WorldWideScience

Sample records for epr spectroscopy studies

  1. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  2. EPR spectroscopy of spices

    Directory of Open Access Journals (Sweden)

    R. T. Тimakova

    2016-01-01

    Full Text Available From 01 January 2017 you enter the interstate standard GOST 33271-2015 “Dry Spices, herbs and vegetable seasonings. Manual exposure in order to combat pathogens and other microorganisms” which States that the absorbed dose of radiation to the spices should be from 3 to 30 kGy. The study found that before the introduction of permissive legislative framework in the consumer market of Russia there are irradiated food products (chili, ground chili, ground spicy chili, black pepper. For radiation monitoring of food safety, we used the method of electron paramagnetic resonance (EPR, which allows quickly and with a high degree of reliability to establish the fact of irradiation. It is established that all samples of spices irradiated with dose of 12 kGy (technology radappertization gave typical spectra of the signals established by the method of electron paramagnetic resonance in the domestic EPR spectrometer, the intensity, amplitude and peak width of the EPR signal of samples of spices with the increase of irradiation dose increases. It is proven that repeated exposure no effect accumulation. Integration with 2017 Russia in the global practi ce of using radiation technologies of processing of food products and food raw materials with the purpose of extending shelf life confirms the need for a data Bank on the radiation sensitivity of various food products to determine the optimal doses and the eff ect of radiation doses on the shelf life and quality of products.

  3. Kinetic study of UV-irradiated amorphous sulfur by EPR spectroscopy

    International Nuclear Information System (INIS)

    El Mkami, H.; Smith, G.M.

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to investigate UV-irradiation damage in amorphous sulfur by examining post-irradiation kinetics as a function of UV-exposure time. The kinetic study is described by first-order concurrent reactions where the sulfur, as reactant, undergoes two parallel processes leading to the formation of two distinct defects called S 1 * and S 2 *. The temperature dependence of the EPR intensities of the signals, related to these defects, is used in the kinetic study

  4. EPR spectroscopy in the asphaltenes photodegradation study in petroleum

    International Nuclear Information System (INIS)

    Mauro, Eduardo di; Nakaema, Marcelo Kiyoshi Kian; Melo, Fernando Alves de; Turini, Marilene; Guedes, Carmen Luisa Barbosa; Nascimento, Otaciro Rangel

    2003-01-01

    Full text: The knowledge of the photochemistry transformation that occurs in the petroleum, when it is exposed to the environment has already been proved. In tropical climates, where the solar intensity is high and biological processes are hindered by the lack of nutrients, photochemical processes can be the one that most contribute for the degradation of oil. Moreover, photochemical processes can be important for subsequent biological consumption of oil (Nicodem et al., 1997). We have used EPR with the purpose of getting information of the photodegradation of the asphaltenes concerning the molecular structure. The EPR spectra of petroleum presented a single sign for organic free radicals. The present work basically consists of showing a new assignment of the EPR spectra to organic free radical. The sign observed in the EPR spectra in the Q-band for Arabian and Colombian oils was simulated mathematically. In contrast to the hypothesis postulated until now, that the sign corresponding to the free radical is interpreted as resulting from the superposition of the signs of different species of radicals in petroleum asphaltenes, the hypothesis that the asymmetrical line is the result of the components of the g tensor for a single radical species was proposed. The performed simulation was perfectly adjusted to the sign of the radical, confirming that this sign is the representation of a single species of free radical. Although the sign of the radical is due to a single species in each oil, the species responsible for the sign in Arabian petroleum is different from that responsible for the sign in Colombian petroleum. Nicodem, D.E., Fernandes, M.C.Z., Guedes, C.L.B., Correia, R.J., 1997. Biogeochemistry 39, 121-138. (author)

  5. EPR Spectroscopy in Environmental Lichen-Indication

    Science.gov (United States)

    Bondarenko, P. V.; Nguyet, Le Thi Bich; Zhuravleva, S. E.; Trukhan, E. M.

    2017-09-01

    The paramagnetic properties of lichens were investigated using EPR spectroscopy and Xanthoria parietina (L.) Th. Fr. as a case study. It was found that the concentration of paramagnetic centers in lichen thalli increased as the air-pollution level increased. Possible formation mechanisms of the paramagnetic centers in lichens were discussed. The efficiency of using EPR spectroscopy to study lichens as environmental quality indicators was demonstrated.

  6. EPR spectroscopy at DNP conditions

    International Nuclear Information System (INIS)

    Heckmann, J.; Goertz, St.; Meyer, W.; Radtke, E.; Reicherz, G.

    2004-01-01

    In terms of dynamic nuclear polarization (DNP) studies and systematic target material research it is crucial to know the EPR lineshape of the DNP relevant paramagnetic centers. Therefore in Bochum an EPR spectrometer has been implemented into the 4 He evaporation DNP facility in order to perform EPR studies at DNP conditions (B=2.5 T, T=1 K). The spectrometer hardware and performance as well as first results are presented

  7. Model compounds of humic acid and oxovanadium cations. Potentiometric titration and EPR spectroscopy studies

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia Ramalho

    1999-01-01

    Full Text Available The stability constants and the isotropic EPR parameters Ao (hyperfine splitting constant and g o (g value were obtained by potentiometric titrations and EPR spectroscopy, respectively, of 85%v/v aqueous solutions of model compounds of humic acids - salicylic acid (SALA - and both nitrohumic acids, a laboratory artifact - nitrosalicylic acids, 3-nitrosalicylic acid (3-NSA, 5-nitrosalicylic acid (5-NSA and 3,5-dinitrosalicylic acid (3,5-DNSA and oxovanadium cations. It was possible to record EPR spectra of those model compounds and the ion VO2+ (V(IV, and the stability constants were obtained from a solution of VO3+ (V(V, the values for the logarithms of the stability constants ranging from 12.77 ± 0.04 to 7.06 ± 0.05 for the species ML, and from 9.90 ±0.04 to 4.06 ± 0.05 for the species ML2 according to the decrease in the acidity of the carboxylic and the hydroxyl groups in the aromatic ring of the model compounds studied as the -NO2 substituents were added. Species distribution diagrams were also obtained for the equilibria studied. The EPR parameters showed that as the logarithm of the overall stability constants increase, g o values also increase, while Ao values show a tendency to decrease.

  8. An XRPD and EPR spectroscopy study of microcrystalline calcite bioprecipitated by Bacillus subtilis

    Science.gov (United States)

    Perito, B.; Romanelli, M.; Buccianti, A.; Passaponti, M.; Montegrossi, G.; Di Benedetto, F.

    2018-05-01

    We report in this study the first XRPD and EPR spectroscopy characterisation of a biogenic calcite, obtained from the activity of the bacterium Bacillus subtilis. Microcrystalline calcite powders obtained from bacterial culture in a suitable precipitation liquid medium were analysed without further manipulation. Both techniques reveal unusual parameters, closely related to the biological source of the mineral, i.e., to the bioprecipitation process and in particular to the organic matrix observed inside calcite. In detail, XRPD analysis revealed that bacterial calcite has slightly higher c/a lattice parameters ratio than abiotic calcite. This correlation was already noticed in microcrystalline calcite samples grown by bio-mineralisation processes, but it had never been previously verified for bacterial biocalcites. EPR spectroscopy evidenced an anomalously large value of W 6, a parameter that can be linked to occupation by different chemical species in the next nearest neighbouring sites. This parameter allows to clearly distinguish bacterial and abiotic calcite. This latter achievement was obtained after having reduced the parameters space into an unbiased Euclidean one, through an isometric log-ratio transformation. We conclude that this approach enables the coupled use of XRPD and EPR for identifying the traces of bacterial activity in fossil carbonate deposits.

  9. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  10. Perspectives of shaped pulses for EPR spectroscopy

    Science.gov (United States)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  11. Study of dosimetric properties of acetylsalicylic acid in pharmaceutical preparations by EPR spectroscopy

    International Nuclear Information System (INIS)

    Juarez-Calderon, J.M.; Negron-Mendoza, A.; Ramos-Bernal, S.; Gomez-Vidales, V.

    2009-01-01

    Electron paramagnetic resonance (EPR) was used to investigate the dosimetric properties of two pharmaceutical preparations containing acetylsalicylic acid, Aspirin R and Cafiaspirin R . The EPR spectra of the irradiated samples were found to have an asymmetric absorption characterized by a major resonance at g = 2.0033. Dose response was investigated between dose ranges of 2 to 95 kGy for 60 Co-gamma rays. Fading characteristics and dependence on temperature irradiation were also studied. We suggest that commercial Aspirin R and Cafiaspirin R tablets can be used as dosimeters in the case of a short accident. (author)

  12. Study of dosimetric properties of acetylsalicylic acid in pharmaceutical preparations by EPR spectroscopy

    International Nuclear Information System (INIS)

    Juarez Calderon, J.M.; Negron Mendoza, A.; Ramos Bernal, S.; Gomez Vidales, V.

    2008-01-01

    Electron paramagnetic resonance (EPR) was used to investigate the dosimetric properties of two pharmaceutical preparations containing acetylsalicylic acid, Aspirin (trademark) and Cafiaspirin (trademark). The EPR spectra of the irradiated samples were found to have an asymmetric absorption characterized by a major resonance at g = 2.0033. Dose response was investigated between dose ranges of 2 to 40 kGy for 60 Co-gamma rays. Fading characteristics and dependence on temperature irradiation were also studied. We suggest that commercial Aspirin (trademark) and Cafiaspirin (trademark) tablets can be used as dosimeters for industrial processes. (author)

  13. High-pressure EPR spectroscopy studies of the E. coli lipopolysaccharide transport proteins LptA and LptC.

    Science.gov (United States)

    Schultz, Kathryn M; Klug, Candice S

    2017-12-01

    The use of pressure is an advantageous approach to the study of protein structure and dynamics because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop-four-gap resonator required for the initial high pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli , LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.

  14. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies

    International Nuclear Information System (INIS)

    Cekan, Pavol; Sigurdsson, Snorri Th.

    2012-01-01

    Highlights: ► Bulges and loops were studied by both EPR and fluorescence spectroscopies using the probe Ç/Ç f . ► One-base bulge was in a temperature-dependent equilibrium between looped-out and stacked states. ► Bases in two- and three-base bulges were stacked at all temperatures, resulting in DNA bending. ► Bases were stacked in symmetrical two- to five-base internal loops, according to EPR data. ► Unexpectedly high fluorescence for the smaller loops indicated local structural perturbations. -- Abstract: The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Ç f ) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Ç f . EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.

  15. Stability of cellulose radicals produced by radiation in spices as studied by the EPR spectroscopy

    International Nuclear Information System (INIS)

    Lehner, K.; Stachowicz, W.

    2003-01-01

    The results are presented of EPR measurements on the stability of cellulose radicals produced in 26 popular spices irradiated with a dose of 7 kGy of gamma rays. EPR measurements were done with the use of an EPR spectrometer EPR-10 MINI at X band (microwave radiation of frequency 9.5 GHz), produced by St. Petersburg Instruments Ltd. The aim of the work was to prove the applicability of the EPR method for the control of irradiation in the investigated spices. (author)

  16. EPR spectroscopy of complex biological iron-sulfur systems.

    Science.gov (United States)

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  17. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  18. Antioxidant Activity of Wines and Related Matters Studied by EPR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Stopka, Pavel; Křížová, Jana; Vrchotová, Naděžda; Bábíková, P.; Tříska, Jan; Balík, J.; Kyseláková, M.

    2008-01-01

    Roč. 26, special (2008), s. 49-54 ISSN 1212-1800. [Quality of Moravian and Czech Wine s and their Future. Lednice, 11.09.2008-12.09.2008] R&D Projects: GA ČR(CZ) GA305/07/0242; GA ČR(CZ) GA525/06/1757; GA ČR(CZ) GA104/08/0758 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z40320502 Keywords : antioxidant activity * EPR * wine * vine grape * vine leaf * yeast sediment Subject RIV: GM - Food Processing Impact factor: 0.472, year: 2008

  19. Dosimetry study of East Kazakhstan residents by tooth enamel EPR spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhumadilov Kassym

    2017-01-01

    Full Text Available The tooth enamel electron paramagnetic resonance (EPR dosimetry method was used to determine accidental doses of population of settlements in the vicinity of the Semipalatinsk Nuclear Test Site (SNTS, Kazakhstan. The influence of four explosions to the populations was included into this report. The distances between investigated settlements and Ground Zero (SNTS are in the range of 70-200 km from SNTS. Most of settlements (Dolon, Mostik, Bodene, Cheremushki, Kanonerka are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted in 29, August 1949. The other settlements located close to radioactive fallout trace result in a surface nuclear tests in 24, August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya, Gagarino, in 12 august 1953 (Sarzhal and in 7, August 1962 (Akzhar, Kurchatov, Begen, Semenovka, Buras, Grachi. Tooth samples were extracted according to medical recommendations in a course of ordinary dental treatment.

  20. Dosimetry study of East Kazakhstan residents by tooth enamel EPR spectroscopy

    Science.gov (United States)

    Zhumadilov, Kassym; Ivannikov, Alexander; Skvortsov, Valeriy; Stepanenko, Valeriy; Rakhypbekov, Tolebay; Hoshi, Masaharu

    2017-11-01

    The tooth enamel electron paramagnetic resonance (EPR) dosimetry method was used to determine accidental doses of population of settlements in the vicinity of the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan. The influence of four explosions to the populations was included into this report. The distances between investigated settlements and Ground Zero (SNTS) are in the range of 70-200 km from SNTS. Most of settlements (Dolon, Mostik, Bodene, Cheremushki, Kanonerka) are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted in 29, August 1949. The other settlements located close to radioactive fallout trace result in a surface nuclear tests in 24, August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya, Gagarino), in 12 august 1953 (Sarzhal) and in 7, August 1962 (Akzhar, Kurchatov, Begen, Semenovka, Buras, Grachi). Tooth samples were extracted according to medical recommendations in a course of ordinary dental treatment.

  1. Biophysical EPR Studies Applied to Membrane Proteins

    Science.gov (United States)

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  2. Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1997-01-01

    Use of IR spectroscopy (as a supplement to EPR) may provide new insight into the problem of analysis of structure and properties of organic radical cations. In this work, the results of combined EPR/IR studies of the formation, structure and properties of hydrocarbon radical cations in halocarbon and solid rare gas matrices are discussed. Both IR and EPR studies were carried out with matrix deposited samples irradiated with fast electrons at 15 or 77 K. IR spectroscopic data were found to be helpful in three aspects: (i) characterization of the conformation and association and molecule-matrix interactions of the parent molecules; (ii) identification of diamagnetic products of the reactions of radical cations in ground and excited states; (iii) determining the characteristics of vibrational spectra of the radical cations, which are of primary interest for analysis of chemical bonding and reactivity of the radical cations. The applications of the combined approach are illustrated with examples of studies of several alkenes in Freon matrices and alkanes in solid rare gas matrices. The matrix effects on trapping and degradation of radical cations were interpreted as the result of variations in matrix electronic characteristics (IP, polarizability) and molecule-matrix interactions. (au) 48 refs

  3. Trichloroethylene Radicals: An EPR/SPIN Trapping Study

    National Research Council Canada - National Science Library

    Steel-Goodwin, Linda

    1995-01-01

    .... As part of the process to develop environmental and health effects criteria for base clean-up the initial radicals produced by TCE were studied by electron paramagnetic resonance spectroscopy (EPR...

  4. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    International Nuclear Information System (INIS)

    Aleksieva, K.I.; Dimov, K.G.; Yordanov, N.D.

    2014-01-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  5. EPR and NMR spectroscopy on spin-labeled proteins

    NARCIS (Netherlands)

    Finiguerra, Michelina Giuseppina

    2011-01-01

    Spin labeling and electron paramagnetic resonance (EPR) have been employed to study structure and dynamics of proteins. The surface polarity of four single cysteine mutants of the Zn-azurin in frozen solution were studied using 275 GHz EPR (J-band), with the advantage compared to 9 GHz (X-band) and

  6. Evaluation of the original dose in irradiated dried fruit by EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    D' Oca, Maria Cristina, E-mail: mcristina.doca@unipa.it [Dipartimento Farmacochimico, Tossicologico e Biologico, Universita di Palermo, via Archirafi 32, 90123 Palermo (Italy); Bartolotta, Antonio [Dipartimento Farmacochimico, Tossicologico e Biologico, Universita di Palermo, via Archirafi 32, 90123 Palermo (Italy)

    2011-09-15

    The electron paramagnetic resonance spectroscopy (EPR) is one of the physical methods, recommended by the European Committee for Standardization, for the identification of irradiated food containing cellulose, such as dried fruit. In this work the applicability of EPR as identification method of irradiated pistachios, hazelnuts, peanuts, chestnuts, pumpkin seeds is evaluated; the time stability of the radiation induced signal is studied and the single aliquot additive dose method is used to evaluate the dose in the product.

  7. Evaluation of the original dose in irradiated dried fruit by EPR spectroscopy

    International Nuclear Information System (INIS)

    D'Oca, Maria Cristina; Bartolotta, Antonio

    2011-01-01

    The electron paramagnetic resonance spectroscopy (EPR) is one of the physical methods, recommended by the European Committee for Standardization, for the identification of irradiated food containing cellulose, such as dried fruit. In this work the applicability of EPR as identification method of irradiated pistachios, hazelnuts, peanuts, chestnuts, pumpkin seeds is evaluated; the time stability of the radiation induced signal is studied and the single aliquot additive dose method is used to evaluate the dose in the product.

  8. EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.

  9. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    Science.gov (United States)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  10. Electronic Structure of ZnO Quantum Dots studied by High-frequency EPR, ESE, ENDOR and ODMR Spectroscopy

    NARCIS (Netherlands)

    Baranov, P.G.; Romanov, N.G.; Bundakova, A.P.; de Mello-Donega, Celso; Schmidt, J.

    2016-01-01

    High-frequency electron paramagnetic resonance (EPR), electron spin echo (ESE), electron-nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) were applied for the investigation of the electronic properties of ZnO colloidal quantum dots (QDs) which consist of a ZnO

  11. Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.

    Science.gov (United States)

    Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław

    2015-07-22

    A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.

  12. EPR studies of melanin from Cladosporium cladosporioides

    International Nuclear Information System (INIS)

    Pilawa, B.; Buszman, E.; Latocha, M.; Wilczok, T.

    1996-01-01

    Free radical properties of Cladosporium cladosporioides mycelium and melanin, and synthetic eumelanin and pheomelanin were studied by electron paramagnetic resonance method. Single EPR line and complex EPR spectrum with hyperfine splitting were measured for model DOPA-melanin and cysteinyldopa-melanin, respectively. EPR spectra of Cladosporium cladosporioides samples and pheomelanin show the same character. The concentration of paramagnetic centers in melanins isolated from Cladosporium cladosporioides is considerably higher than that of crude mycelium, whereas the EPR line widths are lower for mycelium than for melanin samples. For all analyzed samples the increase of EPR signals intensity with the increase of microwave power, and the decrease of intensities after saturation were observed the low values of microwave power sufficient for EPR lines saturation demonstrate that the spin-lattice relaxation times of unpaired electrons in melanins are long. (author)

  13. Study of the catalytic system, ethylbenzene-aluminum bromide, by the methods of NMR and EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lipovich, V.G.; Bazhenova, A.P.; Kalabin, G.A.; Laperdina, T.G.; Latysheva, L.E.; Saraev, V.V.

    1981-01-01

    By the methods of NMR, EPR, and deuterium exchange it was shown that in the presence of air or oxygen in the system, ethylbenzene (I)-A1Br/sub 3/, disproportionation processes are activated, as a result of which in the /sup 1/H and /sup 13/ C NMR spectra new signals for the alkyl group of I and a signal for benzene alone appear. With accumulation in the composite layer of the catalytic system of a sufficient quantity of triethylbenzene, its protonation occurs with formation of the 2,4,6-triethylbenzenium ion. Interconversion of the two types of EPR signals, registerable on admission of air into the I-A1Br/sub 3/ system, occurs because of positional isomerization of the forming di- and triethylbenzenes. It was shown that in the presence of air in the system I-isopropylbenzene-A1Br/sub 3/, the degree of deuterium exchange between a-positions of alkyl groups is increased by 10-15% by comparison with the degassed system.

  14. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. EPR study of human hair

    Czech Academy of Sciences Publication Activity Database

    Křížová, Jana; Káfuňková, Eva; Stopka, Pavel

    2005-01-01

    Roč. 99, č. 14 (2005), s. 217-218 ISSN 0009-2770 R&D Projects: GA MZd(CZ) NL7567; GA MZd(CZ) NB7377 Institutional research plan: CEZ:AV0Z40320502 Keywords : EPR Subject RIV: CA - Inorganic Chemistry Impact factor: 0.445, year: 2005

  16. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of EPR spectroscopy to the examination of pro-oxidant activity of coffee.

    Science.gov (United States)

    Krakowian, Daniel; Skiba, Dominik; Kudelski, Adam; Pilawa, Barbara; Ramos, Paweł; Adamczyk, Jakub; Pawłowska-Góral, Katarzyna

    2014-05-15

    Free radicals present in coffee may be responsible for exerting toxic effects on an organism. The objectives of this work were to compare free radicals properties and concentrations in different commercially available coffees, in solid and liquid states, and to determine the effect of roasting on the formation of free radicals in coffee beans of various origins. The free radicals content of 15 commercially available coffees (solid and liquid) was compared and the impact of processing examined using electron paramagnetic resonance (EPR) spectroscopy at X-band (9.3 GHz). First derivative EPR spectra were measured at microwave power in the range of 0.7-70 mW. The following parameters were calculated for EPR spectra: amplitude (A), integral intensity (I), and line-width (ΔBpp); g-Factor was obtained from resonance condition. Our study showed that free radicals exist in green coffee beans (10(16) spin/g), roasted coffee beans (10(18) spin/g), and in commercially available coffee (10(17)-10(18) spin/g). Free radical concentrations were higher in solid ground coffee than in instant or lyophilised coffee. Continuous microwave saturation indicated homogeneous broadening of EPR lines from solid and liquid commercial coffee samples as well as green and roasted coffee beans. Slow spin-lattice relaxation processes were found to be present in all coffee samples tested, solid and liquid commercial coffees as well as green and roasted coffee beans. Higher free radicals concentrations were obtained for both the green and roasted at 240 °C coffee beans from Peru compared with those originating from Ethiopia, Brazil, India, or Colombia. Moreover, more free radicals occurred in Arabica coffee beans roasted at 240 °C than Robusta. EPR spectroscopy is a useful method of examining free radicals in different types of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    International Nuclear Information System (INIS)

    Assink, Roger A.; Celina, Mathias C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger Lee; Gillen, Kenneth T.

    2000-01-01

    The authors have shown that the hydroperoxide species in γ-irradiated 13 C-polyethylene can be directly observed by 13 C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions

  19. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    Science.gov (United States)

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. EPR study of free radicals in bread

    Science.gov (United States)

    Yordanov, Nicola D.; Mladenova, Ralitsa

    2004-05-01

    The features of the recorded EPR spectra of paramagnetic species formed in bread and rusk are reported. The appearance of free radicals in them is only connected with their thermal treatment since the starting materials (flour and grains) exhibit very weak EPR signal. The obtained EPR spectra are complex and indicate that: (i) the relative number of paramagnetic species depends on the temperature and treating time of the raw product; (ii) the g-values are strongly temperature dependent with a tendency to coincide at t≥220 °C. Because of the relatively low (150-220 °C) temperature of thermal treatment, the studied free radicals can be assumed to appear in the course of the browning (Maillard) reaction and not to the carbonization of the material.

  1. Pulsed EPR for studying silver clusters

    International Nuclear Information System (INIS)

    Michalik, J.; Wasowicz, T.; Sadlo, J.; Reijerse, E.J.; Kevan, L.

    1996-01-01

    The cationic silver clusters of different nuclearity have been produced by radiolysis of zeolite A and SAPO molecular sieves containing Ag + as exchangeable cations. The pulsed EPR spectroscopy has been applied for studying the local environment of silver cluster in order to understand the mechanism of cluster formation and stabilization. the electron spin echo modulation (ESEM) results on Ag 6 n+ cluster in dehydration zeolite A indicate that the hexameric silver is stabilized only in sodalite cages which are surrounded by α-cages containing no water molecules. Trimeric silver clusters formed in hydrated A zeolites strongly interact with water, thus the paramagnetic center can be considered as a cluster-water adduct. In SAPO-molecular sieves, silver clusters are formed only in the presence of adsorbed alcohol molecules. From ESEM it is determined that Ag 4 n+ in SAPO-42 is stabilized in α cages, where it is directly coordinated by two methanol molecules. Dimeric silver, Ag 2 + in SAPO-5 and SAPO-11 is located in 6-ring channels and interacts with three CH 3 OH molecules, each in different 10 ring or 12 ring channels. The differences of Ag 2 + stability in SAPO-5 and SAPO-11 are also discussed. (Author)

  2. Magnetic, catalytic, EPR and electrochemical studies on binuclear ...

    Indian Academy of Sciences (India)

    Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes ... to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. ... EPR spectral studies in methanol solvent show welldefined four hyperfine ...

  3. Site-Directed Spin-Labeling of Nucleic Acids by Click Chemistry. Detection of Abasic Sites in Duplex DNA by EPR Spectroscopy

    DEFF Research Database (Denmark)

    Sigurdsson, Snorri; Vogel, Stefan; Shelke, Sandip

    2010-01-01

    and the nitroxide spin label. The spin label was used to detect, for the first time, abasic sites in duplex DNA by X-band CW-EPR spectroscopy and give information about other structural deformations as well as local conformational changes in DNA. For example, reduced mobility of the spin label in a mismatched pair...... label out of the duplex and toward the solution. Thus, reposition of the spin label, when acting as a mercury(II)-controlled mechanical lever, can be readily detected by EPR spectroscopy. The ease of incorporation and properties of the new spin label make it attractive for EPR studies of nucleic acids...

  4. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    Science.gov (United States)

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  5. Camel molar tooth enamel response to gamma rays using EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El-Faramawy, N.A.; El-Somany, I. [Ain Shams University, Physics Department, Faculty of Science, Cairo (Egypt); Mansour, A. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Maghraby, A.M.; Eissa, H. [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Giza (Egypt); Wieser, A. [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg (Germany)

    2018-03-15

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH{sub pp}) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry. (orig.)

  6. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    Science.gov (United States)

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to π(n.b.)(s, a) → yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the π(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term".

  7. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  8. EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states

    DEFF Research Database (Denmark)

    Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard

    2009-01-01

    examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed. We interpret the EPR spectra by use of restricted size effective subspaces obtained by the rigorous solution of spin-Hamiltonians of dimension up...

  9. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  10. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  11. EPR study on gamma-irradiated fruits dehydrated via osmosis

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Aleksieva, K.

    2007-01-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples

  12. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Science.gov (United States)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  13. A general way of analyzing EPR spectroscopy for a pair of magnetically equivalent lanthanide ions in crystal: A case study of BaY2F8:Yb3+ crystal

    Science.gov (United States)

    Liu, Honggang; Zheng, Wenchen

    2018-01-01

    Electron paramagnetic resonance (EPR) is an important tool to study the complex interactions (e.g., exchange and magnetic dipole-dipole interactions) for a pair of lanthanide (Ln) ions in crystals. How to analyze these EPR spectra and obtain the strength of each interaction is a challenge for experimentalists. In this work, a general way of calculating the EPR lines for two magnetically equivalent Ln ions is given by us to solve this problem. In order to explain their EPR spectra and obtain exchange interaction parameters Ji (i = x, y, z) between them, we deduce the analytic formulas for computing the angular dependent EPR lines for such Ln pairs under the condition of weak coupling (|Ji| ≪ hv, where v is the microwave frequency in the EPR experiment) and set up the spin-Hamiltonian energy matrix that should be diagonalized to obtain these lines if intermediate (|Ji| ˜ hv) and strong (|Ji| > hv) couplings are encountered. To verify our method, the experimental EPR spectra for the Yb3+ doped BaY2F8 crystal are considered by us and the EPR lines from the isolated Yb3+ ion and Yb3+-Yb3+ pair with distance R equal to 0.371 nm are identified clearly. Moreover, exchange interaction parameters (Jx ≈ -0.04 cm-1, Jy ≈ -0.24 cm-1, and Jz ≈ -0.1 cm-1) for such a pair are also determined by our calculations. This case study demonstrates that the theoretical method given in this work would be useful and could be applied to understand interactions between Ln ions in crystals.

  14. EPR spectroscopy can help with paint pigment provenance

    International Nuclear Information System (INIS)

    Troup, G.J.; Hutton, D.R.

