Wang, Ruihong

    2011-01-01

    In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)

  11. MARG2D code. 1. Eigenvalue problem for two dimensional Newcomb equation

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko

    1997-10-01

    A new method and a code MARG2D have been developed to solve the 2-dimensional Newcomb equation which plays an important role in the magnetohydrodynamic (MHD) stability analysis in an axisymmetric toroidal plasma such as a tokamak. In the present formulation, an eigenvalue problem is posed for the 2-D Newcomb equation, where the weight function (the kinetic energy integral) and the boundary conditions at rational surfaces are chosen so that an eigenfunction correctly behaves as the linear combination of the small solution and the analytical solutions around each of the rational surfaces. Thus, the difficulty on solving the 2-D Newcomb equation has been resolved. By using the MARG2D code, the ideal MHD marginally stable state can be identified for a 2-D toroidal plasma. The code is indispensable on computing the outer-region matching data necessary for the resistive MHD stability analysis. Benchmark with ERATOJ, an ideal MHD stability code, has been carried out and the MARG2D code demonstrates that it indeed identifies both stable and marginally stable states against ideal MHD motion. (author)

  12. Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates

    CERN Document Server

    Kitahara, M

    1985-01-01

    The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro

  13. Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions

    OpenAIRE

    Guliyev, Namig J.

    2008-01-01

    International audience; Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.

  14. Sturm--Liouville eigenvalue problem

    International Nuclear Information System (INIS)

    Bailey, P.B.

    1977-01-01

    The viewpoint is taken that Sturn--Liouville problem is specified and the problem of computing one or more of the eigenvalues and possibly the corresponding eigenfunctions is presented for solution. The procedure follows the construction of a computer code, although such a code is not constructed, intended to solve Sturn--Liouville eigenvalue problems whether singular or nonsingular

  15. Eigenvalue-eigenfunction problem for Steklov's smoothing operator and differential-difference equations of mixed type

    Directory of Open Access Journals (Sweden)

    Serguei I. Iakovlev

    2013-01-01

    Full Text Available It is shown that any \\(\\mu \\in \\mathbb{C}\\ is an infinite multiplicity eigenvalue of the Steklov smoothing operator \\(S_h\\ acting on the space \\(L^1_{loc}(\\mathbb{R}\\. For \\(\\mu \

  16. Covariance expressions for eigenvalue and eigenvector problems

    Science.gov (United States)

    Liounis, Andrew J.

    There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.

  17. Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

    NARCIS (Netherlands)

    Jarlebring, E.; Hochstenbach, M.E.

    2009-01-01

    Several recent methods used to analyze asymptotic stability of delay-differential equations (DDEs) involve determining the eigenvalues of a matrix, a matrix pencil or a matrix polynomial constructed by Kronecker products. Despite some similarities between the different types of these so-called

  18. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    International Nuclear Information System (INIS)

    Mueller, E.

    2007-01-01

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  19. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, E.

    2007-12-15

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  20. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  1. The eigenvalue problem in phase space.

    Science.gov (United States)

    Cohen, Leon

    2018-06-30

    We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Lagrangian Differentiation, Integration and Eigenvalues Problems

    International Nuclear Information System (INIS)

    Durand, L.

    1983-01-01

    Calogero recently proposed a new and very powerful method for the solution of Sturm-Liouville eigenvalue problems based on Lagrangian differentiation. In this paper, some results of a numerical investigation of Calogero's method for physical interesting problems are presented. It is then shown that one can 'invert' his differentiation technique to obtain a flexible, factorially convergent Lagrangian integration scheme which should be useful in a variety of problems, e.g. solution of integral equations

  3. Eigenvalues of the simplified ideal MHD ballooning equation

    International Nuclear Information System (INIS)

    Paris, R.B.; Auby, N.; Dagazian, R.Y.

    1986-01-01

    The investigation of the spectrum of the simplified differential equation describing the variation of the amplitude of the ideal MHD ballooning instability along magnetic field lines constitutes a multiparameter Schroedinger eigenvalue problem. An exact eigenvalue relation for the discrete part of the spectrum is obtained in terms of the oblate spheroidal functions. The dependence of the eigenvalues lambda on the two free parameters γ 2 and μ 2 of the equation is discussed, together with certain analytical approximations in the limits of small and large γ 2 . A brief review of the principal properties of the spheroidal functions is given in an appendix

  4. Highly indefinite multigrid for eigenvalue problems

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.; Oliveira, S.

    1996-12-31

    Eigenvalue problems are extremely important in understanding dynamic processes such as vibrations and control systems. Large scale eigenvalue problems can be very difficult to solve, especially if a large number of eigenvalues and the corresponding eigenvectors need to be computed. For solving this problem a multigrid preconditioned algorithm is presented in {open_quotes}The Davidson Algorithm, preconditioning and misconvergence{close_quotes}. Another approach for solving eigenvalue problems is by developing efficient solutions for highly indefinite problems. In this paper we concentrate on the use of new highly indefinite multigrid algorithms for the eigenvalue problem.

  5. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Science.gov (United States)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  6. Parallel Symmetric Eigenvalue Problem Solvers

    Science.gov (United States)

    2015-05-01

    Research” and the use of copyright material. Approved by Major Professor(s): Approved by: Head of the Departmental Graduate Program Date Alicia Marie... matrix . . . . . . . . . . . . . . . . . 106 8.15 Sparsity patterns for the Nastran benchmark of order 1.5 million . . . . 108 8.16 Sparsity patterns...magnitude eigenvalues of a given matrix pencil (A,B) along with their associated eigenvectors. Computing the smallest eigenvalues is more difficult

  7. Solving the RPA eigenvalue equation in real-space

    CERN Document Server

    Muta, A; Hashimoto, Y; Yabana, K

    2002-01-01

    We present a computational method to solve the RPA eigenvalue equation employing a uniform grid representation in three-dimensional Cartesian coordinates. The conjugate gradient method is used for this purpose as an interactive method for a generalized eigenvalue problem. No construction of unoccupied orbitals is required in the procedure. We expect this method to be useful for systems lacking spatial symmetry to calculate accurate eigenvalues and transition matrix elements of a few low-lying excitations. Some applications are presented to demonstrate the feasibility of the method, considering the simplified mean-field model as an example of a nuclear physics system and the electronic excitations in molecules with time-dependent density functional theory as an example of an electronic system. (author)

  8. Discontinuous Sturm-Liouville Problems with Eigenvalue Dependent Boundary Condition

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: emirov@cumhuriyet.edu.tr; Ozkan, A. S., E-mail: sozkan@cumhuriyet.edu.tr [Cumhuriyet University, Department of Mathematics Faculty of Art and Science (Turkey)

    2014-12-15

    In this study, an inverse problem for Sturm-Liouville differential operators with discontinuities is studied when an eigenparameter appears not only in the differential equation but it also appears in the boundary condition. Uniqueness theorems of inverse problems according to the Prüfer angle, the Weyl function and two different eigenvalues sets are proved.

  9. Modern algorithms for large sparse eigenvalue problems

    International Nuclear Information System (INIS)

    Meyer, A.

    1987-01-01

    The volume is written for mathematicians interested in (numerical) linear algebra and in the solution of large sparse eigenvalue problems, as well as for specialists in engineering, who use the considered algorithms in the investigation of eigenoscillations of structures, in reactor physics, etc. Some variants of the algorithms based on the idea of a gradient-type direction of movement are presented and their convergence properties are discussed. From this, a general strategy for the direct use of preconditionings for the eigenvalue problem is derived. In this new approach the necessity of the solution of large linear systems is entirely avoided. Hence, these methods represent a new alternative to some other modern eigenvalue algorithms, as they show a slightly slower convergence on the one hand but essentially lower numerical and data processing problems on the other hand. A brief description and comparison of some well-known methods (i.e. simultaneous iteration, Lanczos algorithm) completes this volume. (author)

  10. Two fixed-point theorems related to eigenvalues with the solution of Kazdan-Warner's problem on elliptic equations

    International Nuclear Information System (INIS)

    Vidossich, G.

    1979-01-01

    The paper presents a proof of two fixed-point theorems, which unify previous results on periodic solutions of second-order ordinary differential equations, in the sense that the existence part of these solutions become a corollay of the fixed-point theorems. (author)

  11. A note on quasilinear elliptic eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Gianni Arioli

    1999-11-01

    Full Text Available We study an eigenvalue problem by a non-smooth critical point theory. Under general assumptions, we prove the existence of at least one solution as a minimum of a constrained energy functional. We apply some results on critical point theory with symmetry to provide a multiplicity result.

  12. On the numerical solution of coupled eigenvalue differential equations arising in molecular spectroscopy

    International Nuclear Information System (INIS)

    Friedman, R.S.; Jamieson, M.J.; Preston, S.C.

    1990-01-01

    A method for solving coupled eigenvalue differential equations is given and its relation to an existing technique is shown. Use of the Gram-Schmidt process to overcome the severe instabilities arising in molecular problems is described in detail. (orig.)

  13. Frequency response as a surrogate eigenvalue problem in topology optimization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Ferrari, Federico; Sigmund, Ole

    2018-01-01

    This article discusses the use of frequency response surrogates for eigenvalue optimization problems in topology optimization that may be used to avoid solving the eigenvalue problem. The motivation is to avoid complications that arise from multiple eigenvalues and the computational complexity as...

  14. Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1981-01-01

    Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)

  15. Preconditioned Krylov subspace methods for eigenvalue problems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Saad, Y.; Stathopoulos, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    Lanczos algorithm is a commonly used method for finding a few extreme eigenvalues of symmetric matrices. It is effective if the wanted eigenvalues have large relative separations. If separations are small, several alternatives are often used, including the shift-invert Lanczos method, the preconditioned Lanczos method, and Davidson method. The shift-invert Lanczos method requires direct factorization of the matrix, which is often impractical if the matrix is large. In these cases preconditioned schemes are preferred. Many applications require solution of hundreds or thousands of eigenvalues of large sparse matrices, which pose serious challenges for both iterative eigenvalue solver and preconditioner. In this paper we will explore several preconditioned eigenvalue solvers and identify the ones suited for finding large number of eigenvalues. Methods discussed in this paper make up the core of a preconditioned eigenvalue toolkit under construction.

  16. On a quadratic inverse eigenvalue problem

    International Nuclear Information System (INIS)

    Cai, Yunfeng; Xu, Shufang

    2009-01-01

    This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable

  17. Accurate high-lying eigenvalues of Schroedinger and Sturm-Liouville problems

    International Nuclear Information System (INIS)

    Vanden Berghe, G.; Van Daele, M.; De Meyer, H.

    1994-01-01

    A modified difference and a Numerov-like scheme have been introduced in a shooting algorithm for the determination of the (higher-lying) eigenvalues of Schroedinger equations and Sturm-Liouville problems. Some numerical experiments are introduced. Time measurements have been performed. The proposed algorithms are compared with other previously introduced shooting schemes. The structure of the eigenvalue error is discussed. ((orig.))

  18. Application of collocation meshless method to eigenvalue problem

    International Nuclear Information System (INIS)

    Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki

    2012-01-01

    The numerical method for solving the nonlinear eigenvalue problem has been developed by using the collocation Element-Free Galerkin Method (EFGM) and its performance has been numerically investigated. The results of computations show that the approximate solution of the nonlinear eigenvalue problem can be obtained stably by using the developed method. Therefore, it can be concluded that the developed method is useful for solving the nonlinear eigenvalue problem. (author)

  19. Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.

    2011-01-01

    The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)

  20. Nonlinear Eigenvalue Problems in Elliptic Variational Inequalities: a local study

    International Nuclear Information System (INIS)

    Conrad, F.; Brauner, C.; Issard-Roch, F.; Nicolaenko, B.

    1985-01-01

    The authors consider a class of Nonlinear Eigenvalue Problems (N.L.E.P.) associated with Elliptic Variational Inequalities (E.V.I.). First the authors introduce the main tools for a local study of branches of solutions; the authors extend the linearization process required in the case of equations. Next the authors prove the existence of arcs of solutions close to regular vs singular points, and determine their local behavior up to the first order. Finally, the authors discuss the connection between their regularity condition and some stability concept. 37 references, 6 figures

  1. New exact approaches to the nuclear eigenvalue problem

    International Nuclear Information System (INIS)

    Andreozzi, F.; Lo Iudice, N.; Porrino, A.; Knapp, F.; Kvasil, J.

    2005-01-01

    In a recent past some of us have developed a new algorithm for diagonalizing the shell model Hamiltonian which consists of an iterative sequence of diagonalization of sub-matrices of small dimensions. The method, apart from being easy to implement, is robust, yielding always stable numerical solutions, and free of ghost eigenvalues. Subsequently, we have endowed the algorithm with an importance sampling, which leads to a drastic truncation of the shell model space, while keeping the accuracy of the solutions under control. Applications to typical nuclei show that the sampling yields also an extrapolation law to the exact eigenvalues. Complementary to the shell model algorithm is a method we are developing for studying collective and non collective excitations. To this purpose we solve the nuclear eigenvalue problem in a space which is the direct sum of Tamm-Dancoff n-phonon subspaces (n=0,1, ...N). The multiphonon basis is constructed by an iterative equation of motion method, which generates an over complete set of n-phonon states from the (n-1)-phonon basis. The redundancy is removed completely and exactly by a method based on the Choleski decomposition. The full Hamiltonian matrix comes out to have a simple structure and, therefore, can be drastically truncated before diagonalization by the mentioned importance sampling method. The phonon composition of the basis states allows removing naturally and maximally the spurious admixtures induced by the centre of mass motion. An application of the method to 16 O will be given for illustrative purposes. (authors)

  2. Iterative approach for the eigenvalue problems

    Indian Academy of Sciences (India)

    the Schrödinger equation for the energy levels with a class of confining potentials [3] using Kato–Rellich ... Moreover,. QES problem has its own inner mathematical beauty – it can provide a good starting point for doing ... this technique for calculating the first- and second-order corrections for the ground state as well as the ...

  3. Efficient solutions to the NDA-NCA low-order eigenvalue problem

    International Nuclear Information System (INIS)

    Willert, J. A.; Kelley, C. T.

    2013-01-01

    Recent algorithmic advances combine moment-based acceleration and Jacobian-Free Newton-Krylov (JFNK) methods to accelerate the computation of the dominant eigenvalue in a k-eigenvalue calculation. In particular, NDA-NCA [1], builds a sequence of low-order (LO) diffusion-based eigenvalue problems in which the solution converges to the true eigenvalue solution. Within NDA-NCA, the solution to the LO k-eigenvalue problem is computed by solving a system of nonlinear equation using some variant of Newton's method. We show that we can speed up the solution to the LO problem dramatically by abandoning the JFNK method and exploiting the structure of the Jacobian matrix. (authors)

  4. A second eigenvalue bound for the Dirichlet Schrodinger equation wtih a radially symmetric potential

    Directory of Open Access Journals (Sweden)

    Craig Haile

    2000-01-01

    Full Text Available We study the time-independent Schrodinger equation with radially symmetric potential $k|x|^alpha$, $k ge 0$, $k in mathbb{R}, alpha ge 2$ on a bounded domain $Omega$ in $mathbb{R}^n$, $(n ge 2$ with Dirichlet boundary conditions. In particular, we compare the eigenvalue $lambda_2(Omega$ of the operator $-Delta + k |x|^alpha $ on $Omega$ with the eigenvalue $lambda_2(S_1$ of the same operator $-Delta +kr^alpha$ on a ball $S_1$, where $S_1$ has radius such that the first eigenvalues are the same ($lambda_1(Omega = lambda_1(S_1$. The main result is to show $lambda_2(Omega le lambda_2(S_1$. We also give an extension of the main result to the case of a more general elliptic eigenvalue problem on a bounded domain $Omega$ with Dirichlet boundary conditions.

  5. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  6. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    Science.gov (United States)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  7. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    International Nuclear Information System (INIS)

    Wu, Sheng-Jhih; Chu, Moody T

    2017-01-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing–Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations. (paper)

  8. Solving eigenvalue response matrix equations with nonlinear techniques

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2014-01-01

    Highlights: • High performance solvers were applied within ERMM for the first time. • Accelerated fixed-point methods were developed that reduce computational times by 2–3. • A nonlinear, Newton-based ERMM led to similar improvement and more robustness. • A 3-D, SN-based ERMM shows how ERMM can apply fine-mesh methods to full-core analysis. - Abstract: This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reactor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iteration updates the k-eigenvalue via balance, while the inner λ-eigenproblem imposes neutron balance between nodes. Efficient methods are developed for solving the inner λ-eigenvalue problem within the outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was found that the Krylov–Schur method applied to the λ-eigenvalue problem reduces Picard solver times (excluding response generation) by a factor of 2–5. Furthermore, alternative methods, including Picard acceleration schemes, Steffensen’s method, and Newton’s method, are developed in this paper. These approaches often yield faster k-convergence and a need for fewer k-dependent response function evaluations, which is important because response generation is often the primary cost for problems using responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was found to reduce total computational times by 2–3 compared to the unaccelerated case for problems dominated by response generation. In addition, Newton’s method was found to provide nearly the same performance with improved robustness

  9. Estimates for lower order eigenvalues of a clamped plate problem

    OpenAIRE

    Cheng, Qing-Ming; Huang, Guangyue; Wei, Guoxin

    2009-01-01

    For a bounded domain $\\Omega$ in a complete Riemannian manifold $M^n$, we study estimates for lower order eigenvalues of a clamped plate problem. We obtain universal inequalities for lower order eigenvalues. We would like to remark that our results are sharp.

  10. Jacobi-Davidson methods for generalized MHD-eigenvalue problems

    NARCIS (Netherlands)

    J.G.L. Booten; D.R. Fokkema; G.L.G. Sleijpen; H.A. van der Vorst (Henk)

    1995-01-01

    textabstractA Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigenvalue problem $Ax = lambda Bx$ is presented. In this paper the emphasis is put on the case where one of the matrices, say the B-matrix, is Hermitian positive definite. The

  11. Fourier convergence analysis applied to neutron diffusion Eigenvalue problem

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook

    2004-01-01

    Fourier error analysis has been a standard technique for the stability and convergence analysis of linear and nonlinear iterative methods. Though the methods can be applied to Eigenvalue problems too, all the Fourier convergence analyses have been performed only for fixed source problems and a Fourier convergence analysis for Eigenvalue problem has never been reported. Lee et al proposed new 2-D/1-D coupling methods and they showed that the new ones are unconditionally stable while one of the two existing ones is unstable at a small mesh size and that the new ones are better than the existing ones in terms of the convergence rate. In this paper the convergence of method A in reference 4 for the diffusion Eigenvalue problem was analyzed by the Fourier analysis. The Fourier convergence analysis presented in this paper is the first one applied to a neutronics eigenvalue problem to the best of our knowledge

  12. Solving complex band structure problems with the FEAST eigenvalue algorithm

    Science.gov (United States)

    Laux, S. E.

    2012-08-01

    With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.

  13. Inequalities among eigenvalues of Sturm–Liouville problems

    Directory of Open Access Journals (Sweden)

    Kong Q

    1999-01-01

    Full Text Available There are well-known inequalities among the eigenvalues of Sturm–Liouville problems with periodic, semi-periodic, Dirichlet and Neumann boundary conditions. In this paper, for an arbitrary coupled self-adjoint boundary condition, we identify two separated boundary conditions corresponding to the Dirichlet and Neumann conditions in the classical case, and establish analogous inequalities. It is also well-known that the lowest periodic eigenvalue is simple; here we prove a similar result for the general case. Moreover, we show that the algebraic and geometric multiplicities of the eigenvalues of self-adjoint regular Sturm–Liouville problems with coupled boundary conditions are the same. An important step in our approach is to obtain a representation of the fundamental solutions for sufficiently negative values of the spectral parameter. Our approach yields the existence and boundedness from below of the eigenvalues of arbitrary self-adjoint regular Sturm–Liouville problems without using operator theory.

  14. Multi-level methods for solving multigroup transport eigenvalue problems in 1D slab geometry

    International Nuclear Information System (INIS)

    Anistratov, D. Y.; Gol'din, V. Y.

    2009-01-01

    A methodology for solving eigenvalue problems for the multigroup neutron transport equation in 1D slab geometry is presented. In this paper we formulate and compare different variants of nonlinear multi-level iteration methods. They are defined by means of multigroup and effective one-group low-order quasi diffusion (LOQD) equations. We analyze the effects of utilization of the effective one-group LOQD problem for estimating the eigenvalue. We present numerical results to demonstrate the performance of the iteration algorithms in different types of reactor-physics problems. (authors)

  15. Methods for computing SN eigenvalues and eigenvectors of slab geometry transport problems

    International Nuclear Information System (INIS)

    Yavuz, Musa

    1998-01-01

    We discuss computational methods for computing the eigenvalues and eigenvectors of single energy-group neutral particle transport (S N ) problems in homogeneous slab geometry, with an arbitrary scattering anisotropy of order L. These eigensolutions are important when exact (or very accurate) solutions are desired for coarse spatial cell problems demanding rapid execution times. Three methods, one of which is 'new', are presented for determining the eigenvalues and eigenvectors of such S N problems. In the first method, separation of variables is directly applied to the S N equations. In the second method, common characteristics of the S N and P N-1 equations are used. In the new method, the eigenvalues and eigenvectors can be computed provided that the cell-interface Green's functions (transmission and reflection factors) are known. Numerical results for S 4 test problems are given to compare the new method with the existing methods

  16. Methods for computing SN eigenvalues and eigenvectors of slab geometry transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.

    1997-01-01

    We discuss computational methods for computing the eigenvalues and eigenvectors of single energy-group neutral particle transport (S N ) problems in homogeneous slab geometry, with an arbitrary scattering anisotropy of order L. These eigensolutions are important when exact (or very accurate) solutions are desired for coarse spatial cell problems demanding rapid execution times. Three methods, one of which is 'new', are presented for determining the eigenvalues and eigenvectors of such S N problems. In the first method, separation of variables is directly applied to the S N equations. In the second method, common characteristics of the S N and P N-1 equations are used. In the new method, the eigenvalues and eigenvectors can be computed provided that the cell-interface Green's functions (transmission and reflection factors) are known. Numerical results for S 4 test problems are given to compare the new method with the existing methods. (author)

  17. EvArnoldi: A New Algorithm for Large-Scale Eigenvalue Problems.

    Science.gov (United States)

    Tal-Ezer, Hillel

    2016-05-19

    Eigenvalues and eigenvectors are an essential theme in numerical linear algebra. Their study is mainly motivated by their high importance in a wide range of applications. Knowledge of eigenvalues is essential in quantum molecular science. Solutions of the Schrödinger equation for the electrons composing the molecule are the basis of electronic structure theory. Electronic eigenvalues compose the potential energy surfaces for nuclear motion. The eigenvectors allow calculation of diople transition matrix elements, the core of spectroscopy. The vibrational dynamics molecule also requires knowledge of the eigenvalues of the vibrational Hamiltonian. Typically in these problems, the dimension of Hilbert space is huge. Practically, only a small subset of eigenvalues is required. In this paper, we present a highly efficient algorithm, named EvArnoldi, for solving the large-scale eigenvalues problem. The algorithm, in its basic formulation, is mathematically equivalent to ARPACK ( Sorensen , D. C. Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations ; Springer , 1997 ; Lehoucq , R. B. ; Sorensen , D. C. SIAM Journal on Matrix Analysis and Applications 1996 , 17 , 789 ; Calvetti , D. ; Reichel , L. ; Sorensen , D. C. Electronic Transactions on Numerical Analysis 1994 , 2 , 21 ) (or Eigs of Matlab) but significantly simpler.

  18. The nonconforming virtual element method for eigenvalue problems

    Energy Technology Data Exchange (ETDEWEB)

    Gardini, Francesca [Univ. of Pavia (Italy). Dept. of Mathematics; Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vacca, Giuseppe [Univ. of Milano-Bicocca, Milan (Italy). Dept. of Mathematics and Applications

    2018-02-05

    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.

  19. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1994-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs

  20. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Woznicki, Z I [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs.

  1. The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1995-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs

  2. Transmission eigenvalues

    Science.gov (United States)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  3. Bounds and estimates for the linearly perturbed eigenvalue problem

    International Nuclear Information System (INIS)

    Raddatz, W.D.

    1983-01-01

    This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems

  4. Depletion GPT-free sensitivity analysis for reactor eigenvalue problems

    International Nuclear Information System (INIS)

    Kennedy, C.; Abdel-Khalik, H.

    2013-01-01

    This manuscript introduces a novel approach to solving depletion perturbation theory problems without the need to set up or solve the generalized perturbation theory (GPT) equations. The approach, hereinafter denoted generalized perturbation theory free (GPT-Free), constructs a reduced order model (ROM) using methods based in perturbation theory and computes response sensitivity profiles in a manner that is independent of the number or type of responses, allowing for an efficient computation of sensitivities when many responses are required. Moreover, the reduction error from using the ROM is quantified in the GPT-Free approach by means of a Wilks' order statistics error metric denoted the K-metric. Traditional GPT has been recognized as the most computationally efficient approach for performing sensitivity analyses of models with many input parameters, e.g. when forward sensitivity analyses are computationally intractable. However, most neutronics codes that can solve the fundamental (homogenous) adjoint eigenvalue problem do not have GPT capabilities unless envisioned during code development. The GPT-Free approach addresses this limitation by requiring only the ability to compute the fundamental adjoint. This manuscript demonstrates the GPT-Free approach for depletion reactor calculations performed in SCALE6 using the 7x7 UAM assembly model. A ROM is developed for the assembly over a time horizon of 990 days. The approach both calculates the reduction error over the lifetime of the simulation using the K-metric and benchmarks the obtained sensitivities using sample calculations. (authors)

  5. Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering

    Science.gov (United States)

    Pelinovsky, Dmitry E.; Sulem, Catherine

    A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.

