WorldWideScience

Sample records for epr spin trapping

  1. Characterization of beer flavour stability (EPR - spin trapping)

    International Nuclear Information System (INIS)

    Stasko, A.; Liptakova, M.; Malik, F.

    1999-01-01

    The beer flavour stability is coupled with free radical degradation processes. Probably, aldehydes produced during the brewery but also generated by stalling are responsible for beer flavour as well as for its breaking down. The storing beer at the lower temperatures and in the dark place inhibits, and otherwise the rising temperature and illumination accelerate the rate of such radical processes. Beers contain naturally occurring radical scavengers - antioxidants which inhibit such unwanted reactions. Then depleting of scavengers results in the breaking down of the beer stability. EPR spin trapping technique was used as monitor such processes and for characterising so the flavour stability of beer. The probe was temperated at 60 grad C in the cavity of EPR spectrometer in the presence of spin trapping agent, N-tert.-butyl-α-phenyl nitrone (PBN) and EPR spectra were recorded for few hours. After beer antioxidants become depleted, free radicals formed by the beer degradation are scavenged by PBN spin trap and this point is characterised with a dramatically increased concentration of the free radicals trapped

  2. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Abbas, Kahina; Babić, Nikola; Peyrot, Fabienne

    2016-10-15

    Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  5. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    Science.gov (United States)

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  6. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  7. An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes

    Directory of Open Access Journals (Sweden)

    GORAN BACIC

    2005-02-01

    Full Text Available Plant plasma membranes are known to produce superoxide radicals, while the production of hydroxyl radical is thought to occur only in the cell wall. In this work it was demonstrated using combined spin-trap and spin-probe EPR spectroscopic techniques, that plant plasma membranes do produce superoxide and hydroxyl radicals but by kinetically different mechanisms. The results show that superoxide and hydroxyl radicals can be detected by DMPO spin-trap and that the mechanisms and location of their production can be differentiated using the reduction of spin-probes Tempone and 7-DS. It was shown that the mechanism of production of oxygen reactive species is NADH dependent and diphenylene iodonium inhibited. The kinetics of the reduction of Tempone, combined with scavengers or the absence of NADH indicates that hydroxyl radicals are produced by a mechanism independent of that of superoxide production. It was shown that a combination of the spin-probe and spin-trap technique can be used in free radical studies of biological systems, with a number of advantages inherent to them.

  8. Antioxidant pool in beer and kinetics of EPR spin-trapping.

    Science.gov (United States)

    Kocherginsky, Nikolai M; Kostetski, Yuri Yu; Smirnov, Alex I

    2005-08-24

    The kinetics of spin-trap adduct formation in beer oxidation exhibits an induction period if the reaction is carried out at elevated temperatures and in the presence of air. This lag period lasts until the endogenous antioxidants are almost completely depleted, and its duration is used as an indicator of the flavor stability and shelf life of beer. This paper demonstrates that the total kinetics of the process can be characterized by three parameters-the lag period, the rate of spin-trap adduct formation, and, finally, the steady-state spin-adduct concentration. A steady-state chain reaction mechanism is described, and quantitative estimates of the main kinetic parameters such as the initiation rate, antioxidant pool, effective content of organic molecules participating in the chain reactions, and the rate constant of the 1-hydroxyethyl radical EtOH(*) spin-adduct disappearance are given. An additional new dimensionless parameter is suggested to characterize the antioxidant pool-the product of the lag time and the rate of spin-trap radical formation immediately after the lag time, normalized by the steady-state concentration of the adducts. The results of spin-tapping EPR experiments are compared with the nitroxide reduction kinetics measured in the same beer samples. It is shown that although the kinetics of nitroxide reduction in beer can be used to evaluate the reducing power of beer, the latter parameter does not correlate with the antioxidant pool. The relationship of free radical processes, antioxidant pool, reducing power, and beer staling is discussed.

  9. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.

    Science.gov (United States)

    Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle

    2012-10-19

    The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.

  10. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study

    OpenAIRE

    Zhang, Quing An; Shen, Yuan; Fan, Xue-Hui; García-Martín, Juan Francisco; Wang, Xi; Song, Yun

    2015-01-01

    © 2015 Published by Elsevier B.V. Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radic...

  11. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains.

    Science.gov (United States)

    Mainali, Laxman; Camenisch, Theodore G; Hyde, James S; Subczynski, Witold K

    2017-12-01

    The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [ M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186 ]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t -test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant ( P ≤ 0.05) and can be attributed to sources other than preparation/technique.

  12. α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    International Nuclear Information System (INIS)

    Jerzykiewicz, Maria; Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam

    2011-01-01

    Graphical abstract: α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . Display Omitted Highlights: → α-Tocopherol does not inhibit the oxidation of DMSO to ·CH 3 . → α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . → α-Tocopherol does not inhibit the oxidation of PBN. → The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of α-tocopherol. Additionally, the mixtures of α-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. α-Tocopherol inhibited oxidation of the main decomposition product of DMSO, ·CH 3 to ·OCH 3 but did not prevent the transformation process of N-t-butyl-α-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  13. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Demonstration using EPR spin-trapping of an oxygen-dependent, carbon-centered free radical generated by soybean lipoxygenase

    International Nuclear Information System (INIS)

    Carpenter, M.F.; Smith, F.L.

    1986-01-01

    Purified prostaglandin synthase produces a carbon-centered, oxygen-dependent free radical which they have shown forms a spin-trapped adduct with 4-POBN and has characteristic hyperfine spin coupling constants (hfsc). As production of this radical is cyclooxygenase-dependent, additional studies on radical production were done using soybean lipoxygenase. The latter generates a lipid substrate-derived free radical trapped by the EPR spin trap 4-POBN [α-(4-pyridyl 1-oxide)N-tert-butyl nitrone]. With linoleate as substrate, the hfsc are a/sub N/ = 15.5 G, a/sub β//sup H/ = 2.7 G. This signal is inhibited by ETYA, various antioxidants and heat inactivation of the enzyme. Additional hfsc are not seen when the enzyme is incubated in an 17 O 2 atmosphere, but the signal is inhibited by anaerobeosis. Substitution of 13 C 18 carbon free fatty acids from Chlorella pyrenoisdosa for linoleate produces 2 new lines for each of the original 6 observed with 12 C substrate; the new spectrum has hfsc of a/sub N/ = 16.0 G, a/sub β//sup H/ = 2.4 G, a/sub β/ 13 C = 4.2 G. This demonstrates that the radical is carbon centered and oxygen-dependent and appears not to be the same radical formed by enzymic hydrogen abstraction from the lipid substrate. This radical and the prostaglandin synthase-dependent radical appear to be nearly identical

  15. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  16. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  17. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...

  18. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    Science.gov (United States)

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Use of a cocktail of spin traps for fingerprinting large range of free radicals in biological systems.

    Science.gov (United States)

    Marchand, Valérie; Charlier, Nicolas; Verrax, Julien; Buc-Calderon, Pedro; Levêque, Philippe; Gallez, Bernard

    2017-01-01

    It is well established that the formation of radical species centered on various atoms is involved in the mechanism leading to the development of several diseases or to the appearance of deleterious effects of toxic molecules. The detection of free radical is possible using Electron Paramagnetic Resonance (EPR) spectroscopy and the spin trapping technique. The classical EPR spin-trapping technique can be considered as a "hypothesis-driven" approach because it requires an a priori assumption regarding the nature of the free radical in order to select the most appropriate spin-trap. We here describe a "data-driven" approach using EPR and a cocktail of spin-traps. The rationale for using this cocktail was that it would cover a wide range of biologically relevant free radicals and have a large range of hydrophilicity and lipophilicity in order to trap free radicals produced in different cellular compartments. As a proof-of-concept, we validated the ability of the system to measure a large variety of free radicals (O-, N-, C-, or S- centered) in well characterized conditions, and we illustrated the ability of the technique to unambiguously detect free radical production in cells exposed to chemicals known to be radical-mediated toxic agents.

  20. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    Science.gov (United States)

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  2. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis.

    Science.gov (United States)

    Kaufmann, Royi; Yadid, Itamar; Goldfarb, Daniella

    2013-05-01

    Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  4. Chemistry of artemisinin: an EPR study and nucleobases interaction

    International Nuclear Information System (INIS)

    Mustafa, Damra Elhaj

    2000-10-01

    In the present, the radical transformations of artemisinin, a potent antimalarial drug have been examined using EPR and EPR spin trapping techniques. The effect of light on artemisinin has been investigated at 77 K as well as with the use of phenyl butyl nitrone (PBN) spin trapping agent. While no EPR signal was observed at 77 K, intense light irradiation of artemisinin/PBN gave EPR signal characteristic of radical transformation of the PBN. The reactions of artemisinin with iron (II), manganese (II), hemin and ferrocyanide ion have been investigated by spin trapping techniques. Artemisinin/iron (II) formed spin adducts with nitrosobenzene, nitroso-t-butane and PBN. The hypertine splittings of the spin adducts were a N =1.08 mT/a N =1.25 mT/a N =0.09 mT and a N =1.56 mT/a N =0.29 mT respectively. PBN trapping of artemether/iron (II) gave similar result to artemisinin/iron (II). These results are indicative of secondary carbon-centered radical formation. While artemisinin/hemin/PBN gave very weak EPR signal, ferrocyanide under the same condition gave no signal. Incubation of artemisinin with RNA at different reaction conditions, including irradiation with light, heat and mild acidic media, revealed no RNA damage when examined by agarose electrophoresis. However, artemisinin/iron (II) caused RNA damage in pH-dependant manner. In contrast, hemin did not show the same effect when it was used instead of iron (II). (Author)

  5. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemistry of artemisinin: an EPR study and nucleobases interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Damra Elhaj [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2000-10-01

    In the present, the radical transformations of artemisinin, a potent antimalarial drug have been examined using EPR and EPR spin trapping techniques. The effect of light on artemisinin has been investigated at 77 K as well as with the use of phenyl butyl nitrone (PBN) spin trapping agent. While no EPR signal was observed at 77 K, intense light irradiation of artemisinin/PBN gave EPR signal characteristic of radical transformation of the PBN. The reactions of artemisinin with iron (II), manganese (II), hemin and ferrocyanide ion have been investigated by spin trapping techniques. Artemisinin/iron (II) formed spin adducts with nitrosobenzene, nitroso-t-butane and PBN. The hypertine splittings of the spin adducts were a{sub N}=1.08 mT/a{sub N}=1.25 mT/a{sub N}=0.09 mT and a{sub N}=1.56 mT/a{sub N}=0.29 mT respectively. PBN trapping of artemether/iron (II) gave similar result to artemisinin/iron (II). These results are indicative of secondary carbon-centered radical formation. While artemisinin/hemin/PBN gave very weak EPR signal, ferrocyanide under the same condition gave no signal. Incubation of artemisinin with RNA at different reaction conditions, including irradiation with light, heat and mild acidic media, revealed no RNA damage when examined by agarose electrophoresis. However, artemisinin/iron (II) caused RNA damage in pH-dependant manner. In contrast, hemin did not show the same effect when it was used instead of iron (II). (Author)

  7. Spin entanglement, decoherence and Bohm's EPR paradox

    OpenAIRE

    Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.

    2007-01-01

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...

  8. Trichloroethylene Radicals: An EPR/SPIN Trapping Study

    National Research Council Canada - National Science Library

    Steel-Goodwin, Linda

    1995-01-01

    .... As part of the process to develop environmental and health effects criteria for base clean-up the initial radicals produced by TCE were studied by electron paramagnetic resonance spectroscopy (EPR...

  9. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  10. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  11. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    Science.gov (United States)

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  12. Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems

    International Nuclear Information System (INIS)

    He, Q. Y.; Drummond, P. D.; Reid, M. D.

    2011-01-01

    We develop criteria to detect three classes of nonlocality that have been shown by Wiseman et al. [Phys. Rev. Lett. 98, 140402 (2007)] to be nonequivalent: entanglement, EPR steering, and the failure of local hidden-variable theories. We use the approach of Cavalcanti et al. [Phys. Rev. Lett. 99, 210405 (2007)] for continuous variables to develop the nonlocality criteria for arbitrary spin observables defined on a discrete Hilbert space. The criteria thus apply to multisite qudits, i.e., systems of fixed dimension d, and take the form of inequalities. We find that the spin moment inequalities that test local hidden variables (Bell inequalities) can be violated for arbitrary d by optimized highly correlated nonmaximally entangled states provided the number of sites N is high enough. On the other hand, the spin inequalities for entanglement are violated and thus detect entanglement for such states, for arbitrary d and N, and with a violation that increases with N. We show that one of the moment entanglement inequalities can detect the entanglement of an arbitrary generalized multipartite Greenberger-Horne-Zeilinger state. Because they involve the natural observables for atomic systems, the relevant spin-operator correlations should be readily observable in trapped ultracold atomic gases and ion traps.

  13. Peptide-membrane Interactions by Spin-labeling EPR

    Science.gov (United States)

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  14. EPR and NMR spectroscopy on spin-labeled proteins

    NARCIS (Netherlands)

    Finiguerra, Michelina Giuseppina

    2011-01-01

    Spin labeling and electron paramagnetic resonance (EPR) have been employed to study structure and dynamics of proteins. The surface polarity of four single cysteine mutants of the Zn-azurin in frozen solution were studied using 275 GHz EPR (J-band), with the advantage compared to 9 GHz (X-band) and

  15. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    Science.gov (United States)

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  16. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    Energy Technology Data Exchange (ETDEWEB)

    Wink, D A [National Cancer Inst., Frederick, MD (United States); Desrosiers, M F [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1991-01-01

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3.5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (BR{sub 2}{sup -}). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive inter-mediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented. (author).

  17. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    International Nuclear Information System (INIS)

    Wink, D.A.; Desrosiers, M.F.

    1991-01-01

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3.5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (BR 2 - ). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive inter-mediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented. (author)

  18. Comparison of continuous wave, spin echo, and rapid scan EPR of irradiated fused quartz

    International Nuclear Information System (INIS)

    Mitchell, Deborah G.; Quine, Richard W.; Tseitlin, Mark; Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    The E' defect in irradiated fused quartz has spin lattice relaxation times (T 1 ) about 100-300 μs and spin-spin relaxation times (T 2 ) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (∼9.5 GHz) by three EPR methods: conventional slow-scan field-modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.

  19. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    Science.gov (United States)

    Wink, David A.; Desrosiers, Marc F.

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.

  20. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  1. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  2. Reactions of nitroxide radicals in aqueous solutions exposed to non-thermal plasma: limitations of spin trapping of the plasma induced species

    Science.gov (United States)

    Gorbanev, Yury; Stehling, Nicola; O'Connell, Deborah; Chechik, Victor

    2016-10-01

    Low temperature (‘cold’) atmospheric pressure plasmas have gained much attention in recent years due to their biomedical effects achieved through the interactions of plasma-induced species with the biological substrate. Monitoring of the radical species in an aqueous biological milieu is usually performed via electron paramagnetic resonance (EPR) spectroscopy using various nitrone spin traps, which form persistent radical adducts with the short-lived radicals. However, the stability of these nitroxide radical adducts in the plasma-specific environment is not well known. In this work, chemical transformations of nitroxide radicals in aqueous solutions using a model nitroxide 4-oxo-TEMPO were studied using EPR and LC-MS. The kinetics of the nitroxide decay when the solution was exposed to plasma were assessed, and the reactive pathways proposed. The use of different scavengers enabled identification of the types of reactive species which cause the decay, indicating the predominant nitroxide group reduction in oxygen-free plasmas. The 2H adduct of the PBN spin trap (PBN-D) was shown to decay similarly to the model molecule 4-oxo-TEMPO. The decay of the spin adducts in plasma-treated solutions must be considered to avoid rendering the spin trapping results unreliable. In particular, the selectivity of the decay indicated the limitations of the PTIO/PTI nitroxide system in the detection of nitric oxide.

  3. Applications of EPR in radiation research

    CERN Document Server

    Lund, Anders

    2014-01-01

    Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical

  4. New Developments in Spin Labels for Pulsed Dipolar EPR

    Directory of Open Access Journals (Sweden)

    Alistair J. Fielding

    2014-10-01

    Full Text Available Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR techniques allow small magnetic couplings to be measured (e.g., <50 MHz providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.

  5. Spin trapping study on the nature of radicals generated by X radiolysis and peroxidation of linolenic acid

    International Nuclear Information System (INIS)

    Azizova, O.A.; Osipov, A.N.; Zubarev, V.E.; Yakhyaev, A.V.; Vladimirov, Yu.A.; Savov, V.M.; Kagan, V.E.

    1983-01-01

    The radicals of linolenic acid and their spin adducts (SA) with PBN formed during X radiolysis of linolenic acid and in lipid peroxidation with ferrous ions were investigated and identified. It was found that in the absence of oxygen in pure linolenic acid at 77 K X irradiation produces alkyl and carboxyl radicals. In the presence of the spin trap alkyl radical spin adducts were formed. Irradiation of linolenic acid in the presence of oxygen at 77 K also resulted in the formation of alkyl radicals. These radicals were transformed into peroxy radicals in the interaction of alkyl radical with oxygen upon heating to 117 K. In the presence of spin trap X irradiation of linolenic acid and heating of the sample up to 300 K gave rise to EPR spectra of SA alkyl and unidentified radicals. Lipid peroxidation of linolenic acid induced by ferrous ions in the presence of spin trap also formed radicals and SA of linolenic acid. The spectral parameters of SA generated with ferrous ions in lipid peroxidation and of those generated during X radiolysis do not differ. The similarity of spectral parameters of SA in these two cases suggests a similarity in the structure of linolenic acid radicals. (author)

  6. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    Science.gov (United States)

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  7. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  8. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.

    Science.gov (United States)

    Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena

    2018-02-01

    The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.

  9. Nanosecond time-resolved EPR in pulse radiolysis via the spin echo method

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Norris, J.R.; Lawler, R.G.

    1979-01-01

    The design and operation of a time-resolved electron spin echo spectrometer suitable for detecting transient radicals produced by 3 MeV electron radiolysis is described. Two modes of operation are available: Field swept mode which generates a normal EPR spectrum and kinetic mode in which the time dependence of a single EPR line is monitored. Techniques which may be used to minimize the effects of nonideal microwave pulses and overlapping sample tube signals are described. The principal advantages of the spin echo method over other time-resolved EPR methods are: (1) Improved time resolution (presently approx.30--50 nsec) allows monitoring of fast changes in EPR signals of transient radicals, (2) Lower susceptibility to interference between the EPR signal and the electron beam pulse at short times, and (3) Lack of dependence of transient signals on microwave field amplitude or static field inhomogeneity at short times. The performance of the instrument is illustrated using CIDEP from acetate radical formed in pulsed radiolysis of aqueous solutions of potassium acetate. The relaxation time and CIDEP enhancement factor obtained for this radical using the spin echo method compare favorably with previous determinations using direct detection EPR. Radical decay rates yield estimates of initial radical concentrations of 10 -4 10 -3 M per electron pulse. The Bloch equations are solved to give an expression for the echo signal for samples exhibiting CIDEP using arbitrary microwave pulse widths and distributions of Larmor frequencies. Conditions are discussed under which the time-dependent signal would be distorted by deviations from an ideal nonselective 90 0 --tau--180 0 pulse sequence

  10. In vivo and ex vivo EPR detection of spin-labelled ovalbumin in mice.

    Science.gov (United States)

    Abramović, Zrinka; Brgles, Marija; Habjanec, Lidija; Tomasić, Jelka; Sentjurc, Marjeta; Frkanec, Ruza

    2010-10-01

    In this study, spin-labelled ovalbumin (SL-OVA), free or entrapped in liposomes, was administered to mice subcutaneously (s.c.) or intravenously (i.v.) with the aim to determine the conditions for pharmacokinetic studies of spin-labelled proteins by EPR and to measure the time course of SL-OVA distribution in vivo in live mice and ex vivo in isolated organs. Upon s.c. administration, the decay of the EPR signal was followed for 60min at the site of application using an L-band EPR spectrometer. Within this time period, the signal of free SL-OVA was diminished by about 70%. It was estimated with the help of the oxidizing agent K(3)[(FeCN)(6)] that approximately 30% was a consequence of the spin label reduction to EPR non-visible hydroxylamine and about 40% was due to the SL-OVA elimination from the site of measurement. For liposome encapsulated SL-OVA, the intensity diminished only by approx. 40% in the same period, indicating that liposomes successfully protect the protein from reduction. EPR signal could not be detected directly over live mouse organs within 60min after s.c. application of SL-OVA. With the available L-band EPR spectrometer, the measurements at the site of s.c. application are possible if the amount of SL-OVA applied to a mouse is more than 3mg. For the pharmacokinetic studies of the protein distribution in organs after s.c. or i.v. injection the concentration of the spin-labelled protein should be more than 0.5mmol/kg. After i.v. administration, only ex vivo measurements were possible using an X-band EPR spectrometer, since the total amount of SL-OVA was not sufficient for in vivo detection and also because of rapid reduction of nitroxide. After 2min, the protein was preferentially distributed to liver and, to a smaller extent, to spleen.

  11. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies.

    Science.gov (United States)

    Prior, C; Danilāne, L; Oganesyan, V S

    2018-05-16

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.

  12. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. RosettaEPR: rotamer library for spin label structure and dynamics.

    Directory of Open Access Journals (Sweden)

    Nathan S Alexander

    Full Text Available An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta's ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2 is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.

  14. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    Science.gov (United States)

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Electron paramagnetic resonance (EPR spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    2013-01-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.

  16. Investigations on resolution enhancement in EPR by means of electron spin echoes

    International Nuclear Information System (INIS)

    Merks, R.P.J.

    1979-01-01

    The electron spin echo technique has been applied in four types of experiments: the measurement of electric field induced shifts of the EPR line; the detection of electron spin echo ENDOR; a relaxation measurement and the measurement of hyperfine interactions via the nuclear modulation effect. (Auth.)

  17. High-precision measurement of the electron spin g factor of trapped atomic nitrogen in the endohedral fullerene N@C60

    Science.gov (United States)

    Wittmann, J. J.; Can, T. V.; Eckardt, M.; Harneit, W.; Griffin, R. G.; Corzilius, B.

    2018-05-01

    The electronic g factor carries highly useful information about the electronic structure of a paramagnetic species, such as spin-orbit coupling and dia- or paramagnetic (de-)shielding due to local fields of surrounding electron pairs. However, in many cases, a near "spin-only" case is observed, in particular for light elements, necessitating accurate and precise measurement of the g factors. Such measurement is typically impeded by a "chicken and egg situation": internal or external reference standards are used for relative comparison of electron paramagnetic resonance (EPR) Larmor frequencies. However, the g factor of the standard itself usually is subject to a significant uncertainty which directly limits the precision and/or accuracy of the sought after sample g factor. Here, we apply an EPR reference-free approach for determining the g factor of atomic nitrogen trapped within the endohedral fullerene C60:N@C60 in its polycrystalline state by measuring the 1H NMR resonance frequency of dispersing toluene at room temperature. We found a value of g = 2.00204 (4) with a finally reached relative precision of ∼20 ppm. This accurate measurement allows us to directly compare the electronic properties of N@C60 to those found in atomic nitrogen in the gas phase or trapped in other solid matrices at liquid helium temperature. We conclude that spin-orbit coupling in N@C60 at room temperature is very similar in magnitude and of same sign as found in other inert solid matrices and that interactions between the quartet spin system and the C60 molecular orbitals are thus negligible.

  18. Photochemical sensitization by azathioprine and its metabolites. Part 3. A direct EPR and spin-trapping study of light-induced free radicals from 6-mercaptopurine and its oxidation products.

    Science.gov (United States)

    Moore, D E; Sik, R H; Bilski, P; Chignell, C F; Reszka, K J

    1994-12-01

    Sunlight has been implicated in the high incidence of skin cancer found in patients receiving 6-mercaptopurine (PSH) in the form of its pro-drug azathioprine. In this study we have used EPR spectroscopy in conjunction with the spin-trapping technique to determine whether PSH and its metabolic or photochemical oxidation products generate highly reactive free radicals upon UV irradiation. When an aqueous anaerobic solution (pH 5 or 9) of PSH (pKa = 7.7) and either 2-methyl-2-nitrosopropane (MNP) or nitromethane (NM) were irradiated (lambda > 300 nm) with a Xe arc lamp, the corresponding purine-6-thiyl (PS.) radical adduct and the reduced form of the spin trap (MNP/H. or CH3NO2.-) were observed. However, no radical adducts were detected when PSH and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were irradiated (lambda = 320 nm) in oxygen-free buffer. These findings suggest that PSH does not photoionize but that instead MNP and NM are reduced by direct electron transfer from excited state PSH, 1.3(PSH)*. In aerobic solution, oxygen can act as an electron acceptor and the O2.- and PS. radicals are formed and trapped by DMPO. 6-Mercaptopurine did photoionize when irradiated with a Nd:YAG laser at 355 nm as evidenced by the appearance of the DMPO/H.(eq- + H+) adduct, which decreased in intensity in the presence of N2O. 1.3(6-Mercaptopurine)* oxidized ascorbate, formate and reduced glutathione to the corresponding ascorbyl, CO2.- or glutathiyl radicals. The photochemical behavior of 6-thioxanthine and 6-thiouric acid was similar to PSH. However, the excited states of these metabolic oxidation products exhibited stronger reducing properties than 1.3(PSH)*.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Site-Directed Spin-Labeling of Nucleic Acids by Click Chemistry. Detection of Abasic Sites in Duplex DNA by EPR Spectroscopy

    DEFF Research Database (Denmark)

    Sigurdsson, Snorri; Vogel, Stefan; Shelke, Sandip

    2010-01-01

    and the nitroxide spin label. The spin label was used to detect, for the first time, abasic sites in duplex DNA by X-band CW-EPR spectroscopy and give information about other structural deformations as well as local conformational changes in DNA. For example, reduced mobility of the spin label in a mismatched pair...... label out of the duplex and toward the solution. Thus, reposition of the spin label, when acting as a mercury(II)-controlled mechanical lever, can be readily detected by EPR spectroscopy. The ease of incorporation and properties of the new spin label make it attractive for EPR studies of nucleic acids...

  20. Spin trapping studies of essential oils in lipid systems

    Directory of Open Access Journals (Sweden)

    Makarova Katerina

    2015-07-01

    Full Text Available In the present work, we report the results of a spin trapping ESR study of four essential oils widely used for skin care products such as creams and bath salts. The studied essential oils are Rosmarini aetheroleum (rosemary, Menthae piperitae aetheroleum (mint, Lavandulae aetheroleum (lavender, and Thymi aetheroleum (thyme. Fenton reaction in the presence of ethanol was used to generate free radicals. The N-tert-butyl-α-phenylnitrone (PBN was used as a spin trap. In the Fenton reaction, the rosemary oil had the lowest effect on radical adduct formation as compared to the reference Fenton system. Since essential oils are known to be lipid soluble, we also conducted studies of essential oils in Fenton reaction in the presence of lipids. Two model lipids were used, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC. The obtained results suggested that in the presence of DOPC lipids, the •OH and PBN/•CHCH3(OH radicals are formed in both phases, that is, water and lipids, and all the studied essential oils affected the Fenton reaction in a similar way. Whereas, in the DPPC system, the additional type of PBN/X (aN = 16.1 G, aH = 2.9 G radical adduct was generated. DFT calculations of hyperfine splittings were performed at B3LYP/6-311+G(d,p/EPR-II level of theory for the set of c-centered PBN adducts in order to identify PBN/X radical.

  1. Controlling spin flips of molecules in an electromagnetic trap

    Science.gov (United States)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun

    2017-12-01

    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  2. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    Science.gov (United States)

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spin states of reduced fullerenes (C60 and C120O) by CW and pulsed EPR

    International Nuclear Information System (INIS)

    Boas, J.F.; Drew, S.C.; Pilbrow, J.R.; Boyd, P.D.W.; Paul, P.; Reed, C.A.; Sun, D.

    2003-01-01

    Full text: The ESTN (Electron Spin Transient Nutation) EPR (Electron Paramagnetic Resonance) experiments reported at Wagga 2002 showed that the spin states of the reduced fullerenes C 120 O (2-), C 120 O (3-) and C 120 O (4-) were S = 1, S = 1/2 and S = 1 respectively. Further experiments using CW (Continuous Wave) EPR have confirmed the results of Paul et al. and have now shown that these states are the ground states of these anions. In the case of C 60 (3-), the recent CW and ESTN EPR experiments have shown that the electronic ground state of this anion is S = 1/2. The observation of ground states of low multiplicity for these anions is contrary to expectations based on MO calculations and the application of Hund's rules. A series of CW EPR experiments on C 60 (3-) have shown that some previous results may need to be re-interpreted. This arises from the delineation of the effects of microwave power, modulation amplitude and frequency, sample temperature and freezing rate on the EPR spectrum which is the combination of a broad line, attributed to C 60 (3-), and a 'spike' attributed to C 120 O impurities and other oxygen related species. Our results cast doubt on the existence of Jahn-Teller effects at low temperatures and of a low-lying spin quartet excited state

  4. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    Science.gov (United States)

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Resolution of the EPR Paradox for Fermion Spin Correlations

    Science.gov (United States)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  6. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.

    Science.gov (United States)

    Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A

    2017-10-05

    Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a

  7. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    Science.gov (United States)

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  8. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.

    Science.gov (United States)

    Cobb, C E; Hustedt, E J; Beechem, J M; Beth, A H

    1993-01-01

    An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional

  9. Inhomogeneous Spin Diffusion in Traps with Cold Atoms

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    increases. The inhomogeneity and the smaller nite trap size signicantly reduce the spin diusion rate at low temperatures. The resulting spin diusion rates and spin drag at longer time scales are compatible with measurements at low to high temperatures for resonant attractive interactions...

  10. Spin Trapping Radicals from Lipid Oxidation in Liposomes in the Presence of Flavonoids

    International Nuclear Information System (INIS)

    Arshad, N.

    2013-01-01

    Interactions of four structurally related flavonoids - quercetin, rutin, morin and catechin with peroxyl radicals using liposome/N-tert-butyl-alpha-phenylnitrone (PBN) and liposome -(4-pyridyl-N-oxide)-N-tert-butylnitrone (POBN)-spin trap systems have been studied through spin trapping ESR. Results obtained were different from that of conjugated diene analysis experiments, where lag phases indicated radical scavenging activity of all the flavonoids. No clear lag phase was observed in ESR experiments under same conditions. In the presence of flavonoids decreasing ESR signals of spin adducts in PBN, while no or negligibly smaller spin adducts with POBN system were observed which may be attributed to the possibility that spin traps interacted with free radicals. Experiments with buffer/spin trap systems without liposome revealed that spin adducts were only stable with catechin and destroyed by quercetin, rutin and morin in buffer/spin trap systems. These results further assured that quercetin, rutin and morin not only interacted with peroxyl radicals but also with spin adducts. (author)

  11. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  12. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  13. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol-water mixtures: an EPR-spin trapping study

    Science.gov (United States)

    Uchiyama, Hidefumi; Ishikawa, Kenji; Zhao, Qing-Li; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Krishna, Murali C.; Ishijima, Tatsuo; Matsuya, Yuji; Hori, Masaru; Noguchi, Kyo; Kondo, Takashi

    2018-03-01

    Free radical species in aqueous solution—various alcohol-water reaction mixtures—by exposure to non-equilibrium cold atmospheric pressure Ar plasma (CAP), were monitored using electron paramagnetic resonance spin-trapping techniques with 3, 5-dibromo-4-nitrosobenzene sulfonate as a water soluble nitroso spin trap. The major radical species were formed by H-abstraction from alcohol molecules due to ·OH radicals. In the ethanol-water mixture ·CH2CH2OH produced by H abstraction from CH3 group of the ethanol and ·CH3 radicals were detected. The latter was due to the decomposition of unstable CH3·CHOH to form the ·CH3 radicals and the stable formaldehyde by C-C bond fission. These intermediates are similar to those observed by reaction with ·OH radicals generation in the H2O2-UV photolysis of the reaction mixtures. The evidence of ·CH3 radical formation in the pyrolytic decomposition of the reaction mixtures by exposure to ultrasound or in methane irradiated with microwave plasma have been reported previously. However, the pyrolytic ·CH3 radicals were not found in both plasma and H2O2-UV photolysis condition. These results suggests that free radicals produced by Ar-CAP are most likely due to the reaction between abundant ·OH radicals and alcohol molecules.