    2000-01-01

    Full text: The microwave magnetic spectroscopic technique EPR can be used to determine the presence of paramagnetic impurities in paint pigments, and the purity of composition regarding the main colourant. Hence EPR can help determine provenance of pigments, just as it can for gemstones. Specimens of Lapis Lazuli (synthetic, Afghanistan, Chile, Greenland) showed quite recognisably different spectra, at room temperature, in a Varian E-12 X-band spectrometer (9.1 GHz frequency). Similarly, specimens of yellow ochre, two imported into Australia, one North Australian, another 95% pure Goethite, showed recognisably different spectra. The North Australian one uniquely gave a known radiation damage signal from quartz, perhaps to be expected, given the abundance of radioactive ores in the region. Further samples have been obtained and the results from these will be reported

  15. EPR study of sagitta otoliths of Sciaenidae fish

    International Nuclear Information System (INIS)

    Beneditto, Ana Paula Madeira di; Franco, Roberto Weider de Assis

    2011-01-01

    Full text. Otoliths are crystalline structures of calcium carbonate (CaCO 3 ) located in the inner ear of bone fish that are responsible for balance maintenance in the water column and sense of direction. The bio mineralization of these structures occurs during the fish development; when the otolith growth layers are formed. In this work, electron paramagnetic resonance (EPR) spectroscopy is applied to study the sagitta otoliths via manganese (Mn 2+ ) spectra, since in calcium carbonates the Mn 2+ ion is a natural substitutional impurity at Ca 2+ sites. The sagitta otoliths of the Sciaenidae fish Paralonchurus brasiliensis, commonly known as cabeca dura (47 samples), and Stellifer rastrifer, known as cangoa (22 samples), were obtained from specimens captured in coastal areas of Rio de Janeiro State, southeastern Brazil: Atafona (21 deg 37'S), Farol de Sao Tome (22 deg 05'S) and Rio das Ostras (22 deg 30'S). EPR spectra of sagitta otoliths were obtained in X-band (9GHz) at room temperature. The EPR spectra are typical of Mn 2+ in aragonite powder, associated to an occupation of Ca 2+ site with nine nearest neighbor oxygen atoms. It is well established in the literature that the otolith core is constituted by calcite, which is covered by aragonite during the fish growth. However, otoliths of younger fishes showed similar EPR spectra when compared to the older ones, indicating that aragonite is the main bio mineral structure in both maturity stages. In a previous work, these two Sciaenidae species presented significant differences in sagitta otoliths shape, which were related to environmental differences (e.g. water temperature, nutrients, depth) among the sampling sites (Atafona, Farol de Sao Tome and Rio das Ostras). Meanwhile, we do not observed differences in the EPR spectra, indicating that the aragonite crystallization process and the occupation of manganese are not related with the environment where these fish species are living. Then, we can infer that the

  16. EPR study of sagitta otoliths of Sciaenidae fish

    Energy Technology Data Exchange (ETDEWEB)

    Beneditto, Ana Paula Madeira di; Franco, Roberto Weider de Assis [Universidade Estadual do Norte Fluminense (UENF), RJ (Brazil)

    2011-07-01

    Full text. Otoliths are crystalline structures of calcium carbonate (CaCO{sub 3}) located in the inner ear of bone fish that are responsible for balance maintenance in the water column and sense of direction. The bio mineralization of these structures occurs during the fish development; when the otolith growth layers are formed. In this work, electron paramagnetic resonance (EPR) spectroscopy is applied to study the sagitta otoliths via manganese (Mn{sup 2+}) spectra, since in calcium carbonates the Mn{sup 2+} ion is a natural substitutional impurity at Ca{sup 2+} sites. The sagitta otoliths of the Sciaenidae fish Paralonchurus brasiliensis, commonly known as cabeca dura (47 samples), and Stellifer rastrifer, known as cangoa (22 samples), were obtained from specimens captured in coastal areas of Rio de Janeiro State, southeastern Brazil: Atafona (21 deg 37'S), Farol de Sao Tome (22 deg 05'S) and Rio das Ostras (22 deg 30'S). EPR spectra of sagitta otoliths were obtained in X-band (9GHz) at room temperature. The EPR spectra are typical of Mn{sup 2+} in aragonite powder, associated to an occupation of Ca{sup 2+} site with nine nearest neighbor oxygen atoms. It is well established in the literature that the otolith core is constituted by calcite, which is covered by aragonite during the fish growth. However, otoliths of younger fishes showed similar EPR spectra when compared to the older ones, indicating that aragonite is the main bio mineral structure in both maturity stages. In a previous work, these two Sciaenidae species presented significant differences in sagitta otoliths shape, which were related to environmental differences (e.g. water temperature, nutrients, depth) among the sampling sites (Atafona, Farol de Sao Tome and Rio das Ostras). Meanwhile, we do not observed differences in the EPR spectra, indicating that the aragonite crystallization process and the occupation of manganese are not related with the environment where these fish species

  17. Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy

    Science.gov (United States)

    Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas

    2018-01-01

    Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.

  18. Research field development ou iron-sulfur proteins by the Moessbauer spectroscopy and EPR

    International Nuclear Information System (INIS)

    Arsenio, T.P.; Taft, C.A.

    1984-01-01

    A research line on iron sulfides (chemical and structurally seemed with the iron-sulfur proteins), implanted and developed at CBPF-Brazil, using the same theoretical and experimental models used in the development of the research field on iron-sulfur proteins is reported. The techniques used are Moessbauer spectroscopy and EPR. (L.C.) [pt

  19. Identification of irradiated food by EPR-spectroscopy and tomography

    International Nuclear Information System (INIS)

    Groth, N.; Anders, B.; Nitschke, S.; Schlawe, R.; Herrling, T.

    1993-01-01

    Food irradiation is used to kill harmful microorganisms (e.g. salmonella), this improving food safety and extending the shelf-life. The electron paramagnetic resonance (EPR) detection of stable, radiation-induced free radicals within the matrix of calcified tissue is well established. An extention of this technique to food provides in suitable cases one of the most promissing methods for detecting that irradiation has been performed. It provides an excellent method for the identification of irradiated foods containing bones or calcified cuticle even in the absence of unirradiated controls. Bones of chicken, pepper grains and lentils were also identified as irradiated some weeks after radiation treatment. The method is rapid and can detect very low doses. With EPR - Tomography the 2D spatial distribution of the irradiation induced stable radicals in the cross section of a chicken bone was measured. The use of ionising radiation to treat certain foodstuffs is increasingly of interest and there is a need to determine wether irradiation has occured, and to what extent. (orig.)

  20. EPR study on tomatoes before and after gamma-irradiation

    International Nuclear Information System (INIS)

    Aleksieva, K.; Georgieva, L.; Tzvetkova, E.; Yordanov, N.D.

    2009-01-01

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048±0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical 'cellulose-like' triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048±0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the 'cellulose-like' EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 o C fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR 'cellulose-like' spectra of tomato samples can be used for identification of radiation processing.

  1. EPR spectroscopy as a potential approach to identify irradiated food and radiation dosimetry - an overview

    International Nuclear Information System (INIS)

    Sanyal, Bhaskar; Chawla, S.P.

    2017-01-01

    The need for reliable and routine tests to determine whether or not food has been irradiated has arisen as a result of the progress made in commercialization of the food irradiation technology. The effectiveness of food irradiation depends on proper delivery of absorbed dose and its reliable measurement. Electron Paramagnetic Resonance (EPR) spectroscopy has been established as an essential tool both for detection of irradiated food and radiation measurements. This presentation demonstrates the behavior of the radicals produced in irradiated cashew nut and orange. In addition the role of EPR spectroscopy will be discussed to understand thermoluminescence behavior of CaSO 4 dosimeter. Cashew nut and orange samples were exposed to gamma radiation in the dose range of 0.25 to 2 kGy. CaSO 4 crystals were irradiated at 0.5-7 kGy. Electron Paramagnetic Resonance (EPR) spectroscopy was carried out using EMX model EPR spectrometer (BRUKER, Germany) with a microwave frequency of 9.42 GHz

  2. Study on the EPR/dosimetric properties of some substituted alanines

    International Nuclear Information System (INIS)

    Gancheva, Veselka; Sagstuen, Einar; Yordanov, Nicola D.

    2006-01-01

    Polycrystalline phenyl-alanine and perdeuterated l-α-alanine (l-α-alanine-d 4 ) were studied as potential high-energy radiation-sensitive materials (RSM) for solid state/EPR dosimetry. It was found that phenyl-alanine exhibits a linear dose response in the dose region 0.1-17kGy. However, phenyl-alanine is about 10 times less sensitive to γ-irradiation than standard l-α-alanine irradiated at the same doses. Moreover, the EPR response from phenyl-alanine is unstable and, independent of the absorbed dose, decreases by about 50% within 20 days after irradiation upon storage at room temperature. γ-irradiated polycrystalline perdeuterated l-α-alanine (CD 3 CD(NH 2 )COOH) has not previously been studied at room temperature by EPR spectroscopy. The first part of the present analysis was with respect to the structure of the EPR spectrum. By spectrum simulations, the presence of at least two radiation induced free radicals, R 1 =CH 3 C*(H)COOH and R 2 =H 3 N + -C*(CH 3 )COO - , was confirmed very clearly. Both these radicals were suggested previously from EPR and ENDOR studies of standard alanine crystals. The further investigations into the potential use of alanine-d 4 as RSM, after choosing optimal EPR spectrometer settings parameters for this purpose, show that it is ca. two times more sensitive than standard l-α-alanine

  3. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  4. Irradiated bivalve mollusks: Use of EPR spectroscopy for identification and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Angelo, E-mail: aalberti@isof.cnr.it [CNR-ISOF, Area della Ricerca di Bologna, Via P. Gobetti 101, Bologna I-40129 (Italy); Chiaravalle, Eugenio [Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia 20, Foggia I-71100 (Italy); Fuochi, Piergiorgio; Macciantelli, Dante [CNR-ISOF, Area della Ricerca di Bologna, Via P. Gobetti 101, Bologna I-40129 (Italy); Mangiacotti, Michele, E-mail: michelemangiacotti@libero.it [Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia 20, Foggia I-71100 (Italy); Marchesani, Giuliana [Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia 20, Foggia I-71100 (Italy); Plescia, Elena [CNR-ISOF, Area della Ricerca di Bologna, Via P. Gobetti 101, Bologna I-40129 (Italy)

    2011-12-15

    High energy radiation treatment of foodstuff for microbial control and shelf-life extension is being used in many countries. However, for consumer protection and information, the European Union has adopted the Directives 1999/2/EC and 1999/3/EC to harmonize the rules concerning the treatment and trade of irradiated foods in EU countries. Among the validated methods to detect irradiated foods the EU directives also include Electron Paramagnetic Resonance (EPR/ESR) spectroscopy. We describe herein the use of EPR for identification of four species of bivalve mollusks, i.e. brown Venus shells (Callista chione), clams (Tapes semidecussatus), mussels (Mytilus galloprovincialis) and oysters (Ostrea edulis) irradiated with {sup 60}Co {gamma}-rays. EPR could definitely identify irradiated seashells due to the presence of long-lived free radicals, primarily CO{sub 2}{sup -}, CO{sub 3}{sup 3-}, SO{sub 2}{sup -} and SO{sub 3}{sup -} radical anions. The presence of other organic free radicals, believed to originate from conchiolin, a scleroprotein present in the shells, was also ascertained. The use of one of these radicals as a marker for irradiation of brown Venus shells and clams can be envisaged. We also propose a dosimetric protocol for the reconstruction of the administered dose in irradiated oysters. - Highlights: > EPR spectroscopy is confirmed a valuable identification tool for irradiated mollusks. > A conchiolin-derived radical can be used as irradiation marker for some mollusks. > A reliable protocol is outlined for dose reconstruction of irradiated oysters.

  5. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    Directory of Open Access Journals (Sweden)

    Daniel eNohr

    2015-09-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage, and BLUF (blue-light using FAD domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  6. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    Science.gov (United States)

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  7. Taking the Pulse of Protein Interactions by EPR Spectroscopy

    OpenAIRE

    Cafiso, David S.

    2012-01-01

    An article by Gaffney et al. in this issue establishes a method using pulse electron paramagnetic resonance spectroscopy to determine the location of protein substrates or binding partners with high precision.

  8. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    Science.gov (United States)

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  9. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    Science.gov (United States)

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. EPR study on non- and gamma-irradiated herbal pills

    International Nuclear Information System (INIS)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N.D.

    2011-01-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  11. EPR study on non- and gamma-irradiated herbal pills

    Energy Technology Data Exchange (ETDEWEB)

    Aleksieva, K., E-mail: katerina_bas@abv.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Lagunov, O. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimov, K. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Yordanov, N.D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2011-06-15

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048{+-}0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  12. EPR study on non- and gamma-irradiated herbal pills

    Science.gov (United States)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  13. Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy

    Science.gov (United States)

    Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.

    2009-06-01

    Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned

  14. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  15. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    Science.gov (United States)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  16. Determination of the Antioxidant Status of the Skin by In Vivo-Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Silke Barbara Lohan

    2015-08-01

    Full Text Available Organisms produce free radicals which are essential for various metabolic processes (enzymatic oxidation, cellular respiration, signaling. Antioxidants are important chemical compounds that specifically prevent the oxidation of substances by scavenging radicals, especially reactive oxygen species (ROS. Made up of one or two unpaired electrons, ROS are free radicals that are highly reactive and can attack other metabolites. By using electron paramagnetic resonance (EPR spectroscopy, it is possible to measure paramagnetic substances such as free radicals. Therefore the dermal antioxidant activity can be determined by applying semi-stable radicals onto the skin and measuring the antioxidant-induced radical scavenging activity in the skin. In recent years, EPR has been developed as a spectroscopic method for determining the antioxidant status in vivo. Several studies have shown that an additional uptake of dietary supplements, such as carotenoids or vitamin C in physiological concentrations, provide a protective effect against free radicals. Using the EPR technique it could be demonstrated that the radical production in stress situations, such as irradiation with infrared and visible light, was reduced with time. However, not only the oral uptake of antioxidants, but also the topical application of antioxidants, e.g., a hyperforin-rich cream, is very useful against the development of oxidative stress. Regular application of a hyperforin-rich cream reduced radical formation. The skin lipids, which are very important for the barrier function of the skin, were also stabilized.

  17. Investigations of the stability of the neutral silver atom in Nasub(x)Agsub(1-x)Cl-mixed crystals by EPR-spectroscopy

    International Nuclear Information System (INIS)

    Muessig, T.; Granzer, F.

    1983-01-01

    In most of the theories of the photographic process in the classical silver halide systems, the neutral silver atom, Ag 0 , still plays an important role. Up till now, however, all attempts failed to detect the Ag 0 in pure AgCl and AgBr, while its detection in NaCl, weakly doped with Ag does not impose any problems applying EPR-spectroscopy. Benefiting from some peculiarities of the NaCl-AgCl-phase diagram, Nasub(x)Agsub(1-x)Cl-mixed crystals were grown and the stability of the Ag 0 -centre was followed by EPR-measurements. From the results obtained by gradually augmenting the Ag-content up to 30 mol.% and cooling down the crystals to 20 K, there seems to be only little chance, to detect the neutral silver atom in pure AgCl, even at very low temperatures by EPR-spectroscopy. Simultaneously the-EPR signal of the Ag 2 + -centre was studied and the occurrence of a very strong EPR-line at g = 1.88 in decomposed mixed crystals was interpreted. (author)

  18. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.

    Science.gov (United States)

    Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A

    2017-10-05

    Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a

  19. Comparative study of some new EPR dosimeters

    International Nuclear Information System (INIS)

    Alzimami, K.S.; Maghraby, Ahmed M.; Bradley, D.A.

    2014-01-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (W PP ) and peak-to-peak signal height (H PP ). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic. - Highlights: ► Several EPR dosimeters were suggested based on SO 3 − radical. ► Taurine, homotaurine, sulfanilic, and sulfamic acid all possess simple EPR spectra. ► Dosimeters were compared to each other in terms of the dosimetric point of view. ► Energy dependence curves of the selected dosimeters were compared to eachother

  20. EPR spectroscopy for the detection of foods treated with ionising radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.; Dziedzic-Goclawska, A.; Ostrowski, K.

    1996-01-01

    The advantage of electron paramagnetic resonance spectroscopy (EPR or ESR) as a tool for the control of irradiated food lies in its sensitivity and accuracy. Ionising radiation produces, in irradiated materials, paramagnetic species of different kinds, i.e. radicals, radical-ions and paramagnetic centres, which can be measured by EPR but most of them are not stable enough to be used for the detection of irradiation. It is because radiation-induced paramagnetic species are thermodynamically less stable than surrounding molecules and take part in fast radiolytic reactions leading to the formation of final diamagnetic products that they are not detectable by the EPR method. Most of organic radicals produced by radiation in the liquid phase ae unstable but if the unpaired electron is incorporated into the complex polymeric system as in peptides and polysaccharides and is structurally isolated from the water, its stability is markedly increased. Since 1954 it is known that ionising radiation produces paramagnetic entities in biological materials, cells and tissues and some are stable enough to be observed by EPR spectroscopy at room temperature. The present paper describes and discusses that part of results obtained by this group during the period of ADMIT activity (1989-94) which are original and may be useful to those who will be working in the near future on the development of uniform control systems for the detection of irradiated food. The intention was to focus attention on these facts and data which influence the certainty of the detection in both positive and negative manner. (author)

  1. A dozen useful tips on how to minimise the influence of sources of error in quantitative electron paramagnetic resonance (EPR) spectroscopy-A review

    International Nuclear Information System (INIS)

    Mazur, Milan

    2006-01-01

    The principal and the most important error sources in quantitative electron paramagnetic resonance (EPR) measurements arising from sample-associated factors are the influence of the variation of the sample material (dielectric constant), sample size and shape, sample tube wall thickness, and sample orientation and positioning within the microwave cavity on the EPR signal intensity. Variation in these parameters can cause significant and serious errors in the primary phase of quantitative EPR analysis (i.e., data acquisition). The primary aim of this review is to provide useful suggestions, recommendations and simple procedures to minimise the influence of such primary error sources in quantitative EPR measurements. According to the literature, as well as results obtained in our EPR laboratory, the following are recommendations for samples, which are compared in quantitative EPR studies: (i) the shape of all samples should be identical; (ii) the position of the sample/reference in the cavity should be identical; (iii) a special alignment procedure for precise sample positioning within the cavity should be adopted; (iv) a special/consistent procedure for sample packing for a powder material should be used; (v) the wall thickness of sample tubes should be identical; (vi) the shape and wall thickness of quartz Dewars, where used, should be identical; (vii) where possible a double TE 104 cavity should be used in quantitative EPR spectroscopy; (viii) the dielectric properties of unknown and standard samples should be as close as possible; (ix) sample length less than double the cavity length should be used; (x) the optimised sample geometry for the X-band cavity is a 30 mm-length capillary with i.d. less then 1.5 mm; (xi) use of commercially distributed software for post-recording spectra manipulation is a basic necessity; and (xii) the sample and laboratory temperature should be kept constant during measurements. When the above recommendations and procedures were used

  2. Use of EPR to Solve Biochemical Problems

    Science.gov (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  3. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    Science.gov (United States)

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant

  4. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  5. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices. © 2014 Institute of Food Technologists®

  6. Detection limits by EPR spectroscopy of cumulated doses ionizing radiations in molluscs shells

    International Nuclear Information System (INIS)

    Ostrowski, K.; Burlinska, G.; Dziedzic-Goclawska, A.; Stachowicz, W.; Michalik, J.; Sadlo, J.

    1997-01-01

    The exposure of waters to ionizing radiation from radionuclides stored in concrete containers or freed in nuclear accidents or underwater eruption might be difficult to be proved, when currents, rains, exchange of water displace sand soils or rocks in the bottom. Ionizing radiation evokes stable paramagnetic centers in the crystalline lattice of mineral components in bones as well as in exoskeletons of most molluscs, which are detected by the EPR spectroscopy and could be used as an indicator of the exposure to the action of radiation during prolonged period of time. (authors)

  7. Study of growth of polyaniline chain by EPR method

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, A V [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Kogan, Ya L [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Fokeeva, L S [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-22

    Chemical aniline polymerization has been studied by the EPR method. After a long delay a weak EPR signal I is appeared and transformed rapidly into a strong Lorentzian line. Constants of spin exchange of signals I and II with paramagnetic probes Fe(CN)[sub 6][sup 3-], Co[sup 2+] and O[sub 2], freely diffusing in solution, have been determined. Effect of ferricyanide ions and urea, a breaker of hydrogen bonds, has been measured for signals I and II. Data obtained show the formation of an array of positive charges in PANI at early stage of doping. Constants of spin exchange depend on prehistory of samples. Averaging of EPR line widths of different paramagnetic centers in polyaniline was found. (orig.)

  8. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  9. EPR studies of gamma-irradiated taurine single crystals

    International Nuclear Information System (INIS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Koeksal, F.

    2000-01-01

    An EPR study of gamma-irradiated taurine [C 2 H 7 NO 3 S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32 SO - 2 and 33 SO - 2 radicals. The hyperfine values of 33 SO - 2 radical were used to obtain O-S-O bond angle for both sites

  10. Effect of UV irradiation on Echinaceae purpureae interactions with free radicals examined by an X-band (9.3 GHz) EPR spectroscopy.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    The effect of UVA (315-400 nm) irradiation on Echinaceae purpureae interactions with free radicals was examined by the use of electron paramagnetic resonance (EPR) spectroscopy. The changes of antioxidant properties of E. purpureae with time of UV irradiation from 10 to 110 min (10 min steps) were determined. DPPH as the paramagnetic reference was used in this study. Changes of EPR signals of the reference after interactions with nonirradiated and UV-irradiated E. purpureae were detected. Interactions of the tested E. purpureae samples caused decrease of the EPR signal of DPPH as the result of its antioxidant properties. The decrease of the amplitude of EPR line of DPPH was lower for interactions with UV-irradiated E. purpureae . EPR examination confirmed antioxidant properties of E. purpureae . The weaker antioxidant properties of E. purpureae after UV irradiation were pointed out. E. purpureae should be storage in the dark. The tests bring to light usefulness of electron paramagnetic resonance with microwave frequency of 9.3 GHz (an X-band) in examination of storage conditions of pharmacological herbs.

  11. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Abbas, Kahina; Babić, Nikola; Peyrot, Fabienne

    2016-10-15

    Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  13. Thermodynamic Basis of Electron Transfer in Dihydroorotate Dehydrogenase B from Lactococcus lactis:  Analysis by Potentiometry, EPR Spectroscopy, and ENDOR Spectroscopy

    DEFF Research Database (Denmark)

    Mohnsen, Al-Walid A.; Rigby, Stephen E. J.; Jensen, Kaj Frank

    2004-01-01

    Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD+. The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have...... similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible...... spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual signal is assigned to the formation of a spin interacting state between the FMN semiquinone species and the reduced 2Fe-2S center. Reduction of DHODB using an excess...

  14. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  15. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  16. A transferability study of the EPR-tooth-dosimetry technique

    International Nuclear Information System (INIS)

    Sholom, S.; Chumak, V.; Desrosiers, M.; Bouville, A.

    2006-01-01

    The transferability of a measurement protocol from one laboratory to another is an important feature of any mature, standardised protocol. The electron paramagnetic resonance (EPR)-tooth dosimetry technique that was developed in Scientific Center for Radiation Medicine, AMS (Ukraine) (SCRM) for routine dosimetry of Chernobyl liquidators has demonstrated consistent results in several inter-laboratory measurement comparisons. Transferability to the EPR dosimetry laboratory at the National Inst. of Standards and Technology (NIST) was examined. Several approaches were used to test the technique, including dose reconstruction of SCRM-NIST inter-comparison samples. The study has demonstrated full transferability of the technique and the possibility to reproduce results in a different laboratory environment. (authors)

  17. Multifrequency EPR study on freeze-dried fruits before and after X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimitrova, A. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Georgieva, L. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Tzvetkova, E. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria)

    2006-09-15

    X-, K- and Q-band EPR studies on lyophilized whole pulp parts of blue plum, apricot, peach, melon as well as achens and pulp separately of strawberry before and after X-ray irradiation are reported. Before irradiation all samples show in X band a weak singlet EPR line with g=2.0030+/-0.0005, except melon, which is EPR silent. Immediately after irradiation all samples exhibit complex fruit-depending spectra, which decay with time and change to give, in ca. 50days, an asymmetric singlet EPR line with g=2.0041+/-0.0005. Only apricot pulp gave a typical ''sugar-like'' EPR spectrum. Singlet EPR lines recorded after irradiation in X -band are K- and Q-band resolved as typical anisotropic EPR spectra with g{sub ||}=2.0023+/-0.0003 and g{sub -}bar =2.0041+/-0.0005. In addition, K- and Q-band EPR spectra of all samples show a superposition with the six EPR lines of Mn{sup 2+} naturally present in the fruits. The saturation behavior of the EPR spectra of achens of lyophilized and fresh strawberry is also studied. The differences in g factors of samples before and after X-ray irradiation might be used for the identification of radiation processing of fruits in the case of pulp and the differences in the EPR saturation behavior might be used for the achens of strawberry.

  18. Multifrequency EPR study on freeze-dried fruits before and after X-ray irradiation

    Science.gov (United States)

    Yordanov, N. D.; Aleksieva, K.; Dimitrova, A.; Georgieva, L.; Tzvetkova, E.

    2006-09-01

    X-, K- and Q-band EPR studies on lyophilized whole pulp parts of blue plum, apricot, peach, melon as well as achens and pulp separately of strawberry before and after X-ray irradiation are reported. Before irradiation all samples show in X band a weak singlet EPR line with g=2.0030±0.0005, except melon, which is EPR silent. Immediately after irradiation all samples exhibit complex fruit-depending spectra, which decay with time and change to give, in ca. 50 days, an asymmetric singlet EPR line with g=2.0041±0.0005. Only apricot pulp gave a typical "sugar-like" EPR spectrum. Singlet EPR lines recorded after irradiation in X -band are K- and Q-band resolved as typical anisotropic EPR spectra with g=2.0023±0.0003 and g⊥=2.0041±0.0005. In addition, K- and Q-band EPR spectra of all samples show a superposition with the six EPR lines of Mn 2+ naturally present in the fruits. The saturation behavior of the EPR spectra of achens of lyophilized and fresh strawberry is also studied. The differences in g factors of samples before and after X-ray irradiation might be used for the identification of radiation processing of fruits in the case of pulp and the differences in the EPR saturation behavior might be used for the achens of strawberry.

  19. EPR studies of free radicals decay and survival in gamma irradiated aminoglycoside antibiotics: sisomicin, tobramycin and paromomycin.

    Science.gov (United States)

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2012-02-14

    Radiation sterilization technology is more actively used now that any time because of its many advantages. Gamma radiation has high penetrating power, relatively low chemical reactivity and causes small temperature rise. But on the other hand radiosterilization can lead to radiolytic products appearing, in example free radicals. Free radicals in radiative sterilized sisomicin, tobramycin and paromomycin were studied by electron paramagnetic resonance (EPR) spectroscopy. Dose of gamma irradiation of 25kGy was used. Concentrations and properties of free radicals in irradiated antibiotics were studied. EPR spectra were recorded for samples stored in air and argon. For gamma irradiated antibiotics strong EPR lines were recorded. One- and two-exponential functions were fitted to experimental points during testing and researching of time influence of the antibiotics storage to studied parameters of EPR lines. Our study of free radicals in radiosterilized antibiotics indicates the need for characterization of medicinal substances prior to sterilization process using EPR values. We propose the concentration of free radicals and other spectroscopic parameters as useful factors to select the optimal type of sterilization for the individual drug. The important parameters are i.a. the τ time constants and K constants of exponential functions. Time constants τ give us information about the speed of free radicals concentration decrease in radiated medicinal substances. The constant K(0) shows the free radicals concentration in irradiated medicament after long time of storage. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Application of EPR spectroscopy to examine free radicals evolution during storage of the thermally sterilized Ungentum ophthalmicum.

    Science.gov (United States)

    Ramos, Paweł; Pilawa, Barbara

    2016-06-24

    Free radicals formed during thermal sterilization of the Ungentum ophthalmicum were examined by an X-band EPR spectroscopy. The influence of storage time (15 min; 1, 2 and 3 days after heating) on free radical properties and concentrations in this sample was determined. Thermal sterilization was done according to the pharmaceutical norms. The first-derivative EPR spectra with g-values about 2 were measured with magnetic modulation of 100 kHz in the range of microwave power 2.2-70 mW. The changes of amplitudes (A) and linewidths (ΔB pp ) with microwave powers were evaluated. Free radicals in concentration ∼10 17 spin/g were formed during heating of the tested Ungentum. Free radical concentration decreased with increase in storage time, and reached values ∼10 17 spin/g after 3 days from sterilization. The tested U. ophthalmicum should not be sterilized at a temperature of 160 °C because of the free radicals formation, or it should be used 3 days after heating, when free radicals were considerably quenched. Free radical properties remain unchanged during storage of the Ungentum. The EPR lines of the U. ophthalmicum were homogeneously broadened and their linewidths (ΔB pp ) increased with increase in microwave power. EPR spectroscopy is useful to examine free radicals to optimize sterilization process and storage conditions of ophthalmologic samples.

  1. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ [Yale University School of Medicine, New Haven, Connecticut (United States); Williams, BB; Flood, AB; Swartz, HM [Geisel Medical School at Dartmouth University, Hanover, New Hampshire (United States)

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  2. EPR dosimetry of irradiated human teeth

    International Nuclear Information System (INIS)

    Rodas Duran, J.E.; Panzeri, H.; Mascarenhas, S.

    1985-01-01

    The determination of the absorbed radiation dose in man may be made by Electron Paramagnetic Resonance (EPR) spectroscopy of dental enamel. We analysed the EPR signals for dental enamel submitted to gamma radiation in doses between 1 Gy and 25 Gy. We conclude that independent of the type of tooth analysed there exists a linear relation between the EPR signals and the absorbed doses. These studies were extended to enamel irradiated with gamma rays and with X rays in doses between 0.1 Gy and 0.6 Gy. The graph of the intensity of the EPR signals as a function of the dose has a slope of 0.22. This calibration may be used to calculate the absorbed dose for humans from a measurement of the EPR signal from small samples of enamel taken from any permanent tooth. Finally we comment on some EPR studies of effects of radiation of milk teeth. (author)

  3. EPR measurements of phenolic concentration in developing red grapeseeds - a pilot study

    International Nuclear Information System (INIS)

    Troup, G.J.; Kennedy, J.A.; Hutton, D.R.; Hewitt, D.; Hunter, C.A.; Pilbrow, J.R.; Ristic, R.; Iland, P.; Jones, G.P. Anon

    2000-01-01

    Full text: Phenolics, in the liquid (wine, Troup et al., Free Radicals Research, 1994, 20, 63 - 68) and solid state, give stable free radical signals detectable by EPR. Observations of EPR signals (partly due to phenolics) in developing red grapeseeds, as a function of time, have been made. The increasing, then decreasing of this signal as a function of time correlates well with the theory of phenolic concentration in developing grapeseeds recently proposed by Kennedy et al. (in press). This is a very significant application of EPR Spectroscopy in the Wine Industry, so far unfamiliar with its use

  4. ORNL-EPR study: results and implications

    International Nuclear Information System (INIS)

    McAlees, D.G.