  6. EISPACK-J: subprogram package for solving eigenvalue problems

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Tsutsui, Tsuneo

    1979-05-01

    EISPACK-J, a subprogram package for solving eigenvalue problems, has been developed and subprograms with a variety of functions have been prepared. These subprograms can solve standard problems of complex matrices, general problems of real matrices and special problems in which only the required eigenvalues and eigenvectors are calculated. They are compared to existing subprograms, showing their features through benchmark tests. Many test problems, including realistic scale problems, are provided for the benchmark tests. Discussions are made on computer core storage and computing time required for each subprogram, and accuracy of the solution. The results show that the subprograms of EISPACK-J, based on Householder, QR and inverse iteration methods, are the best in computing time and accuracy. (author)

  7. Hardy inequality, compact embeddings and properties of certain eigenvalue problems

    Czech Academy of Sciences Publication Activity Database

    Drábek, P.; Kufner, Alois

    2017-01-01

    Roč. 49, č. 1 (2017), s. 5-17 ISSN 0049-4704 Institutional support: RVO:67985840 Keywords : BD-property * compact embeddings * degenerate and singular eigenvalue problem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics https://www.openstarts.units.it/handle/10077/16201

  8. Periodic Solutions, Eigenvalue Curves, and Degeneracy of the Fractional Mathieu Equation

    International Nuclear Information System (INIS)

    Parra-Hinojosa, A; Gutiérrez-Vega, J C

    2016-01-01

    We investigate the eigenvalue curves, the behavior of the periodic solutions, and the orthogonality properties of the Mathieu equation with an additional fractional derivative term using the method of harmonic balance. The addition of the fractional derivative term breaks the hermiticity of the equation in such a way that its eigenvalues need not be real nor its eigenfunctions orthogonal. We show that for a certain choice of parameters the eigenvalue curves reveal the appearance of degenerate eigenvalues. We offer a detailed discussion of the matrix representation of the differential operator corresponding to the fractional Mathieu equation, as well as some numerical examples of its periodic solutions. (paper)

  9. Solving Eigenvalue response matrix equations with Jacobian-Free Newton-Krylov methods

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2011-01-01

    The response matrix method for reactor eigenvalue problems is motivated as a technique for solving coarse mesh transport equations, and the classical approach of power iteration (PI) for solution is described. The method is then reformulated as a nonlinear system of equations, and the associated Jacobian is derived. A Jacobian-Free Newton-Krylov (JFNK) method is employed to solve the system, using an approximate Jacobian coupled with incomplete factorization as a preconditioner. The unpreconditioned JFNK slightly outperforms PI, and preconditioned JFNK outperforms both PI and Steffensen-accelerated PI significantly. (author)

  10. A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Ben C. Yee

    2017-09-01

    Full Text Available In this paper, we present a new multilevel in space and energy diffusion (MSED method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1 a grey (one-group diffusion equation used to efficiently converge the fission source and eigenvalue, (2 a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3 a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

  11. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)

    2009-07-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  12. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    International Nuclear Information System (INIS)

    Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha

    2009-01-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  13. Heuristic geometric ''eigenvalue universality'' in a one-dimensional neutron transport problem with anisotropic scattering

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.

    2010-01-01

    In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)

  14. Schiffer's Conjecture, Interior Transmission Eigenvalues and Invisibility Cloaking: Singular Problem vs. Nonsingular Problem

    OpenAIRE

    Liu, Hongyu

    2012-01-01

    In this note, we present some interesting observations on the Schiffer's conjecture, interior transmission eigenvalue problem and their connections to singular and nonsingular invisibility cloaking problems of acoustic waves.

  15. Perturbative stability of the approximate Killing field eigenvalue problem

    International Nuclear Information System (INIS)

    Beetle, Christopher; Wilder, Shawn

    2014-01-01

    An approximate Killing field may be defined on a compact, Riemannian geometry by solving an eigenvalue problem for a certain elliptic operator. This paper studies the effect of small perturbations in the Riemannian metric on the resulting vector field. It shows that small metric perturbations, as measured using a Sobolev-type supremum norm on the space of Riemannian geometries on a fixed manifold, yield small perturbations in the approximate Killing field, as measured using a Hilbert-type square integral norm. It also discusses applications to the problem of computing the spin of a generic black hole in general relativity. (paper)

  16. Eigenvalue solutions in finite element thermal transient problems

    International Nuclear Information System (INIS)

    Stoker, J.R.

    1975-01-01

    The eigenvalue economiser concept can be useful in solving large finite element transient heat flow problems in which the boundary heat transfer coefficients are constant. The usual economiser theory is equivalent to applying a unit thermal 'force' to each of a small sub-set of nodes on the finite element mesh, and then calculating sets of resulting steady state temperatures. Subsequently it is assumed that the required transient temperature distributions can be approximated by a linear combination of this comparatively small set of master temperatures. The accuracy of a reduced eigenvalue calculation depends upon a good choice of master nodes, which presupposes at least a little knowledge about what sort of shape is expected in the unknown temperature distributions. There are some instances, however, where a reasonably good idea exists of the required shapes, permitting a modification to the economiser process which leads to greater economy in the number of master temperatures. The suggested new approach is to use manually prescribed temperature distributions as the master distributions, rather than using temperatures resulting from unit thermal forces. Thus, with a little pre-knowledge one may write down a set of master distributions which, as a linear combination, can represent the required solution over the range of interest to a reasonable engineering accuracy, and using the minimum number of variables. The proposed modified eigenvalue economiser technique then uses the master distributions in an automatic way to arrive at the required solution. The technique is illustrated by some simple finite element examples

  17. Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum

    Science.gov (United States)

    Guarnieri, F.; Moon, W.; Wettlaufer, J. S.

    2017-09-01

    Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with a negative constant drift, described by a Fokker-Planck equation with a potential V (x ) =-[b ln(x ) +a x ] , for b >0 and a finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schrödinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a constant negative drift. We conclude with a comparison to other analytical methods and with numerical solutions.

  18. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems

    Science.gov (United States)

    Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.

    2015-10-01

    In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.

  19. Solution of the multigroup neutron diffusion Eigenvalue problem in slab geometry by modified power method

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Rodrigo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pós-Graduação em Matemática Aplicada; Petersen, Claudio Z.; Tavares, Matheus G., E-mail: rodrigozanette@hotmail.com, E-mail: claudiopetersen@yahoo.com.br, E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Programa de Pós-Graduação em Modelagem Matemática

    2017-07-01

    We describe in this work the application of the modified power method for solve the multigroup neutron diffusion eigenvalue problem in slab geometry considering two-dimensions for nuclear reactor global calculations. It is well known that criticality calculations can often be best approached by solving eigenvalue problems. The criticality in nuclear reactors physics plays a relevant role since establishes the ratio between the numbers of neutrons generated in successive fission reactions. In order to solve the eigenvalue problem, a modified power method is used to obtain the dominant eigenvalue (effective multiplication factor (K{sub eff})) and its corresponding eigenfunction (scalar neutron flux), which is non-negative in every domain, that is, physically relevant. The innovation of this work is solving the neutron diffusion equation in analytical form for each new iteration of the power method. For solve this problem we propose to apply the Finite Fourier Sine Transform on one of the spatial variables obtaining a transformed problem which is resolved by well-established methods for ordinary differential equations. The inverse Fourier transform is used to reconstruct the solution for the original problem. It is known that the power method is an iterative source method in which is updated by the neutron flux expression of previous iteration. Thus, for each new iteration, the neutron flux expression becomes larger and more complex due to analytical solution what makes propose that it be reconstructed through an polynomial interpolation. The methodology is implemented to solve a homogeneous problem and the results are compared with works presents in the literature. (author)

  20. A parallel algorithm for the non-symmetric eigenvalue problem

    International Nuclear Information System (INIS)

    Sidani, M.M.

    1991-01-01

    An algorithm is presented for the solution of the non-symmetric eigenvalue problem. The algorithm is based on a divide-and-conquer procedure that provides initial approximations to the eigenpairs, which are then refined using Newton iterations. Since the smaller subproblems can be solved independently, and since Newton iterations with different initial guesses can be started simultaneously, the algorithm - unlike the standard QR method - is ideal for parallel computers. The author also reports on his investigation of deflation methods designed to obtain further eigenpairs if needed. Numerical results from implementations on a host of parallel machines (distributed and shared-memory) are presented

  1. A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohammad

    2014-05-01

    Full Text Available In this paper‎, ‎we represent an inexact inverse‎ ‎subspace iteration method for computing a few eigenpairs of the‎ ‎generalized eigenvalue problem $Ax = \\lambda Bx$[Q.~Ye and P.~Zhang‎, ‎Inexact inverse subspace iteration for generalized eigenvalue‎ ‎problems‎, ‎Linear Algebra and its Application‎, ‎434 (2011 1697-1715‎‎]‎. ‎In particular‎, ‎the linear convergence property of the inverse‎ ‎subspace iteration is preserved‎.

  2. Dynamic Eigenvalue Problem of Concrete Slab Road Surface

    Science.gov (United States)

    Pawlak, Urszula; Szczecina, Michał

    2017-10-01

    The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.

  3. Numerical method for multigroup one-dimensional SN eigenvalue problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Abreu, M.P.; Filho, H.A.; Barros, R.C.

    1993-01-01

    The authors describe a new nodal method for multigroup slab-geometry discrete ordinates S N eigenvalue problems that is completely free from all spatial truncation errors. The unknowns in the method are the node-edge angular fluxes, the node-average angular fluxes, and the effective multiplication factor k eff . The numerical values obtained for these quantities are exactly those of the dominant analytic solution of the S N eigenvalue problem apart from finite arithmetic considerations. This method is based on the use of the standard balance equation and two nonstandard auxiliary equations. In the nonmultiplying regions, e.g., the reflector, we use the multigroup spectral Green's function (SGF) auxiliary equations. In the fuel regions, we use the multigroup spectral diamond (SD) auxiliary equations. The SD auxiliary equation is an extension of the conventional auxiliary equation used in the diamond difference (DD) method. This hybrid characteristic of the SD-SGF method improves both the numerical stability and the convergence rate

  4. The eigenvalue problem. Alpha, lambda and gamma modes and its applications

    International Nuclear Information System (INIS)

    Carreno, A.; Vidal-Ferrandiz, A.; Verdu, G.; Ginestar, D.

    2017-01-01

    Modal analysis has been efficiently used to study different problems in reactor physics. In this sense, several eigenvalue problems can be defined for neutron transport equation: the λ-modes, the γ-modes and the α-modes. However, for simplicity, the neutron diffusion equation is used as approximation of each one of these equations that they have been discretized by a high order finite elements. The obtained algebraic eigenproblems are large problems and have to be solved using iterative methods. In this work, we analyze two methods. The first one is the Krylov-Schur method and the second one is the modified block Newton method. The comparison of modes and the performance of these methods have been studied in two benchmark problems, a homogeneous 3D reactor and the 3D Langenbuch reactor. (author)

  5. Convergence diagnostics for Eigenvalue problems with linear regression model

    International Nuclear Information System (INIS)

    Shi, Bo; Petrovic, Bojan

    2011-01-01

    Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)

  6. Application of zero eigenvalue for solving the potential, heat, and wave equations using a sequence of special functions

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In the solution of boundary value problems, usually zero eigenvalue is ignored. This case also happens in calculating the eigenvalues of matrices, so that we would often like to find the nonzero solutions of the linear system A X = λ X when λ ≠ 0 . But λ = 0 implies that det A = 0 for X ≠ 0 and then the rank of matrix A is reduced at least one degree. This comment can similarly be stated for boundary value problems. In other words, if at least one of the eigens of equations related to the main problem is considered zero, then one of the solutions will be specified in advance. By using this note, first we study a class of special functions and then apply it for the potential, heat, and wave equations in spherical coordinate. In this way, some practical examples are also given.

  7. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  8. The Schroedinger equation as a singular perturbation problem

    International Nuclear Information System (INIS)

    Jager, E.M. de; Kuepper, T.

    1978-01-01

    Comparisons are made of the eigenvalues and the corresponding eigenfunctions of the eigenvalue problem connected with the one dimensional Schroedinger equation in Hilbert space. The difference of the eigenvalues is estimated by applying Weyl's monotonicity principle and the minimum maximum principle. The difference of the eigenfunctions is estimated in L 2 norm and in maximum norm obtained by using simple tools from operator theory in Hilbert spaces. An application concerning perturbations of the Planck ideal linear oscillator is given. (author)

  9. Existence of solutions for a fourth order eigenvalue problem ] {Existence of solutions for a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions

    Directory of Open Access Journals (Sweden)

    Khalil Ben Haddouch

    2016-04-01

    Full Text Available In this work we will study the eigenvalues for a fourth order elliptic equation with $p(x$-growth conditions $\\Delta^2_{p(x} u=\\lambda |u|^{p(x-2} u$, under Neumann boundary conditions, where $p(x$ is a continuous function defined on the bounded domain with $p(x>1$. Through the Ljusternik-Schnireleman theory on $C^1$-manifold, we prove the existence of infinitely many eigenvalue sequences and $\\sup \\Lambda =+\\infty$, where $\\Lambda$ is the set of all eigenvalues.

  10. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation

    International Nuclear Information System (INIS)

    Hwang, F-N; Wei, Z-H; Huang, T-M; Wang Weichung

    2010-01-01

    We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc's efficient and various parallel operations, linear solvers, preconditioning schemes, and easy usages. The parallel eigenvalue solver is then used to solve higher degree polynomial eigenvalue problems arising in numerical simulations of three dimensional quantum dots governed by Schroedinger's equations. We find that the parallel restricted additive Schwarz preconditioner in conjunction with a parallel Krylov subspace method (e.g. GMRES) can solve the correction equations, the most costly step in the Jacobi-Davidson algorithm, very efficiently in parallel. Besides, the overall performance is quite satisfactory. We have observed near perfect superlinear speedup by using up to 320 processors. The parallel eigensolver can find all target interior eigenpairs of a quintic polynomial eigenvalue problem with more than 32 million variables within 12 minutes by using 272 Intel 3.0 GHz processors.

  11. The numerical analysis of eigenvalue problem solutions in the multigroup diffusion theory

    International Nuclear Information System (INIS)

    Woznick, Z.I.

    1994-01-01

    In this paper a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations is described. Usually the solution method is based on the system of inner and outer iterations. The presented matrix formalism allows us to visualize clearly, how the used matrix splitting influences the structure of the matrix in an eigenvalue problem to be solved as well as the independence between inner and outer iterations within global iterations. To keep the page limit, the present version of the paper consists only with first three of five sections given in the original paper under the same title (which will be published soon). (author). 13 refs

  12. Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields

    International Nuclear Information System (INIS)

    Kramer, D.; Neugebauer, G.

    1981-01-01

    The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)

  13. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  14. Asymptotics of the Eigenvalues of a Self-Adjoint Fourth Order Boundary Value Problem with Four Eigenvalue Parameter Dependent Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Manfred Möller

    2013-01-01

    Full Text Available Considered is a regular fourth order ordinary differential equation which depends quadratically on the eigenvalue parameter λ and which has separable boundary conditions depending linearly on λ. It is shown that the eigenvalues lie in the closed upper half plane or on the imaginary axis and are symmetric with respect to the imaginary axis. The first four terms in the asymptotic expansion of the eigenvalues are provided.

  15. 2nd International Workshop on Eigenvalue Problems : Algorithms, Software and Applications in Petascale Computing

    CERN Document Server

    Zhang, Shao-Liang; Imamura, Toshiyuki; Yamamoto, Yusaku; Kuramashi, Yoshinobu; Hoshi, Takeo

    2017-01-01

    This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

  16. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  17. Variational methods for eigenvalue problems an introduction to the weinstein method of intermediate problems

    CERN Document Server

    Gould, S H

    1966-01-01

    The first edition of this book gave a systematic exposition of the Weinstein method of calculating lower bounds of eigenvalues by means of intermediate problems. This second edition presents new developments in the framework of the material contained in the first edition, which is retained in somewhat modified form.

  18. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  19. Solving the generalized symmetric eigenvalue problem using tile algorithms on multicore architectures

    KAUST Repository

    Ltaief, Hatem; Luszczek, Piotr R.; Haidar, Azzam; Dongarra, Jack

    2012-01-01

    This paper proposes an efficient implementation of the generalized symmetric eigenvalue problem on multicore architecture. Based on a four-stage approach and tile algorithms, the original problem is first transformed into a standard symmetric

  20. Positive solutions and eigenvalues of nonlocal boundary-value problems

    Directory of Open Access Journals (Sweden)

    Jifeng Chu

    2005-07-01

    Full Text Available We study the ordinary differential equation $x''+lambda a(tf(x=0$ with the boundary conditions $x(0=0$ and $x'(1=int_{eta}^{1}x'(sdg(s$. We characterize values of $lambda$ for which boundary-value problem has a positive solution. Also we find appropriate intervals for $lambda$ so that there are two positive solutions.

  1. Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Alchalabi, R.M. [BOC Group, Murray Hill, NJ (United States); Turinsky, P.J. [North Carolina State Univ., Raleigh, NC (United States)

    1996-12-31

    The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.

  2. On a Non-Symmetric Eigenvalue Problem Governing Interior Structural–Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Heinrich Voss

    2016-06-01

    Full Text Available Small amplitude vibrations of a structure completely filled with a fluid are considered. Describing the structure by displacements and the fluid by its pressure field, the free vibrations are governed by a non-self-adjoint eigenvalue problem. This survey reports on a framework for taking advantage of the structure of the non-symmetric eigenvalue problem allowing for a variational characterization of its eigenvalues. Structure-preserving iterative projection methods of the the Arnoldi and of the Jacobi–Davidson type and an automated multi-level sub-structuring method are reviewed. The reliability and efficiency of the methods are demonstrated by a numerical example.

  3. Parallelization of mathematical library for generalized eigenvalue problem for real band matrices

    International Nuclear Information System (INIS)

    Tanaka, Yasuhisa.

    1997-05-01

    This research has focused on a parallelization of the mathematical library for a generalized eigenvalue problem for real band matrices on IBM SP and Hitachi SR2201. The origin of the library is LASO (Lanczos Algorithm with Selective Orthogonalization), which was developed on the basis of Block Lanczos method for standard eigenvalue problem for real band matrices at Texas University. We adopted D.O.F. (Degree Of Freedom) decomposition method for a parallelization of this library, and evaluated its parallel performance. (author)

  4. Numerical Investigations on Several Stabilized Finite Element Methods for the Stokes Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Pengzhan Huang

    2011-01-01

    Full Text Available Several stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are numerically investigated. They are penalty, regular, multiscale enrichment, and local Gauss integration method. Comparisons between them are carried out, which show that the local Gauss integration method has good stability, efficiency, and accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue problem.

  5. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  6. Problem on eigenfunctions and eigenvalues for effective Hamiltonians in pair channels of four-particle systems

    International Nuclear Information System (INIS)

    Gurbanovich, N.S.; Zelenskaya, I.N.

    1976-01-01

    The solution for eigenfunction and eigenvalue for effective Hamiltonians anti Hsub(p) in two-particle channels corresponding to division of four particles into groups (3.1) and (2.2) is very essential in the four-body problem as applied to nuclear reactions. The interaction of anti√sub(p) in each channel may be written in the form of an integral operator which takes account of the structure of a target nucleus or of an incident particle and satisfying the integral equation. While assuming the two-particle potentials to be central, it is possible to expand the effective interactions anti√sub(p) in partial waves and write the radial equation for anti Hsub(p). In the approximation on a mass shell the radial equations for the eigenfunctions of Hsub(p) are reduced to an algebraic equations system. The coefficients of the latter are expressed through the Fourier images for products of wave functions of bound clusters and the two-particle central potential which are localized in a momentum space

  7. Nature of complex time eigenvalues of the one speed transport equation in a homogeneous sphere

    International Nuclear Information System (INIS)

    Dahl, E.B.; Sahni, D.C.

    1990-01-01

    The complex time eigenvalues of the transport equation have been studied for one speed neutrons, scattered isotropically in a homogeneous sphere with vacuum boundary conditions. It is shown that the complex decay constants vary continuously with the radius of the sphere. Our earlier conjecture (Dahl and Sahni (1983-84)) regarding disjoint arcs is thus shown to be true. We also indicate that complex decay constants exist even for large assemblies, though with rapid oscillations in the corresponding eigenvectors. These modes cannot be predicted by the diffusion equation as this behaviour of the eigenvectors contradicts the assumption of 'slowly varying flux' needed to derive the diffusion approximation from the transport equation. For an infinite system, the existence of complex modes is related to the solution of a homogeneous equation. (author)

  8. On the Solution of the Eigenvalue Assignment Problem for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    El-Sayed M. E. Mostafa

    2017-01-01

    Full Text Available The output feedback eigenvalue assignment problem for discrete-time systems is considered. The problem is formulated first as an unconstrained minimization problem, where a three-term nonlinear conjugate gradient method is proposed to find a local solution. In addition, a cut to the objective function is included, yielding an inequality constrained minimization problem, where a logarithmic barrier method is proposed for finding the local solution. The conjugate gradient method is further extended to tackle the eigenvalue assignment problem for the two cases of decentralized control systems and control systems with time delay. The performance of the methods is illustrated through various test examples.

  9. Coarse-mesh rebalancing acceleration for eigenvalue problems

    International Nuclear Information System (INIS)

    Asaoka, T.; Nakahara, Y.; Miyasaka, S.

    1974-01-01

    The coarse-mesh rebalance method is adopted for Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone into which the total system is divided. This rebalance factor is multiplied to the weight of each fission source neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the coarse-mesh rebalance Monte Carlo calculation gives a good estimate of the eigenvalue already after several batches with a negligible extra computer time compared to the standard Monte Carlo. 5 references. (U.S.)

  10. A numerical method for eigenvalue problems in modeling liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Baglama, J.; Farrell, P.A.; Reichel, L.; Ruttan, A. [Kent State Univ., OH (United States); Calvetti, D. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1996-12-31

    Equilibrium configurations of liquid crystals in finite containments are minimizers of the thermodynamic free energy of the system. It is important to be able to track the equilibrium configurations as the temperature of the liquid crystals decreases. The path of the minimal energy configuration at bifurcation points can be computed from the null space of a large sparse symmetric matrix. We describe a new variant of the implicitly restarted Lanczos method that is well suited for the computation of extreme eigenvalues of a large sparse symmetric matrix, and we use this method to determine the desired null space. Our implicitly restarted Lanczos method determines adoptively a polynomial filter by using Leja shifts, and does not require factorization of the matrix. The storage requirement of the method is small, and this makes it attractive to use for the present application.

  11. Simultaneous multigrid techniques for nonlinear eigenvalue problems: Solutions of the nonlinear Schrödinger-Poisson eigenvalue problem in two and three dimensions

    Science.gov (United States)

    Costiner, Sorin; Ta'asan, Shlomo

    1995-07-01

    Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.

  12. Classical scattering theory of waves from the view point of an eigenvalue problem and application to target identification

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; Werby, M.F.

    1993-01-01

    The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE's. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented

  13. Asymmetric modes and complex time eigenvalues of the one-speed neutron transport equation in a homogeneous sphere

    International Nuclear Information System (INIS)

    Paranjape, S.D.; Kumar, V.; Sahni, D.C.

    1993-01-01

    The one-speed, time-dependent, isotropically scattering, integral transport equation in a homogeneous sphere has been converted into a criticality-like problem by considering exponential time behaviour of the scalar flux. This criticality problem has been converted into a matrix eigenvalue problem using the Fourier transform technique. The time eigenvalues λ, which are complex in general, have been determined for spherically symmetric as well as asymmetric modes. For the former case, the real decay constants and the real parts of complex decay constants decrease monotonically with increasing system size and form two distinct families of single-valued functions. For the spherically asymmetric modes, certain new features emerge. The real decay constants are found to be multi-valued functions of system size and they do not always decrease monotonically with increasing system size. As the system size increases from zero onwards, the decay constants alternate between complex and real values and the real and complex decay constant curves interlace. (Author)

  14. Existence of Positive Solutions for Nonlinear Eigenvalue Problems

    Directory of Open Access Journals (Sweden)

    Wong Fu-Hsiang

    2010-01-01

    Full Text Available We use a fixed point theorem in a cone to obtain the existence of positive solutions of the differential equation, , , with some suitable boundary conditions, where is a parameter.

  15. On the calculation of the eigenvalues of the Faddeev equation kernel on the nonphysical sheet of energy

    International Nuclear Information System (INIS)

    Moeller, K.

    1978-01-01

    A system of three particles is considered which interacts by rank-1 separable potential. For the Faddeev equation kernel of this system a method is proposed for calculating the eigenvalues on the nonphysical sheet of the three-particle cms-energy. From the consideration of the analytical structure of the eigenvalues in the energy plane it follows that the analytical continuations of the eigenvalues from the physical to the nonphysical region are different above and below the three-particle threshold. In this paper the continuation below the threshold is discussed. (author)

  16. Fourth-order Perturbed Eigenvalue Equation for Stepwise Damage Detection of Aeroplane Wing

    Directory of Open Access Journals (Sweden)

    Wong Chun Nam

    2016-01-01

    Full Text Available Perturbed eigenvalue equations up to fourth-order are established to detect structural damage in aeroplane wing. Complete set of perturbation terms including orthogonal and non-orthogonal coefficients are computed using perturbed eigenvalue and orthonormal equations. Then the perturbed eigenparameters are optimized using BFGS approach. Finite element model with small to large stepwise damage is used to represent actual aeroplane wing. In small damaged level, termination number is the same for both approaches, while rms errors and termination d-norms are very close. For medium damaged level, termination number is larger for third-order perturbation with lower d-norm and smaller rms error. In large damaged level, termination number is much larger for third-order perturbation with same d-norm and larger rms error. These trends are more significant as the damaged level increases. As the stepwise damage effect increases with damage level, the increase in stepwise effect leads to the increase in model order. Hence, fourth-order perturbation is more accurate to estimate the model solution.

  17. Solving large nonlinear generalized eigenvalue problems from Density Functional Theory calculations in parallel

    DEFF Research Database (Denmark)

    Bendtsen, Claus; Nielsen, Ole Holm; Hansen, Lars Bruno

    2001-01-01

    The quantum mechanical ground state of electrons is described by Density Functional Theory, which leads to large minimization problems. An efficient minimization method uses a self-consistent field (SCF) solution of large eigenvalue problems. The iterative Davidson algorithm is often used, and we...

  18. Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.

  19. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    International Nuclear Information System (INIS)

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  20. Existence of Positive Solutions for Nonlinear Eigenvalue Problems

    Directory of Open Access Journals (Sweden)

    Fan-Kai Kung

    2010-01-01

    Full Text Available We use a fixed point theorem in a cone to obtain the existence of positive solutions of the differential equation, u″+λf(t,u=0, 0

  1. A Numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Muhammed I. Syam

    2017-11-01

    Full Text Available This article is devoted to both theoretical and numerical studies of eigenvalues of regular fractional $2\\alpha $-order Sturm-Liouville problem where $\\frac{1}{2}< \\alpha \\leq 1$. In this paper, we implement the reproducing kernel method RKM to approximate the eigenvalues. To find the eigenvalues, we force the approximate solution produced by the RKM satisfy the boundary condition at $x=1$. The fractional derivative is described in the Caputo sense. Numerical results demonstrate the accuracy of the present algorithm. In addition, we prove the existence of the eigenfunctions of the proposed problem. Uniformly convergence of the approximate eigenfunctions produced by the RKM to the exact eigenfunctions is proven.