  14. EPR and development of quantum electronics

    International Nuclear Information System (INIS)

    Manenkov, A A

    2011-01-01

    A role of electron paramagnetic resonance in development of quantum electronics is discussed. Basic principles and history of masers are briefly described. Spin-levels of paramagnetic ions in crystals as a very suitable object for active media of solid-state masers (called as EPR-masers) and physical processes in EPR-masers (population inversion of energy states) are analyzed. This analysis demonstrates a significant role of relaxation processes in multi-level spin-systems for efficient maser action. In this context peculiarities of spin-lattice and spin-spin cross relaxation processes in multi-level systems are analyzed. Development of EPR-masers and their application in radioastronomy and far-space communication systems are briefly described.

  15. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    Science.gov (United States)

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  16. EPR spin probe and spin label studies of some low molecular and polymer micelles

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  17. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    International Nuclear Information System (INIS)

    Delord, T; Nicolas, L; Schwab, L; Hétet, G

    2017-01-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects. (paper)

  18. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids’ EPR behaviour, for different spin system symmetries. The metrics’ efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method.

  20. Computational and instrumental methods in EPR

    CERN Document Server

    Bender, Christopher J

    2006-01-01

    Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...

  1. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    Science.gov (United States)

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  2. Spin transition diagram of (2Me-5Et-PyH)[Fe(Th-5Cl-Sa)2] studied by EPR

    International Nuclear Information System (INIS)

    Krupska, A.; Augustyniak-Jablokow, M.A.; Yablokov, V.Yu.; Zelentsov, V.V.

    2005-01-01

    The high-spin - low-spin transition in (2Me-5Et-PyH)[Fe(Th-5Cl-Sa) 2 ] was studied by EPR under hydrostatic pressure in the temperature range of 80-310 K. Two modifications of the low-spin complexes: low-pressure (LS-1) and high-pressure (S-2) ones were observed. The low-spin complexes are associated in domains. Under atmospheric pressure LS-1 appears or disappears at 220 K. The hydrostatic pressure shifts the transition to high temperatures. Above 410 MPa the abrupt changes of the g-factor and width ΔB of the EPR line is observed. The pressure-induced transition LS-1 - LS-2 is almost independent of T up to 275 K where under pressure 420 MPa a triple point is observed. When the pressure has been decreased the reverse transition from LS-2 to LS-1 or to high spin phase (at T > 260 K) occurs with a large hysteresis about 95 MPa. (author)

  3. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  4. EPR-based distance measurements at ambient temperature.

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Observation of Spin Flips with a Single Trapped Proton

    CERN Document Server

    Ulmer, S.; Blaum, K.; Kracke, H.; Mooser, A.; Quint, W.; Walz, J.

    2011-01-01

    Spin transitions of an isolated trapped proton are observed for the first time. The spin quantum jumps are detected via the continuous Stern-Gerlach effect which is used in an experiment with a single proton stored in a cryogenic Penning trap. This opens the way for a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector. This method can also be applied to other light atomic nuclei.

  6. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa

    2017-04-15

    Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Coloured Spin Trap which works as a pH Sensor

    African Journals Online (AJOL)

    NJD

    Synthesis; free radical; spin-trapping; pH sensor; nitrone. 1. Introduction. There is a contemporary interest in ... easily used as sensors and markers in free radical chemistry.11 On the other hand, a coloured spin trap may .... methanol mixture, were as follows: for compound 6, at acidic. pH, the colour is yellow with λmax = 390 ...

  8. Mobile quantum sensing with spins in optically trapped nanodiamonds

    Science.gov (United States)

    Awschalom, David D.

    2013-03-01

    The nitrogen-vacancy (NV) color center in diamond has emerged as a powerful, optically addressable, spin-based probe of electromagnetic fields and temperature. For nanoscale sensing applications, the NV center's atom-like nature enables the close-range interactions necessary for both high spatial resolution and the detection of fields generated by proximal nuclei, electrons, or molecules. Using a custom-designed optical tweezers apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous optical measurement of electron spin resonance (ESR)[3]. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the ESR spectra from the ground-state spin transitions. Accounting for the random dynamics of the trapped nanodiamonds, we model the ESR spectra observed in an applied magnetic field and estimate the dc magnetic sensitivity based on the ESR line shapes to be 50 μT/√{ Hz }. We utilize the optically trapped nanodiamonds to characterize the magnetic field generated by current-carrying wires and ferromagnetic structures in microfluidic circuits. These measurements provide a pathway to spin-based sensing in fluidic environments and biophysical systems that are inaccessible to existing scanning probe techniques, such as the interiors of living cells. This work is supported by AFOSR and DARPA.

  9. Nuclear spin cooling by electric dipole spin resonance and coherent population trapping

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2017-09-01

    Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.

  10. Relativistic Nonlocality and the EPR Paradox

    Science.gov (United States)

    Chamberlain, Thomas

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  11. Intrinsic anharmonic effects on the phonon frequencies and effective spin-spin interactions in a quantum simulator made from trapped ions in a linear Paul trap

    Science.gov (United States)

    McAneny, M.; Freericks, J. K.

    2014-11-01

    The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01 % due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01 % for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.

  12. Non-thermalization in trapped atomic ion spin chains

    Science.gov (United States)

    Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.

    2017-10-01

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  13. EPR reversible signature of self-trapped holes in fictive temperature-treated silica glass

    Science.gov (United States)

    Lancry, Matthieu; Ollier, Nadège; Babu, B. H.; Herrero, Christian; Poumellec, Bertrand

    2018-03-01

    Post-mortem electron paramagnetic resonance spectroscopy experiments have been carried out between room temperature and 20 K to examine the radiation-induced defects in fictive temperature (Tf) treated Heraeus F300 silica (0.1 ppm OH, 1500 ppm Cl2). In particular, we focus our attention on Self-Trapped Hole (STH) centers detected in 1000 °C, 1100 °C, and 1200 °C Tf treated samples irradiated at room temperature by gamma rays at 6 kGy. By repeating annealing cycles between 77 and 300 K on the same samples, we observed that the EPR signal attributed to STH decreases as the temperature increases but in a reversible manner. We evidenced a deviation from the Curie law for T > 70 K and suggested an interpretation based on the decrease in the "strain-assisted TH" population by reversible excitation of the trapped hole to a delocalized state with an activation energy of 7.8 meV. This also means that the precursors of hole trapping sites (a local strain atomic configuration) remain stable until 300 K at least.

  14. Quantum simulation of spin models on an arbitrary lattice with trapped ions

    International Nuclear Information System (INIS)

    Korenblit, S; Kafri, D; Campbell, W C; Islam, R; Edwards, E E; Monroe, C; Gong, Z-X; Lin, G-D; Duan, L-M; Kim, J; Kim, K

    2012-01-01

    A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin–spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how the appropriate design of laser fields can provide for arbitrary multidimensional spin–spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently available trap technology and is scalable to levels where the classical methods of simulation are intractable. (paper)

  15. Linear spin waves in a trapped Bose gas

    International Nuclear Information System (INIS)

    Nikuni, T.; Williams, J.E.; Clark, C.W.

    2002-01-01

    An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role

  16. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    Science.gov (United States)

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  17. EPR of impurity ions in disordered solids

    International Nuclear Information System (INIS)

    Kliava, J.

    1986-01-01

    The state of the art in the EPR spectroscopy of disordered solids is reviewed and theoretical aspects of the EPR shape in disordered systems are discussed. Emphasis is placed on the concept of the joint probability density of the spin Hamiltonian parameters. A survey of experimental data is provided on distributions of spin Hamiltonian parametes obtained using computer simulation techniques. A quantitative information is given on the short-range ordering in disordered materials available from EPR studies. A procedure of extracting such type of data which consists in a transformation from the distribution of the spin Hamiltonian parameters to that of atomic coordinates in the surrounding of a paramagnetic center is outlined. Numerical estimates of the degree of continuous disorder are reviewed

  18. Potential Use of Spin Traps to Control ROS in Antipollution Cosmetics—A Review

    Directory of Open Access Journals (Sweden)

    Prashant D. Sawant

    2018-01-01

    Full Text Available Pollution from air and sunlight has adverse effects on human health, particularly skin health. It creates oxidative stress, which results in skin diseases, including skin cancer and aging. Different types of antioxidants are used as preventative actives in skin-care products. However, they have some limitations as they also scavenge oxygen. Recently, spin traps are being explored to trap free radicals before these radicals generating more free radicals (cascading effect and not the oxygen molecules. However, not all spin traps can be used in the topical cosmetic skin-care products due to their toxicity and regulatory issues. The present review focuses on the different pathways of reactive oxygen species (ROS generation due to pollution and the potential use of spin traps in anti-pollution cosmetics to control ROS.

  19. EPR spin probe investigation of irradiated wheat, rice and sunflower seeds

    Energy Technology Data Exchange (ETDEWEB)

    Paktas, Dilek Dadayl [Department of Physics, Faculty of Art and Science, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey)]. E-mail: dadayli@karaelmas.edu.tr; Suennetcioglu, M. Maral [Department of Physics Engineering, Hacettepe University, 06532 Beytepe, Ankara (Turkey)

    2007-01-15

    TEMPO and 4-nitro-TEMPO spin probes were used to monitor dose-dependent changes in the EPR spectra of irradiated wheat and rice embryos and sunflower embryo parts. Rice embryos were studied in the 233-293 K temperature range using 4-nitro-TEMPO. TEMPAMINE, TEMPYO and DTBN spin probes were also studied for their applicability in the determination of irradiated seeds. All the recorded spectra were simulated, and spectral parameters and partition of the probes among various domains were determined. Despite the contribution of the signal from extracellular regions, it was possible to detect the changes in the water/lipid ratios with dose. The hydrophilic character of the probe alone was not sufficient to distinguish the different doses of irradiation. Line widths and rotational correlation times of various domains within embryo also play an important role. Partition after dehydration was another measure in the selection of the suitable probes for irradiation studies. Better results were obtained in dehydrated embryos for the probes preferring lipid bodies.

  20. EPR detection of free radicals in UV-irradiated skin: mouse versus human

    International Nuclear Information System (INIS)

    Jurkiewicz, B.A.; Buettner, G.R.

    1996-01-01

    Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (λ > 300 nm, 14 μW/cm 2 UVB; 3.5 mW/cm 2 UVA) increases the ascorbate free radical (Asc) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (λ > 400 nm; 0.23 mW/cm 2 UVA) also increased the Ascsignal in human skin samples (45%) but did not increase baseline mouse Asc, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; a N = 15.56 G and a H 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline -1-oxide/alkoxyl radical adduct; a N = 14.54 G and a H = 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (∼50%), indicating a role for iron in lipid peroxidation. (Author)

  1. EPR-based distance measurements at ambient temperature

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.

  2. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  3. Quantitative EPR A Practitioners Guide

    CERN Document Server

    Eaton, Gareth R; Barr, David P; Weber, Ralph T

    2010-01-01

    This is the first comprehensive yet practical guide for people who perform quantitative EPR measurements. No existing book provides this level of practical guidance to ensure the successful use of EPR. There is a growing need in both industrial and academic research to provide meaningful and accurate quantitative EPR results. This text discusses the various sample, instrument and software related aspects required for EPR quantitation. Specific topics include: choosing a reference standard, resonator considerations (Q, B1, Bm), power saturation characteristics, sample positioning, and finally, putting all the factors together to obtain an accurate spin concentration of a sample.

  4. EPR study of the production of OH radicals in aqueous solutions of uranium irradiated by ultraviolet light

    Directory of Open Access Journals (Sweden)

    MARKO DAKOVIĆ

    2009-06-01

    Full Text Available The aim of the study was to establish whether hydroxyl radicals (•OH were produced in UV-irradiated aqueous solutions of uranyl salts. The production of •OH was studied in uranyl acetate and nitrate solutions by an EPR spin trap method over a wide pH range, with variation of the uranium concentrations. The production of •OH in uranyl solutions irradiated with UV was unequivocally demonstrated for the first time using the EPR spin-trapping method. The production of •OH can be connected to speciation of uranium species in aqueous solutions, showing a complex dependence on the solution pH. When compared with the results of radiative de-excitation of excited uranyl (*UO22+ by the quenching of its fluorescence, the present results indicate that the generation of hydroxyl radicals plays a major role in the fluorescence decay of *UO22+. The role of the presence of carbonates and counter ions pertinent to environmental conditions in biological systems on the production of hydroxyl radicals was also assessed in an attempt to reveal the mechanism of *UO22+ de-excitation. Various mechanisms, including •OH production, are inferred but the main point is that the generation of •OH in uranium containing solutions must be considered when assessing uranium toxicity.

  5. A Local Realistic Reconciliation of the EPR Paradox

    Science.gov (United States)

    Sanctuary, Bryan

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  6. EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states

    DEFF Research Database (Denmark)

    Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard

    2009-01-01

    examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed. We interpret the EPR spectra by use of restricted size effective subspaces obtained by the rigorous solution of spin-Hamiltonians of dimension up...

  7. Measurement of radical scavenging activity of irradiated Kampo extracts using ESR spin-trap method

    International Nuclear Information System (INIS)

    Ohta, Yui; Kawamura, Shoei; Ukai, Mitsuko; Nakamura, Hideo; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2014-01-01

    The radical scavenging activity (RSA) of 13 kinds of γ-ray irradiated Kampo extracts were studied by ESR spin-trap method. The RSA against alkoxy radical and hydroxyl radical were measured using new spin trapping reagent CYPMPO. The RSA against these two radicals were evaluated using GSH for alkoxy RSA and L-ascorbic acid for hydroxy RSA as a standard antioxidant reagent. We revealed that a few Kampo extracts showed high RSA against alkoxy radical and also hydroxy radical. This RSA of Kampo extracts was changed by γ-ray irradiation treatment. Using ESR spin-trap method, it is concluded that the effect of radiation treatment on RSA of Kampo extracts were able to detect. (author)

  8. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  9. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  10. First observation of spin flips with a single proton stored in a cryogenic Penning trap

    International Nuclear Information System (INIS)

    Ulmer, Stefan

    2011-01-01

    In this thesis the very first observation of spin transitions of a single proton stored in a cryogenic double-Penning trap is presented. The experimental observation of spin transitions is based on the continuous Stern-Gerlach effect, which couples the spin of the single trapped proton to its axial eigenfrequency, by means of an inhomogeneous magnetic field. A spin transition causes a change of the axial frequency, which can be measured non-destructively. Due to the tiny magnetic moment of the proton, the direct detection of proton spin-flips is an exceeding challenge. To achieve spin-flip resolution, the proton was stored in the largest magnetic field inhomogeneity, which has ever been superimposed to a Penning trap, and its axial frequency was detected non-destructively. Therefore, superconducting detection systems with ultrahigh-sensitivity were developed, allowing the direct observation of the single trapped proton, as well as the high-precision determination of its eigenfrequencies. Based on novel experimental methods, which were developed in the framework of this thesis, the axial frequency of the particle was stabilized to a level, where the observation of single-proton spin-flips is possible, which was demonstrated. This experimental success is one of the most important steps towards the high-precision determination of the magnetic moment of the free proton. With the very first observation of spin transitions with a single trapped proton, a highly exciting perspective opens. All experimental techniques which were developed in this thesis can be directly applied to the antiproton. Thus, the first high-precision measurement of the magnetic moment of the antiproton becomes possible. This will provide a new high-precision test of the matterantimatter symmetry. (orig.)

  11. Factors affecting the line-shape of the EPR signal of high-spin Fe(III) in soybean lipoxygenase-1

    NARCIS (Netherlands)

    Slappendel, S.; Aasa, R.; Malmström, B.G.; Verhagen, J.; Veldink, G.A.; Vliegenthart, J.F.G.

    1982-01-01

    The yellow form of soybean lipoxygenase-1 (linoleate:oxygen oxidoreductase, EC 1.13.11.12), obtained upon addition of one molar equivalent of acid (13--HPOD) to the native enzyme, shows a complex EPR signal around g 6 which results from contributions of different high-spin Fe(III) species with

  12. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  13. Free-radical probes for functional in vivo EPR imaging

    Science.gov (United States)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  14. Electron spin resonance of spin-trapped radicals of amines and polyamines

    International Nuclear Information System (INIS)

    Mossoba, M.M.; Rosenthal, Ionel; Riesz, Peter

    1982-01-01

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H 2 O 2 and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ν-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the α-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H 2 O 2 in the dark. ν-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the α-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine

  15. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    Science.gov (United States)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  16. Study of the mechanism of the gamma radiolysis of saccharose and its derivatives in aqueous or solid phase. Study by spin trapping

    International Nuclear Information System (INIS)

    Triolet, J.

    1991-01-01

    Powder or aqueous solutions of saccharose, deoxysaccharose and fructanes are irradiated. Radicals created during gamma radiolysis are converted into sugar-nitroxide radicals by reaction with 2 methyl 2 nitroso-propane. They are stable enough to be studied in solution by electron paramagnetic resonance (EPR) coupled or not to high performance liquid chromatography. EPR spectra obtained are simulated with the Voyons program for the determination of spectrocopic characteristics of trapped species. The study of glucosides, disaccharides and sugar labelled with carbon 13 allows to suggest a chemical structure for 5 out of the 7 species trapped during saccharose radiolysis. Influence of irradiation conditions is studied and mechanisms are proposed [fr

  17. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.

    Science.gov (United States)

    Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander

    2017-07-01

    We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Antihydrogen atom formation in a CUSP trap towards spin polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, N., E-mail: kuroda@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Y. [RIKEN Advanced Science Institute (Japan); Michishio, K. [Tokyo University of Science, Department of Physics (Japan); Kim, C. H. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Higaki, H. [Hiroshima University, Graduate School of Advanced Science of Matter (Japan); Nagata, Y.; Kanai, Y. [RIKEN Advanced Science Institute (Japan); Torii, H. A. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Venturelli, L.; Zurlo, N. [Universita di Brescia and Instituto Nazionale di Fisica Nucleare, Dipartimento di Chimica e Fisica per l' Ingegneria e per i Materiali (Italy); Fujii, K.; Ohtsuka, M.; Tanaka, K. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Imao, H. [RIKEN Nishina Center for Accelerator-Based Science (Japan); Nagashima, Y. [Tokyo University of Science, Department of Physics (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Juhasz, B. [Stefan Meyer Institut fuer Subatomare Physik (Austria); and others

    2012-12-15

    The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.

  19. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays

    International Nuclear Information System (INIS)

    Yoon, J.H.; Chung, H.H.; Lee, M.J.; Jung, J.

    2002-01-01

    Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals. (author)

  20. A web-based database for EPR centers in semiconductors

    International Nuclear Information System (INIS)

    Umeda, T.; Hagiwara, S.; Katagiri, M.; Mizuochi, N.; Isoya, J.

    2006-01-01

    We develop a web-based database system for electron paramagnetic resonance (EPR) centers in semiconductors. This database is available to anyone at http://www.kc.tsukuba.ac.jp/div-media/epr/. It currently has more than 300 records of the spin-Hamiltonian parameters for major known EPR centers. One can upload own new records to the database or can use simulation tools powered by EPR-NMR(C). Here, we describe the features and objectives of this database, and mention some future plans

  1. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  2. EPR studies of melanin from Cladosporium cladosporioides

    International Nuclear Information System (INIS)

    Pilawa, B.; Buszman, E.; Latocha, M.; Wilczok, T.

    1996-01-01

    Free radical properties of Cladosporium cladosporioides mycelium and melanin, and synthetic eumelanin and pheomelanin were studied by electron paramagnetic resonance method. Single EPR line and complex EPR spectrum with hyperfine splitting were measured for model DOPA-melanin and cysteinyldopa-melanin, respectively. EPR spectra of Cladosporium cladosporioides samples and pheomelanin show the same character. The concentration of paramagnetic centers in melanins isolated from Cladosporium cladosporioides is considerably higher than that of crude mycelium, whereas the EPR line widths are lower for mycelium than for melanin samples. For all analyzed samples the increase of EPR signals intensity with the increase of microwave power, and the decrease of intensities after saturation were observed the low values of microwave power sufficient for EPR lines saturation demonstrate that the spin-lattice relaxation times of unpaired electrons in melanins are long. (author)

  3. EPR of some low-spin dsup(5) tris-chelate complexes of Fe(3), Ru(3), Os(3) in liquid-crystal matrix

    International Nuclear Information System (INIS)

    Domracheva, N.E.; Konstantinov, V.N.; Luchkona, S.A.; Ovchinnikov, I.V.

    1985-01-01

    Using the EPR method low-spin trischelate complexes of Fe, Ru, Os with 8-mercaptoquinoline and 8-oxyquinoline in oriented vitrified liquid-crystal matrix have been studied. Analtysis of angular dependences of EPR spectra of the complexes permitted to correlate the main axes of g-tensor with molecular axes and, consequently, to determine unambiguously the main electron states of the systems, as well as the value of crystal splittings. It is shown that in the complexes studied the splitting of energy levels is mainly determined by spin-orbital interaction, and not by axial or rhombic components of crystal field. However, rhombic distortion is responsible for anisotropy of g-tensor in xy plane and anisotropy of x- and y-axes orientation. The way to orient complexes in liquid-crystal matrix is substantiated; symmetry axis of the third order C 3 (Z) is mainly oriented along the director. Parameters of the function of orientational distribution of the complex axes are obtained

  4. Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets.

    Science.gov (United States)

    Ivanov, M Yu; Veber, S L; Prikhod'ko, S A; Adonin, N Yu; Bagryanskaya, E G; Fedin, M V

    2015-10-22

    Unusual physicochemical properties of ionic liquids (ILs) open vistas for a variety of new applications. Herewith, we investigate the influence of microviscosity and nanostructuring of ILs on spin dynamics of the dissolved photoexcited molecules. We use two most common ILs [Bmim]PF6 and [Bmim]BF4 (with its close analogue [C10mim]BF4) as solvents and photoexcited Zn tetraphenylporphyrin (ZnTPP) as a probe. Time-resolved electron paramagnetic resonance (TR EPR) is employed to investigate spectra and kinetics of spin-polarized triplet ZnTPP in the temperature range 100-270 K. TR EPR data clearly indicate the presence of two microenvironments of ZnTPP in frozen ILs at 100-200 K, being manifested in different spectral shapes and different spin relaxation rates. For one of these microenvironments TR EPR data is quite similar to those obtained in common frozen organic solvents (toluene, glycerol, N-methyl-2-pyrrolidone). However, the second one favors the remarkably slow relaxation of spin polarization, being much longer than in the case of common solvents. Additional experiments using continuous wave EPR and stable nitroxide as a probe confirmed the formation of heterogeneities upon freezing of ILs and complemented TR EPR results. Thus, TR EPR of photoexcited triplets can be effectively used for probing heterogeneities and nanostructuring in frozen ILs. In addition, the increase of polarization lifetime in frozen ILs is an interesting finding that might allow investigation of short-lived intermediates inaccessible otherwise.

  5. Use of EPR to Solve Biochemical Problems

    Science.gov (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  6. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Study of growth of polyaniline chain by EPR method

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, A V [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Kogan, Ya L [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Fokeeva, L S [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-22

    Chemical aniline polymerization has been studied by the EPR method. After a long delay a weak EPR signal I is appeared and transformed rapidly into a strong Lorentzian line. Constants of spin exchange of signals I and II with paramagnetic probes Fe(CN)[sub 6][sup 3-], Co[sup 2+] and O[sub 2], freely diffusing in solution, have been determined. Effect of ferricyanide ions and urea, a breaker of hydrogen bonds, has been measured for signals I and II. Data obtained show the formation of an array of positive charges in PANI at early stage of doping. Constants of spin exchange depend on prehistory of samples. Averaging of EPR line widths of different paramagnetic centers in polyaniline was found. (orig.)

  8. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    Science.gov (United States)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  9. EPR of divalent manganese in non-Kramers hosts

    Energy Technology Data Exchange (ETDEWEB)

    Lech, J.; Slezak, A. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Various interactions which lead to the observation of sharp EPR spectra of the high half-integer spin impurity Mn{sup 2+} (S=5/2) in paramagnetic hosts with integer spins S=1 and S=2 have been studied. Studies have been carried out on the basis of data extracted from experimental EPR spectra of Mn{sup 2+} in single crystal of divalent nickel Ni{sup 2+} (S=1) and Fe{sup 2+} (S=1) perchlorate hexahydrates. It has been shown that dipolar host-host and host-guest couplings broaden resonance lines of Mn{sup 2+}. Narrowing of the lines in the both crystals can be mainly attributed to the host-guest exchange interactions and quenching of the host spins. 19 refs, 3 figs, 1 tab.

  10. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    Science.gov (United States)

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...

  12. Finding traps in nonlinear spin arrays

    International Nuclear Information System (INIS)

    Wiesniak, Marcin; Markiewicz, Marcin

    2010-01-01

    Precise knowledge of the Hamiltonian of a system is a key to many of its applications. Tasks such as the state transfer or quantum computation have been well studied with a linear chain, but rarely with systems, which do not possess a linear structure. While this difference does not disturb the end-to-end dynamics of a single excitation, the evolution is significantly changed in other subspaces. Here we quantify the difference between a linear chain and a pseudochain, which have more than one spin at some site (in such a case we will call the site a block). We show how to estimate a number of all spins in the system and the intrablock coupling constants. We also suggest how it is possible to eliminate excitations trapped in such blocks, which may disturb the state transfer. Importantly, one uses only at-ends data and needs to be able to put the system to either the maximally magnetized or the maximally mixed state. This can obtained by controlling a global decoherence parameter, such as temperature.

  13. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  14. New loophole for the EPR paradox

    OpenAIRE

    Feldmann, Michel

    1999-01-01

    We exhibit a classical model free from any paradox which exactly simulates the spin EPR test. We conclude that Bell's inequality violation is a strictly classical phenomenon, contrary to a general belief.

  15. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    Science.gov (United States)

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  16. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  17. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    Science.gov (United States)

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant

  18. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2

    Science.gov (United States)

    Maryasov, Alexander G.; Bowman, Michael K.

    2012-08-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.

  19. ESR-spin trapping studies on the interaction between anthraquinone triplets and aromatic compounds

    International Nuclear Information System (INIS)

    Moger, G.; Rockenbauer, A.; Simon, P.

    1980-01-01

    The ESR spin trapping technique was used for the detection of transient C-centered radicals in the photochemical interaction between triplet anthraquinone and aromatic hydroperoxide and alcohol. (author)

  20. Spin trapping of cyanoalkyl radicals in the liquid phase γ radiolysis of nitriles

    International Nuclear Information System (INIS)

    Mao, S.W.; Kevan, L.

    1976-01-01

    The following radicals have been identified in the liquid phase γ radiolysis of several nitriles by spin trapping with phenyl tert-butyl nitrone: CH 2 CN in acetonitrile, H and CH 3 CHCN(question) in propionitrile, CH(CN) 2 in malononitrile, and H, CN, and CH 2 CH 2 CN in succinonitrile. γ proton splittings are observed for the CH 2 CN and CH(CH) 2 spin adducts. The results are discussed in comparison with solid phase radiolysis data and with alkyl radical spin adduct splittings

  1. EPR spectral investigation of radiation-induced radicals of gallic acid.

    Science.gov (United States)

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  2. EPR and UV spectrometry investigation of sucrose irradiated with carbon particles

    International Nuclear Information System (INIS)

    Karakirova, Yordanka; Yordanov, Nicola D.

    2010-01-01

    Solid state/EPR (SS/EPR) dosimeters of carbon ions irradiated sucrose are studied with EPR, and their water solutions - with UV spectroscopy. Doses between 20 and 200 Gy are used with linear energy transfer (LET) values for carbon ions of 63, 77, 96 and 230 keV μm -1 . After irradiation all samples show typical for irradiated sucrose EPR and UV spectra. The obtained data are compared with those previously reported for nitrogen particles and gamma rays irradiated sucrose. The identical shape of both the EPR and UV spectra of irradiated with various type radiation samples suggests that generated free radicals are not influenced by the nature of radiation. The lack of difference in the line width of the separate lines or the whole EPR spectrum, obtained for gamma and heavy particles irradiation, suggests negligible spin-spin interaction among the radiation-generated free radicals in the samples. The linear dependence of the EPR response on the absorbed dose radiation is found to be higher when generated by gamma rays, than by the same absorbed dose of heavy particles. In addition, the EPR response for carbon ions is higher than that for nitrogen ions. Water solutions of irradiated sucrose exhibit UV spectrum with absorption maximum at 267 nm, attributed to the recombination products of free radicals. The UV band intensity depends on the absorbed dose radiation. The UV spectra obtained for carbon, nitrogen and gamma rays irradiated sucrose are also compared.

  3. IN VIVO EVIDENCE OF FREE RADICAL FORMATION AFTER ASBESTOS INSTILLATION: AN ESR SPIN TRAPPING INVESTIGATION

    Science.gov (United States)

    It has been postulated that the in vivo toxicity of asbestos results from its catalysis of free radical generation. We examined in vivo radical production using electron spin resonance (ESR) coupled with the spin trap alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN); 180 d...

  4. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    Science.gov (United States)

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap

  5. EPR measurements in irradiated polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.; Foeldesova, M.

    1990-01-01

    The influence of γ-irradiation on the paramagnetic properties of polyacetylene, and the dependence of the EPR spectra on the radiation dose in samples of irradiated polyacetylene were studied. The measurements show that no essential changes of the spin mobility occurred during irradiation. (author) 3 refs.; 2 figs

  6. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  7. Interpretation of the parameters of the EPR spectra of transition metal complexes

    International Nuclear Information System (INIS)

    Murav'ev, V.I.

    2005-01-01

    The calculated parameters of the EPR spectra of complexes of d 1 and d 9 ions, inclusive of MoOX 5 (X = Cl, Br), are reviewed. The covalent bond parameters used in the calculations were determined from EPR and experimental optical data (inverse problem of EPR spectroscopy). Various contributions to the expressions for the EPR parameters were compared. The observed abnormal values of the EPR parameters were discussed. The effects of charge-transfer states and the vibronic coupling on the components of g, A, and A L tensors were considered. Mechanisms of spin density transfer to ligands in paramagnetic complexes were proposed [ru

  8. Validating and analyzing EPR hyperfine coupling constants with density functional theory

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Kongsted, Jacob; Sauer, Stephan P. A.