    1976-01-01

    A two-year preliminary design study of a tokamak experimental power reactor has been completed by the Oak Ridge National Laboratory. The major engineering features, plasma physics characteristics, and technological requirements of the device are discussed. Plasma confinement is provided in a toroidal chamber of major radius, R/sub o/ = 6.75 m and minor radius, a = 2.25 m. The toroidal magnetic field strength is 4.8 T. A unique poloidal magnetic field system creates the fields required for plasma equilibrium and stability. The power extraction system is centered around the blanket, which absorbs approximately 90 percent of the energy produced in the plasma. The operating characteristics and nuclear performance of the system are given. The results of the study indicate a low benefit-to-cost ratio for this design. Recent developments have suggested that some of the design constraints were too restrictive. The advisability of a large scale test of the ideas linked to these developments has become apparent. To this end, ORNL has started the design of a high-β tokamak. The basis for the high power density device is discussed

  5. Study on the EPR concept - KAJET experiments

    International Nuclear Information System (INIS)

    Albrecht, G.; Brueggemann, H.; Jenes, E.; Raupp, D.; Schuetz, W.

    2000-01-01

    During a hypothetical core melt accident, the bottom of the reactor pressure vessel (RPV) may be attacked and penetrated by the melt. In case of a localised failure of the RPV, the melt expulsion into the reactor cavity may be as a compact jet for a short period, followed by a dispersed release after gas break-through. The KAJET experiments are related to the short initial phase of a compact jet. The main objective of the experiments is to establish a compact jet under driving pressures up to 2 MPa and to study its interaction with different, substratum materials. The molten corium is simulated by an alumina-iron thermite melt. The gas break-through is avoided by sharply reducing the driving pressure. In the reporting period, two KAJET experiments (KJ02, KJ03) were performed. In KJ02, about 20 kg each of iron and alumina melt were released through a zirconia nozzle under a driving pressure of up to 0.3 MPa on two separate sample plates of ordinary concrete. Corresponding parameters for KJ03 are 50 kg, 0.5 MPa and (unintendedly) only one plate. Average concrete erosion rates under these conditions were determined. In co-operation with Ruhr-Universitaet Bochum, a theoretical interpretation of the experiments is under way as well as the preparation of a scenario analysis. Before discussing the behaviour of a melt jet and its interaction with substratum materials, the starting and boundary conditions at the RPV-breach are important. The time-dependent variables breach diameter, jet velocity and melt volumetric flow were calculated by employing available models. The results were validated by those from SNL experiments. A sensitivity study was carried out for realistic accident scenarios in the Zion nuclear power plant. In this case, the duration of a compact jet until gas breakthrough occurs is of the order of a few seconds. (orig.) [de

  6. Fe (III - Galactomannan Solid and Aqueous Complexes: Potentiometric, EPR Spectroscopy and Thermal Data

    Directory of Open Access Journals (Sweden)

    Mercê Ana L. R.

    2001-01-01

    Full Text Available Galactomannans can be employed in food industries to modify the final rheological properties of the products. Since they are not absorbed by the living organisms they can also be used in dietary foods. The equilibria involving the interactions of Fe(III and galactomannans and arabinogalactan of several leguminous plants were characterized by potentiometric titrations and EPR spectroscopy. The log of the equilibrium constants for the formation of ML species, where M is the metal ion and L is the monomeric unit of the biopolymers, were 15.4, 14.1 and 18.5, for the galactomannans of C. fastuosa, L. leucocephala and S. macranthera, respectively. Log K values for protonated species (MHL were 3.1, 3.3, and were not detected for the galactomannan of S. macranthera. The log K values for the formation of ML2 were 14.1, 13.3 and 15.2, respectively. Early formation of insoluble products in the equilibrium with arabinogalactan and Fe(III prevented acquisition of reliable data. The solid complexes assays showed a great dipolar interaction between two Fe(III ions in the inner structure of the biopolymer which increased as the degree of substitution of the galactomannan decreased, and also showed the resulting thermal stability. The complexes impart a new possibility of providing essential metal ions in dietary foods since decomplexation of the complexes can occur at different pH values existing in the human body.

  7. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-02-24

    Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases

    KAUST Repository

    Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Guo, Xianrong; Al-Ghamdi, Suliman; Al-Masri, Harbi Tomah

    2013-01-01

    Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.

  9. A new approach for extension of the identification period of irradiated cellulose-containing foodstuffs by EPR spectroscopy

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Gancheva, Veselka

    2000-01-01

    We report on the possibility of identification by EPR spectroscopy of some irradiated cellulose-containing foodstuffs, at a relatively long time after the irradiation, when the characteristic EPR spectral lines of the cellulose free radical have essentially disappeared. In such cases rather expensive and time-consuming methods (e.g. thermoluminescence analysis) have to be applied. The present communication demonstrates with some pre-irradiated spices, dried medicinal and sweet herbs that simply heating the samples to 60 deg. C for one hour leads to a significant (50% or more) decrease of the EPR intensity of the remaining central line of the samples. For comparison, the loss in the intensity of the same line upon heating non-irradiated samples at 60 deg. C for one hour was only about 10%. This inexpensive new procedure will extend the post-irradiation period in which EPR can be used for distinguishing irradiated from non-irradiated samples, of certain cellulose-containing foodstuffs

  10. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten

    2010-01-01

    In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Study of the EPR and Moessbauer spectra of iron phosphites

    International Nuclear Information System (INIS)

    Ebert, M.; Kavan, L.

    1978-01-01

    The EPR and Moessbauer spectra of polycrystalline samples of ferrous phosphites FeHPO 3 .3H 2 O, FeH 2 P 2 O 5 , FeH 4 P 2 O 6 .1/2H 2 O, FeH 10 P 4 O 12 .4H 2 O and ferric phosphites Fe 2 (HPO 3 ) 3 .9h 2 O, FeH 3 P 2 O 6 .3H 2 O and Fe 4 H 33 P 15 O 45 .6H 2 O were studied. The hydrogen bonds present in hydrogen phosphite anions (polyorthophosphites) produce a decrease in the electron density on the oxygen atom in the anion and thus also a decrease in the crystal field strength with an increasing P/Fe ratio. These changes are reflected not only in the Dq values but also in the g-factors, Moessbauer isomeric shifts and quadropole splitting values. The Moessbauer spectra were measured at laboratory temperature with a Co-57/Pd source (the time for measuring one sample was about 24 hrs) and evaluated on a Hewlett-Packard computer. The EPR spectra of the polycristalline samples were measured at laboratory temperature in the 3 cm region. (T.I.)

  12. Case Studies in e-RPL and e-PR

    Science.gov (United States)

    Cameron, Roslyn; Miller, Allison

    2014-01-01

    The use of ePortfolios for recognition of prior learning (e-RPL) and for professional recognition (e-PR) is slowly gaining in popularity in the VET sector however their use is sporadic across educational sectors, disciplines, educational institutions and professions. Added to this is an array of purposes and types of e-RPL and e-PR models and…

  13. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    Science.gov (United States)

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  15. EPR study of charge compensation of chromium centers in the strontium titanate crystal

    Czech Academy of Sciences Publication Activity Database

    Badalyan, A. G.; Azamat, Dmitry; Babunts, R.A.; Neverova, E.V.; Dejneka, Alexandr; Trepakov, Vladimír; Jastrabík, Lubomír

    2013-01-01

    Roč. 55, č. 7 (2013), 1454-1458 ISSN 1063-7834 R&D Projects: GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : EPR spectroscopy * SrTiO3:Cr crystal * chromium centers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.782, year: 2013

  16. X- and Q-band EPR studies on fine powders of irradiated plants. New approach for detection of their radiation history by using Q-band EPR spectrometry

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2004-01-01

    X- and Q-band EPR studies after γ-irradiation of some dry spices and aromatic herbs are reported. Before irradiation all samples show only one singlet line in X-band EPR, whereas the Q-band EPR spectrum of the same samples is a superposition of two individual spectra--one corresponding to the above EPR signal, with an anisotropic spectrum, and a second one consisting of six lines due to the Mn 2+ naturally present in plants. The radiation induced EPR signal due to cellulose free radicals was not detected after γ-irradiation, but only the increase of the natural signal present before the irradiation. The fading kinetic of this EPR signal was monitored in three cases--when samples were kept in plastic bags without any special conditioning after irradiation, when samples were covered with paraffin before irradiation and when samples were dried at 60 deg. C for 1 h before irradiation. The studies show that stability of radiation induced EPR signals decreases in the order of: paraffin covered > heated before irradiation > kept at room conditions. The two EPR spectra in the Q-band--one with radiation dependent intensity and a second due to Mn 2+ , which is radiation independent allow identification of previous radiation treatment based on the fact that Mn 2+ quantity in the sample is constant whereas the quantity of radiation-induced free radicals is temperature dependent. It was found that for irradiated samples the ratio between EPR intensity of the free radicals and that of Mn 2+ before and after heating decreases with 50-60% whereas for non-irradiated samples it is ca. 10-15%

  17. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    Science.gov (United States)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  18. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    Science.gov (United States)

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  19. Time-resolved EPR study of singlet oxygen in the gas phase.

    Science.gov (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  20. EPR Study of [Cu(Him)4]·2Br Complex

    International Nuclear Information System (INIS)

    Yıldırım, İ; Karabulut, B

    2016-01-01

    The single crystal of [Cu(Him) 4 ]·2Br (Him: C 3 H 4 N 2 , imidazole) complex has been investigated at ambient temperature in three mutually perpendicular planes by EPR technique. The magnetic environments of [Cu(Him) 4 ]·2Br complex have been identified by EPR technique. The study reveals the existence of two magnetically inequivalent Cu 2+ sites. The principal values of g tensors were obtained. The EPR parameters show that the paramagnetic centers have rhombic symmetry. (paper)

  1. Evaluation of external and internal irradiation on uranium mining enterprise staff by tooth enamel EPR spectroscopy

    Science.gov (United States)

    Zhumadilov, Kassym; Ivannikov, Alexander; Khailov, Artem; Orlenko, Sergei; Skvortsov, Valeriy; Stepanenko, Valeriy; Kuterbekov, Kairat; Toyoda, Shin; Kazymbet, Polat; Hoshi, Masaharu

    2017-11-01

    In order to estimate radiation effects on uranium enterprise staff and population teeth samples were collected for EPR tooth enamel dosimetry from population of Stepnogorsk city and staff of uranium mining enterprise in Shantobe settlment (Akmola region, North of Kazakhstan). By measurements of tooth enamel EPR spectra, the total absorbed dose in the enamel samples and added doses after subtraction of the contribution of natural background radiation are determined. For the population of Stepnogorsk city average added dose value of 4 +/- 11 mGy with variation of 51 mGy was obtained. For the staff of uranium mining enterprise in Shantobe settlment average value of added dose 95 +/- 20 mGy, with 85 mGy variation was obtained. Higher doses and the average value and a large variation for the staff, probably is due to the contribution of occupational exposure.

  2. Detection limits of absorbed dose of ionizing radiation in molluscan shells as determined by e.p.r. spectroscopy

    International Nuclear Information System (INIS)

    Stachowicz, W.; Michalik, J.; Burlinska, G.; Sadlo, J.; Dziedzic-Goclawska, A.; Ostrowski, K.

    1995-01-01

    The exposure of waters to ionizing radiation from radionuclides imprisoned in dumped nuclear waste containers, freed in nuclear submarine accidents or released in underwater magma eruptions are difficult to be evaluated by conventional radiometric methods. Ionizing radiation evokes stable paramagnetic centers in crystalline lattice of mineral components in bone skeletons of mammals and fishes as well as in exoskeletons of mollusca. They give rise in e.p.r. to specific, extremely stable signals which are proposed to be applied as indicators of radiation exposure levels. In the present study the e.p.r. detection limits of the dose of ionizing radiation absorbed in shells of fresh water and marine mollusca (selected species) have been estimated. It has been found that with fresh water mollusca the dose of 1-2 Gy can be detected, while the sea water mollusca by one order of magnitude lower, i.e. about 0.1 Gy. (author)

  3. Studied by electron paramagnetic resonance (EPR) of polymethyl methacrylate (PMMA) irradiated with gamma photons from cobalt 60

    International Nuclear Information System (INIS)

    Jalali, Hajer

    2013-01-01

    Ionizing radiation is radiation able to deposit enough energy in the material through which they pass to create ionization. These ionizing radiations, when mastered, have many practical uses beneficial (areas of health, industry ...). Gamma rays are emitted by radioactive nuclei. The objective of our work is the study of polymethyl methacrylate (PMMA) irradiated by gamma photons from cobalt-60. To study the technique of radio spectroscopy (9 to 10Hz) electron paramagnetic resonance EPR is used. This technique is specific to characterize transient free radicals involved in chemical reactions such as oxidation, combustion, polymerization reactions ... We analyzed the EPR spectra three batch KS, EB, and JF our dosimeter according to the dose (high and low) and showed that the dosimetric response can be represented in exponential form (high dose) and linear form (low dose). We also studied the kinetics of decay of the EPR signal as a function of time (fading) and showed that the responses relating to stabilize after 20 min of irradiation.

  4. Electrical transport and EPR investigations: A comparative study for ...

    Indian Academy of Sciences (India)

    did not have relatively such a high conductivity, skin depth was expected to be more than 1 μm. On the basis of g-values, line width, line shape behaviour and earlier observations by other researchers (Lux 1994;. Luthra et al 2003; Krinichnyi et al 2006), the EPR signal obtained has been assigned due to polarons (Bredas.

  5. Chemistry of artemisinin: an EPR study and nucleobases interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Damra Elhaj [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2000-10-01

    In the present, the radical transformations of artemisinin, a potent antimalarial drug have been examined using EPR and EPR spin trapping techniques. The effect of light on artemisinin has been investigated at 77 K as well as with the use of phenyl butyl nitrone (PBN) spin trapping agent. While no EPR signal was observed at 77 K, intense light irradiation of artemisinin/PBN gave EPR signal characteristic of radical transformation of the PBN. The reactions of artemisinin with iron (II), manganese (II), hemin and ferrocyanide ion have been investigated by spin trapping techniques. Artemisinin/iron (II) formed spin adducts with nitrosobenzene, nitroso-t-butane and PBN. The hypertine splittings of the spin adducts were a{sub N}=1.08 mT/a{sub N}=1.25 mT/a{sub N}=0.09 mT and a{sub N}=1.56 mT/a{sub N}=0.29 mT respectively. PBN trapping of artemether/iron (II) gave similar result to artemisinin/iron (II). These results are indicative of secondary carbon-centered radical formation. While artemisinin/hemin/PBN gave very weak EPR signal, ferrocyanide under the same condition gave no signal. Incubation of artemisinin with RNA at different reaction conditions, including irradiation with light, heat and mild acidic media, revealed no RNA damage when examined by agarose electrophoresis. However, artemisinin/iron (II) caused RNA damage in pH-dependant manner. In contrast, hemin did not show the same effect when it was used instead of iron (II). (Author)

  6. Chemistry of artemisinin: an EPR study and nucleobases interaction

    International Nuclear Information System (INIS)

    Mustafa, Damra Elhaj

    2000-10-01

    In the present, the radical transformations of artemisinin, a potent antimalarial drug have been examined using EPR and EPR spin trapping techniques. The effect of light on artemisinin has been investigated at 77 K as well as with the use of phenyl butyl nitrone (PBN) spin trapping agent. While no EPR signal was observed at 77 K, intense light irradiation of artemisinin/PBN gave EPR signal characteristic of radical transformation of the PBN. The reactions of artemisinin with iron (II), manganese (II), hemin and ferrocyanide ion have been investigated by spin trapping techniques. Artemisinin/iron (II) formed spin adducts with nitrosobenzene, nitroso-t-butane and PBN. The hypertine splittings of the spin adducts were a N =1.08 mT/a N =1.25 mT/a N =0.09 mT and a N =1.56 mT/a N =0.29 mT respectively. PBN trapping of artemether/iron (II) gave similar result to artemisinin/iron (II). These results are indicative of secondary carbon-centered radical formation. While artemisinin/hemin/PBN gave very weak EPR signal, ferrocyanide under the same condition gave no signal. Incubation of artemisinin with RNA at different reaction conditions, including irradiation with light, heat and mild acidic media, revealed no RNA damage when examined by agarose electrophoresis. However, artemisinin/iron (II) caused RNA damage in pH-dependant manner. In contrast, hemin did not show the same effect when it was used instead of iron (II). (Author)

  7. Copper Complexes with Non-innocent Ligands: Probing Cu-II/catecholato-Cu-I/o-Semiquinonato Redox Isomer Equilibria with EPR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kaim, W.; Wanner, M.; Knödler, A.; Záliš, Stanislav

    2002-01-01

    Roč. 337, - (2002), s. 163-172 ISSN 0020-1693 R&D Projects: GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : copper compounds * EPR spectroscopy * quinone ligand s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.566, year: 2002

  8. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses,NMR,EPR...

  9. The study on intergranular corrosion of sensitized Alloy 600 using DL-EPR and Huey method

    International Nuclear Information System (INIS)

    Lee, B. G.; Lee, H. R.; Kim, H. P.; Ryu, W. S.; Rhee, C. K.

    1998-01-01

    Intergranular corrosion(IGC) of sensitized Alloy 600 has been studied with double loop-electrochemical potentiokinetic reactivation(DL-EPR) and Huey tests. Corrosion of solution annealed Ni-XCr-10Fe(X=6∼15) alloys was also evaluated with DL-EPR and Huey methods to simulate corrosion of Cr-depleted grain boundary region of Alloy 600. Cr concentration of Cr-depleted grain boundary region of Alloy 600. Cr concentration profile across grain boundary was measured with TEM. In the range of the Cr concentration from 6 to 8%, corrosion rates of solution annealed Ni-XCr-10Fe(X=6∼15) alloys were much higher in Huey test than those in DL-EPR. But in the range of the Cr concentration from 12 to 15%, the trend was reversed. The width of IGC crack of Alloy 600 was higher in DL-EPR test than in Huey test in agreement with corrosion of solution annealed Ni-XCr-10Fe alloys. Width of IGC produced by DL-EPR test was almost uniform and wide while that produced by Huey test was sharp and marrow. These results suggest that IGC in DL-EPR test conforms to uniform dissolution model and IGC in Huey test conforms to Cr concentration dependent dissolution model

  10. Study of dinosaur's egg shell by EPR method

    International Nuclear Information System (INIS)

    Tleuberdina, R.A.; Nasirov, R.N.

    1998-01-01

    Two varieties of calcium carbonate are defined on base of ESR spectra radiation-inducted signals containing in mollusc shell and dinosaur and ostrich egg shell; their spectral characters are studied by infrared-spectroscopy methods and X-ray analysis. Possibility of correlation between ESR signals intensity of CO 2 -radical of investigated object and geological age is determined. (author)

  11. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.

    Science.gov (United States)

    Enemark, John H

    2017-10-10

    Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.

  12. Study for applying microwave power saturation technique on fingernail/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Choi, Hoon; Nam, Hyun Ill; Lee, Byung Ill [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2012-10-15

    There is growing recognition worldwide of the need to develop effective uses of dosimetry methods to assess unexpected exposure to radiation in the event of a large scale event. One of physically based dosimetry methods electron paramagnetic resonance (EPR) spectroscopy has been applied to perform retrospective radiation dosimetry using extracted samples of tooth enamel and nail(fingernail and toenail), following radiation accidents and exposures resulting from weapon use, testing, and production. Human fingernails are composed largely of a keratin, which consists of {alpha} helical peptide chains that are twisted into a left handed coil and strengthened by disulphide cross links. Ionizing radiation generates free radicals in the keratin matrix, and these radicals are stable over a relatively long period (days to weeks). Most importantly, the number of radicals is proportional to the magnitude of the dose over a wide dose range (0{approx}30 Gy). Also, dose can be estimated at four different locations on the human body, providing information on the homogeneity of the radiation exposure. And The results from EPR nail dosimetry are immediately available However, relatively large background signal (BKS) converted from mechanically induced signal (MIS) after cutting process of fingernail, normally overlaps with the radiation induced signal (RIS), make it difficult to estimate accurate dose accidental exposure. Therefore, estimation method using dose response curve was difficult to ensure reliability below 5 Gy. In this study, In order to overcome these disadvantages, we measured the reactions of RIS and BKS (MIS) according to the change of Microwave power level, and researched about the applicability of the Power saturation technique at low dose.

  13. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    Science.gov (United States)

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  14. EPR studies of cooperative binding of Cu (II) to hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Tabak, M.

    1983-07-01

    The investigation of the relative affinities of the two pairs of hemoglobin copper sites by monitoring the EPR spectra of the complexes formed by the reaction of copper with deoxyhemoglobin is reported. A model in which two sites are assumed to accept copper ions in a noncooperative way is not able to predict the experimental results. Thus it is conclude that the binding of these ions to hemoglobin is a cooperative phenomenon. (Author) [pt

  15. EPR as a tool for studying slags and slag-like systems

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, A.; Lech, J. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Results of possible applications of the EPR method for studying of steelwork slags properties and sintering processes involving some slag components are presented. Comparative experimental studies have been carried out at X-band both industrial slags and synthetic slag-like systems obtained by sintering mixtures of pure reagents of Ca-Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} phase diagram. Tests of evolution of EPR spectra during sintering process have also been done, including sintering row mixtures currently used in cement industry. EPR spectra of Mn{sup 2+} ions, which have been observed quite resolved in nearly all studied samples, have been established very useful for studying kinetics of sintering process in systems involving the slags and components of the CaO-Al{sub 2}O{sub 3}-SiO{sub 2} diagram. (author). 20 refs, 5 figs, 1 tab.

  16. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution.

    Science.gov (United States)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-15

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution

    Science.gov (United States)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-01

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.

  18. Harmonization of dosimetric information obtained by different EPR methods: Experience of the Techa river study

    Energy Technology Data Exchange (ETDEWEB)

    Volchkova, A. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Shishkina, E.A., E-mail: ElenaA.Shishkina@gmail.com [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Ivanov, D. [Institute of Metal Physics, Russian Academy of Sciences, 18, S. Kovalevskoy Str., 620041 Yekaterinburg (Russian Federation); Timofeev, Yu. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Fattibene, P.; Della Monaca, S. [Istituto Superiore di Sanita and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161 Rome (Italy); Wieser, A. [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, D-85764 Neuherberg (Germany); Degteva, M.O. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation)

    2011-09-15

    Between 1949 and 1956 the Techa River (Southern Urals, Russia) was contaminated as a result of releases of radioactive waste by the Mayak Production Association. EPR dosimetry with tooth enamel has been used to estimate the external exposure of Techa riverside residents over the last 17 years. The database 'Tooth' of the Urals Research Center for Radiation Medicine (URCRM) has accumulated about 1000 EPR measurements of tooth enamel from the rural population of the Urals region. The teeth were investigated by laboratories of Russia, USA, Germany and Italy. Most of the enamel samples were measured several times in different laboratories. Each laboratory used different equipment and its own methods for sample preparation and EPR spectra analysis. Even measurements performed at the same laboratory over 10-15 years may not be assumed as uniform: methods change with time, and equipment is subject to aging. These two factors influenced EPR performance. The purpose of this study is, therefore, the harmonization of EPR data accumulated during long-term dosimetric investigations in the Southern Urals for further pooled analysis. The results will be used for external dose evaluation in the Techa River region.

  19. EPR and optical study of Mn{sup 2+} doped monohydrated dipotassium stannic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Singh, Manju

    2014-11-15

    Highlights: • EPR study of Mn{sup 2+}: DPSC crystal is done at room temperature. • The spin Hamiltonian parameters for two Mn{sup 2+} sites are determined. • The optical absorption study is also done. • The nature of metal–ligand bonding is discussed on the basis of EPR and optical data. • Theoretical zero-field splitting parameters match well with the experimental values. - Abstract: Electron paramagnetic resonance (EPR) study at room temperature (RT) is used to investigate the property of Mn{sup 2+} doped monohydrated dipotassium stannic chloride (K{sub 2}SnCl{sub 4}⋅H{sub 2}O) single crystal. EPR spectra show that there exist two substitutional sites, the spin Hamiltonian parameters for which are determined. The optical absorption study is also done at room temperature in the wavelength range 195–1100 nm. The observed bands are assigned as transitions from {sup 6}A{sub 1g}(S) ground state to various excited states. These bands are fitted with four parameters, namely Racah inter-electronic repulsion parameters B = 792 cm{sup −1}, C = 2278 cm{sup −1}; cubic crystal field splitting parameter Dq = 700 cm{sup −1} and Trees correction α = 76 cm{sup −1}. The nature of metal–ligand bonding is discussed on the basis of EPR and optical data. Superposition model (SPM) is used to find out the crystal field (CF) parameters and the perturbation formulae are used to obtain zero-field splitting (ZFS) parameters. Theoretically calculated ZFS parameters match well with the experimental values obtained from EPR study.

  20. Probing topology and dynamics of the second transmembrane domain (M2δ) of the acetyl choline receptor using magnetically aligned lipid bilayers (bicelles) and EPR spectroscopy.

    Science.gov (United States)

    Sahu, Indra D; Mayo, Daniel J; Subbaraman, Nidhi; Inbaraj, Johnson J; McCarrick, Robert M; Lorigan, Gary A

    2017-08-01

    Characterizing membrane protein structure and dynamics in the lipid bilayer membrane is very important but experimentally challenging. EPR spectroscopy offers a unique set of techniques to investigate a membrane protein structure, dynamics, topology, and distance constraints in lipid bilayers. Previously our lab demonstrated the use of magnetically aligned phospholipid bilayers (bicelles) for probing topology and dynamics of the membrane peptide M2δ of the acetyl choline receptor (AchR) as a proof of concept. In this study, magnetically aligned phospholipid bilayers and rigid spin labels were further utilized to provide improved dynamic information and topology of M2δ peptide. Seven TOAC-labeled AchR M2δ peptides were synthesized to demonstrate the utility of a multi-labeling amino acid substitution alignment strategy. Our data revealed the helical tilts to be 11°, 17°, 9°, 17°, 16°, 11°, 9°±4° for residues I7TOAC, Q13TOAC, A14TOAC, V15TOAC, C16TOAC, L17TOAC, and L18TOAC, respectively. The average helical tilt of the M2δ peptide was determined to be ∼13°. This study also revealed that the TOAC labels were attached to the M2δ peptide with different dynamics suggesting that the sites towards the C-terminal end are more rigid when compared to the sites towards the N-terminus. The dynamics of the TOAC labeled sites were more resolved in the aligned samples when compared to the randomly disordered samples. This study highlights the use of magnetically aligned lipid bilayer EPR technique to determine a more accurate helical tilt and more resolved local dynamics of AchR M2δ peptide. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis, EPR, Electronic and Magnetic Studies on Cobalt (II) Complexes of Semicarbazone and Thiosemicarbazone

    International Nuclear Information System (INIS)

    Chandra, S.; Gupta, L.K.; Sharma, K.K.

    2005-01-01

    Cobalt (II) complexes having the general composition Co(L2) X2 [where Lisopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and4-aminoacetophenone thiosemicarbazone (LLD) and X=Cl] have been synthesized. All the Co(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and EPR spectral studies. All the complexes were found to have magnetic moments corresponding to three unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic infrared and EPR spectral studies. (author) = = = = = = = = = = = = = = =

  2. EPR Study of Vanadium Ion in Zinc-Boro-Vanadate Glasses

    International Nuclear Information System (INIS)

    Renuka, C.; Gowda, V. C. Veeranna; Chakradhar, R. P. S.; Reddy, C. Narayana

    2011-01-01

    This paper describes EPR studies on x V 2 O 5 -(40-x)ZnO-60B 2 O 3 (where x 5, 10, 15 and 20 mol %) glass system. These studies indicate a strong compositional dependent trend and existence of characteristic boro-vanadate groups in these glasses. The EPR spectra show a distinct hyperfine structure of 51 V. Spectral analysis shows that the vanadium is present in the glass as vanadyl ion [VO] 2+ at tetragonally distorted octahedral site. The decrease of A || and A perpendicular with increase of V 2 O 5 concentration suggests an increase in the covalence between the central atom and the surrounding oxygen ligands.

  3. EPR and optical absorption studies of Cr3+ ions in potassium sodium dl-tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Kripal, Ram; Singh, Pragya; Shukla, Santwana

    2011-01-01

    EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: g x =1.9257±0.0002, g y =1.9720±0.0002, g z =2.0102±0.0002, |D|=313±2 (x10 -4 ) cm -1 and |E|=101±2 (x10 -4 ) cm -1 . From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (D q ) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. -- Research Highlights: → EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are done at 77 K. → The spin Hamiltonian and zero field parameters g, |D| and |E| are measured. From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. → The optical absorption at room temperature is also studied and the crystal field splitting parameter (D q ) as well as the Racah inter-electronic repulsion parameters (B and C) is evaluated. → The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.

  4. Detection and identification of nitrogen defects in nanodiamond as studied by EPR

    Energy Technology Data Exchange (ETDEWEB)

    Soltamova, A.A.; Ilyin, I.V. [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Baranov, P.G., E-mail: pavel.baranov@mail.ioffe.r [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Vul' , A.Ya.; Kidalov, S.V.; Shakhov, F.M. [Ioffe Physical Technical Institute, Politechnicheskaya, 26, St. Petersburg 194021 (Russian Federation); Mamin, G.V.; Orlinskii, S.B.; Silkin, N.I.; Salakhov, M.Kh. [Kazan State University, Federal Center of Shared Usage for Physicochemical Measurements, Kazan 420008 (Russian Federation)

    2009-12-15

    Electron paramagnetic resonance (EPR) and electron spin echo (ESE) at X-band and at high-frequency W-band (95 GHz) have been used to study defects in natural diamond nanocrystals, detonation nanodiamond (ND) with a size of approx4.5 nm and detonation ND after high-temperature, high-pressure sintering with a size of approx8.5 nm. Atomic nitrogen centers N{sup 0} and nitrogen pairs N{sub 2}{sup +} have been detected and identified and their structure has been unambiguously determined by means of the high frequency EPR and ESE in natural diamond nanocrystals. In detonation ND and detonation ND after sintering atomic nitrogen centers N{sup 0} have been discovered in nanodiamond core. In addition EPR signal of multi-vacancy centers with spin 3/2 seems to be observed in diamond core of detonation ND.