  2. Computations of zeros of special functions and eigenvalues of differential equations by matrix method

    OpenAIRE

    Miyazaki, Yoshinori

    2000-01-01

    This paper is strongly based on two powerful general theorems proved by Ikebe, et. al in 1993[15] and 1996[13], which will be referred to as Theorem A and Theorem B in this paper. They were recently published and justify the approximate computations of simple eigenvalues of infinite matrices of certain types by truncation, giving an extremely accurate error estimates. So far, they have applied to some important problems in engineering, such as computing the zeros of some special functions, an...

  3. A comparison of the eigenvalue equations in kappa, α, lambda and γ in reactor theory. Application to fast and thermal systems in unreflected and reflected configurations

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.

    1977-01-01

    A comparative study of the eigenvalue transport in kappa, lambda, γ and α is made. The neutronic fluxes obtained by solving the transport equation in the four eigenvalue types are compared numerically for fast and thermal systems in unreflected and reflected configurations. Important conclusions will be obtained about the appropiate use of each eigenvalue depending on the calculation type to be performed. (author)

  4. The Schrodinger Eigenvalue March

    Science.gov (United States)

    Tannous, C.; Langlois, J.

    2011-01-01

    A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…

  5. Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem

    KAUST Repository

    Raman, Aaswath; Fan, Shanhui

    2010-01-01

    We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.

  6. Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem

    KAUST Repository

    Raman, Aaswath

    2010-02-26

    We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.

  7. Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements

    KAUST Repository

    Bonito, Andrea; Guermond, Jean-Luc

    2011-01-01

    We propose and analyze an approximation technique for the Maxwell eigenvalue problem using H1-conforming finite elements. The key idea consists of considering a mixed method controlling the divergence of the electric field in a fractional Sobolev space H-α with α ∈ (1/2, 1). The method is shown to be convergent and spectrally correct. © 2011 American Mathematical Society.

  8. Asymptotic eigenvalue estimates for a Robin problem with a large parameter

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Minakov, A.; Parnovski, L.

    2014-01-01

    Roč. 71, č. 2 (2014), s. 141-156 ISSN 0032-5155 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Laplacian * Robin problem * eigenvalue asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 0.250, year: 2014

  9. Some remarks on the optimization of eigenvalue problems involving the p-Laplacian

    Directory of Open Access Journals (Sweden)

    Wacław Pielichowski

    2008-01-01

    Full Text Available Given a bounded domain \\(\\Omega \\subset \\mathbb{R}^n\\, numbers \\(p \\gt 1\\, \\(\\alpha \\geq 0\\ and \\(A \\in [0,|\\Omega |]\\, consider the optimization problem: find a subset \\(D \\subset \\Omega \\, of measure \\(A\\, for which the first eigenvalue of the operator \\(u\\mapsto -\\text{div} (|\

  10. Method for the determination of the dominant eigenvalue of the neutron transport equation in a slab using fractional derivative

    International Nuclear Information System (INIS)

    Sperotto, Fabiola Aiub; Segatto, Cynthia Feijo; Zabadal, Jorge

    2002-01-01

    In this work, we determine the dominant eigenvalue of the one-dimensional neutron transport equation in a slab constructing an integral form for the neutron transport equation which is the expressed in terms of fractional derivative of the angular flux. Equating the fractional derivative of the angular flux to the integrate equation, we determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of Riemann-Liouville definition of fractional derivative. Once known the angular flux the dominant eigenvalue is calculated solving a transcendental equation resulting from the application of the boundary conditions. We report the methodology applied, for comparison with available results in literature. (author)

  11. A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.

    Science.gov (United States)

    Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas

    2015-12-01

    Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.

  12. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  13. Solving eigenvalue problems on curved surfaces using the Closest Point Method

    KAUST Repository

    Macdonald, Colin B.

    2011-06-01

    Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. © 2011 Elsevier Inc.

  14. Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem

    Science.gov (United States)

    Lakshtanov, E.; Vainberg, B.

    2013-10-01

    The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).

  15. Generalization of the Fourier Convergence Analysis in the Neutron Diffusion Eigenvalue Problem

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook

    2005-01-01

    Fourier error analysis has been a standard technique for the stability and convergence analysis of linear and nonlinear iterative methods. Lee et al proposed new 2- D/1-D coupling methods and demonstrated several advantages of the new methods by performing a Fourier convergence analysis of the methods as well as two existing methods for a fixed source problem. We demonstrated the Fourier convergence analysis of one of the 2-D/1-D coupling methods applied to a neutron diffusion eigenvalue problem. However, the technique cannot be used directly to analyze the convergence of the other 2-D/1-D coupling methods since some algorithm-specific features were used in our previous study. In this paper we generalized the Fourier convergence analysis technique proposed and analyzed the convergence of the 2-D/1-D coupling methods applied to a neutron diffusion Eigenvalue problem using the generalized technique

  16. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  17. Elementary Baecklund transformations for a discrete Ablowitz-Ladik eigenvalue problem

    International Nuclear Information System (INIS)

    Rourke, David E

    2004-01-01

    Elementary Baecklund transformations (BTs) are described for a discretization of the Zakharov-Shabat eigenvalue problem (a special case of the Ablowitz-Ladik eigenvalue problem). Elementary BTs allow the process of adding bound states to a system (i.e., the add-one-soliton BT) to be 'factorized' to solving two simpler sub-problems. They are used to determine the effect on the scattering data when bound states are added. They are shown to provide a method of calculating discrete solitons-this is achieved by constructing a lattice of intermediate potentials, with the parameters used in the calculation of the lattice simply related to the soliton scattering data. When the potentials, S n , T n , in the system are related by S n = -T n , they enable simple derivations to be obtained of the add-one-soliton BT and the nonlinear superposition formula

  18. Hybrid subgroup decomposition method for solving fine-group eigenvalue transport problems

    International Nuclear Information System (INIS)

    Yasseri, Saam; Rahnema, Farzad

    2014-01-01

    Highlights: • An acceleration technique for solving fine-group eigenvalue transport problems. • Coarse-group quasi transport theory to solve coarse-group eigenvalue transport problems. • Consistent and inconsistent formulations for coarse-group quasi transport theory. • Computational efficiency amplified by a factor of 2 using hybrid SGD for 1D BWR problem. - Abstract: In this paper, a new hybrid method for solving fine-group eigenvalue transport problems is developed. This method extends the subgroup decomposition method to efficiently couple a new coarse-group quasi transport theory with a set of fixed-source transport decomposition sweeps to obtain the fine-group transport solution. The advantages of the quasi transport theory are its high accuracy, straight-forward implementation and numerical stability. The hybrid method is analyzed for a 1D benchmark problem characteristic of boiling water reactors (BWR). It is shown that the method reproduces the fine-group transport solution with high accuracy while increasing the computational efficiency up to 12 times compared to direct fine-group transport calculations

  19. Eigenvalue Problems.

    Science.gov (United States)

    1987-06-01

    11.55), we get (11.56) 1 bu(u - ZhU)dx < bull - hUi{ !s Ch2V(a), where C = C(aOa 1lbo,blV 0 (a),X). Next we consider I(S-Sh)uIL and Ij(T-Th)uaL2 It is...Math. Ann. 97, 711-736. Courant, R. [1943]: Variational methods for the solution of prob- .-lems of equilibrium and vibrations, Bull . Amer. Math. Soc...fournir des bornes superieures ou inferieures, C.R. Acad. Sci., Paris 235, 995-997. .V Prodi, G. (1962]: Theoremi di tipo locale per il sistema de Navier

  20. Solving the generalized symmetric eigenvalue problem using tile algorithms on multicore architectures

    KAUST Repository

    Ltaief, Hatem

    2012-01-01

    This paper proposes an efficient implementation of the generalized symmetric eigenvalue problem on multicore architecture. Based on a four-stage approach and tile algorithms, the original problem is first transformed into a standard symmetric eigenvalue problem by computing the Cholesky factorization of the right hand side symmetric definite positive matrix (first stage), and applying the inverse of the freshly computed triangular Cholesky factors to the original dense symmetric matrix of the problem (second stage). Calculating the eigenpairs of the resulting problem is then equivalent to the eigenpairs of the original problem. The computation proceeds by reducing the updated dense symmetric matrix to symmetric band form (third stage). The band structure is further reduced by applying a bulge chasing procedure, which annihilates the extra off-diagonal entries using orthogonal transformations (fourth stage). More details on the third and fourth stage can be found in Haidar et al. [Accepted at SC\\'11, November 2011]. The eigenvalues are then calculated from the tridiagonal form using the standard LAPACK QR algorithm (i.e., DTSEQR routine), while the complex and challenging eigenvector computations will be addressed in a companion paper. The tasks from the various stages can concurrently run in an out-of-order fashion. The data dependencies are cautiously tracked by the dynamic runtime system environment QUARK, which ensures the dependencies are not violated for numerical correctness purposes. The obtained tile four-stage generalized symmetric eigenvalue solver significantly outperforms the state-of-the-art numerical libraries (up to 21-fold speed up against multithreaded LAPACK with optimized multithreaded MKL BLAS and up to 4-fold speed up against the corresponding routine from the commercial numerical software Intel MKL) on four sockets twelve cores AMD system with a 24000×24000 matrix size. © 2012 The authors and IOS Press. All rights reserved.

  1. Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations

    Science.gov (United States)

    Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua

    2018-03-01

    Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.

  2. A multilevel, level-set method for optimizing eigenvalues in shape design problems

    International Nuclear Information System (INIS)

    Haber, E.

    2004-01-01

    In this paper, we consider optimal design problems that involve shape optimization. The goal is to determine the shape of a certain structure such that it is either as rigid or as soft as possible. To achieve this goal we combine two new ideas for an efficient solution of the problem. First, we replace the eigenvalue problem with an approximation by using inverse iteration. Second, we use a level set method but rather than propagating the front we use constrained optimization methods combined with multilevel continuation techniques. Combining these two ideas we obtain a robust and rapid method for the solution of the optimal design problem

  3. On the Shape Sensitivity of the First Dirichlet Eigenvalue for Two-Phase Problems

    International Nuclear Information System (INIS)

    Dambrine, M.; Kateb, D.

    2011-01-01

    We consider a two-phase problem in thermal conductivity: inclusions filled with a material of conductivity σ 1 are layered in a body of conductivity σ 2 . We address the shape sensitivity of the first eigenvalue associated with Dirichlet boundary conditions when both the boundaries of the inclusions and the body can be modified. We prove a differentiability result and provide the expressions of the first and second order derivatives. We apply the results to the optimal design of an insulated body. We prove the stability of the optimal design thanks to a second order analysis. We also continue the study of an extremal eigenvalue problem for a two-phase conductor in a ball initiated by Conca et al. (Appl. Math. Optim. 60(2):173-184, 2009) and pursued in Conca et al. (CANUM 2008, ESAIM Proc., vol. 27, pp. 311-321, EDP Sci., Les Ulis, 2009).

  4. Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.

  5. Cavity approach to the first eigenvalue problem in a family of symmetric random sparse matrices

    International Nuclear Information System (INIS)

    Kabashima, Yoshiyuki; Takahashi, Hisanao; Watanabe, Osamu

    2010-01-01

    A methodology to analyze the properties of the first (largest) eigenvalue and its eigenvector is developed for large symmetric random sparse matrices utilizing the cavity method of statistical mechanics. Under a tree approximation, which is plausible for infinitely large systems, in conjunction with the introduction of a Lagrange multiplier for constraining the length of the eigenvector, the eigenvalue problem is reduced to a bunch of optimization problems of a quadratic function of a single variable, and the coefficients of the first and the second order terms of the functions act as cavity fields that are handled in cavity analysis. We show that the first eigenvalue is determined in such a way that the distribution of the cavity fields has a finite value for the second order moment with respect to the cavity fields of the first order coefficient. The validity and utility of the developed methodology are examined by applying it to two analytically solvable and one simple but non-trivial examples in conjunction with numerical justification.

  6. Toward a High Performance Tile Divide and Conquer Algorithm for the Dense Symmetric Eigenvalue Problem

    KAUST Repository

    Haidar, Azzam

    2012-01-01

    Classical solvers for the dense symmetric eigenvalue problem suffer from the first step, which involves a reduction to tridiagonal form that is dominated by the cost of accessing memory during the panel factorization. The solution is to reduce the matrix to a banded form, which then requires the eigenvalues of the banded matrix to be computed. The standard divide and conquer algorithm can be modified for this purpose. The paper combines this insight with tile algorithms that can be scheduled via a dynamic runtime system to multicore architectures. A detailed analysis of performance and accuracy is included. Performance improvements of 14-fold and 4-fold speedups are reported relative to LAPACK and Intel\\'s Math Kernel Library.

  7. Some algorithms for the solution of the symmetric eigenvalue problem on a multiprocessor electronic computer

    International Nuclear Information System (INIS)

    Molchanov, I.N.; Khimich, A.N.

    1984-01-01

    This article shows how a reflection method can be used to find the eigenvalues of a matrix by transforming the matrix to tridiagonal form. The method of conjugate gradients is used to find the smallest eigenvalue and the corresponding eigenvector of symmetric positive-definite band matrices. Topics considered include the computational scheme of the reflection method, the organization of parallel calculations by the reflection method, the computational scheme of the conjugate gradient method, the organization of parallel calculations by the conjugate gradient method, and the effectiveness of parallel algorithms. It is concluded that it is possible to increase the overall effectiveness of the multiprocessor electronic computers by either letting the newly available processors of a new problem operate in the multiprocessor mode, or by improving the coefficient of uniform partition of the original information

  8. Extending the subspace hybrid method for eigenvalue problems in reactor physics calculation

    International Nuclear Information System (INIS)

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-01-01

    This paper presents an innovative hybrid Monte-Carlo-Deterministic method denoted by the SUBSPACE method designed for improving the efficiency of hybrid methods for reactor analysis applications. The SUBSPACE method achieves its high computational efficiency by taking advantage of the existing correlations between desired responses. Recently, significant gains in computational efficiency have been demonstrated using this method for source driven problems. Within this work the mathematical theory behind the SUBSPACE method is introduced and extended to address core wide level k-eigenvalue problems. The method's efficiency is demonstrated based on a three-dimensional quarter-core problem, where responses are sought on the pin cell level. The SUBSPACE method is compared to the FW-CADIS method and is found to be more efficient for the utilized test problem because of the reason that the FW-CADIS method solves a forward eigenvalue problem and an adjoint fixed-source problem while the SUBSPACE method only solves an adjoint fixed-source problem. Based on the favorable results obtained here, we are confident that the applicability of Monte Carlo for large scale reactor analysis could be realized in the near future. (authors)

  9. A spectral nodal method for eigenvalue S{sub N} transport problems in two-dimensional rectangular geometry for energy multigroup nuclear reactor global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pos-Graduacao em Modelagem Computacional

    2015-07-01

    A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S{sub N}) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S{sub N} discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S{sub N} transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S{sub N} eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)

  10. A spectral nodal method for eigenvalue SN transport problems in two-dimensional rectangular geometry for energy multigroup nuclear reactor global calculations

    International Nuclear Information System (INIS)

    Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C.

    2015-01-01

    A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S N ) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S N discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S N transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S N eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)

  11. Numerical study of Langevin equation in twisted Eguchi-Kawai model: distribution of eigenvalues of the plaquette matrix

    International Nuclear Information System (INIS)

    Migdal, A.A.; Polikarpov, M.I.; Veselov, A.I.; Yurov, V.P.

    1983-01-01

    The Langevin equation for the lattice theory with arbitrary gauge group is derived. The four-dimensional twisted Eguchi-Kawai model is investigated numerically. The results for the plaquette energy agree with those of the known Monte Carlo calculations. The new result is the distribution of eigenvalues of the plaquette matrix. In the strong coupling phase this distribution is smooth, whereas in the weak coupling phase a gap is clearly seen

  12. Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Xuqing Zhang

    2013-01-01

    Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.

  13. An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group

    International Nuclear Information System (INIS)

    Wang, S.J.

    1993-04-01

    An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)

  14. Overlapping domain decomposition preconditioners for the generalized Davidson method for the eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, A.; Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States); Saad, Y.

    1994-12-31

    The solution of the large, sparse, symmetric eigenvalue problem, Ax = {lambda}x, is central to many scientific applications. Among many iterative methods that attempt to solve this problem, the Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos method builds an orthogonal basis for the Krylov subspace, from which the required eigenvectors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical to compute but the number of iterations may grow significantly for difficult problems. The GD method can be considered a preconditioned version of Lanczos. In each step the Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual ((M {minus} {lambda}I){sup {minus}1}(A {minus} {lambda}I)x) is performed. Therefore, the GD method attempts to improve convergence and robustness at the expense of a more complicated step.

  15. Deflation of Eigenvalues for GMRES in Lattice QCD

    International Nuclear Information System (INIS)

    Morgan, Ronald B.; Wilcox, Walter

    2002-01-01

    Versions of GMRES with deflation of eigenvalues are applied to lattice QCD problems. Approximate eigenvectors corresponding to the smallest eigenvalues are generated at the same time that linear equations are solved. The eigenvectors improve convergence for the linear equations, and they help solve other right-hand sides

  16. Relativistic energy eigenvalues for the Dirac equation in the presence of vector and scalar potentials via the simple similarity transformation

    International Nuclear Information System (INIS)

    Barakat, T

    2012-01-01

    Based on the simple similarity transformation, we were able to transform the Dirac equation whose potential contains vector V (r) = -A/r + B 1 r and scalar S(r) = B 2 r types into a form nearly identical to the Schrödinger equation. The transformed equation is so simple that one can solve it by means of the asymptotic iteration method. Moreover, within the same framework we were able to obtain the relativistic energy eigenvalues for the Dirac equation with vector Coulomb plus scalar linear, and with pure scalar linear potentials; V (r) = -A/r, S(r) = B 2 r, and V (r) = 0, S(r) = B 2 r, respectively.

  17. Eigenvalue treatment of cosmological models

    International Nuclear Information System (INIS)

    Novello, M.; Soares, D.

    1976-08-01

    From the decomposition of Weyl tensor into its electric and magnetic parts, it is formulated the eigenvalue problem for cosmological models, and is used quasi-maxwellian form of Einstein's equation to propagate it along a time-like congruence. Three related theorems are presented

  18. A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II : analysis of convergence

    NARCIS (Netherlands)

    Bourne, D.P.; Elman, H.; Osborn, J.E.

    2009-01-01

    This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated

  19. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  20. An Experiment of Robust Parallel Algorithm for the Eigenvalue problem of a Multigroup Neutron Diffusion based on modified FETI-DP : Part 2

    International Nuclear Information System (INIS)

    Chang, Jonghwa

    2014-01-01

    Today, we can use a computer cluster consist of a few hundreds CPUs with reasonable budget. Such computer system enables us to do detailed modeling of reactor core. The detailed modeling will improve the safety and the economics of a nuclear reactor by eliminating un-necessary conservatism or missing consideration. To take advantage of such a cluster computer, efficient parallel algorithms must be developed. Mechanical structure analysis community has studied the domain decomposition method to solve the stress-strain equation using the finite element methods. One of the most successful domain decomposition method in terms of robustness is FETI-DP. We have modified the original FETI-DP to solve the eigenvalue problem for the multi-group diffusion problem in previous study. In this study, we report the result of recent modification to handle the three-dimensional subdomain partitioning, and the sub-domain multi-group problem. Modified FETI-DP algorithm has been successfully applied for the eigenvalue problem of multi-group neutron diffusion equation. The overall CPU time is decreasing as number of sub-domains (partitions) is increasing. However, there may be a limit in decrement due to increment of the number of primal points will increase the CPU time spent by the solution of the global equation. Even distribution of computational load (criterion a) is important to achieve fast computation. The subdomain partition can be effectively performed using suitable graph theory partition package such as MeTIS

  1. An Experiment of Robust Parallel Algorithm for the Eigenvalue problem of a Multigroup Neutron Diffusion based on modified FETI-DP : Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Today, we can use a computer cluster consist of a few hundreds CPUs with reasonable budget. Such computer system enables us to do detailed modeling of reactor core. The detailed modeling will improve the safety and the economics of a nuclear reactor by eliminating un-necessary conservatism or missing consideration. To take advantage of such a cluster computer, efficient parallel algorithms must be developed. Mechanical structure analysis community has studied the domain decomposition method to solve the stress-strain equation using the finite element methods. One of the most successful domain decomposition method in terms of robustness is FETI-DP. We have modified the original FETI-DP to solve the eigenvalue problem for the multi-group diffusion problem in previous study. In this study, we report the result of recent modification to handle the three-dimensional subdomain partitioning, and the sub-domain multi-group problem. Modified FETI-DP algorithm has been successfully applied for the eigenvalue problem of multi-group neutron diffusion equation. The overall CPU time is decreasing as number of sub-domains (partitions) is increasing. However, there may be a limit in decrement due to increment of the number of primal points will increase the CPU time spent by the solution of the global equation. Even distribution of computational load (criterion a) is important to achieve fast computation. The subdomain partition can be effectively performed using suitable graph theory partition package such as MeTIS.

  2. An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball

    International Nuclear Information System (INIS)

    Conca, Carlos; Mahadevan, Rajesh; Sanz, Leon

    2009-01-01

    The pioneering works of Murat and Tartar (Topics in the mathematical modeling of composite materials. PNLDE 31. Birkhaeuser, Basel, 1997) go a long way in showing, in general, that problems of optimal design may not admit solutions if microstructural designs are excluded from consideration. Therefore, assuming, tactilely, that the problem of minimizing the first eigenvalue of a two-phase conducting material with the conducting phases to be distributed in a fixed proportion in a given domain has no true solution in general domains, Cox and Lipton only study conditions for an optimal microstructural design (Cox and Lipton in Arch. Ration. Mech. Anal. 136:101-117, 1996). Although, the problem in one dimension has a solution (cf. Krein in AMS Transl. Ser. 2(1):163-187, 1955) and, in higher dimensions, the problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et al. in Nonlinear Anal. TMA 13(2):185-220, 1989), these existence results have been regarded so far as being exceptional owing to complete symmetry. It is still not clear why the same problem in domains with partial symmetry should fail to have a solution which does not develop microstructure and respecting the symmetry of the domain. We hope to revive interest in this question by giving a new proof of the result in a ball using a simpler symmetrization result from Alvino and Trombetti (J. Math. Anal. Appl. 94:328-337, 1983)

  3. Equi-frequency contour of photonic crystals with the extended Dirichlet-to-Neumann wave vector eigenvalue equation method

    International Nuclear Information System (INIS)

    Jiang Bin; Zhang Yejing; Wang Yufei; Liu Anjin; Zheng Wanhua

    2012-01-01

    We present the extended Dirichlet-to-Neumann wave vector eigenvalue equation (DtN-WVEE) method to calculate the equi-frequency contour (EFC) of square lattice photonic crystals (PhCs). With the extended DtN-WVEE method and Snell's law, the effective refractive index of the mode with a circular EFC can be obtained, which is further validated with the refractive index weighted by the electric field or magnetic field. To further verify the EFC calculated by the DtN-WVEE method, the finite-difference time-domain method is also used. Compared with other wave vector eigenvalue equation methods that calculate EFC directly, the size of the eigenmatrix used in the DtN-WVEE method is much smaller, and the computation time is significantly reduced. Since the DtN-WVEE method solves wave vectors for given arbitrary frequencies, it can also find applications in studying the optical properties of a PhC with dispersive, lossy and magnetic materials. (paper)

  4. Construction of local boundary conditions for an eigenvalue problem using micro-local analysis: application to optical waveguide problems

    International Nuclear Information System (INIS)

    Barucq, Helene; Bekkey, Chokri; Djellouli, Rabia

    2004-01-01

    We present a general procedure based on the pseudo-differential calculus for deriving artificial boundary conditions for an eigenvalue problem that characterizes the propagation of guided modes in optical waveguides. This new approach allows the construction of local conditions that (a) are independent of the frequency regime, (b) preserve the sparsity pattern of the finite element discretization, and (c) are applicable to arbitrarily shaped convex artificial boundaries. The last feature has the potential for reducing the size of the computational domain. Numerical results are presented to highlight the potential of conditions of order 1/2 and 1, for improving significantly the computational efficiency of finite element methods for the solution of optical waveguide problems

  5. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  6. Colpitts, Eigenvalues and Chaos

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    It is possible to obtain insight in the chaotic nature of a nonlinear oscillator by means of a study of the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator. The movements of the eigenvalues as functions of time are found. The instantaneous power in t...

  7. Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem

    International Nuclear Information System (INIS)

    Du, X.; Liu, T.; Ji, W.; Xu, X. G.; Brown, F. B.

    2013-01-01

    Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER GPU code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)

  8. Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Du, X.; Liu, T.; Ji, W.; Xu, X. G. [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Brown, F. B. [Monte Carlo Codes Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-01

    Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER{sub GPU} code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)

  9. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    Abreu, M.P. de

    1994-01-01

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (S n ) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  10. Application of the Laplace transform method for the albedo boundary conditions in multigroup neutron diffusion eigenvalue problems in slab geometry

    International Nuclear Information System (INIS)

    Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.

    2009-01-01

    In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)

  11. Vragov’s boundary value problem for an implicit equation of mixed type

    Science.gov (United States)

    Egorov, I. E.

    2017-10-01

    We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.

  12. Invariant imbedding equations for linear scattering problems

    International Nuclear Information System (INIS)

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  13. An inverse problem in a parabolic equation

    Directory of Open Access Journals (Sweden)

    Zhilin Li

    1998-11-01

    Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.

  14. Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media

    Science.gov (United States)

    Hamed, Haikel Ben; Bennacer, Rachid

    2008-08-01

    This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).

  15. Stokes phenomena and monodromy deformation problem for nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Chowdury, A.R.; Naskar, M.

    1986-01-01

    Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solution Y /sub j/ in the sector S /sub j/ to that in S /sub j+1/ are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli

  16. Analytic solution of boundary-value problems for nonstationary model kinetic equations

    International Nuclear Information System (INIS)

    Latyshev, A.V.; Yushkanov, A.A.