    2013-01-01

    Electron Paramagnetic Resonance (EPR) is a central spectroscopic technique for compounds with non-zero spin. The effective parameters from the EPR spin-Hamiltonian can today be calculated from rst principles using quantum chemical methods. We focus here on the hyperne coupling tensor, A, which....... Unfortunately both organometallic and traditional coordination complexes show a completely different behavior, where the core contributions to AKiso either are comparable (“class 2”) or far exceed (“class 3”) the contributions from the frontier orbitals. Agreement with experiment can for these complexes only...

  9. EPR in non-doped irradiated polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.; Stasko, A.; Foeldesova, M.

    1993-01-01

    The influence of γ-irradiation on the paramagnetic properties of non-doped polyacetylene at low and high radiation doses has been studied and summarized. The dependence of the EPR spectra on the radiation dose in irradiated polyacetylene has been measured. No essential changes of the spin mobility as a consequence of irradiation were observed. The measurements of spin concentration confirm the high resistivity of non-doped polyacetylene to radiation. (author) 9 refs

  10. EPR of photochromic Mo3+ in SrTiO3

    NARCIS (Netherlands)

    Kool, Th.W.

    2010-01-01

    In single crystals of SrTiO_3, a paramagnetic center, characterized by S = 3/2 and hyperfine interaction with an I = 5/2 nuclear spin has been observed in the temperature range 4.2K-77K by means of EPR. The impurity center is attributed to Mo3+. No additional line splitting in the EPR spectrum due

  11. Applicability of new spin trap agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide, in biological system

    International Nuclear Information System (INIS)

    Karakawa, Tomohiro; Sato, Keizo; Muramoto, Yosuke; Mitani, Yoshihiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Electron spin resonance using spin-trapping is a useful technique for detecting direct reactive oxygen species, such as superoxide (O 2 .- ). However, the widely used spin trap 2,2-dimethyl-3,4-dihydro-2H-pyrrole N-oxide (DMPO) has several fundamental limitations in terms of half-life and stability. Recently, the new spin trap 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO) was developed by us. We evaluated the biological applicability of DPhPMPO to analyze O 2 .- in both cell-free and cellular systems. DPhPMPO had a larger rate constant for O 2 .- and formed more stable spin adducts for O 2 .- than DMPO in the xanthine/xanthine oxidase (X/XO) system. In the phorbol myristate acetate-activated neutrophil system, the detection potential of DPhPMPO for O 2 .- was significantly higher than that of DMPO (k DMPO = 13.95 M -1 s -1 , k DPhPMPO = 42.4 M -1 s -1 ). These results indicated that DPhPMPO is a potentially good candidate for trapping O 2 .- in a biological system

  12. Analysis of spin-Hamiltonian and molecular orbital coefficients of Cu2+ doped C8H11KO8 single crystal through EPR technique

    Science.gov (United States)

    Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2018-04-01

    Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.

  13. A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils

    International Nuclear Information System (INIS)

    Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.

    1996-01-01

    Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)

  14. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: Solving a lineshape paradox

    Science.gov (United States)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4 × 10 19 spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S = 1/2, and centres with S = 0 ground state and thermally accessible triple state S = 1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and 13C nuclei indicates that IOM rad centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H ≈ 1.5 ± 0.5 × 10 -2 of the order of values existing in interstellar medium.

  15. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    Science.gov (United States)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  16. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  17. EPR spectral investigation of radiation-induced radicals of gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tuner, Hasan [Balikesir University, Department of Physics, Faculty of Art and Science, Balikesir (Turkey)

    2017-11-15

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH){sub 2}C{sub 6}H{sub 2}COOH radicals for both compounds. (orig.)

  18. EPR spectral investigation of radiation-induced radicals of gallic acid

    International Nuclear Information System (INIS)

    Tuner, Hasan

    2017-01-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH) 2 C 6 H 2 COOH radicals for both compounds. (orig.)

  19. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    Science.gov (United States)

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  20. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  1. EPR of exchange coupled systems

    CERN Document Server

    Bencini, Alessandro

    2012-01-01

    From chemistry to solid state physics to biology, the applications of Electron Paramagnetic Resonance (EPR) are relevant to many areas. This unified treatment is based on the spin Hamiltonian approach and makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. This edition contains a new Introduction by coauthor Dante Gatteschi, a pioneer and scholar of molecular magnetism.The first two chapters review the foundations of exchange interactions, followed by examinations of the spectra of pairs and clusters, relaxation in oligon

  2. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  3. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  4. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    Science.gov (United States)

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  5. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    Science.gov (United States)

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  6. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  7. EPR correlations and EPW distributions

    International Nuclear Information System (INIS)

    Bell, J.S.

    1995-01-01

    In the case of two free spin-zero particles, the wave function originally considered by Einstein, Podolsky and Rosen to exemplify EPR correlations has a non-negative Wigner distribution. This distribution gives an explicitly local account of the correlations. For an irreducible non-locality, more elaborate wave functions are required, with Wigner distributions which are not non-negative. (author)

  8. Electron spin dynamics of Ce.sup.3+./sup. ions in YAG crystals studied by pulse-EPR and pump-probe Faraday rotation

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Belykh, V.V.; Yakovlev, D.R.; Fobbe, F.; Feng, D.H.; Evers, E.; Jastrabík, Lubomír; Dejneka, Alexandr; Bayer, M.

    2017-01-01

    Roč. 96, č. 7 (2017), s. 1-10, č. článku 075160. ISSN 2469-9950 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : electron spin dynamics * Ce 3+ ions * YAG crystals * pulse-EPR * Faraday rotation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  9. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    Science.gov (United States)

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  10. Radicals as EPR probes of magnetization of gadolinium stearate Langmuir-Blodgett film

    DEFF Research Database (Denmark)

    Koksharov, Y.A.; Bykov, I.V.; Malakho, A.P.

    2002-01-01

    In the present work we have applied the method of the EPR spin probes which allows performing simultaneously EPR and magnetization measurements to the investigation of magnetism of the Cid stearate Langmuir-Blodgett (LB) films. For this purpose we have prepared and studied by the EPR technique...... the Gd and Y stearate LB films. Placing the small BDPA crystal on the film surface we have found that for the Gd LB sample the effective g-value of the radical's resonance depends on the film orientation in respect to the external magnetic field direction. The relative shift of the EPR signal...

  11. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    Directory of Open Access Journals (Sweden)

    Daniel eNohr

    2015-09-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage, and BLUF (blue-light using FAD domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  12. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    Science.gov (United States)

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  13. High-field EPR on membrane proteins - crossing the gap to NMR.

    Science.gov (United States)

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar

  14. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    Science.gov (United States)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  15. Detection and identification of nitrogen defects in nanodiamond as studied by EPR

    Energy Technology Data Exchange (ETDEWEB)

    Soltamova, A.A.; Ilyin, I.V. [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Baranov, P.G., E-mail: pavel.baranov@mail.ioffe.r [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Vul' , A.Ya.; Kidalov, S.V.; Shakhov, F.M. [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Mamin, G.V.; Orlinskii, S.B.; Silkin, N.I.; Salakhov, M.Kh. [Kazan State University, Federal Center of Shared Usage for Physicochemical Measurements, Kazan 420008 (Russian Federation)

    2009-12-15

    Electron paramagnetic resonance (EPR) and electron spin echo (ESE) at X-band and at high-frequency W-band (95 GHz) have been used to study defects in natural diamond nanocrystals, detonation nanodiamond (ND) with a size of approx4.5 nm and detonation ND after high-temperature, high-pressure sintering with a size of approx8.5 nm. Atomic nitrogen centers N{sup 0} and nitrogen pairs N{sub 2}{sup +} have been detected and identified and their structure has been unambiguously determined by means of the high frequency EPR and ESE in natural diamond nanocrystals. In detonation ND and detonation ND after sintering atomic nitrogen centers N{sup 0} have been discovered in nanodiamond core. In addition EPR signal of multi-vacancy centers with spin 3/2 seems to be observed in diamond core of detonation ND.

  16. Stationary states and rotational properties of spin-orbit-coupled Bose-Einstein condensates held under a toroidal trap

    Science.gov (United States)

    He, Zhang-Ming; Zhang, Xiao-Fei; Kato, Masaya; Han, Wei; Saito, Hiroki

    2018-06-01

    We consider a pseudospin-1/2 Bose-Einstein condensate with Rashba spin-orbit coupling in a two-dimensional toroidal trap. By solving the damped Gross-Pitaevskii equations for this system, we show that the system exhibits a rich variety of stationary states, such as vehicle wheel and flower-petal stripe patterns. These stationary states are stable against perturbation with thermal energy and can survive for a long time. In the presence of rotation, our results show that the rotating systems have exotic vortex configurations. These phenomenon originates from the interplay among spin-orbit coupling, trap geometry, and rotation.

  17. Towards a Quantum Interface between Diamond Spin Qubits and Phonons in an Optical Trap

    Science.gov (United States)

    Ji, Peng; Momeen, M. Ummal; Hsu, Jen-Feng; D'Urso, Brian; Dutt, Gurudev

    2014-05-01

    We introduce a method to optically levitate a pre-selected nanodiamond crystal in air or vacuum. The nanodiamond containing nitrogen-vacancy (NV) centers is suspended on a monolayer of graphene transferred onto a patterned substrate. Laser light is focused onto the sample, using a home-built confocal microscope with a high numerical aperture (NA = 0.9) objective, simultaneously burning the graphene and creating a 3D optical trap that captures the falling nano-diamond at the beam waist. The trapped diamond is an ultra-high-Q mechanical oscillator, allowing us to engineer strong linear and quadratic coupling between the spin of the NV center and the phonon mode. The system could result in an ideal quantum interface between a spin qubit and vibrational phonon mode, potentially enabling applications in quantum information processing and sensing the development of quantum information storage and processing.

  18. Application of EPR spectroscopy to the examination of pro-oxidant activity of coffee.

    Science.gov (United States)

    Krakowian, Daniel; Skiba, Dominik; Kudelski, Adam; Pilawa, Barbara; Ramos, Paweł; Adamczyk, Jakub; Pawłowska-Góral, Katarzyna

    2014-05-15

    Free radicals present in coffee may be responsible for exerting toxic effects on an organism. The objectives of this work were to compare free radicals properties and concentrations in different commercially available coffees, in solid and liquid states, and to determine the effect of roasting on the formation of free radicals in coffee beans of various origins. The free radicals content of 15 commercially available coffees (solid and liquid) was compared and the impact of processing examined using electron paramagnetic resonance (EPR) spectroscopy at X-band (9.3 GHz). First derivative EPR spectra were measured at microwave power in the range of 0.7-70 mW. The following parameters were calculated for EPR spectra: amplitude (A), integral intensity (I), and line-width (ΔBpp); g-Factor was obtained from resonance condition. Our study showed that free radicals exist in green coffee beans (10(16) spin/g), roasted coffee beans (10(18) spin/g), and in commercially available coffee (10(17)-10(18) spin/g). Free radical concentrations were higher in solid ground coffee than in instant or lyophilised coffee. Continuous microwave saturation indicated homogeneous broadening of EPR lines from solid and liquid commercial coffee samples as well as green and roasted coffee beans. Slow spin-lattice relaxation processes were found to be present in all coffee samples tested, solid and liquid commercial coffees as well as green and roasted coffee beans. Higher free radicals concentrations were obtained for both the green and roasted at 240 °C coffee beans from Peru compared with those originating from Ethiopia, Brazil, India, or Colombia. Moreover, more free radicals occurred in Arabica coffee beans roasted at 240 °C than Robusta. EPR spectroscopy is a useful method of examining free radicals in different types of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. EPR-spin probe studies of model polymers: separation of covalent cross-linking effects from hydrogen bonding effects in swelled Argonne Premium Coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Spears, D.R.; Sady, W.; Tucker, D.; Kispert, L.D. (University of Alabama, Tuscaloosa, AL (United States). Chemistry Dept.)

    The swelling behaviour of 2-12% cross-linked polystyrene-divinylbenzene (PSDVB) copolymers was examined by an EPR-spin probe technique. It was observed that the mechanism of spin probe inclusion was the intercalation into the matrix rather than diffusion into the pores. The disruption of van der Waals forces between adjacent aromatic rings appeared to be the primary mechanism for pyridine swelling of PSDVB. By comparing the data to results from coal swelling studies it was also inferred that the extent of hydrogen bonding in coal will have a much greater impact on its swelling properties than its covalently cross-linked character. 24 refs., 6 figs.

  20. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    Science.gov (United States)

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016

  1. Spectral Gaps of Spin-orbit Coupled Particles in Deformed Traps

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2013-01-01

    the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary...... tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation implies that the few- and many-body physics of spin-orbit coupled systems can be manipulated by variation of these parameters....

  2. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O.; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.

  3. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds

    Science.gov (United States)

    Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.

    2018-04-01

    A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.

  4. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.P. (Institute of Anesthesiology and Intensive Care, University of Florence, Careggi Hospital, (Italy))

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  5. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Science.gov (United States)

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  6. EPR invastigation of glasses on the base of the oxides of vanadium and tellurium

    International Nuclear Information System (INIS)

    Imanov, L.M; Ibragimov, Z.A.

    1978-01-01

    The results of investigation of EPR spectra of the nV 2 O 5 (100-n)TeO 2 binary system in the range from 95 to 5 mol % V 2 O 5 with the 5 mol % step on the DRON-2 installation (X-ray diffraction measurements) are presented. The EPR spectra were read out on the RE-1301 spectrometer at liquid nitrogen and room temperatures. The concentration of the EPR centres was determined by comparing it with the signal from the known number of Cu 2+ ions in the CuSO 4 x5H 2 O crystal. It is established that the VO 2+ complexes were the EPR centres. In all prepared samples the EPR spectra were observed, and at n=70 the SFS components were revealed both in the crystalline (with the TeO 2 content up to 30 mol %) and in amorphous states. The singularities of the EPR spectrum are discussed on the basis of the spin-hamiltonian with axial asymmetry. The dependence of the spin-hamiltonian components on the content was revealed and the P=670 value characterizing the average value of the distance between the nucleus and noncoupled electron is found. Observation of the line with well resoluted SFS components in the amorphous samples is explained by 'a great freedom'' of paramagnetic ions in the choice of close environment, and consequently the field of ligand atoms localizing in the paramagnetic ion produces the ''strong field'' effect (D, E>>GβH, G=1.985+-0.005) and removes degeneration due to the presence of the I=7/2 nuclear momentum of the V 4+ ion. Conservation of the SFS lines even at room temperature is connected with great scattering of the spin-lattice relaxation time

  7. Pulsed EPR analysis of tooth enamel samples exposed to UV and {gamma}-radiations

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M., E-mail: marrale@unipa.it [Dipartimento di Fisica, Universita di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania, Italy and Unita CNISM, Palermo (Italy); Longo, A.; Brai, M. [Dipartimento di Fisica, Universita di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania (Italy) and Unita CNISM, Palermo (Italy); Barbon, A.; Brustolon, M. [Dipartimento di Scienze Chimiche, Universita degli Studi di Padova, Via Marzolo 1, 35131 Padova (Italy); Fattibene, P. [Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2011-09-15

    The electron paramagnetic resonance (EPR) spectroscopy is widely applied for retrospective dosimetric purposes by means of quantitative detection of radicals in tooth enamel and bone samples. In this work we report a study by cw and pulsed EPR on two samples of human tooth enamel respectively irradiated by UV (254 nm) and {gamma}-exposed. The continuous wave (cw) EPR spectra have shown the usual presence in both samples of two types of CO{sub 2}{sup -} radicals, with axial and orthorombic g tensors. We have obtained the electron spin echo detected EPR (ED-EPR) spectra at 80 K of the two samples, and we have shown that they are suitable to mark the difference between the effects produced by the different irradiations. At low temperature the contribution to the ED-EPR spectrum of the mobile radical with the axial g tensor is still present in the UV irradiated sample, but not in the {gamma}-irradiated one, where its dynamics is too slow to average the g tensor. We have moreover studied the two-pulse electron spin echo decay on varying the microwave power, a well established method for measuring the Instantaneous Diffusion. We have found that the spectral diffusion parameter is almost the same for both radiation types, whereas the Instantaneous Diffusion is significantly larger for {gamma}-exposed samples than for UV irradiated ones. This difference is due to a higher local microscopic concentration of free radicals for samples irradiated with {gamma} photons.

  8. Computation of transverse muon-spin relaxation functions including trapping-detrapping reactions, with application to electron-irradiated tantalum

    International Nuclear Information System (INIS)

    Doering, K.P.; Aurenz, T.; Herlach, D.; Schaefer, H.E.; Arnold, K.P.; Jacobs, W.; Orth, H.; Haas, N.; Seeger, A.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1986-01-01

    A new technique for the economical evaluation of transverse muon spin relaxation functions in situations involving μ + trapping at and detrapping from crystal defects is applied to electron-irradiated Ta exhibiting relaxation maxima at about 35 K, 100 K, and 250 K. The long-range μ + diffusion is shown to be limted by traps over the entire temperature range investigated. The (static) relaxation rates for several possible configurations of trapped muons are discussed, including the effect of the simultaneous presence of a proton in a vacancy. (orig.)

  9. Spin probes of chemistry in zeolites

    International Nuclear Information System (INIS)

    Werst, D.W.; Trifunac, A.D.

    1997-09-01

    Electron spin resonance (EPR) studies in zeolites are reviewed in which radiolysis was used to ionize the zeolite lattice, create reactive intermediates, spin label reaction products and to provide a window onto chemistry and transport of adsorbates and matrix control of chemistry. The review examines reactions of radical cations and the influence of the geometry constraints inside the zeolite, explores how zeolite model systems can be used to learn about energy and charge transfer in solids and illustrates the use of radiolysis and EPR for in situ spectroscopic studies of solid-acid catalysis. The various spin probes created inside the zeolite pores report on properties of the zeolites as well as shed light on radiolytic processes

  10. Active cancellation - A means to zero dead-time pulse EPR.

    Science.gov (United States)

    Franck, John M; Barnes, Ryan P; Keller, Timothy J; Kaufmann, Thomas; Han, Songi

    2015-12-01

    The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kracke, Holger

    2013-02-27

    The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.

  12. Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne

    2017-05-15

    The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.

  13. Self-trapped holes in β-Ga2O3 crystals

    Science.gov (United States)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  14. EPR and optical study of Mn{sup 2+} doped monohydrated dipotassium stannic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Singh, Manju

    2014-11-15

    Highlights: • EPR study of Mn{sup 2+}: DPSC crystal is done at room temperature. • The spin Hamiltonian parameters for two Mn{sup 2+} sites are determined. • The optical absorption study is also done. • The nature of metal–ligand bonding is discussed on the basis of EPR and optical data. • Theoretical zero-field splitting parameters match well with the experimental values. - Abstract: Electron paramagnetic resonance (EPR) study at room temperature (RT) is used to investigate the property of Mn{sup 2+} doped monohydrated dipotassium stannic chloride (K{sub 2}SnCl{sub 4}⋅H{sub 2}O) single crystal. EPR spectra show that there exist two substitutional sites, the spin Hamiltonian parameters for which are determined. The optical absorption study is also done at room temperature in the wavelength range 195–1100 nm. The observed bands are assigned as transitions from {sup 6}A{sub 1g}(S) ground state to various excited states. These bands are fitted with four parameters, namely Racah inter-electronic repulsion parameters B = 792 cm{sup −1}, C = 2278 cm{sup −1}; cubic crystal field splitting parameter Dq = 700 cm{sup −1} and Trees correction α = 76 cm{sup −1}. The nature of metal–ligand bonding is discussed on the basis of EPR and optical data. Superposition model (SPM) is used to find out the crystal field (CF) parameters and the perturbation formulae are used to obtain zero-field splitting (ZFS) parameters. Theoretically calculated ZFS parameters match well with the experimental values obtained from EPR study.

  15. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines.

    Science.gov (United States)

    Dikalov, Sergey I; Kirilyuk, Igor A; Voinov, Maxim; Grigor'ev, Igor A

    2011-04-01

    Superoxide (O₂ⁱ⁻) has been implicated in the pathogenesis of many human diseases, but detection of the O(2)(•-) radicals in biological systems is limited due to inefficiency of O₂ⁱ⁻ spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O₂ⁱ⁻ in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O₂ⁱ⁻, producing stable nitroxides and allowing site-specific cO₂ⁱ⁻ detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O₂ⁱ⁻. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O₂ⁱ⁻ both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O₂ⁱ⁻ stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O₂ⁱ⁻. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O₂ⁱ⁻ radical in extracellular or intracellular compartments, cytoplasm or mitochondria.

  16. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals

    International Nuclear Information System (INIS)

    Li Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki

    2007-01-01

    Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH· signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH· signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]· radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions

  17. EPR and IR spectral investigations on some leafy vegetables of Indian origin

    Science.gov (United States)

    Prasuna, C. P. Lakshmi; Chakradhar, R. P. S.; Rao, J. L.; Gopal, N. O.

    2009-09-01

    EPR spectral investigations have been carried out on four edible leafy vegetables of India, which are used as dietary component in day to day life. In Rumex vesicarius leaf sample, EPR spectral investigations at different temperatures indicate the presence of anti-ferromagnetically coupled Mn(IV)-Mn(IV) complexes. EPR spectra of Trigonella foenum graecum show the presence of Mn ions in multivalent state and Fe 3+ ions in rhombic symmetry. EPR spectra of Basella rubra indicate the presence of Mn(IV)-O-Mn(IV) type complexes. The EPR spectra of Basella rubra have been studied at different temperatures. It is found that the spin population for the resonance signal at g = 2.06 obeys the Boltzmann distribution law. The EPR spectra of Moringa oliefera leaves show the presence of Mn 2+ ions. Radiation induced changes in free radical of this sample have also been studied. The FT-IR spectra of Basella rubra and Moringa oliefera leaves show the evidences for the protein matrix bands and those corresponding to carboxylic C dbnd O bonds.

  18. In vivo spin-trapping of the metabolites of 3,3'-dichlorobenzidine

    International Nuclear Information System (INIS)

    Iba, M.M.; Ghoshal, A.; Poyer, J.L.; Downs, P.; Massion, W.H.

    1990-01-01

    The carcinogen 3,3'-dichlorobenzidine (DCB) is bioactivated by liver enzymes to lipid-binding derivatives. To characterize the intermediates involved, male rats were treated with 14 C[U]DCB (100 mg, po and ip), followed 4 hr later by the spin trap ∝ phenyl-N-tert-butyl nitrone [(PBN), 50 mg, po and ip]. The rats were sacrificed 30 min after PBN treatment and the livers isolated and homogenized in CHCl 3 :CH 3 OH (2:1, v:v). The Folch extracts were analyzed by electron spin resonance (esr) spectroscopy, TLC and HPLC. The solvent extract yielded a 6-line spectrum by esr spectroscopy characteristic of a PBN adduct of an aryl radical. HPLC analysis of the extract revealed the presence of benzidine and a paramagnetic fraction which contained a PBN adduct of a DCB derivative. It is concluded that DCB undergoes reductive dehalogenation with aryl radicals as intermediates

  19. EPR of free radicals in solids II trends in methods and applications

    CERN Document Server

    Lund, Anders; Lund, Anders

    2012-01-01

    EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. EPR of Free Radicals in Solids II focuses on the trends in applications of experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques in nine chapters written by experts in the field. It examines the studies involving radiation- and photo-induced in...

  20. Development and testing of a CW-EPR apparatus for imaging of short-lifetime nitroxyl radicals in mouse head

    Science.gov (United States)

    Sato-Akaba, Hideo; Fujii, Hirotada; Hirata, Hiroshi

    2008-08-01

    This article describes a method for reducing the acquisition time in three-dimensional (3D) continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To visualize nitroxyl spin probes, which have a short lifetime in living organisms, the acquisition time for a data set of spectral projections should be shorter than the lifetime of the spin probes. To decrease the total time required for data acquisition, the duration of magnetic field scanning was reduced to 0.5 s. Moreover, the number of projections was decreased by using the concept of a uniform distribution. To demonstrate this faster data acquisition, two kinds of nitroxyl radicals with different decay rates were measured in mice. 3D EPR imaging of 4-hydroxy-2,2,6,6-tetramethylpiperidine-d 17-1- 15N-1-oxyl in mouse head was successfully carried out. 3D EPR imaging of nitroxyl spin probes with a half-life of a few minutes was achieved for the first time in live animals.

  1. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Science.gov (United States)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  2. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  3. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    Science.gov (United States)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  4. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    Science.gov (United States)

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Technological advances in site-directed spin labeling of proteins.

    Science.gov (United States)

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The EPR reactor

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Dupuy, Ph.; Gupta, O.; Perez, J.R.; Emond, D.; Cererino, G.; Rousseau, J.M.; Jeffroy, F.; Evrard, J.M.; Seiler, J.M.; Azarian, G.; Chaumont, B.; Dubail, A.; Fischer, M.; Tiippana, P.; Hyvarinen, J.; Zaleski, C.P.; Meritet, S.; Iglesias, F.; Vincent, C.; Massart, S.; Graillat, G.; Esteve, B.; Mansillon, Y.; Gatinol, C.; Carre, F.

    2005-01-01

    This document reviews economical and environmental aspects of the EPR project. The following topics are discussed: role and point of view of the French Nuclear Safety Authority on EPR, control of design and manufacturing of EPR by the French Nuclear Safety Authority, assessment by IRSN of EPR safety, research and development in support of EPR, STUK safety review of EPR design, standpoint on EPR, the place of EPR in the French energy policy, the place of EPR in EDF strategy, EPR spearhead of nuclear rebirth, the public debate, the local stakes concerning the building of EPR in France at Flamanville (Manche) and the research on fourth generation reactors. (A.L.B.)

  7. Radiation-induced defects in LiAlO{sub 2} crystals: Holes trapped by lithium vacancies and their role in thermoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Holston, M.S.; McClory, J.W.; Giles, N.C. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 (United States); Halliburton, L.E., E-mail: Larry.Halliburton@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2015-04-15

    Electron paramagnetic resonance (EPR) is used to identify the primary hole trap in undoped lithium aluminate (LiAlO{sub 2}) crystals. Our interest in this material arises because it is a candidate for radiation detection applications involving either optically stimulated luminescence (OSL) or thermoluminescence (TL). During an x-ray irradiation at room temperature, holes are trapped at oxygen ions adjacent to lithium vacancies. Large concentrations of these lithium vacancies are introduced into the crystal during growth. With the magnetic field along the [001] direction, the EPR spectrum from these trapped-hole centers consists of eleven lines, evenly spaced but with varying intensities, caused by nearly equal hyperfine interactions with two {sup 27}Al nuclei (I=5/2, 100% abundant). The g matrix is determined from the angular dependence of the EPR spectrum and has principal values of 2.0130, 2.0675, and 2.0015. These g shifts strongly support the model of a hole in a p orbital on an oxygen ion. The adjacent lithium vacancy stabilizes the hole on the oxygen ion. A sequence of pulsed thermal anneals above room temperature shows that the EPR spectrum from the holes trapped adjacent to the lithium vacancies disappears in the 90–120 °C range. The thermal decay of these hole centers directly correlates with an intense TL peak near 105 °C. Signals at lower magnetic field in the 9.4 GHz EPR spectra suggest that the electron trap associated with this TL peak at 105 °C may be a transition-metal-ion impurity, most likely Fe, located at a cation site. Additional less intense TL peaks are observed near 138, 176, and 278 °C. - Highlights: • Undoped LiAlO{sub 2} crystals are irradiated at room temperature with x-rays. • EPR is used to identify holes trapped at oxygen ions adjacent to lithium vacancies. • Thermal decay of the EPR spectrum correlates with an intense TL peak at 105 °C.

  8. EPR Test with Photons and Kaons Analogies

    CERN Document Server

    Gisin, Nicolas

    2001-01-01

    We present a unified formalism describing EPR test using spin 1/2 particles, photons and kaons. This facilitates the comparison between existing experiments using photons and kaons. It underlines the similarities between birefringence and polarization dependent losses that affects experiments using optical fibers and mixing and decay that are intrinsic to the kaons. We also discuss the limitation these two characteristics impose on the testing of Bell's inequality.

  9. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  10. Identification of electron and hole traps in KH2PO4 crystals

    International Nuclear Information System (INIS)

    Garces, N. Y.; Stevens, K. T.; Halliburton, L. E.; Demos, S. G.; Radousky, H. B.; Zaitseva, N. P.

    2001-01-01

    Electron paramagnetic resonance (EPR) has been used to characterize a hole trap and several electron traps in single crystals of potassium dihydrogen phosphate (KH 2 PO 4 or KDP). The paramagnetic charge states of these centers are produced by ionizing radiation (e.g., x rays or a 266 nm beam from a pulsed Nd:YAG laser) and are stable for days and even weeks at room temperature. One center consists of a hole trapped on an oxygen ion adjacent to a silicon impurity located on a phosphorus site. This defect has a small, but easily observed, hyperfine interaction with the adjacent substitutional proton. The other centers are formed when an electron is trapped at an oxygen vacancy. These latter defects are best described as (PO 3 ) 2- molecular ions, where the primary phosphorus nucleus is responsible for a large hyperfine splitting (500--800 G in magnitude). Five EPR spectra representing variations of these oxygen vacancy centers are observed, with the differences being attributed to the relative position of a nearby cation vacancy, either a missing proton or potassium. An angular study of the EPR spectra, conducted at room temperature, provided principal values and principal directions for the g matrices and hyperfine matrices for the hole center and two of the electron centers

  11. EPR study of the low-spin state of Ru.sup.3+./sup. in the YAl.sub.3./sub.(BO.sub.4./sub.).sub.3./sub. and EuAl.sub.3./sub.(BO.sub.3./sub.).sub.4./sub. aluminum borates

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, Andriy; Chernush, L.F.; Dyakonov, V.P.; Szymczak, H.; Prokhorov, A.D.

    2016-01-01

    Roč. 420, Dec (2016), s. 285-289 ISSN 0304-8853 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : EPR spectra * rare-earth * aluminum borates * spin Hamiltonian parameters * superposition model * low-spin state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.630, year: 2016

  12. One-way EPR steering and genuine multipartite EPR steering

    Science.gov (United States)

    He, Qiongyi; Reid, Margaret D.

    2012-11-01

    We propose criteria and experimental strategies to realise the Einstein-Podolsky-Rosen (EPR) steering nonlocality. One-way steering can be obtained where there is asymmetry of thermal noise on each system. We also present EPR steering inequalities that act as signatures and suggest how to optimise EPR correlations in specific schemes so that the genuine multipartite EPR steering nonlocality (EPR paradox) can also possibly be realised. The results presented here also apply to the spatially separated macroscopic atomic ensembles.

  13. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  14. Investigation of anisotropy in EPR spectra of radiation defects in irradiated beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O. V.; Bitenbaev, M.I.; Petukhov, Yu. V.