  5. Detection of Redox Imbalance in Normal Lymphocytes with Induced Mitochondrial Dysfunction - EPR Study.

    Science.gov (United States)

    Georgieva, Ekaterina; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-10-01

    The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, pEPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Comparative study between two austenitic steels with the EPR (Electrochemical Potentiokinetic Reactivation) technique.; Estudio comparativo entre dos aceros austeniticos mediante la tecnica EPR (Reactivacion Electroquimica Potenciocinetica)

    Energy Technology Data Exchange (ETDEWEB)

    Guillen M, A N

    1997-09-01

    In the mid 19704s, the intergranular corrosion with stress corrosion cracking (IGSCC) have been identified as a greater problem in Boiling Water Reactors BWR in several places of the world. The Electrochemical Potentiokinetic Reactivation - Single Loop (EPR-SL) test and the Double Loop (EPR-DL) test, were developed as methods for measuring the Degree of Sensitization (DOS), show sensitised materials at subject to Intergranular Corrosion. In Mexico, the Laguna Verde4s reactor is BWR type and many of its principal components was built with AISI 304 stainless steels, while that in VVER reactors as well as Juragua4s reactor in Cuba is used 321 Stainless stell in its Russian equivalent designation 08Ch18N10T. In this work, were studied 304 and 08Ch18N10T stainless steels by means of EPR-SL, EPR-DL and ASTM A-262 techniques, they have been found a good correlation for 304 steel but not in 08Ch18N10T steel and was proposed one modification in the criterion by the evaluation on the sensitisation in this steels. Finally, both materials were welded with procedures used in the nuclear industry, by Slow Strain Rate Test (SSRT) to determine the Stress Corrosion Cracking SCC susceptibility, and subsequently the susceptibility to localized corrosion was studied by means of Cyclic Polarization test and the uniform corrosion rate in a solution with chlorides by the Tafel plot, Potentiodynamic Anodic Polarization Resistance. (Author).

  7. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy.

    Science.gov (United States)

    Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M

    2008-12-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.

  8. The EPR detection of radiation treated foodstuffs

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.; Ostrowski, K.; Dziedzic-Goclawska, A.

    1993-01-01

    The short paper by a Polish study group describes the results of the use of Electron Paramagnetic Resonance (EPR) Spectroscopy in the detection of irradiation to food. Pultry, fresh-water fish and sea fish as well as various fruits and yellow boletus are dealt with in some detail. (VHE) [de

  9. Conformational analysis of the partially disordered measles virus N(TAIL)-XD complex by SDSL EPR spectroscopy.

    Science.gov (United States)

    Kavalenka, Aleh; Urbancic, Iztok; Belle, Valérie; Rouger, Sabrina; Costanzo, Stéphanie; Kure, Sandra; Fournel, André; Longhi, Sonia; Guigliarelli, Bruno; Strancar, Janez

    2010-03-17

    To characterize the structure of dynamic protein systems, such as partly disordered protein complexes, we propose a novel approach that relies on a combination of site-directed spin-labeled electron paramagnetic resonance spectroscopy and modeling of local rotation conformational spaces. We applied this approach to the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) both free and in complex with the X domain (XD, aa 459-507) of the viral phosphoprotein. By comparing measured and modeled temperature-dependent restrictions of the side-chain conformational spaces of 12 SL cysteine-substituted N(TAIL) variants, we showed that the 490-500 region of N(TAIL) is prestructured in the absence of the partner, and were able to quantitatively estimate, for the first time to our knowledge, the extent of the alpha-helical sampling of the free form. In addition, we showed that the 505-525 region of N(TAIL) conserves a significant degree of freedom even in the bound form. The latter two findings provide a mechanistic explanation for the reported rather high affinity of the N(TAIL)-XD binding reaction. Due to the nanosecond timescale of X-band EPR spectroscopy, we were also able to monitor the disordering in the 488-525 region of N(TAIL), in particular the unfolding of the alpha-helical region when the temperature was increased from 281 K to 310 K. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Moessbauer and EPR studies on iron-dihydroxybenzoic acid and iron-itoic acid chelate complexes

    International Nuclear Information System (INIS)

    Bagyinka, Cs.; Horvath, L.I.; Keszthelyi, L.

    1984-01-01

    Low molecular weight iron-dihydroxybenzoic acid and iron-itoic acid complexes were investigated by Moessbauer and EPR spectroscopy. In strong acidic medium the iron is chelated in high spin ferrous form. By varying the pH of the medium a (S=2)Fesup(2+)→(S=5/2)Fesup(3+) transition was found with a midpoint pH value of 4. From the g'-tensor anisotropy it is concluded that the metal atom is coordinated by six oxygen atoms in rhombically distorted octahedral configuration. The biological significance of these structural data is briefly discussed. (author)

  11. Raman and EPR spectroscopic studies of chromium-doped diamond-like carbon films

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Vorlíček, Vladimír; Prokhorov, Andriy; Kalabukhova, E.; Lančok, Ján; Jelínek, Miroslav

    2018-01-01

    Roč. 83, Mar (2018), s. 30-37 ISSN 0925-9635 R&D Projects: GA MŠk(CZ) LO1409; GA MŠk(CZ) LM2015088; GA ČR(CZ) GA15-05864S Institutional support: RVO:68378271 Keywords : EPR * micro-Raman spectroscopy * diamond-like films * carbon-related defects * chromium Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.561, year: 2016

  12. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    Science.gov (United States)

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  13. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  14. Comparative study between two austenitic steels with the EPR (Electrochemical Potentiokinetic Reactivation) technique

    International Nuclear Information System (INIS)

    Guillen M, A.N.

    1997-01-01

    In the mid 19704s, the intergranular corrosion with stress corrosion cracking (IGSCC) have been identified as a greater problem in Boiling Water Reactors BWR in several places of the world. The Electrochemical Potentiokinetic Reactivation - Single Loop (EPR-SL) test and the Double Loop (EPR-DL) test, were developed as methods for measuring the Degree of Sensitization (DOS), show sensitised materials at subject to Intergranular Corrosion. In Mexico, the Laguna Verde4s reactor is BWR type and many of its principal components was built with AISI 304 stainless steels, while that in VVER reactors as well as Juragua4s reactor in Cuba is used 321 Stainless stell in its Russian equivalent designation 08Ch18N10T. In this work, were studied 304 and 08Ch18N10T stainless steels by means of EPR-SL, EPR-DL and ASTM A-262 techniques, they have been found a good correlation for 304 steel but not in 08Ch18N10T steel and was proposed one modification in the criterion by the evaluation on the sensitisation in this steels. Finally, both materials were welded with procedures used in the nuclear industry, by Slow Strain Rate Test (SSRT) to determine the Stress Corrosion Cracking SCC susceptibility, and subsequently the susceptibility to localized corrosion was studied by means of Cyclic Polarization test and the uniform corrosion rate in a solution with chlorides by the Tafel plot, Potentiodynamic Anodic Polarization Resistance. (Author)

  15. EPR Dosimetry for ageing effect in NPP

    International Nuclear Information System (INIS)

    Choi, Hoon; Lim, Young Ki; Kim, Jong Seog; Jung, Sun Chul

    2005-01-01

    As one of the retrospective dosimetry method, EPR spectroscopy has been studied by many research up to theses days. As a dosimeter for EPR spectroscopy, Alanine is already a well known dosimeter in the field of radiation therapy and dose assessment in radiological accident by its characteristics as good linearity in a wide range of energy level and extremely low signal fading on time. Through technical document of IAEA, the EPR dosimetry method using alanine sample was published in 2000 after research by coordinated project on management of ageing of in-containment I and C cables. Although alanine sample is regarded as a good EPR dosimeter like above ageing assessment field, actually the assessment of radiation should be done at least for two fuel cycles, because of its relatively low irradiation environment in almost all spots in power plant. So, for getting more accurate detection value of radiation, another material is tested for being put in simultaneously inside the power plant with alanine. The test result for lithium formate monohydrate (HCO 2 LiH 2 0) was presented below for checking its possibility for being applied as EPR dosimeter for this project

  16. Epr, structural characteristics and intramolecular movements of some phenoxyl radicals in toluene

    OpenAIRE

    Nizameev, I.; Pudovkin, M.; Kadirov, M.

    2010-01-01

    The method of electron paramagnetic resonance (EPR) spectroscopy was used for studying magnetic and dynamic properties of phenoxyl radicals in toluene at 170-370 K. Characteristics of intramolecular motion and structure of phenoxyl radicals were determined from the temperature dependence of EPR spectra. For all the given compounds the activation energies of transitions between the conformers were calculated.

  17. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    Science.gov (United States)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  18. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  19. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  20. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies.

    Science.gov (United States)

    Prior, C; Danilāne, L; Oganesyan, V S

    2018-05-16

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.

  1. Optical and EPR studies of barium alumino borate glasses containing Cu2+ ions

    Science.gov (United States)

    Ahmed, Mohamad Raheem; Phani, A. V. Lalitha; Narsimha Chary, M.; Shareefuddin, Md.

    2018-05-01

    Glass containing Cu2+ ions in (30-x) BaO-xAl2O3-69.5B2O3-0.5CuO (0 ≤ x ≤ 15 mol %) were prepared by the conventional melt quenching technique. Peak free X-ray diffractograms confirmed the amorphous nature of the glass samples. Spectroscopic studies such as optical absorption, EPR were studied to understand the effect of modifier oxide and CuO dopant. From EPR spectra the spin-Hamiltonian parameter were evaluated. The ground state of Cu2+ is dx2-y2 (2B1g state) and the site symmetry around Cu2+ is tetragonally distorted octahedral. A broad optical absorption band was observed for all the glasses containing Cu2+ ions corresponding to the 2B1g → 2B2g transition. The optical band gap and Urbach energy values are calculated.

  2. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    Science.gov (United States)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  3. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    International Nuclear Information System (INIS)

    Biyik, Recep

    2009-01-01

    VO 2+ doped L-alanine (C 3 H 7 NO 2 ) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO 2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO 2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  4. EPR of impurity ions in disordered solids

    International Nuclear Information System (INIS)

    Kliava, J.

    1986-01-01

    The state of the art in the EPR spectroscopy of disordered solids is reviewed and theoretical aspects of the EPR shape in disordered systems are discussed. Emphasis is placed on the concept of the joint probability density of the spin Hamiltonian parameters. A survey of experimental data is provided on distributions of spin Hamiltonian parametes obtained using computer simulation techniques. A quantitative information is given on the short-range ordering in disordered materials available from EPR studies. A procedure of extracting such type of data which consists in a transformation from the distribution of the spin Hamiltonian parameters to that of atomic coordinates in the surrounding of a paramagnetic center is outlined. Numerical estimates of the degree of continuous disorder are reviewed

  5. EPR Oximetry Sensor-Developing a TAM Derivative for In Vivo Studies.

    Science.gov (United States)

    Boś-Liedke, Agnieszka; Walawender, Magdalena; Woźniak, Anna; Flak, Dorota; Gapiński, Jacek; Jurga, Stefan; Kucińska, Małgorzata; Plewiński, Adam; Murias, Marek; Elewa, Marwa; Lampp, Lisa; Imming, Peter; Tadyszak, Krzysztof

    2018-06-01

    Oxygenation is one of the most important physiological parameters of biological systems. Low oxygen concentration (hypoxia) is associated with various pathophysiological processes in different organs. Hypoxia is of special importance in tumor therapy, causing poor response to treatment. Triaryl methyl (TAM) derivative radicals are commonly used in electron paramagnetic resonance (EPR) as sensors for quantitative spatial tissue oxygen mapping. They are also known as magnetic resonance imaging (MRI) contrast agents and fluorescence imaging compounds. We report the properties of the TAM radical tris(2,3,5,6-tetrachloro-4-carboxy-phenyl)methyl, (PTMTC), a potential multimodal (EPR/fluorescence) marker. PTMTC was spectrally analyzed using EPR and characterized by estimation of its sensitivity to the oxygen in liquid environment suitable for intravenous injection (1 mM PBS, pH = 7.4). Further, fluorescent emission of the radical was measured using the same solvent and its quantum yield was estimated. An in vitro cytotoxicity examination was conducted in two cancer cell lines, HT-29 (colorectal adenocarcinoma) and FaDu (squamous cell carcinoma) and followed by uptake studies. The stability of the radical in different solutions (PBS pH = 7.4, cell media used for HT-29 and FaDu cells culturing and cytotoxicity procedure, full rat blood and blood plasma) was determined. Finally, a primary toxicity test of PTMTC was carried out in mice. Results of spectral studies confirmed the multimodal properties of PTMTC. PTMTC was demonstrated to be not absorbed by cancer cells and did not interfere with luciferin-luciferase based assays. Also in vitro and in vivo tests showed that it was non-toxic and can be freely administrated till doses of 250 mg/kg BW via both i.v. and i.p. injections. This work illustrated that PTMTC is a perfect candidate for multimodal (EPR/fluorescence) contrast agent in preclinical studies.

  6. EPR: Evidence and fallacy.

    Science.gov (United States)

    Nichols, Joseph W; Bae, You Han

    2014-09-28

    The enhanced permeability and retention (EPR) of nanoparticles in tumors has long stood as one of the fundamental principles of cancer drug delivery, holding the promise of safe, simple and effective therapy. By allowing particles preferential access to tumors by virtue of size and longevity in circulation, EPR provided a neat rationale for the trend toward nano-sized drug carriers. Following the discovery of the phenomenon by Maeda in the mid-1980s, this rationale appeared to be well justified by the flood of evidence from preclinical studies and by the clinical success of Doxil. Clinical outcomes from nano-sized drug delivery systems, however, have indicated that EPR is not as reliable as previously thought. Drug carriers generally fail to provide superior efficacy to free drug systems when tested in clinical trials. A closer look reveals that EPR-dependent drug delivery is complicated by high tumor interstitial fluid pressure (IFP), irregular vascular distribution, and poor blood flow inside tumors. Furthermore, the animal tumor models used to study EPR differ from clinical tumors in several key aspects that seem to make EPR more pronounced than in human patients. On the basis of this evidence, we believe that EPR should only be invoked on a case-by-case basis, when clinical evidence suggests the tumor type is susceptible. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Ageing effect in nanocrystalline TiCx/C studied by EPR

    International Nuclear Information System (INIS)

    Guskos, N.; Typek, J.; Bodziony, T.; Zolnierkiewicz, G.; Maryniak, M.; Biedunkiewicz, A.

    2009-01-01

    TiC/C nanocrystalline material: titanium carbide TiC dispersed in a carbon matrix has been prepared by a nonhydrolytic sol-gel process. Temperature dependence of the electron paramagnetic resonance (EPR) spectra of this material has been studied in the 3.5-120 K range. Two very different EPR lines have been recorded in fresh sample at temperatures below 120 K arising from the Ti(III) complex (broad and asymmetric line) and conduction electrons (very narrow line). In the same aged sample (1 year old) the magnetic anisotropy of Ti(III) line has increased while a narrow line attributed to conduction electrons has vanished. The existence of the paramagnetic centers connected with trivalent titanium ions could the result of disordering processes. The increase of anisotropy in Ti(III) line could be connected with the oxidation processes. The temperature dependence of the integrated intensity of the broad line revealed the presence of titanium antiferromagnetic dimers. The disappearance of a narrow EPR line suggests that the oxidation process (ageing effect) could influence also the electrical properties of titanium carbide

  8. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    Science.gov (United States)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  9. EPR Study of the Activation of Antioxidants in PP Irradiated with Gamma Rays

    International Nuclear Information System (INIS)

    Silva, P.

    2006-01-01

    The behavior of different formulations of Polypropylene (PP) with stabilizers such as buthyl-hydroxy-toluene (BHT), Chimasorb 944 (Hals) (CHIM), both from Ciba, and a copolymer of styrene-butadiene-styrene (SBS) were studied using electron paramagnetic resonance (EPR). In all the cases but the sample of PP-Hals, a characteristic specta for PP irradiated in air in the recently-irradiated condition was obtained. The lineshape of the signal was changed to that of a pure PP EPR signal as time elapsed and the alkyl radical concentration decreased up to its total disappearance. At that stage, the polyenil radical signal could be visualized better. The total free radical concentration decayed until approximately 800 hours in the PP-Hals and until around 2000 hours in all other cases. At those points, the total free radical concentrations began to increase in all the cases, except in the PP-BHT case. The lineshape was transformed into the lineshape of the Chimasorb radical in all the cases, except for the PP-BHT. In this last case, the EPR signal was not detectable. The BHT and the SBS diluted the free radical concentrations, being them smaller when they are present. The observed behavior in all the samples is consistent with the activation of the Chimasorb radical by gamma radiation

  10. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    Science.gov (United States)

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  11. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    Science.gov (United States)

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  12. An EPR study of the lacquer-type bottle deposits from red wines

    International Nuclear Information System (INIS)

    Troup, G.J.; Hutton, D.R.; Pilbrow, J.R.; Hunter, C.A.; Hewitt, D.G.

    1996-01-01

    Full text: Lacquer-type deposits from 4 naturally aged red wines and one 'artificially', aged wine (by heating for 16 hrs at 84 deg C) were obtained from the Australian Wine Research Institute, Adelaide, and examined by EPR spectroscopy with a Varian E- 12 spectrometer working at ∼ 9.1 GHz The naturally aged wine deposits showed Fe 3+ in a low-symmetry site (g = 4.3), and Cu 2+ in an axial symmetry site (as deduced from the hyperfine structure) showing superhyperfine structure from N nuclei. A strong free radical signal was also present. The artificially aged wine deposit spectrum was similar, except no superhyperfine structure was present. The deposits are known to be anthocyanines cross-linked to a protein. The older the wine, the more intense was the superhyperfine structure, due to copper-amine interaction with the protein. The free radical signal is associated with the anthocyanines

  13. EPR Study of Free Radicals in Cotton Fiber for Its Potential Use as a Fortuitous Dosimeter in Radiological Accidents

    International Nuclear Information System (INIS)

    Sudprasert, W.; Insuan, P.; Khamkhrongmee, S.

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was applied to characterize radiation- induced free radicals in cotton fiber in order to determine the possibility for using cotton as a fortuitous dosimeter in accidental exposures to radiation. Cotton fabrics were irradiated at 0.1, 0.5, 1, 2, 10, 50 and 500 Gy using a 60Co gamma source. The irradiated samples were then stored in the dark under controlled environmental conditions for 1, 15, 35 and 60 days. The EPR spectra were observed in samples using a Bruker EMX X-band spectrometer equipped with a TE102 rectangular cavity. The EPR signal intensities of irradiated samples were determined from peak-to-peak amplitudes of EPR spectra and compared to unirradiated samples. The following optimum parameters were used: modulation frequency,100 kHz; microwave frequency, 9.84 GHz; modulation amplitude, 1.8 mT; microwave power,1.0 mW; time constant, 665 ms; conversion time, 41 ms; and sweep time, 41.98 s. The EPR spectra of unirradiated samples show a singlet line with g = 2.006 due to stable organic radicals pre-existing in the cotton fibers, whereas those of irradiated samples show the same pattern with different signal intensities according to the doses. Irradiation increased the signal intensity in a dose dependent manner. The signal intensity exhibited an exponential decay with storage time from 1 to 60 days. Obviously, the degree of fading of EPR intensity did not depend on the absorbed dose from 0.1-50 Gy. The maximum fading was about 60% at 60 days storage of irradiated samples at all doses. However the post-irradiation signal appeared to be detectable up to 60 days after irradiation. The results indicate the potential of using cotton as a fortuitous dosimeter in radiological accidents.

  14. EPR investigations on technetium compounds

    International Nuclear Information System (INIS)

    Abram, U.; Munze, R.; Kirmse, R.; Stach, J.

    1986-01-01

    Stimulated by the widespread use of the isotope /sup 99m/Tc in the field of nuclear medicine, there has been a substantial growth of interest in the chemistry of this man-made element. A particular need emerges for analytical methods allowing solution investigations of coordination compounds of technetium with low substance use. Considering these facts, Electron Paramagnetic Resonance Spectroscopy (EPR) appears to be a very suitable method because only very small amounts of the compounds are needed (lower than 1 mg). The resulting spectra give information regarding the valence state, symmetry and bonding properties of the compounds under study

  15. Study of iron exchanged zeolites by Moessbauer effect and electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Aguirre Campuzano, C.E.

    1993-01-01

    Crystalline iron exchanged NaY zeolites, prepared from aqueous solutions and calcined at atmospheric conditions, have been studied and characterized by XRD, Moessbauer and EPR spectroscopies and TGA analysis. Three iron sites are clearly distinguished from Moessbauer and EPR measurements. Firstly, characteristic Moessbauer and EPR spectra may arise from framework sites, suggesting that Fe has substituted Al. It is also found that their spectroscopic signals are not intensity affected by thermal treatments. Secondly, a Moessbauer doublet which may arise from octahedral sites in the large cavity of the zeolite, shows however, that this doublet and its EPR signal are intensity temperature affected. An additional line broadening is observed on the low velocity line of this doublet, Thirdly, characteristic Moessbauer and EPR signals, which are also intensity temperature dependent have been associated to accluded material, where the Moessbauer doublet presents the line broadening effect before mentioned. Such line broadening effect may be due to perturbing signals from iron ions in tetrahedral sites. Finally, it has been observed that during calcination of the FeY zeolites, the three characteristic EPR signals for the three iron sites, do not increase at the expenses of the other. A result that may suggest a strong bonding between Fe-site of the Y zeolite, irrespective of the iron source. (Author)

  16. Electron paramagnetic resonance (EPR spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    2013-01-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.

  17. Synthesis and room temperature single crystal EPR studies of a ...

    Indian Academy of Sciences (India)

    Unknown

    Hamiltonian parameters calculated from single crystal rotations are: g ... studies on two nickel complexes with SalX ligands (X = NH, NCH3) have shown the ..... here the positive sign is required for a shell that is less than half-filled and the ...

  18. EPR and optical studies of Cu2+ ions doped in magnesium potassium phosphate hexahydrate single crystals

    International Nuclear Information System (INIS)

    Kripal, Ram; Shukla, Santwana

    2011-01-01

    An electron paramagnetic resonance (EPR) study of Cu 2+ -doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu 2+ are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  19. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    Science.gov (United States)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  20. Pulsed EPR studies of Phosphorus shallow donors in diamond and SiC

    International Nuclear Information System (INIS)

    Isoya, J.; Katagiri, M.; Umeda, T.; Koizumi, S.; Kanda, H.; Son, N.T.; Henry, A.; Gali, A.; Janzen, E.

    2006-01-01

    Phosphorus shallow donors having the symmetry lower than T d are studied by pulsed EPR. In diamond:P and 3C-SiC:P, the symmetry is lowered to D 2d and the density of the donor wave function on the phosphorus atom exhibits a predominant p-character. In 4H-SiC:P with the site symmetry of C 3v , the A 1 ground state of the phosphorus donors substituting at the quasi-cubic site of silicon shows an axial character of the distribution of the donor wave function in the vicinity of the phosphorus atom

  1. EPR study of N+-ion-induced free radical formation in antibiotic-producers

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfen; Chen Ruyi; Gao Juncheng; Zhang Peiling; Ying Hengfeng.

    1995-01-01

    Under the room temperature, electron paramagnetic resonance (EPR) spectrometer was used to study free radical formation in antibiotic-producers in order to investigate antibiotic-producer mutagenic breeding, which were induced by N + ion implanting into antibiotic-producers (e.g., Streptomyces ribosidificus, Streptomyces kanamyceticus and the phage-resistant culture of Streptomyces kanamyceticus). The results show that a lot of free radicals can be induced by N + ion implanting into antibiotic-producers, and the yields of the free radicals increase with implanting dose. The death rate of antibiotic-producers rises due to the increase of N + -ion-induced free radical yields. (author)

  2. The EPR reactor

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Dupuy, Ph.; Gupta, O.; Perez, J.R.; Emond, D.; Cererino, G.; Rousseau, J.M.; Jeffroy, F.; Evrard, J.M.; Seiler, J.M.; Azarian, G.; Chaumont, B.; Dubail, A.; Fischer, M.; Tiippana, P.; Hyvarinen, J.; Zaleski, C.P.; Meritet, S.; Iglesias, F.; Vincent, C.; Massart, S.; Graillat, G.; Esteve, B.; Mansillon, Y.; Gatinol, C.; Carre, F.

    2005-01-01

    This document reviews economical and environmental aspects of the EPR project. The following topics are discussed: role and point of view of the French Nuclear Safety Authority on EPR, control of design and manufacturing of EPR by the French Nuclear Safety Authority, assessment by IRSN of EPR safety, research and development in support of EPR, STUK safety review of EPR design, standpoint on EPR, the place of EPR in the French energy policy, the place of EPR in EDF strategy, EPR spearhead of nuclear rebirth, the public debate, the local stakes concerning the building of EPR in France at Flamanville (Manche) and the research on fourth generation reactors. (A.L.B.)

  3. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility

    International Nuclear Information System (INIS)

    Sercheli, Mauricio da Silva

    1999-01-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er 3+ ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO 4 - , which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  4. The Employment Precariousness Scale (EPRES): psychometric properties of a new tool for epidemiological studies among waged and salaried workers.

    Science.gov (United States)

    Vives, Alejandra; Amable, Marcelo; Ferrer, Montserrat; Moncada, Salvador; Llorens, Clara; Muntaner, Carles; Benavides, Fernando G; Benach, Joan

    2010-08-01

    Despite the fact that labour market flexibility has resulted in an expansion of precarious employment in industrialised countries, to date there is limited empirical evidence concerning its health consequences. The Employment Precariousness Scale (EPRES) is a newly developed, theory-based, multidimensional questionnaire specifically devised for epidemiological studies among waged and salaried workers. To assess the acceptability, reliability and construct validity of EPRES in a sample of waged and salaried workers in Spain. A sample of 6968 temporary and permanent workers from a population-based survey carried out in 2004-2005 was analysed. The survey questionnaire was interviewer administered and included the six EPRES subscales, and measures of the psychosocial work environment (COPSOQ ISTAS21) and perceived general and mental health (SF-36). A high response rate to all EPRES items indicated good acceptability; Cronbach's alpha coefficients, over 0.70 for all subscales and the global score, demonstrated good internal consistency reliability; exploratory factor analysis using principal axis analysis and varimax rotation confirmed the six-subscale structure and the theoretical allocation of all items. Patterns across known groups and correlation coefficients with psychosocial work environment measures and perceived health demonstrated the expected relations, providing evidence of construct validity. Our results provide evidence in support of the psychometric properties of EPRES, which appears to be a promising tool for the measurement of employment precariousness in public health research.

  5. Synthesis, XRD, TEM, EPR, and Optical Absorption Spectral Studies of CuZnO2 Nanocompound

    Directory of Open Access Journals (Sweden)

    T. Ravindra Reddy

    2014-01-01

    Full Text Available Synthesis of nano CuZnO2 compound is carried out by thermal decomposition method. The crystalline phase of the material is characterized by XRD. The calculated unit cell constants are a=3.1 Å and c=3.4786 Å and are of tetragonal structure. The unit cell constants are different from wurtzite (hexagonal which indicate that a nanocompound is formed. Further TEM images reveal that the metal ion is in tetragonal structure with oxygen ligands. The prepared CuZnO2 is then characterized for crystallite size analysis by employing transmission electron microscopy (TEM. The size is found to be 100 nm. Uniform bright rings are noticed in the TEM picture suggesting that the nanocrystals have preferential instead of random orientations. The selected-area electron diffraction (SAED pattern clearly indicates the formation of CuO-ZnO nanocompound. The nature of bonding is studied by electron paramagnetic resonance (EPR. The covalency character is about 0.74 and thus the compound is electrically less conductive. Optical absorption spectral studies suggest that Cu(II is placed in tetragonal elongation crystal field. The spin-orbit coupling constant, λ, is calculated using the EPR and optical absorption spectral results suggest some covalent bond between metal and ligand. Near infrared (NIR spectra are due to hydroxyl and water fundamentals.

  6. The incommensurable phase of K2SeO4 studied by means of EPR

    International Nuclear Information System (INIS)

    Dantas, M.S.S.

    1988-11-01

    The EPR technique was used to study SeO - 4 in K 2 SeO 4 in the temperature range of 130-93K where the crystal presents an incommensurable phase, characterized by the wave vector q-vector = (1 - δ) a * /3. By fitting of line form with EPR the β parameter (critical exponent) could be determined. The found values were: β = 0.33 +- 0.03 and 2 β = 0.58 +- 0.06. A summary of the experimental values of β found in literature is presented. The mean value of these measurements β = 0.347 +- 0.03 fits to the calculated value β = 0.3455 +- 0.0020 for the 3d XY model. It was possible to detect a change in the modulation of the plane wave regime to multisoliton regime through the δ parameter obtained also by fitting of line form. This parameter is related to soliton density (n s ), ''lock-in'' incommensurable transition order parameter. Close to T c , n s does not follow theoretical predictions and saturates in a value different than zero. This result was interpreted as due to mesh defects which fix phase modulation and create metastable states that may lead to a chaotic state between the multisolitons phase and ''lock-in'' phase. (A.C.A.S.) [pt

  7. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    Science.gov (United States)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  8. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    Science.gov (United States)

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  9. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Iwasaki, Akinori; Walczak, Tadeusz; Demidenko, Eugene; Salikov, Ildar; Lesniewski, Piotr; Starewicz, Piotr; Schauer, David; Romanyukha, Alex

    2005-01-01

    There are plausible circumstances in which populations potentially have been exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks, but there is no clear knowledge as to the magnitude of the exposure to individuals. In vivo EPR is a method, perhaps the only such method that can differentiate among doses sufficiently to classify individuals into categories for treatment with sufficient accuracy to facilitate decisions on medical treatment. Individuals with significant risk then can have appropriate procedures initiated immediately, while those without a significant probability of acute effects could be reassured and removed from the need for further medical treatment. In its current state, the in vivo EPR dosimeter can provide estimates of absorbed dose of ±25 cGy in the range of 100->1000 cGy. This is expected to improve, with improvements in the resonator, the algorithm for calculating dose, and the uniformity of the magnetic field. In its current state of development, it probably is sufficient for most applications related to terrorism or nuclear warfare, for decision-making for action for individuals in regard to acute effects from exposure to ionizing radiation

  10. EPR studies of the free radicals generated in gamma irradiated amino acid derivatives

    Science.gov (United States)

    Osmanoğlu, Y. Emre; Sütçü, Kerem

    2017-10-01

    Gamma irradiated powder forms of N-acetyl-DL-aspartic acid, N-carbamoyl-DL-aspartic acid and N-methyl-L-serine were investigated by electron paramagnetic resonance spectroscopy (EPR) at room temperature. In these compounds, the paramagnetic centers formed after irradiation were attributed to the HOOCCH2ĊHCOOH, COOHĊHCHNH and HOCH2ĊHCOOH radicals, respectively. The g values and the hyperfine coupling constants for the radical species are with values of g = 2.0038 ± 0.0005, aα = 2.15 mT, aβ(1) = 3.84 mT and aβ(2) = 2.15 for the first radical, g = 2.0039 ± 0.0005, aα = 1.7 mT, aß(1) = 0.62 mT, aß(2) = 0.54 mT, aγ = 0.53 mT for the second radical and g = 2.0039 ± 0.0005, aβ(1) = 2.40 mT, aβ(2) = 1.83 mT and aα = 1.83 mT for the third radical. The free radicals formed in three compounds were found to be stable for three months at room temperature. It was concluded that, spin density was concentrated predominantly in the 2pπ orbital of the carbon atom.