    1993-01-01

    A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected

  17. Inverse problems for Maxwell's equations

    CERN Document Server

    Romanov, V G

    1994-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  18. Modification of the MORSE code for Monte Carlo eigenvalue problems by coarse-mesh rebalance acceleration

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Horikami, Kunihiko; Suzuki, Tadakazu; Nakahara, Yasuaki; Taji, Yukichi

    1975-09-01

    The coarse-mesh rebalancing technique is introduced into the general-purpose neutron and gamma-ray Monte Carlo transport code MORSE, to accelerate the convergence rate of the iteration process for eigenvalue calculation in a nuclear reactor system. Two subroutines are thus attached to the code. One is bookkeeping routine 'COARSE' for obtaining the quantities related with the neutron balance in each coarse mesh cell, such as the number of neutrons absorbed in the cell, from random walks of neutrons in a batch. The other is rebalance factor calculation routine 'REBAL' for obtaining the scaling factor whereby the neutron flux in the cell is multiplied to attain the neutron balance. The two subroutines and algorithm of the coarse mesh rebalancing acceleration in a Monte Carlo game are described. (auth.)

  19. A scheme for the evaluation of dominant time-eigenvalues of a nuclear reactor

    International Nuclear Information System (INIS)

    Modak, R.S.; Gupta, Anurag

    2007-01-01

    This paper presents a scheme to obtain the fundamental and few dominant solutions of the prompt time eigenvalue problem (referred to as α-eigenvalue problem) for a nuclear reactor using multi-group neutron diffusion theory. The scheme is based on the use of an algorithm called Orthomin(1). This algorithm was originally proposed by Suetomi and Sekimoto [Suetomi, E., Sekimoto, H., 1991. Conjugate gradient like methods and their application to eigenvalue problems for neutron diffusion equations. Ann. Nucl. Energy 18 (4), 205-227] to obtain the fundamental K-eigenvalue (K-effective) of nuclear reactors. Recently, it has been shown that the algorithm can be used to obtain the further dominant K-modes also. Since α-eigenvalue problem is usually more difficult to solve than the K-eigenvalue problem, an attempt has been made here to use Orthomin(1) for its solution. Numerical results are given for realistic 3-D test case

  20. Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da

    2001-01-01

    Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)

  1. Construction of accuracy-preserving surrogate for the eigenvalue radiation diffusion and/or transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Abdel-Khalik, H. S. [Dept. of Nuclear Engineering, North Caroline State Univ., Raleigh, NC 27695 (United States)

    2012-07-01

    The construction of surrogate models for high fidelity models is now considered an important objective in support of all engineering activities which require repeated execution of the simulation, such as verification studies, validation exercises, and uncertainty quantification. The surrogate must be computationally inexpensive to allow its repeated execution, and must be computationally accurate in order for its predictions to be credible. This manuscript introduces a new surrogate construction approach that reduces the dimensionality of the state solution via a range-finding algorithm from linear algebra. It then employs a proper orthogonal decomposition-like approach to solve for the reduced state. The algorithm provides an upper bound on the error resulting from the reduction. Different from the state-of-the-art, the new approach allows the user to define the desired accuracy a priori which controls the maximum allowable reduction. We demonstrate the utility of this approach using an eigenvalue radiation diffusion model, where the accuracy is selected to match machine precision. Results indicate that significant reduction is possible for typical reactor assembly models, which are currently considered expensive given the need to employ very fine mesh many group calculations to ensure the highest possible fidelity for the downstream core calculations. Given the potential for significant reduction in the computational cost, we believe it is possible to rethink the manner in which homogenization theory is currently employed in reactor design calculations. (authors)

  2. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  3. A numerical method to compute interior transmission eigenvalues

    International Nuclear Information System (INIS)

    Kleefeld, Andreas

    2013-01-01

    In this paper the numerical calculation of eigenvalues of the interior transmission problem arising in acoustic scattering for constant contrast in three dimensions is considered. From the computational point of view existing methods are very expensive, and are only able to show the existence of such transmission eigenvalues. Furthermore, they have trouble finding them if two or more eigenvalues are situated closely together. We present a new method based on complex-valued contour integrals and the boundary integral equation method which is able to calculate highly accurate transmission eigenvalues. So far, this is the first paper providing such accurate values for various surfaces different from a sphere in three dimensions. Additionally, the computational cost is even lower than those of existing methods. Furthermore, the algorithm is capable of finding complex-valued eigenvalues for which no numerical results have been reported yet. Until now, the proof of existence of such eigenvalues is still open. Finally, highly accurate eigenvalues of the interior Dirichlet problem are provided and might serve as test cases to check newly derived Faber–Krahn type inequalities for larger transmission eigenvalues that are not yet available. (paper)

  4. Eigenvalues of Words in Two Positive Definite Letters

    OpenAIRE

    Hillar, Christopher J; Johnson, Charles R

    2005-01-01

    The question of whether all words in two real positive definite letters have only positive eigenvalues is addressed and settled (negatively). This question was raised some time ago in connection with a long-standing problem in theoretical physics. A large class of words that do guarantee positive eigenvalues is identified, and considerable evidence is given for the conjecture that no other words do. In the process, a fundamental question about solvability of symmetric word equations is encoun...

  5. An adjoint-based scheme for eigenvalue error improvement

    International Nuclear Information System (INIS)

    Merton, S.R.; Smedley-Stevenson, R.P.; Pain, C.C.; El-Sheikh, A.H.; Buchan, A.G.

    2011-01-01

    A scheme for improving the accuracy and reducing the error in eigenvalue calculations is presented. Using a rst order Taylor series expansion of both the eigenvalue solution and the residual of the governing equation, an approximation to the error in the eigenvalue is derived. This is done using a convolution of the equation residual and adjoint solution, which is calculated in-line with the primal solution. A defect correction on the solution is then performed in which the approximation to the error is used to apply a correction to the eigenvalue. The method is shown to dramatically improve convergence of the eigenvalue. The equation for the eigenvalue is shown to simplify when certain normalizations are applied to the eigenvector. Two such normalizations are considered; the rst of these is a fission-source type of normalisation and the second is an eigenvector normalisation. Results are demonstrated on a number of demanding elliptic problems using continuous Galerkin weighted nite elements. Moreover, the correction scheme may also be applied to hyperbolic problems and arbitrary discretization. This is not limited to spatial corrections and may be used throughout the phase space of the discrete equation. The applied correction not only improves fidelity of the calculation, it allows assessment of the reliability of numerical schemes to be made and could be used to guide mesh adaption algorithms or to automate mesh generation schemes. (author)

  6. On the asymptotic of an eigenvalue problem with 2n2n2n interior ...

    Indian Academy of Sciences (India)

    Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, ... the present paper is to transform (1) into a regular equation, in the sense that, eq. (1) ..... We show first that the integrated term of I111 is continuous at ci.

  7. An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra

    KAUST Repository

    Rundell, William; Sacks, Paul

    2013-01-01

    A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative

  8. The Cauchy problem for the Pavlov equation

    International Nuclear Information System (INIS)

    Grinevich, P G; Santini, P M; Wu, D

    2015-01-01

    Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. (paper)

  9. On the quantum inverse problem for a new type of nonlinear Schroedinger equation for Alfven waves in plasma

    International Nuclear Information System (INIS)

    Sen, S.; Roy Chowdhury, A.

    1989-06-01

    The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs

  10. About potential of double layer and boundary value problems for Laplace equation

    International Nuclear Information System (INIS)

    Aleshin, M.V.

    1991-01-01

    An integral operator raisen by a kernel of the double layer's potential is investigated. The kernel is defined on S (S - two-digit variety of C 2 class presented by a boundary of the finite domain in R 3 ). The operator is considered on C(S). Following results are received: the operator's spectrum belongs to [-1,1]; it's eigenvalues and eigenfunctions may be found by Kellog's method; knowledge of the operator's spectrum is enough to construct it's resolvent. These properties permit to point out the determined interation processes, solving boundary value problems for Laplace equation. One of such processes - solving of Roben problem - is generalized on electrostatic problems. 6 refs

  11. An Experiment of Robust Parallel Algorithm for the Eigenvalue problem of a Multigroup Neutron Diffusion based on modified FETI-DP

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Parallelization of Monte Carlo simulation is widely adpoted. There are also several parallel algorithms developed for the SN transport theory using the parallel wave sweeping algorithm and for the CPM using parallel ray tracing. For practical purpose of reactor physics application, the thermal feedback and burnup effects on the multigroup cross section should be considered. In this respect, the domain decomposition method(DDM) is suitable for distributing the expensive cross section calculation work. Parallel transport code and diffusion code based on the Raviart-Thomas mixed finite element method was developed. However most of the developed methods rely on the heuristic convergence of flux and current at the domain interfaces. Convergence was not attained in some cases. Mechanical stress computation community has also work on the DDM to solve the stress-strain equation using the finite element methods. The most successful domain decomposition method in terms of robustness is FETI-DP. We have modified the original FETI-DP to solve the eigenvalue problem for the multigroup diffusion problem in this study.

  12. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  13. Solving eigenvalue problems on curved surfaces using the Closest Point Method

    KAUST Repository

    Macdonald, Colin B.; Brandman, Jeremy; Ruuth, Steven J.

    2011-01-01

    defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples

  14. Inverse source problems for eddy current equations

    International Nuclear Information System (INIS)

    Rodríguez, Ana Alonso; Valli, Alberto; Camaño, Jessika

    2012-01-01

    We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. (paper)

  15. Boundary value problems and partial differential equations

    CERN Document Server

    Powers, David L

    2005-01-01

    Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples

  16. All 36 exactly solvable solutions of eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor with expanded characteristic equation listing

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Lorenz Harry, E-mail: lnz2004@mindspring.com [University of Pittsburgh (United States)

    2012-05-15

    This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter {eta} is an element of (- {infinity}, + {infinity}). These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson's listing of characteristic equations for integer spins out to I = 15, inclusive.

  17. The BR eigenvalue algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Geist, G.A. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.; Howell, G.W. [Florida Inst. of Tech., Melbourne, FL (United States). Dept. of Applied Mathematics; Watkins, D.S. [Washington State Univ., Pullman, WA (United States). Dept. of Pure and Applied Mathematics

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  18. An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra

    KAUST Repository

    Rundell, William

    2013-04-23

    A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative: the Dirichlet spectrum from the clamped end-point conditions is insufficient. There are many known ways to add additional information to gain a positive answer, and these include changing one of the boundary conditions and recomputing the spectrum or giving the energy in each eigenmode-the so-called norming constants. We make the assumption that neither of these changes are possible. Instead we will add known mass-densities to the string in a way we can prescribe and remeasure the Dirichlet spectrum. We will not be able to answer the uniqueness question in its most general form, but will give some insight to what "added masses" should be chosen and how this can lead to a reconstruction of the original string density. © 2013 Society for Industrial and Applied Mathematics.

  19. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    Science.gov (United States)

    Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.

    2018-03-01

    We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.

  20. Electrodynamics as a problem of eigenvalues. III. Maxwell operator and perturbation theory

    International Nuclear Information System (INIS)

    Yudin, L.A.; Kapchinsky, M.I.; Korenev, I.L.; Efimov, S.P.

    1996-01-01

    This part of the work deals with perturbation theory. The standard technique permits us to solve problems of volume disturbances in free space, waveguides, and cavities, of disturbances of boundary conditions caused by finite conductivity of walls, and of disturbances of the boundary shape. Expressions for frequency and wave number shifts caused by the perturbation are obtained by the unified method. Several examples are presented: wave amplification in the waveguide filled with a resonant medium like an electron beam in a longitudinal magnetic field, the frequency shift (and increment/decrement) of a cavity loaded by an electron beam, and the field disturbance in the waveguide caused by finite conductivity of the walls. copyright 1996 American Institute of Physics

  1. Eigenvalue problem and nonlinear evolution of kink modes in a toroidal plasma

    International Nuclear Information System (INIS)

    Ogino, T.; Takeda, S.; Sanuki, H.; Kamimura, T.

    1979-04-01

    The internal kink modes of a cylindrical plasma are investigated by a linear eigen value problem and their nonlinear evolution is studied by 3-dimensional MHD simulation based on the rectangular column model under the fixed boundary condition. The growth rates in two cases, namely uniform and diffused current profiles are analyzed in detail, which agree with the analytical estimation by Shafranov. The time evolution of the m = 1 mode showed that q > 1 is satisfied at the relaxation time (q safety factor), a stable configuration like a horse shoe (a new equilibrium) was formed. Also, the time evolution of the pressure p for the m = 2 mode showed that a stable configuration like a pair of anchors was formed. (author)

  2. The Cauchy problem for the Pavlov equation

    Science.gov (United States)

    Grinevich, P. G.; Santini, P. M.; Wu, D.

    2015-10-01

    Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. An essential part of this work was made during the visit of the three authors to the Centro Internacional de Ciencias in Cuernavaca, Mexico in November-December 2012.

  3. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels

    KAUST Repository

    Haidar, Azzam

    2011-01-01

    This paper introduces a novel implementation in reducing a symmetric dense matrix to tridiagonal form, which is the preprocessing step toward solving symmetric eigenvalue problems. Based on tile algorithms, the reduction follows a two-stage approach, where the tile matrix is first reduced to symmetric band form prior to the final condensed structure. The challenging trade-off between algorithmic performance and task granularity has been tackled through a grouping technique, which consists of aggregating fine-grained and memory-aware computational tasks during both stages, while sustaining the application\\'s overall high performance. A dynamic runtime environment system then schedules the different tasks in an out-of-order fashion. The performance for the tridiagonal reduction reported in this paper is unprecedented. Our implementation results in up to 50-fold and 12-fold improvement (130 Gflop/s) compared to the equivalent routines from LAPACK V3.2 and Intel MKL V10.3, respectively, on an eight socket hexa-core AMD Opteron multicore shared-memory system with a matrix size of 24000×24000. Copyright 2011 ACM.

  4. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  5. Introduction to inverse problems for differential equations

    CERN Document Server

    Hasanov Hasanoğlu, Alemdar

    2017-01-01

    This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...

  6. Random eigenvalue problems revisited

    Indian Academy of Sciences (India)

    statistical distributions; linear stochastic systems. 1. ... dimensional multivariate Gaussian random vector with mean µ ∈ Rm and covariance ... 5, the proposed analytical methods are applied to a three degree-of-freedom system and the ...... The joint pdf ofω1 andω3 is however close to a bivariate Gaussian density function.

  7. Escape rate from strange sets as an eigenvalue

    International Nuclear Information System (INIS)

    Tel, T.

    1986-06-01

    A new method is applied for calculating the escape rate from chaotic repellers or semi-attractors, based on the eigenvalue problem of the master equation of discrete dynamical systems. The corresponding eigenfunction is found to be smooth along unstable directions and to be, in general, a fractal measure. Examples of one and two dimensional maps are investigated. (author)

  8. Tensor eigenvalues and their applications

    CERN Document Server

    Qi, Liqun; Chen, Yannan

    2018-01-01

    This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.

  9. On the solution of the differential equation occurring in the problem of heat convection in laminar flow through a tube with slip—flow

    Directory of Open Access Journals (Sweden)

    Xanming Wang

    1996-01-01

    Full Text Available A technique is developed for evaluation of eigenvalues in solution of the differential equation d2y/dr2+(1/rdy/dr+λ2(β−r2y=0 which occurs in the problem of heat convection in laminar flow through a circular tube with silp-flow (β>1. A series solution requires the expansions of coeffecients involving extremely large numbers. No work has been reported in the case of β>1, because of its computational complexity in the evaluation of the eigenvalues. In this paper, a matrix was constructed and a computational algorithm was obtained to calculate the first four eigenvalues. Also, an asymptotic formula was developed to generate the full spectrum of eigenvalues. The computational results for various values of β were obtained.

  10. Eigenvalues and bifurcation for problems with positively homogeneous operators and reaction-diffusion systems with unilateral terms

    Czech Academy of Sciences Publication Activity Database

    Kučera, Milan; Navrátil, J.

    2018-01-01

    Roč. 166, January (2018), s. 154-180 ISSN 0362-546X Institutional support: RVO:67985840 Keywords : global bifurcation * maximal eigenvalue * positively homogeneous operators Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 http://www. science direct.com/ science /article/pii/S0362546X17302559?via%3Dihub

  11. Eigenvalues and bifurcation for problems with positively homogeneous operators and reaction-diffusion systems with unilateral terms

    Czech Academy of Sciences Publication Activity Database

    Kučera, Milan; Navrátil, J.

    2018-01-01

    Roč. 166, January (2018), s. 154-180 ISSN 0362-546X Institutional support: RVO:67985840 Keywords : global bifurcation * maximal eigenvalue * positively homogeneous operators Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X17302559?via%3Dihub

  12. Perturbation of eigenvalues of preconditioned Navier-Stokes operators

    Energy Technology Data Exchange (ETDEWEB)

    Elman, H.C. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    We study the sensitivity of algebraic eigenvalue problems associated with matrices arising from linearization and discretization of the steady-state Navier-Stokes equations. In particular, for several choices of preconditioners applied to the system of discrete equations, we derive upper bounds on perturbations of eigenvalues as functions of the viscosity and discretization mesh size. The bounds suggest that the sensitivity of the eigenvalues is at worst linear in the inverse of the viscosity and quadratic in the inverse of the mesh size, and that scaling can be used to decrease the sensitivity in some cases. Experimental results supplement these results and confirm the relatively mild dependence on viscosity. They also indicate a dependence on the mesh size of magnitude smaller than the analysis suggests.

  13. Inverse problems for partial differential equations

    CERN Document Server

    Isakov, Victor

    2017-01-01

    This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...

  14. Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdú, G.

    2012-01-01

    Highlights: ► The multidimensional P L approximation to the nuclear transport equation is reviewed. ► A nodal collocation method is developed for the spatial discretization of P L equations. ► Advantages of the method are lower dimension and good characterists of the associated algebraic eigenvalue problem. ► The P L nodal collocation method is implemented into the computer code SHNC. ► The SHNC code is verified with 2D and 3D benchmark eigenvalue problems from Takeda and Ikeda, giving satisfactory results. - Abstract: P L equations are classical approximations to the neutron transport equations, which are obtained expanding the angular neutron flux in terms of spherical harmonics. These approximations are useful to study the behavior of reactor cores with complex fuel assemblies, for the homogenization of nuclear cross-sections, etc., and most of these applications are in three-dimensional (3D) geometries. In this work, we review the multi-dimensional P L equations and describe a nodal collocation method for the spatial discretization of these equations for arbitrary odd order L, which is based on the expansion of the spatial dependence of the fields in terms of orthonormal Legendre polynomials. The performance of the nodal collocation method is studied by means of obtaining the k eff and the stationary power distribution of several 3D benchmark problems. The solutions are obtained are compared with a finite element method and a Monte Carlo method.

  15. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    Science.gov (United States)

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  16. problem for the damped Boussinesq equation

    Directory of Open Access Journals (Sweden)

    Vladimir V. Varlamov

    1997-01-01

    Full Text Available For the damped Boussinesq equation utt−2butxx=−αuxxxx+uxx+β(u2xx,x∈(0,π,t>0;α,b=const>0,β=const∈R1, the second initial-boundary value problem is considered with small initial data. Its classical solution is constructed in the form of a series in small parameter present in the initial conditions and the uniqueness of solutions is proved. The long-time asymptotics is obtained in the explicit form and the question of the blow up of the solution in a certain case is examined. The possibility of passing to the limit b→+0 in the constructed solution is investigated.

  17. Generalization of Samuelson's inequality and location of eigenvalues

    Indian Academy of Sciences (India)

    We prove a generalization of Samuelson's inequality for higher order central moments. Bounds for the eigenvalues are obtained when a given complex × matrix has real eigenvalues. Likewise, we discuss bounds for the roots of polynomial equations.

  18. Interior transmission eigenvalues of a rectangle

    International Nuclear Information System (INIS)

    Sleeman, B D; Stocks, D C

    2016-01-01

    The problem of scattering of acoustic waves by an inhomogeneous medium is intimately connected with so called inside–outside duality, in which the interior transmission eigenvalue problem plays a fundamental role. Here a study of the interior transmission eigenvalues for rectangular domains of constant refractive index is made. By making a nonstandard use of the classical separation of variables technique both real and complex eigenvalues are determined. (paper)

  19. The Cauchy problem for the Pavlov equation with large data

    Science.gov (United States)

    Wu, Derchyi

    2017-08-01

    We prove a local solvability of the Cauchy problem for the Pavlov equation with large initial data by the inverse scattering method. The Pavlov equation arises in studies Einstein-Weyl geometries and dispersionless integrable models. Our theory yields a local solvability of Cauchy problems for a quasi-linear wave equation with a characteristic initial hypersurface.

  20. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  1. Optimal control problem for the extended Fisher–Kolmogorov equation

    Indian Academy of Sciences (India)

    In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.

  2. Scattering integral equations and four nucleon problem

    International Nuclear Information System (INIS)

    Narodetskii, I.M.

    1980-01-01

    Existing results from the application of integral equation technique to the four-nucleon bound states and scattering are reviewed. The first numerical calculations of the four-body integral equations have been done ten years ago. Yet, it is still widely believed that these equations are too complicated to solve numerically. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. The presentation is based on the quasiparticle approach. This permits a simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt method of the Fredholm integral equation theory. The first part of this review contains a detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the kernel of the four-body equations. The second part contains the discussion of the four-body quasiparticle equations and of the resed forullts obtain bound states and scattering

  3. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    Science.gov (United States)

    Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.

    2014-06-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.

  4. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    International Nuclear Information System (INIS)

    Liu, T.; Du, X.; Ji, W.; Xu, G.; Brown, F.B.

    2013-01-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed. (authors)

  5. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  6. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  7. Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1983-01-01

    We construct an analytic solution to the spinless S-wave Salpeter equation for two quarks interacting via a Coulomb potential, [2(-del 2 +m 2 )/sup 1/2/-M-α/r] psi(r) = 0, by transforming the momentum-space form of the equation into a mapping or boundary-value problem for analytic functions. The principal part of the three-dimensional wave function is identical to the solution of a one-dimensional Salpeter equation found by one of us and discussed here. The remainder of the wave function can be constructed by the iterative solution of an inhomogeneous singular integral equation. We show that the exact bound-state eigenvalues for the Coulomb problem are M/sub n/ = 2m/(1+α 2 /4n 2 )/sup 1/2/, n = 1,2,..., and that the wave function for the static interaction diverges for r→0 as C(mr)/sup -nu/, where #betta# = (α/π)(1+α/π+...) is known exactly

  8. Spectral problem for the radial Schroedinger equation

    International Nuclear Information System (INIS)

    Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.

    1998-01-01

    For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics

  9. Constitutive equations for discrete electromagnetic problems over polyhedral grids

    International Nuclear Information System (INIS)

    Codecasa, Lorenzo; Trevisan, Francesco

    2007-01-01

    In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field

  10. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  11. The nonlocal problem for a hyperbolic equation with Bessel operator in a rectangular domain

    Directory of Open Access Journals (Sweden)

    Natalya V. Zaitseva

    2016-12-01

    Full Text Available We consider a boundary value problem for a hyperbolic equation with Bessel differential operator in a rectangular domain with integral nonlocal boundary value condition of the first kind. The equivalence between boundary value problem with integral nonlocal condition of the first kind and a local boundary value problem with mixed boundary conditions of the first and third kinds is proved. The existence and uniqueness of solution of the equivalent problem are established by means of the spectral method. At the uniqueness proof the completeness of the eigenfunction system of the spectral problem is used . At the existence proof the assessment of coefficients of series, the asymptotic formula for Bessel function of the first kind and asymptotic formula for eigenvalues are used. Sufficient conditions on the functions defining initial data of the problem are received. The solution of the problem is obtained in explicit form. The solution is obtained in the form of the Fourier–Bessel series. Its convergence is proved in the class of regular solutions.

  12. The polaron problem and the Boltzmann equation

    International Nuclear Information System (INIS)

    Devreese, J.

    1979-01-01

    A mobility theory for the Feynman polaron is developed. It is shown that the Boltzmann equation for polarons is valid for weak coupling and not too high electric fields. The analytical results indicate that for E → 0 the relaxation time approximation is valid. A comparison is made of three methods to calculate the mobility in a linear electron transport theory. An approximation to the Kubo formula, a mobility calculation using path integrals by Feynman and a calculation based on the displaced Maxwell distribution function are considered. The three methods lead to equivalent results in the weak scattering and small electric field limit

  13. Partial differential equations and boundary-value problems with applications

    CERN Document Server

    Pinsky, Mark A

    2011-01-01

    Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems-rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate th

  14. The Cousin problems in the viewpoint of partial differential equations

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-01-01

    In this paper we consider the Cousin problems for overdetermined systems of partial differential equations, which are generalizations of the Cauchy-Riemann system. The general methods for solving these problems are given. Applying the given methods we can solve the Cousin problems for many important systems in theoretical physics. (author). 19 refs

  15. Variational problems with fractional derivatives: Euler-Lagrange equations

    International Nuclear Information System (INIS)

    Atanackovic, T M; Konjik, S; Pilipovic, S

    2008-01-01

    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

  16. A numerical study of the eigenvalues in the neutron diffusion theory

    International Nuclear Information System (INIS)

    Lima Bezerra, J. de.

    1982-12-01

    A systematic numerical study for the eigenvalue problem in one dimension was carried out. A computer code RED2G was developed to obtain and to discuss a number of numerical solutions concerning eigenvalues problems originating from the discretization of the two groups neutron diffusion equation in one dimension and steady state. The problem of eigenvalues was created from the discretization by the method of finite differences. The solutions were obtained by four different iterative methods, i.e. Power, Wielandt-1, Wielandt-2 and accelerated Power with the Chebyshev polinomials. The numerical results given by the solution of the two test-problems indicate that the RED2G code is fast and efficient in these calculations and the Wielandt-2 method has been found to be the best both in respect of rapidity of calculations as well as programation effort required. (E.G.) [pt

  17. Boundary value problem for Caputo-Hadamard fractional differential equations

    Directory of Open Access Journals (Sweden)

    Yacine Arioua

    2017-09-01

    Full Text Available The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii's fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.