    2004-01-01

    Full text: In this work results of analysis of anisotropy and hyperfine structure in EPR spectra of paramagnetic defects in irradiated samples of beryllium ceramics are presented. To explain peculiarities in a shape and parameters of the EPR spectrum hyperfine structure in beryllium ceramics, we have analyzed several versions of model representations for the radiation-induced paramagnetic defects uniformly distributed in a sample as well as for cluster defects which hyperfine structure is determined by interactions between electrons and nuclei of impurity atoms (S=1/2) and which are characterized by anisotropy in the g factors. Calculations of a shape of the uniformly widened EPR spectra are carried out by the model of random interactions between electron spins. The EPR spectra, widened at the expense of anisotropy in the g factors, are calculated by the following equation: g(Δ)=[2(ω-ω 0 )+α] -1/2 , where ω 0 =γH 0 , α is the quantify proportional to the anisotropy shift. To describe wings of spectral lines, where the equation doesn't work, we use the Gaussian function. To determine the frequency of precession of electron spins packages with local concentration N loc , the following expression is used: ω=ω 0 +1/2α(3cos 2 θ-1), where θ is an angle between the symmetry axis and the direction of the external magnetic field. It is shown that the best agreement between the calculated and experimental EPR spectra is observed with the following computational model: paramagnetic radiation defects are distributed uniformly over a ceramics sample, and the g factors of its EPR spectra have the anisotropy typical for dipole-dipole interaction in powder samples. By results of the data we obtained, it's clear that in future we'll need in more detailed information than that published in scientific journals about formation of the paramagnetic defect EPR spectra structure in beryllium oxides and ceramics at the expense of resonance line hyperfine splitting on atoms of

  15. Investigation of anisotropy in EPR spectra of radiation defects in irradiated beryllium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Zashkvara, O V; Bitenbaev, M I; Petukhov, Yu V [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of analysis of anisotropy and hyperfine structure in EPR spectra of paramagnetic defects in irradiated samples of beryllium ceramics are presented. To explain peculiarities in a shape and parameters of the EPR spectrum hyperfine structure in beryllium ceramics, we have analyzed several versions of model representations for the radiation-induced paramagnetic defects uniformly distributed in a sample as well as for cluster defects which hyperfine structure is determined by interactions between electrons and nuclei of impurity atoms (S=1/2) and which are characterized by anisotropy in the g factors. Calculations of a shape of the uniformly widened EPR spectra are carried out by the model of random interactions between electron spins. The EPR spectra, widened at the expense of anisotropy in the g factors, are calculated by the following equation: g({delta})=[2({omega}-{omega}{sub 0})+{alpha}]{sup -1/2}, where {omega}{sub 0}={gamma}H{sub 0}, {alpha} is the quantify proportional to the anisotropy shift. To describe wings of spectral lines, where the equation doesn't work, we use the Gaussian function. To determine the frequency of precession of electron spins packages with local concentration N{sub loc}, the following expression is used: {omega}={omega}{sub 0}+1/2{alpha}(3cos{sup 2}{theta}-1), where {theta} is an angle between the symmetry axis and the direction of the external magnetic field. It is shown that the best agreement between the calculated and experimental EPR spectra is observed with the following computational model: paramagnetic radiation defects are distributed uniformly over a ceramics sample, and the g factors of its EPR spectra have the anisotropy typical for dipole-dipole interaction in powder samples. By results of the data we obtained, it's clear that in future we'll need in more detailed information than that published in scientific journals about formation of the paramagnetic defect EPR spectra structure in

  16. Multi-component EPR spectra of coals with different carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Pilawa, B.; Wieckowski, A.B.; Pietrzak, R.; Wachowska, H. [Polish Academy of Science, Gliwice (Poland). Inst. for Coal Chemistry

    2005-08-01

    EPR spectra of lignite 'Mequinenza' (Spain) (62.3 wt% C) and Polish orthocoking coal (87.8 wt% C) were compared. The spectra were superpositions of broad Gaussian, broad Lorentzian 1, and narrow Lorentzian 3 lines. Concentration of paramagnetic centers - mainly delocalized pi electrons responsible for narrow Lorentzian 3 lines increases with increase in carbon content in coal. Coal units with slow and fast spin-lattice relaxation processes exist in the two studied samples. Slow spin-lattice interactions occur in simple aromatic coal units with broad Gaussian and Lorentzian 1 lines. Fast spin-lattice relaxation processes are characteristic of large aromatic units with narrow Lorentzian 3 lines.

  17. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    Science.gov (United States)

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  18. EPR and optical absorption studies of Cr3+ ions in potassium sodium dl-tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Kripal, Ram; Singh, Pragya; Shukla, Santwana

    2011-01-01

    EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: g x =1.9257±0.0002, g y =1.9720±0.0002, g z =2.0102±0.0002, |D|=313±2 (x10 -4 ) cm -1 and |E|=101±2 (x10 -4 ) cm -1 . From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (D q ) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. -- Research Highlights: → EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are done at 77 K. → The spin Hamiltonian and zero field parameters g, |D| and |E| are measured. From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. → The optical absorption at room temperature is also studied and the crystal field splitting parameter (D q ) as well as the Racah inter-electronic repulsion parameters (B and C) is evaluated. → The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.

  19. Detailed single-crystal EPR line shape measurements for the single-molecule magnets Fe8Br and Mn12-acetate

    Science.gov (United States)

    Hill, S.; Maccagnano, S.; Park, Kyungwha; Achey, R. M.; North, J. M.; Dalal, N. S.

    2002-06-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high-field electron paramagnetic resonance (EPR) spectra for single-crystal samples of the uniaxial and biaxial spin S=10 single-molecule magnets (SMM's) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed line shapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (MS values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D strain, g strain, and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR line shapes for Fe8 and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMM's.

  20. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  1. EPR of free radicals in solids I trends in methods and applications

    CERN Document Server

    Lund, Anders; Lund, Anders

    2012-01-01

    In its updated 2nd edition, this book surveys methods and applications of EPR in the study of free radical processes in solids. The focus is on trends in methods for extracting structural and dynamical properties of radicals and spin probes in solid matrices.

  2. Time-resolved EPR study of singlet oxygen in the gas phase.

    Science.gov (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  3. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    Science.gov (United States)

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  4. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    Science.gov (United States)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too

  5. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-II. Tyrosine and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Y; Kuwabara, M; Riesz, P [National Cancer Inst., Bethesda, MD (USA)

    1982-01-01

    The UV-photolysis of peptides containing tyrosine (Tyr) was investigated in aqueous solutions at room temperature at 220 and 265 nm. The short-lived free radicals formed during photolysis were spin-trapped by t-nitrosobutane and identified by electron spin resonance. For N-acetyl-and N-formyl-L-Tyr and for peptides containing L-Tyr as the middle residue, photolysis at 265 nm under neutral conditions produced mainly spin-adducts due to the scission between the alpha carbon and the methylene group attached to the aromatic ring, while at 220 nm decarboxylation radicals were spin-trapped. Photolysis of di- and tripeptides at 275 nm in alkaline solutions predominantly generated deamination radicals. The radicals produced in the photolysis of the oxidized A chain of insulin were tentatively characterized by comparison with the results for di- and tripeptides.

  6. Characterization of free radicals in γ-irradiated polycrystalline uridine 5'-monophosphate: a study combining ESR, spin-trapping and HPLC

    International Nuclear Information System (INIS)

    Hiraoka, W.; Kuwabara, M.; Sato, F.

    1991-01-01

    Free radicals generated in γ-irradiated polycrystalline uridine 5'-monophosphate (5'-UMP) were studied by ESR, spin-trapping and high-performance liquid chromatography (HPLC). Although HPLC ultimately gave four spin-adducts, one component that was originally present disappeared during HPLC. Spin adducts due to two types of C6 radials were identified. One of these was thought to be formed by electron addition and subsequent protonation at the C6 position, and the other was presumed to be produced by electron addition and subsequent protonation at the O 4 position. The spin adducts derived from the C5 and C5' radicals were also identified. The spin adduct that disappeared during HPLC was thought to correspond to the C4'-centred radical. Computer simulation of ESR spectra was carried out to estimate the hyperfine splitting constants. (author)

  7. Differential saturation study of radial and angular modulation mechanisms of electron spin--lattice relaxation for trapped hydrogen atoms in sulfuric acid glasses. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Plonka, A; Kevan, L

    1976-11-01

    A differential ESR saturation study of allowed transitions and forbidden proton spin-flip satellite transitions for trapped hydrogen atoms in sulfuric acid glasses indicates that angular modulation dominates the spin-lattice relaxation mechanisms and suggests that the modulation arises from motion of the H atom.

  8. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    Science.gov (United States)

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stern-Gerlach experiment, electron spin and intermediate quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, A.R. (Copenhagen Univ. (Denmark). H.C. Oersted Inst.)

    1983-01-01

    The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered.

  11. Electrochemical and Spin-Trapping Properties of para-substituted α-Phenyl-N-tert-butyl Nitrones

    International Nuclear Information System (INIS)

    Rosselin, Marie; Tuccio, Béatrice; Pério, Pierre; Villamena, Frederick A.; Fabre, Paul-Louis; Durand, Grégory

    2016-01-01

    Nitrones are known both as therapeutic antioxidants and efficient spin-traps. In this work, the redox behavior of various para-substituted α-phenyl-N-tert-butyl nitrones (PBN) was studied by cyclic voltammetry. The polar effect of the substituents was found to correlate with the electrochemical properties of the nitronyl function. Compounds bearing an electron-withdrawing group were more easily reduced than those having an electron-donating group and an opposite trend was observed for the oxidation. Ease of oxidation was also computationally rationalized using DFT approach showing increased ease of oxidation with electron donating functionalities. Since electrochemical properties of nitrones are known to correlate with biological properties, this work provides insights in the design of potent nitrone antioxidants. Using cyclic voltammetry the relative rate of superoxide trapping by nitrones was investigated and compared to the classical antioxidant BHT. The determination of the relative rate of phenyl radical trapping was also carried out but showed no clear correlation with the nature of the substituents. This indicates the absence of a polar effect in agreement with previous data and further supports the intermediate nature, that is, non- or weakly nucleophile, of phenyl radical. On the contrary kinetics of hydroxymethyl radical trapping was found to correlate with the nature of the substituents, demonstrating the nucleophilic nature of its addition onto nitrones.

  12. A high-frequency EPR study of a new S = 10 Mn12 single-molecule magnet

    Science.gov (United States)

    Anderson, Norm

    2005-03-01

    We will present a detailed angle-resolved high-frequency EPR study of a recently discovered analog of the Mn12-acetate single-molecule magnet (SMM). Like the acetate, the new complex [Mn12O12(O2CCH2Bu^t)16(CH3OH)4].CH3OH (Mn12-tBuAc), possesses a spin S = 10 ground state and S4 site symmetry. Magnetic measurements also reveal the usual resonant magnetization tunneling steps in the low temperature hysteresis loops. However, we show that the solvent-disorder-induced anomalies reported in the EPR spectra for Mn12-acetate^1 are absent for Mn12-tBuAc. This suggests that Mn12-tBuAc is intrinsically cleaner, and that detailed studies of this compound may reveal important new information concerning the quantum dynamics of large spins. Indeed, our analysis of the EPR line widths suggest that they are close to the intrinsic lifetime broadened limit, which may make it possible to extract information concerning electronic relaxation times (T1 and T2). ^1S. Takahashi et al., Phys. Rev. B 70, 094429 (2004)

  13. Injectable LiNc-BuO loaded microspheres as in vivo EPR oxygen sensors after co-implantation with tumor cells.

    Science.gov (United States)

    Frank, Juliane; Gündel, Daniel; Drescher, Simon; Thews, Oliver; Mäder, Karsten

    2015-12-01

    Electron paramagnetic resonance (EPR) oximetry is a technique which allows accurate and repeatable oxygen measurements. We encapsulated a highly oxygen sensitive particulate EPR spin probe into microparticles to improve its dispersibility and, hence, facilitate the administration. These biocompatible, non-toxic microspheres contained 5-10 % (w/w) spin probe and had an oxygen sensitivity of 0.60 ± 0.01 µT/mmHg. To evaluate the performance of the microparticles as oxygen sensors, they were co-implanted with syngeneic tumor cells in 2 different rat strains. Thus, tissue injury was avoided and the microparticles were distributed all over the tumor tissue. Dynamic changes of the intratumoral oxygen partial pressure during inhalation of 8 %, 21 %, or 100 % oxygen were monitored in vivo by EPR spectroscopy and quantified. Values were verified in vivo by invasive fluorometric measurements using Oxylite probes and ex vivo by pimonidazole adduct accumulation. There were no hints that the tumor physiology or tissue oxygenation had been altered by the microparticles. Hence, these microprobes offer great potential as oxygen sensors in preclinical research, not only for EPR spectroscopy but also for EPR imaging. For instance, the assessment of tissue oxygenation during therapeutic interventions might help understanding pathophysiological processes and lead to an individualized treatment planning or the use of formulations with hypoxia triggered release of active agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Quantum Information Experiments with Trapped Ions at NIST

    Science.gov (United States)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  15. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  16. Synoviocytes, not chondrocytes, release free radicals after cycles of anoxia/re-oxygenation

    International Nuclear Information System (INIS)

    Schneider, Nicole; Mouithys-Mickalad, Ange L.; Lejeune, Jean-Philippe; Deby-Dupont, Ginette P.; Hoebeke, Maryse; Serteyn, Didier A.

    2005-01-01

    By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10 7 cells; O 2 consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n = 3 for each cell line). Both types of synoviocytes showed a high O 2 consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O 2 consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis

  17. Antioxidant activity of Sempervivum tectorum and its components.

    Science.gov (United States)

    Sentjurc, Marjeta; Nemec, Marjana; Connor, Henry D; Abram, Veronika

    2003-04-23

    The antioxidant properties of components of leaf extracts of the evergreen plant, Sempervivum tectorum (ST), have been evaluated using UV irradiated liposomal systems containing the spin trap 5-(diethoxyphosphoryl)-5-methyl-pyrroline-N-oxide. Decreases in free radical activity in the liposomal systems as measured by electron paramagnetic resonance (EPR) spectroscopy demonstrate that the lipophilic ST juice components, kaempferol (KA) and kaempferol-3-glucoside (KG) contribute significantly to the antioxidant properties of the juice. EPR spectral simulation established the presence of oxygen and carbon centered free radical adducts. The mixtures with low pH, citric and malic acid, and ST juice reveal increased EPR signals from oxygen centered radicals in comparison to the control, pointing to the important role of pH in oxygen radical formation. Parallel assays that measured thiobarbituric acid related substances confirm the antioxidant effects of KA and KG and explain the results of spin trapping experiments complicated by low pH's.

  18. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling.

    Science.gov (United States)

    Haugland, Marius M; Lovett, Janet E; Anderson, Edward A

    2018-02-05

    EPR spectroscopy is an increasingly useful analytical tool to probe biomolecule structure, dynamic behaviour, and interactions. Nitroxide radicals are the most commonly used radical probe in EPR experiments, and many methods have been developed for their synthesis, as well as incorporation into biomolecules using site-directed spin labelling. In this Tutorial Review, we discuss the most practical methods for the synthesis of nitroxides, focusing on the tunability of their structures, the manipulation of their sidechains into spin labelling handles, and their installation into biomolecules.

  19. Electron spin resonance of spin-trapped radicals of amines and polyamines. Hydroxyl radical reactions in aqueous solutions and. gamma. radiolysis in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mossoba, M.M.; Rosenthal, I.; Riesz, P. (National Cancer Inst., Bethesda, MD (USA))

    1982-06-15

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H/sub 2/O/sub 2/ and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ..gamma..-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the ..cap alpha..-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H/sub 2/O/sub 2/ in the dark. ..gamma..-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the ..cap alpha..-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine.

  20. Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, V. Yu., E-mail: osipov@mail.ioffe.r [Ioffe Physico-Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg (Russian Federation); Faculty of Electronics, St. Petersburg State Electrotechnical University (LETI), 197376 (Russian Federation); Shames, A.I. [Department of Physics, Ben-Gurion University of the Negev, 84105 Be' er-Sheva (Israel); Vul' , A. Ya. [Ioffe Physico-Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2009-12-15

    EPR in detonation nanodiamonds (DND) reveals two different signals associated with intrinsic carbon inherited paramagnetic defects. Main carbon inherited EPR signal is narrow intensive Lorentzian-like singlet with g=2.0028 and spin concentration N{sub s}=(6-7)x10{sup 19} spin/g that yields on average 13-15 spins per each DND particle. Additional chemical treatment of DND powder allows practically complete removal of trace amounts of transition metal impurities that reveals a new doublet EPR signal consisting of two relatively narrow lines within the half-field region (gapprox4) separated by a distance of 10.4 mT. The intensity of the doublet signal is five orders of magnitude lower than that of the main singlet signal. The former signal has been observed in a wide variety of DND samples disregarding of the impurity level reached and thus may be attributed to some intrinsic defects in DND particles. Such half-field EPR signals correspond to 'forbidden' DELTAM{sub s}=2 transitions within thermally populated triplet (S=1) levels observed in polycrystalline samples containing exchange dimers-antiferromagnetically coupled spin pairs. Estimates suggest that the concentration of such defects is about one dimer per hundreds DND particles.

  1. The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics

    International Nuclear Information System (INIS)

    Mackintosh, A.R.

    1983-01-01

    The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered. (U.K.)

  2. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    Science.gov (United States)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  3. Application of EPR spectroscopy to examine free radicals evolution during storage of the thermally sterilized Ungentum ophthalmicum.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2016-06-24

    Free radicals formed during thermal sterilization of the Ungentum ophthalmicum were examined by an X-band EPR spectroscopy. The influence of storage time (15 min; 1, 2 and 3 days after heating) on free radical properties and concentrations in this sample was determined. Thermal sterilization was done according to the pharmaceutical norms. The first-derivative EPR spectra with g-values about 2 were measured with magnetic modulation of 100 kHz in the range of microwave power 2.2-70 mW. The changes of amplitudes (A) and linewidths (ΔB pp ) with microwave powers were evaluated. Free radicals in concentration ∼10 17 spin/g were formed during heating of the tested Ungentum. Free radical concentration decreased with increase in storage time, and reached values ∼10 17 spin/g after 3 days from sterilization. The tested U. ophthalmicum should not be sterilized at a temperature of 160 °C because of the free radicals formation, or it should be used 3 days after heating, when free radicals were considerably quenched. Free radical properties remain unchanged during storage of the Ungentum. The EPR lines of the U. ophthalmicum were homogeneously broadened and their linewidths (ΔB pp ) increased with increase in microwave power. EPR spectroscopy is useful to examine free radicals to optimize sterilization process and storage conditions of ophthalmologic samples.

  4. Pulsed EPR Spin-probe study of intracellular glasses in seed and pollen

    NARCIS (Netherlands)

    Buitink, J.; Dzuba, S.A.; Hoekstra, F.A.; Tsvetkov, Y.D.

    2000-01-01

    EPR spectra of 3-carboxy-proxyl (CP) in dry biological tissues exhibited a temperature-dependent change in the principal value A′zz of the hyperfine interaction tensor. The A′zz value changed sharply at a particular temperature that was dependent on water content. At elevated water contents, the

  5. Electron Spin Resonance study of charge trapping in α-ZnMoO.sub.4./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Spassky, D.A.; Hybler, Jiří; Laguta, Valentyn; Nikl, Martin

    2015-01-01

    Roč. 47, Sep (2015), 244-250 ISSN 0925-3467 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Electron Spin Resonance * scintillator * charge traps * zinc molybdate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  6. Sequence- and structure-dependent DNA base dynamics: Synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA

    International Nuclear Information System (INIS)

    Spaltenstein, A.; Robinson, B.H.; Hopkins, P.B.

    1989-01-01

    A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1 H NMR, CD, and thermal denaturation studies indicate that 1a (T) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules

  7. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  8. EPR and Bell Locality

    OpenAIRE

    Norsen, Travis

    2004-01-01

    A new formulation of the EPR argument is presented, one which uses John Bell's mathematically precise local causality condition in place of the looser locality assumption which was used in the original EPR paper and on which Niels Bohr seems to have based his objection to the EPR argument. The new formulation of EPR bears a striking resemblance to Bell's derivation of his famous inequalities. The relation between these two arguments -- in particular, the role of EPR as part one of Bell's two-...

  9. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    International Nuclear Information System (INIS)

    Biyik, Recep

    2009-01-01

    VO 2+ doped L-alanine (C 3 H 7 NO 2 ) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO 2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO 2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  10. Seventy Years of the EPR Paradox

    Science.gov (United States)

    Kupczynski, Marian

    2006-11-01

    In spite of the fact that statistical predictions of quantum theory (QT) can only be tested if large amount of data is available a claim has been made that QT provides the most complete description of an individual physical system. Einstein's opposition to this claim and the paradox he presented in the article written together with Podolsky and Rosen in 1935 inspired generations of physicists in their quest for better understanding of QT. Seventy years after EPR article it is clear that without deep understanding of the character and limitations of QT one may not hope to find a meaningful unified theory of all physical interactions, manipulate qubits or construct a quantum computer.. In this paper we present shortly the EPR paper, the discussion, which followed it and Bell inequalities (BI). To avoid various paradoxes we advocate purely statistical contextual interpretation (PSC) of QT. According to PSC a state vector is not an attribute of a single electron, photon, trapped ion or quantum dot. A value of an observable assigned to a physical system has only a meaning in a context of a particular physical experiment PSC does not provide any mental space-time picture of sub phenomena. The EPR paradox is avoided because the reduction of the state vector in the measurement process is a passage from a description of the whole ensemble of the experimental results to a particular sub-ensemble of these results. We show that the violation of BI is neither a proof of the completeness of QT nor of its non-locality. Therefore we rephrase the EPR question and ask whether QT is "predictably "complete or in other words does it provide the complete description of experimental data. To test the "predictable completeness" it is not necessary to perform additional experiments it is sufficient to analyze more in detail the existing experimental data by using various non-parametric purity tests and other specific statistical tools invented to study the fine structure the time-series.

  11. Selfcalibrated alanine/EPR dosimeters. A new generation of solid state/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratio I alanine /I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for 60 Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 10 2 - 5 x 10 4 Gy. (author)

  12. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    Science.gov (United States)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  13. Quantum information generation, storage and transmission based on nuclear spins

    Science.gov (United States)

    Zaharov, V. V.; Makarov, V. I.

    2018-05-01

    A new approach to quantum information generation, storage and transmission is proposed. It is shown that quantum information generation and storage using an ensemble of N electron spins encounter unresolvable implementation problems (at least at the present time). As an alternative implementation we discuss two promising radical systems, one with N equivalent nuclear spins and another with N nonequivalent nuclear spins. Detailed analysis shows that only the radical system containing N nonequivalent nuclei is perfectly matched for quantum information generation, storage and transmission. We develop a procedure based on pulsed electron paramagnetic resonance (EPR) and we apply it to the radical system with the set of nonequivalent nuclei. The resulting EPR spectrum contains 2N transition lines, where N is the number of the atoms with the nuclear spin 1/2, and each of these lines may be encoded with a determined qudit sequence. For encoding the EPR lines we propose to submit the radical system to two magnetic pulses in the direction perpendicular to the z axis of the reference frame. As a result, the radical system impulse response may be measured, stored and transmitted through the communications channel. Confirming our development, the ab initio analysis of the system with three anion radicals was done showing matching between the simulations and the theoretical predictions. The developed method may be easily adapted for quantum information generation, storage, processing and transmission in quantum computing and quantum communications applications.

  14. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. An X-band Co2+ EPR study of Zn1-xCoxO (x=0.005-0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    Science.gov (United States)

    Misra, Sushil K.; Andronenko, S. I.; Srinivasa Rao, S.; Chess, Jordan; Punnoose, A.

    2015-11-01

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5-10% Co2+ ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH2CH2OH)2O) (NC-rod-like samples), and (ii) denatured ethanol (CH3CH2OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co2+ ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co2+ ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed.

  16. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  17. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  18. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    Science.gov (United States)

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  19. EPR investigation of Ti2+ in SrCl2 single crystals.

    Science.gov (United States)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation of 'double quantum' transitions which made it possible to determine the charge state of Ti as 2+ is reported. The EPR spectrum observed at 1.2 K is presented in a graph. The first derivative of the absorption is shown vs the magnetic field. The hyperfine patterns for the Ti-47 and Ti-49 isotopes are identified. Spin-Hamiltonian parameters for Ti(2+) in various cubic hosts are listed.

  20. The EPR in a few words: all you need to know about the EPR nuclear reactor

    International Nuclear Information System (INIS)

    2009-01-01

    After a brief presentation of the EPR (European - or Evolutionary - Pressurized Reactor) type nuclear reactor, this paper, proposed by the collective group 'Stop EPR', develops the following points: EPR is as dangerous as other reactors; EPR flouts democracy; France's energy demand do not need the construction of EPRs; the construction of EPRs is not a factor of economical and social development; EPR should not be constructed neither in France nor elsewhere and the present building sites should be cancelled; the EPR will not help France to increase its energy independence and protect itself from oil price increases; choosing the EPR is incompatible with the large investments to be made in energy conservation and renewable energies; the EPR is not a solution to climate change; the VHV line corridor that will starts at Flamanville is not justified and poses risks to the environment and public health

  1. Low-field EPR studies of levels near the top of the barrier in Mn 12-acetate reveal a new magnetization relaxation pathway

    Science.gov (United States)

    Rakvin, Boris; Žilić, Dijana; Dalal, Naresh S.; Harter, Andrew; Sanakis, Yiannis

    2006-07-01

    We show that X-band electron paramagnetic resonance (EPR) measurements using a dual-mode resonance cavity can directly probe the levels near the top of the magnetization reversal barrier in the single-molecule magnet (SMM) Mn 12-acetate. The observed transitions are much sharper than those reported in high-field EPR studies. The observed temperature dependence of the line positions points to the presence of a spin-diffusional mode. The correlation time for such fluctuations is of the order of 6×10 -8 s at 10 K, and follows an Arrhenius activation energy of 35-40 K. These results open a new avenue for understanding the mechanism of tunneling and spin-lattice relaxations in these SMMs.

  2. Electronic Structure of ZnO Quantum Dots studied by High-frequency EPR, ESE, ENDOR and ODMR Spectroscopy

    NARCIS (Netherlands)

    Baranov, P.G.; Romanov, N.G.; Bundakova, A.P.; de Mello-Donega, Celso; Schmidt, J.

    2016-01-01

    High-frequency electron paramagnetic resonance (EPR), electron spin echo (ESE), electron-nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) were applied for the investigation of the electronic properties of ZnO colloidal quantum dots (QDs) which consist of a ZnO

  3. EPR by Areva. EPR the 1600+ MWe reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system.

  4. EPR by Areva. EPR the 1600+ MWe reactor

    International Nuclear Information System (INIS)

    2008-01-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system

  5. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO{sup 2+} ion in NaH{sub 2}PO{sub 4}·2H{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kalfaoğlu, Emel [Ondokuz Mayıs University, Faculty of Sciences, Department of Physics, 55139 Kurupelit-Samsun (Turkey); Karabulut, Bünyamin, E-mail: bbulut@omu.edu.tr [Ondokuz Mayıs University, Faculty of Engineering, Department of Computer Engineering, 55139 Kurupelit-Samsun (Turkey)

    2016-09-15

    Electron paramagnetic resonance (EPR) spectra of VO{sup 2+} ions in NaH{sub 2}PO{sub 4}·2H{sub 2}O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO{sup 2+} complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO{sup 2+} sites. The crystal field around VO{sup 2+} ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  6. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  7. An X- and Q-band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1-xFexO

    Science.gov (United States)

    Misra, Sushil K.; Andronenko, S. I.; Thurber, A.; Punnoose, A.; Nalepa, A.

    2014-08-01

    EPR studies on two types of nanoparticles of Fe3+ doped, 0.1-10%, ZnO, NL and QJ, prepared using similar chemical hydrolysis methods, in diethylene glycol, and in denatured ethanol solutions, respectively, were carried out at X-band (~9.5 GHz) at 77 K and at Q-band (~34.0 GHz) at 10, 80, and 295 K. To interpret the experimental results, EPR spectra were simulated by exact diagonalization of the spin-Hamiltonian matrix to identify the Fe ions at different magnetically active sites in these samples. The simulation for NL samples revealed that they contained (i) Fe3+ ions, which substituted for Zn ions, the zero-field splitting (ZFS) parameter which has a large distribution over the sample due to oxygen vacancies in the second coordination sphere; (ii) EPR signal from surface oxygen defects; and (iii) ferromagnetically (FM) coupled Fe ions with concentration of Fe more than 1%. The EPR spectra for QJ samples are very different from those for NL samples, exhibiting only rather intense FM EPR lines. The FM and EPR spectra in NL and/or QJ samples are found to vary strongly with differences in the surface morphology of nanoparticles.

  8. EPR of uranium ions

    International Nuclear Information System (INIS)

    Ursu, I.; Lupei, V.

    1984-02-01

    A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)

  9. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  10. Field-dependent spin chirality and frustration in V3 and Cu3 nanomagnets in transverse magnetic field. 2. Spin configurations, chirality and intermediate spin magnetization in distorted trimers

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2014-01-01

    Highlights: • Distorted spin configurations determine field behavior of the variable chiralities. • Distortions change spin chiralities, intermediate M 12 ± and staggered magnetization. • Magnetizations, distorted vector and scalar chiralities are strongly correlated. • Distorted V 3 , Cu 3 nanomagnets possess large vector chirality in the ground state in B ⊥ . • Chiralities and distortions in EPR, INS and NMR spectra were considered. - Abstract: Correlated spin configurations, magnetizations, frustration, vector κ ¯ z and scalar χ ¯ chiralities are considered for distorted V ‾ 3 , /Cu 3 / anisotropic DM nanomagnets in transverse B x ‖X and longitudinal B‖Z fields. Different planar configurations in the ground and excited states of distorted nanomagnets in B x determine different field behavior of the vector chiralities and the degenerate frustration in these states correlated with the M ~ 12 ± (B x ) intermediate spin (IS) magnetization which describes the S 12 characteristics, χ=0. Distortion results in the reduced κ ¯ z <1 chirality in the ground distorted configuration and in the maximum κ z =±1 in the excited states with the planar 120° configurations at avoided level crossing. In B‖Z, distorted longitudinal spin-collinear configurations are characterized by the reduced degenerate frustration, out-of-plane staggered and IS M ~ 12 ± (B z ) magnetizations, and in-plane toroidal moments, correlated with the κ ¯ z , χ ¯ chiralities, χ ¯ =±|κ ¯ z |. The chiralities and IS magnetization in EPR, INS and NMR spectra are considered. The quantitative correlations describe variable spin chirality, frustration and field manipulation of chiralities in nanomagnets

  11. EPR spectroscopic evidence for a tetranuclear manganese cluster as the site for photosynthetic oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, G C; Ferris, K; Watnick, P

    1982-01-01

    It has been shown that EPR observations of a polynuclear Mn cluster in spinach chloroplasts can be interpreted in terms of a cluster containing three Mn(III) ions and one Mn(IV) ion within a tetranuclear complex. Both ferromagnetic and antiferromagnetic interactions appear to exist between the Mn ions, which exhibit deeply trapped discrete oxidation states, at least in this EPR active state. These results are discussed in terms of what is currently known about the polypeptide composition of the enzyme. A model of the oxidation state changes in the enzyme is proposed which is consistent with the EPR and protein isolation studies. Finally, a comparison between the electron-transporting metalloenzymes and the electron-storing metalloenzymes shows that the facile electron transfer kinetics observed in the former class and the slow kinetics observed in the latter class are consistent with the distinctly different electronic structures of these enzymes and their functional roles.