  11. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    Science.gov (United States)

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge

  12. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    Science.gov (United States)

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  13. EPR and UV spectrometry investigation of sucrose irradiated with carbon particles

    International Nuclear Information System (INIS)

    Karakirova, Yordanka; Yordanov, Nicola D.

    2010-01-01

    Solid state/EPR (SS/EPR) dosimeters of carbon ions irradiated sucrose are studied with EPR, and their water solutions - with UV spectroscopy. Doses between 20 and 200 Gy are used with linear energy transfer (LET) values for carbon ions of 63, 77, 96 and 230 keV μm -1 . After irradiation all samples show typical for irradiated sucrose EPR and UV spectra. The obtained data are compared with those previously reported for nitrogen particles and gamma rays irradiated sucrose. The identical shape of both the EPR and UV spectra of irradiated with various type radiation samples suggests that generated free radicals are not influenced by the nature of radiation. The lack of difference in the line width of the separate lines or the whole EPR spectrum, obtained for gamma and heavy particles irradiation, suggests negligible spin-spin interaction among the radiation-generated free radicals in the samples. The linear dependence of the EPR response on the absorbed dose radiation is found to be higher when generated by gamma rays, than by the same absorbed dose of heavy particles. In addition, the EPR response for carbon ions is higher than that for nitrogen ions. Water solutions of irradiated sucrose exhibit UV spectrum with absorption maximum at 267 nm, attributed to the recombination products of free radicals. The UV band intensity depends on the absorbed dose radiation. The UV spectra obtained for carbon, nitrogen and gamma rays irradiated sucrose are also compared.

  14. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  15. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  16. Photochemical reduction of water-soluble C60 derivatives (EPR study)

    International Nuclear Information System (INIS)

    Brezova, V.; Stasko, A.; Dvoranova, D.; Asmus, K.D.; Guldi, D.M.

    1999-01-01

    The photochemical reduction of three bis-functionalized C 60 derivatives resulted in the formation of a single radical product, characterized by relatively narrow EPR line (g M = 2.0007, pp < 0.02 mT). In the irradiated aqueous solutions containing L-ascorbic acid, in the addition to the EPR line related to bis-adduct mono-anion, also 6-line EPR spectrum of ascorbyl radical was observed. Consequently, the photoinduced formation of ascorbyl radical was attributed to the intermolecular quenching of fullerenes excited states. (authors)

  17. Kinetics of the radicals induced in gamma irradiated sulfafurazole: an EPR study

    International Nuclear Information System (INIS)

    Colak, S.; Korkmaz, M.

    2004-01-01

    The spectroscopic and kinetic features of the radiolytic intermediates produced in gamma irradiated sulfafurazole (SFZ) were investigated at different temperatures in the dose range 5-50 kGy using EPR and IR techniques. The imodiation produced two species (A, B) in SFZ. The heights of the peaks were used to monitor the temperature, time dependent and kinetic features of the radical species contributing to the EPR spectrum. The applicability of EPR technique for monitoring radiosterilization of SFZ is discussed. The radiation yield of solid SFZ was found to be very low (G=0.16), and basing on this it was concluded that SFZ and SFZ containing drugs can be safely sterilized by radiation. The EPR data were used to characterize the contributing radicals produced in gamma irradiated SFZ. No definite difference was observed between unirradiated and irradiated IR spectra of SFZ. (orig.)

  18. Preliminary study on electron paramagnetic resonance (EPR) signal properties of mobile phone components for dose estimation in radiation accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Ha, Wi Ho; Park, Sun Hoo; Lee, Jin Kyeong; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-12-15

    We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by {sup 137}C{sub s} gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity (R{sup 2} > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

  19. Pulsed EPR studies of small reactive radicals produced by ionizing radiation

    International Nuclear Information System (INIS)

    Lawler, R.G.

    1985-01-01

    For several years we have participated in a collaborative research effort to apply the pulsed EPR-pulse radiolysis technique to several problems associated with the dynamics of small reactive radicals formed during radiolysis of aqueous solutions using 3 MeV electrons from a Van de Graaff accelerator. We will discuss experimental techniques and applications arising from this work, with particular emphasis on problems requiring high initial radical concentrations and EPR time resolution of one microsecond or better. 2 figs., 2 tabs

  20. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT)

    Czech Academy of Sciences Publication Activity Database

    Bykov, I. P.; Zagorodniy, A.Y.; Yurchenko, L.P.; Korduban, A.M.; Nejezchleb, K.; Trachevsky, V.V.; Dimza, V.; Jastrabík, Lubomír; Dejneka, Alexandr

    2014-01-01

    Roč. 61, č. 8 (2014), 1379-1385 ISSN 0885-3010 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : lead zirconate titanate ( PZT ) * EPR * NMR * XPS spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.512, year: 2014

  1. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa

    2017-04-15

    Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  3. The measurement of oxygen in vivo using EPR techniques

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  4. HF-EPR, Raman, UV/VIS light spectroscopic, and DFT studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-Barr virus.

    Directory of Open Access Journals (Sweden)

    Ane B Tomter

    Full Text Available Epstein-Barr virus (EBV belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2 is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g₁-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm⁻¹ is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe²⁺ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class.

  5. Individual dose reconstruction among residents living in the vicinity of the Semipalatinsk nuclear test site using EPR spectroscopy of tooth enamel.

    Science.gov (United States)

    Ivannikov, A I; Zhumadilov, Zh; Gusev, B I; Miyazawa, Ch; Jiao, L; Skvortsov, V G; Stepanenko, V F; Takada, J; Hoshi, M

    2002-08-01

    Individual accumulated doses were determined by EPR spectroscopy of tooth enamel for 26 adult persons residing in territories adjacent to the Semipalatinsk Nuclear Test Site (SNTS). The absorbed dose values due to radiation from nuclear tests were obtained after subtracting the contribution of natural background radiation from the total accumulated dose. The determined dose values ranged up to 250 mGy, except for one person from Semipalatinsk city with a measured dose of 2.8 +/- 0.4 Gy. Increased dose values were determined for the individuals whose teeth were formed before 1962, the end of the atmospheric nuclear tests. These values were found to be significantly larger than those obtained for a group of younger residents of heavily exposed territories and the residents of territories not exposed to radioactive fallout. These increased dose values are consistent with those based on officially registered data for the Northeastern part of Kazakstan adjacent to SNTS, which was exposed to high levels of radioactive fallout from nuclear tests in period 1949-1962.

  6. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    Science.gov (United States)

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  7. The sensitivity analysis of tooth enamel to the absorbed dose for the application to EPR dosimetry

    International Nuclear Information System (INIS)

    Hong, Dae Seok; Lee, Kun Jai; Cho, Young Hwan

    2002-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a process that is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. Many techniques can be used to the retrospective dosimetry. As a physical method, EPR analysis of biological material measures the quantity of free radicals generated in the material from the interaction of radiation and material. Since the later 80s, in many countries, EPR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. In the consideration of the biological materials for EPR dosimetry, human fingernail, hair, bone and tooth are generally considered. The tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel shows the best sensitivity to the absorbed dose and is most widely used. In this study, the characteristics of tooth enamel for EPR dosimetry is examined and experimented. At the experiment, for easy separation, tooth was cut into 4 parts and then each part is treated by ultrasonic vibration in NaOH liquid to reduce mechanically induced noise in the corresponding signal. After the separation of the enamel from dentine, background EPR signal is measured and then radiation-induced EPR spectrum is estimated

  8. Solid state radiation chemistry of co-crystallized DNA base pairs studied with EPR and ENDOR

    International Nuclear Information System (INIS)

    Nelson, W.H.; Nimmala, S.; Hole, E.O.; Sagstuen, E.; Close, D.M.

    1995-01-01

    For a number of years, the authors' group has focused on identification of radicals formed from x-irradiation of DNA components by application of EPR and ENDOR spectroscopic techniques to samples in the form of single crystals. With single crystals as samples, it is possible to use the detailed packing and structural information available from x-ray or neutron diffraction reports. This report summarizes results from two crystal systems in which DNA bases are paired by hydrogen bonding. Extensive results are available from one of these, 1-methyl-thymine:9-methyladenine (MTMA), in which the base pairing is the Hoogsteen configuration. Although this configuration is different from that found by Watson-Crick in DNA, nonetheless the hydrogen bond between T(O4) and A(NH 2 ) is present. Although MTMA crystals have been studied previously, the objective was to apply the high-resolution technique of ENDOR to crystals irradiated and studied at temperatures of 10 K or lower in the effort to obtain direct evidence for specific proton transfers. The second system, from which the results are only preliminary, is 9-ethylguanine:1-methyl-5-fluorocytosine (GFC) in which the G:C bases pair is in the Watson Crick configuration. Both crystal systems are anhydrous, so the results include no possible effects from water interactions

  9. EPR spin probe and spin label studies of some low molecular and polymer micelles

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  10. Photoinduced electron transfer to fullerene C70 (An in situ EPR study)

    International Nuclear Information System (INIS)

    Brezova, V.; Dvoranova, D.; Kostova, B.; Stasko, A.

    1999-01-01

    The photoexcitation of fullerene C 70 by monochromatic light (λ = 546 nm) in the presence of electron donating substrate 3,3',5,5'-tetramethyl-benzidine (TMB) resulted in the charge-transfer, quenching the fullerene triplet state and forming corresponding C 70 anion-radicals. Analogously to the photo-reduction of C 60 , two EPR signal were observed upon in situ irradiation in the cavity of EPR spectrometer. EPR singlet A characterized by g-value, g A = 2.0009 and peak-to-peak line-width, pp A = 0.013 mT was assigned to the C 70 mono-anion. Signal B (g B = 2.0011; pp B = 0.011 mT) was tentatively attributed to the C 70 di-anion or to the associated forms of mono-anions. The stabilization of photo-generated anion-radicals significantly depends on solvent polarity. (authors)

  11. EPR study of concentration dependence in Ce, Ce : La and Ce:Y doped SrF2

    NARCIS (Netherlands)

    Dankert, O.; Vainchtein, David; Datema, H.C.; den Hartog, Hendrik

    1995-01-01

    Experimental results of an EPR-study of the concentration dependence of the doubly integrated intensity and linewidth of the signals associated with tetragonal Ce3+-F--dipoles in Sr1-xCexF2+x, Sr-1-0.005-x Ce0.005LaxF2+0.005+x and Sr-1-0.005-x Ce0.005YxF2+0.005+x are presented. Both show a nonlinear

  12. EPR and optical spectroscopic studies of neutral free radicals in an adamantane matrix

    International Nuclear Information System (INIS)

    Jordan, J.E.

    1975-03-01

    Recent work in our laboratory has demonstrated that neutral free radicals produced by x-irradiation and trapped in adamantane exhibit exceedingly long lifetimes because of the lack of rapid diffusion in the solid matrix. This observation and the fact that samples can be pressed into pellets with high optical transparency in the visible and near uv regions of the spectrum suggested to us that this unique matrix might be used for studying the optical properties of free radicals. The results of a wide variety of experiments of this type are described in this thesis. These include experiments in which secondary free radicals are produced by photoinduced decomposition of primary free radicals by selective irradiation with visible light, the observation of strong optical absorption spectra of free radicals at room temperature using a Cary 14 spectrophotometer, the finding that certain free radicals exhibit strong, visible fluorescence when irradiated with uv light, and the discovery that the absorption intensity of multiplicity-forbidden transition in singlet and doublet state species is enhanced relative to spin-allowed transitions by at least three orders of magnitude. An analysis of these results in terms of molecular orbital theory is given, and experiments designed to obtain the epr spectra of electronically-excited states of free radicals are described

  13. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  14. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  15. EPR study of the free radicals in the spices and pigments turmeric and saffron

    International Nuclear Information System (INIS)

    Troup, G.J.; Hutton, D.R.; Hunter, C.A.; Hewitt, D.; Mulinacci, N.; Romani, A.; Giaccherini, K. Anon

    2000-01-01

    Full text: The spices Turmeric (curcuma longa) and Saffron (crocus sativus) have also been used as pigments. The EPR spectrum of each shows a readily detectable free radical signal. EPR spectra of the available pure chief active colorants in solid form also give free radical signals. Curcumin (turmeric) is a 'linear' symmetric phenolic, so is expected to do so. The peptide turmerin (commercially unavailable), containing sulphur, may also contribute to the ESR signal. Crocetin (saffron) is a 'linear' molecule, related to the beta-carotenes, which do not give free radical signals: but it does, presumably because of its particular resonant structure properties

  16. X-ray and EPR study of reactions between B4C and TiO2

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Gonzalez-Rodriguez, J.G.; Dominguez-Patino, M.; Leder, R.

    2006-01-01

    X-ray diffraction and electron paramagnetic resonance (EPR) methods have been used to study the reaction process in a system of 95 wt.% of B 4 C + 5 wt.% TiO 2 . The addition of TiO 2 to B 4 C was effective in accelerating the removal of carbon inclusions. Two types of reactions between B 4 C and TiO 2 , starting at temperatures ∼1173 K, took place: (a) gas-transport exchange and (b) diffusion of Ti atoms into the B 4 C lattice. These reactions modify the number and type of donor centers in the B 4 C. The dependence of EPR line width on the number of donor centers in B 4 C (from conditions of sample treatment) is a useful method for investigating the formation of powders and ceramics based on B 4 C

  17. X-ray and EPR study of reactions between B{sub 4}C and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico)]. E-mail: kakazey@hotmail.com; Vlasova, M. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Gonzalez-Rodriguez, J.G. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Dominguez-Patino, M. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Leder, R. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico)

    2006-02-25

    X-ray diffraction and electron paramagnetic resonance (EPR) methods have been used to study the reaction process in a system of 95 wt.% of B{sub 4}C + 5 wt.% TiO{sub 2}. The addition of TiO{sub 2} to B{sub 4}C was effective in accelerating the removal of carbon inclusions. Two types of reactions between B{sub 4}C and TiO{sub 2}, starting at temperatures {approx}1173 K, took place: (a) gas-transport exchange and (b) diffusion of Ti atoms into the B{sub 4}C lattice. These reactions modify the number and type of donor centers in the B{sub 4}C. The dependence of EPR line width on the number of donor centers in B{sub 4}C (from conditions of sample treatment) is a useful method for investigating the formation of powders and ceramics based on B{sub 4}C.

  18. EPR and Bell Locality

    OpenAIRE

    Norsen, Travis

    2004-01-01

    A new formulation of the EPR argument is presented, one which uses John Bell's mathematically precise local causality condition in place of the looser locality assumption which was used in the original EPR paper and on which Niels Bohr seems to have based his objection to the EPR argument. The new formulation of EPR bears a striking resemblance to Bell's derivation of his famous inequalities. The relation between these two arguments -- in particular, the role of EPR as part one of Bell's two-...

  19. A high-frequency EPR study of a new S = 10 Mn12 single-molecule magnet

    Science.gov (United States)

    Anderson, Norm

    2005-03-01

    We will present a detailed angle-resolved high-frequency EPR study of a recently discovered analog of the Mn12-acetate single-molecule magnet (SMM). Like the acetate, the new complex [Mn12O12(O2CCH2Bu^t)16(CH3OH)4].CH3OH (Mn12-tBuAc), possesses a spin S = 10 ground state and S4 site symmetry. Magnetic measurements also reveal the usual resonant magnetization tunneling steps in the low temperature hysteresis loops. However, we show that the solvent-disorder-induced anomalies reported in the EPR spectra for Mn12-acetate^1 are absent for Mn12-tBuAc. This suggests that Mn12-tBuAc is intrinsically cleaner, and that detailed studies of this compound may reveal important new information concerning the quantum dynamics of large spins. Indeed, our analysis of the EPR line widths suggest that they are close to the intrinsic lifetime broadened limit, which may make it possible to extract information concerning electronic relaxation times (T1 and T2). ^1S. Takahashi et al., Phys. Rev. B 70, 094429 (2004)

  20. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    Science.gov (United States)

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations.

    Science.gov (United States)

    Levy, Ariel R; Turgeman, Meital; Gevorkyan-Aiapetov, Lada; Ruthstein, Sharon

    2017-08-01

    Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer. © 2017 The Protein Society.

  2. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    International Nuclear Information System (INIS)

    Schauer, D.A.; Links, J.M.; Desrosiers, M.F.; Le, F.G.; Seltzer, S.M.

    1994-01-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar open-quotes apparentclose quotes energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and 137 Cs (662 keV) and 60 Co (1250 keV) γ rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the α = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs

  3. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N1,N4-di(salicylidene)-isothiosemicarbazides

    International Nuclear Information System (INIS)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-01-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N 1 ,N 4 -di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic μ-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O 2 bond is discussed

  4. Study on Energy Productivity Ratio (EPR) at palm kernel oil processing factory: case study on PT-X at Sumatera Utara Plantation

    Science.gov (United States)

    Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.

    2018-02-01

    The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.

  5. Quantitative determination of charge transfer parameters of photorefractive BaTiO3:Rh from EPR-based defect studies

    International Nuclear Information System (INIS)

    Veber, C; Meyer, M; Schirmer, O F; Kaczmarek, M

    2003-01-01

    Optical absorption bands can be used as fingerprints of defects and their charge states in insulators and semiconductors. On the basis of the photochromicity usually shown by such materials, a method is introduced by which the optical bands are assigned to the defects and their charge states. It is based on simultaneous measurements of the light-induced changes of the optical absorption and of the corresponding EPR signals. Moreover, indirectly optical bands of EPR-silent defects can also be labelled in this way, strongly widening the scope of EPR based defect studies. We apply this method to the infrared-sensitive photorefractive system BaTiO 3 :Rh, where illumination leads to recharging among the valence states Rh 5+ , Rh 4+ and Rh 3+ . The values of all parameters governing the charge transfers responsible are inferred from the magnitude of the absorption bands, the absolute determination of their absorption cross-sections and the kinetics of the absorption changes under illumination. In contrast to previous investigations, these parameters are deduced independently of photorefractive measurements

  6. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    Science.gov (United States)

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  7. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    Science.gov (United States)

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  8. Pulsed EPR Spin-probe study of intracellular glasses in seed and pollen

    NARCIS (Netherlands)

    Buitink, J.; Dzuba, S.A.; Hoekstra, F.A.; Tsvetkov, Y.D.

    2000-01-01

    EPR spectra of 3-carboxy-proxyl (CP) in dry biological tissues exhibited a temperature-dependent change in the principal value A′zz of the hyperfine interaction tensor. The A′zz value changed sharply at a particular temperature that was dependent on water content. At elevated water contents, the

  9. The analogy in the formation of hardness salts and gallstones according to the EPR study

    Science.gov (United States)

    Pichugina, Alina; Tsyro, Larisa; Unger, Felix

    2017-11-01

    The article shows that the hardness salts contain the same crystalline phases as the bile stone pigment. The identity of EPR spectra of hardness salts and pigment of gallstones containing calcium carbonate was established. An analogy between the processes of formation of hardness salts and gallstones is played, in which particles with open spin-orbitals (fermions) play a decisive role.

  10. EPR safety. Consideration of the internal and external hazards in the safety studies

    International Nuclear Information System (INIS)

    Gueguin, H.

    2008-04-01

    The author presents the main points of the Preliminary Safety Report of EDF on the EPR reactor safety. It concerns the considerations of the internal (fire, flood, explosions, pipes failures) and external (earthquakes, airplane falls, explosions, exceptional natural disasters, extreme meteorological conditions) damages. It presents how the safety report takes into account the aggression. (A.L.B.)

  11. Study of EPR spectra of radicals from ionizing radiation interaction with alanine and 4-hydroxyproline samples

    International Nuclear Information System (INIS)

    Simion, Corina Anca; Georgescu, Rodica; Grigorescu, Eric Leon

    2006-01-01

    A number of stable chemical radicals result following irradiation with ionizing rays of α-β-alanine and 4-hydroxyproline. They could be put into evidence using post-irradiation EPR technique. Analysis and inter-comparison of spectra signals become important for a correct assignment of structure and, subsequently of generating mechanisms in amino acids irradiated samples. (author)

  12. Combined use of EPR and 23Na MAS NMR spectroscopy for assessing the properties of the mixed cobalt-nickel-manganese layers of P3-NayCo1-2xNixMnxO2.

    Science.gov (United States)

    Kalapsazova, M; Ivanova, S; Kukeva, R; Simova, S; Wegner, S; Zhecheva, E; Stoyanova, R

    2017-10-11

    Knowledge on the formation of mixed transition metal layers on lithium and sodium transition metal oxides, Li/Na(Co,Ni,Mn,)O 2 , determines the ability to control their electrochemical properties as electrode materials in alkaline ion batteries. Taking this into account, herein we combine the EPR and 23 Na MAS NMR spectroscopic techniques to gain insights into the structural peculiarities of the mixed cobalt-nickel-manganese layers of Na y Co 1-2x Ni x Mn x O 2 with a three-layer stacking (P3-type) structure. Two types of compositions are examined where diamagnetic Co 3+ and paramagnetic Ni 3+ and Mn 4+ are stabilized: Na 2/3 Co 1/3 Ni 1/3 Mn 1/3 O 2 and Na 1/2 Ni 1/2 Mn 1/2 O 2 . EPR spectroscopy operating in the X- and Q-band region is applied with an aim to improve the spectra resolution and, on the other hand, to provide straightforward information on the coordination of the transition metal ions inside the layers. The analysis of EPR spectra is based on the reference for the Mn 4+ and Ni 2+ ions occurring simultaneously in oxides with two layer stacking, P2-Na 2/3 Ni 1/3 Mn 2/3 O 2 . Complementary to EPR, 23 Na MAS NMR spectroscopy at high spinning rates is undertaken to assess the local structure of the Na nucleus in the layered P3-Na y Co 1-2x Ni x Mn x O 2 oxides. All results are discussed taking into account the EPR and NMR data for the well-known lithium analogues O3-LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and O3-LiNi 1/2 Mn 1/2 O 2 . Finally, the structure peculiarities of the transition metal layers extracted from the EPR and NMR methods are demonstrated by electrochemical intercalation of Li + ions into P3-Na y Co 1-2x Ni x Mn x O 2 .

  13. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  14. A study on the retrospective dosimetry using electron paramagnetic resonance spectroscopy of tooth enamel

    International Nuclear Information System (INIS)

    Hong, Dae Seok

    2004-02-01

    Retrospective dosimetry is a process that is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. Dose reconstruction may be required in a variety of situations such as acute accidental exposure, suspected chronic overexposure and reassessment of occupational exposure. The techniques for retrospective can be classified as biological method and physical method. As a distinct physical technique for dose reconstruction, EPR (Electron Paramagnetic Resonance) or ESR (Electron Spin Resonance) dosimetry has been widely used. In EPR dosimetry, electrons generated by the interaction of material with radiation and trapped in lattice are measured by microwave absorption spectroscopy. Among the materials used for EPR dosimetry, tooth enamel has a high sensitivity for ionising radiation and since the tooth follows the carrier in all situations, it can act as a lifetime-dosimeter. And it is considered as one of the important biological samples. In many countries, there have been a lot of studies and practical applications on EPR dosimetry with tooth enamel. This technique has been applied for A-bomb survivors, Techa riverside population, Chernobyl cleanup workers and so on. Also there were two times of international comparison of the results of EPR dosimetry with tooth enamel in 1996 and 2000 respectively. But the experts have yet to reach a consensus on the best method. So, a lot of methods have been used for the separation of enamel from teeth and this may influence the dose evaluation. With the factors affecting EPR spectrum, this can effect on the results of dose reconstructed. In this study, factors affecting the EPR spectrum of tooth are experimented first. Anisotropy of radiation induced CO 2 - radical is negligible at low doses, but it become important at high doses. It can induce errors in dose estimation up to 40% at dose range of 5Gy. So, crushing process is essential in dose estimation. But, since sample grinding can

  15. An X- and Q-band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1-xFexO

    Science.gov (United States)

    Misra, Sushil K.; Andronenko, S. I.; Thurber, A.; Punnoose, A.; Nalepa, A.

    2014-08-01

    EPR studies on two types of nanoparticles of Fe3+ doped, 0.1-10%, ZnO, NL and QJ, prepared using similar chemical hydrolysis methods, in diethylene glycol, and in denatured ethanol solutions, respectively, were carried out at X-band (~9.5 GHz) at 77 K and at Q-band (~34.0 GHz) at 10, 80, and 295 K. To interpret the experimental results, EPR spectra were simulated by exact diagonalization of the spin-Hamiltonian matrix to identify the Fe ions at different magnetically active sites in these samples. The simulation for NL samples revealed that they contained (i) Fe3+ ions, which substituted for Zn ions, the zero-field splitting (ZFS) parameter which has a large distribution over the sample due to oxygen vacancies in the second coordination sphere; (ii) EPR signal from surface oxygen defects; and (iii) ferromagnetically (FM) coupled Fe ions with concentration of Fe more than 1%. The EPR spectra for QJ samples are very different from those for NL samples, exhibiting only rather intense FM EPR lines. The FM and EPR spectra in NL and/or QJ samples are found to vary strongly with differences in the surface morphology of nanoparticles.

  16. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  17. Study of dinosaur's egg shell by EPR method; Issledovaniya metodom EhPR skorlupy yaits dinozavrov

    Energy Technology Data Exchange (ETDEWEB)

    Tleuberdina, R A; Nasirov, R N

    1998-07-01

    Two varieties of calcium carbonate are defined on base of ESR spectra radiation-inducted signals containing in mollusc shell and dinosaur and ostrich egg shell; their spectral characters are studied by infrared-spectroscopy methods and X-ray analysis. Possibility of correlation between ESR signals intensity of CO{sub 2}-radical of investigated object and geological age is determined. (author)

  18. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study.

    Science.gov (United States)

    Blaskó, Ágnes; Gazdag, Zoltán; Gróf, Pál; Máté, Gábor; Sárosi, Szilvia; Krisch, Judit; Vágvölgyi, Csaba; Makszin, Lilla; Pesti, Miklós

    2017-02-01

    The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.

  20. EPR spectra of synthetic, and natural Australian opals - A pilot study

    International Nuclear Information System (INIS)

    Hutton, D.R.; Troup, G.J.

    1996-01-01

    Full text: The EPR spectra of some synthetic opals, and of some Australian natural opals of various provenance, have been obtained, with the use of a Varian E-12 EPR spectrometer operating at ∼9.2 Ghz. The synthetic opals, from Swiss Gilson showed here a broad ESR signal in the g =2 region, with little identifiable structure . The natural Australian opals from Coober Pedy, Lightning Ridge, and Mintabie all showed the clear presence of Fe 3+ , Mn 2+ and a free radical like signal, suspected to be localised on an Al atom. Examples of the various spectra will be presented. It is not yet certain how the spectra correlate with provenance, but the synthetic spectra are quite different from the natural ones

  1. An EPR and antioxidant efficiency study of the pinebark phenolic extracts pycnogenol (R) and endogenol

    International Nuclear Information System (INIS)

    Cheah, I.; Langford, S.J.

    2004-01-01

    Full text: Pycnogenol (R) is a phenolic extract of French Maritime Pine bark: the name was invented by Jack Masquelier, a noted researcher into phenolic antioxidant activity, but is now owned by the Company Horphag. Endogenol is a New Zealand phenolic extract of Pinus Radiata bark: both products are sold as dietary supplements. EPR and antioxidant efficiency measurements were made on both. The EPR signal from Endogenol was stronger than that from Pycnogenol (R), but the antioxidant efficiencies were almost the same, at slightly more than 50% that of vitamin C as measured by the technique used, already described by these same authors in: I. Cheah et al, ( 2003), AIM- digest 12,(l) 14-15. It is not only useful, but necessary to check such dietary supplements for their claimed contents and actions. Samples were kindly supplied by the manufacturers

  2. High-field EPR on membrane proteins - crossing the gap to NMR.

    Science.gov (United States)

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. EPR study of interactions in the MoOCl3 - diethyl dithiophosphate - diethylamine system

    International Nuclear Information System (INIS)

    Larin, G.M.; Minin, V.V.

    2004-01-01

    By the method of EPR in MoOCl 3 -DDFH-DEta system when reagents ration is 1:1:>3 formation of a new molybdenum(V) imidocomplex in situ solution is detected. Composition and structure of a new molybdenum(V) imidocomplex - composition is MoNRCl(DDF) 3 (DDFH), coordination number is 7, structure is pentagonal bipyramid - are determined using analysis of additional superfine structure from atoms of ligands forming coordination sphere of molybdenum(V) imidocomplex [ru

  4. EPR study of the reactions of tumour and normal tissues under ionizing radiation

    International Nuclear Information System (INIS)

    Rikhireva, G.T.; Pulatova, M.K.; Turganov, M.M.; Pal'mina, N.P.; Burlakova, E.B.