  18. Nonclassical Problem for Ultraparabolic Equation in Abstract Spaces

    Directory of Open Access Journals (Sweden)

    Gia Avalishvili

    2016-01-01

    Full Text Available Nonclassical problem for ultraparabolic equation with nonlocal initial condition with respect to one time variable is studied in abstract Hilbert spaces. We define the space of square integrable vector-functions with values in Hilbert spaces corresponding to the variational formulation of the nonlocal problem for ultraparabolic equation and prove trace theorem, which allows one to interpret initial conditions of the nonlocal problem. We obtain suitable a priori estimates and prove the existence and uniqueness of solution of the nonclassical problem and continuous dependence upon the data of the solution to the nonlocal problem. We consider an application of the obtained abstract results to nonlocal problem for ultraparabolic partial differential equation with second-order elliptic operator and obtain well-posedness result in Sobolev spaces.

  19. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  20. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman; Zayane-Aissa, Chadia; Laleg-Kirati, Taous Meriem

    2013-01-01

    domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace's equation is compuationally robust and accurate. © 2013 IEEE.

  1. Eigenstructure of of singular systems. Perturbation analysis of simple eigenvalues

    OpenAIRE

    García Planas, María Isabel; Tarragona Romero, Sonia

    2014-01-01

    The problem to study small perturbations of simple eigenvalues with a change of parameters is of general interest in applied mathematics. After to introduce a systematic way to know if an eigenvalue of a singular system is simple or not, the aim of this work is to study the behavior of a simple eigenvalue of singular linear system family

  2. Computing the eigenvalues and eigenvectors of a fuzzy matrix

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2012-08-01

    Full Text Available Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system $widetilde{A}widetilde{X}= widetilde{lambda} widetilde{X}.$

  3. On two-spectra inverse problems

    OpenAIRE

    Guliyev, Namig J.

    2018-01-01

    We consider a two-spectra inverse problem for the one-dimensional Schr\\"{o}dinger equation with boundary conditions containing rational Herglotz--Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.

  4. The Integral Equation Method and the Neumann Problem for the Poisson Equation on NTA Domains

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar

    2009-01-01

    Roč. 63, č. 21 (2009), s. 227-247 ISSN 0378-620X Institutional research plan: CEZ:AV0Z10190503 Keywords : Poisson equation * Neumann problem * integral equation method Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2009

  5. Transmission problem for the Laplace equation and the integral equation method

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar

    2012-01-01

    Roč. 387, č. 2 (2012), s. 837-843 ISSN 0022-247X Institutional research plan: CEZ:AV0Z10190503 Keywords : transmission problem * Laplace equation * boundary integral equation Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11008985

  6. Coefficient Inverse Problem for Poisson's Equation in a Cylinder

    NARCIS (Netherlands)

    Solov'ev, V. V.

    2011-01-01

    The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the

  7. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  8. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman

    2013-10-01

    A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.

  9. Inverse problems in ordinary differential equations and applications

    CERN Document Server

    Llibre, Jaume

    2016-01-01

    This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.

  10. Eigenvalues calculation algorithms for {lambda}-modes determination. Parallelization approach

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, V. [Universidad Politecnica de Valencia (Spain). Departamento de Sistemas Informaticos y Computacion; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear; Ginestart, D. [Universidad Politecnica de Valencia (Spain). Departamento de Matematica Aplicada

    1997-03-01

    In this paper, we review two methods to obtain the {lambda}-modes of a nuclear reactor, Subspace Iteration method and Arnoldi`s method, which are popular methods to solve the partial eigenvalue problem for a given matrix. In the developed application for the neutron diffusion equation we include improved acceleration techniques for both methods. Also, we propose two parallelization approaches for these methods, a coarse grain parallelization and a fine grain one. We have tested the developed algorithms with two realistic problems, focusing on the efficiency of the methods according to the CPU times. (author).

  11. Initial value problem for the equations of reactor kinetics

    International Nuclear Information System (INIS)

    Kyncl, J.

    1987-08-01

    The initial value problem for the equations of reactor kinetics is solved while taking temperature feedback into account. The space where the problem is solved is chosen such as to correspond to the mathematical properties of cross-section models. The local solution is found by the iterative method, its uniqueness is proved and it is also shown that the existence of global solution is ensured in most cases. Finally, the problem of a weak solution is discussed. (author). 5 refs

  12. Introduction to the Yang-Baxter Equation with Open Problems

    Directory of Open Access Journals (Sweden)

    Florin Nichita

    2012-04-01

    Full Text Available The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C. N. Yang, and in statistical mechanics, in R. J. Baxter’s work. Later, it turned out that this equation plays a crucial role in: quantum groups, knot theory, braided categories, analysis of integrable systems, quantum mechanics, non-commutative descent theory, quantum computing, non-commutative geometry, etc. Many scientists have found solutions for the Yang-Baxter equation, obtaining qualitative results (using the axioms of various algebraic structures or quantitative results (usually using computer calculations. However, the full classification of its solutions remains an open problem. In this paper, we present the (set-theoretical Yang-Baxter equation, we sketch the proof of a new theorem, we state some problems, and discuss about directions for future research.

  13. Inverse Problem for Two-Dimensional Discrete Schr`dinger Equation

    CERN Document Server

    Serdyukova, S I

    2000-01-01

    For two-dimensional discrete Schroedinger equation the boundary-value problem in rectangle M times N with zero boundary conditions is solved. It's stated in this work, that inverse problem reduces to reconstruction of C symmetric five-diagonal matrix with given spectrum and given first k(M,N), 1<-keigenvalues and components of basic eigenvectors. We succeeded to clear the statement of the problem to the end in the process of concrete calculations. Deriving and solving the huge polynomial systems had been perfor...

  14. Partial differential equations & boundary value problems with Maple

    CERN Document Server

    Articolo, George A

    2009-01-01

    Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations.  Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327  Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...

  15. Study of ODE limit problems for reaction-diffusion equations

    Directory of Open Access Journals (Sweden)

    Jacson Simsen

    2018-01-01

    Full Text Available In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \\(L^{\\infty}(\\Omega\\ and the diffusion coefficients go to infinity.

  16. AMDLIBF, IBM 360 Subroutine Library, Eigenvalues, Eigenvectors, Matrix Inversion

    International Nuclear Information System (INIS)

    Wang, Jesse Y.

    1980-01-01

    Description of problem or function: AMDLIBF is a subset of the IBM 360 Subroutine Library at the Applied Mathematics Division at Argonne. This subset includes library category F: Identification/Description: F152S F SYMINV: Invert sym. matrices, solve lin. systems; F154S A DOTP: Double plus precision accum. inner prod.; F156S F RAYCOR: Rayleigh corrections for eigenvalues; F161S F XTRADP: A fast extended precision inner product; F162S A XTRADP: Inner product of two DP real vectors; F202S F1 EIGEN: Eigen-system for real symmetric matrix; F203S F: Driver for F202S; F248S F RITZIT: Largest eigenvalue and vec. real sym. matrix; F261S F EIGINV: Inverse eigenvalue problem; F313S F CQZHES: Reduce cmplx matrices to upper Hess and tri; F314S F CQZVAL: Reduce complex matrix to upper Hess. form; F315S F CQZVEC: Eigenvectors of cmplx upper triang. syst.; F316S F CGG: Driver for complex general Eigen-problem; F402S F MATINV: Matrix inversion and sol. of linear eqns.; F403S F: Driver for F402S; F452S F CHOLLU,CHOLEQ: Sym. decomp. of pos. def. band matrices; F453S F MATINC: Inversion of complex matrices; F454S F CROUT: Solution of simultaneous linear equations; F455S F CROUTC: Sol. of simultaneous complex linear eqns.; F456S F1 DIAG: Integer preserving Gaussian elimination

  17. The Cauchy problem for higher order abstract differential equations

    CERN Document Server

    Xiao, Ti-Jun

    1998-01-01

    This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.

  18. Elasto-plastic torsion problem as an infinity Laplace's equation

    Directory of Open Access Journals (Sweden)

    Ahmed Addou

    2006-12-01

    Full Text Available In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with an operator $A$.

  19. Modified Bateman solution for identical eigenvalues

    International Nuclear Information System (INIS)

    Dreher, Raymond

    2013-01-01

    Highlights: ► Solving indeterminacies due to identical eigenvalues in Bateman’s solution. ► Exact analytical solution of Bateman’s equations for identical eigenvalues. ► Algorithm calculating higher order derivatives appearing in this solution. ► Alternative evaluation of the derivatives through the Taylor polynomial. ► Implementation of an example program demonstrating the developed solution. - Abstract: In this paper we develop a general solution to the Bateman equations taking into account the special case of identical eigenvalues. A characteristic of this new solution is the presence of higher order derivatives. It is shown that the derivatives can be obtained analytically and also computed in an efficient manner

  20. Poisson equation in the Kohn-Sham Coulomb problem

    OpenAIRE

    Manby, F. R.; Knowles, Peter James

    2001-01-01

    We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.

  1. The Cauchy Problem for a Fifth-Order Dispersive Equation

    OpenAIRE

    Wang, Hongjun; Liu, Yongqi; Chen, Yongqiang

    2014-01-01

    This paper is devoted to studying the Cauchy problem for a fifth-order equation. We prove that it is locally well-posed for the initial data in the Sobolev space ${H}^{s}(\\mathbf{R})$ with $s\\ge 1/4$ . We also establish the ill-posedness for the initial data in ${H}^{s}(\\mathbf{R})$ with $s

  2. The eigenvalues of the SN transport matrix

    International Nuclear Information System (INIS)

    Ourique, L.E.; Vilhena, M.T. de

    2005-01-01

    In a recent paper, we analyze the dependence of the eigenvalues of the S N matrix transport, associated with the system of linear differential equations that corresponds to the S N approximations of the transport equation [1]. By considering a control parameter, we have shown that there exist some bifurcation points. This means that the solutions of S N approximations change from oscillatory to non-oscillatory behavior, a different approach of the study by [2]. Nowadays, the one-dimensional transport equation and related problems have been a source of new techniques for solving particular cases as well the development of analytical methods that search aspects of existence and uniqueness of the solutions [3], [4]. In this work, we generalize the results shown in [1], searching for a model of the distribution of the bifurcation points of the S N matrix transport, studying the one-dimensional case in a slab, with anisotropic differential cross section of order 3. The result indicates that the bifurcation points obey a certain rule of distribution. Beside that, the condition number of the matrix transport increases too much in the neighborhood of these points, as we have seen in [1]. (author)

  3. On problems with displacement in boundary conditions for hyperbolic equation

    Directory of Open Access Journals (Sweden)

    Elena A. Utkina

    2016-03-01

    Full Text Available We consider three problems for hyperbolic equation on a plane in the characteristic domain. In these problems at least one of the conditions of the Goursat problem is replaced by nonlocal condition on the relevant characteristic. Non-local conditions are the linear combinations of the normal derivatives at points on opposite characteristics. In case of replacement of one condition we solve the problem by reduction to the Goursat problem for which it exists and is unique. To find the unknown Goursat condition author receives the integral equation, rewrite it in operational form and finds its unique solvability cases. To prove the unique solvability of the equation, the author shows the continuous linear operator and the fact, that some degree of the resulting operator is a contraction mapping. It is known that in this case the required Goursat condition can be written as Neumann series. We considered in detail only one of the tasks, but for both the unique solvability theorems are formulated. If the two conditions are changed, the uniqueness of the solution on the assumption that it exists, is proved by the method of a priori estimates. For this purpose, the inner product and the norm in $L_2$ are used. As a result, the conditions were obtained for the coefficients of a hyperbolic equation that ensure the uniqueness of the solution. An example is given, confirming that these conditions are essential. Namely, constructed an equation whose coefficients do not satisfy the conditions of the last theorem, given the conditions on the characteristics and nontrivial solution is built.

  4. The Dirichlet problem of a conformable advection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Avci Derya

    2017-01-01

    Full Text Available The fractional advection-diffusion equations are obtained from a fractional power law for the matter flux. Diffusion processes in special types of porous media which has fractal geometry can be modelled accurately by using these equations. However, the existing nonlocal fractional derivatives seem complicated and also lose some basic properties satisfied by usual derivatives. For these reasons, local fractional calculus has recently been emerged to simplify the complexities of fractional models defined by nonlocal fractional operators. In this work, the conformable, a local, well-behaved and limit-based definition, is used to obtain a local generalized form of advection-diffusion equation. In addition, this study is devoted to give a local generalized description to the combination of diffusive flux governed by Fick’s law and the advection flux associated with the velocity field. As a result, the constitutive conformable advection-diffusion equation can be easily achieved. A Dirichlet problem for conformable advection-diffusion equation is derived by applying fractional Laplace transform with respect to time t and finite sin-Fourier transform with respect to spatial coordinate x. Two illustrative examples are presented to show the behaviours of this new local generalized model. The dependence of the solution on the fractional order of conformable derivative and the changing values of problem parameters are validated using graphics held by MATLcodes.

  5. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  6. Comment on 'analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation'

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1994-01-01

    We demonstrate that the analytic solution for the set of energy eigenvalues of the semi-relativistic Coulomb problem reported by B. and L. Durand is in clear conflict with an upper bound on the ground-state energy level derived by some straightforward variational procedure. (authors)

  7. Bound-state Dirac eigenvalues for scalar potentials

    International Nuclear Information System (INIS)

    Ram, B.; Arafah, M.

    1981-01-01

    The Dirac equation is solved with a linear and a quadratic scalar potential using an approach in which the Dirac equation is first transformed to a one-dimensional Schroedinger equation with an effective potential. The WKB method is used to obtain the energy eigenvalues. The eigenvalues for the quadratic scalar potential are real just as they are for the linear potential. The results with the linear potential agree well with those obtained by Critchfield. (author)

  8. Energy eigenvalues of helium-like atoms in dense plasmas

    International Nuclear Information System (INIS)

    Hashino, Tasuke; Nakazaki, Shinobu; Kato, Takako; Kashiwabara, Hiromichi.

    1987-04-01

    Calculations based on a variational method with wave functions including the correlation of electrons are carried out to obtain energy eigenvalues of Schroedinger's equation for helium-like atoms embedded in dense plasmas, taking the Debye-Hueckel approximation. Energy eigenvalues for the 1 1 S, 2 1 S, and 2 3 S states are obtained as a function of Debye screening length. (author)

  9. Computation of standard deviations in eigenvalue calculations

    International Nuclear Information System (INIS)

    Gelbard, E.M.; Prael, R.

    1990-01-01

    In Brissenden and Garlick (1985), the authors propose a modified Monte Carlo method for eigenvalue calculations, designed to decrease particle transport biases in the flux and eigenvalue estimates, and in corresponding estimates of standard deviations. Apparently a very similar method has been used by Soviet Monte Carlo specialists. The proposed method is based on the generation of ''superhistories'', chains of histories run in sequence without intervening renormalization of the fission source. This method appears to have some disadvantages, discussed elsewhere. Earlier numerical experiments suggest that biases in fluxes and eigenvalues are negligibly small, even for very small numbers of histories per generation. Now more recent experiments, run on the CRAY-XMP, tend to confirm these earlier conclusions. The new experiments, discussed in this paper, involve the solution of one-group 1D diffusion theory eigenvalue problems, in difference form, via Monte Carlo. Experiments covered a range of dominance ratios from ∼0.75 to ∼0.985. In all cases flux and eigenvalue biases were substantially smaller than one standard deviation. The conclusion that, in practice, the eigenvalue bias is negligible has strong theoretical support. (author)

  10. Schaum's outline of theory and problems of differential equations

    CERN Document Server

    Bronson, Richard

    1994-01-01

    If you want top grades and thorough understanding of differential equations, this powerful study tool is the best tutor you can have! It takes you step-by-step through the subject and gives you 563 accompanying problems with fully worked solutions. You also get plenty of practice problems to do on your own, working at your own speed. (Answers at the back show you how you're doing.) Famous for their clarity, wealth of illustrations and examples, and lack of dreary minutiae, Schaum’s Outlines have sold more than 30 million copies worldwide—and this guide will show you why!

  11. Optimal Control Problems for Partial Differential Equations on Reticulated Domains

    CERN Document Server

    Kogut, Peter I

    2011-01-01

    In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu

  12. Integral geometry and inverse problems for hyperbolic equations

    CERN Document Server

    Romanov, V G

    1974-01-01

    There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re­ search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...

  13. On Selberg's small eigenvalue conjecture and residual eigenvalues

    DEFF Research Database (Denmark)

    Risager, Morten S.

    2011-01-01

    We show that Selberg’s eigenvalue conjecture concerning small eigenvalues of the automorphic Laplacian for congruence groups is equivalent to a conjecture about the non-existence of residual eigenvalues for a perturbed system. We prove this using a combination of methods from asymptotic perturbat...

  14. Maximal imaginery eigenvalues in optimal systems

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    1991-07-01

    Full Text Available In this note we present equations that uniquely determine the maximum possible imaginary value of the closed loop eigenvalues in an LQ-optimal system, irrespective of how the state weight matrix is chosen, provided a real symmetric solution of the algebraic Riccati equation exists. In addition, the corresponding state weight matrix and the solution to the algebraic Riccati equation are derived for a class of linear systems. A fundamental lemma for the existence of a real symmetric solution to the algebraic Riccati equation is derived for this class of linear systems.

  15. On the distribution of eigenvalues of certain matrix ensembles

    International Nuclear Information System (INIS)

    Bogomolny, E.; Bohigas, O.; Pato, M.P.

    1995-01-01

    Invariant random matrix ensembles with weak confinement potentials of the eigenvalues, corresponding to indeterminate moment problems, are investigated. These ensembles are characterized by the fact that the mean density of eigenvalues tends to a continuous function with increasing matrix dimension contrary to the usual cases where it grows indefinitely. It is demonstrated that the standard asymptotic formulae are not applicable in these cases and that the asymptotic distribution of eigenvalues can deviate from the classical ones. (author)

  16. Eigenvalue ratio detection based on exact moments of smallest and largest eigenvalues

    KAUST Repository

    Shakir, Muhammad; Tang, Wuchen; Rao, Anlei; Imran, Muhammad Ali; Alouini, Mohamed-Slim

    2011-01-01

    Detection based on eigenvalues of received signal covariance matrix is currently one of the most effective solution for spectrum sensing problem in cognitive radios. However, the results of these schemes always depend on asymptotic assumptions since the close-formed expression of exact eigenvalues ratio distribution is exceptionally complex to compute in practice. In this paper, non-asymptotic spectrum sensing approach to approximate the extreme eigenvalues is introduced. In this context, the Gaussian approximation approach based on exact analytical moments of extreme eigenvalues is presented. In this approach, the extreme eigenvalues are considered as dependent Gaussian random variables such that the joint probability density function (PDF) is approximated by bivariate Gaussian distribution function for any number of cooperating secondary users and received samples. In this context, the definition of Copula is cited to analyze the extent of the dependency between the extreme eigenvalues. Later, the decision threshold based on the ratio of dependent Gaussian extreme eigenvalues is derived. The performance analysis of our newly proposed approach is compared with the already published asymptotic Tracy-Widom approximation approach. © 2011 ICST.

  17. OPERATOR-RELATED FORMULATION OF THE EIGENVALUE PROBLEM FOR THE BOUNDARY PROBLEM OF ANALYSIS OF A THREE-DIMENSIONAL STRUCTURE WITH PIECEWISE-CONSTANT PHYSICAL AND GEOMETRICAL PARAMETERS ALONGSIDE THE BASIC DIRECTION WITHIN THE FRAMEWORK OF THE DISCRETE-CON

    Directory of Open Access Journals (Sweden)

    Akimov Pavel Alekseevich

    2012-10-01

    Full Text Available The proposed paper covers the operator-related formulation of the eigenvalue problem of analysis of a three-dimensional structure that has piecewise-constant physical and geometrical parameters alongside the so-called basic direction within the framework of a discrete-continual approach (a discrete-continual finite element method, a discrete-continual variation method. Generally, discrete-continual formulations represent contemporary mathematical models that become available for computer implementation. They make it possible for a researcher to consider the boundary effects whenever particular components of the solution represent rapidly varying functions. Another feature of discrete-continual methods is the absence of any limitations imposed on lengths of structures. The three-dimensional problem of elasticity is used as the design model of a structure. In accordance with the so-called method of extended domain, the domain in question is embordered by an extended one of an arbitrary shape. At the stage of numerical implementation, relative key features of discrete-continual methods include convenient mathematical formulas, effective computational patterns and algorithms, simple data processing, etc. The authors present their formulation of the problem in question for an isotropic medium with allowance for supports restrained by elastic elements while standard boundary conditions are also taken into consideration.

  18. Simplified equations for transient heat transfer problems at low Fourier numbers

    DEFF Research Database (Denmark)

    Christensen, Martin Gram; Adler-Nissen, Jens

    2015-01-01

    and validated for infinite slabs, infinite cylinders and spheres and by an industrial application example, covering the center temperature and the volume average temperature. The approach takes ground in the residual difference between a 1 term series solution and a 100 term solution to the Fourier equation...... of the thermal response for solids subjected to convective heat transfer. By representing the residual thermal response as a function of the Biot number and the first eigenvalue, the new approach enables the description of the thermal response in the whole Fourier regime. The presented equation is simple...

  19. On the Dirichlet problem for an elliptic equation

    Directory of Open Access Journals (Sweden)

    Anatolii K. Gushchin

    2015-03-01

    Full Text Available It is well known that the concept of a generalized solution from the Sobolev space $ W_2 ^ 1 $ of the Dirichlet problem for a second order elliptic equation is not a generalization of the classical solution sensu stricto: not every continuous function on the domain boundary is a trace of some function from $ W_2 ^ 1$. The present work is dedicated to the memory of Valentin Petrovich Mikhailov, who proposed a generalization of both these concepts. In the Mikhailov's definition the boundary values of the solution are taken from the $ L_2 $; this definition extends naturally to the case of boundary functions from $ L_p$, $p> 1 $. Subsequently, the author of this work has shown that solutions have the property $ (n-1 $-dimensional continuity; $ n $ is a dimension of the space in which we consider the problem. This property is similar to the classical definition of uniform continuity, but traces of this function on the measures from a special class should be considered instead of values of the function at points. This class is a little more narrow than the class of Carleson measures. The trace of function on the measure is an element of $ L_p $ with respect to this measure. The property $ (n-1 $-dimensional continuity makes it possible to give another definition of the solution of the Dirichlet problem (a definition of $(n-1$-dimensionally continuous solution, which is in the form close to the classical one. This definition does not require smoothness of the boundary. The Dirichlet problem in the Mikhailov's formulation and especially for the $(n-1$-dimensionally continuous solution was studied insufficiently (in contrast to the cases of classical and generalized solutions. First of all, it refers to conditions on the right side of the equation, in which the Dirichlet problem is solvable. In this article the new results in this direction are presented. In addition, we discuss the conditions on the coefficients of the equation and the conditions on

  20. Computation of Double Eigenvalues for Infinite Matrices of a Certain Class

    OpenAIRE

    宮崎, 佳典; Yoshinori, MIYAZAKI; 静岡産業大学 国際情報学部; Faculty of Communications and Informatics, Shizuoka Sangyo University

    2001-01-01

    It has been shown that a series of three-term recurrence relations of a certain class is a powerful tool for solving zeros of some special functions and eigenvalue problems (EVPs) of certain differential equations. Such cases include: the zeros of J_v(z); the zeros of zJ′_v(z)+HJ_v(z); the EVP of the Mathieu differential equation; and the EVP of the spheroidal wave equation. Previously by the author, it was demonstrated that the three-term recurrence relations of the class may be reformulated...

  1. Oscillatory solutions of the Cauchy problem for linear differential equations

    Directory of Open Access Journals (Sweden)

    Gro Hovhannisyan

    2015-06-01

    Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.

  2. Solving Differential Equations Using Modified Picard Iteration

    Science.gov (United States)

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  3. Integrable equations, addition theorems, and the Riemann-Schottky problem

    International Nuclear Information System (INIS)

    Buchstaber, Viktor M; Krichever, I M

    2006-01-01

    The classical Weierstrass theorem claims that, among the analytic functions, the only functions admitting an algebraic addition theorem are the elliptic functions and their degenerations. This survey is devoted to far-reaching generalizations of this result that are motivated by the theory of integrable systems. The authors discovered a strong form of the addition theorem for theta functions of Jacobian varieties, and this form led to new approaches to known problems in the geometry of Abelian varieties. It is shown that strong forms of addition theorems arise naturally in the theory of the so-called trilinear functional equations. Diverse aspects of the approaches suggested here are discussed, and some important open problems are formulated.

  4. The Jump Problem for Mixed-Type Equations with Defects on the Type Change Line

    Directory of Open Access Journals (Sweden)

    Ahmed Maher

    2010-01-01

    Full Text Available The jump problem and problems with defects on the type change line for model mixed-type equations in the mixed domains are investigated. The explicit solutions of the jump problem are obtained by the method of integral equations and by the Fourier transformation method. The problems with defects are reduced to singular integral equations. Some results for the solution of the equation under consideration are discussed concerning the existence and uniqueness for the solution of the suggested problem.

  5. Eigenvalue study of a chaotic resonator

    Energy Technology Data Exchange (ETDEWEB)

    Banova, Todorka [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany); Technische Universitaet Darmstadt, Graduate School of Computational Engineering, Dolivostrasse 15, D-64293 Darmstadt (Germany); Ackermann, Wolfgang; Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)

    2013-07-01

    The field of quantum chaos comprises the study of the manifestations of classical chaos in the properties of the corresponding quantum systems. Within this work, we compute the eigenfrequencies that are needed for the level spacing analysis of a microwave resonator with chaotic characteristics. The major challenges posed by our work are: first, the ability of the approaches to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. The first proposed approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in time domain of a superconducting cavity and by means of signal-processing techniques extracts the eigenfrequencies. The second approach is based on the finite element method with curvilinear elements, which transforms the continuous eigenvalue problem to a discrete generalized eigenvalue problem. Afterwards, the Lanczos algorithm is used for the solution of the generalized eigenvalue problem. In the poster, a summary of the applied algorithms, as well as, critical implementation details together with the simulation results are provided.

  6. Eigenvalues of the -Laplacian and disconjugacy criteria

    Directory of Open Access Journals (Sweden)

    Pinasco Juan P

    2006-01-01

    Full Text Available We derive oscillation and nonoscillation criteria for the one-dimensional -Laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity.

  7. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    Science.gov (United States)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  8. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    Science.gov (United States)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  9. The universal eigenvalue bounds of Payne–Pólya–Weinberger, Hile ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    following universal inequalities for the λi's in the case when n = 2: λk+1 − λk ≤. 2 .... with V ≥ 0 on and eigenvalue problems with a weight (e.g., the fixed ...... [29] Protter M H, Universal inequalities for eigenvalues, Maximum Principles and Eigenvalue. Problems in ... minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl.