  12. An X-band Co{sup 2+} EPR study of Zn{sub 1−x}Co{sub x}O (x=0.005–0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sushil K., E-mail: skmisra@alcor.concordia.ca [Physics Department, Concordia University, Montreal, QC, Canada H3G 1M8 (Canada); Andronenko, S.I. [Physics Institute, Kazan Federal University, Kazan 420008 (Russian Federation); Srinivasa Rao, S.; Chess, Jordan; Punnoose, A. [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States)

    2015-11-15

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5–10% Co{sup 2+} ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH{sub 2}CH{sub 2}OH){sub 2}O) (NC-rod-like samples), and (ii) denatured ethanol (CH{sub 3}CH{sub 2}OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co{sup 2+} ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co{sup 2+} ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed. - Highlights: • 5 K X band Co{sup 2+} EPR investigations on QC and NC ZnO dilute magnetic semiconductor nanoparticles. • NC and QC samples exhibited high-spin Co{sup 2+} EPR lines and ferromagnetic resonance line. • NC sample also exhibit line due surface oxygen vacancies. • FMR line is more intense in QC than that in NC samples. • Magnetic states and the origin of ferromagnetism are discussed.

  13. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed.

  14. Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy

    Science.gov (United States)

    Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas

    2018-01-01

    Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.

  15. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  16. Detection of Redox Imbalance in Normal Lymphocytes with Induced Mitochondrial Dysfunction - EPR Study.

    Science.gov (United States)

    Georgieva, Ekaterina; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-10-01

    The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, pEPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Off-centre dynamic Jahn-Teller effect studied by electron spin relaxation of Cu2+ ions in SrF2 crystal

    International Nuclear Information System (INIS)

    Hoffmann, S.K.

    2000-01-01

    Temperature cw-EPR and pulsed EPR electron spin echo experiments were performed for a low concentration of Cu 2+ ions in cubic SrF 2 crystals. The well resolved EPR spectrum at low temperatures (below 30 K) with parameters g parallel = 2.493, g perpendicular = 2.083, A parallel = 121, A perpendicular = 8.7, A parallel ( 19 F) = 135, A parallel ( 19 F) = 33.0 (A-values in 10 -4 cm -1 ) is transformed continuously into a single broad line above 225 K on heating, due to the g-factor shift and EPR line broadening. These data along with the angular variation EPR data are described in terms of a pseudo-Jahn-Teller effect of (T 2g +A 2u )x(a 1g +e g +t 1u ) type producing six off-centre positions of the Cu 2+ ion in the fluorine cube. Above 30 K a two-step averaging g -factor process occurs and is governed by vibronic dynamics between potential wells of the off-centre positions. This dynamics governs the electron spin relaxation in the whole temperature range. The electron spin-lattice relaxation rate 1/T 1 grows rapidly by six orders of magnitude in the temperature range 30-100 K and is determined by the Orbach-type process with excitations to two excited vibronic levels of energy 83 and 174 cm -1 . For higher temperatures the relaxation is dominated by overbarrier jumps leading to the isotropic EPR spectrum above 225 K. The phase memory time T M has the rigid lattice value 3.5 μs determined by nuclear spectral diffusion and its temperature variation is governed by the vibronic dynamics indicating that the excitations between vibronic levels produce a dephasing of the electron spin precessional motion. (author)

  18. Classical and quantum 'EPR'-spin correlations in the triplet state

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1987-01-01

    Quantum correlations and joint probabilities in the triplet state as well as the correlations of components of two correlated classical spin vectors, are evaluated. Correlations in the states with |S tot z |=1 are different from correlations in the state with S tot z =0 which may serve to distinguish different states of the triplet. As in the singlet case, we can reproduce quantum correlations by correlated classical spin vectors which also provide a precision of the notion of ''parallel spins''. Triplet state correlations could in principle be measured, for example, in the decay reaction J/ψ → e + e - for which there is a sufficiently large branching ratio. (author). 12 refs

  19. EPR and optical spectroscopic studies of neutral free radicals in an adamantane matrix

    International Nuclear Information System (INIS)

    Jordan, J.E.

    1975-03-01

    Recent work in our laboratory has demonstrated that neutral free radicals produced by x-irradiation and trapped in adamantane exhibit exceedingly long lifetimes because of the lack of rapid diffusion in the solid matrix. This observation and the fact that samples can be pressed into pellets with high optical transparency in the visible and near uv regions of the spectrum suggested to us that this unique matrix might be used for studying the optical properties of free radicals. The results of a wide variety of experiments of this type are described in this thesis. These include experiments in which secondary free radicals are produced by photoinduced decomposition of primary free radicals by selective irradiation with visible light, the observation of strong optical absorption spectra of free radicals at room temperature using a Cary 14 spectrophotometer, the finding that certain free radicals exhibit strong, visible fluorescence when irradiated with uv light, and the discovery that the absorption intensity of multiplicity-forbidden transition in singlet and doublet state species is enhanced relative to spin-allowed transitions by at least three orders of magnitude. An analysis of these results in terms of molecular orbital theory is given, and experiments designed to obtain the epr spectra of electronically-excited states of free radicals are described

  20. Spin Drag and Spin-Charge Separation in Cold Fermi Gases

    International Nuclear Information System (INIS)

    Polini, Marco; Vignale, Giovanni

    2007-01-01

    Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet

  1. EPR: Evidence and fallacy.

    Science.gov (United States)

    Nichols, Joseph W; Bae, You Han

    2014-09-28

    The enhanced permeability and retention (EPR) of nanoparticles in tumors has long stood as one of the fundamental principles of cancer drug delivery, holding the promise of safe, simple and effective therapy. By allowing particles preferential access to tumors by virtue of size and longevity in circulation, EPR provided a neat rationale for the trend toward nano-sized drug carriers. Following the discovery of the phenomenon by Maeda in the mid-1980s, this rationale appeared to be well justified by the flood of evidence from preclinical studies and by the clinical success of Doxil. Clinical outcomes from nano-sized drug delivery systems, however, have indicated that EPR is not as reliable as previously thought. Drug carriers generally fail to provide superior efficacy to free drug systems when tested in clinical trials. A closer look reveals that EPR-dependent drug delivery is complicated by high tumor interstitial fluid pressure (IFP), irregular vascular distribution, and poor blood flow inside tumors. Furthermore, the animal tumor models used to study EPR differ from clinical tumors in several key aspects that seem to make EPR more pronounced than in human patients. On the basis of this evidence, we believe that EPR should only be invoked on a case-by-case basis, when clinical evidence suggests the tumor type is susceptible. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  3. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N1,N4-di(salicylidene)-isothiosemicarbazides

    International Nuclear Information System (INIS)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-01-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N 1 ,N 4 -di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic μ-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O 2 bond is discussed

  4. DNA alterations photosensitized by tetracycline and some of its derivatives

    International Nuclear Information System (INIS)

    Piette, J.; Decuyper, J.; Van de Vorst, A.

    1986-01-01

    Bacteriophage M13 mp10 DNA were irradiated with near-UV light in the presence of tetracycline derivatives and primed with synthetic oligonucleotide to be used for DNA synthesis using Escherichia coli DNA polymerase. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis and mapped precisely. All the synthesis stops occurred before or at the level of guanine residues, showing that the photoreaction mediated by tetracycline derivatives led to a preferential alteration of guanine residues. These lesions were demonstrated to be induced in DNA through a pathway involving singlet oxygen. Tetracycline derivatives also photoinduced the breakage of the DNA sugar-phosphate backbone monitored by the conversion of supercoiled phi X174 DNA to a relaxed form. This lesion was shown to be initiated by hydroxyl radicals. The production of this free radical has been confirmed by electron paramagnetic resonance (EPR) spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap. In addition to the EPR signal due to OH radicals trapping another unassigned signal has been detected

  5. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  6. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  7. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC.

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T 1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14 N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    Science.gov (United States)

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  9. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. EPR study of the low-spin state of Ru{sup 3+}in the YAl{sub 3}(BO{sub 3}){sub 4} and EuAl{sub 3}(BO{sub 3}){sub 4} aluminum borates

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, A.A., E-mail: andaprokhorov@gmail.com [Institute of Physics AS CR, Na Slovance 2, Praha 8 18221 (Czech Republic); Chernush, L.F. [A.A. Galkin Donetsk Physico-Technical Institute, 72, R. Luxembourg Str., Donetsk 83114 (Ukraine); Dyakonov, V.P.; Szymczak, H. [Institute of Physics, PAS, al. Lotników 32/46, Warsaw 02-668 (Poland); Prokhorov, A.D. [A.A. Galkin Donetsk Physico-Technical Institute, 72, R. Luxembourg Str., Donetsk 83114 (Ukraine)

    2016-12-15

    New data on the ground state of impurity Ru{sup 3+} ions in the crystals of YAl{sub 3}(BO{sub 3}){sub 4} and EuAl{sub 3}(BO{sub 3}){sub 4} aluminum borates were obtained. It was shown that Ru{sup 3+} ion replaces trivalent rare-earth ions without breaking the symmetry of the site. The crystal field acting on 4d{sup 5} ions forms an EPR spectrum, which is described by the spin Hamiltonian with S=1/2. The spin-Hamiltonian parameters determined are equal to g{sub II}=1.963, g{sub ⊥}=3.796, A{sub II}=43.03*10{sup −4} cm{sup −1}, A{sub ⊥}=84.86*10{sup −4} cm{sup −1} in the YAl{sub 3}(BO{sub 3}){sub 4} crystal (at T=15 K) and g{sub II}=2.016, g{sub ⊥}=3.796 in the EuAl{sub 3}(BO{sub 3}){sub 4} crystal (at T=15 K). It is found that the value of ∆g=g{sub II}-g{sub ⊥} is an indicator of distortions of nearest environment of Ru{sup 3+} ion. The angle between the C{sub 3} axis and the direction into nearest oxygen ion was determined. The EPR linewidth of Ru{sup 3+} ion increases with increasing temperature due to the dipole-dipole and exchange interactions with the excited states of the host lattice Ru{sup 3+} ion.

  11. The analogy in the formation of hardness salts and gallstones according to the EPR study

    Science.gov (United States)

    Pichugina, Alina; Tsyro, Larisa; Unger, Felix

    2017-11-01

    The article shows that the hardness salts contain the same crystalline phases as the bile stone pigment. The identity of EPR spectra of hardness salts and pigment of gallstones containing calcium carbonate was established. An analogy between the processes of formation of hardness salts and gallstones is played, in which particles with open spin-orbitals (fermions) play a decisive role.

  12. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  13. Contribution of vitamin K1 to the electron spin polarization in spinach photosystem I

    International Nuclear Information System (INIS)

    Rustandi, R.R.; Snyder, S.W.; Feezel, L.L.; Michalski, T.J.; Norris, J.R.; Thurnauer, M.C.; Biggins, J.

    1990-01-01

    The electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal observed in spinach photosystem I (PSI) particles was examined in preparations depleted of vitamin K1 by solvent extraction and following biological reconstitution by the quinone. The ESP EPR signal was not detected in the solvent-extracted PSI sample but was restored upon reconstitution with either protonated or deuterated vitamin K1 under conditions that also restored electron transfer to the terminal PSI acceptors. Reconstitution using deuterated vitamin K1 resulted in a line narrowing of the ESP EPR signal, supporting the conclusion that the ESP EPR signals in the reconstituted samples arise from a radical pair consisting of the oxidized PSI primary donor, P700+, and reduced vitamin K1

  14. Numerical evidences of universal trap-like aging dynamics

    Science.gov (United States)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  15. Understanding the dosimetric powder EPR spectrum of sucrose by identification of the stable radiation-induced radicals

    International Nuclear Information System (INIS)

    Vrielinck, H.; Vanhaelewyn, G.; Matthys, P.; Callens, F.; Kusakovskij, J.

    2014-01-01

    Sucrose, the main component of table sugar, present in nearly every household and quite radiation sensitive, is considered as an interesting emergency dosemeter. Another application of radiation-induced radicals in sugars is the detection of irradiation in sugar-containing foodstuffs. The complexity of electron paramagnetic resonance (EPR) spectra of radicals in these materials, as a result of many hyperfine interactions and the multi-compositeness of the spectra of individual sugars, complicate dose assessment and the improvement of protocols for control and identification of irradiated sugar-containing foodstuffs using EPR. A thorough understanding of the EPR spectrum of individual irradiated sugars is desirable when one wants to reliably use them in a wide variety of dosimetric applications. Recently, the dominant room temperature stable radicals in irradiated sucrose have been thoroughly characterised using EPR, electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. These radicals were structurally identified by comparing their proton hyperfine and g-tensors with the results of Density Functional Theory calculations for test radical structures. In this paper, the authors use the spin Hamiltonian parameters determined in these studies to simulate powder EPR spectra at the standard X-band (9.5 GHz), commonly used in applications, and at higher frequencies, up to J-band (285 GHz), rendering spectra with higher resolution. A few pitfalls in the simulation process are highlighted. The results indicate that the major part of the dosimetric spectrum can be understood in terms of three dominant radicals, but as-yet unidentified radicals also contribute in a non-negligible way. (authors)

  16. Communication: Orientational self-ordering of spin-labeled cholesterol analogs in lipid bilayers in diluted conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kardash, Maria E.; Dzuba, Sergei A., E-mail: dzuba@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia, and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-12-07

    Lipid-cholesterol interactions are responsible for different properties of biological membranes including those determining formation in the membrane of spatial inhomogeneities (lipid rafts). To get new information on these interactions, electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR), was applied to study 3β-doxyl-5α-cholestane (DCh), a spin-labeled analog of cholesterol, in phospholipid bilayer consisted of equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. DCh concentration in the bilayer was between 0.1 mol.% and 4 mol.%. For comparison, a reference system containing a spin-labeled 5-doxyl-stearic acid (5-DSA) instead of DCh was studied as well. The effects of “instantaneous diffusion” in ESE decay and in echo-detected (ED) EPR spectra were explored for both systems. The reference system showed good agreement with the theoretical prediction for the model of spin labels of randomly distributed orientations, but the DCh system demonstrated remarkably smaller effects. The results were explained by assuming that neighboring DCh molecules are oriented in a correlative way. However, this correlation does not imply the formation of clusters of cholesterol molecules, because conventional continuous wave EPR spectra did not show the typical broadening due to aggregation of spin labels and the observed ESE decay was not faster than in the reference system. So the obtained data evidence that cholesterol molecules at low concentrations in biological membranes can interact via large distances of several nanometers which results in their orientational self-ordering.

  17. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    Science.gov (United States)

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  19. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  20. Magnetic trapping of spin-polarized neutral atoms at its limits

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1995-01-01

    We investigated the limits of magnetic methods of trapping neutral atoms in a spot of small size and small polarization misalignment. The analysis covers various methods of trapping with static and rotating magnetic field. In particular, new rotating field methods having advantages are proposed. They differ from the recently invented 'top' type by employing a slow rotating field, resonant to the orbiting atoms, rather than much faster rotation. Also a theory of the top trap is developed. It elucidates important features of trapping lying beyond the time-averaged potential concept. General criteria on the trapping temperature as a function of size and misalignment parameters are established for various methods. (author). 8 refs., 2 figs

  1. EPR detection of hydroxyl radical generation and its interaction with antioxidant system in Carassius auratus exposed to pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yi [Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, College of Environmental Sciences and Engineering, Nankai University, Tianjin 300071 (China); Wang Xiaorong, E-mail: yiyluo@gmail.com [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Ji Liangliang; Su Yan [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2009-11-15

    In the present study, direct evidence of hydroxyl radical production in livers of Carassius auratus exposed to pentachlorophenol (PCP) was provided using electron paramagnetic resonance (EPR) with spin-trapping. A dose-effect relationship was obtained between hydroxyl radical intensities and PCP exposure. It was observed that hydroxyl radical was significantly induced by 0.001 mg l{sup -1} (below the criteria for Chinese fishery water quality) of PCP exposure. A strong positive correlation (r = 0.9581, p < 0.001) was observed between PCP liver concentrations and hydroxyl radical intensities within 7 d of PCP exposure, which suggests that hydroxyl radical are mainly produced from PCP itself. However, no correlation was observed between PCP liver concentrations and hydroxyl radical intensities after 7 d, and a higher intensity of hydroxyl radical could still be observed when the PCP liver concentrations decreased to a lower level, which suggests that other mechanisms may possibly contribute to hydroxyl radical production after 7 d. The glutathione/oxidized glutathione (GSH/GSSG) ratio decreased below that of the control level during the entire period of PCP exposure (0.05 mg l{sup -1}), which suggested oxidative stress occurred.

  2. Spin dynamics of large-spin fermions in a harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn

    2017-04-15

    Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. We also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.

  3. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)-isothiosemicarbazides

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-09-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic ..mu..-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O/sub 2/ bond is discussed.

  4. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  5. Observation of ESR spin flip satellite lines of trapped hydrogen atoms in solid H2 at 4.2 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Iwata, Nobuchika; Fueki, Kenji; Hase, Hirotomo

    1990-01-01

    ESR spectra of H atoms, produced in γ-irradiated solid H 2 , were studied at 4.2 K. Two main lines of the ESR spectra of H atoms that are separated by about 500 G accompanied two weak satellite lines. Both satellite lines and main lines decrease with the same decay rate. In the D 2 -H 2 mixtures, the satellite-line intensity depends upon the number of matrix protons. The spacing of the satellites from the main lines is equal to that of the NMR proton resonance frequency. It was concluded that the satellite lines were not ascribable to paired atoms but to spin flip lines due to an interaction of H atoms with matrix protons. The analysis of the spin flip lines and the main lines suggests that H atoms in solid H 2 are trapped in the substitutional site

  6. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  7. Braked rotation of CH3 group in L-alanine monocrystals: temperature transformation of EPR spectrum

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Sochava, L.S.

    2003-01-01

    EPR spectra temperature transformation of the irradiated alanine crystals is used for studying rotation of CH 3 methyl group in L-alamine monocrystals. 60 Co (2 x 10 4 Gy dose) was applied as a γ-radiation source. The simple method of experimental data processing which is reduced to obtaining the resonance lines width dependence on the temperature is used for the quantitative analysis of the spectrum temperature transformation. Temperature dependence of the CH 3 group rotation frequency is identified on the basis of these data. Activation energy U = 0.18 eV and pre-exponential multiplier ω 0 = 10 13 s -1 are determined from the EPR spectra temperature transformation which are in good agreement with values obtained earlier from the measurements of the proton spin-lattice relaxation in alanine polycrystal samples [ru

  8. Optical and EPR studies of barium alumino borate glasses containing Cu2+ ions

    Science.gov (United States)

    Ahmed, Mohamad Raheem; Phani, A. V. Lalitha; Narsimha Chary, M.; Shareefuddin, Md.

    2018-05-01

    Glass containing Cu2+ ions in (30-x) BaO-xAl2O3-69.5B2O3-0.5CuO (0 ≤ x ≤ 15 mol %) were prepared by the conventional melt quenching technique. Peak free X-ray diffractograms confirmed the amorphous nature of the glass samples. Spectroscopic studies such as optical absorption, EPR were studied to understand the effect of modifier oxide and CuO dopant. From EPR spectra the spin-Hamiltonian parameter were evaluated. The ground state of Cu2+ is dx2-y2 (2B1g state) and the site symmetry around Cu2+ is tetragonally distorted octahedral. A broad optical absorption band was observed for all the glasses containing Cu2+ ions corresponding to the 2B1g → 2B2g transition. The optical band gap and Urbach energy values are calculated.

  9. Using rapid scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude

    OpenAIRE

    Möser, J.; Lips, K.; Tseytlin, M.; Eaton, G.; Eaton, S.; Schnegg, A

    2017-01-01

    X band rapid scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid scan and continuous wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid scan EPR results in signal to noise improvements by factors between 10 and 50. Rapid scan EPR is thus ca...

  10. Spin-crossover in an iron(III)-bispidine-alkylperoxide system.

    Science.gov (United States)

    Bautz, Jochen; Comba, Peter; Que, Lawrence

    2006-09-04

    The iron(II) complex of a tetradentate bispidine ligand with two tertiary amines and two pyridine groups (L = dimethyl [3,7-dimethyl-9,9'-dihydroxy-2,4-di-(2-pyridyl)-3,7-diazabicyclo nonan-1,5-dicaboxylate]) is oxidized with tert-butyl hydroperoxide to the corresponding end-on tert-butylperoxo complex [Fe(III)(L)(OOtBu)(X)]n+ (X = solvent, anion). UV-vis, resonance Raman, and EPR spectroscopy, as a function of the solvent, show that this is a spin-crossover compound. The experimentally observed Raman vibrations for both low-spin and high-spin isomers are in good agreement with those computed by DFT.

  11. Medical application of EPR

    International Nuclear Information System (INIS)

    Eichhoff, Uwe; Hoefer, Peter

    2015-01-01

    Selected applications of continuous-wave EPR in medicine are reviewed. This includes detection of reactive oxygen and nitrogen species, pH measurements and oxymetry. Applications of EPR imaging are demonstrated on selected examples and future developments to faster imaging methods are discussed

  12. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    Science.gov (United States)

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  13. EPR compared to international requirements (Mainly EUR)

    International Nuclear Information System (INIS)

    Broecker, B.

    1996-01-01

    A number of European Utilities have entered an agreement to write common requirements dedicated to future light water nuclear power plants to be built in Europe. The activities are known under the sign EUR (European Utilities Requirements). EPR, the future European Pressurized water Reactor, is the first installation of this type which will be operational from the year 2000 onwards, must fulfill the European requirements. EPR will serve as a test whether these requirements are realistic and well balanced. At the basic design stage of EPR, this paper concentrates on four main topics: the requirements which are new compared with existing reactors and which put a major challenge to the designer; the requirements today still open and the way they can be met by the EPR or not; the points for which already today the EPR special requirements exceed the EUR; the examples where the design of the EPR has given feedback which has led to a change of the EUR. EPR and EUR are different approaches to the reactor of the future. EUR is a set of requirements which leaves a flexibility to the designer while EPR is a real project which defines the technical solutions. EPR will fulfill the EUR and will at the same time serve as a test whether these requirements are realistic. EPR will also fulfill international requirements with minor changes. (J.S.). 7 figs

  14. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, C.D.; Scully, M.O.

    1978-07-01

    Einstein, Podolsky, and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. It is shown that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review.

  15. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    Science.gov (United States)

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  16. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    International Nuclear Information System (INIS)

    Assink, Roger A.; Celina, Mathias C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger Lee; Gillen, Kenneth T.

    2000-01-01

    The authors have shown that the hydroperoxide species in γ-irradiated 13 C-polyethylene can be directly observed by 13 C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions

  17. The Spin Vector of (832) Karin

    Science.gov (United States)

    Slivan, Stephen M.; Molnar, L. A.

    2010-10-01

    We observed rotation lightcurves of Koronis family and Karin cluster member (832) Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of 18.352 h, spin obliquity near 41°, and pole ecliptic longitude near either 51° or 228°. Although the two ambiguous pole solutions are near the clustered pole solutions of four Koronis family members whose spins are thought to be trapped in a spin-orbit resonance (Vokrouhlický et al., 2003), Karin does not seem to be trapped in the resonance; this is consistent with the expectation that the 6 My age of Karin (Nesvorný et al., 2002) is too young for YORP torques to have modified its spin since its formation. The spin vector and shape results for Karin will constrain family formation models that include spin properties, and we discuss the Karin results in the context of the other members of the Karin cluster, the Karin parent body, and the parent body's siblings in the Koronis family.

  18. EPR spectroscopy at DNP conditions

    International Nuclear Information System (INIS)

    Heckmann, J.; Goertz, St.; Meyer, W.; Radtke, E.; Reicherz, G.

    2004-01-01

    In terms of dynamic nuclear polarization (DNP) studies and systematic target material research it is crucial to know the EPR lineshape of the DNP relevant paramagnetic centers. Therefore in Bochum an EPR spectrometer has been implemented into the 4 He evaporation DNP facility in order to perform EPR studies at DNP conditions (B=2.5 T, T=1 K). The spectrometer hardware and performance as well as first results are presented

  19. Low temperature EPR investigation of Co2+ ion doped into rutile TiO2 single crystal: Experiments and simulations

    Science.gov (United States)

    Zerentürk, A.; Açıkgöz, M.; Kazan, S.; Yıldız, F.; Aktaş, B.

    2017-02-01

    In this paper, we present the results of X-band EPR spectra of Co2+ ion doped rutile (TiO2) which is one of the most promising memristor material. We obtained the angular variation of spectra in three mutually perpendicular planes at liquid helium (7-13 K) temperatures. Since the impurity ions have ½ effective spin and 7/2 nuclear spin, a relatively simple spin Hamiltonian containing only electronic Zeeman and hyperfine terms was utilized. Two different methods were used in theoretical analysis. Firstly, a linear regression analysis of spectra based on perturbation theory was studied. However, this approach is not sufficient for analyzing Co+2 spectra and leads to complex eigenvectors for G and A tensors due to large anisotropy of eigenvalues. Therefore, all spectra were analyzed again with exact diagonalization of spin Hamiltonian and the high accuracy eigenvalues and eigenvectors of G and A tensors were obtained by taking into account the effect of small sample misalignment from the exact crystallographic planes due to experimental conditions. Our results show that eigen-axes of g and A tensors are parallel to crystallographic directions. Hence, our EPR experiments proves that Co2+ ions substitute for Ti4+ ions in lattice. The obtained principal values of g tensor are gx=2.110(6), gy=5.890(2), gz=3.725(7) and principal values of hyperfine tensor are Ax=42.4, Ay=152.7, Az=26 (in 10-4/cm).

  20. Electron spin-lattice relaxation mechanisms of radiation produced trapped electrons and hydrogen atoms in aqueous and organic glassy matrices. Modulation of electron nuclear dipolar interaction by tunnelling modes in a glassy matrix. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, M K; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry

    1977-01-01

    The spin lattice relaxation of trapped electrons in aqueous and organic glasses and trapped hydrogen atoms in phosphoric acid glass has been directly studied as a function of temperature by the saturation recovery method. Below 50 to 100 K, the major spin lattice relaxation mechanism involves modulation of the electron nuclear dipolar (END) interaction with nuclei in the radical's environment by tunnelling of those nuclei between two or more positions. This relaxation mechanism occurs with high efficiency and has a characteristic linear temperature dependence. The tunnelling nuclei around trapped electrons do not seem to involve the nearest neighbor nuclei which are oriented by the electron in the process of solvation. Instead the tunnelling nuclei typically appear to be next nearest neighbors to the trapped electron. The identities of the tunnelling nuclei have been deduced by isotopic substitution and are attributed to: Na in 10 mol dm/sup -3/ NaOH aqueous glass, ethyl protons in ethanol glass, methyl protons in methanol glass and methyl protons in MTHF glass. For trapped hydrogen atoms in phosphoric acid, the phosphorus nuclei appear to be the effective tunnelling nuclei. Below approximately 10 K the spin lattice relaxation is dominated by a temperature independent cross relaxation term for H atoms in phosphoric acid glass and for electrons in 10 mol dm/sup -3/ NaOH aqueous glass, but not for electrons in organic glasses. This is compared with recent electron-electron double resonance studies of cross relaxation in these glasses. The spin lattice relaxation of O/sup -/ formed in 10 mol dm/sup -3/ NaOH aqueous glass was also studied and found to be mainly dominated by a Raman process with an effective Debye temperature of about 100 K.

  1. EPR dosimetry of irradiated human teeth

    International Nuclear Information System (INIS)

    Rodas Duran, J.E.; Panzeri, H.; Mascarenhas, S.

    1985-01-01

    The determination of the absorbed radiation dose in man may be made by Electron Paramagnetic Resonance (EPR) spectroscopy of dental enamel. We analysed the EPR signals for dental enamel submitted to gamma radiation in doses between 1 Gy and 25 Gy. We conclude that independent of the type of tooth analysed there exists a linear relation between the EPR signals and the absorbed doses. These studies were extended to enamel irradiated with gamma rays and with X rays in doses between 0.1 Gy and 0.6 Gy. The graph of the intensity of the EPR signals as a function of the dose has a slope of 0.22. This calibration may be used to calculate the absorbed dose for humans from a measurement of the EPR signal from small samples of enamel taken from any permanent tooth. Finally we comment on some EPR studies of effects of radiation of milk teeth. (author)

  2. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  3. MDEP Common Position No EPR-01 - Common positions on the EPR instrumentation and controls design

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the EPR Working Group (EPRWG) of the Multinational Design Evaluation Program (MDEP) is to identify common positions among the regulators reviewing the EPR Instrumentation and Controls (I and C) Systems in order to: 1. Promote understanding of each country 's regulatory decisions and basis for the decisions, 2. Enhance communication among the members and with external stakeholders, 3. Identify areas where harmonization and convergence of regulations, standards, and guidance can be achieved or improved, and 4. Supports standardization of new reactor designs. Since January 2008, the EPR I and C Technical Expert Subgroup (TESG) members met five times to exchange information regarding their country 's review of the EPR I and C design. The EPR I and C TESG consists of regulators from China, Canada, Finland, France, the United Kingdom, and the United States. The information exchange includes presentation of each country 's review status and technical issues, sharing of guidance documents, and sharing of regulatory decision documents. The TESG focused on the following four core areas of the EPR I and C design: 1. I and C System Independence (particularly for data communications), 2. Level of Defense and Diversity (back-up systems), 3. Qualification/quality of digital platforms, 4. Categorization/classification of systems and functions. As meetings were conducted, some areas were emphasized more depending on the significance of the issues for each country. During the TESG interactions, it became apparent that there were aspects of the EPR design where the countries had common agreement. On November 2, 2009, three of the subgroup countries, France, Finland and the United Kingdom, issued a joint regulatory position on the EPR I and C design as result of the 'Groupe Permanent' meeting in France. This statement of common positions expands upon that joint regulatory position

  4. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    Science.gov (United States)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  5. Higher-order Zeeman and spin terms in the electron paramagnetic resonance spin Hamiltonian; their description in irreducible form using Cartesian, tesseral spherical tensor and Stevens' operator expressions

    International Nuclear Information System (INIS)

    McGavin, Dennis G; Tennant, W Craighead

    2009-01-01

    In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is necessary. Then, the SH contains only those terms that are necessary and sufficient to describe the particular spin system. The paper proceeds then to obtain interrelationships between the parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens' expressions for high-spin Zeeman terms of dimension BS 3 and BS 5 . Starting from the well-known decomposition of the general Cartesian tensor of second rank to three irreducible tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated similarly. Next, following a generalization of the tesseral spherical tensor equations, the interrelationships amongst the parameters of the three kinds of expressions, as derived from equivalent SHs, are determined and detailed tables, including all redundancy equations, set out. In each of these cases the lowest symmetry, 1-bar Laue class, is assumed and then examples of relationships for specific higher symmetries derived therefrom. The validity of a spin Hamiltonian containing mixtures of terms from the three expressions is considered in some detail for several specific symmetries, including again the lowest symmetry. Finally, we address the application of some of the relationships derived here to seldom-observed low-symmetry effects in EPR spectra, when high-spin electronic and nuclear interactions are present.

  6. Electron paramagnetic resonance of the ns1 centers in crystals

    International Nuclear Information System (INIS)

    Nistor, S.V.; Ursu, I.

    1993-05-01

    The results of the EPR studies concerning the paramagnetic centers with ns 1 (N=n>2) outer electronic configuration contained in crystals are reviewed. Such centers, with 2 S 1/2 ground state, are produced by electron trapping at impurities of the IB and IIB group or by hole trapping at impurities of the IIIB and IV group of elements. The production and structural properties of such centers consisting of ns 1 ions (atoms) at various sites in the crystal lattice with different configurations of neighbouring defects are discussed in connection with their EPR characteristics. Tables containing the spin Hamiltonian parameters of all ns 1 centers reported in the literature until the end of year 1992 are given. (author). 146 refs, 14 tabs

  7. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies

    International Nuclear Information System (INIS)

    Cekan, Pavol; Sigurdsson, Snorri Th.