    1978-01-01

    Data on the EPR spectrum characteristics of irradiated tissues of tumour-free animals and animals with tumour are presented. Mice of the Csub(3)Hsub(A) line were used in the experiments. Hepatoma was subcutaneously transplanted with the suspension of tumour tissue reduced to fragments. Animals were killed in 6-8 days after transplantation and in the case of tumour-free animals liver was immediately isolated while in the case of animals with tumour isolated were liver and tumour. Tissues cut with scissors were frozen in liquid nitrogen. Tissue samples were exposed to 60 Co at 1 Mrad dose and -196 deg C. On the base of the data it has been concluded: firstly, there are differences between the EPR spectra of normal and tumour tissue samples irradiated at -196 deg C. Asymmetryc signal with Δ H=Ge and g=2.0005 (''tumour signal'') is typical only for the EPR spectra of tumour and liver tissues of the animal with tumour. Thus, in the -author's opinion, irradiation use turns out to be useful for detecting the difference between the normal and tumour tissues. Secondly, ''tumour signal'' intensity changes after ionol incorporation into animal organism, used as a modificator of tissue sensitivity to the irradiation effect

  5. EPR and optical studies of Cu{sup 2+} ions doped in magnesium potassium phosphate hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram; Shukla, Santwana, E-mail: ram_kripal2001@rediffmail.com, E-mail: shukla.santwana@gmail.com [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India)

    2011-03-15

    An electron paramagnetic resonance (EPR) study of Cu{sup 2+}-doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu{sup 2+} are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  6. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  7. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  8. An X- and Q-band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1−xFexO

    International Nuclear Information System (INIS)

    Misra, Sushil K.; Andronenko, S.I.; Thurber, A.; Punnoose, A.; Nalepa, A.

    2014-01-01

    EPR studies on two types of nanoparticles of Fe 3+ doped, 0.1–10%, ZnO, NL and QJ, prepared using similar chemical hydrolysis methods, in diethylene glycol, and in denatured ethanol solutions, respectively, were carried out at X-band (∼9.5 GHz) at 77 K and at Q-band (∼34.0 GHz) at 10, 80, and 295 K. To interpret the experimental results, EPR spectra were simulated by exact diagonalization of the spin-Hamiltonian matrix to identify the Fe ions at different magnetically active sites in these samples. The simulation for NL samples revealed that they contained (i) Fe 3+ ions, which substituted for Zn ions, the zero-field splitting (ZFS) parameter which has a large distribution over the sample due to oxygen vacancies in the second coordination sphere; (ii) EPR signal from surface oxygen defects; and (iii) ferromagnetically (FM) coupled Fe ions with concentration of Fe more than 1%. The EPR spectra for QJ samples are very different from those for NL samples, exhibiting only rather intense FM EPR lines. The FM and EPR spectra in NL and/or QJ samples are found to vary strongly with differences in the surface morphology of nanoparticles. - Highlights: • X and Q band EPR studies on NL and QJ nanoparticles of Fe 3+ doped ZnO at 10, 80, and 295 K. • Fe ions are present at different magnetically active sites in these samples. • NL samples consist of paramagnetic Fe 3+ ions, and ferromagnetically coupled Fe ions. • QJ samples exhibit only intense ferromagnetic lines, different from QJ. • Spectra vary strongly with the surface morphology of nanoparticles

  9. EPR and optical absorption study of Cu{sup 2+} doped lithium sulphate monohydrate (LSMH) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, K. Juliet; Subramanian, P., E-mail: psubramaniangri@gmail.com [Department of Physics, Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India); Krishnan, S. Radha; Shanmugam, V. M. [CSIR-Central Electrochemical Research Institute, Karaikudi-63006, Tamilnadu (India)

    2016-05-23

    EPR study of Cu{sup 2+} doped NLO active Lithium Sulphate monohydrate (Li{sub 2}SO{sub 4.}H{sub 2}O) single crystals were grown successfully by slow evaporation method at room temperature. The principal values of g and A tensors indicate existence of orthorhombic symmetry around the Cu{sup 2+} ion. From the direction cosines of g and A tensors, the locations of Cu{sup 2+} in the lattice have been identified as interstitial site. Optical absorption confirms the rhombic symmetry and ground state wave function of the Cu{sup 2+} ion in a lattice as d{sub x2-y2}.

  10. Pulsed EPR analysis of tooth enamel samples exposed to UV and {gamma}-radiations

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M., E-mail: marrale@unipa.it [Dipartimento di Fisica, Universita di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania, Italy and Unita CNISM, Palermo (Italy); Longo, A.; Brai, M. [Dipartimento di Fisica, Universita di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania (Italy) and Unita CNISM, Palermo (Italy); Barbon, A.; Brustolon, M. [Dipartimento di Scienze Chimiche, Universita degli Studi di Padova, Via Marzolo 1, 35131 Padova (Italy); Fattibene, P. [Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2011-09-15

    The electron paramagnetic resonance (EPR) spectroscopy is widely applied for retrospective dosimetric purposes by means of quantitative detection of radicals in tooth enamel and bone samples. In this work we report a study by cw and pulsed EPR on two samples of human tooth enamel respectively irradiated by UV (254 nm) and {gamma}-exposed. The continuous wave (cw) EPR spectra have shown the usual presence in both samples of two types of CO{sub 2}{sup -} radicals, with axial and orthorombic g tensors. We have obtained the electron spin echo detected EPR (ED-EPR) spectra at 80 K of the two samples, and we have shown that they are suitable to mark the difference between the effects produced by the different irradiations. At low temperature the contribution to the ED-EPR spectrum of the mobile radical with the axial g tensor is still present in the UV irradiated sample, but not in the {gamma}-irradiated one, where its dynamics is too slow to average the g tensor. We have moreover studied the two-pulse electron spin echo decay on varying the microwave power, a well established method for measuring the Instantaneous Diffusion. We have found that the spectral diffusion parameter is almost the same for both radiation types, whereas the Instantaneous Diffusion is significantly larger for {gamma}-exposed samples than for UV irradiated ones. This difference is due to a higher local microscopic concentration of free radicals for samples irradiated with {gamma} photons.

  11. EPR study of the coordination sphere of Mo5+ ions in UV-irradiated silica-supported molybdenum catalysts

    International Nuclear Information System (INIS)

    Canose, B.; Gonzalez-Elipe, A.R.; Che, M.

    1991-01-01

    The determination of the number of coordination vacancies existing at transition metal cations at the surface of bulk or supported oxides is of greater interest in relation to the adsorption and catalytic properties of such systems. In the case of paramagnetic cations, the authors have developed a method consisting of the recording of their first and third derivative EPR spectra after adsorption of 13 CO, ( 13 C, I = 1/2). In this way, the 13 C superhyperfine structure which is normally observed permits the determination of the number of CO molecules bonded to the metal center. In a recent EPR work published in this journal, Seyedmonir and Howe have reported the formation of a CO adduct of the tetrahedral Mo 5+ -OH - species formed by UV-irradiation at 20 K of a MoO 3 /SiO 2 catalyst in the presence of H 2 . In that work, although the structure of such an adduct could not be derived unambiguously on the basis of the g tensor values, the coordination of the Mo 5+ ion by two CO molecules was suggested. This would be in agreement with the previous results with thermally reduced V 2 O 5 /SiO 2 and MoO 3 /SiO 2 catalysts, where the coordination of, respectively, V 4+ and Mo 5+ tetrahedral centers by two CO molecules was proven by means of the combined use of 13 CO and third derivative EPR spectra. In the present work, using this approach, they have studied the structure of these Mo 5+ ions photochemically generated on MoO 3 /SiO 2 catalysts and concluded that only one CO molecule is bonded to the paramagnetic ion

  12. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, Nicola D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)], E-mail: ndyepr@bas.bg; Aleksieva, Katerina [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2009-03-15

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 deg. C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048{+-}0.0005 before irradiation. Irradiation gives rise to typical 'cellulose-like' EPR spectrum featuring one intensive line with g=2.0048{+-}0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs-Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  13. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-01-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 deg. C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical 'cellulose-like' EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs-Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs

  14. Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR

    Science.gov (United States)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2009-03-01

    The results of electron paramagnetic resonance (EPR) study on fresh fruits (whole pulp of pears, apples, peaches, apricots, avocado, kiwi and mango) before and after gamma-irradiation are reported using two drying procedures before EPR investigation. In order to remove water from non-irradiated and irradiated samples of the first batch, the pulp of fresh fruits is pressed, and the solid residue is washed with alcohol and dried at room temperature. The fruits of the second batch are pressed and dried in a standard laboratory oven at 40 °C. The results obtained with both drying procedures are compared. All samples under study show a singlet EPR line with g=2.0048±0.0005 before irradiation. Irradiation gives rise to typical "cellulose-like" EPR spectrum featuring one intensive line with g=2.0048±0.0005 and two very weak satellite lines situated 3 mT at left and right of the central line. Only mango samples show a singlet line after irradiation. The fading kinetics of radiation-induced EPR signal is studied for a period of 50 days after irradiation. When the irradiated fruit samples are stored in their natural state and dried just before each EPR measurement, the satellite lines are measurable for less than 17 days of storage. Irradiated fruit samples, when stored dried, lose for 50 days ca. 40% of their radiation-induced radicals if treated with alcohol or ca. 70% if dried in an oven. The reported results unambiguously show that the presence of the satellite lines in the EPR spectra could be used for identification of radiation processing of fresh fruits, thus extending the validity of European Protocol EN 1787 (2000). Foodstuffs—Detection of Irradiated Food Containing Cellulose by EPR Spectroscopy. European Committee for Standardisation. Brussels for dry herbs.

  15. Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling.

    Science.gov (United States)

    Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge

    2009-06-01

    Double electron-electron resonance (DEER) was applied to determine nanometre spin-spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes' positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.

  16. Nitroxide free radical clearance in the live rat monitored by radio-frequency CW-EPR and PEDRI

    International Nuclear Information System (INIS)

    Alecci, Marcello; Seimenis, Ioannis; McCallum, Stephen J.; Lurie, David J.; Foster, Margaret A.

    1998-01-01

    The use of RF (100 to 300 MHz) PEDRI and CW-EPR techniques allows the in vivo study of large animals such as whole rats and rabbits. Recently a PEDRI instrument was modified to also allow CW-EPR spectroscopy with samples of similar size and under the same experimental conditions. In the present study, this CW-EPR and PEDRI apparatus was used to assess the feasibility of the detection of a pyrrolidine nitroxide free radical (2,2,5,5,-tetramethylpyrrolidine-1-oxyl-3-carboxylic acid, PCA) in the abdomen of rats. In particular, we have shown that after the PCA administration (4 mmol kg -1 b.w.): (i) the PCA EPR linewidth does not show line broadening due to concentration effects; (ii) a similar PCA up-take phase is observed by EPR and PEDRI; and (iii) the PCA half-lives in the whole abdomen of rats measured with the CW-EPR (T 1/2 =26±4 min, mean±sd, n=10) and PEDRI (T 1/2 =29±4 min, mean±sd, n=4) techniques were not significantly different (p>0.05). These results show, for the first time, that information about PCA pharmacokinetics obtained by CW-EPR is the same as that from PEDRI under the same experimental conditions. (author)

  17. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe{sub 3}O{sub 4} nanoparticles: An EPR and XRF study

    Energy Technology Data Exchange (ETDEWEB)

    Gamarra, L.F. [Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05651-901 (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil)], E-mail: lgamarra@if.usp.br; Pontuschka, W.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Amaro, E. [Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05651-901 (Brazil); Instituto de Radiologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-001 (Brazil); Costa-Filho, A.J. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil); Brito, G.E.S. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Vieira, E.D. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil); Carneiro, S.M. [Laboratorio de Biologia Celular, Instituto Butantan, Sao Paulo 05503-900 (Brazil); Escriba, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Falleiros, A.M.F. [Centro de Ciencias Biologicas, Universidade Estadual de Londrina 86051-990 (Brazil); Salvador, V.L. [Centro de aplicacoes e Lasers, IPEN, Sao Paulo 05508-000 (Brazil)

    2008-05-01

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem{sup TM}, based on dextran-coated Fe{sub 3}O{sub 4} nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 {+-} 0.6) min measured by EPR and (12.6 {+-} 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism.

  18. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study

    International Nuclear Information System (INIS)

    Gamarra, L.F.; Pontuschka, W.M.; Amaro, E.; Costa-Filho, A.J.; Brito, G.E.S.; Vieira, E.D.; Carneiro, S.M.; Escriba, D.M.; Falleiros, A.M.F.; Salvador, V.L.

    2008-01-01

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem TM , based on dextran-coated Fe 3 O 4 nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 ± 0.6) min measured by EPR and (12.6 ± 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism

  19. New Amino-Acid-Based β-Phosphorylated Nitroxides for Probing Acidic pH in Biological Systems by EPR Spectroscopy.

    Science.gov (United States)

    Thétiot-Laurent, Sophie; Gosset, Gaëlle; Clément, Jean-Louis; Cassien, Mathieu; Mercier, Anne; Siri, Didier; Gaudel-Siri, Anouk; Rockenbauer, Antal; Culcasi, Marcel; Pietri, Sylvia

    2017-02-01

    There is increasing interest in measuring pH in biological samples by using nitroxides with pH-dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity (Δa X ) of these probes (i.e., the difference between the EPR hyperfine splitting (hfs) in their protonated and unprotonated forms), we characterized a series of novel linear α-carboxy, α'-diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring an (α or α')-C-H bond. In buffer, the three main hfs (a N , a H , and a P ) of their EPR spectra vary reversibly with pH and, from a P or a H titration curves, a two- to fourfold increase in sensitivity was achieved compared to reference imidazoline or imidazolidine nitroxides. The crystallized carboxylate 10 b (pK a ≈3.6), which demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe stomach acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.

    Science.gov (United States)

    Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk

    2018-02-15

    The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.

  1. EPR study of the production of OH radicals in aqueous solutions of uranium irradiated by ultraviolet light

    Directory of Open Access Journals (Sweden)

    MARKO DAKOVIĆ

    2009-06-01

    Full Text Available The aim of the study was to establish whether hydroxyl radicals (•OH were produced in UV-irradiated aqueous solutions of uranyl salts. The production of •OH was studied in uranyl acetate and nitrate solutions by an EPR spin trap method over a wide pH range, with variation of the uranium concentrations. The production of •OH in uranyl solutions irradiated with UV was unequivocally demonstrated for the first time using the EPR spin-trapping method. The production of •OH can be connected to speciation of uranium species in aqueous solutions, showing a complex dependence on the solution pH. When compared with the results of radiative de-excitation of excited uranyl (*UO22+ by the quenching of its fluorescence, the present results indicate that the generation of hydroxyl radicals plays a major role in the fluorescence decay of *UO22+. The role of the presence of carbonates and counter ions pertinent to environmental conditions in biological systems on the production of hydroxyl radicals was also assessed in an attempt to reveal the mechanism of *UO22+ de-excitation. Various mechanisms, including •OH production, are inferred but the main point is that the generation of •OH in uranium containing solutions must be considered when assessing uranium toxicity.

  2. High-field/ high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation.

    Science.gov (United States)

    Georgieva, Elka R; Pardi, Luca; Jeschke, Gunnar; Gatteschi, Dante; Sorace, Lorenzo; Yordanov, Nicola D

    2006-06-01

    The EPR spectrum of sucrose irradiated by high-energy radiation is complex due to the presence of more than one radical species. In order to decompose the spectrum and elucidate the radical magnetic parameters a high-field (HF(-)EPR) study on stable free radicals in gamma-irradiated polycrystalline sucrose (table sugar) was performed at three different high frequencies--94, 190 and 285 GHz as well as at the conventional X-band. We suggest a presence of three stable radicals R1, R2 and R3 as the main radical species. Due to the increase of g-factor resolution at high fields the g-tensors of these radicals could be extracted by accurate simulations. The moderate g-anisotropy suggests that all three radicals are carbon-centred. Results from an earlier ENDOR study on X-irradiated sucrose single crystals (Vanhaelewyn et al., Appl Radiat Isot, 52, 1221 (2000)) were used for analyzing of the spectra in more details. It was confirmed that the strongest hyperfine interaction has a relatively small anisotropy, which indicates either the absence of alpha-protons or a strongly distorted geometry of the radicals.

  3. Growth, optical and EPR studies of {sup 151}Eu{sup 2+}:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, A.G., E-mail: pet@ipr.sci.am [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Asatryan, H.R. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Hovhannesyan, K.L.; Derdzyan, M.V. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Feofilov, S.P. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Eganyan, A.V.; Sargsyan, R.S. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia)

    2017-01-01

    Single crystals of {sup 151}Eu:YAG were grown by the vertical Bridgman method using Eu{sub 2}O{sub 3} with isotopic enrichment of {sup 151}Eu of 97.5%. Additional Hf{sup 4+}or Si{sup 4+} ions were introduced to favor a high concentrations of Eu{sup 2+}. As compared to Eu:YAG with natural isotope composition, the EPR spectra of YAG doped with {sup 151}Eu isotope show a reduced number of hyperfine structure components and a well-resolved structure of a bigger number of electronic transitions. Optical properties of obtained crystals and the effects of heat treatments under oxidizing and reducing conditions are reported. Based on the analysis of Eu{sup 3+} distribution in oxidized Eu,Hf:YAG, in comparison to that in Eu:YAG, the concentration of Eu{sup 2+} in as-grown Eu,Hf:YAG is determined. - Highlights: • YAG:Eu,Hf single crystals containing only {sup 151}Eu isotopes were prepared. • isotopic enriched crystals gave a well-resolved EPR hyperfine structure of Eu{sup 2+} centers. • the redox ratio was followed through the Eu{sup 2+} associated absorption band at 250 nm. • the band intensities at 378 nm correlate with the Eu{sup 2+} concentration.

  4. A comparative in vivo and in vitro L-band EPR study of irradiated rat incisors

    International Nuclear Information System (INIS)

    Zdravkova, M.; Gallez, B.; Debuyst, R.

    2005-01-01

    L-band (∼1GHz) EPR has the potential to measure the absorbed radiation dose in human teeth inside the mouth (in vivo analyses). One crucial point in the development of the method is to know if dosimetry evaluation carried out in vivo after accidental exposures can be reliably based on calibration curves built in vitro. The aim of the present work is to specifically address this point. First, we compared L-band in vitro and in vivo analyses in irradiated rat teeth and estimated the possible loss in in vivo experiments due to rat movements and mouth proximity. Second, the lower pair of rat incisors were analysed by L-band EPR before and after irradiation (50Gy), first on the living rat, then on the same dead rat, finally after extraction of the teeth. X-band powder spectra were also taken after crushing of the two teeth. Irradiations of dead rats and extracted teeth were also carried out. Comparing L-band spectra obtained with living rats and removed heads does not show any significant difference due to possible small rat movements or breathing. Relative standard deviations of the amplitudes of the dosimetric signal are quite high (27-54%). Nevertheless, it seems to be a tendency to have higher signals in irradiated extracted teeth than in irradiated animals

  5. Study of new compounds for their application on free radicals EPR dosimetry

    International Nuclear Information System (INIS)

    Condes N, C.S.

    1996-01-01

    L- α alanine is an amino acid which has been used for electron and γ ray dosimetric purposes, when crystallites of L-α alanine are irradiated with ionizing radiation free radicals are produced. The yield of free radicals produced by irradiation of alanine crystals can be evaluated by EPR spectrometry, however when L- α alanine crystals are irradiated with thermal neutrons the yield of the free radicals produced is very low and in consequence it's EPR-signal response is poor. In this work we mixed L-α alanine together with some lithium compounds such as LiF, LiBO 2 , LiOH and Li 2 CO 3 . In this way when we irradiate the respective mixture of alanine-lithium with thermal neutrons, the nuclear reactions 6 Li (n,α)T and 10 B (n, α) 7 Li can be produced with a high probability. As a consequence α particles and recoil atoms emerging from the nuclear reactions can impinge on alanine molecules, producing extra free radicals. From the alanine-lithium mixtures obtained, we made dosemeters (30 mm long., 3.9 mm diameter) which were irradiated in the thermal column of the TRIGA Mark III Nuclear Reactor with a flux of thermal neutrons of 5 x 10 7 n/ cm 2 s. Irradiations were made at different periods. Experimental evaluations indicate that the mixtures can be used for dosimetric purposes. (Author)

  6. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    Science.gov (United States)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  7. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: Solving a lineshape paradox

    Science.gov (United States)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4 × 10 19 spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S = 1/2, and centres with S = 0 ground state and thermally accessible triple state S = 1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and 13C nuclei indicates that IOM rad centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H ≈ 1.5 ± 0.5 × 10 -2 of the order of values existing in interstellar medium.

  8. Phenolic composition and related antioxidant properties in differently colored lettuces: a study by electron paramagnetic resonance (EPR) kinetics.

    Science.gov (United States)

    Pérez-López, Usue; Pinzino, Calogero; Quartacci, Mike Frank; Ranieri, Annamaria; Sgherri, Cristina

    2014-12-10

    Differently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants. The results showed that as long as lettuce had higher red pigmentation, the hydrophilic antioxidant capacity increased together with the contents in free and conjugated phenolic acids, free and conjugated flavonoids, and anthocyanins. EPR allowed the identification of slow-rate antioxidants in green and green/red cultivars, intermediate-rate antioxidants in green, green/red, and red cultivars, and fast-rate antioxidants in green/red and red cultivars. At present, the different kinetic behaviors cannot be attributed to a specific antioxidant, but it is suggested that the flavonoid quercetin accounted for the majority of the intermediate-rate antioxidants, whereas the anthocyanins accounted for the majority of the fast-rate antioxidants.

  9. EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor.

    Science.gov (United States)

    Das, Kuheli; Patra, Chiranjit; Sen, Chandana; Datta, Amitabha; Massera, Chiara; Garribba, Eugenio; El Fallah, Mohamed Salah; Beyene, Belete B; Hung, Chen-Hsiung; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Escudero, Daniel; Frontera, Antonio

    2017-06-01

    A new Cu(II) dinuclear complex, Cu 2 L 2 (1) was afforded employing the potentially pentatentate Schiff base precursor H 2 L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV-Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H 2 L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H 37 Ra (ATCC 25177) and M. tuberculosis H 37 Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL -1 . A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.

  10. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B. [Utah Univ., Salt Lake City, UT (United States). Center for Applied Dosimetry; Chumak, V.; Shalom, S. [All-Union Scientific Centre of Radiation Medicine, Kiev (Ukraine)

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation.

  11. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    International Nuclear Information System (INIS)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B.

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation

  12. An EPR spectrum decomposition study of precipitated carbonated apatites (NCAP) dried at 25 deg C: adsorption of molecules from the atmosphere on the apatite powders

    International Nuclear Information System (INIS)

    Moens, P.D.W.; Callens, F.J.; Verbeeck, R.M.H.; Naessens, D.E.

    1993-01-01

    The effect of storage under ambient conditions on the Electron Paramagnetic Resonance (EPR) spectrum of X-irradiated sodium and carbonate containing synthetic apatites has been studied. A first series of samples was X-irradiated shortly after preparation and drying at 25 o C and investigated by means of EPR. The observed spectra were decomposed in terms of five theoretical curves representing an O - radical, two CO 3 - radicals (surface and bulk) and two CO 2 - radicals (surface and bulk). Afterwards, a second series of the same samples which was stored under ambient conditions for a long period, was also X-irradiated and examined with EPR. The same five radicals were found, but in different relative amounts. It appeared that the relative contributions of the two carbon containing surface radicals increased in comparison with the corresponding bulk radicals. This is explained by an adsorption of molecules from the atmosphere on the surface of the apatite powder. (author)

  13. An investigation of the chromium oxidation state of a monoanionic chromium tris(catecholate) complex by X-ray absorption and EPR spectroscopies

    DEFF Research Database (Denmark)

    Pattison, D I; Levina, A; Davies, Michael Jonathan

    2001-01-01

    The well-known monoanionic Cr tris(3,5-di-tert-butylcatecholato) complex, [Cr(DTBC)3]-, has been studied by X-ray absorption spectroscopy. The multiple-scattering fit to the XAFS gave good correlation (R = 19.8%) and good values for all of the bond lengths, angles, and Debye-Waller factors. The p...

  14. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  15. EPR- study of paramagnetic features of brown coal from Kiyakty coal deposit after mechanic activation and electron irradiation

    International Nuclear Information System (INIS)

    Ryabikin, Yu.A.; Zashkvara, O.V.; Popov, S.N.; Kairbekov, Zh.K.; Ershova, Zh.R.; Kupchishin, A.I.; Kovtunets, V.A.

    2003-01-01

    Full text: It is known that prospected coal resources exceed, at least by order of magnitude, petroleum reserves decreasing steeply at last time as a result of world oil consumption rise. In this connection the manufacture of different liquid products from coal, especially brown coal, is issue of the day. Liquid fuel yield depends on physical-chemical characteristics and their changes owing to preliminary chemical, mechanical and radiation treatment. In this paper some results of paramagnetic characteristic study of Kiyakty deposit coal as initial one as after its mechanical treatment and electron irradiation are presented. It is discovered that in Kiyakty coal there are, at least, two fractions differed in EPR line width and concentration of free radical states they contained. First fraction has EPR line width ΔH 1 =4-5 Oe and mean free radical states concentration N 1 = 2.4·10 17 sp/g. For samples of second fraction the EPR line width ΔH 2 = 6.6-7.2 Oe and N 2 = 1.8·10 18 sp/g are typical. Thus, in the second fraction the EPR line width and free radical states concentration are greater than in the first case. Besides free radical states in coal EPR signals were found from trivalent iron ions with g-factor approximated 2 and with g=4.3. It the signals with g=4.3, are practically identical for both fractions, their concentrations are neighbour and line width is ΔH 1 = 250 Oe, then for the lines near g=2.0 situation is markedly different. For the first fraction ΔH 1 = 800 Oe whereas for the second case two signals in this g-factor range are observed. The first signal has line width ΔH 1 = 550 Oe and g=l .97, the second is more wide with ΔH 1 = 1000 Oe and g=2.02. We cannot discover significant dependence of free radical states concentration on mechanic activation time. Obviously, life times of complementary free radical states generated in process of coal activation are very low. As Fe 3+ ions, for both fractions it is observed intensity growth of their

  16. EPR, UV-Visible, and Near-Infrared Spectroscopic Characterization of Dolomite

    Directory of Open Access Journals (Sweden)

    S. Lakshmi Reddy

    2008-01-01

    Full Text Available Dolomite mineral samples having white and light green colors of Indian origin have been characterized by EPR, optical, and NIR spectroscopy. The optical spectrum exhibits a number of electronic bands due to presence of Fe(III ions in the mineral. From EPR studies, the parameters of g for Fe(III and g,A, and D for Mn(II are evaluated and the data confirm that the ions are in distorted octahedron. Optical absorption studies reveal that Fe(III is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules. Thus EPR and optical absorption spectral studies have proven useful for the study of the solid state chemistry of dolomite.

  17. EPR and EOM studies in well samples from some Venezuelan oil fields: correlation with magnetic authigenesis

    International Nuclear Information System (INIS)

    Diaz, M.; Aldana, M.; Sequera, P.; Costanzo A, V.; Jimenez, S.M.

    2006-01-01

    Electron paramagnetic resonance (EPR), magnetic susceptibility (MS) and extractable organic matter (EOM) measurements were carried out in drilling fines, from near-surface levels, from producer and non-producer wells, with the purpose of examining a possible causal relationship between magnetic contrasts and underlying hydrocarbons. Organic matter free radical concentration (OMFRC) and EOM anomalies were found only at the producer wells, in the same zone where MS anomalies were observed. The EOM anomalies coincide in depth with the MS ones, while the OMFRC anomalies lie close to them. The results could be explained if a net transfer of electrons from reduced organic matter, possible induced by the underlying reservoir, to Fe(lII) (e.g. hematite) occurs. This process alters the original organic matter and produces the formation of EOM and Fe(ll) magnetic minerals (e.g. magnetite), with both anomalies coexisting. (Author)

  18. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Peptide-membrane Interactions by Spin-labeling EPR

    Science.gov (United States)

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  20. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  1. EPR assessment of the free radicals in irradiated foodstuffs

    International Nuclear Information System (INIS)

    Tencheva, S.; Katsareva, Ts.; Malinovski, A.; Kabasanov, K.

    1985-01-01

    In the hygienic assessment of radiation treated foodstuffs the study of free radicals formed during radiation exposure, their concentration and disintegration kinetics are of particular interest. In the work presented the concentration of the free radicals in irradiated prunes, nuts and corn is determined using EPR spectroscopy. The following doses are applied: 2, 10 and 20 kGy for prunes, 1, 10 and 20 kGy for nuts, and 0.75, 10 and 20 kGy for corn. EPR measurements are done immediately after the irradiation: 24 hours, and 3, 6, 9 and 15 days after the exposure. In the small radiation doses the formation of single radicals is observed. In doses of 10 kGy the spectra get complicated with the occurence of radicals R 1 , R 2 , R 3 and R 4 . The assessment of radicals proves to be a prospective method for the identification and determination of the preservation terms of foodstuffs

  2. EPR study of gamma induced radicals in amino and iminodiacetic acid derivatives

    International Nuclear Information System (INIS)

    Aydin, Murat; Baskan, M. Halim; Osmanoglu, Y. Emre

    2009-01-01

    In this study, electron paramagnetic resonance spectroscopy was used to investigate free radicals formed in gamma irradiated L-glutamine hydrochloride, iminodiacetic acid hydrochloride and N-(2-hydroxyethyl) iminodiacetic acid powders. The free radicals produced in L-glutamine hydrochloride powders were attributed to the CH 2 CHCOOH radical; and those in iminodiacetic acid hydrochloride and N-(2-hydroxyethyl) iminodiacetic acid powders to the HNCHCH 2 (CO OH) 2 and HOCH 2 CH 2 NCHCH 2 (CO OH) 2 , respectively. The g-values of the radicals and the hyperfine structure constants of the free electron with the environmental protons and 14 N nucleus were determined. The samples were not displayed before they were not irradiated. The free radicals were found stable at room temperature for more than six months. Some spectroscopic properties and suggestions concerning possible structure of the radicals are discussed in this paper. (author)

  3. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    International Nuclear Information System (INIS)

    Lagomacini, Juan C.; Bravo, David; Leon, Monica; Martin, Piedad; Ibarra, Angel; Martin, Agustin; Lopez, Fernando J.