  10. ZIP MK 2 : A Fortran code for calculating the eigenvalues (poles and zeros and frequency responses of large sets of linear equations representing complex dynamic systems)

    International Nuclear Information System (INIS)

    Sumner, H.M.

    1969-03-01

    The KDF9/EGDON program ZIP MK 2 is the third of a series of programs for off-line digital computer analysis of dynamic systems: it has been designed specifically to cater for the needs of the design or control engineer in having an input scheme which is minimally computer-oriented. It uses numerical algorithms which are as near fool-proof as the author could discover or devise, and has comprehensive diagnostic sections to help the user in the event of faulty data or machine execution. ZIP MK 2 accepts mathematical models comprising first order linear differential and linear algebraic equations, and from these computes and factorises the transfer functions between specified pairs of output and input variables; if desired, the frequency response may be computed from the computed transfer function. The model input scheme is fully compatible with the frequency response programs FRP MK 1 and MK 2, except that, for ZIP MK 2, transport, or time-delays must be converted by the user to Pade or Bode approximations prior to input. ZIP provides the pole-zero plot, (or complex plane analysis), while FRP provides the frequency response and FIFI the time domain analyses. The pole-zero method of analysis has been little used in the past for complex models, especially where transport delays occur, and one of its primary purposes is as a research tool to investigate the usefulness of this method, for process plant, whether nuclear, chemical or other continuous processes. (author)

  11. Instability of the cored barotropic disc: the linear eigenvalue formulation

    Science.gov (United States)

    Polyachenko, E. V.

    2018-05-01

    Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.

  12. Telescopic projective methods for parabolic differential equations

    CERN Document Server

    Gear, C W

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.

  13. Telescopic projective methods for parabolic differential equations

    International Nuclear Information System (INIS)

    Gear, C.W.; Kevrekidis, Ioannis G.

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components

  14. New approach to calculate bound state eigenvalues

    International Nuclear Information System (INIS)

    Gerck, E.; Gallas, J.A.C.

    1983-01-01

    A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt

  15. The cosmological constant as an eigenvalue of the Hamiltonian constraint in a varying speed of light theory

    Energy Technology Data Exchange (ETDEWEB)

    Garattini, Remo [Univ. degli Studi di Bergamo, Dalmine (Italy). Dept. of Engineering and Applied Sciences; I.N.F.N., Sezione di Milano, Milan (Italy); De Laurentis, Mariafelicia [Tomsk State Pedagogical Univ. (Russian Federation). Dept. of Theoretical Physics; INFN, Sezione di Napoli (Italy); Complutense Univ. di Monte S. Angelo, Napoli (Italy)

    2017-01-15

    In the framework of a Varying Speed of Light theory, we study the eigenvalues associated with the Wheeler-DeWitt equation representing the vacuum expectation values associated with the cosmological constant. We find that the Wheeler-DeWitt equation for the Friedmann-Lemaitre-Robertson-Walker metric is completely equivalent to a Sturm-Liouville problem provided that the related eigenvalue and the cosmological constant be identified. The explicit calculation is performed with the help of a variational procedure with trial wave functionals related to the Bessel function of the second kind K{sub ν}(x). After having verified that in ordinary General Relativity no eigenvalue appears, we find that in a Varying Speed of Light theory this is not the case. Nevertheless, instead of a single eigenvalue, we discover the existence of a family of eigenvalues associated to a negative power of the scale. A brief comment on what happens at the inflationary scale is also included. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Using packaged software for solving two differential equation problems that arise in plasma physics

    International Nuclear Information System (INIS)

    Gaffney, P.W.

    1980-01-01

    Experience in using packaged numerical software for solving two related problems that arise in Plasma physics is described. These problems are (i) the solution of the reduced resistive MHD equations and (ii) the solution of the Grad-Shafranov equation

  17. Dirichlet problem for Hermitian-Einstein equations over almost Hermitian manifolds

    International Nuclear Information System (INIS)

    Xi Zhang

    2004-07-01

    In this paper, we investigate the Dirichlet problem for Hermitian-Einstein equations on complex vector bundle over almost Hermitian manifolds, and we obtain the unique solubility of the Dirichlet problem for Hermitian-Einstein equations. (author)

  18. Two-group k-eigenvalue benchmark calculations for planar geometry transport in a binary stochastic medium

    International Nuclear Information System (INIS)

    Davis, I.M.; Palmer, T.S.

    2005-01-01

    Benchmark calculations are performed for neutron transport in a two material (binary) stochastic multiplying medium. Spatial, angular, and energy dependence are included. The problem considered is based on a fuel assembly of a common pressurized water reactor. The mean chord length through the assembly is determined and used as the planar geometry system length. According to assumed or calculated material distributions, this system length is populated with alternating fuel and moderator segments of random size. Neutron flux distributions are numerically computed using a discretized form of the Boltzmann transport equation employing diffusion synthetic acceleration. Average quantities (group fluxes and k-eigenvalue) and variances are calculated from an ensemble of realizations of the mixing statistics. The effects of varying two parameters in the fuel, two different boundary conditions, and three different sets of mixing statistics are assessed. A probability distribution function (PDF) of the k-eigenvalue is generated and compared with previous research. Atomic mix solutions are compared with these benchmark ensemble average flux and k-eigenvalue solutions. Mixing statistics with large standard deviations give the most widely varying ensemble solutions of the flux and k-eigenvalue. The shape of the k-eigenvalue PDF qualitatively agrees with previous work. Its overall shape is independent of variations in fuel cross-sections for the problems considered, but its width is impacted by these variations. Statistical distributions with smaller standard deviations alter the shape of this PDF toward a normal distribution. The atomic mix approximation yields large over-predictions of the ensemble average k-eigenvalue and under-predictions of the flux. Qualitatively correct flux shapes are obtained in some cases. These benchmark calculations indicate that a model which includes higher statistical moments of the mixing statistics is needed for accurate predictions of binary

  19. Iterative methods for the detection of Hopf bifurcations in finite element discretisation of incompressible flow problems

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Garratt, T.J.; Spence, A.

    1992-03-01

    This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalised eigenvalue problems arising from mixed finite element discretisations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and can be used in a scheme to determine the stability of steady state solutions and to detect Hopf bifurcations. We introduce a modified Cayley transform of the generalised eigenvalue problem which overcomes a drawback of the usual Cayley transform applied to such problems. Standard iterative methods are then applied to the transformed eigenvalue problem to compute approximations to the eigenvalue of smallest real part. Numerical experiments are performed using a model of double diffusive convection. (author)

  20. A method for the solution of the RPA eigenvalue

    International Nuclear Information System (INIS)

    Hoffman, M.J.H.; De Kock, P.R.

    1986-01-01

    The RPA eigenvalue problem requires the diagonalization of a 2nx2n matrix. In practical calculations, n (the number of particle-hole basis states) can be a few hundred and the diagonalization of such a large non-symmetric matrix may take quite a long time. In this report we firstly discuss sufficient conditions for real and non-zero RPA eigenvalues. The presence of zero or imaginary eigenvalues is related to the relative importance of the groundstate correlations to the total interaction energy. We then rewrite the RPA eigenvalue problem for the cases where these conditions are fulfilled in a form which only requires the diagonalization of two symmetric nxn matrices. The extend to which this method can be applied when zero eigenvalues occur, is also discussed

  1. Numerical methods for differential equations and applications

    International Nuclear Information System (INIS)

    Ixaru, L.G.

    1984-01-01

    This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

  2. Problems of low-parameter equations of state

    Science.gov (United States)

    Petrik, G. G.

    2017-11-01

    The paper focuses on the system approach to problems of low-parametric equations of state (EOS). It is a continuation of the investigations in the field of substantiated prognosis of properties on two levels, molecular and thermodynamic. Two sets of low-parameter EOS have been considered based on two very simple molecular-level models. The first one consists of EOS of van der Waals type (a modification of van der Waals EOS proposed for spheres). The main problem of these EOS is a weak connection with the micro-level, which raise many uncertainties. The second group of EOS has been derived by the author independently of the ideas of van der Waals based on the model of interacting point centers (IPC). All the parameters of the EOS have a meaning and are associated with the manifestation of attractive and repulsive forces. The relationship between them is found to be the control parameter of the thermodynamic level. In this case, EOS IPC passes into a one-parameter family. It is shown that many EOS of vdW-type can be included in the framework of the PC model. Simultaneously, all their parameters acquire a physical meaning.

  3. Optimal control problem for the extended Fisher–Kolmogorov equation

    Indian Academy of Sciences (India)

    by methods of optimal control, such as chemical engineering and vehicle ... ern optimal control theories and applied models are not only represented by .... Obviously, equation (2.5) is an ordinary differential equation and according to ODE.

  4. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  5. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    OpenAIRE

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  6. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    International Nuclear Information System (INIS)

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-01-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  7. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  8. A Bootstrap Approach to Eigenvalue Correction

    NARCIS (Netherlands)

    Hendrikse, A.J.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2009-01-01

    Eigenvalue analysis is an important aspect in many data modeling methods. Unfortunately, the eigenvalues of the sample covariance matrix (sample eigenvalues) are biased estimates of the eigenvalues of the covariance matrix of the data generating process (population eigenvalues). We present a new

  9. A robust multilevel simultaneous eigenvalue solver

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1993-01-01

    Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.

  10. Overview of the ArbiTER edge plasma eigenvalue code

    Science.gov (United States)

    Baver, Derek; Myra, James; Umansky, Maxim

    2011-10-01

    The Arbitrary Topology Equation Reader, or ArbiTER, is a flexible eigenvalue solver that is currently under development for plasma physics applications. The ArbiTER code builds on the equation parser framework of the existing 2DX code, extending it to include a topology parser. This will give the code the capability to model problems with complicated geometries (such as multiple X-points and scrape-off layers) or model equations with arbitrary numbers of dimensions (e.g. for kinetic analysis). In the equation parser framework, model equations are not included in the program's source code. Instead, an input file contains instructions for building a matrix from profile functions and elementary differential operators. The program then executes these instructions in a sequential manner. These instructions may also be translated into analytic form, thus giving the code transparency as well as flexibility. We will present an overview of how the ArbiTER code is to work, as well as preliminary results from early versions of this code. Work supported by the U.S. DOE.

  11. Solutions of the Noh Problem for Various Equations of State Using Lie Groups

    International Nuclear Information System (INIS)

    Axford, R.A.

    1998-01-01

    A method for developing invariant equations of state for which solutions of the Noh problem will exist is developed. The ideal gas equation of state is shown to be a special case of the general method. Explicit solutions of the Noh problem in planar, cylindrical and spherical geometry are determined for a Mie-Gruneisen and the stiff gas equation of state

  12. Spectral inversion of an indefinite Sturm-Liouville problem due to Richardson

    International Nuclear Information System (INIS)

    Shanley, Paul E

    2009-01-01

    We study an indefinite Sturm-Liouville problem due to Richardson whose complicated eigenvalue dependence on a parameter has been a puzzle for decades. In atomic physics a process exists that inverts the usual Schroedinger situation of an energy eigenvalue depending on a coupling parameter into the so-called Sturmian problem where the coupling parameter becomes the eigenvalue which then depends on the energy. We observe that the Richardson equation is of the Sturmian type. This means that the Richardson and its related Schroedinger eigenvalue functions are inverses of each other and that the Richardson spectrum is therefore no longer a puzzle

  13. On the Eikonal equation in the pedestrian flow problem

    Science.gov (United States)

    Felcman, J.; Kubera, P.

    2017-07-01

    We consider the Pedestrian Flow Equations (PFEs) as the coupled system formed by the Eikonal equation and the first order hyperbolic system with the source term. The hyperbolic system consists of the continuity equation and momentum equation of fluid dynamics. Specifying the social and pressure forces in the momentum equation we come to the assumption that each pedestrian is trying to move in a desired direction (e.g. to the exit in the panic situation) with a desired velocity, where his velocity and the direction of movement depend on the density of pedestrians in his neighborhood. In [1] we used the model, where the desired direction of movement is given by the solution of the Eikonal equation (more precisely by the gradient of the solution). Here we avoid the solution of the Eikonal equation, which is the novelty of the paper. Based on the fact that the solution of the Eikonal equation has the meaning of the shortest time to reach the exit, we define explicitly such a function in the framework of the Dijkstra's algorithm for the shortest path in the graph. This is done at the discrete level of the solution. As the graph we use the underlying triangulation, where the norm of each edge is density depending and has the dimension of the time. The numerical examples of the solution of the PFEs with and without the solution of the Eikonal equation are presented.

  14. INDEFINITE COPOSITIVE MATRICES WITH EXACTLY ONE POSITIVE EIGENVALUE OR EXACTLY ONE NEGATIVE EIGENVALUE

    NARCIS (Netherlands)

    Jargalsaikhan, Bolor

    Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out

  15. ODEPACK, Initial Value Problems of Ordinary Differential Equation System

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    I - Description of program or function: ODEPACK is a collection of Fortran solvers for the initial value problem for ordinary differential equation systems. It consists of nine solvers, namely a basic solver called LSODE and eight variants of it -- LSODES, LSODA, LSODAR, LSODPK, LSODKR, LSODI, LSOIBT, and LSODIS. The collection is suitable for both stiff and non-stiff systems. It includes solvers for systems given in explicit form, dy/dt = f(t,y), and also solvers for systems given in linearly implicit form, A(t,y) dy/dt = g(t,y). Two of the solvers use general sparse matrix solvers for the linear systems that arise. Two others use iterative (preconditioned Krylov) methods instead of direct methods for these linear systems. The most recent addition is LSODIS, which solves implicit problems with general sparse treatment of all matrices involved. The ODEPACK solvers are written in standard Fortran 77, with a few exceptions, and with minimal machine dependencies. There are separate double and single precision versions of ODEPACK. The actual solver names are those given above with a prefix of D- or S- for the double or single precision version, respectively, i.e. DLSODE/SLSODE, etc. Each solver consists of a main driver subroutine having the same name as the solver and some number of subordinate routines. For each solver, there is also a demonstration program, which solves one or two simple problems in a somewhat self-checking manner. A. Solvers for explicitly given systems. For each of the following solvers, it is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. 1. LSODE (Livermore Solver for Ordinary Differential Equations) is the basic solver of the collection. It solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as

  16. Boundary value problems for multi-term fractional differential equations

    Science.gov (United States)

    Daftardar-Gejji, Varsha; Bhalekar, Sachin

    2008-09-01

    Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.

  17. NOT LOCAL PROBLEM OF TYPE OF THE PROBLEM BITSADZE – SAMARSKY FOR THE EQUATION THE MIXED TYPE IN UNLIMITED AREA

    Directory of Open Access Journals (Sweden)

    Zunnunov R.T.

    2010-04-01

    Full Text Available In this paper the existence and uniqueness of the solution of the nonlocal boundary value problem for the mixed type equation in unbounded domain are proved.In this paper the existence and uniqueness of the solution of the non-local boundary value problem for the mixed type equation in unbounded domain are proved.

  18. Estimates of the eigenvalues of operator arising in swelling pressure model

    International Nuclear Information System (INIS)

    Kanguzhin, Baltabek; Zhapsarbayeva, Lyailya

    2016-01-01

    Swelling pressures from materials confined by structures can cause structural deformations and instability. Due to the complexity of interactions between expansive solid and solid-liquid equilibrium, the forces exerting on retaining structures from swelling are highly nonlinear. This work is our initial attempt to study a simplistic spectral problem based on the Euler-elastic beam theory and some simplistic swelling pressure model. In this work estimates of the eigenvalues of some initial/boundary value problem for nonlinear Euler-elastic beam equation are obtained.

  19. On the General Equation of the Second Degree

    Indian Academy of Sciences (India)

    IAS Admin

    On the General Equation of the Second Degree. Keywords. Conics, eigenvalues, eigenvec- tors, pairs of lines. S Kesavan. S Kesavan works at the. Institute for Mathematical. Sciences, Chennai. His area of interest is partial differential equations with specialization in elliptic problems connected to homogenization, control.

  20. Leak detection of complex pipelines based on the filter diagonalization method: robust technique for eigenvalue assessment

    International Nuclear Information System (INIS)

    Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo

    2010-01-01

    The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors

  1. Three-dimensional multiple reciprocity boundary element method for one-group neutron diffusion eigenvalue computations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1996-01-01

    The multiple reciprocity method (MRM) in conjunction with the boundary element method has been employed to solve one-group eigenvalue problems described by the three-dimensional (3-D) neutron diffusion equation. The domain integral related to the fission source is transformed into a series of boundary-only integrals, with the aid of the higher order fundamental solutions based on the spherical and the modified spherical Bessel functions. Since each degree of the higher order fundamental solutions in the 3-D cases has a singularity of order (1/r), the above series of boundary integrals requires additional terms which do not appear in the 2-D MRM formulation. The critical eigenvalue itself can be also described using only boundary integrals. Test calculations show that Wielandt's spectral shift technique guarantees rapid and stable convergence of 3-D MRM computations. (author)

  2. An analytical spatial reconstruction algorithm for the SD-SGF-CN hybrid nodal method for one-speed X,Y-geometry SN eigenvalue problems

    International Nuclear Information System (INIS)

    Menezes, Welton Alves; Alves Filho, Hermes; Barros, Ricardo C.

    2009-01-01

    In this paper the X,Y-geometry SD-SGF-CN spectral nodal method, cf. spectral diamond-spectral Green's function-constant nodal, is used to determine the one-speed node-edge average angular fluxes in heterogeneous domains. This hybrid spectral nodal method uses the spectral diamond (SD) auxiliary equation for the multiplying regions and the spectral Green's function (SGF) auxiliary equation for the non-multiplying regions of the domain. Moreover, we consider constant approximations for the transverse-leakage terms in the transverse integrated S N nodal equations. We solve the SD-SGF-CN equations using the one-node block inversion (NBI) iterative scheme, which uses the most recent estimates available for the node-entering fluxes to evaluate the node-exiting fluxes in the directions that constitute the incoming fluxes for the adjacent node. Using these results, we offer an algorithm for analytical reconstruction of the coarse-mesh nodal solution within each spatial node, as localized numerical solutions are not generated by usual accurate nodal methods. Numerical results are presented to illustrate the accuracy of the present algorithm. (author)

  3. Numerical computations of interior transmission eigenvalues for scattering objects with cavities

    International Nuclear Information System (INIS)

    Peters, Stefan; Kleefeld, Andreas

    2016-01-01

    In this article we extend the inside-outside duality for acoustic transmission eigenvalue problems by allowing scattering objects that may contain cavities. In this context we provide the functional analytical framework necessary to transfer the techniques that have been used in Kirsch and Lechleiter (2013 Inverse Problems, 29 104011) to derive the inside-outside duality. Additionally, extensive numerical results are presented to show that we are able to successfully detect interior transmission eigenvalues with the inside-outside duality approach for a variety of obstacles with and without cavities in three dimensions. In this context, we also discuss the advantages and disadvantages of the inside-outside duality approach from a numerical point of view. Furthermore we derive the integral equations necessary to extend the algorithm in Kleefeld (2013 Inverse Problems, 29 104012) to compute highly accurate interior transmission eigenvalues for scattering objects with cavities, which we will then use as reference values to examine the accuracy of the inside-outside duality algorithm. (paper)

  4. Generalized Eigenvalues for pairs on heritian matrices

    Science.gov (United States)

    Rublein, George

    1988-01-01

    A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.

  5. A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method

    Directory of Open Access Journals (Sweden)

    Sandile S. Motsa

    2012-01-01

    Full Text Available We present a novel application of the successive linearisation method to the classical Van der Pol and Duffing oscillator equations. By recasting the governing equations as nonlinear eigenvalue problems we obtain accurate values of the frequency and amplitude. We demonstrate that the proposed method can be used to obtain the limit cycle and bifurcation diagrams of the governing equations. Comparison with exact and other results in the literature shows that the method is accurate and effective in finding solutions of nonlinear equations with oscillatory solutions, nonlinear eigenvalue problems, and other nonlinear problems with bifurcations.

  6. On the solvability of initial-value problems for nonlinear implicit difference equations

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngoc Yen

    2004-07-01

    Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.

  7. A non linear half space problem for radiative transfer equations. Application to the Rosseland approximation

    International Nuclear Information System (INIS)

    Sentis, R.

    1984-07-01

    The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms

  8. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan

    2016-01-01

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic

  9. Dirichlet problem for quasi-linear elliptic equations

    Directory of Open Access Journals (Sweden)

    Azeddine Baalal

    2002-10-01

    Full Text Available We study the Dirichlet Problem associated to the quasilinear elliptic problem $$ -sum_{i=1}^{n}frac{partial }{partial x_i}mathcal{A}_i(x,u(x, abla u(x+mathcal{B}(x,u(x,abla u(x=0. $$ Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory. Submitted April 9, 2002. Published October 2, 2002. Math Subject Classifications: 31C15, 35B65, 35J60. Key Words: Supersolution; Dirichlet problem; obstacle problem; nonlinear potential theory.

  10. Application of Monte Carlo method to solving boundary value problem of differential equations

    International Nuclear Information System (INIS)

    Zuo Yinghong; Wang Jianguo

    2012-01-01

    This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)

  11. A local-global problem for linear differential equations

    NARCIS (Netherlands)

    Put, Marius van der; Reversat, Marc

    2008-01-01

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  12. A local-global problem for linear differential equations

    NARCIS (Netherlands)

    Put, Marius van der; Reversat, Marc

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  13. Solving the Schroedinger equation using Smolyak interpolants

    International Nuclear Information System (INIS)

    Avila, Gustavo; Carrington, Tucker Jr.

    2013-01-01

    In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased

  14. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  15. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathe- matics and physics. ... ing this science [mechanics],and the art of solving the problems pertaining to it, to .... used tools for finding maxima and minima of functions of several variables.

  16. Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation

    Directory of Open Access Journals (Sweden)

    Salvatore Bonafede

    2017-10-01

    Full Text Available We prove the existence of bounded solutions of Neumann problem for nonlinear degenerate elliptic equations of second order in divergence form. We also study some properties as the Phragmen-Lindelof property and the asymptotic behavior of the solutions of Dirichlet problem associated to our equation in an unbounded domain.

  17. Boundary-value problems with free boundaries for elliptic systems of equations

    CERN Document Server

    Monakhov, V N

    1983-01-01

    This book is concerned with certain classes of nonlinear problems for elliptic systems of partial differential equations: boundary-value problems with free boundaries. The first part has to do with the general theory of boundary-value problems for analytic functions and its applications to hydrodynamics. The second presents the theory of quasiconformal mappings, along with the theory of boundary-value problems for elliptic systems of equations and applications of it to problems in the mechanics of continuous media with free boundaries: problems in subsonic gas dynamics, filtration theory, and problems in elastico-plasticity.

  18. Some Optimization Problems for p-Laplacian Type Equations

    International Nuclear Information System (INIS)

    Del Pezzo, L. M.; Fernandez Bonder, J.

    2009-01-01

    In this paper we study some optimization problems for nonlinear elastic membranes. More precisely, we consider the problem of optimizing the cost functional over some admissible class of loads f where u is the (unique) solution to the problem -Δ p u+ vertical bar u vertical bar p-2 u=0 in Ω with vertical bar ∇u vertical bar p-2 u ν =f on ∂Ω

  19. Existence of solutions to boundary value problem of fractional differential equations with impulsive

    Directory of Open Access Journals (Sweden)

    Weihua JIANG

    2016-12-01

    Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.

  20. Homogenization of the critically spectral equation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Allaire, G. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Paris-6 Univ., 75 (France). Lab. d' Analyse Numerique; Bal, G. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches

    1998-07-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  1. Homogenization of the critically spectral equation in neutron transport

    International Nuclear Information System (INIS)

    Allaire, G.; Paris-6 Univ., 75; Bal, G.

    1998-01-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  2. Some problems on nonlinear hyperbolic equations and applications

    CERN Document Server

    Peng, YueJun

    2010-01-01

    This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.

  3. Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative

    Directory of Open Access Journals (Sweden)

    Fatima G. Khushtova

    2016-03-01

    Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.

  4. Integral equations of the first kind, inverse problems and regularization: a crash course

    International Nuclear Information System (INIS)

    Groetsch, C W

    2007-01-01

    This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided

  5. Symmetry Reduction and Cauchy Problems for a Class of Fourth-Order Evolution Equations

    International Nuclear Information System (INIS)

    Li Jina; Zhang Shunli

    2008-01-01

    We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations to Cauchy problems for systems of ordinary differential equations (ODEs). We classify a class of fourth-order evolution equations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to show the main reduction procedure. These reductions cannot be derived within the framework of the standard Lie approach, which hints that the technique presented here is something essential for the dimensional reduction of evolution equations

  6. Exact results for the many-body problem in one dimension with repulsive delta-function interaction

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    The repulsive δ interaction problem in one dimension for N particles is reduced, through the use of Bethe's hypothesis, to an eigenvalue problem of matrices of the same sizes as the irreducible representations R of the permutation group S/sub N/. For some R's this eigenvalue problem itself is solved by a second use of Bethe's hypothesis, in a generalized form. In particular, the ground-state problem of spin-1/2 fermions is reduced to a generalized Fredholm equation

  7. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  8. The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases

    KAUST Repository

    Gomes, Diogo A.; Mitake, Hiroyoshi; Tran, Hung V.

    2018-01-01

    Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton–Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton–Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.

  9. Collage-based approaches for elliptic partial differential equations inverse problems

    Science.gov (United States)

    Yodzis, Michael; Kunze, Herb

    2017-01-01

    The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.

  10. The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases

    KAUST Repository

    Gomes, Diogo A.

    2018-01-26

    Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton–Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton–Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.

  11. Gravitational lensing by eigenvalue distributions of random matrix models

    Science.gov (United States)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  12. Observation problems posed for the Klein-Gordon equation

    Directory of Open Access Journals (Sweden)

    András Szijártó

    2012-01-01

    Sufficient conditions are obtained that guarantee the solvability of each of four observation problems with given state functions $f, \\ g$ at two distinct time instants $-\\inftyproblem, and the representability of $t_2-t_1$ as a rational multiple of $\\frac{2l}{a}$. The reconstruction of the unknown initial data $(u(x,0, u_t(x,0$ as the elements of $D^{s+1}(0,l \\times D^s(0,l$ are given by means of the method of Fourier expansions.

  13. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  14. The Hill's three-body problem: a new deduction of motion equations

    International Nuclear Information System (INIS)

    Fuente Marcos, C. de la.