    2012-01-01

    Highlights: ► Bulges and loops were studied by both EPR and fluorescence spectroscopies using the probe Ç/Ç f . ► One-base bulge was in a temperature-dependent equilibrium between looped-out and stacked states. ► Bases in two- and three-base bulges were stacked at all temperatures, resulting in DNA bending. ► Bases were stacked in symmetrical two- to five-base internal loops, according to EPR data. ► Unexpectedly high fluorescence for the smaller loops indicated local structural perturbations. -- Abstract: The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Ç f ) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Ç f . EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.

  8. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  9. Stearic acid spin labels in lipid bilayers :  insight through atomistic simulations

    NARCIS (Netherlands)

    Stimson, L.M.; Dong, L.; Karttunen, M.E.J.; Wisniewska, A.; Dutka, M.; Róg, T.

    2007-01-01

    Spin-labeled stearic acid species are commonly used for electron paramagnetic resonance (EPR) studies of cell membranes to investigate phase transitions, fluidity, and other physical properties. In this paper, we use large-scale molecular dynamics simulations to investigate the position and behavior

  10. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    Science.gov (United States)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  11. Detailed single crystal EPR lineshape measurements for the single molecule magnets Fe8Br and Mn12-ac

    OpenAIRE

    Hill, S.; Maccagnano, S.; Park, K.; Achey, R. M.; North, J. M.; Dalal, N. S.

    2001-01-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high field EPR spectra for single crystal samples of the uniaxial and biaxial spin S = 10 single molecule magnets (SMMs) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed lineshapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (Ms values) associated with the levels involved in the transitions. Measurements ...

  12. Theoretical and experimental EPR and optical studies of [Cu(1-meim){sub 4}(H{sub 2}O)]·2Cl·H{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yıldırım, İlkay, E-mail: iyildirim@biruni.edu.tr [Biruni University, Department of Radiotherapy, Vocational School of Health Services, Istanbul (Turkey); Çelik, Yunus, E-mail: yunus.celik@omu.edu.tr [Ondokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences, Samsun (Turkey); Karabulut, Bünyamin, E-mail: bbulut@omu.edu.tr [Ondokuz Mayıs University, Department of Computer Engineering, Faculty of Engineering, Samsun (Turkey)

    2016-03-25

    [Cu(1-meim){sub 4}(H{sub 2}O)]·2Cl·H{sub 2}O (1-meim: 1-methylimidazole) complex has been investigated by EPR and UV techniques. EPR spectra of [Cu(1-meim){sub 4}(H{sub 2}O)]·2Cl·H{sub 2}O single crystal have been studied at room temperature. The spin Hamiltonian parameters (g and hyperfine (A) values) have been calculated. The results indicate the rhombic symmetry around the paramagnetic Cu{sup 2+} center. The perturbation approach has been applied to spin Hamiltonian to calculate the g and A values theoretically. Crystal field parameters were also obtained both experimentally and theoretically. Using both types of spectroscopic techniques the molecular bonding coefficients were calculated. The consistency of results with some other studies was reached.

  13. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  14. SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, David [Center for Theory and Computation, Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Pappas, George [Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 (United States)

    2016-02-10

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  15. Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes

    Science.gov (United States)

    Tsang, David; Pappas, George

    2016-02-01

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  16. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    Energy Technology Data Exchange (ETDEWEB)

    Barends, Thomas R. M., E-mail: thomas.barends@mpimf-heidelberg.mpg.de [MPI for Medical Research, Heidelberg (Germany); Brosi, Richard W. W. [Freie Universitat Berlin, Berlin (Germany); Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten [MPI for Medical Research, Heidelberg (Germany); Seidel, Ralf [MPI for Molecular Physiology, Dortmund (Germany); Shoeman, Robert L.; Zimmermann, Sabine [MPI for Medical Research, Heidelberg (Germany); Bittl, Robert [Freie Universitat Berlin, Berlin (Germany); Schlichting, Ilme; Reinstein, Jochen [MPI for Medical Research, Heidelberg (Germany)

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.

  17. Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si

    International Nuclear Information System (INIS)

    Abe, Eisuke; Isoya, Junichi; Itoh, Kohei M.

    2006-01-01

    We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals. The samples are isotopically controlled so that they may possess various concentrations (from 4.7% to 99.2%) of 29 Si, which is the only non-zero-spin stable isotope of silicon. The orientation dependence of electron-spin coherence times are presented, and electron spin echo envelope modulation is analyzed in time-frequency space

  18. Observation of Diamond Nitrogen-Vacancy Center Photoluminescence under High Vacuum in a Magneto-Gravitational Trap

    Science.gov (United States)

    Ji, Peng; Hsu, Jen-Feng; Lewandowski, Charles W.; Dutt, M. V. Gurudev; D'Urso, Brian

    2016-05-01

    We report the observation of photoluminescence from nitrogen-vacancy (NV) centers in diamond nanocrystals levitated in a magneto-gravitational trap. The trap utilizes a combination of strong magnetic field gradients and gravity to confine diamagnetic particles in three dimensions. The well-characterized NV centers in trapped diamond nanocrystals provide an ideal built-in sensor to measure the trap magnetic field and the temperature of the trapped diamond nanocrystal. In the future, the NV center spin state could be coupled to the mechanical motion through magnetic field gradients, enabling in an ideal quantum interface between NV center spin and the mechanical motion. National Science Foundation, Grant No. 1540879.

  19. EPR in B physics and elsewhere

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Tel Aviv Univ.; Argonne National Lab., IL

    1997-01-01

    The application of Einstein-Podolsky-Rosen correlations in Υ(4s) → B anti B decays to research in CP violation is the first and probably only use of EPR as a technique for research in new physics. Elsewhere highly sophisticated EPR projects question EPR and test its predictions to look for violations of quantum mechanics, hidden variables, Bell''s inequalities, etc

  20. Thermodynamic Basis of Electron Transfer in Dihydroorotate Dehydrogenase B from Lactococcus lactis:  Analysis by Potentiometry, EPR Spectroscopy, and ENDOR Spectroscopy

    DEFF Research Database (Denmark)

    Mohnsen, Al-Walid A.; Rigby, Stephen E. J.; Jensen, Kaj Frank

    2004-01-01

    Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD+. The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have...... similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible...... spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual signal is assigned to the formation of a spin interacting state between the FMN semiquinone species and the reduced 2Fe-2S center. Reduction of DHODB using an excess...

  1. Low temperature EPR investigation of Co{sup 2+} ion doped into rutile TiO{sub 2} single crystal: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zerentürk, A. [Department of Physics, Marmara University, 34722 Kadıköy, Istanbul (Turkey); Açıkgöz, M., E-mail: muhammed.acikgoz@eng.bau.edu.tr [Bahcesehir University, Faculty of Engineering and Natural Sciences, Besiktas Campus, 34349 Besiktas, Istanbul (Turkey); Kazan, S.; Yıldız, F.; Aktaş, B. [Department of Physics, Gebze Technical University, 41400 Gebze, Kocaeli (Turkey)

    2017-02-01

    In this paper, we present the results of X-band EPR spectra of Co{sup 2+} ion doped rutile (TiO{sub 2}) which is one of the most promising memristor material. We obtained the angular variation of spectra in three mutually perpendicular planes at liquid helium (7–13 K) temperatures. Since the impurity ions have ½ effective spin and 7/2 nuclear spin, a relatively simple spin Hamiltonian containing only electronic Zeeman and hyperfine terms was utilized. Two different methods were used in theoretical analysis. Firstly, a linear regression analysis of spectra based on perturbation theory was studied. However, this approach is not sufficient for analyzing Co{sup +2} spectra and leads to complex eigenvectors for G and A tensors due to large anisotropy of eigenvalues. Therefore, all spectra were analyzed again with exact diagonalization of spin Hamiltonian and the high accuracy eigenvalues and eigenvectors of G and A tensors were obtained by taking into account the effect of small sample misalignment from the exact crystallographic planes due to experimental conditions. Our results show that eigen-axes of g and A tensors are parallel to crystallographic directions. Hence, our EPR experiments proves that Co{sup 2+} ions substitute for Ti{sup 4+} ions in lattice. The obtained principal values of g tensor are g{sub x}=2.110(6), g{sub y}=5.890(2), g{sub z}=3.725(7) and principal values of hyperfine tensor are A{sub x}=42.4, A{sub y}=152.7, A{sub z}=26 (in 10{sup −4}/cm). - Highlights: • X-band EPR spectra of Co{sup 2+} ion doped rutile (TiO{sub 2}) investigated at 7–13 K. • Two different methods were used in theoretical analysis. • The presence of two structurally equivalent centers for Co{sup 2+} ions observed. • It is concluded that impurity ions substitute for Ti{sup 4+} ion.

  2. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  3. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    Science.gov (United States)

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. An X- and Q-band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1−xFexO

    International Nuclear Information System (INIS)

    Misra, Sushil K.; Andronenko, S.I.; Thurber, A.; Punnoose, A.; Nalepa, A.

    2014-01-01

    EPR studies on two types of nanoparticles of Fe 3+ doped, 0.1–10%, ZnO, NL and QJ, prepared using similar chemical hydrolysis methods, in diethylene glycol, and in denatured ethanol solutions, respectively, were carried out at X-band (∼9.5 GHz) at 77 K and at Q-band (∼34.0 GHz) at 10, 80, and 295 K. To interpret the experimental results, EPR spectra were simulated by exact diagonalization of the spin-Hamiltonian matrix to identify the Fe ions at different magnetically active sites in these samples. The simulation for NL samples revealed that they contained (i) Fe 3+ ions, which substituted for Zn ions, the zero-field splitting (ZFS) parameter which has a large distribution over the sample due to oxygen vacancies in the second coordination sphere; (ii) EPR signal from surface oxygen defects; and (iii) ferromagnetically (FM) coupled Fe ions with concentration of Fe more than 1%. The EPR spectra for QJ samples are very different from those for NL samples, exhibiting only rather intense FM EPR lines. The FM and EPR spectra in NL and/or QJ samples are found to vary strongly with differences in the surface morphology of nanoparticles. - Highlights: • X and Q band EPR studies on NL and QJ nanoparticles of Fe 3+ doped ZnO at 10, 80, and 295 K. • Fe ions are present at different magnetically active sites in these samples. • NL samples consist of paramagnetic Fe 3+ ions, and ferromagnetically coupled Fe ions. • QJ samples exhibit only intense ferromagnetic lines, different from QJ. • Spectra vary strongly with the surface morphology of nanoparticles

  5. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses,NMR,EPR...

  6. Levitated atoms in a CO2 laser trap: towards BEC with cesium

    International Nuclear Information System (INIS)

    Herbig, J.; Weber, T.; Naegerl, H.-C.; Grimm, R.

    2001-01-01

    Full text: Since the standard approach towards Bose-Einstein condensation has failed for cesium, we are exploring a novel concept employing an optical dipole trap formed by intense CO2 lasers. These provide a conservative and large-volume trapping potential. In order to compensate the gravitational force, a magnetic field gradient along the vertical axis is applied. This counterbalances gravitation for the absolute internal ground state of Cs (F=3, mF=3), effectively levitating those atoms. Other spin states are expelled from the trap, opening up a path for rf exploration. Our approach to trap the lowest spin state at low densities minimizes inelastic processes. The free choice of a magnetic bias field allows exploration of Feshbach resonances to tune scattering properties. (author)

  7. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    Science.gov (United States)

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    Science.gov (United States)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  9. EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.

  10. Studies of short-lived radicals in the. gamma. -irradiated aqueous solution of uridine-5'-monophosphate by the spin-trapping method and the liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kominami, S [Hiroshima Univ. (Japan); Rokushika, S; Hatano, H

    1976-12-01

    An aerated aqueous solution of uridine-5'-monophosphate was ..gamma..-irradiated with 2-methyl-2-nitrosopropane as a spin-trapping reagent. Liquid chromatography was applied to separate the stable nitroxide radicals in the irradiated solution. The radicals were detected by U.V. and e.s.r. spectrometry. The e.s.r. detection showed four peaks in the chromatogram. The orcinol method for detection of the residual sugar moieties was applied before and after reduction of the base to determine the existence of the 5,6-double bond for the molecules in each fraction. From the combined results of the e.s.r. and orcinol methods, the short-lived radicals which were trapped by 2-methyl-2-nitrosopropane were identified as radicals of N-1 and C-6 positions of the base moiety and t-butyl radicals which was the radiolytic product of the trapping reagent.

  11. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Spin dynamics and zero-field splitting constants of the triplet exciplex generated by photoinduced electron transfer reaction between erythrosin B and duroquinone

    OpenAIRE

    Tachikawa, Takashi; Kobori, Yasuhiro; Akiyama, Kimio; Katsuki, Akio; Steiner, Ulrich; Tero-Kubota, Shozo

    2002-01-01

    The spin dynamics of the duroquinone anion radical generated by photoinduced electron transfer reactions from triplet erythrosin B to duroquinone has been studied by using transient absorption and pulsed FT-EPR spectroscopy. Triplet exciplex formation as the reaction intermediate is verified by the observation of spin orbit coupling induced electron spin polarization. The kinetic parameters for exciplex formation and the intrinsic enhancement factors of electron spin polarization are determin...

  13. Magnetic trapping of buffer-gas-cooled chromium atoms and prospects for the extension to paramagnetic molecules

    International Nuclear Information System (INIS)

    Bakker, Joost M; Stoll, Michael; Weise, Dennis R; Vogelsang, Oliver; Meijer, Gerard; Peters, Achim

    2006-01-01

    We report the successful buffer-gas cooling and magnetic trapping of chromium atoms with densities exceeding 10 12 atoms per cm 3 at a temperature of 350 mK for the trapped sample. The possibilities of extending the method to buffer-gas cool and magnetically trap molecules are discussed. To minimize the most important loss mechanism in magnetic trapping, molecules with a small spin-spin interaction and a large rotational constant are preferred. Both the CrH ( 6 Σ + ground state) and MnH ( 7 Σ + ) radicals appear to be suitable systems for future experiments

  14. Pharmaceutical applications of in vivo EPR

    International Nuclear Information System (INIS)

    Maeder, K.

    1998-01-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained. (author)

  15. Broken bridges: a counter-example of the ER=EPR conjecture

    International Nuclear Information System (INIS)

    Chen, Pisin; Wu, Chih-Hung; Yeom, Dong-han

    2017-01-01

    In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, these two parts can be trapped by bubbles. If these bubbles are reasonably large, then within the scrambling time, there should appear an Einstein-Rosen bridge between the two black holes. Now by tracing more details on the bubble dynamics, one can identify parameters such that one of the two bubbles either monotonically shrinks or expands. Because of the change of vacuum energy, one side of the black hole would evaporate completely. Due to the shrinking of the apparent horizon, a signal of one side of the Einstein-Rosen bridge can be viewed from the opposite side. We analytically and numerically demonstrate that within a reasonable semi-classical parameter regime, such process can happen. Bubbles are a non-perturbative effect, which is the crucial reason that allows the transmission of information between the two black holes through the Einstein-Rosen bridge, even though the probability is highly suppressed. Therefore, the ER=EPR conjecture cannot be generic in its present form and its validity maybe restricted.

  16. Broken bridges: a counter-example of the ER=EPR conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pisin; Wu, Chih-Hung; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: b02202007@ntu.edu.tw, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2017-06-01

    In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, these two parts can be trapped by bubbles. If these bubbles are reasonably large, then within the scrambling time, there should appear an Einstein-Rosen bridge between the two black holes. Now by tracing more details on the bubble dynamics, one can identify parameters such that one of the two bubbles either monotonically shrinks or expands. Because of the change of vacuum energy, one side of the black hole would evaporate completely. Due to the shrinking of the apparent horizon, a signal of one side of the Einstein-Rosen bridge can be viewed from the opposite side. We analytically and numerically demonstrate that within a reasonable semi-classical parameter regime, such process can happen. Bubbles are a non-perturbative effect, which is the crucial reason that allows the transmission of information between the two black holes through the Einstein-Rosen bridge, even though the probability is highly suppressed. Therefore, the ER=EPR conjecture cannot be generic in its present form and its validity maybe restricted.

  17. Reporting of quantitative oxygen mapping in EPR imaging

    Science.gov (United States)

    Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.

    2012-01-01

    Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are

  18. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry

    International Nuclear Information System (INIS)

    Gallez, Bernard

    2016-01-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. (author)

  19. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  20. The EPR paradox revisited

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Scully, M.O.

    1978-01-01

    Einstein, Podolsky and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. The authors show that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review. (Auth.)

  1. EPR spectroscopic investigation of psoriatic finger nails.

    Science.gov (United States)

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke

    2013-11-01

    Nail lesions are common features of psoriasis and found in almost half of the patients. However, there is no feasible spectroscopic method evaluating changes and severity of nail psoriasis. EPR (electron paramagnetic resonance) might be feasible for evaluating nail conditions in the patients of psoriasis. Finger nails of five cases with nail psoriasis, (three females and two males) were examined. Nail samples were subjected to the EPR assay. The small piece of the finger nail (1.5 × 5 mm(2)) was incubated in ~50 μM 5-DSA (5-doxylstearic acid) aqueous solutions for about 60 min at 37°C. After rinsing and wiping off the excess 5-DSA solution, the nail samples were measured by EPR. EPR spectra were analyzed using the intensity ratio (Fast/Slow) of the two motions at the peaks of the lower magnetic field. We observed two distinguishable sites on the basis of the EPR results. In addition, the modern EPR calculation was performed to analyze the spectra obtained. The nail psoriasis-related region is 2~3 times higher than that of the control. The present EPR results show that there are two distinguishable sites in the nail. In the case of nail psoriasis, the fragile components are 2~3 times more than those of the control. Thus, the EPR method is thought to be a novel and reliable method of evaluating the nail psoriasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  3. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  4. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    International Nuclear Information System (INIS)

    Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.

    2007-01-01

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern

  5. Microresonators for electron spin qubits

    International Nuclear Information System (INIS)

    Suter, D.; Stonies, R.; Voges, E.

    2005-01-01

    Full text: The traditional high-Q EPR resonators are optimized for large samples. For small samples and individual qubits, it is possible to design different resonators that have much better power handling properties, create less interference with other peripheral lines and, if they are used for detection, have better sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimizing its size and thus increasing the filling factor. In contrast to cavity type resonators, microcoils can be made much smaller than the operation wavelength. For this type of resonator, it has been established theoretically and experimentally that the sensitivity varies inversely with its linear dimensions. Moreover, the planar coil geometry is ideal to be manufactured in a small size by means of standard microtechnology. It also offers advantages for the excitation of electron spins in prototype quantum computer systems. High microwave power to the magnetic field conversion factor of the microresonator allows to achieve 24 ns L/2 - pulses with less than 20 mW of incident power. Within the QIPDDF-ROSES project, we are using such resonators to measure the EPR parameters of monolayer molecular films of N at C60 and for excitation of the single electron spin in a defect center in diamond. The microresonator prototypes consisting of a 200 μm planar microcoil tuned and matched at 14 GHz with distributed elements have been fabricated on Si substrate. The sensitivity tests with a DPPH samples resulted in the sensitivity value 10E9 spins/G/Hz1/2 at 300 K. The designed layouts of the microresonator can be scaled down up to a tens of micrometers, and with a different microwave coupling approach hundreds of nanometers could be achieved, allowing the operation frequency up to 100 THz (author)

  6. Paramagnetic material for quantum information processing: electronic and nuclear spins manipulations in β - Ga2O3: Ti

    International Nuclear Information System (INIS)

    Mentink-Vigier, Frederic

    2011-01-01

    Quantum information processing is a major challenge both on fundamental and technological grounds. In this research field, the spin bus concept relies on the use of both the electronic and nuclear spins in which the electron is used as a reading and writing head over the nuclei system which makes the qubit register. The requested material to build a spin bus must have unpaired electrons delocalized over a great number of nuclear spins having long decoherence time. In this work, we studied a spin system composed of titanium (III) interacting with multiple gallium nuclei in gallium oxide. We synthesized and studied the titanium paramagnetic center in gallium oxide single crystals by continuous wave EPR and ENDOR spectroscopy and showed that the electron is delocalized over eight neighbouring gallium nuclei. This study also revealed a strong isotopic effect on the nucleus-nucleus interaction mediated by the electron. When the two nearest gallium nuclei surrounding the titanium are identical (same isotopes) this interaction is one order of magnitude higher than in the case of inequivalent nuclei. This effect can be used in order to reduce the computation time. Finally, the dynamical properties of the spin system have been characterized by pulsed EPR and ENDOR spectroscopy. The electron spin decoherence is driven by instantaneous and spectral diffusion. The nuclear dynamical properties have also been studied in order to determine the order of magnitude of nuclear spin relaxation and decoherence time. (author) [fr

  7. HPLC-ESR techniques for detection of complex trapped radicals

    International Nuclear Information System (INIS)

    Tu Tiecheng; Dong Jirong; Lin Nianyun; Xie Leidong; Liu Rengzhong

    1992-01-01

    High performance liquid chromatography (HPLC) and ESR combined examination of radical species is an advanced techniques for separation and identification of complex radical species. At SRCL, Waters 990 HPLC has been used to separate the complex trapped radicals and Varian E-112 ESR spectrometer to record the spectra of single trapped radicals after HPLC separation. The advantages of the combined techniques are described as bellow: HPLC is used to separate the long-lived complex trapped radicals derived from reaction of short-lived radicals with spin trap. ESR spectra from single trapped radicals, obtained following HPLC separation of complex trapped radicals, are recorded one by one and well resolved. The structures of short-lived radicals can be inferred from the ESR spectra of the long-lived trapped radicals

  8. Trapping and stabilization of hydrogen atoms in intracrystalline voids. Defected calcium fluorides and Y zeolite surfaces

    International Nuclear Information System (INIS)

    Iton, L.E.; Turkevich, J.

    1978-01-01

    Using EPR spectroscopy, it has been established that H. atoms are absorbed from the gas phase when CaF 2 powder is exposed to H 2 gas in which a microwave discharge is sustained, being trapped in sites that provide unusual thermal stability. The disposition of the trapped atoms is determined by the occluded water content of the CaF 2 . For ultrapure CaF 2 , atoms are trapped in interstitial sites having A 0 = 1463 MHz; for increasing water content, two types of trapped H. atoms are discriminated, with preferential trapping in void sites (external to the regular fluorite lattice) that are associated with the H 2 O impurity. Characterization of these ''extra-lattice'' H. (and D.) atoms is presented, and their EPR parameters and behavior are discussed in detail. Failure to effect H.-D. atom exchange with D 2 gas suggests that atoms are not stabilized on the CaF 2 surface. H. atoms are trapped exclusively in ''extra-lattice'' sites when the water-containing CaF 2 is γ irradiated at 77 or 298 K indicating that the scission product atoms do not escape from the precursor void region into the regular lattice. It is concluded that the thermal stability of the ''extra-lattice'' atoms, like that of the interstitial atoms, is determined ultimately by the high activation energy for diffusion of the H. atom through the CaF 2 lattice. For comparison, results obtained from H. atoms trapped in γ-irradiated rare earth ion-exchanged Y zeolites are presented and discussed also; these ''surface'' trapped atoms do not exhibit great thermalstability. Distinctions in the H. atom formation mechanisms between the fluorides and the zeolites were deduced from the accompanying paramagnetic species formed. The intracavity electric fields in the Y zeolites have been estimated from the H. atoms hfsc contractions, and are found to be very high, about 1 V/A

  9. Magnetic trapping of buffer-gas-cooled chromium atoms and prospects for the extension to paramagnetic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Joost M [Humboldt Universitaet zu Berlin, Institut fuer Physik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Stoll, Michael [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Weise, Dennis R [Universitaet Konstanz, Fachbereich Physik, 78457 Constance (Germany); Vogelsang, Oliver [Universitaet Konstanz, Fachbereich Physik, 78457 Konstanz (Germany); Meijer, Gerard [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Peters, Achim [Humboldt Universitaet zu Berlin, Institut fuer Physik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-10-14

    We report the successful buffer-gas cooling and magnetic trapping of chromium atoms with densities exceeding 10{sup 12} atoms per cm{sup 3} at a temperature of 350 mK for the trapped sample. The possibilities of extending the method to buffer-gas cool and magnetically trap molecules are discussed. To minimize the most important loss mechanism in magnetic trapping, molecules with a small spin-spin interaction and a large rotational constant are preferred. Both the CrH ({sup 6}{sigma}{sup +} ground state) and MnH ({sup 7}{sigma}{sup +}) radicals appear to be suitable systems for future experiments.

  10. Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance

    Directory of Open Access Journals (Sweden)

    Simona Mrakic-Sposta

    2012-01-01

    Full Text Available Despite the growing interest in the role of reactive oxygen species (ROS in health and disease, reliable quantitative noninvasive methods for the assessment of oxidative stress in humans are still lacking. EPR technique, coupled to a specific spin probe (CMH: 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine is here presented as the method of choice to gain a direct measurement of ROS in biological fluids and tissues. The study aimed at demonstrating that, differently from currently available “a posteriori” assays of ROS-induced damage by means of biomolecules (e.g., proteins and lipids spin-trapping EPR provides direct evidence of the “instantaneous” presence of radical species in the sample and, as signal areas are proportional to the number of excited electron spins, lead to absolute concentration levels. Using a recently developed bench top continuous wave system (e-scan EPR scanner, Bruker dealing with very low ROS concentration levels in small (50 μL samples, we successfully monitored rapid ROS production changes in peripheral blood of athletes after controlled exercise and sedentary subjects after antioxidant supplementation. The correlation between EPR results and data obtained by various enzymatic assays (e.g., protein carbonyls and thiobarbituric acid reactive substances was determined too. Synthetically, our method allows reliable, quick, noninvasive quantitative determination of ROS in human peripheral blood.

  11. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry.

    Science.gov (United States)

    Gallez, Bernard

    2016-12-01

    In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Characterization of Melanin Radicals in Paraffin-embedded Malignant Melanoma and Nevus Pigmentosus Using X-band EPR and EPR Imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke; Hara, Hideyuki

    2017-01-01

    Continuous wave electron paramagnetic resonance (CW EPR) and X-band (9 GHz) EPR imaging (EPRI) were used to nondestructively investigate the possible differentiation between malignant melanoma (MM) and nevus pigmentosus (NP) melanin radicals in paraffin-embedded specimens. The EPR spectra of both samples were analyzed using linewidth, spectral pattern, and X-band EPRI. The CW-EPR spectra of the MM showed an additional signal overlap. Eumelanin- and pheomelanin-related radicals were observed in the MM specimens. The EPR results revealed that the peak-to-peak linewidths (ΔH pp ) of paraffin-embedded MM and NP samples were 0.65 ± 0.01 and 0.69 ± 0.01 mT, respectively. The g-value was 2.005 for both samples. Moreover, the two-dimensional (2D) EPRI of the MM showed different signal intensities at the different tumor stages, unlike the NP, which displayed fewer variations in signal intensity. Thus, the present results suggest that EPR and 2D EPRI can be useful for characterization of the two melanin radicals in the MM and for determination of their size and concentration.

  13. EPR investigation of electronic excitations in rare gas solids (Review Article)

    Science.gov (United States)

    Zhitnikov, R. A.; Dmitriev, Yu. A.

    1998-10-01

    The methods are described for producing unstable paramagnetic excited states in rare gas cryocrystals Ne, Ar, Kr, and Xe through the trapping, in the cryocrystals growing from the gas phase, the products of the gas discharge taking place in the same or other rare gas. The paper presents a technique and results of an observation and investigation of excited states in rare gas cryocrystals with electron paramagnetic resonance (EPR). The discovered unstable paramagnetic centers are interpreted as being local metastable excited np5(n+1)s atomic-type states in rare gas cryocrystals which are subject to the action of the anisotropic electric field resulted from the crystal surroundings distorted by the center. An account is given of the mechanisms for formation of observed paramagnetic excited states in cryocrystals which arise owing to the excitation energy of the metastable 3P2 atoms of Ne, Ar, Kr, Xe and He 23S1 and 21S0 atoms that form in the discharge in an appropriate gas and trap in the growing cryocrystal.

  14. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  15. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification in with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  16. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  17. Microstructured segmented Paul trap with tunable magnet field gradient; Mikrostrukturierte segmentierte Paul-Falle mit einstellbarem Magnetfeldgradienten

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Delia

    2012-02-03

    Strings of laser cooled ions stored in microstructured Paul traps (microtraps) have promising potential for quantum information science. They provide a system which can be screened from a decohering environment, accurately prepared, manipulated and state selectively detected with efficiency close to unity. Magnetic field gradients allow for addressing trapped ions in frequency space. Furthermore, coupling of the ions' motional and spin states and long range spin-spin coupling of the ions' internal states are induced by such a gradient. This method is called Magnetic Gradient Induced Coupling, MAGIC. In this thesis, the design, construction and first characterization of a novel microtrap with an integrated solenoid is reported. The solenoid is designed to create a high magnetic field gradient per dissipated heat. The microtrap consists of three layers stacked onto each other. The outer layers provide a trapping potential, while the inner layer creates the switchable magnetic field gradient. Another specialty of this trap is the 33 pairs of DC-electrodes, allowing to move the ions along the trap axis and to adjust the range and the strength of the ions' spin-spin interactions. The microtrap is fixed on top of a ceramic block that provides the necessary electrical connections via thick film printed wires, a technique adopted in the context of microtraps for the first time, and in addition acts as a vacuum interface. The volume of the vacuum chamber is quite small, allowing for pressures in the low 10{sup -11} mbar range. In this microtrap, {sup 172}Yb{sup +}-ions are trapped, cooled and shuttled over a distance of about 2 mm. Trapped ions are used as magnetic field gradient probes, with a relative magnetic field precision of {delta}B/B{sub 0}=7.10{sup -6}. The addressing of two ions with the MAGIC method in the solenoid's magnetic field gradient is demonstrated.

  18. Moessbauer and EPR studies on iron-dihydroxybenzoic acid and iron-itoic acid chelate complexes

    International Nuclear Information System (INIS)

    Bagyinka, Cs.; Horvath, L.I.; Keszthelyi, L.

    1984-01-01

    Low molecular weight iron-dihydroxybenzoic acid and iron-itoic acid complexes were investigated by Moessbauer and EPR spectroscopy. In strong acidic medium the iron is chelated in high spin ferrous form. By varying the pH of the medium a (S=2)Fesup(2+)→(S=5/2)Fesup(3+) transition was found with a midpoint pH value of 4. From the g'-tensor anisotropy it is concluded that the metal atom is coordinated by six oxygen atoms in rhombically distorted octahedral configuration. The biological significance of these structural data is briefly discussed. (author)

  19. Multi-Valued Spin Switch in a Semiconductor Microcavity

    Science.gov (United States)

    Paraïso, T. K.; Wouters, M.; Léger, Y.; Morier-Genoud, F.; Deveaudhyphen; Plédran, B.