    2011-01-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10 21 and 10 22 n/m 2 . Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  4. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagomacini, Juan C., E-mail: jc.lagomacini@uam.es [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Bravo, David [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, Monica; Martin, Piedad; Ibarra, Angel [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, Agustin [Dept. Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, Fernando J. [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)

    2011-10-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10{sup 21} and 10{sup 22} n/m{sup 2}. Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  5. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.

    Science.gov (United States)

    Cobb, C E; Hustedt, E J; Beechem, J M; Beth, A H

    1993-01-01

    An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional

  6. EPR measurements in irradiated polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.; Foeldesova, M.

    1990-01-01

    The influence of γ-irradiation on the paramagnetic properties of polyacetylene, and the dependence of the EPR spectra on the radiation dose in samples of irradiated polyacetylene were studied. The measurements show that no essential changes of the spin mobility occurred during irradiation. (author) 3 refs.; 2 figs

  7. Radical anion structure of β-halogen-substituted acetamides in X-ray-irradiated single crystals: an INDO and EPR study

    International Nuclear Information System (INIS)

    Samskog, P.O.; Kispert, L.D.

    1984-01-01

    The anion radicals of bromodifluoroacetamide and chlorodifluoroacetamide are investigated by using the INDO method and EPR spectroscopy. INDO calculations for the anions give a spin density distribution in agreement with that suggested from experiment. Results of the analyses show that the unpaired electron occupies the sigma* orbital composed of the rho orbitals, along the C/sub β/-X bond, on the carbon and the unique halogen atoms. The results are compared to the radical anion in trifluoroacetamide. The electronic structure of SCF 2 CONH 2 - radical anions is a π-radical anion when X = F and a sigma*-radical anion when X = Cl and Br. 2 figures, 4 tables

  8. EPR study of manganese(II) binding to 55'-ATP, hemoglobin, and hemocyanin

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.S. (Duquesne Univ., Pittsburgh); Li, N.C.; Pratt, D.W.

    1975-01-01

    Several divalent metal ions affect the oxygen affinity of hemoglobin and hemocyanin. It is important, therefore, to understand the nature of metal-ion binding to these proteins. By comparing the EPR spectra of Mn(II), 0.001 M, in the absence and presence of carboxyhemoglobin or Limulus oxyhemocyanin (pH 7.3, Trizma buffer), the number of Mn binding sites, n, and the binding constant, K, can be determined. For carboxyhemoglobin, HbCO, we find 0.5 Mn binding sites per heme, K = 450 M/sup -1/. Each hemoglobin tetramer therefore binds two manganous ions suggesting that Mn(II), like Cu(II), may bind preferentially to one of the two types of subunits in hemoglobin. For hemocyanin, HcO/sub 2/, we find n = 5.8, K = 1.55 x 10/sup 3/ M/sup -1/. Each oxyhemocyanine therefore binds approximately six manganous ions, and the binding constant is three times larger than that for HbCO. We have also carried out similar experiments on 5'-ATP, and on solutions of HbCO and ATP containing McCl/sub 2/ or ZnCl/sub 2/. Zn(II) effectively competes with Mn(II) in binding hemoglobin and ATP, whereas Mg(II) does not, in accord with expectations from data on oxygen affinity of hemoglobin. (auth)

  9. Medical application of EPR

    International Nuclear Information System (INIS)

    Eichhoff, Uwe; Hoefer, Peter

    2015-01-01

    Selected applications of continuous-wave EPR in medicine are reviewed. This includes detection of reactive oxygen and nitrogen species, pH measurements and oxymetry. Applications of EPR imaging are demonstrated on selected examples and future developments to faster imaging methods are discussed

  10. Theoretical studies of the dependence of EPR parameters on local structure for the tetragonal Er(3+) centres in YVO4 and ScVO4.

    Science.gov (United States)

    Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang

    2015-11-05

    The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    International Nuclear Information System (INIS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-01-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5–20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10 −2 , 1.48×10 −2 , 4.14×10 −2 , and 6.03×10 −2 , 9.44×10 −2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose. - Highlights: • Radiation sensitivity of gallic acid and its esters were studied in intermediate and low radiation dose range using EPR. • While the irradiated samples of GA were presented complex EPR spectra the esters presented singlet ESR spectra. • Samples were compared to alanine in terms of the dosimetric point of view. • The radiation sensitivities of the investigated materials were very low at intermediate doses. • Lauryl ester of gallic acid was found to present a good sensitivity below 10 Gy

  12. Identification of irradiated crab using EPR

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, A. [Radiation Dosimetry Department, National Institute for Standards (NIS), Ministry of Scientific Research, Haram, 12211- Giza, P.O. Box: 136 (Egypt)]. E-mail: maghrabism@yahoo.com

    2007-02-15

    EPR spectroscopy is a fast and powerful technique for the identification of irradiated food. Crab exoskeleton was divided into six parts: dactyl, cheliped, carapace, apron, swimming legs, and walking legs. Samples of the exoskeleton were prepared and irradiated to Cs-137 gamma radiation in the range (1.156-5.365 kGy). EPR spectra of unirradiated as well as irradiated samples were recorded and analyzed. Response to gamma radiation was plotted for each part of the exoskeleton, dactyl was found to be the most sensitive part, followed by the apron (38%), cheliped (37%), walking legs (30%), swimming legs (24%), and carapace (21%) relative to the dactyl response.

  13. Identification of irradiated crab using EPR

    International Nuclear Information System (INIS)

    Maghraby, A.

    2007-01-01

    EPR spectroscopy is a fast and powerful technique for the identification of irradiated food. Crab exoskeleton was divided into six parts: dactyl, cheliped, carapace, apron, swimming legs, and walking legs. Samples of the exoskeleton were prepared and irradiated to Cs-137 gamma radiation in the range (1.156-5.365 kGy). EPR spectra of unirradiated as well as irradiated samples were recorded and analyzed. Response to gamma radiation was plotted for each part of the exoskeleton, dactyl was found to be the most sensitive part, followed by the apron (38%), cheliped (37%), walking legs (30%), swimming legs (24%), and carapace (21%) relative to the dactyl response

  14. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy

    Science.gov (United States)

    Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef

    2018-01-01

    Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.

  15. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    Science.gov (United States)

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  16. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    Science.gov (United States)

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  17. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer: A TRANSIENT-STATE KINETICS, DIRECTED MUTAGENESIS, EPR, AND NMR STUDY.

    Science.gov (United States)

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T; Ruiz-Dueñas, Francisco Javier

    2015-09-18

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn(2+), and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  19. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Comparison of continuous wave, spin echo, and rapid scan EPR of irradiated fused quartz

    International Nuclear Information System (INIS)

    Mitchell, Deborah G.; Quine, Richard W.; Tseitlin, Mark; Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    The E' defect in irradiated fused quartz has spin lattice relaxation times (T 1 ) about 100-300 μs and spin-spin relaxation times (T 2 ) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (∼9.5 GHz) by three EPR methods: conventional slow-scan field-modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.

  1. EPR and Fluorescence Spectroscopy in the Photodegradation Study of Arabian and Colombian Crude Oils

    Directory of Open Access Journals (Sweden)

    Carmen L. B. Guedes

    2006-01-01

    W/m2. The reduction in the linewidth of the free radical of 9.8% in Arabian oil and 18.5% in Colombian oil, as well as the decrease in radical numbers, indicated photochemical degradation, especially in Colombian oil. The linewidth narrowing corresponding to free radicals in the irradiated oils occurred due to the rearrangement among radicals and aromatic carbon consumption. The irradiated oils showed a reduction in the relative intensity of fluorescence of the aromatics with high molecular mass, polar aromatics, and asphaltene. The fluorescent fraction was reduced by 61% in Arabian oil and 72% in Colombian oil, corresponding to photochemical degradation of crude oil aromatic compounds.

  2. One-way EPR steering and genuine multipartite EPR steering

    Science.gov (United States)

    He, Qiongyi; Reid, Margaret D.

    2012-11-01

    We propose criteria and experimental strategies to realise the Einstein-Podolsky-Rosen (EPR) steering nonlocality. One-way steering can be obtained where there is asymmetry of thermal noise on each system. We also present EPR steering inequalities that act as signatures and suggest how to optimise EPR correlations in specific schemes so that the genuine multipartite EPR steering nonlocality (EPR paradox) can also possibly be realised. The results presented here also apply to the spatially separated macroscopic atomic ensembles.

  3. EPR of uranium ions

    International Nuclear Information System (INIS)

    Ursu, I.; Lupei, V.

    1984-02-01

    A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)

  4. Influence of glycemic control on some real-time biomarkers of free radical formation in type 2 diabetic patients: An EPR study.

    Science.gov (United States)

    Gadjeva, Veselina Georgieva; Goycheva, Petia; Nikolova, Galina; Zheleva, Antoaneta

    2017-11-01

    The pathology of diabetes is associated with several mechanisms, one of which is oxidative stress (OS). The relationship between OS and diabetic complications has been extensively investigated. OS has been suggested to be involved in the genesis of both macroand microangiopathy. In contrast, the relationship between OS and insulin action is a neglected research area. The aim of this study is to elucidate the effect of glycemic control in type 2 diabetic patients by following the serum levels of some real-time oxidative stress biomarkers. The study group consisted of 53 type 2 diabetic patients (31 with poor glycemic control and 22 with good glycemic control) and 24 healthy control subjects. The oxidative stress biomarkers (ROS, Asc• and •NO) were measured by using electron paramagnetic resonance spectroscopy (EPR) methods and compared with clinical parameters. The statistically significantly higher levels of ROS products and •NO in type 2 diabetic patients in both groups compared to controls mean that the oxidation processes take place at the time the survey is performed. Free radical overproduction persists after the normalization of the glucose levels, and oxidative stress may be involved in the "metabolic memory" effect. This is confirmed by the positive correlation between ROS levels/•NO and average blood glucose levels, triglycerides, and total cholesterol. Furthermore, the low level of the ascorbate radical in both diabetes groups compared to controls confirmed an increase in oxidation processes. Higher levels of real-time biomarkers show that intensive insulin treatment does not lead to the expected decrease in oxidative processes involving ROS and •NO, probably due to "metabolic memory".

  5. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    Science.gov (United States)

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  6. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  7. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  8. Interpretation of the parameters of the EPR spectra of transition metal complexes

    International Nuclear Information System (INIS)

    Murav'ev, V.I.

    2005-01-01

    The calculated parameters of the EPR spectra of complexes of d 1 and d 9 ions, inclusive of MoOX 5 (X = Cl, Br), are reviewed. The covalent bond parameters used in the calculations were determined from EPR and experimental optical data (inverse problem of EPR spectroscopy). Various contributions to the expressions for the EPR parameters were compared. The observed abnormal values of the EPR parameters were discussed. The effects of charge-transfer states and the vibronic coupling on the components of g, A, and A L tensors were considered. Mechanisms of spin density transfer to ligands in paramagnetic complexes were proposed [ru

  9. Characterizing the paramagnetic behavior of Cu{sup 2+} doped nickel(II) dipicolinato by using theoretical and experimental EPR and UV–vis studies

    Energy Technology Data Exchange (ETDEWEB)

    Yıldırım, İlkay [Department of Radiotherapy, Vocational School of Health Services, Biruni University, Topkapı, 34010 Istanbul (Turkey); Çelik, Yunus [Department of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, Atakum, 55139 Samsun (Turkey); Karabulut, Bünyamin, E-mail: bbulut@omu.edu.tr [Department of Computer Engineering, Faculty of Engineering, Ondokuz Mayıs University, Atakum, 55139 Samsun (Turkey)

    2016-02-15

    In this study, the paramagnetism in bis(hydrogeno pyridine-2,6-dicarboxylato) nickel(II) trihydrate, [Ni(Hdpc){sub 2}]·3H{sub 2}O, has been investigated after doping the sample with Cu{sup 2+} ions. The g and hyperfine parameters were obtained by electron paramagnetic resonance (EPR) experiments performed at ambient temperature. The study shows that Cu{sup 2+} ion defects the structure and exists interstitially in the lattice having a distorted local environment. It also shows the existence of two magnetically inequivalent Cu{sup 2+} sites. Experimental values for both EPR and optical spectrum studies were verified by using the appropriate theoretical approaches.

  10. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Science.gov (United States)

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.

  11. The EPR paradox revisited

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Scully, M.O.

    1978-01-01

    Einstein, Podolsky and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. The authors show that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review. (Auth.)

  12. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, C.D.; Scully, M.O.

    1978-07-01

    Einstein, Podolsky, and Rosen (EPR) argued in 1935 that quantum mechanics fails to give an adequate description of physical reality, and also cannot give a consistent wave-function description of certain phenomena. It is shown that a calculation based upon the reduced density matrix removes the formal inconsistency pointed out by EPR. The spirit of the present paper is that of a pedagogical review.

  13. Theoretical study of EPR spectra in Cu2+ - and Mn2+ - doped CaCd(CH3COO)4.6H2O

    International Nuclear Information System (INIS)

    Zhou Yiyang; Zhao Minguang

    1987-08-01

    The EPR spectra of CaCd(CH 3 COO) 4 .6H 2 O doped with Cu 2+ and Mn 2+ have been studied theoretically. A comparison between the calculated results and the experimental data shows quantitatively that the Cu 2+ and Mn 2+ ions substitute for the Cd 2+ and Ca 2+ ions, respectively. This conclusion is consistent with the qualitative assumption given by previous authors. (author). 36 refs, 1 fig., 3 tabs

  14. Light-induced EPR study of charge transfer in P3HT/bis-PCBM bulk heterojunctions

    Directory of Open Access Journals (Sweden)

    Victor I. Krinichnyi

    2011-06-01

    Full Text Available Radical pairs, polarons and fullerene anion radicals photoinduced by photons with energy of 1.98 – 2.73 eV in bulk heterojunctions formed by poly(3-hexylthiophene (P3HT with bis(1-[3-(methoxycarbonylpropyl]-1-phenyl-[6.6]C62 (bis-PCBM fullerene derivative have been studied by direct light-induced EPR (LEPR method in a wide temperature range. A part of photoinduced polarons are pinned in trap sites which number and depth are governed by an ordering of the polymer/fullerene system and energy of initiating photons. It was shown that dynamics and recombination of mobile polarons and counter fullerene anion radicals are governed by their exchange- and multi-trap assisted diffusion. Relaxation and dynamics parameters of both the charge carriers were determined separately by the steady-state saturation method. These parameters are governed by structure and conformation of the carriers’ microenvironment as well as by the energy of irradiating photons. Longitudinal diffusion of polarons was shown to depend on lattice phonons of crystalline domains embedded into an amorphous polymer matrix. The energy barrier required for polaron interchain hopping is higher than that its intrachain diffusion. Pseudorotation of fullerene derivatives in a polymer matrix was shown to follow the activation Pike model.

  15. An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes

    Directory of Open Access Journals (Sweden)

    GORAN BACIC

    2005-02-01

    Full Text Available Plant plasma membranes are known to produce superoxide radicals, while the production of hydroxyl radical is thought to occur only in the cell wall. In this work it was demonstrated using combined spin-trap and spin-probe EPR spectroscopic techniques, that plant plasma membranes do produce superoxide and hydroxyl radicals but by kinetically different mechanisms. The results show that superoxide and hydroxyl radicals can be detected by DMPO spin-trap and that the mechanisms and location of their production can be differentiated using the reduction of spin-probes Tempone and 7-DS. It was shown that the mechanism of production of oxygen reactive species is NADH dependent and diphenylene iodonium inhibited. The kinetics of the reduction of Tempone, combined with scavengers or the absence of NADH indicates that hydroxyl radicals are produced by a mechanism independent of that of superoxide production. It was shown that a combination of the spin-probe and spin-trap technique can be used in free radical studies of biological systems, with a number of advantages inherent to them.

  16. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  17. Low-field EPR studies of levels near the top of the barrier in Mn 12-acetate reveal a new magnetization relaxation pathway

    Science.gov (United States)

    Rakvin, Boris; Žilić, Dijana; Dalal, Naresh S.; Harter, Andrew; Sanakis, Yiannis

    2006-07-01

    We show that X-band electron paramagnetic resonance (EPR) measurements using a dual-mode resonance cavity can directly probe the levels near the top of the magnetization reversal barrier in the single-molecule magnet (SMM) Mn 12-acetate. The observed transitions are much sharper than those reported in high-field EPR studies. The observed temperature dependence of the line positions points to the presence of a spin-diffusional mode. The correlation time for such fluctuations is of the order of 6×10 -8 s at 10 K, and follows an Arrhenius activation energy of 35-40 K. These results open a new avenue for understanding the mechanism of tunneling and spin-lattice relaxations in these SMMs.

  18. EPR studies of a red wine bottle deposit, and the precipitates from a 'model' wine , and a white wine, both artificially aged

    International Nuclear Information System (INIS)

    Mitri, M.

    2003-01-01

    Full text: A red wine waxy bottle deposit is known to be an anthocyanin-protein compound. The EPR signal shows the presence of a free radical signal, and a Cu(2+) signal with N superhyperfme structure. Subsequently, EPR study of a model wine, catechin being the only phenol, showed a Cu(2+) signal and a free radical signal. The precipitate thrown by the model wine after artificial aging for 3 months at 45C showed a Cu(2+) signal of different bonding, and a free radical signal. All the previously mentioned Cu(2+) signals showed (differing) hyperfine structures. The precipitate thrown by a similarly artificially aged Chardonnay showed a free radical signal, and a Cu(2+) signal without hyperfine structure: no Cu(2+) signal was detected in the mother liquor. The Cu(2+) bonding in each case will be discussed

  19. Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [Ho(III)(W5O18)2]9-.

    Science.gov (United States)

    Ghosh, Sanhita; Datta, Saiti; Friend, Lisa; Cardona-Serra, Salvador; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2012-11-28

    Continuous-wave, multi-frequency electron paramagnetic resonance (EPR) studies are reported for a series of single-crystal and powder samples containing different dilutions of a recently discovered mononuclear Ho(III) (4f(10)) single-molecule magnet (SMM) encapsulated in a highly symmetric polyoxometalate (POM) cage. The encapsulation offers the potential for applications in molecular spintronics devices, as it preserves the intrinsic properties of the nanomagnet outside of the crystal. A significant magnetic anisotropy arises due to a splitting of the Hund's coupled total angular momentum (J = L + S = 8) ground state in the POM ligand field. Thus, high-frequency (50.4 GHz) EPR studies reveal a highly anisotropic eight line spectrum corresponding to transitions within the lowest m(J) = ±4 doublet, split by a strong hyperfine interaction with the I = 7/2 Ho nucleus (100% natural abundance). X-band EPR studies reveal the presence of an appreciable tunneling gap between the m(J) = ±4 doublet states having the same nuclear spin projection, leading to a highly non-linear field-dependence of the spectrum at low-frequencies.

  20. Oxidative stability of the lipid fraction in cookies – the EPR study

    Directory of Open Access Journals (Sweden)

    Zawada Katarzyna

    2015-07-01

    Full Text Available Cookies are a group of convenient food products that are popular among consumers. They may contain high amounts of fats, which can be prone to oxidation. To retard the oxidative deterioration, synthetic and natural antioxidants may be added. Herb and spice extracts can be sources of natural biologically active substances with antioxidant activity. In this work, electron paramagnetic resonance spectroscopy was used to monitor the lipid oxidation in cookies with rosemary and thyme extracts subjected to the storage in elevated temperature. It was shown that thyme extract can be used as a natural antioxidant source for the preparation of bakery products, while the rosemary extract should be used with care in fat-rich products exposed to high temperatures.

  1. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  2. EPR-based distance measurements at ambient temperature

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.

  3. EPR studies of chromium(V) intermediates generated via reduction of chromium(VI) by DOPA and related catecholamines

    DEFF Research Database (Denmark)

    Pattison, D I; Lay, P A; Davies, Michael Jonathan

    2000-01-01

    The reductions of K2Cr2O7 by catecholamines, DOPA, DOPA-beta,beta-d2, N-acetyl-DOPA, alpha-methyl-DOPA, dopamine, adrenaline, noradrenaline, catechol, 1,2-dihydroxybenzoic acid (DHBA), and 4-tert-butylcatechol (TBC), produce a number of Cr(V) electron paramagnetic resonance (EPR) signals. These s......The reductions of K2Cr2O7 by catecholamines, DOPA, DOPA-beta,beta-d2, N-acetyl-DOPA, alpha-methyl-DOPA, dopamine, adrenaline, noradrenaline, catechol, 1,2-dihydroxybenzoic acid (DHBA), and 4-tert-butylcatechol (TBC), produce a number of Cr(V) electron paramagnetic resonance (EPR) signals...... deuteration or enrichment with 15N), and simulation of the signals, show that the superhyperfine couplings originate from the side chain protons, confirming that the catecholamine ligands are cyclized. At pH 3.5, a major short-lived EPR signal is observed for many of the substrates at g(iso) approximately 1......) species with a sixth ligand (e.g. H2O). Addition of catalase or deoxygenation of the solutions did not affect the main EPR signals. When the substrates were in excess (pH > 4.5), primary and secondary (cyclized) semiquinones were also detected. Semiquinone stabilization by Zn(II) complexation yielded...

  4. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    Energy Technology Data Exchange (ETDEWEB)

    Mladenova, Ralitsa B., E-mail: ralitsa@ic.bas.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Firzov, Cyril [Institute of Cryobiology and Food Technology, 1162 Sofia (Bulgaria); Yordanov, Nicola D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2010-09-15

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039{+-}0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Enoviton, Enoviton S and Enoviton SE, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Enoviton S or Enoviton SE due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Enoviton S and Enoviton SE). Gamma-induced free radicals exhibit long time stability-for a six months period the intensity of central peak decrease with 30-40%.

  5. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    Science.gov (United States)

    Mladenova, Ralitsa B.; Firzov, Cyril; Yordanov, Nicola D.

    2010-09-01

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039±0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Еnoviton, Еnoviton С and Еnoviton СЕ, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Еnoviton С or Еnoviton СЕ due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Еnoviton С and Еnoviton СЕ). Gamma-induced free radicals exhibit long time stability—for a six months period the intensity of central peak decrease with 30-40%.

  6. The effect of thermal treatment on radiation-induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Vorona, I.P.; Ishchenko, S.S.; Baran, N.P.

    2005-01-01

    The effect of thermal treatment on the radiation-induced EPR spectrum of tooth enamel was studied. Annealing before sample irradiation was found to increase enamel radiation sensitivity by more than 40%. Depending on the annealing conditions the EPR signals of three supplementary radiation radicals were observed in addition to the main signal caused by CO 2 - radicals. It was found that the presence of these signals in the enamel EPR spectra provides evidence of sample annealing. The possibility of obtaining information about sample history by studying the additional EPR signals is discussed. It can be important to EPR dating and EPR dosimetry

  7. EPR spectral investigation of radiation-induced radicals of gallic acid

    International Nuclear Information System (INIS)

    Tuner, Hasan

    2017-01-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH) 2 C 6 H 2 COOH radicals for both compounds. (orig.)

  8. EPR spectral investigation of radiation-induced radicals of gallic acid.

    Science.gov (United States)

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  9. A VTVH MCD and EPR Spectroscopic Study of the Maturation of the "Second" Nitrogenase P-Cluster.

    Science.gov (United States)

    Rupnik, Kresimir; Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W; Hales, Brian J

    2018-04-16

    The P-cluster of the nitrogenase MoFe protein is a [ Fe 8 S 7 ] cluster that mediates efficient transfer of electrons to the active site for substrate reduction. Arguably the most complex homometallic FeS cluster found in nature, the biosynthetic mechanism of the P-cluster is of considerable theoretical and synthetic interest to chemists and biochemists alike. Previous studies have revealed a biphasic assembly mechanism of the two P-clusters in the MoFe protein upon incubation with Fe protein and ATP, in which the first P-cluster is formed through fast fusion of a pair of [ Fe 4 S 4 ] + clusters within 5 min and the second P-cluster is formed through slow fusion of the second pair of [ Fe 4 S 4 ] + clusters in a period of 2 h. Here we report a VTVH MCD and EPR spectroscopic study of the biosynthesis of the slow-forming, second P-cluster within the MoFe protein. Our results show that the first major step in the formation of the second P-cluster is the conversion of one of the precursor [ Fe 4 S 4 ] + clusters into the integer spin cluster [ Fe 4 S 3-4 ] α , a process aided by the assembly protein NifZ, whereas the second major biosynthetic step appears to be the formation of a diamagnetic cluster with a possible structure of [ Fe 8 S 7-8 ] β , which is eventually converted into the P-cluster.

  10. EPR investigation of some gamma-irradiated medicines

    International Nuclear Information System (INIS)

    Aleksieva, Katerina; Yordanov, Nicola

    2016-01-01

    The results of EPR studies on three medical tablets – Galanthamine, Cytisine and Tribulus terrestris before and after gamma-irradiation are reported. Before irradiation Galanthamine and Cytisine tablets are EPR silent, whereas Tribulus terrestris show a broad singlet line with g factor 2.2084±0.002. The same spectrum is recorded after irradiation. After gamma-sterilization, however, Galanthamine and Cytisine tablets exhibit a typical EPR spectrum due to gamma induced free radicals in lactose used as an excipient. These stable free radicals can be used for identification of radiation processing for a long time after it. Key words: medical tablets, gamma-irradiation, EPR

  11. EPR paradox revisited

    Energy Technology Data Exchange (ETDEWEB)

    Klippert, R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    In a seminal paper from 1935 Einstein, Podolsky and Rosen produced one of the most powerful weapon against the unpredictability of the world ensured by quantum mechanics. The recent production of entangled states, with all its possible future applications in quantum computation, re-open the possibility of testing EPR states on physical grounds. The present intends to present a challenge to the wedding of classical (special) relativity with quantum mechanics, the so called relativistic quantum mechanics. Making use of the same apparatus devised in EPR, it is shown that non local quantum states are incompatible with either their possibility of being measured or else with Lorentz invariance (or even with both). (author)

  12. Clinical EPR: Unique Opportunities and Some Challenges

    Science.gov (United States)

    Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333

  13. Identification and dose assessment of irradiated cardamom and cloves by EPR spectrometry

    International Nuclear Information System (INIS)

    Beshir, W.B.

    2014-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cardamom and cloves and assesses the absorbed dose to radiation processed cardamom and cloves are examined. The results were successful for identifying both irradiated and unirradiated cardamom and cloves. Additive reirradiation of cardamom and cloves produces reproducible dose–response functions, which can be used to assess the initial dose by back-extrapolation. Third degree polynomial function was used to fit the EPR signal/dose curves. It was found that this 3rd degree polynomial function provides satisfactory results without correction of decay for free radicals. The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over a storage period of almost 8 months. The calculated G-value (The number of radicals per 100 eV of absorbed energy) for cardamom and cloves was found 0.07±0.01 and 0.055±0.01, respectively. - Highlights: • The EPR analysis of cardamom and cloves prove the sample has been irradiated or not. • Dose additive can be used for evaluation of the absorbed dose in cardamom and cloves. • The 3rd polynomial function can be used to fit the data and the estimated dose. • The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over 2 months

  14. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  15. Study of Radiation Induced Radicals in HAP and β-TCP Based Bone Graft Materials by ERP Spectroscopy

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Matkovic, I.

    2013-01-01

    Calcium phosphates such as beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) are frequently used as dental implants due to proven excellent biocompatibility. Because of their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, literature provides little information about effects of γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this study EPR (electron paramagnetic resonance) spectroscopy was used to investigate HAP and β-TCP based dental implants present on the market. Eight dental graft materials present on the market were investigated: Bioresorb R Macropore, Poresorb R -TCP, Easy-Graft T M and Cerasorb R synthetic β-tricalcium phosphates, Easy-Graft T M crystal and Ossceram R two phase synthetic CaP consisting of 60 % HAP and 40 % β-TCP, and Dexabone R and Bio-Oss R bone graft material of bovine origin. EPR study shows that this is the only technique for characterization of free radicals that can simultaneously determine not only the presence and content, but also the position and the structure of free radicals formed by γ-sterilization in the investigated materials, as well as the paramagnetic substitutions incorporated in the materials during the synthesis (such as Mn 2+ , Fe 3+ or Cr 2+ ). Additionally, EPR provides information on stability of irradiation-induced radicals (CO 2 - , trapped H-atoms, NO 3 2 etc.) and processes for reducing them. Results show that EPR should be considered as a valuable technique in improving the quality of bone graft materials, which must be sterile, and to offer the high quality, efficacy and reliable materials to the patients.(author)

  16. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. EPR: the nuclear impasse

    International Nuclear Information System (INIS)

    Marillier, F.

    2008-01-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  18. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  19. EPR-based distance measurements at ambient temperature.

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Study and identification of paramagnetic centers by EPR technique in K3Cu(CN)4 crystals irradiated with X-rays

    International Nuclear Information System (INIS)

    Tancredo, A.

    1984-01-01

    Paramagnetic centers created in K 3 Cu(CN) 4 crystals by X-ray irradiation, using EPR technique are studied. The crystals are irradiated in following conditions: a) liquid nitrogen temperatures, b) room temperatures. Crystals field models of the paramagnetic centers which determine the following local symmetric in order to satisfy experimental results: a) Cu ++ in C sub(3v) symmetric and b) K 0 in distorted octahedral symmetry are proposed. The decay of these centers and the observation that Cu ++ ions are very much instable and disappear at T = 148K are studied. The K 0 atom remain up to T approximatelly 300K. (E.G.) [pt

  1. EPR and optical absorption studies of Cu{sup 2+} doped L-histidinium dihydrogen phosphate–phosphoric acid single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, R.; Sheela, K. Juliet; Rosy, S. Margret [Department of Physics, Gandhigram Rural Institute—Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India); Radha Krishnan, S.; Shanmugam, V.M. [CSIR-Central Electrochemical Research Institute, Karaikudi-630006, Tamilnadu (India); Subramanian, P., E-mail: psmanian_gri@yahoo.com [Department of Physics, Gandhigram Rural Institute—Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India)

    2014-02-01

    The EPR spectra of Cu{sup 2+} in L-histidinium dihydrogen phosphate phosphoric acid at room temperature reveal the presence of two magnetically inequivalent Cu{sup 2+} sites in the lattice. The principal values of the g- and A-tensors indicate existence of rhombic symmetry around the Cu{sup 2+} ion. From the direction cosines of the principal values of the g- and A-tensors, the locations of Cu{sup 2+} in the lattice have been identified as substitutional sites. Optical absorption study shows four bands confirm the rhombic symmetry. Photoluminescence study also confirms the rhombic symmetry around the ions.