    1995-01-01

    Although the Hill's problem has been considered traditionally as a particular case of the restricted problem, it is not but rather a different problem with the same degree of generality. In this paper it is presented a new derivation of the motion equations obtained originally by Hill in 1878 as well as a brief discussion about its possible applications. (Author) 13 refs

  15. A singular initial value problem for some functional differential equations

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2004-01-01

    Full Text Available For the initial value problem trx′(t=at+b1x(t+b2x(q1t+b3trx′(q2t+φ(t,x(t,x(q1t,x′(t,x′(q2t, x(0=0, where r>1, 0

  16. The non-differentiable solution for local fractional Laplace equation in steady heat-conduction problem

    Directory of Open Access Journals (Sweden)

    Chen Jie-Dong

    2016-01-01

    Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.

  17. RBSDE's with jumps and the related obstacle problems for integral-partial differential equations

    Institute of Scientific and Technical Information of China (English)

    FAN; Yulian

    2006-01-01

    The author proves, when the noise is driven by a Brownian motion and an independent Poisson random measure, the one-dimensional reflected backward stochastic differential equation with a stopping time terminal has a unique solution. And in a Markovian framework, the solution can provide a probabilistic interpretation for the obstacle problem for the integral-partial differential equation.

  18. On the method of inverse scattering problem and Baecklund transformations for supersymmetric equations

    International Nuclear Information System (INIS)

    Chaichian, M.; Kulish, P. P.

    1978-04-01

    Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)

  19. On Global Solutions for the Cauchy Problem of a Boussinesq-Type Equation

    OpenAIRE

    Taskesen, Hatice; Polat, Necat; Ertaş, Abdulkadir

    2012-01-01

    We will give conditions which will guarantee the existence of global weak solutions of the Boussinesq-type equation with power-type nonlinearity $\\gamma {|u|}^{p}$ and supercritical initial energy. By defining new functionals and using potential well method, we readdressed the initial value problem of the Boussinesq-type equation for the supercritical initial energy case.

  20. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  1. Transmission problems for the Helmholtz equation for a rectilinear-circular lune

    Directory of Open Access Journals (Sweden)

    Volodymyr Denysenko

    2007-01-01

    Full Text Available The question related to the construction of the solution of plane transmission problem for the Helmholtz equation in a rectilinear-circular lune is considered. An approach is proposed based on the method of partial domains and the principle of reflection for the solutions of the Helmholtz equation through the segment.

  2. Boundary value problems in time for wave equations on RN

    Directory of Open Access Journals (Sweden)

    M. W. Smiley

    1990-01-01

    Full Text Available Let Lλ denote the linear operator associated with the radially symmetric form of the wave operator ∂t2−Δ+λ together with the side conditions of decay to zero as r=‖x‖→+∞ and T-periodicity in time. Thus Lλω=ωtt−(ωrr+N−1rωr+λω, when there are N space variables. For δ,R,T>0 let DT,R=(0,T×(R,+∞ and Lδ2(D denote the weighted L2 space with weight function exp(δr. It is shown that Lλ is a Fredholm operator from dom(Lλ⊂L2(D onto Lδ2(D with non-negative index depending on λ. If [2πj/T]2<λ≤[2π(j+1/T]2 then the index is 2j+1. In addition it is shown that Lλ has a bounded partial inverse Kλ:Lδ2(D→Hδ1(D⋂Lδ∞(D, with all spaces weighted by the function exp(δr. This provides a key ingredient for the analysis of nonlinear problems via the method of alternative problems.

  3. Sumudu transform series expansion method for solving the local fractional Laplace equation in fractal thermal problems

    Directory of Open Access Journals (Sweden)

    Guo Zheng-Hong

    2016-01-01

    Full Text Available In this article, the Sumudu transform series expansion method is used to handle the local fractional Laplace equation arising in the steady fractal heat-transfer problem via local fractional calculus.

  4. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem

    2017-01-01

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data

  5. Method for solving the periodic problem for integro-differential equations

    Directory of Open Access Journals (Sweden)

    Snezhana G. Hristova

    1989-05-01

    Full Text Available In the paper a monotone-iterative method for approximate finding a couple of minimal and maximal quasisolutions of the periodic problem for a system of integro-differential equations of Volterra type is justified.

  6. Existence of the Optimal Control for Stochastic Boundary Control Problems Governed by Semilinear Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Weifeng Wang

    2014-01-01

    Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.

  7. Initial-value problems for first-order differential recurrence equations with auto-convolution

    Directory of Open Access Journals (Sweden)

    Mircea Cirnu

    2011-01-01

    Full Text Available A differential recurrence equation consists of a sequence of differential equations, from which must be determined by recurrence a sequence of unknown functions. In this article, we solve two initial-value problems for some new types of nonlinear (quadratic first order homogeneous differential recurrence equations, namely with discrete auto-convolution and with combinatorial auto-convolution of the unknown functions. In both problems, all initial values form a geometric progression, but in the second problem the first initial value is exempted and has a prescribed form. Some preliminary results showing the importance of the initial conditions are obtained by reducing the differential recurrence equations to algebraic type. Final results about solving the considered initial value problems, are shown by mathematical induction. However, they can also be shown by changing the unknown functions, or by the generating function method. So in a remark, we give a proof of the first theorem by the generating function method.

  8. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations

    Directory of Open Access Journals (Sweden)

    M. G. Crandall

    1999-07-01

    Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.

  9. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    Science.gov (United States)

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  10. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  11. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-10

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.

  12. The Laplace equation boundary value problems on bounded and unbounded Lipschitz domains

    CERN Document Server

    Medková, Dagmar

    2018-01-01

    This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.

  13. Evaluation of Eigenvalue Routines for Large Scale Applications

    Directory of Open Access Journals (Sweden)

    V.A. Tischler

    1994-01-01

    Full Text Available The NASA structural analysis (NASTRAN∗ program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this article is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the block Lanczos aLgorithm. This eigenvalue routine is now availabLe in several mathematics libraries as well as in severaL commerciaL versions of NASTRAN. In addition, the eRA Y library maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The block Lanczos algorithm was found to be extremely efficient, particularly for very large problems.

  14. An algebraic substructuring using multiple shifts for eigenvalue computations

    International Nuclear Information System (INIS)

    Ko, Jin Hwan; Jung, Sung Nam; Byun, Do Young; Bai, Zhaojun

    2008-01-01

    Algebraic substructuring (AS) is a state-of-the-art method in eigenvalue computations, especially for large-sized problems, but originally it was designed to calculate only the smallest eigenvalues. Recently, an updated version of AS has been introduced to calculate the interior eigenvalues over a specified range by using a shift concept that is referred to as the shifted AS. In this work, we propose a combined method of both AS and the shifted AS by using multiple shifts for solving a considerable number of eigensolutions in a large-sized problem, which is an emerging computational issue of noise or vibration analysis in vehicle design. In addition, we investigated the accuracy of the shifted AS by presenting an error criterion. The proposed method has been applied to the FE model of an automobile body. The combined method yielded a higher efficiency without loss of accuracy in comparison to the original AS

  15. Hybrid inverse problems for a system of Maxwell’s equations

    International Nuclear Information System (INIS)

    Bal, Guillaume; Zhou, Ting

    2014-01-01

    This paper concerns the quantitative step of the medical imaging modality thermo-acoustic tomography (TAT). We model the radiation propagation by a system of Maxwell’s equations. We show that the index of refraction of light and the absorption coefficient (conductivity) can be uniquely and stably reconstructed from a sufficiently large number of TAT measurements. Our method is based on verifying that the linearization of the inverse problem forms a redundant elliptic system of equations. We also observe that the reconstructions are qualitatively quite different from the setting where radiation is modeled by a scalar Helmholtz equation as in Bal G et al (2011 Inverse Problems 27 055007). (paper)

  16. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2016-05-15

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.

  17. Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology.

    Science.gov (United States)

    Zalaletdinov, R. M.

    1998-04-01

    The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.

  18. Methods of intermediate problems for eigenvalues

    CERN Document Server

    Weinstein, Alexander

    1972-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  19. An Optimal Lower Eigenvalue System

    Directory of Open Access Journals (Sweden)

    Yingfan Liu

    2011-01-01

    Full Text Available An optimal lower eigenvalue system is studied, and main theorems including a series of necessary and suffcient conditions concerning existence and a Lipschitz continuity result concerning stability are obtained. As applications, solvability results to some von-Neumann-type input-output inequalities, growth, and optimal growth factors, as well as Leontief-type balanced and optimal balanced growth paths, are also gotten.

  20. Eigenvalue pinching on spinc manifolds

    Science.gov (United States)

    Roos, Saskia

    2017-02-01

    We derive various pinching results for small Dirac eigenvalues using the classification of spinc and spin manifolds admitting nontrivial Killing spinors. For this, we introduce a notion of convergence for spinc manifolds which involves a general study on convergence of Riemannian manifolds with a principal S1-bundle. We also analyze the relation between the regularity of the Riemannian metric and the regularity of the curvature of the associated principal S1-bundle on spinc manifolds with Killing spinors.

  1. Dynamics of second order rational difference equations with open problems and conjectures

    CERN Document Server

    Kulenovic, Mustafa RS

    2001-01-01

    This self-contained monograph provides systematic, instructive analysis of second-order rational difference equations. After classifying the various types of these equations and introducing some preliminary results, the authors systematically investigate each equation for semicycles, invariant intervals, boundedness, periodicity, and global stability. Of paramount importance in their own right, the results presented also offer prototypes towards the development of the basic theory of the global behavior of solutions of nonlinear difference equations of order greater than one. The techniques and results in this monograph are also extremely useful in analyzing the equations in the mathematical models of various biological systems and other applications. Each chapter contains a section of open problems and conjectures that will stimulate further research interest in working towards a complete understanding of the dynamics of the equation and its functional generalizations-many of them ideal for research project...

  2. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    CERN Document Server

    Zhu, C

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  3. Solving Some Special Cases of Monomial Ratio Equations Appearing Frequently in Physical and Engineering Problems

    Directory of Open Access Journals (Sweden)

    Enrique Castillo

    2016-01-01

    Full Text Available We first show that monomial ratio equations are not only very common in Physics and Engineering, but the natural type of equations in many practical problems. More precisely, in the case of models involving scale variables if the used formulas are not of this type they are not physically valid. The consequence is that when estimating the model parameters we are faced with systems of monomial ratio equations that are nonlinear and difficult to solve. In this paper, we provide an original algorithm to obtain the unique solutions of systems of equations made of linear combinations of monomial ratios whose coefficient matrix has a proper null space with low dimension that permits solving the problem in a simple way. Finally, we illustrate the proposed methods by their application to two practical problems from the hydraulic and structural fields.

  4. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    International Nuclear Information System (INIS)

    Zhu, Changjiang; Duan, Renjun

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation

  5. Augmentation of DAA Staggered – Solution Equations in Underwater Shock Problems for Singular Structural Mass Matrices

    Directory of Open Access Journals (Sweden)

    John A. DeRuntz Jr.

    2005-01-01

    Full Text Available The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA. Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equations, and the total pressure applied to the structural equations on its right hand side. By formally solving for the acceleration vector from the structural system and substituting it into its place in the DAA equations, the augmentation introduces a term involving the inverse of the structural mass matrix. However there exist at least two important classes of problems in which the structural mass matrix is singular. This paper develops a method to carry out the augmentation for such problems using a generalized inverse technique.

  6. A Schur Method for Designing LQ-optimal Systems with Prescribed Eigenvalues

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    1990-01-01

    Full Text Available In this paper a new algorithm for solving the LQ-optimal pole placement problem is presented. The method studied is a variant of the classical eigenvector approach and instead uses a set of Schur vectors, thereby gaining substantial numerical advantages. An important task in this method is the LQ-optimal pole placement problem for a second order (sub system. The paper presents a detailed analytical solution to this problem. This part is not only important for solving the general n-dimensional problem but also provides an understanding of the behaviour of an optimal system: The paper shows that in some cases it is an infinite number; in others a finite number, and in still others, non state weighting matrices Q that give the system a set of prescribed eigenvalues. Equations are presented that uniquely determine these state weight matrices as a function of the new prescribed eigcnvalues. From this result we have been able to derive the maximum possible imaginary part of the eigenvalues in an LQ-optimal system, irrespective of how the state weight matrix is chosen.

  7. Singular Solutions to a (3 + 1-D Protter-Morawetz Problem for Keldysh-Type Equations

    Directory of Open Access Journals (Sweden)

    Nedyu Popivanov

    2017-01-01

    Full Text Available We study a boundary value problem for (3 + 1-D weakly hyperbolic equations of Keldysh type (problem PK. The Keldysh-type equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point. There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence of a generalized solution with fixed order of singularity.

  8. Closed solutions to a differential-difference equation and an associated plate solidification problem.

    Science.gov (United States)

    Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V

    2016-01-01

    Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.

  9. m-POINT BOUNDARY VALUE PROBLEM FOR SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION AT RESONANCE

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.

  10. Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form

    Directory of Open Access Journals (Sweden)

    Kairi Kasemets

    2013-01-01

    Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.

  11. Appling Laplace Adomian decomposition method for delay differential equations with boundary value problems

    Science.gov (United States)

    Yousef, Hamood Mohammed; Ismail, Ahmad Izani

    2017-11-01

    In this paper, Laplace Adomian decomposition method (LADM) was applied to solve Delay differential equations with Boundary Value Problems. The solution is in the form of a convergent series which is easy to compute. This approach is tested on two test problem. The findings obtained exhibit the reliability and efficiency of the proposed method.

  12. General conditions guaranteeing the solvability of the Cauchy problem for functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2008-01-01

    Roč. 133, č. 4 (2008), s. 435-445 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional differential equation * Cauchy problem * initial value problem * differential inequality Subject RIV: BA - General Mathematics

  13. Mixed problem with integral boundary condition for a high order mixed type partial differential equation

    OpenAIRE

    M. Denche; A. L. Marhoune

    2003-01-01

    In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.

  14. Initial boundary value problems of nonlinear wave equations in an exterior domain

    International Nuclear Information System (INIS)

    Chen Yunmei.

    1987-06-01

    In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs

  15. Two numerical methods for an inverse problem for the 2-D Helmholtz equation

    CERN Document Server

    Gryazin, Y A; Lucas, T R

    2003-01-01

    Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.

  16. Almost periodic solutions to systems of parabolic equations

    Directory of Open Access Journals (Sweden)

    Janpou Nee

    1994-01-01

    Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.

  17. Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)

    1982-01-01

    The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru

  18. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  19. Oblique derivative problems for generalized Rassias equations of mixed type with several characteristic boundaries

    Directory of Open Access Journals (Sweden)

    Guo Chun Wen

    2009-05-01

    Full Text Available This article concerns the oblique derivative problems for second-order quasilinear degenerate equations of mixed type with several characteristic boundaries, which include the Tricomi problem as a special case. First we formulate the problem and obtain estimates of its solutions, then we show the existence of solutions by the successive iterations and the Leray-Schauder theorem. We use a complex analytic method: elliptic complex functions are used in the elliptic domain, and hyperbolic complex functions in the hyperbolic domain, such that second-order equations of mixed type with degenerate curve are reduced to the first order mixed complex equations with singular coefficients. An application of the complex analytic method, solves (1.1 below with $m=n=1$, $a=b=0$, which was posed as an open problem by Rassias.

  20. Eigenvalues of the Transferences of Gaussian Optical Systems

    Directory of Open Access Journals (Sweden)

    W.F. Harris

    2005-12-01

    Full Text Available The  problem  of  how  to  define  an  average eye leads to the question of what eigenvalues are  possible  for  ray  transferences.  This  paper examines the set of possible eigenvalues in the simplest possible case, that of optical systems consisting  of  elements  that  are  stigmatic  and centred on a common axis.

  1. A subspace preconditioning algorithm for eigenvector/eigenvalue computation

    Energy Technology Data Exchange (ETDEWEB)

    Bramble, J.H.; Knyazev, A.V.; Pasciak, J.E.

    1996-12-31

    We consider the problem of computing a modest number of the smallest eigenvalues along with orthogonal bases for the corresponding eigen-spaces of a symmetric positive definite matrix. In our applications, the dimension of a matrix is large and the cost of its inverting is prohibitive. In this paper, we shall develop an effective parallelizable technique for computing these eigenvalues and eigenvectors utilizing subspace iteration and preconditioning. Estimates will be provided which show that the preconditioned method converges linearly and uniformly in the matrix dimension when used with a uniform preconditioner under the assumption that the approximating subspace is close enough to the span of desired eigenvectors.

  2. Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation

    International Nuclear Information System (INIS)

    Wei, T; Qin, H H; Shi, R

    2008-01-01

    In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method

  3. Positive Solutions of Two-Point Boundary Value Problems for Monge-Ampère Equations

    Directory of Open Access Journals (Sweden)

    Baoqiang Yan

    2015-01-01

    Full Text Available This paper considers the following boundary value problem: ((-u'(tn'=ntn-1f(u(t,  01 is odd. We establish the method of lower and upper solutions for some boundary value problems which generalizes the above equations and using this method we present a necessary and sufficient condition for the existence of positive solutions to the above boundary value problem and some sufficient conditions for the existence of positive solutions.

  4. Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation

    OpenAIRE

    Klibanov, Michael V.; Romanov, Vladimir G.

    2014-01-01

    The inverse scattering problem of the reconstruction of the unknown potential with compact support in the 3-d Schr\\"odinger equation is considered. Only the modulus of the scattering complex valued wave field is known, whereas the phase is unknown. It is shown that the unknown potential can be reconstructed via the inverse Radon transform. Therefore, a long standing problem posed in 1977 by K. Chadan and P.C. Sabatier in their book "Inverse Problems in Quantum Scattering Theory" is solved.

  5. New algorithms for the symmetric tridiagonal eigenvalue computation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, V. [City Univ. of New York, Bronx, NY (United States)]|[International Computer Sciences Institute, Berkeley, CA (United States)

    1994-12-31

    The author presents new algorithms that accelerate the bisection method for the symmetric eigenvalue problem. The algorithms rely on some new techniques, which include acceleration of Newton`s iteration and can also be further applied to acceleration of some other iterative processes, in particular, of iterative algorithms for approximating polynomial zeros.

  6. Efficient methods for time-absorption (α) eigenvalue calculations

    International Nuclear Information System (INIS)

    Hill, T.R.

    1983-01-01

    The time-absorption eigenvalue (α) calculation is one of the options found in most discrete-ordinates transport codes. Several methods have been developed at Los Alamos to improve the efficiency of this calculation. Two procedures, based on coarse-mesh rebalance, to accelerate the α eigenvalue search are derived. A hybrid scheme to automatically choose the more-effective rebalance method is described. The α rebalance scheme permits some simple modifications to the iteration strategy that eliminates many unnecessary calculations required in the standard search procedure. For several fast supercritical test problems, these methods resulted in convergence with one-fifth the number of iterations required for the conventional eigenvalue search procedure

  7. Eigenvalues of PT-symmetric oscillators with polynomial potentials

    International Nuclear Information System (INIS)

    Shin, Kwang C

    2005-01-01

    We study the eigenvalue problem -u''(z) - [(iz) m + P m-1 (iz)]u(z) λu(z) with the boundary condition that u(z) decays to zero as z tends to infinity along the rays arg z = -π/2 ± 2π/(m+2) in the complex plane, where P m-1 (z) = a 1 z m-1 + a 2 z m-2 + . . . + a m-1 z is a polynomial and integers m ≥ 3. We provide an asymptotic expansion of the eigenvalues λ n as n → +∞, and prove that for each real polynomial P m-1 , the eigenvalues are all real and positive, with only finitely many exceptions

  8. Inverse problems for random differential equations using the collage method for random contraction mappings

    Science.gov (United States)

    Kunze, H. E.; La Torre, D.; Vrscay, E. R.

    2009-01-01

    In this paper we are concerned with differential equations with random coefficients which will be considered as random fixed point equations of the form T([omega],x([omega]))=x([omega]), [omega][set membership, variant][Omega]. Here T:[Omega]×X-->X is a random integral operator, is a probability space and X is a complete metric space. We consider the following inverse problem for such equations: Given a set of realizations of the fixed point of T (possibly the interpolations of different observational data sets), determine the operator T or the mean value of its random components, as appropriate. We solve the inverse problem for this class of equations by using the collage theorem for contraction mappings.

  9. Intuitive physics knowledge, physics problem solving and the role of mathematical equations

    Directory of Open Access Journals (Sweden)

    Laura Buteler

    2012-09-01

    Full Text Available The present work explores the role that mathematical equations play in modifying students’ physical intuition (diSessa, 1993. The work is carried out assuming that students achieve a great deal of the refinement in their physical intuitions during problem solving (Sherin, 2006. The study is guided by the question of how the use of mathematical equations contributes to this refinement. The authors aim at expanding on Sherin´s (2006 hypothesis, suggesting a more bounding relation between physical intuitions and mathematics. In this scenario, intuitions play a more compelling role in “deciding” which equations are acceptable and which are not. Our hypothesis is constructed on the basis of three cases: the first published by Sherin (2006 and two more from registries of our own. The three cases are compared and analyzed in relation to the role of mathematical equations in refining – or not – the intuitive knowledge students bring to play during problem solving.

  10. Solution of the Dirichlet Problem for the Poisson's Equation in a Multidimensional Infinite Layer

    Directory of Open Access Journals (Sweden)

    O. D. Algazin

    2015-01-01

    Full Text Available The paper considers the multidimensional Poisson equation in the domain bounded by two parallel hyperplanes (in the multidimensional infinite layer. For an n-dimensional half-space method of solving boundary value problems for linear partial differential equations with constant coefficients is a Fourier transform to the variables in the boundary hyperplane. The same method can be used for an infinite layer, as is done in this paper in the case of the Dirichlet problem for the Poisson equation. For strip and infinite layer in three-dimensional space the solutions of this problem are known. And in the three-dimensional case Green's function is written as an infinite series. In this paper, the solution is obtained in the integral form and kernels of integrals are expressed in a finite form in terms of elementary functions and Bessel functions. A recurrence relation between the kernels of integrals for n-dimensional and (n + 2 -dimensional layers was obtained. In particular, is built the Green's function of the Laplace operator for the Dirichlet problem, through which the solution of the problem is recorded. Even in three-dimensional case we obtained new formula compared to the known. It is shown that the kernel of the integral representation of the solution of the Dirichlet problem for a homogeneous Poisson equation (Laplace equation is an approximate identity (δ-shaped system of functions. Therefore, if the boundary values are generalized functions of slow growth, the solution of the Dirichlet problem for the homogeneous equation (Laplace is written as a convolution of kernels with these functions.

  11. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schroedinger problem and the KPI equation

    International Nuclear Information System (INIS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Polivanov, M.C.

    1993-01-01

    The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. The authors demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schroedinger equation as an example, it is shown that all types of solutions of the linear problem, as well as spectral data known in the literature, are given as specific values of this unique function - the resolvent function. A new form of the inverse problem is formulated. 7 refs

  12. A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations

    International Nuclear Information System (INIS)

    Ma Wenxiu; Xu Xixiang

    2004-01-01

    Starting from a modified Toda spectral problem, a hierarchy of generalized Toda lattice equations with two arbitrary constants is constructed through discrete zero curvature equations. It is shown that the hierarchy possesses a bi-Hamiltonian structure and a hereditary recursion operator, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals. Two cases of the involved constants present two specific integrable sub-hierarchies, one of which is exactly the Toda lattice hierarchy

  13. Novel Numerical Methods for Optimal Control Problems Involving Fractional-Order Differential Equations

    Science.gov (United States)

    2018-03-14

    UNIVERSITY OF TECHNOLOGY Final Report 03/14/2018 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR...optimal control problems involving fractional-order differential equations Wang, Song Curtin University of Technology Kent Street, Bentley WA6102...Article history : Received 3 October 2016 Accepted 26 March 2017 Available online 29 April 2017 Keywords: Hamilton–Jacobi–Bellman equation Financial

  14. On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity

    International Nuclear Information System (INIS)

    Aristov, Anatoly I

    2011-01-01

    We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.

  15. The LTSN method used in transport equation, applied in nuclear engineering problems

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tulio de

    2002-01-01

    The LTS N method solves analytically the S N equations, applying the Laplace transform in the spatial variable. This methodology is used in determination of scalar flux for neutrons and photons, absorbed dose rate, buildup factors and power for a heterogeneous planar slab. This procedure leads to the solution of a transcendental equations for effective multiplication, critical thickness and the atomic density. In this work numerical results are reported, considering multigroup problem in heterogeneous slab. (author)

  16. Eigenvalue distributions of Wilson loops

    International Nuclear Information System (INIS)

    Lohmayer, Robert

    2010-01-01

    In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the modulus square of the characteristic polynomial. Furthermore

  17. Eigenvalue distributions of Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Lohmayer, Robert

    2010-07-01

    In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the

  18. Sorting waves and associated eigenvalues

    Science.gov (United States)

    Carbonari, Costanza; Colombini, Marco; Solari, Luca

    2017-04-01

    The presence of mixed sediment always characterizes gravel bed rivers. Sorting processes take place during bed load transport of heterogeneous sediment mixtures. The two main elements necessary to the occurrence of sorting are the heterogeneous character of sediments and the presence of an active sediment transport. When these two key ingredients are simultaneously present, the segregation of bed material is consistently detected both in the field [7] and in laboratory [3] observations. In heterogeneous sediment transport, bed altimetric variations and sorting always coexist and both mechanisms are independently capable of driving the formation of morphological patterns. Indeed, consistent patterns of longitudinal and transverse sorting are identified almost ubiquitously. In some cases, such as bar formation [2] and channel bends [5], sorting acts as a stabilizing effect and therefore the dominant mechanism driving pattern formation is associated with bed altimetric variations. In other cases, such as longitudinal streaks, sorting enhances system instability and can therefore be considered the prevailing mechanism. Bedload sheets, first observed by Khunle and Southard [1], represent another classic example of a morphological pattern essentially triggered by sorting, as theoretical [4] and experimental [3] results suggested. These sorting waves cause strong spatial and temporal fluctuations of bedload transport rate typical observed in gravel bed rivers. The problem of bed load transport of a sediment mixture is formulated in the framework of a 1D linear stability analysis. The base state consists of a uniform flow in an infinitely wide channel with active bed load transport. The behaviour of the eigenvalues associated with fluid motion, bed evolution and sorting processes in the space of the significant flow and sediment parameters is analysed. A comparison is attempted with the results of the theoretical analysis of Seminara Colombini and Parker [4] and Stecca

  19. The Cauchy problem for the Bogolyubov hierarchy of equations. The BCS model

    International Nuclear Information System (INIS)

    Vidybida, A.K.