    2011-12-01

    In this work, we report on the first realization of multi-valued spin switching in the solid-state. We investigate the physics of spinor bistability with microcavity polaritons in a trap. Spinor interactions lead to special bistability regimes with decoupled thresholds for spin-up and spin-down polaritons. This allows us to establish state-of-the-art spin switching operations. We evidence polarization hysteresis and determine appropriate conditions to achieve spin multistability. For a given excitation condition, three stable spin states coexist for the system. These results open new pathways for the development of innovative spin-based logic gates and memory devices.

  20. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  1. EPR parameters of E centers inν-SiO2 from first-principles calculations

    International Nuclear Information System (INIS)

    Giacomazzi, Luigi; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Richard, N.

    2014-01-01

    A first-principles investigation of E' centers in vitreous silica (ν-SiO 2 ) based on calculations of the electron paramagnetic resonance (EPR) parameters is presented. The EPR parameters are obtained by exploiting the gauge including projector augmented wave method as implemented in the QUANTUM-ESPRESSO package. First, we analyze the EPR parameters of a large number of Si 2 dimers. The g tensor of the Si 2 dimers is shown to possess an average rhombic symmetry and larger g principal values with respect to those observed, e.g., for the E 'γ center in silica. Furthermore, the g principal values clearly show a linear trend with the Si-Si dimer length. Our results suggest that the Si 2 dimers could correspond to an unidentified paramagnetic center, though occasionally the calculated g principal values of the Si 2 dimer might be compatible with those found experimentally for the E' δ center. Next, we generate non dimer configurations by a procedure involving structural relaxations in the subsequent positively charged states. In particular, puckered, un-puckered, doubly puckered, and forward-oriented configurations are generated. The distributions of the calculated EPR parameters of the puckered and un-puckered configurations further support the assignment of the E' γ center to an unpaired spin localized at a threefold coordinated silicon dangling bond. Moreover, by analyzing Fermi contacts and g tensors of the puckered and forward-oriented configurations, we suggest the assignment of the E' α center to the latter type of configurations. This work also suggests that the differences in the EPR parameters of E' α and E' γ centers mainly arise from the strained geometry of the silicon dangling bond. In the forward-oriented configurations, one Si-O bond is about 0.2 Angstroms longer than the remaining two, whereas in the silicon dangling bond of the puckered and un-puckered configurations, all three bonds have a length of ≅1

  2. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  3. A sub-Kelvin cryogen-free EPR system.

    Science.gov (United States)

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. EPR investigation of some gamma-irradiated medicines

    International Nuclear Information System (INIS)

    Aleksieva, Katerina; Yordanov, Nicola

    2016-01-01

    The results of EPR studies on three medical tablets – Galanthamine, Cytisine and Tribulus terrestris before and after gamma-irradiation are reported. Before irradiation Galanthamine and Cytisine tablets are EPR silent, whereas Tribulus terrestris show a broad singlet line with g factor 2.2084±0.002. The same spectrum is recorded after irradiation. After gamma-sterilization, however, Galanthamine and Cytisine tablets exhibit a typical EPR spectrum due to gamma induced free radicals in lactose used as an excipient. These stable free radicals can be used for identification of radiation processing for a long time after it. Key words: medical tablets, gamma-irradiation, EPR

  5. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    Science.gov (United States)

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  6. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  7. Nitrosyl hemoglobins: EPR above 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs.

  8. Nitrosyl hemoglobins: EPR above 80 K

    International Nuclear Information System (INIS)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs

  9. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  10. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  11. Fast and slow border traps in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1996-01-01

    Convergent lines of evidence are reviewed which show that near-interfacial oxide traps (border traps) that exchange charge with the Si can strongly affect the performance, radiation response, and long-term reliability of MOS devices. Observable effects of border traps include capacitance-voltage (C-V) hysteresis, enhanced l/f noise, compensation of trapped holes, and increased thermally stimulated current in MOS capacitors. Effects of faster (switching times between ∼10 -6 s and ∼1 s) and slower (switching times greater than ∼1 s) border traps have been resolved via a dual-transistor technique. In conjunction with studies of MOS electrical response, electron paramagnetic resonance and spin dependent recombination studies suggest that E' defects (trivalent Si centers in SiO 2 associated with O vacancies) can function as border traps in MOS devices exposed to ionizing radiation or high-field stress. Hydrogen-related centers may also be border traps

  12. Properties of the ammonium tartrate/EPR dosimeter

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    2004-01-01

    The EPR response of γ-irradiated ammonium tartrate on the absorbed dose of γ-rays up to 22 kGy as well as the changes in the shape of the EPR spectrum upon applied modulation amplitude and microwave power are reported. Also the possibility to use ammonium tartrate together with Mn 2+ magnetically diluted in MgO as an internal reference material is evaluated. The influence of the microwave power and the modulation amplitude on their dose response is investigated. The results show that the radiation-induced EPR spectrum of ammonium tartrate, obtained at a low microwave power is complex consisting several patterns and is more easily saturated than the Mn 2+ EPR spectrum. In this case the following settings of the EPR parameters are recommended: H mod ≤0.05 mT and 10≤P MW ≤13 mW. Using these parameters the dosimeters can be considered for use in intercomparisons

  13. Fragility of the fractional quantum spin Hall effect in quantum gases

    International Nuclear Information System (INIS)

    Fialko, O; Brand, J; Zülicke, U

    2014-01-01

    We consider the effect of contact interaction in a prototypical quantum spin Hall system of pseudo-spin-1/2 particles. A strong effective magnetic field with opposite directions for the two spin states restricts two-dimensional particle motion to the lowest Landau level. While interaction between same-spin particles leads to incompressible correlated states at fractional filling factors as known from the fractional quantum Hall effect, these states are destabilized by interactions between opposite spin particles. Exact results for two particles with opposite spin reveal a quasi-continuous spectrum of extended states with a large density of states at low energy. This has implications for the prospects of realizing the fractional quantum spin Hall effect in electronic or ultra-cold atom systems. Numerical diagonalization is used to extend the two-particle results to many bosonic particles and trapped systems. The interplay between an external trapping potential and spin-dependent interactions is shown to open up new possibilities for engineering exotic correlated many-particle states with ultra-cold atoms. (paper)

  14. Resolution of Single Spin-Flips of a Single Proton

    CERN Document Server

    Mooser, A.; Blaum, K.; Bräuninger, S.A.; Franke, K.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Ulmer, S.; Walz, J.

    2013-04-04

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.

  15. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    International Nuclear Information System (INIS)

    Aleksieva, K.I.; Dimov, K.G.; Yordanov, N.D.

    2014-01-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  16. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  17. EPR and optical investigation of Mn2+ doped L-histidine-4-nitrophenolate 4-nitrophenol single crystal

    Science.gov (United States)

    Prabakaran, R.; Subramanian, P.

    2018-04-01

    Single crystals of L-histidine-4-nitrophenolate 4-nitrophenol[LHFNP] complex doped with Mn2+ were grown by the slow evaporation method at room temperature. The EPR spectrum reveals the entry of one Mn2+ ion in the lattice. The angular variation plot was drawn between the angles and the magnetic field position. The spin Hamiltonian parameters were obtained by EPR-NMR program. The D and E values show the rhombic field around the ion and is an interstitial one. The g value obtained here suggests that the Mn2+ ion experiences a strong field and there is a transfer of electron from the metal ion to the ligand atom. The optical absorption study shows various bands and are assigned to the transition from the ground state 6A1g(S). The Racah and crystal field parameters have also been evaluated and fitted to the experimental values. The Racah parameter shows the covalent bonding between the metal ion to the ligand.

  18. Diffusion and trapping of positive muons in niobium

    International Nuclear Information System (INIS)

    Boekema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.; Kossler, W.J.; Numan, M.; Dodds, S.A.

    1982-01-01

    Using zero- and longitudinal-field muon spin relaxation, the conventional interpretation of the ''double-humped'' behavior of the μ + -depolarization rate in Nb has been established unambiguously. Thus the μ + mobility is shown to increase monotonically with temperature. The widths of the magnetic field distributions (due to the Nb nuclear moments) and the rates for finding or escaping from traps have been measured at several temperatures. In addition, equations are presented which govern the time evolution of the μ + polarization, when the muons are finding traps, escaping from traps, or both, for zero, longitudinal, and transverse external magnetic fields. A method for including the effect of more than one kind of trap acting at a particular temperature is given

  19. EPR design features to mitigate severe accident challenges

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Fischer, M.; Bittermann, D.

    2005-01-01

    The EPR, an evolutionary pressurized water reactor (PWR), is a 4300-4500 MWth that incorporates proven technology within an optimized configuration to enhance safety. EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product. Commercial EPR units are currently being built in Finland at the Olkiluoto site, and planned for France at the Flamanville site. In recent months, Framatome ANP announced their intention to market the EPR units to China in response to a request for vendor bids as well as their intent to pursue design certification in the United States under 10CFR52. The EPR safety philosophy is based on a deterministic consideration of defense-in-depth complemented by probabilistic analyses. Not only is the EPR designed to prevent and mitigate design basis accidents (DBAs), it employs an extra level of safety associated with severe accident response. Therefore, as a design objective, features are included to ensure that radiological consequences are limited such that the need for stringent counter measures, such as evacuation and relocation of the nearby population, can be reasonably excluded. This paper discusses some of the innovative features of the EPR to address severe accident challenges. (author)

  20. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    Science.gov (United States)

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer

  1. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    Science.gov (United States)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  2. EPR by Areva. The path of greatest certainty

    International Nuclear Information System (INIS)

    2008-01-01

    AREVA's Evolutionary Power Reactor (EPR) is the first Generation III+ reactor design currently being built to answer the world's growing demand for clean and reliable electricity generation. Already under construction in Finland, France and China, the EPR is also being considered by America, United Kingdom, South Africa and other countries for the development of their nuclear fleet. The EPR is now clearly destined to become the mainstay of standardized, efficient reactor fleets around the globe. AREVA's EPR incorporates unbeatable know-how provided by an uninterrupted track record of reactor building activities and backed by decades of feedback experience from operating PWRs, including the most recent. The EPR is a Franco-German initiative which benefited from the stringent scrutiny of safety authorities from both countries, at each stage of the project. The EPR has already secured construction licenses from two of the world's most demanding safety authorities in France and Finland and is currently in line for a design certification and a combined construction and operating license (COL) in the USA. It is also taking part in the licensing process recently launched in the United Kingdom. Europe's leading utilities have granted the EPR their approval under the 'European Utilities Requirements' and have further expressed individual interest in the design and performance of the EPR for their businesses. AREVA is the only Gen III+ reactor constructor in the world with ongoing building experience. To date, AREVA is the only vendor who has the necessary field experience that future customers can benefit: - Detailed design completed; - Experience feedback from 87 PWR; - 3 projects going on; - Continuous PWR experience in design and construction. Close to 100% of the EPR primary circuit heavy components are sourced directly from AREVA's integrated plants. Engineering, manufacturing, services and fuel cycle management are totally integrated and mastered by AREVA. From its

  3. Comparison of Magnetization Tunneling in the Giant-Spin and Multi-Spin Descriptions of Single-Molecule Magnets

    Science.gov (United States)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2010-03-01

    We perform a mapping of the spectrum obtained for a triangular Mn3 single-molecule magnet (SMM) with idealized C3 symmetry via exact diagonalization of a multi-spin (MS) Hamiltonian onto that of a giant-spin (GS) model which assumes strong ferromagnetic coupling and a spin S = 6 ground state. Magnetic hysteresis measurements on this Mn3 SMM reveal clear evidence that the steps in magnetization due to magnetization tunneling obey the expected quantum mechanical selection rules [J. Henderson et al., Phys. Rev. Lett. 103, 017202 (2009)]. High-frequency EPR and magnetization data are first fit to the MS model. The tunnel splittings obtained via the two models are then compared in order to find a relationship between the sixth order transverse anisotropy term B6^6 in GS model and the exchange constant J coupling the Mn^III ions in the MS model. We also find that the fourth order transverse term B4^3 in the GS model is related to the orientation of JahnTeller axes of Mn^III ions, as well as J

  4. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  5. An X- and Q-band Fe{sup 3+} EPR study of nanoparticles of magnetic semiconductor Zn{sub 1−x}Fe{sub x}O

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sushil K., E-mail: skmisra@alcor.concordia.ca [Physics Department, Concordia University, Montreal, QC, Canada H3G 1M8 (Canada); Andronenko, S.I. [Physics Institute, Kazan Federal University, Kazan 420008 (Russian Federation); Thurber, A.; Punnoose, A. [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States); Nalepa, A. [Max-Planck-Institut für Chemische Energie Konversion, Stifstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)

    2014-08-01

    EPR studies on two types of nanoparticles of Fe{sup 3+} doped, 0.1–10%, ZnO, NL and QJ, prepared using similar chemical hydrolysis methods, in diethylene glycol, and in denatured ethanol solutions, respectively, were carried out at X-band (∼9.5 GHz) at 77 K and at Q-band (∼34.0 GHz) at 10, 80, and 295 K. To interpret the experimental results, EPR spectra were simulated by exact diagonalization of the spin-Hamiltonian matrix to identify the Fe ions at different magnetically active sites in these samples. The simulation for NL samples revealed that they contained (i) Fe{sup 3+} ions, which substituted for Zn ions, the zero-field splitting (ZFS) parameter which has a large distribution over the sample due to oxygen vacancies in the second coordination sphere; (ii) EPR signal from surface oxygen defects; and (iii) ferromagnetically (FM) coupled Fe ions with concentration of Fe more than 1%. The EPR spectra for QJ samples are very different from those for NL samples, exhibiting only rather intense FM EPR lines. The FM and EPR spectra in NL and/or QJ samples are found to vary strongly with differences in the surface morphology of nanoparticles. - Highlights: • X and Q band EPR studies on NL and QJ nanoparticles of Fe{sup 3+} doped ZnO at 10, 80, and 295 K. • Fe ions are present at different magnetically active sites in these samples. • NL samples consist of paramagnetic Fe{sup 3+} ions, and ferromagnetically coupled Fe ions. • QJ samples exhibit only intense ferromagnetic lines, different from QJ. • Spectra vary strongly with the surface morphology of nanoparticles.

  6. EPR and optical studies of Cu2+ ions doped in magnesium potassium phosphate hexahydrate single crystals

    International Nuclear Information System (INIS)

    Kripal, Ram; Shukla, Santwana

    2011-01-01

    An electron paramagnetic resonance (EPR) study of Cu 2+ -doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu 2+ are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  7. EPR study on tomatoes before and after gamma-irradiation

    International Nuclear Information System (INIS)

    Aleksieva, K.; Georgieva, L.; Tzvetkova, E.; Yordanov, N.D.

    2009-01-01

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048±0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical 'cellulose-like' triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048±0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the 'cellulose-like' EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 o C fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR 'cellulose-like' spectra of tomato samples can be used for identification of radiation processing.

  8. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    Science.gov (United States)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  9. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Klippert, R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    In a seminal paper from 1935 Einstein, Podolsky and Rosen produced one of the most powerful weapon against the unpredictability of the world ensured by quantum mechanics. The recent production of entangled states, with all its possible future applications in quantum computation, re-open the possibility of testing EPR states on physical grounds. The present intends to present a challenge to the wedding of classical (special) relativity with quantum mechanics, the so called relativistic quantum mechanics. Making use of the same apparatus devised in EPR, it is shown that non local quantum states are incompatible with either their possibility of being measured or else with Lorentz invariance (or even with both). (author)

  10. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  11. The EPR - technology for the 3rd Millennium

    International Nuclear Information System (INIS)

    Bernstrauch, O.

    2000-01-01

    The Basic Design of the European Pressurized Water Reactor (EPR) was completed 1997 , the Basic Design Optimization Phase 1998 and the Detailed Design Phase will start in the near future. With these milestones, a new generation of PWRs is moving forward. Most of all, this is another story of a successful Franco-German cooperation. It is a rundown of the history of the EPR, before a decision is made to launch the lead-unit construction. The EPR project was launched in 1992 by Nuclear Power International (NPI), a joint company of FRAMATOME and Siemens KWU, supported by EDF and nine German electric utilities. Each step of the development of the EPR was harmonized with the Nuclear Safety Authorities both in France and Germany to reach an early approval. The EPR integrates the latest technological advances, especially in safety and operational aspects and comprises more than 30 years operating experience. Thus, the EPR combines the qualities of its predecessors, the French N4 and the German Konvoi. Presently, Siemens KWU and FRAMATOME are preparing the detailed design phase and the following construction and commissioning phase. The decision to build an EPR is not yet made either by the German electric utilities or by EdF, but it will be expected within the next months as a strong statement to follow the nuclear way and to ensure the know-how transfer. (author)

  12. Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip

    International Nuclear Information System (INIS)

    Cador, Olivier; Gatteschi, Dante; Sessoli, Roberta; Barra, Anne-Laure; Timco, Grigore A.; Winpenny, Richard E.P.

    2005-01-01

    The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site

  13. Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip

    Energy Technology Data Exchange (ETDEWEB)

    Cador, Olivier [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Gatteschi, Dante [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Sessoli, Roberta [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy)]. E-mail: roberta.sessoli@unifi.it; Barra, Anne-Laure [Laboratoire des Champs Magnetiques Intenses-CNRS, F-38042 Grenoble Cede 9 (France); Timco, Grigore A. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Winpenny, Richard E.P. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2005-04-15

    The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site.

  14. Strong spin-photon coupling in silicon

    Science.gov (United States)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  15. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    Science.gov (United States)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  16. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  17. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented

  18. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  19. Experimental EPR-steering using Bell-local states

    Science.gov (United States)

    Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J.

    2010-11-01

    The concept of `steering' was introduced in 1935 by Schrödinger as a generalization of the EPR (Einstein-Podolsky-Rosen) paradox. It has recently been formalized as a quantum-information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to an approach that followed the original EPR argument in considering only two different measurement settings per side. Here we demonstrate experimentally that EPR-steering occurs for mixed entangled states that are Bell local (that is, that cannot possibly demonstrate Bell non-locality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two-we use up to six-significantly increases the robustness of the EPR-steering phenomenon to noise.

  20. 2D-Titanium dioxide nanosheets modified with Nd, Ag and Au: Preparation, characterization and photocatalytic activity

    Czech Academy of Sciences Publication Activity Database

    Pližingrová, Eva; Klementová, Mariana; Bezdička, Petr; Boháček, Jaroslav; Barbieriková, Z.; Dvoranová, D.; Mazúr, M.; Krýsa, J.; Šubrt, Jan; Brezová, V.

    2017-01-01

    Roč. 281, MAR (2017), s. 165-180 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Modified titanium dioxide * Photocatalysis * Plasmonic effect * EPR spectroscopy * Lyophilization * Spin trapping Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  1. EPR by Areva. The path of greatest certainty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    AREVA's Evolutionary Power Reactor (EPR) is the first Generation III+ reactor design currently being built to answer the world's growing demand for clean and reliable electricity generation. Already under construction in Finland, France and China, the EPR is also being considered by America, United Kingdom, South Africa and other countries for the development of their nuclear fleet. The EPR is now clearly destined to become the mainstay of standardized, efficient reactor fleets around the globe. AREVA's EPR incorporates unbeatable know-how provided by an uninterrupted track record of reactor building activities and backed by decades of feedback experience from operating PWRs, including the most recent. The EPR is a Franco-German initiative which benefited from the stringent scrutiny of safety authorities from both countries, at each stage of the project. The EPR has already secured construction licenses from two of the world's most demanding safety authorities in France and Finland and is currently in line for a design certification and a combined construction and operating license (COL) in the USA. It is also taking part in the licensing process recently launched in the United Kingdom. Europe's leading utilities have granted the EPR their approval under the 'European Utilities Requirements' and have further expressed individual interest in the design and performance of the EPR for their businesses. AREVA is the only Gen III+ reactor constructor in the world with ongoing building experience. To date, AREVA is the only vendor who has the necessary field experience that future customers can benefit: - Detailed design completed; - Experience feedback from 87 PWR; - 3 projects going on; - Continuous PWR experience in design and construction. Close to 100% of the EPR primary circuit heavy components are sourced directly from AREVA's integrated plants. Engineering, manufacturing, services and fuel cycle management are totally

  2. Correlations between the particles in the EPR-paradox

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.J. (Akademie der Wissenschaften der DDR, Potsdam-Babelsberg. Einstein-Laboratorium fuer Theoretische Physik)

    1984-03-01

    The Einstein-Podolsky-Rosen 'gedanken-experiment' does not imply non-local interactions or an 'action-at-a-distance'. Contrary, the EPR proves the measurements at one particle does not have influences at canonical variables of the other particles if the quantum-mechanical commutation relations are true. But, the EPR implies correlations between the particles which come in by 'subjective knowledge'. These correlations are a priori informations about the relative motion or, complementarily, about the motion of the center of mass. The impression of an action-at-a-distance is produced by the use of usual particle coordinates in the EPR-arrangements. The discussion of the Einstein-Podolsky-Rosen 'gedanken-experiment' (EPR) has been going on over fifty years. Einstein, Podolsky, and Rosen formulated their famous paradox in 1935, and in the discussion between N. Bohr (1935, 1949) and Einstein (1936, 1948); A. Einstein (1948) made his point that the EPR implied an 'action-at-a-distance' for quantum-mechanical particles (without obvious classical interactions). His argument is the starting point for the recent discussion about EPR and causality (see A. Aspect 1981).

  3. EPR-technical codes - a common basis for the EPR

    International Nuclear Information System (INIS)

    Zaiss, W.; Appell, B.

    1997-01-01

    The design and construction of Nuclear Power Plants implies a full set of codes and standards to define the construction rules of components and equipment. Rules are existing and are currently implemented, respectively in France and Germany (mainly RCCs and KTA safety standards). In the frame of the EPR-project, the common objective requires an essential industrial work programme between engineers from both countries to elaborate a common set of codes and regulations. These new industrial rules are called the ETCs (EPR Technical Codes). In the hierarchy the ETCs are - in case of France - on the common level of basic safety rules (RFS), design and construction rules (RCC) and - in Germany - belonging to RSK guidelines and KTA safety standards. A set of six ETCs will be elaborated to cover: safety and process, mechanical components, electrical equipment, instrumentation and control, civil works, fire protection. (orig.)

  4. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  5. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  6. Pre-clinical evaluation of OxyChip for long-term EPR oximetry.

    Science.gov (United States)

    Hou, Huagang; Khan, Nadeem; Gohain, Sangeeta; Kuppusamy, M Lakshmi; Kuppusamy, Periannan

    2018-03-16

    Tissue oxygenation is a critical parameter in various pathophysiological situations including cardiovascular disease and cancer. Hypoxia can significantly influence the prognosis of solid malignancies and the efficacy of their treatment by radiation or chemotherapy. Electron paramagnetic resonance (EPR) oximetry is a reliable method for repeatedly assessing and monitoring oxygen levels in tissues. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) has been developed as a probe for biological EPR oximetry, especially for clinical use. However, clinical applicability of LiNc-BuO crystals is hampered by potential limitations associated with biocompatibility, biodegradation, or migration of individual bare crystals in tissue. To overcome these limitations, we have embedded LiNc-BuO crystals in polydimethylsiloxane (PDMS), an oxygen-permeable biocompatible polymer and developed an implantable/retrievable form of chip, called OxyChip. The chip was optimized for maximum spin density (40% w/w of LiNc-BuO in PDMS) and fabricated in a form suitable for implantation using an 18-G syringe needle. In vitro evaluation of the OxyChip showed that it is robust and highly oxygen sensitive. The dependence of its EPR linewidth to oxygen was linear and highly reproducible. In vivo efficacy of the OxyChip was evaluated by implanting it in rat femoris muscle and following its response to tissue oxygenation for up to 12 months. The results revealed preservation of the integrity (size and shape) and calibration (oxygen sensitivity) of the OxyChip throughout the implantation period. Further, no inflammatory or adverse reaction around the implantation area was observed thereby establishing its biocompatibility and safety. Overall, the results demonstrated that the newly-fabricated high-sensitive OxyChip is capable of providing long-term measurements of oxygen concentration in a reliable and repeated manner under clinical conditions.

  7. EPR examination of Zn2+ and Cu2+ binding by pigmented soil fungi Cladosporium cladosporioides

    International Nuclear Information System (INIS)

    Buszman, Ewa; Pilawa, Barbara; Zdybel, Magdalena; Wilczynski, Slawomir; Gondzik, Anna; Witoszynska, Teresa; Wilczok, Tadeusz

    2006-01-01

    The purpose of this study was to examine the usefulness of electron paramagnetic resonance spectroscopy (EPR) to estimate zinc and copper ions biosorption from the environment by pigmented soil fungi Cladosporium cladosporioides. The existence of a low amount of pheomelanin, besides eumelanin, in C. cladosporioides samples was proved by the analysis of shape of their EPR spectra. Concentration of o-semiquinone free radicals in crude mycelium was 2.4 x 10 17 spin/g. Changes in free radicals system of C. cladosporioides cultured in the presence of Zn 2+ and Cu 2+ were analysed. Both magnetic and chemical interactions of zinc and copper ions with free radicals in C. cladosporioides melanin were found. Magnetically interacting diamagnetic Zn 2+ ions increased the concentration of o-semiquinone free radicals in melanin existing in C. cladosporioides mycelium, whereas paramagnetic Cu 2+ ions decreased this concentration. Chemical interactions of Zn 2+ and Cu 2+ ions decreased the free radical concentrations in C. cladosporioides melanin. Homogeneously distributed free radicals in C. cladosporioides melanin rise its activity in biosorption processes

  8. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  9. Can EPR non-locality be geometrical?

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1995-01-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3

  10. EPR Dosimetry for ageing effect in NPP

    International Nuclear Information System (INIS)

    Choi, Hoon; Lim, Young Ki; Kim, Jong Seog; Jung, Sun Chul

    2005-01-01

    As one of the retrospective dosimetry method, EPR spectroscopy has been studied by many research up to theses days. As a dosimeter for EPR spectroscopy, Alanine is already a well known dosimeter in the field of radiation therapy and dose assessment in radiological accident by its characteristics as good linearity in a wide range of energy level and extremely low signal fading on time. Through technical document of IAEA, the EPR dosimetry method using alanine sample was published in 2000 after research by coordinated project on management of ageing of in-containment I and C cables. Although alanine sample is regarded as a good EPR dosimeter like above ageing assessment field, actually the assessment of radiation should be done at least for two fuel cycles, because of its relatively low irradiation environment in almost all spots in power plant. So, for getting more accurate detection value of radiation, another material is tested for being put in simultaneously inside the power plant with alanine. The test result for lithium formate monohydrate (HCO 2 LiH 2 0) was presented below for checking its possibility for being applied as EPR dosimeter for this project

  11. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Zamudio-Bayer, V. [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany); Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Hirsch, K.; Langenberg, A.; Kossick, M. [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Ławicki, A.; Lau, J. T., E-mail: tobias.lau@helmholtz-berlin.de [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Terasaki, A. [Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001 (Japan); Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Issendorff, B. von [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany)

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  12. Assessment of performance parameters for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Wieser, A.; Fattibene, P.; Shishkina, E.A.; Ivanov, D.V.; De Coste, V.; Guettler, A.; Onori, S.

    2008-01-01

    In the framework of a comparison between three laboratories, electron paramagnetic resonance (EPR) signal-to-dose response curves were measured for sets of 30 tooth enamel samples and the variance of EPR measurements in dependence on absorbed dose was evaluated, in nine combinations of laboratory of sample preparation and EPR evaluation, respectively. As a test for benchmarking of EPR evaluation, the parameters 'critical dose' and 'limit of detection' were proposed as performance parameters following definitions from chemical-metrology, and a model function was suggested for analytical formulation of the dependence of the variance of EPR measurement on absorbed dose. First estimates of limits of detection by weighted and unweighted fitting resulted in the range 101-552 and 67-561 mGy, respectively, and were generally larger with weighted than with unweighted fitting. Indication was found for the influence of methodology of sample preparation and applied EPR measurement parameters on performance of EPR dosimetry with tooth enamel

  13. Costing the EPR Project Using the Real Options Method

    International Nuclear Information System (INIS)

    Epaulard, Anne; Gallon, Stephane

    2001-01-01

    Real options theory makes it possible to cost investments which offer flexibility but whose returns are uncertain, such as the construction in 2000 of an EPR prototype; this prototype will enable the European pressurised-water reactor (EPR) to be used to renew EDF's nuclear power stations in 2020 (flexibility) but its economic worth will then depend on the cost of the competing gas-fired power plants (uncertain return). Options theory shows that investing in EPR technology in 2000 provides sufficient flexibility in 2020 to be considered cost-effective, even though use of EPRs is unlikely by that date. The investment made in 2000 to develop EPR technology therefore actually plays the part of an option or, in other words, insurance (against the risk of high gas prices)

  14. EPR and optical studies of Cu{sup 2+} ions doped in magnesium potassium phosphate hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram; Shukla, Santwana, E-mail: ram_kripal2001@rediffmail.com, E-mail: shukla.santwana@gmail.com [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India)

    2011-03-15

    An electron paramagnetic resonance (EPR) study of Cu{sup 2+}-doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu{sup 2+} are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  15. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  16. Electron spin resonance characterization of trapping centers in Unibond reg-sign buried oxides

    International Nuclear Information System (INIS)

    Conley, J.F. Jr.; Lenahan, P.M.; Wallace, B.D.

    1996-01-01

    Electron spin resonance and capacitance vs. voltage measurements are used to evaluate the radiation response of Unibond buried oxides. When damaged by hole injection, it is found that Unibond reg-sign buried oxides exhibit a rough correspondence between E' centers and positive charge as well as generation of P b centers at the Unibond buried oxide/Si interface. In these respects, Unibond buried oxides qualitatively resemble thermal SiO 2 . However, a hydrogen complexed E' center known as the 74 G doublet is also detected in the Unibond buried oxides. This defect is not detectable in thermal SiO 2 under similar circumstances. Since the presence of 74 G doublet center is generally indicative of very high hydrogen content and since hydrogen is clearly a significant participant in radiation damage, this result suggests a qualitative difference between the radiation response of Unibond and thermal SiO 2 . Unibond results are also compared and contrasted with similar investigations on separation-by-implanted-oxygen (SIMOX) buried oxides. Although the charge trapping response of Unibond buried oxides may be inferior to that of radiation hardened thermal SiO 2 , it appears to be more simple and superior to that of SIMOX buried oxides

  17. EPR detection of foods preserved with ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  18. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-01-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60 Co) and 10 MeV electrons were observed

  19. EPR detection of foods preserved with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowicz, W.; Burlinska, G.; Michalik, J

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ({sup 60}Co) and 10 MeV electrons were observed.

  20. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    Science.gov (United States)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  1. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  2. The free radical spin-trap alpha-PBN attenuates periinfarct depolarizations following permanent middle cerebral artery occlusion in rats without reducing infarct volume

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, Torben; Diemer, Nils Henrik

    2003-01-01

    The effect of the free radical spin-trap alpha-phenyl-butyl-tert-nitrone (alpha-PBN) in permanent focal cerebral ischemia in rats was examined in two series of experiments. In the first, rats were subjected to permanent occlusion of the middle cerebral artery (MCAO) and treated 1 h after occlusion...... with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume...

  3. Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [Ho(III)(W5O18)2]9-.