    1975-01-01

    A chain of Bogolyubov's kinetic equations for an infinite quantum system of particles distributed in space with the mean density 1/V and interacting with the BCS model operator is considered as a single abstract equation in some countable normalized space bsup(v) of sequences of integral operators. In this case an unique solution of the Cauchy problem has been obtained at arbitrary initial conditions from bsup(v), stationary solutions of the equation have been derived, and the class of the initial conditions which approach to stationary ones is indicated

  20. Blow up of solutions to ordinary differential equations arising in nonlinear dispersive problems

    Directory of Open Access Journals (Sweden)

    Milena Dimova

    2018-03-01

    Full Text Available We study a new class of ordinary differential equations with blow up solutions. Necessary and sufficient conditions for finite blow up time are proved. Based on the new differential equation, a revised version of the concavity method of Levine is proposed. As an application we investigate the non-existence of global solutions to the Cauchy problem of Klein-Gordon, and to the double dispersive equations. We obtain necessary and sufficient condition for finite time blow up with arbitrary positive energy. A very general sufficient condition for blow up is also given.

  1. The Guderley problem revisited

    International Nuclear Information System (INIS)

    Ramsey, Scott D.; Kamm, James R.; Bolstad, John H.

    2009-01-01

    The self-similar converging-diverging shock wave problem introduced by Guderley in 1942 has been the source of numerous investigations since its publication. In this paper, we review the simplifications and group invariance properties that lead to a self-similar formulation of this problem from the compressible flow equations for a polytropic gas. The complete solution to the self-similar problem reduces to two coupled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity exponent for the converging flow, and that of the second is a trajectory multiplier for the diverging regime. We provide a clear exposition concerning the reflected shock configuration. Additionally, we introduce a new approximation for the similarity exponent, which we compare with other estimates and numerically computed values. Lastly, we use the Guderley problem as the basis of a quantitative verification analysis of a cell-centered, finite volume, Eulerian compressible flow algorithm.

  2. Some blow-up problems for a semilinear parabolic equation with a potential

    Science.gov (United States)

    Cheng, Ting; Zheng, Gao-Feng

    The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].

  3. Solutions to estimation problems for scalar hamilton-jacobi equations using linear programming

    KAUST Repository

    Claudel, Christian G.; Chamoin, Timothee; Bayen, Alexandre M.

    2014-01-01

    This brief presents new convex formulations for solving estimation problems in systems modeled by scalar Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula, we show that the constraints resulting from a HJ equation are convex, and can be written as a set of linear inequalities. We use this fact to pose various (and seemingly unrelated) estimation problems related to traffic flow-engineering as a set of linear programs. In particular, we solve data assimilation and data reconciliation problems for estimating the state of a system when the model and measurement constraints are incompatible. We also solve traffic estimation problems, such as travel time estimation or density estimation. For all these problems, a numerical implementation is performed using experimental data from the Mobile Century experiment. In the context of reproducible research, the code and data used to compute the results presented in this brief have been posted online and are accessible to regenerate the results. © 2013 IEEE.

  4. Asymptotic Representation for the Eigenvalues of a Non-selfadjoint Operator Governing the Dynamics of an Energy Harvesting Model

    Energy Technology Data Exchange (ETDEWEB)

    Shubov, Marianna A., E-mail: marianna.shubov@gmail.com [University of New Hampshire, Department of Mathematics and Statistics (United States)

    2016-06-15

    We consider a well known model of a piezoelectric energy harvester. The harvester is designed as a beam with a piezoceramic layer attached to its top face (unimorph configuration). A pair of thin perfectly conductive electrodes is covering the top and the bottom faces of the piezoceramic layer. These electrodes are connected to a resistive load. The model is governed by a system consisting of two equations. The first of them is the equation of the Euler–Bernoulli model for the transverse vibrations of the beam and the second one represents the Kirchhoff’s law for the electric circuit. Both equations are coupled due to the direct and converse piezoelectric effects. The boundary conditions for the beam equations are of clamped-free type. We represent the system as a single operator evolution equation in a Hilbert space. The dynamics generator of this system is a non-selfadjoint operator with compact resolvent. Our main result is an explicit asymptotic formula for the eigenvalues of this generator, i.e., we perform the modal analysis for electrically loaded (not short-circuit) system. We show that the spectrum splits into an infinite sequence of stable eigenvalues that approaches a vertical line in the left half plane and possibly of a finite number of unstable eigenvalues. This paper is the first in a series of three works. In the second one we will prove that the generalized eigenvectors of the dynamics generator form a Riesz basis (and, moreover, a Bari basis) in the energy space. In the third paper we will apply the results of the first two to control problems for this model.

  5. Asymptotic Representation for the Eigenvalues of a Non-selfadjoint Operator Governing the Dynamics of an Energy Harvesting Model

    International Nuclear Information System (INIS)

    Shubov, Marianna A.

    2016-01-01

    We consider a well known model of a piezoelectric energy harvester. The harvester is designed as a beam with a piezoceramic layer attached to its top face (unimorph configuration). A pair of thin perfectly conductive electrodes is covering the top and the bottom faces of the piezoceramic layer. These electrodes are connected to a resistive load. The model is governed by a system consisting of two equations. The first of them is the equation of the Euler–Bernoulli model for the transverse vibrations of the beam and the second one represents the Kirchhoff’s law for the electric circuit. Both equations are coupled due to the direct and converse piezoelectric effects. The boundary conditions for the beam equations are of clamped-free type. We represent the system as a single operator evolution equation in a Hilbert space. The dynamics generator of this system is a non-selfadjoint operator with compact resolvent. Our main result is an explicit asymptotic formula for the eigenvalues of this generator, i.e., we perform the modal analysis for electrically loaded (not short-circuit) system. We show that the spectrum splits into an infinite sequence of stable eigenvalues that approaches a vertical line in the left half plane and possibly of a finite number of unstable eigenvalues. This paper is the first in a series of three works. In the second one we will prove that the generalized eigenvectors of the dynamics generator form a Riesz basis (and, moreover, a Bari basis) in the energy space. In the third paper we will apply the results of the first two to control problems for this model.

  6. Uncertainty Estimates in Cold Critical Eigenvalue Predictions

    International Nuclear Information System (INIS)

    Karve, Atul A.; Moore, Brian R.; Mills, Vernon W.; Marrotte, Gary N.

    2005-01-01

    A recent cycle of a General Electric boiling water reactor performed two beginning-of-cycle local cold criticals. The eigenvalues estimated by the core simulator were 0.99826 and 1.00610. The large spread in them (= 0.00784) is a source of concern, and it is studied here. An analysis process is developed using statistical techniques, where first a transfer function relating the core observable Y (eigenvalue) to various factors (X's) is established. Engineering judgment is used to recognize the best candidates for X's. They are identified as power-weighted assembly k ∞ 's of selected assemblies around the withdrawn rods. These are a small subset of many X's that could potentially influence Y. However, the intention here is not to do a comprehensive study by accounting for all the X's. Rather, the scope is to demonstrate that the process developed is reasonable and to show its applicability to performing detailed studies. Variability in X's is obtained by perturbing nodal k ∞ 's since they directly influence the buckling term in the quasi-two-group diffusion equation model of the core simulator. Any perturbations introduced in them are bounded by standard well-established uncertainties. The resulting perturbations in the X's may not necessarily be directly correlated to physical attributes, but they encompass numerous biases and uncertainties credited to input and modeling uncertainties. The 'vital few' from the 'unimportant many' X's are determined, and then they are subgrouped according to assembly type, location, exposure, and control rod insertion. The goal is to study how the subgroups influence Y in order to have a better understanding of the variability observed in it

  7. Random fixed point equations and inverse problems using "collage method" for contraction mappings

    Science.gov (United States)

    Kunze, H. E.; La Torre, D.; Vrscay, E. R.

    2007-10-01

    In this paper we are interested in the direct and inverse problems for the following class of random fixed point equations T(w,x(w))=x(w) where is a given operator, [Omega] is a probability space and X is a Polish metric space. The inverse problem is solved by recourse to the collage theorem for contractive maps. We then consider two applications: (i) random integral equations, and (ii) random iterated function systems with greyscale maps (RIFSM), for which noise is added to the classical IFSM.

  8. TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations

    Science.gov (United States)

    Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio

    2009-12-01

    We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.

  9. Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art

    Directory of Open Access Journals (Sweden)

    Herb E. Kunze

    2014-01-01

    Full Text Available We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of inverse problems for ordinary and partial differential equations. We review several methods based on the Collage Theorem and its extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one considers a collage-based approach for solving inverse problems for partial differential equations on a perforated domain.

  10. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  11. Inverse Scattering Problem For The Schrödinger Equation With An Additional Quadratic Potential On The Entire Axis

    Science.gov (United States)

    Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.

    2018-04-01

    We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.

  12. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    Science.gov (United States)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  13. Student Solutions Manual to Boundary Value Problems and Partial Differential Equations

    CERN Document Server

    Powers, David L

    2005-01-01

    This student solutions manual accompanies the text, Boundary Value Problems and Partial Differential Equations, 5e. The SSM is available in print via PDF or electronically, and provides the student with the detailed solutions of the odd-numbered problems contained throughout the book.Provides students with exercises that skillfully illustrate the techniques used in the text to solve science and engineering problemsNearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercisesMany exercises based on current engineering applications

  14. Preconditioned iterations to calculate extreme eigenvalues

    Energy Technology Data Exchange (ETDEWEB)

    Brand, C.W.; Petrova, S. [Institut fuer Angewandte Mathematik, Leoben (Austria)

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  15. Explicit solution of Riemann-Hilbert problems for the Ernst equation

    Science.gov (United States)

    Klein, C.; Richter, O.

    1998-01-01

    Riemann-Hilbert problems are an important solution technique for completely integrable differential equations. They are used to introduce a free function in the solutions which can be used at least in principle to solve initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann-Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation, however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example we discuss the rigidly rotating dust disk.

  16. Solving inverse problems for biological models using the collage method for differential equations.

    Science.gov (United States)

    Capasso, V; Kunze, H E; La Torre, D; Vrscay, E R

    2013-07-01

    In the first part of this paper we show how inverse problems for differential equations can be solved using the so-called collage method. Inverse problems can be solved by minimizing the collage distance in an appropriate metric space. We then provide several numerical examples in mathematical biology. We consider applications of this approach to the following areas: population dynamics, mRNA and protein concentration, bacteria and amoeba cells interaction, tumor growth.

  17. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  18. An inverse source problem of the Poisson equation with Cauchy data

    Directory of Open Access Journals (Sweden)

    Ji-Chuan Liu

    2017-05-01

    Full Text Available In this article, we study an inverse source problem of the Poisson equation with Cauchy data. We want to find iterative algorithms to detect the hidden source within a body from measurements on the boundary. Our goal is to reconstruct the location, the size and the shape of the hidden source. This problem is ill-posed, regularization techniques should be employed to obtain the regularized solution. Numerical examples show that our proposed algorithms are valid and effective.

  19. Existence and discrete approximation for optimization problems governed by fractional differential equations

    Science.gov (United States)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  20. Modified quasi-boundary value method for Cauchy problems of elliptic equations with variable coefficients

    Directory of Open Access Journals (Sweden)

    Hongwu Zhang

    2011-08-01

    Full Text Available In this article, we study a Cauchy problem for an elliptic equation with variable coefficients. It is well-known that such a problem is severely ill-posed; i.e., the solution does not depend continuously on the Cauchy data. We propose a modified quasi-boundary value regularization method to solve it. Convergence estimates are established under two a priori assumptions on the exact solution. A numerical example is given to illustrate our proposed method.

  1. Application of the variational iteration method for system of initial value problems delay differential equations

    Science.gov (United States)

    Yousef, Hamood. M.; Ismail, A. I. B. MD.

    2017-08-01

    Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.

  2. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Mesloub Said

    2008-01-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  3. An analytical method for the inverse Cauchy problem of Lame equation in a rectangle

    Science.gov (United States)

    Grigor’ev, Yu

    2018-04-01

    In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.

  4. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  5. Complex energy eigenvalues of a linear potential with a parabolical barrier

    International Nuclear Information System (INIS)

    Malherbe, J.B.

    1978-01-01

    The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af

  6. The nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Mukhigulashvili, Sulkhan

    -, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf

  7. Convergence problems associated with the iteration of adjoint equations in nuclear reactor theory

    International Nuclear Information System (INIS)

    Ngcobo, E.

    2003-01-01

    Convergence problems associated with the iteration of adjoint equations based on two-group neutron diffusion theory approximations in slab geometry are considered. For this purpose first-order variational techniques are adopted to minimise numerical errors involved. The importance of deriving the adjoint source from a breeding ratio is illustrated. The results obtained are consistent with the expected improvement in accuracy

  8. Boundedness of the solution of the third problem for the Laplace equation

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar

    2005-01-01

    Roč. 55, č. 2 (2005), s. 317-340 ISSN 0011-4642 R&D Projects: GA ČR(CZ) GA201/00/1515 Institutional research plan: CEZ:AV0Z10190503 Keywords : third problem * Laplace equation Subject RIV: BA - General Mathematics Impact factor: 0.112, year: 2005

  9. Which solutions of the third problem for the Poisson equation are bounded?

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar

    -, č. 6 (2004), s. 501-510 ISSN 1085-3375 R&D Projects: GA ČR GA201/00/1515 Institutional research plan: CEZ:AV0Z1019905 Keywords : Poisson equation * Robin problem * boundedness Subject RIV: BA - General Mathematics

  10. A class of neutral functional differential equations and the abstract Cauchy problem

    International Nuclear Information System (INIS)

    Bentil, D.E. Jr.

    1985-12-01

    In this paper we establish the basic equivalence between the generalized solutions of a certain class of Neutral Functional Differential Equations and the trajectories of the associated abstract Cauchy problem. These results have applications in several fields including Mathematical Biology, Ecology and Control Theory. (author)

  11. Integral Boundary Value Problems for Fractional Impulsive Integro Differential Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    A. Anguraj

    2014-02-01

    Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.

  12. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    Science.gov (United States)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  13. On nonseparated three-point boundary value problems for linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rontó, M.

    2011-01-01

    Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/

  14. Singular Initial Value Problem for Certain Classes of Systems of Ordinary Differential Equations

    Directory of Open Access Journals (Sweden)

    Josef Diblík

    2013-01-01

    dimension of the set of initial data generating such solutions is estimated. An asymptotic behavior of solutions is determined as well and relevant asymptotic formulas are derived. The method of functions defined implicitly and the topological method (Ważewski's method are used in the proofs. The results generalize some previous ones on singular initial value problems for differential equations.

  15. BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION ELLIPTIC-HYPERBOLIC TYPE IN A DOUBLY CONNECTED DOMAIN

    Directory of Open Access Journals (Sweden)

    O.Kh. Abdullaev

    2014-06-01

    Full Text Available We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.

  16. On sign constant solutions of certain boundary value problems for second-order functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander; Vodstrčil, Petr

    2005-01-01

    Roč. 84, č. 2 (2005), s. 197-209 ISSN 0003-6811 Institutional research plan: CEZ:AV0Z10190503 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics http://www.tandfonline.com/doi/full/10.1080/00036810410001724427

  17. The Method of Subsuper Solutions for Weighted p(r-Laplacian Equation Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Zhimei Qiu

    2008-10-01

    Full Text Available This paper investigates the existence of solutions for weighted p(r-Laplacian ordinary boundary value problems. Our method is based on Leray-Schauder degree. As an application, we give the existence of weak solutions for p(x-Laplacian partial differential equations.

  18. Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander

    2016-01-01

    Roč. 67, č. 1 (2016), s. 1-129 ISSN 1512-0015 Institutional support: RVO:67985840 Keywords : periodic boundary value problem * positive solution * singular equation Subject RIV: BA - General Mathematics http://rmi.tsu.ge/jeomj/memoirs/vol67/abs67-1.htm

  19. Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay

    Directory of Open Access Journals (Sweden)

    V. Vijayakumar

    2014-09-01

    Full Text Available In this article, we study the existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. The results are obtained by using the Banach contraction principle. Finally, an application is given to illustrate the theory.

  20. The focal boundary value problem for strongly singular higher-order nonlinear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Mukhigulashvili, Sulkhan; Půža, B.

    2015-01-01

    Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1

  1. Remark on periodic boundary-value problem for second-order linear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Dosoudilová, M.; Lomtatidze, Alexander

    2018-01-01

    Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html

  2. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

    Science.gov (United States)

    Khotimah, Rita Pramujiyanti; Masduki

    2016-01-01

    Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

  3. Asymptotics for inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Kaikina, Elena I., E-mail: ekaikina@matmor.unam.mx [Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán (Mexico)

    2013-11-15

    We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time.

  4. Asymptotics for inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Kaikina, Elena I.

    2013-01-01

    We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time

  5. Photonic band structure calculations using nonlinear eigenvalue techniques

    International Nuclear Information System (INIS)

    Spence, Alastair; Poulton, Chris

    2005-01-01

    This paper considers the numerical computation of the photonic band structure of periodic materials such as photonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods for nonlinear eigenvalue problems are usually based on Newton's method or are extensions of techniques for the standard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifurcation problems, where bordered matrices are used to compute critical points in singular systems. This new approach has several advantages over the current methods. First, in our numerical calculations the new variation is more robust than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted as a set of paths in the (ω,k) plane

  6. Time-Dependent Heat Conduction Problems Solved by an Integral-Equation Approach

    International Nuclear Information System (INIS)

    Oberaigner, E.R.; Leindl, M.; Antretter, T.

    2010-01-01

    Full text: A classical task of mathematical physics is the formulation and solution of a time dependent thermoelastic problem. In this work we develop an algorithm for solving the time-dependent heat conduction equation c p ρ∂ t T-kT, ii =0 in an analytical, exact fashion for a two-component domain. By the Green's function approach the formal solution of the problem is obtained. As an intermediate result an integral-equation for the temperature history at the domain interface is formulated which can be solved analytically. This method is applied to a classical engineering problem, i.e. to a special case of a Stefan-Problem. The Green's function approach in conjunction with the integral-equation method is very useful in cases were strong discontinuities or jumps occur. The initial conditions and the system parameters of the investigated problem give rise to two jumps in the temperature field. Purely numerical solutions are obtained by using the FEM (finite element method) and the FDM (finite difference method) and compared with the analytical approach. At the domain boundary the analytical solution and the FEM-solution are in good agreement, but the FDM results show a signicant smearing effect. (author)

  7. DISPL-1, 2. Order Nonlinear Partial Differential Equation System Solution for Kinetics Diffusion Problems

    International Nuclear Information System (INIS)

    Leaf, G.K.; Minkoff, M.

    1982-01-01

    1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code

  8. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

    International Nuclear Information System (INIS)

    Trowbridge, C.W.

    1976-06-01

    Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c) which both lead to a more economic use of the computer than (a) some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation. (author)

  9. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, C W

    1976-06-01

    Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential, and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c), which both lead to a more economical use of the computer than (a), some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation.

  10. Efficient Numerical Solution of Coupled Radial Differential Equations in Multichannel Scattering Problems

    International Nuclear Information System (INIS)

    Houfek, Karel

    2008-01-01

    Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.

  11. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations

    Directory of Open Access Journals (Sweden)

    Olivier Sarbach

    2012-08-01

    Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  12. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.

    Science.gov (United States)

    Sarbach, Olivier; Tiglio, Manuel

    2012-01-01

    Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  13. The Cauchy problem for non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  14. New prospects in direct, inverse and control problems for evolution equations

    CERN Document Server

    Fragnelli, Genni; Mininni, Rosa

    2014-01-01

    This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.

  15. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

    KAUST Repository

    Asiri, Sharefa M.; Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

  16. On the Cauchy problem for nonlinear Schrödinger equations with rotation

    KAUST Repository

    Antonelli, Paolo; Marahrens, Daniel; Sparber, Christof

    2011-01-01

    We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.

  17. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

    KAUST Repository

    Asiri, Sharefa M.

    2015-08-31

    Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

  18. On the Cauchy problem for nonlinear Schrödinger equations with rotation

    KAUST Repository

    Antonelli, Paolo

    2011-10-01

    We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.

  19. Stratified source-sampling techniques for Monte Carlo eigenvalue analysis

    International Nuclear Information System (INIS)

    Mohamed, A.

    1998-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results

  20. On Euler's problem

    International Nuclear Information System (INIS)

    Egorov, Yurii V

    2013-01-01

    We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.

  1. On a minimization of the eigenvalues of Schroedinger operator relatively domains

    International Nuclear Information System (INIS)

    Gasymov, Yu.S.; Niftiev, A.A.

    2001-01-01

    Minimization of the eigenvalues plays an important role in the operators spectral theory. The problem on the minimization of the eigenvalues of the Schroedinger operator by areas is considered in this work. The algorithm, analogous to the conditional gradient method, is proposed for the numerical solution of this problem in the common case. The result is generalized for the case of the positively determined completely continuous operator [ru

  2. Method of resonating groups in the Faddeev-Hahn equation formalism for three-body nuclear problem

    CERN Document Server

    Nasirov, M Z

    2002-01-01

    The Faddeev-Hahn equation formalism for three-body nuclear problem is considered. For solution of the equations the method of resonant groups have applied. The calculations of tritium binding energy and doublet nd-scattering length have been carried out. The results obtained shows that Faddeev-Hahn equation formalism is very simple and effective. (author)

  3. Application of power series to the solution of the boundary value problem for a second order nonlinear differential equation

    International Nuclear Information System (INIS)

    Semenova, V.N.

    2016-01-01

    A boundary value problem for a nonlinear second order differential equation has been considered. A numerical method has been proposed to solve this problem using power series. Results of numerical experiments have been presented in the paper [ru

  4. An optimal iterative algorithm to solve Cauchy problem for Laplace equation

    KAUST Repository

    Majeed, Muhammad Usman

    2015-05-25

    An optimal mean square error minimizer algorithm is developed to solve severely ill-posed Cauchy problem for Laplace equation on an annulus domain. The mathematical problem is presented as a first order state space-like system and an optimal iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman filter however using one of the space variables as a time-like variable. Given Dirichlet and Neumann boundary conditions are used on the Cauchy data boundary and fictitious points are introduced on the unknown solution boundary. The algorithm is run for a number of iterations using the solution of previous iteration as a guess for the next one. The method developed happens to be highly robust to noise in Cauchy data and numerically efficient results are illustrated.

  5. The Dirichlet problem with L2-boundary data for elliptic linear equations

    CERN Document Server

    Chabrowski, Jan

    1991-01-01

    The Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required.

  6. Solution of the Chandler-Gibson equations for a three-body test problem

    International Nuclear Information System (INIS)

    Gibson, A.G.; Waters, A.J.; Berthold, G.H.; Chandler, C.

    1991-01-01

    The Chandler-Gibson (CG) N-body equations are tested by considering the problem of three nonrelativistic particles moving on a line and interacting through attractive delta-function potentials. In particular, the input Born and overlap matrix-valued functions are evaluated analytically, and the CG equations are solved using a B-spline collocation method. The computed scattering matrix elements are within 0.5% of the known exact solutions, and the corresponding scattering probabilities are within 0.001% of the exact probabilities, both below and above the 3-body breakup threshold. These results establish that the CG method is practical, as well as theoretically correct, and may be a valuable approach for solving certain more complicated N-body scattering problems

  7. Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Weam Alharbi

    2018-04-01

    Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.

  8. The solution of the dam-break problem in the Porous Shallow water Equations

    Science.gov (United States)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  9. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    Science.gov (United States)

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  10. How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.

    2006-01-01

    We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.

  11. Calculation of Rayleigh type sums for zeros of the equation arising in spectral problem

    Science.gov (United States)

    Kostin, A. B.; Sherstyukov, V. B.

    2017-12-01

    For zeros of the equation (arising in the oblique derivative problem) μ J n ‧ ( μ ) cos α + i n J n ( μ ) sin α = 0 , μ ∈ ℂ , with parameters n ∈ ℤ, α ∈ [-π/2, π/2] and the Bessel function Jn (μ) special summation relationships are proved. The obtained results are consistent with the theory of well-known Rayleigh sums calculating by zeros of the Bessel function.

  12. Adaptive Finite Element Method for Optimal Control Problem Governed by Linear Quasiparabolic Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Wanfang Shen

    2012-01-01

    Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.

  13. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml

  14. Maximum Principles and Boundary Value Problems for First-Order Neutral Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Domoshnitsky Alexander

    2009-01-01

    Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.

  15. Moving-boundary problems for the time-fractional diffusion equation

    Directory of Open Access Journals (Sweden)

    Sabrina D. Roscani

    2017-02-01

    Full Text Available We consider a one-dimensional moving-boundary problem for the time-fractional diffusion equation. The time-fractional derivative of order $\\alpha\\in (0,1$ is taken in the sense of Caputo. We study the asymptotic behaivor, as t tends to infinity, of a general solution by using a fractional weak maximum principle. Also, we give some particular exact solutions in terms of Wright functions.

  16. The Cauchy problem for space-time monopole equations in Sobolev spaces

    Science.gov (United States)

    Huh, Hyungjin; Yim, Jihyun

    2018-04-01

    We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).

  17. Global existence of solutions to the Cauchy problem for time-dependent Hartree equations

    International Nuclear Information System (INIS)

    Chadam, J.M.; Glassey, R.T.

    1975-01-01

    The existence of global solutions to the Cauchy problem for time-dependent Hartree equations for N electrons is established. The solution is shown to have a uniformly bounded H 1 (R 3 ) norm and to satisfy an estimate of the form two parallel PSI (t) two parallel/sub H 2 ; less than or equal to c exp(kt). It is shown that ''negative energy'' solutions do not converge uniformly to zero as t → infinity. (U.S.)

  18. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml

  19. Augmentation of DAA Staggered – Solution Equations in Underwater Shock Problems for Singular Structural Mass Matrices

    OpenAIRE

    DeRuntz Jr., John A.

    2005-01-01

    The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA). Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equa...

  20. Iterative method for solving a problem with mixed boundary conditions for biharmonic equation arising in fracture mechanics

    Directory of Open Access Journals (Sweden)

    Dang Quang A

    2013-02-01

    Full Text Available In this paper we consider a mixed boundary value problem for biharmonic equation of the Airy stress function which models a crack problem of a solid elastic plate. An iterative method for reducing the problem to a sequence of mixed problems for Poisson equations is proposed and investigated. The convergence of the method is established theoretically and illustrated on many numerical experiments.