    Science.gov (United States)

    Ghosh, Sanhita; Datta, Saiti; Friend, Lisa; Cardona-Serra, Salvador; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2012-11-28

    Continuous-wave, multi-frequency electron paramagnetic resonance (EPR) studies are reported for a series of single-crystal and powder samples containing different dilutions of a recently discovered mononuclear Ho(III) (4f(10)) single-molecule magnet (SMM) encapsulated in a highly symmetric polyoxometalate (POM) cage. The encapsulation offers the potential for applications in molecular spintronics devices, as it preserves the intrinsic properties of the nanomagnet outside of the crystal. A significant magnetic anisotropy arises due to a splitting of the Hund's coupled total angular momentum (J = L + S = 8) ground state in the POM ligand field. Thus, high-frequency (50.4 GHz) EPR studies reveal a highly anisotropic eight line spectrum corresponding to transitions within the lowest m(J) = ±4 doublet, split by a strong hyperfine interaction with the I = 7/2 Ho nucleus (100% natural abundance). X-band EPR studies reveal the presence of an appreciable tunneling gap between the m(J) = ±4 doublet states having the same nuclear spin projection, leading to a highly non-linear field-dependence of the spectrum at low-frequencies.

  4. Orientation-dependent effects of EPR-measurements on β-rhombohedral boron

    International Nuclear Information System (INIS)

    Siems, C.D.; Geist, D.

    1976-01-01

    EPR studies on β-rhombohedral boron have been reported by several authors. Two EPR-lines with the same g-value have been found by measurements with and without illumination. The microwave frequency used was 9 GHz, as far as is known. In this paper EPR-measurements at 35 GHz on β-rhombohedral boron single crystals are reported. The investigations concerning the 'dark EPR-line' were made at 300 K. (Auth.)

  5. Selective saturation method for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Ignatiev, E.A.; Romanyukha, A.A.; Koshta, A.A.; Wieser, A.

    1996-01-01

    The method of selective saturation is based on the difference in the microwave (mw) power dependence of the background and radiation induced EPR components of the tooth enamel spectrum. The subtraction of the EPR spectrum recorded at low mw power from that recorded at higher mw power provides a considerable reduction of the background component in the spectrum. The resolution of the EPR spectrum could be improved 10-fold, however simultaneously the signal-to-noise ratio was found to be reduced twice. A detailed comparative study of reference samples with known absorbed doses was performed to demonstrate the advantage of the method. The application of the selective saturation method for EPR dosimetry with tooth enamel reduced the lower limit of EPR dosimetry to about 100 mGy. (author)

  6. Combination is the dominant free radical process initiated in DNA by ionizing radiation: an overview based on solid-state EPR studies

    International Nuclear Information System (INIS)

    Bernhard, W.A.; Mroczka, N.; Barnes, J.

    1994-01-01

    An overview of the early processes initiated in DNA by ionizing radiation is given from the perspective of studies done by solid-state EPR with the focus on radical combination. Comparisons with free radical formation and trapping in crystalline pyrimidines (1-methylcytosine, thymine, 1-methylthymine, 1-methyluracil, and cytosine monohydrate) provide insight into the processes occurring in DNA. Between 25 and 50% of low LET ionizations in fully hydrated DNA at 4 K lead to trapped free radicals, the remaining unobserved radicals are assumed to have combined. The majority of the radicals trapped in DNA at 4 K (G ∼ 0.3 μmol/J) are believed to be in clusters. Based on the value of G, it is argued that the range of holes and bound electrons in DNA at 4 K are, in the main, limited to within the cluster diameter, ∼ 4 nm. Proton transfer across hydrogen bonds promotes radical trapping and inhibits combination but is thermally reversible. Warming to room temperature mobilizes the reversibly trapped radicals and gives additional combination (50-80% of those trapped at 4 K). The yield of free radicals, after anneal, is sufficient to account for the yield of single-strand breaks produced by direct effects. (Author)

  7. Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments

    International Nuclear Information System (INIS)

    Fei Xiang; Snow, W.M.

    1999-01-01

    Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles

  8. Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments

    CERN Document Server

    Fei Xiang

    1999-01-01

    Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles.

  9. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    Science.gov (United States)

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  10. EPR study on non- and gamma-irradiated herbal pills

    Energy Technology Data Exchange (ETDEWEB)

    Aleksieva, K., E-mail: katerina_bas@abv.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Lagunov, O. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimov, K. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Yordanov, N.D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2011-06-15

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048{+-}0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  11. EPR study on non- and gamma-irradiated herbal pills

    International Nuclear Information System (INIS)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N.D.

    2011-01-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  12. EPR study on non- and gamma-irradiated herbal pills

    Science.gov (United States)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  13. EPR: Some History and Clarification

    Science.gov (United States)

    Fine, Arthur

    2002-04-01

    Locality, separation and entanglement 1930s style. We’ll explore the background to the 1935 paper by Einstein, Podolsky and Rosen, how it was composed, the actual argument of the paper, the principles used, and how the paper was received by Schroedinger, and others.We’ll also look at Bohr’s response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to EPR marks a shift in Bohr’s thinking about the quantum theory.

  14. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  16. A general way of analyzing EPR spectroscopy for a pair of magnetically equivalent lanthanide ions in crystal: A case study of BaY2F8:Yb3+ crystal

    Science.gov (United States)

    Liu, Honggang; Zheng, Wenchen

    2018-01-01

    Electron paramagnetic resonance (EPR) is an important tool to study the complex interactions (e.g., exchange and magnetic dipole-dipole interactions) for a pair of lanthanide (Ln) ions in crystals. How to analyze these EPR spectra and obtain the strength of each interaction is a challenge for experimentalists. In this work, a general way of calculating the EPR lines for two magnetically equivalent Ln ions is given by us to solve this problem. In order to explain their EPR spectra and obtain exchange interaction parameters Ji (i = x, y, z) between them, we deduce the analytic formulas for computing the angular dependent EPR lines for such Ln pairs under the condition of weak coupling (|Ji| ≪ hv, where v is the microwave frequency in the EPR experiment) and set up the spin-Hamiltonian energy matrix that should be diagonalized to obtain these lines if intermediate (|Ji| ˜ hv) and strong (|Ji| > hv) couplings are encountered. To verify our method, the experimental EPR spectra for the Yb3+ doped BaY2F8 crystal are considered by us and the EPR lines from the isolated Yb3+ ion and Yb3+-Yb3+ pair with distance R equal to 0.371 nm are identified clearly. Moreover, exchange interaction parameters (Jx ≈ -0.04 cm-1, Jy ≈ -0.24 cm-1, and Jz ≈ -0.1 cm-1) for such a pair are also determined by our calculations. This case study demonstrates that the theoretical method given in this work would be useful and could be applied to understand interactions between Ln ions in crystals.

  17. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos de; Magon, Claudio José [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo (Brazil); Wiegand, Thomas [Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8049 Zürich (Switzerland); Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard [Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, D 48149 Münster (Germany); Eckert, Hellmut, E-mail: eckerth@uni-muenster.de [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo (Brazil); Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, D 48149 Münster (Germany)

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  18. EPR study on gamma-irradiated fruits dehydrated via osmosis

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Aleksieva, K.

    2007-01-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples

  19. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Science.gov (United States)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  20. Investigation of EPR signals on tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, A; Mironova-Ulmane, N; Polakov, M; Riekstina, D [Institute of Solid State Physics, University of Latvia, Riga (Latvia)

    2007-12-15

    Calcified tissues are involved in continues metabolic process in human organism exchanging a number of chemical elements with environment. The rate of biochemical reactions is tissue dependent and the slowest one at the tooth enamel, the most mineralized tissue of human organism. The long time stability and unique chemical composition make tooth enamel suitable for number of application. The assessment of individual radiation dose by Electron Paramagnetic Resonance (EPR) and evaluations of elemental composition by Instrumentation Neutron Activation Analysis (INAA) are the well known procedures where properties of tooth enamel intensively used. The current work is focused on investigation of EPR signals and determination of chemical composition on several teeth samples having different origin. The EPR spectra and INAA element content of milk tooth, caries tooth, and paradantose tooth have been compared to each other. The results showed that the intensity of EPR signal is much higher for the caries tooth than the for paradantose tooth that is in agreement with depleted Ca content.

  1. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  2. Spin Coherence in Silicon-based Quantum Structures and Devices

    Science.gov (United States)

    2017-08-31

    Using electron spin resonance (ESR) to measure the den- sity of shallow traps, we find that the two sets of devices are nearly identical , indicating...experiments which cannot utilize a clock transition or a field-cancelling decoherence-free subspace. Our approach was to lock the microwave source driving...the electron spins to a strong nuclear spin signal. In our initial experiments we locked to the proton signal in a water cell. However, the noise in

  3. Static and dynamic characteristics of the Cr.sup.3+./sup. EPR spectra in the Van Vleck paramagnet TmAl.sub.3./sub.(BO.sub.3./sub.).sub.4./sub.

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, Andriy

    2016-01-01

    Roč. 51, č. 10 (2016), 4762-4768 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LM2011029 Institutional support: RVO:68378271 Keywords : EPR spectra * rare-earth * aluminum borates * spin Hamiltonian parameters * Van Vleck paramagnet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.599, year: 2016

  4. Novel spin transition between S = 5/2 and S = 3/2 in highly saddled iron(III) porphyrin complexes at extremely low temperatures.

    Science.gov (United States)

    Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio

    2006-05-14

    A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.

  5. EPR Spectroscopy in Environmental Lichen-Indication

    Science.gov (United States)

    Bondarenko, P. V.; Nguyet, Le Thi Bich; Zhuravleva, S. E.; Trukhan, E. M.

    2017-09-01

    The paramagnetic properties of lichens were investigated using EPR spectroscopy and Xanthoria parietina (L.) Th. Fr. as a case study. It was found that the concentration of paramagnetic centers in lichen thalli increased as the air-pollution level increased. Possible formation mechanisms of the paramagnetic centers in lichens were discussed. The efficiency of using EPR spectroscopy to study lichens as environmental quality indicators was demonstrated.

  6. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  7. EPR evidence for thermally excited triplet states in exinite, vitrinite and inertinite separated from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, G.P.; Wojtowicz, W.; Wieckowski, A.B. [University of Zielona Gora, Zielona Gora (Poland). Inst. of Physics

    2005-07-01

    In this work we have made an electron spin resonance (EPR) study of macerals obtained from the lithotype clarain separated from Polish medium-rank coal (85.6 wt.% C). For three macerals (exinite, vitrinite, and inertinite), the temperature dependence of intensity of EPR spectra in the temperature range of 100-373 K was investigated. The experimentally obtained EPR spectra of macerals were fitted by curves of the derivatives of the Gaussian and Lorentzian functions. The best fitting was obtained, when the experimental EPR spectra were assumed to be a superposition of three lines, for exinite and vitrinite - a broad Gaussian (G), a broad Lorentzian (L1) and a narrow Lorentzian (L3) line, but for inertinite of two lines - a narrow Lorentzian (L2) and a narrow Lorentzian (L3) line. The computer-assisted fitting has shown that each individual component line has similar values of resonance field, but different linewidths and amplitudes. The temperature dependence of line intensity I of the broad Gaussian (G) and narrow Lorentzian (L2 and L3) lines fulfils the Curie law in the form I = C/T or IT = C, whereas the broad Lorentzian (L1) line does not fulfil the Curie law. In the last case the temperature dependence of the Lorentzian (L1) component was fitted by the relation I = C/T + B/(T(3 + exp(J/kT))) or IT C + B/(3 + exp(J/kT))), valid for thermally excited triplet states (S = 1). For exinite and vitrinite the curves presenting the temperature dependence of the product IT versus temperature T were resolved into two curves, one for paramagnetic centres in the doublet state (S = ), and the other for paramagnetic centres in the thermally excited triplet state (S = 1).

  8. Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers.

    Science.gov (United States)

    Arata, T

    1990-07-20

    Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.

  9. Most advanced HTP fuel assembly design for EPR

    International Nuclear Information System (INIS)

    Francillon, Eric; Kiehlmann, Horst-Dieter

    2006-01-01

    End 2003, the Finnish electricity utility Teollisuuden Voima Oy (TVO) signed the contract for building an EPR in Olkiluoto (Finland). Mid 2004, the French electricity utility EDF selected an EPR to be built in France. In 2005, Framatome ANP, an AREVA and Siemens company, announced that they will be pursuing a design certification in the U.S. The EPR development is based on the latest PWR product lines of former Framatome (N4) and Siemens Nuklear (Konvoi). As an introductory part, different aspects of the EPR core characteristics connected to fuel assembly design are presented. It includes means of ensuring reactivity control like hybrid AIC/B4C control rod absorbers and gadolinium as burnable absorber integrated in fuel rods, and specific options for in-core instrumentation, such as Aeroball type instrumentation. Then the design requirements for the EPR fuel assembly are presented in term of very high burnup capacity, rod cladding and fuel assembly reliability. Framatome ANP fuel assembly product characteristics meeting these requirements are then described. EPR fuel assembly design characteristics benefit from the experience feedback of the latest fuel assembly products designed within Framatome ANP, leading to resistance to assembly deformation, high fuel rod restraint and prevention of handling hazards. EPR fuel assembly design features the best components composing the cornerstones of the upgraded family of fuel assemblies that FRAMATOME ANP proposes today. This family is based on a set of common characteristics and associated features, which include the HMP grid as bottom end spacer, the MONOBLOC guide tube and the Robust FUELGUARD as lower tie plate, the use of the M5 Alloy, as cladding and structure material. This fully re-crystallized, ternary Zr-Nb-O alloy produces radically improved in-reactor corrosion, very low hydrogen uptake and growth and an excellent creep behavior, which are described there. EPR fuel assembly description also includes fuel rod

  10. On the annealing of the EPR dislocation signal in silicon

    International Nuclear Information System (INIS)

    Zolotukhin, M.N.; Kveder, V.V.; Osip'yan, Yu.A.

    1981-01-01

    The annealing kinetics of the (EPR) dislocation signal (D-centers) in silicon is studied. The disappearance of the dislocation EPR signal as a result of annealing is ascribed to rearrangement of the nuclei of the partial dislocations accompanied by pairwise ''closing'' of the broken bonds in the S=0 state. The height of the energy barrier for the rearrangement process is approximately 2 eV. A residual ''nonannealing'' EPR signal is observed in strongly deformed silicon crystals. It resembles an isotropic line with a width approximately 7.5 Oe and a g-factor approximately 2.006. It is suggested that the respective EPR centers (O-centers) are similar to the EPR centers in amorphic silicon [ru

  11. Magnetic, catalytic, EPR and electrochemical studies on binuclear ...

    Indian Academy of Sciences (India)

    Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes ... to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. ... EPR spectral studies in methanol solvent show welldefined four hyperfine ...

  12. EPR spectroscopy of complex biological iron-sulfur systems.

    Science.gov (United States)

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  13. A passive dual-circulator based transmit/receive switch for use with reflection resonators in pulse EPR

    Science.gov (United States)

    Subramanian, V. S.; Epel, Boris; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    In order to protect the low noise amplifier (LNA) in the receive arm of a pulsed 250 MHz EPR bridge, it is necessary to install as much isolation as possible between the power exciting the spin system and the LNA when high power is present in the receive arm of the bridge, while allowing the voltage induced by the magnetization in the spin sample to be passed undistorted and undiminished to the LNA once power is reduced below the level that can cause a LNA damage. We discuss a combination of techniques to accomplish this involving the power-routing circulator in the bridge, a second circulator acting as an isolator with passive shunt PIN diodes immediately following the second circulator. The low resistance of the forward biased PIN diode passively generates an impedance mismatch at the second circulator output port during the high power excitation pulse and resonator ring down. The mismatch reflects the high power to the remaining port of the second circulator, dumping it into a system impedance matched load. Only when the power diminishes below the diode conduction threshold will the resistance of the PIN diode rise to a value much higher than the system impedance. This brings the device into conduction mode. We find that the present design passively limits the output power to 14 dBm independent of the input power. For high input power levels the isolation may exceed 60 dB. This level of isolation is sufficient to fully protect the LNA of pulse EPR bridge. PMID:20052312

  14. Electron self-trapped at molybdenum complex in lead molybdate: An EPRand TSL comparative study

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Fasoli, M.; Moretti, F.; Trubitsyn, M.; Volnianskii, M.; Vedda, A.; Nikl, Martin

    2017-01-01

    Roč. 192, Dec (2017), s. 767-774 ISSN 0022-2313 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA17-09933S EU Projects: European Commission(XE) 690599 - ASCIMAT Institutional support: RVO:68378271 Keywords : EPR * wavelength resolved TSL * self-trapped electron * lead molybdate * molecular orbitals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  15. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  16. Limits in EPR dosimetry for irradiated dried fruits discrimination

    International Nuclear Information System (INIS)

    Brasoveanu, Mirela M. E-mirela@alpha.infim.ro; Nemtanu, R.; Minea, R.; Grecu, V.V.

    2003-01-01

    Irradiation of food induces free radical species. EPR dosimetry in irradiated goods puts in evidence if these radicals are stable in environmental condition. Irradiation of dried fruits has been carried out. Their behaviour under irradiation was investigated and correlation between EPR signal and irradiation dose was determined. Electrons of 6 MeV (mean energy) and doses up to 10 kGy were used. EPR spectra were recorded with a Jeol spectrometer, JES-ME-3X tip, with a 100 kHz modulation. The dried fruits can be separated into categories depending on the EPR signal intensity. Strong signals are observed in those fruits in which possible crystalline-like phases exist. As the amount of crystallized sugar decreases, the EPR signals become weaker. Dependencies on irradiation dose give a linear correlation below 10 kGy. The spectra are compared to irradiated sugar and differences and similarities are discussed. (authors)

  17. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  18. EPR trademark project delivery. The value of experience

    International Nuclear Information System (INIS)

    Leverenz, Ruediger

    2013-01-01

    We are building the EPR trademark reactor fleet. Together. With four EPR trademark projects under construction in the world, AREVA has unrivalled experience in the delivery of large-scale nuclear projects, including more than a thousand lessons learned captured from Olkiluoto 3 and Flamanville 3 projects. This book of knowledge as well as the return of experience of AREVA's and EDF's teams are now being fully leveraged on ongoing projects, especially on Flamanville 3 and Taishan, and will be incorporated in all future EPR TM projects.

  19. Some ideas on the EPR

    International Nuclear Information System (INIS)

    2003-01-01

    Facing the debate and controversial between partisans and opponents of the European Pressurized Reactor construction, the SFP energy Group aims to offer some reflexions. In this framework the following topics are discussed: the french nuclear park and its replacement, the energy costs, the nuclear reactors profitability, the generation IV reactors. The paper examines then the EPR technology and its cost to conclude on the advantage of an EPR construction, in the case of an energy policy based on the nuclear. This last point seems to be the real challenge of the problem. (A.L.B.)

  20. Correlation between the size and the magnetic properties of Ag2+ clusters loaded on ceria surface and their catalytic performance in the total oxidation of propylene. EPR study

    Science.gov (United States)

    Hany, Sara; Skaf, Mira; Aouad, Samer; Gennequin, Cédric; Labaki, Madona; Abi-Aad, Edmond; Aboukaïs, Antoine

    2018-03-01

    Three different types of Ag2+ ions ("a", "b", and "c") have been identified and examined by electron paramagnetic resonance (EPR) on 10% wt Ag/CeO2 prepared by impregnation method. One of them, Ag2+(b), behaves differently than the two others, Ag2+(a) and Ag2+(c), under redox atmospheres. The fact that, in reducing conditions (vacuum, propylene, hydrogen, and carbon black), Ag2+(a) and Ag2+(c) species were more easily reduced than Ag2+(b) ones, could not explain the catalytic performance and stability of this latter species compared to the first ones in the reaction of total oxidation of propylene. The EPR technique evidenced that Ag2+(b) species form, upon propene oxidation, a cluster. This cluster is composed of two parallel electron spins (dimer) and three nuclear spins (trimer). It seems that before propylene oxidation, Ag2+(b) clusters were ferromagnetic. This ferromagnetic character of Ag2+(b) species may explain their better catalytic performance, in propylene oxidation, than those of Ag2+(a) and Ag2+(c) ones.

  1. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  2. PropeR: a multi disciplinary EPR system

    NARCIS (Netherlands)

    van der Linden, Helma; Boers, Gerrit; Tange, Huibert; Talmon, Jan; Hasman, Arie

    2003-01-01

    This article describes the architecture of an EPR system developed for the PropeR project. This EPR system not only aims at supporting home care of stroke patients, but is also designed in such a way that it can be ported to other medical services without much effort. We will briefly describe the

  3. Investigations of the EPR parameters and local lattice structure for the rhombic Cu{sup 2+} centre in TZSH crystal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian [Shangrao Normal University, Jiangxi (China). School of Physics and Electronic Information

    2016-07-01

    The electron paramagnetic resonance (EPR) parameters [i.e. g factors g{sub i} (i=x, y, z) and hyperfine structure constants A{sub i}] and the local lattice structure for the Cu{sup 2+} centre in Tl{sub 2}Zn(SO{sub 4}){sub 2}.6H{sub 2}O (TZSH) crystal were theoretically investigated by utilising the perturbation formulae of these parameters for a 3d{sup 9} ion under rhombically elongated octahedra. In the calculations, the admixture of d orbitals in the ground state and the ligand orbital and spin-orbit coupling interactions are taken into account based on the cluster approach. The theoretical EPR parameters show good agreement with the observed values, and the Cu{sup 2+}-H{sub 2}O bond lengths are obtained as follows: R{sub x}∼1.98 Aa, R{sub y}∼2.09 Aa, R{sub z}∼2.32 Aa. The results are discussed.

  4. Isolable Triradical Trication of Hexaaza[16]paracyclophane with Embedded 9,10-Anthrylenes: A Frustrated Three-Spin System.

    Science.gov (United States)

    Kurata, Ryohei; Sakamaki, Daisuke; Uebe, Masashi; Kinoshita, Mariko; Iwanaga, Tetsuo; Matsumoto, Takashi; Ito, Akihiro

    2017-08-18

    A new derivative of hexaaza[1 6 ]paracyclophane in which p-phenylenes are alternately replaced by 9,10-anthrylenes was prepared to investigate the impact on overall π-conjugation as well as conformational change of the macrocycle. The charge and spin distribution for one-electron and three-electron oxidation of the macrocycle was elucidated by means of electrochemical, spectroelectrochemical, EPR spectroscopic, and SQUID magnetometric methods. In particular, the triradical trication was successfully isolated as an air-stable salt, and moreover, its structure was disclosed by X-ray analysis. The triradical trication was characterized as a spin-frustrated three-spin system with the antiferromagnetic exchange interaction (J/k B ≃ - 74 K).

  5. The Flamanville 3 EPR reactor; Le reacteur EPR Flamanville 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    On April 10. 2007, the french government authorized EDF to create on the site of Flamanville ( La Manche) a nuclear base installation containing a pressurized water EPR type reactor. This nuclear reactor, conceived by AREVA NP and EDF, is the first copy of a generation susceptible to replace later, at least partly, the French nuclear reactors at present in operation.Within the framework of its mission of technical support of the Authority of Nuclear Safety ( A.S.N.), the I.R.S.N. widely contributed successively: to define the general objectives of safety assigned to this new generation of pressurized water nuclear reactors; to analyze the options of safety proposed by EDF for the EPR project; To deepen, upstream to the authorization of creation, the evaluation of the step of safety and the measures of conception retained by EDF that have to allow to respect the objectives of safety which were notified to it. (N.C.)

  6. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    Science.gov (United States)

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  7. Polymer therapeutics and the EPR effect.

    Science.gov (United States)

    Maeda, Hiroshi

    History of the EPR (enhanced permeability and retention) effect is discussed, which goes back to the analyses of molecular pathology in bacterial infection and edema (extravasation) formation. The first mediator we found for extravasation was bradykinin. Later on, were found nitric oxide and superoxide, then formation of peroxynitrite, that activates procollagenase. In this inflammatory setting many other vascular mediators are involved that are also common to cancer vasculature. Obviously cancer vasculature is defective architechtally, and this makes macromolecular drugs more permeable through the vascular wall. The importance of this pathophysiological event of EPR effect can be applied to macromolecular drug-delivery, or tumor selective delivery, which takes hours to achieve in the primary as well as metastatic tumors, not to mention of the inflamed tissues. The retention of the EPR means that such drugs will be retained in tumor tissues more than days to weeks. This was demonstrated initially, and most dramatically, using SMANCS, a protein-polymer conjugated-drug dissolved in lipid contrast medium (Lipiodol) by administering intraarterially. For disseminating the EPR concept globally, or in the scientific community, Professor Ruth Duncan played a key role at the early stage, as she worked extensively on polymer- therapeutics, and knew its importance.

  8. Water-resistant alanine-EPR dosimeter alanpol

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Zofia; Bryl-Sandelewska, Teresa; Mirkowski, Krzysztof; Sartowska, Bozena

    2009-01-01

    Alanpol-water-resistant alanine-electron paramagnetic resonance (EPR) dosimeter consisted of cheap DL-α-alanine (9.8-27%) suspended in polyethylene matrix was presented. The rods (O=2.8 mm) were extruded from a hot mixture of alanine and low-density polyethylene. No grinding or crushing was used for alanine preparation. An orientation of cylindrical crystals, up to 300 μm long in parallel to the rod axis was responsible for some differences in a shape of EPR signal. These differences had no negative consequences for dosimetric applications. Signal-to-dose dependence was linear up to 10 kGy. Standard deviation of dosimetric answer was up to ±1.8% and up to 2.4% for dosimeters with 9.8% and 27% of DL-α-alanine, respectively. Irradiation temperature coefficient for both dosimeters was equal 0.2%/ deg. C. Hydrophobic properties of polyethylene and small number of alanine crystals located on the surface of the rod led to high resistance of dosimeters to water and humidity. The 24 h soaking of irradiated dosimeters in liquid water-reduced EPR signals by 3-4% and by 2-3% for dosimeters with 27% and 9.8% of DL-α-alanine, respectively. Three month storage time of irradiated dosimeters in room conditions decreases EPR signal for ∼3%.

  9. Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1997-01-01

    Use of IR spectroscopy (as a supplement to EPR) may provide new insight into the problem of analysis of structure and properties of organic radical cations. In this work, the results of combined EPR/IR studies of the formation, structure and properties of hydrocarbon radical cations in halocarbon and solid rare gas matrices are discussed. Both IR and EPR studies were carried out with matrix deposited samples irradiated with fast electrons at 15 or 77 K. IR spectroscopic data were found to be helpful in three aspects: (i) characterization of the conformation and association and molecule-matrix interactions of the parent molecules; (ii) identification of diamagnetic products of the reactions of radical cations in ground and excited states; (iii) determining the characteristics of vibrational spectra of the radical cations, which are of primary interest for analysis of chemical bonding and reactivity of the radical cations. The applications of the combined approach are illustrated with examples of studies of several alkenes in Freon matrices and alkanes in solid rare gas matrices. The matrix effects on trapping and degradation of radical cations were interpreted as the result of variations in matrix electronic characteristics (IP, polarizability) and molecule-matrix interactions. (au) 48 refs

  10. Finding Traps in Non-linear Spin Arrays

    OpenAIRE

    Wiesniak, Marcin; Markiewicz, Marcin

    2009-01-01

    Precise knowledge of the Hamiltonian of a system is a key to many of its applications. Tasks such state transfer or quantum computation have been well studied with a linear chain, but hardly with systems, which do not possess a linear structure. While this difference does not disturb the end-to-end dynamics of a single excitation, the evolution is significantly changed in other subspaces. Here we quantify the difference between a linear chain and a pseudo-chain, which have more than one spin ...

  11. Investigating free radical generation in HepG2 cells using immuno-spin trapping.

    Science.gov (United States)

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P

    2014-10-01

    Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.

  12. Spin dependent surface recombination in silicon p-n junctions: the effect of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D [Laboratoire Central de Recherches, 91 - Corbeville par Orsay (France); Pepper, M [Cambridge Univ. (UK). Cavendish Lab.

    1980-06-01

    The results are presented of an investigation of spin dependent recombination in (100) oriented, gate controlled Si diodes irradiated by 30 keV electrons. After irradiation, recombination at the Si-SiO/sub 2/ interface is increased, and saturation of the spin resonance increases the diode forward current by 5 parts in 10/sup 4/. The results cannot be described by a conventional Shockley-Read recombination model. An alternative picture is proposed involving recombination between trapped electrons and trapped holes.

  13. Pressurized water reactors: the EPR project

    International Nuclear Information System (INIS)

    Py, J.P.; Yvon, M.

    2007-01-01

    EPR (originally 'European pressurized water reactor', and now 'evolutionary power reactor') is a model of reactor initially jointly developed by French and German engineers which fulfills the particular safety specifications of both countries but also the European utility requirements jointly elaborated by the main European power companies under the initiative of Electricite de France (EdF). Today, two EPR-based reactors are under development: one is under construction in Finland and the other, Flamanville 3 (France), received its creation permit decree on April 10, 2007. This article presents, first, the main objectives of the EPR, and then, describes the Flamanville 3 reactor: reactor type and general conditions, core and conditions of operation, primary and secondary circuits with their components, main auxiliary and recovery systems, man-machine interface and instrumentation and control system, confinement and serious accidents, arrangement of buildings. (J.S.)

  14. E-PR technologies in political party activities

    OpenAIRE

    Tereshchuk Vitaliy Ivanovych

    2016-01-01

    The article discusses the role of the Internet as an important communicative tool in the field of political PR. The article reviews the characteristics of PR-activities on the Internet and the features of e-PR in the political sphere. Particular attention is paid to the system of political party’s e-PR tools.

  15. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F. [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  16. EPR spectra of some irradiated polycrystalline perrhenate

    International Nuclear Information System (INIS)

    Zaitseva, N.G.; Constantinescu, M.; Georgescu, R.; Constantinescu, O.

    1978-10-01

    An EPR study of the paramagnetic centers formed by γ, electron and neutron irradiation of the NaReO 4 and KReO 4 was made. In the EPR spectra of the powder samples irradiated γ, with electrons and neutrons, the presence of three types of paramagnetic centers was observed. From the EPR parameters, the centers were attributed to the ReOsub(4)sup(.), ReOsub(3)sup(.) and ReOsub(2)sup(.) radicals respectively. The lower intensity of the spectra observed by KReO 4 samples irradiation showed a higher radioresistance of the KReO 4 than that of NaReO 4 . A radiolitical scheme taking into account the paramagnetic centers formation was proposed. (author)

  17. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    Science.gov (United States)

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  18. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  19. Molecular accessibility in solvent swelled coals

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  20. On the correlations between the particles in the EPR-paradoxon

    International Nuclear Information System (INIS)

    Treder, H.J.

    1984-01-01

    The Einstein-Podolsky-Rosen 'gedanken-experiment' does not imply non-local interactions or an 'action-at-a-distance'. Contrary, the EPR proves the measurements at one particle does not have influences at canonical variables of the other particles if the quantum-mechanical commutation relations are true. But, the EPR implices correlations between the particles which come in by 'subjective knowledge'. These correlations are a priori informations about the relative motion or, complementarily, about the motion of the center of mass. The impression of an action-at-a-distance is produced by the use of usual particle coordinates in the EPR-arrangements. The discussion of the Einstein-Podolsky-Rosen 'gedanken-experiment' (EPR) has been going on over fifty years. Einstein, Podolsky, and Rosen formulated their famous paradox in 1935, and in the discussion between N. Bohr (1935, 1949) and Einstein (1936, 1948); A. Einstein (1948) made his point that the EPR implied an 'action-at-a-distance' for quantum-mechanical particles (without obvious classical interactions). His argument is the starting point for the recent discussion about EPR and causality (see A. Aspect 1981). (author)