  2. Lattice Studies of Hyperon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.

  3. Studies of a nitroxide radical by EPR in monocrystal: interaction of protons and electronic relaxation

    International Nuclear Information System (INIS)

    Alonso, A.

    1986-01-01

    The ESR spectra of a nitroxide radical, 4-hydroxi-2,2,6,6-tetramethylpiperidine-1-oxyl (TANOL II), introduced as impurity in a diamagnetic host, 4-hydroxi-2,6,6-tetramethylpiperedine (I), were investigated. The use of deuterated radical, 4-hydroxi-2,2,6,6 tetramethylpiperidine-d sub(17) -1, oxyl (PD-TANOL, III) improved the resolution of ESR spectra for most of orientations of magnetic field. The proton interqactions in the neighbourhood of magnetic group N-O were studied and superpyresfine tensors for two strongly coupled protons were determined. In order to study the influence of protons on electronic relaxation of radicals, the relaxation times T sub(1) and T sub(2) were estimated in the temperature range-160 sup(0)C - 25 sup(0)C for several orientations, and comparing data for protonated and deuterated radicals II and III, using the continuous wave saturation method. (author)

  4. Aragonite→calcite transformation studied by EPR of Mn 2+ ions

    Science.gov (United States)

    Lech, J.; Śl|zak, A.

    1989-05-01

    The irreversible transformation aragonite→calcite has been studied both at different fixed heating rates (5, 10, 15 and 20 K/min) and at different fixed temperatures. Apparent progression rates of the transformation were observed above 685 K. At 730 K the transformation became sudden and violent. Time developments of the transformation at fixed temperatures have been discussed in terms of Avrami-Lichti's approach to transitions involving nucleation processes.

  5. Time-resolved EPR studies of the H atom: A stable heavy isotope of muonium

    International Nuclear Information System (INIS)

    Bartels, D.M.

    1994-01-01

    Muonium physicists and chemists, when they talk about ''primary processes,'' are probably concerned mostly about end-of-track phenomena in the slowing down of a many-MeV charged particle, analogous to the proton. The author's experience is with electron accelerators and radiolysis; hence, he will comment briefly on the differences and relative advantages of electron and proton radiolysis for the study of H atoms, as opposed to muonium. Then, he will take the liberty of defining primary processes to include the recombination reactions that may occur between geminate or quasi-geminate free radicals within radiolysis spurs

  6. Study on operation I and C DCS test method of EPR project

    International Nuclear Information System (INIS)

    Meng Ying; Lv Zhihong; Huang Xinnian; Fan Haiying; Li Zhuojia; Xiao Shushu

    2014-01-01

    Through summarization and optimization of the method for operation I and C DCS test of the European pressurized reactor project, the conclusions play a guiding role on the operation I and C DCS test of the domestic advanced nuclear power plant. The study of the method focuses on the test platform, the test process and the optimization of method of operation I and C DCS test with the practical experience. The reasonable and reliable test method for operation I and C DCS test of the European pressurized reactor project is worthy of the reference and the development in the project of the domestic advanced nuclear power plant. (authors)

  7. EPR Dosimetry in Irradiated Fingernails

    International Nuclear Information System (INIS)

    Spinella, M.R.; Dubner, D.L.; Bof, E.

    2010-01-01

    The Electron Paramagnetic Resonance (EPR) is being transformed in a complementary tool of biologically-based methods for evaluation of dose after accidental radiation exposure. Many efforts are being carried out in laboratories to evaluate the performance of different materials for its use in EPR doses measurements and for improving the current methods for spectrum analysis and calibration curves determinations. In our country the EPR techniques have been used in different areas with dosimetric (alanine) and non dosimetric purposes. Now we are performing the first studies to obtain properly dose response curves to be used for accidental dose assessments through irradiated fingernails. It is by now well known that the fingernails present two types of signals, a background one (BKS), originated in elastic and inelastic mechanical deformations and the radio induced one (RIS), object of interest (I). In this work we will present some of the previous studies performed to characterize the fingernail samples and we analyse the additive dose method for data obtained employing the technique of the substraction of the spectrum recorded at two different microwave powers in order to reduce the BKS signal. Fingernail samples collected from different donors were treated by soaking in water during 10 min and 5 min drying on paper towel and the BKS signals were studied previously its irradiation. The statistical analysis (R statistics) show a distribution with a Standard Deviation of 24% respects to its media. During these studies we also conserved in freezer for more than 6 months irradiated fingernails that, were periodically measured and the statistical analysis of the peak to peak amplitude show a normal distribution through the Quantile correlation test with a SD 11% respected to its median. (authors)

  8. An X- and Q-band Fe{sup 3+} EPR study of nanoparticles of magnetic semiconductor Zn{sub 1−x}Fe{sub x}O

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sushil K., E-mail: skmisra@alcor.concordia.ca [Physics Department, Concordia University, Montreal, QC, Canada H3G 1M8 (Canada); Andronenko, S.I. [Physics Institute, Kazan Federal University, Kazan 420008 (Russian Federation); Thurber, A.; Punnoose, A. [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States); Nalepa, A. [Max-Planck-Institut für Chemische Energie Konversion, Stifstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)

    2014-08-01

    EPR studies on two types of nanoparticles of Fe{sup 3+} doped, 0.1–10%, ZnO, NL and QJ, prepared using similar chemical hydrolysis methods, in diethylene glycol, and in denatured ethanol solutions, respectively, were carried out at X-band (∼9.5 GHz) at 77 K and at Q-band (∼34.0 GHz) at 10, 80, and 295 K. To interpret the experimental results, EPR spectra were simulated by exact diagonalization of the spin-Hamiltonian matrix to identify the Fe ions at different magnetically active sites in these samples. The simulation for NL samples revealed that they contained (i) Fe{sup 3+} ions, which substituted for Zn ions, the zero-field splitting (ZFS) parameter which has a large distribution over the sample due to oxygen vacancies in the second coordination sphere; (ii) EPR signal from surface oxygen defects; and (iii) ferromagnetically (FM) coupled Fe ions with concentration of Fe more than 1%. The EPR spectra for QJ samples are very different from those for NL samples, exhibiting only rather intense FM EPR lines. The FM and EPR spectra in NL and/or QJ samples are found to vary strongly with differences in the surface morphology of nanoparticles. - Highlights: • X and Q band EPR studies on NL and QJ nanoparticles of Fe{sup 3+} doped ZnO at 10, 80, and 295 K. • Fe ions are present at different magnetically active sites in these samples. • NL samples consist of paramagnetic Fe{sup 3+} ions, and ferromagnetically coupled Fe ions. • QJ samples exhibit only intense ferromagnetic lines, different from QJ. • Spectra vary strongly with the surface morphology of nanoparticles.

  9. An integrated rock magnetic and EPR study in soil samples from a hydrocarbon prospective area

    Science.gov (United States)

    González, F.; Aldana, M.; Costanzo-Álvarez, V.; Díaz, M.; Romero, I.

    Magnetic susceptibility (MS) and organic matter free radical concentration (OMFRC) determined by electron paramagnetic resonance, have been measured in soil samples (≈1.5 m depth) from an oil prospective area located at the southern flank of the Venezuelan Andean Range. S-ratios close to 1, as well as high temperature susceptibility analyses, reveal magnetite as the chief magnetic phase in most of these samples. Ethane concentrations, MS and OMFRC normalized data have been plotted against the relative position of 22 sampling sites sequentially arranged from north to south. Although there is not a linear correlation between MS and OMFRC data, these two profiles seem to vary in like fashion. A MS and OMFRC southern anomaly coincides with the zone of highest ethane concentration that overlies a “Cretaceous kitchen”. OMFRC highs could be linked to the degradation or alteration of organic matter, the possible result of hydrocarbon gas leakage, whose surface expression is the stressed fern observed by remote sensing studies previously performed in the area. Ethane anomalies are associated to this seepage that also produces changes in the magnetic mineralogies detected as MS positive anomalies.

  10. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  11. An improved approach to identify irradiated dog feed by electron paramagnetic resonance study and thermoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Bhaskar, E-mail: bhaskar_sanyal@rediffmail.co [Food Technology Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Chawla, S.P.; Sharma, Arun [Food Technology Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India)

    2011-05-15

    In the present study, probably for the first time, a detailed analysis of the radiation induced radical species and thermoluminescence measurements of irradiated dog feed are reported. The EPR spectrum of non-irradiated ready-to-eat dog feed was characterized by singlet g=2.0047{+-}0.0003. Irradiated samples exhibited a complex EPR spectrum. During high power (50.0 mW) EPR spectroscopy, a visible change in the shape of the EPR spectrum was observed and characterized by EPR spectrum simulation technique. An axially symmetric anisotropic signal with g{sub ||}=2.0028 and g{sub perpendicular}=1.9976 was identified. However, a negligible change in the matrix of irradiated edible dog chew was observed using EPR spectroscopy. Therefore, thermoluminescence study of the isolated minerals from dog chew was carried out. The composition of the poly-minerals was studied using SEM and EDX analysis and a complete verdict on identification of irradiation is proposed.

  12. An improved approach to identify irradiated dog feed by electron paramagnetic resonance study and thermoluminescence measurements

    International Nuclear Information System (INIS)

    Sanyal, Bhaskar; Chawla, S.P.; Sharma, Arun

    2011-01-01

    In the present study, probably for the first time, a detailed analysis of the radiation induced radical species and thermoluminescence measurements of irradiated dog feed are reported. The EPR spectrum of non-irradiated ready-to-eat dog feed was characterized by singlet g=2.0047±0.0003. Irradiated samples exhibited a complex EPR spectrum. During high power (50.0 mW) EPR spectroscopy, a visible change in the shape of the EPR spectrum was observed and characterized by EPR spectrum simulation technique. An axially symmetric anisotropic signal with g || =2.0028 and g perpendicular =1.9976 was identified. However, a negligible change in the matrix of irradiated edible dog chew was observed using EPR spectroscopy. Therefore, thermoluminescence study of the isolated minerals from dog chew was carried out. The composition of the poly-minerals was studied using SEM and EDX analysis and a complete verdict on identification of irradiation is proposed.

  13. EPR-spin probe studies of model polymers: separation of covalent cross-linking effects from hydrogen bonding effects in swelled Argonne Premium Coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Spears, D.R.; Sady, W.; Tucker, D.; Kispert, L.D. (University of Alabama, Tuscaloosa, AL (United States). Chemistry Dept.)

    The swelling behaviour of 2-12% cross-linked polystyrene-divinylbenzene (PSDVB) copolymers was examined by an EPR-spin probe technique. It was observed that the mechanism of spin probe inclusion was the intercalation into the matrix rather than diffusion into the pores. The disruption of van der Waals forces between adjacent aromatic rings appeared to be the primary mechanism for pyridine swelling of PSDVB. By comparing the data to results from coal swelling studies it was also inferred that the extent of hydrogen bonding in coal will have a much greater impact on its swelling properties than its covalently cross-linked character. 24 refs., 6 figs.

  14. Positron spectroscopy studies of zeolites

    Science.gov (United States)

    Hung, Ku-Jung

    The lineshapes of two-dimensional angular correlation of electron-positron annihilation radiation (2D-ACAR) in alumina and several zeolites were measured as a function of internal surface areas. In all cases, the lineshape parameter S from 2D-ACAR spectra were found to vary proportionally with internal surface area. In order to investigate the Bronsted acidity in NaHY zeolite, the lineshape parameter evaluation from 2D-ACAR measurements for varied acidity in NaHY zeolites by ion-exchange and thermal desorption were presented. The result from this investigation has demonstrated that the Bronsted acidity in NaHY zeolite was found to vary linearly with the lineshape parameter of the angular correlation spectrum of the sample. The lineshapes of 2D-ACAR spectra were determined for different base adsorbed HY-zeolite samples under a temperature controlled heating system in order to investigate, in-situ, the acid strength and number of Bronsted acid sites in the sample. Results have shown that the lineshape parameter of the angular correlation spectrum of the sample increases with the strength of adsorbed base and decreases with the number of Bronsted acid sites in the sample. This indicated that the lineshape parameter is sensitive to all of the strengths and concentrations of Bronsted acid sites in the HY-zeolite samples. The result from this study has also demonstrated that the large size base, pyridine, would reduce the possibility of positronium formation in the sample by filling the cage to eliminate the internal surface areas where the positroniums are likely to form. However, the small size base, ammonia, did not show any effect on the internal surface areas. Owing to the fact that this technique monitors only the Bronsted acid sites that situate on the surface which relates to the catalytic activity, there is little ambiguity about the location of the source of information obtained. The findings presented in this dissertation point out the fact that such lineshape

  15. Orientation-dependent effects of EPR-measurements on β-rhombohedral boron

    International Nuclear Information System (INIS)

    Siems, C.D.; Geist, D.

    1976-01-01

    EPR studies on β-rhombohedral boron have been reported by several authors. Two EPR-lines with the same g-value have been found by measurements with and without illumination. The microwave frequency used was 9 GHz, as far as is known. In this paper EPR-measurements at 35 GHz on β-rhombohedral boron single crystals are reported. The investigations concerning the 'dark EPR-line' were made at 300 K. (Auth.)

  16. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol-induced cardiac necrosis and oxidative stress in rats: an EPR study

    Science.gov (United States)

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malondialdehyde (MDA), activities/levels of different cellular antioxidants were estimated in control and experimental groups. Additionally, scavenging potential to the hydroxyl radical of the fraction was measured by electron paramagnetic resonance (EPR). ISO administered rats showed significant increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, and heart tissue MDA content. Furthermore, marked reduction in the activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels were observed. EPR study showed an increase in signal intensity in ISO-induced rats. Triphenyl tetrazolium chloride (TTC) staining of heart section revealed a marked increase in infarcted area in ISO-induced rats. Histological features of the heart also indicated a disruption in the structure of cardiac myofibrils in these animals. MOPF (100 mg/kg body weight) pretreatment prevented all these adverse effects of ISO. Present results show that the rich polyphenolic content of Moringa oleifera significantly reduced the myocardial damage and decreased the oxidative stress, possibly through hydroxyl radical scavenging activity as evidenced from the EPR spectra. PMID:26417351

  17. Single crystal EPR study at 95 GHz of a large Fe based molecular nanomagnet: toward the structuring of magnetic nanoparticle properties.

    Science.gov (United States)

    Castelli, L; Fittipaldi, M; Powell, A K; Gatteschi, D; Sorace, L

    2011-08-28

    A W-band single-crystal EPR study has been performed on a molecular cluster comprising 19 iron(III) ions bridged by oxo- hydroxide ions, Fe(19), in order to investigate magnetic nanosystems with a behavior in between the one of Magnetic NanoParticles (MNP) and that of Single Molecule Magnets (SMM). The Fe(19) has a disk-like shape: a planar Fe(7) core with a brucite (Mg(OH)(2)) structure enclosed in a "shell" of 12 Fe(III) ions. EPR and magnetic measurements revealed an S = 35/2 ground state with an S = 33/2 excited state lying ∼ 8 K above. The presence of other low-lying excited states was also envisaged. Rhombic Zero Field Splitting (ZFS) tensors were determined, the easy axes lying in the Fe(19) plane for both the multiplets. At particular temperatures and orientations, a partially resolved fine structure could be observed which could not be distinguished in powder spectra, due to orientation disorder. The similarities of the EPR behavior of Fe(19) and MNP, together with the accuracy of single crystal analysis, helped to shed light on spectral features observed in MNP spectra, that is a sharp line at g = 2 and a low intensity transition at g = 4. Moreover, a theoretical analysis has been used to estimate the contribution to the total magnetic anisotropy of core and surface; this latter is crucial in determining the easy axis-type anisotropy, alike that of MNP surface. This journal is © The Royal Society of Chemistry 2011

  18. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  19. EPR spectra of some irradiated polycrystalline perrhenate

    International Nuclear Information System (INIS)

    Zaitseva, N.G.; Constantinescu, M.; Georgescu, R.; Constantinescu, O.

    1978-10-01

    An EPR study of the paramagnetic centers formed by γ, electron and neutron irradiation of the NaReO 4 and KReO 4 was made. In the EPR spectra of the powder samples irradiated γ, with electrons and neutrons, the presence of three types of paramagnetic centers was observed. From the EPR parameters, the centers were attributed to the ReOsub(4)sup(.), ReOsub(3)sup(.) and ReOsub(2)sup(.) radicals respectively. The lower intensity of the spectra observed by KReO 4 samples irradiation showed a higher radioresistance of the KReO 4 than that of NaReO 4 . A radiolitical scheme taking into account the paramagnetic centers formation was proposed. (author)

  20. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  1. EPR (European Pressurized Reactor)

    International Nuclear Information System (INIS)

    2015-01-01

    This document presents the EPR (European Pressurized Reactor), a modernised version of PWRs which uses nuclear fission. It indicates to which category it belongs (third generation). It briefly describes its operation: recalls on nuclear fission, electricity production in a nuclear reactor. It presents and comments its characteristics: power, thermal efficiency, redundant systems for safety control, double protective enclosure, expected lifetime, use of MOX fuel, modular design. It discusses economic stakes (expected higher nuclear electricity competitiveness, but high construction costs), and safety challenges (design characteristics, critics by nuclear safety authorities about the safety data processing system). It presents the main involved actors (Areva, EDF) and competitors in the field of advanced reactors (Rosatom with its VVER 1200, General Electric with its ABWR and its ESBWR, Mitsubishi with its APWR, Westinghouse with its AP100) while outlining the importance of certifications and delays to obtain them. After having evoked key data on EPR fuel consumption, it indicates reactors under construction, evokes potential markets and perspectives

  2. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study

    OpenAIRE

    Zhang, Quing An; Shen, Yuan; Fan, Xue-Hui; García-Martín, Juan Francisco; Wang, Xi; Song, Yun

    2015-01-01

    © 2015 Published by Elsevier B.V. Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radic...

  3. EPR, kvantemekanik og Bohr

    OpenAIRE

    Nielsen, Morten Klockmann

    2007-01-01

    Dette projekt omhandler området hvor filosofi og fysik smelter sammen. Kvantemekanikkens tilblivelse fik en hård medfart hvilket diskussionerne mellem især Albert Einstein og Niels Bohr vidner om. De var hovedpersoner i striden om hvordan kvantemekanikken skulle fortolkes, og diskussionen kulminerede i 1935 hvor Einstein sammen med kollegerne Podolsky og Rosen offentliggjorde en artikel med titlen “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” (EPR-artiklen)....

  4. EPR a strategic choice

    International Nuclear Information System (INIS)

    2003-01-01

    How can we answer to the increasing demand of electric power, resulting of the demographic evolution and needed to the economic development, without exhausting the fossil resources? The answers are function of the countries and imply an optimization of the production and the consumption. This document published by the Areva Group aims to show the advantages of the nuclear energy: economical and environmental advantages. A special chapter is devoted to the European Pressurized Reactor, EPR. (A.L.B.)

  5. Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy

    CERN Document Server

    Hayes, R B; Wieser, A; Romanyukha, A A; Hardy, B L; Barrus, J K

    2000-01-01

    Dose reconstruction in the course of a series of blind tests demonstrated that an accuracy of 10 mGy for low doses and 1% for high doses can be achieved using EPR spectroscopy. This was accomplished using a combination of methodologies including polynomial filtration of the EPR spectrum, dosimeter rotation during scanning, use of an EPR standard fixed into the resonator and subtraction of all nonradiogenic signals. Doses were reconstructed over the range of 0.01-1000 Gy using this compound spectral EPR analysis. This EPR technique, being equally applicable to fractionated doses (such as those delivered during multiple radiotherapy treatments), was verified to exhibit dose reciprocity. Irradiated alanine dosimeters which were stored exhibited compound spectral EPR signal fading of ca 3% over 9 months. All error estimates given in this paper are given at the 1 standard deviation level and unless otherwise specified do not account for uncertainties in source calibration.

  6. Estimation of mean and median pO2 values for a composite EPR spectrum.

    Science.gov (United States)

    Ahmad, Rizwan; Vikram, Deepti S; Potter, Lee C; Kuppusamy, Periannan

    2008-06-01

    Electron paramagnetic resonance (EPR)-based oximetry is capable of quantifying oxygen content in samples. However, for a heterogeneous environment with multiple pO2 values, peak-to-peak linewidth of the composite EPR lineshape does not provide a reliable estimate of the overall pO2 in the sample. The estimate, depending on the heterogeneity, can be severely biased towards narrow components. To address this issue, we suggest a postprocessing method to recover the linewidth histogram which can be used in estimating meaningful parameters, such as the mean and median pO2 values. This information, although not as comprehensive as obtained by EPR spectral-spatial imaging, goes beyond what can be generally achieved with conventional EPR spectroscopy. Substantially shorter acquisition times, in comparison to EPR imaging, may prompt its use in clinically relevant models. For validation, simulation and EPR experiment data are presented.

  7. Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy

    International Nuclear Information System (INIS)

    Hayes, Robert B.; Haskell, E.H.; Wieser, Albrecht; Romanyukha, Alexander A.; Hardy, Byron L.; Barrus, Jeffrey K.

    2000-01-01

    Dose reconstruction in the course of a series of blind tests demonstrated that an accuracy of 10 mGy for low doses and 1% for high doses can be achieved using EPR spectroscopy. This was accomplished using a combination of methodologies including polynomial filtration of the EPR spectrum, dosimeter rotation during scanning, use of an EPR standard fixed into the resonator and subtraction of all nonradiogenic signals. Doses were reconstructed over the range of 0.01-1000 Gy using this compound spectral EPR analysis. This EPR technique, being equally applicable to fractionated doses (such as those delivered during multiple radiotherapy treatments), was verified to exhibit dose reciprocity. Irradiated alanine dosimeters which were stored exhibited compound spectral EPR signal fading of ca 3% over 9 months. All error estimates given in this paper are given at the 1 standard deviation level and unless otherwise specified do not account for uncertainties in source calibration

  8. On the annealing of the EPR dislocation signal in silicon

    International Nuclear Information System (INIS)

    Zolotukhin, M.N.; Kveder, V.V.; Osip'yan, Yu.A.

    1981-01-01

    The annealing kinetics of the (EPR) dislocation signal (D-centers) in silicon is studied. The disappearance of the dislocation EPR signal as a result of annealing is ascribed to rearrangement of the nuclei of the partial dislocations accompanied by pairwise ''closing'' of the broken bonds in the S=0 state. The height of the energy barrier for the rearrangement process is approximately 2 eV. A residual ''nonannealing'' EPR signal is observed in strongly deformed silicon crystals. It resembles an isotropic line with a width approximately 7.5 Oe and a g-factor approximately 2.006. It is suggested that the respective EPR centers (O-centers) are similar to the EPR centers in amorphic silicon [ru

  9. Selective saturation method for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Ignatiev, E.A.; Romanyukha, A.A.; Koshta, A.A.; Wieser, A.

    1996-01-01

    The method of selective saturation is based on the difference in the microwave (mw) power dependence of the background and radiation induced EPR components of the tooth enamel spectrum. The subtraction of the EPR spectrum recorded at low mw power from that recorded at higher mw power provides a considerable reduction of the background component in the spectrum. The resolution of the EPR spectrum could be improved 10-fold, however simultaneously the signal-to-noise ratio was found to be reduced twice. A detailed comparative study of reference samples with known absorbed doses was performed to demonstrate the advantage of the method. The application of the selective saturation method for EPR dosimetry with tooth enamel reduced the lower limit of EPR dosimetry to about 100 mGy. (author)

  10. α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    International Nuclear Information System (INIS)

    Jerzykiewicz, Maria; Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam

    2011-01-01

    Graphical abstract: α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . Display Omitted Highlights: → α-Tocopherol does not inhibit the oxidation of DMSO to ·CH 3 . → α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . → α-Tocopherol does not inhibit the oxidation of PBN. → The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of α-tocopherol. Additionally, the mixtures of α-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. α-Tocopherol inhibited oxidation of the main decomposition product of DMSO, ·CH 3 to ·OCH 3 but did not prevent the transformation process of N-t-butyl-α-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  11. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  12. Solid-support Electron Paramagnetic Resonance (EPR) Studies of Aβ40 Monomers Reveal a Structured State with Three Ordered Segments*

    Science.gov (United States)

    Gu, Lei; Ngo, Sam; Guo, Zhefeng

    2012-01-01

    Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14–18, 29–30, and 38–40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation. PMID:22277652

  13. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR)

    International Nuclear Information System (INIS)

    Herve, M.L.

    2006-03-01

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  14. Quantitative EPR A Practitioners Guide

    CERN Document Server

    Eaton, Gareth R; Barr, David P; Weber, Ralph T

    2010-01-01

    This is the first comprehensive yet practical guide for people who perform quantitative EPR measurements. No existing book provides this level of practical guidance to ensure the successful use of EPR. There is a growing need in both industrial and academic research to provide meaningful and accurate quantitative EPR results. This text discusses the various sample, instrument and software related aspects required for EPR quantitation. Specific topics include: choosing a reference standard, resonator considerations (Q, B1, Bm), power saturation characteristics, sample positioning, and finally, putting all the factors together to obtain an accurate spin concentration of a sample.

  15. Spin transition diagram of (2Me-5Et-PyH)[Fe(Th-5Cl-Sa)2] studied by EPR

    International Nuclear Information System (INIS)

    Krupska, A.; Augustyniak-Jablokow, M.A.; Yablokov, V.Yu.; Zelentsov, V.V.

    2005-01-01

    The high-spin - low-spin transition in (2Me-5Et-PyH)[Fe(Th-5Cl-Sa) 2 ] was studied by EPR under hydrostatic pressure in the temperature range of 80-310 K. Two modifications of the low-spin complexes: low-pressure (LS-1) and high-pressure (S-2) ones were observed. The low-spin complexes are associated in domains. Under atmospheric pressure LS-1 appears or disappears at 220 K. The hydrostatic pressure shifts the transition to high temperatures. Above 410 MPa the abrupt changes of the g-factor and width ΔB of the EPR line is observed. The pressure-induced transition LS-1 - LS-2 is almost independent of T up to 275 K where under pressure 420 MPa a triple point is observed. When the pressure has been decreased the reverse transition from LS-2 to LS-1 or to high spin phase (at T > 260 K) occurs with a large hysteresis about 95 MPa. (author)

  16. Positron annihilation spectroscopy in materials structure studies

    International Nuclear Information System (INIS)

    Grafutin, Viktor I; Prokop'ev, Evgenii P

    2002-01-01

    A relatively new method of materials structure analysis - positron annihilation spectroscopy (PAS) - is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified. (instruments and methods of investigation)

  17. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)-isothiosemicarbazides

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-09-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic ..mu..-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O/sub 2/ bond is discussed.

  18. Study by EPR and Dielectric Constant of Proton-Glass behavior in the system Rb1-X(NH4)XH2PO4:As

    International Nuclear Information System (INIS)

    Almanza, O.; Diaz J, M.; Diaz S

    1996-01-01

    From dielectric constant and EPR measurements of the system Rb1-X(NH4)XH2PO4:As we obtained the phase-diagram Tc Vs x. EPR measurements suggest a proton-glass behavior for 0.3= =0.8. In the doping-range 0.4=< x<=1 the system shows a splitting in the low field line

  19. Theoretical study of the local structures and the EPR parameters for RLNKB glasses with VO2+ and Cu2+ dopants

    Science.gov (United States)

    Ding, Chang-Chun; Wu, Shao-Yi; Wu, Li-Na; Zhang, Li-Juan; Peng, Li; Wu, Ming-He; Teng, Bao-Hua

    2018-02-01

    The electron paramagnetic resonance (EPR) parameters and local structures for impurities VO2+ and Cu2+ in RO-Li2O-Na2O-K2O-B2O3 (RLNKB; R = Zn, Mg, Sr and Ba) glasses are theoretically investigated by using the perturbation formulas of the EPR parameters for tetragonally compressed octahedral 3d1 and tetragonally elongated octahedral 3d9 clusters, respectively. The VO2+ and Cu2+ dopants are found to undergo the tetragonal compression (characterized by the negative relative distortion ratios ρ ≈ -3%, -0.98%, -1% and -0.8% for R = Zn, Mg, Sr and Ba) and elongation (characterized by the positive relative distortion ratios ρ ≈ 29%, 17%, 16% and 28%), respectively, due to the Jahn-Teller effect. Both dopants show similar overall decreasing trends of cubic field parameter Dq and covalency factor N with decreasing electronegativity of alkali earth cation R. The conventional optical basicities Λth and local optical basicities Λloc are calculated for both systems, and the local Λloc are higher for Cu2+ than for VO2+ in the same RLNKB glass, despite the opposite relationship for the conventional Λth. This point is supported by the weaker covalency or stronger ionicity for Cu2+ than VO2+ in the same RLNKB system, characterized by the larger N in the former. The above comparative analysis on the spectral and local structural properties would be helpful to understand structures and spectroscopic properties for the similar oxide glasses with transition-metal dopants of complementary electronic configurations.

  20. EPR design for maintenance

    International Nuclear Information System (INIS)

    Krugmann, U.

    1998-01-01

    Preventive maintenance is very important in achieving high plant availability. For the European Pressurized Reactor (EPR) preventive maintenance has been carefully addressed in the design stage. This is particularly necessary because of the traditionally different maintenance strategies employed in France and Germany. This paper emphasizes the following features introduced in the ERP design to minimize the duration of the refueling outage: (1) containment accessibility during power operation; (2) overall plant layout to facilitate inspections and maintenances within the containment; and (3) safety system design for enabling preventive maintenance during power operation. (author)

  1. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT).

    Science.gov (United States)

    Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.

  2. Techno-economic study of hydrogen production by high temperature electrolysis coupled with an EPR-water steam production and coupling possibilities

    International Nuclear Information System (INIS)

    Tinoco, R. R.; Bouallou, C.; Mansilla, C.; Werkoff, F.

    2007-01-01

    Nuclear reactors present a wide range of coupling possibilities with several industrial processes, hydrogen production being one of them. Among the Pressurised Water nuclear Reactors (PWR), the new European Pressurised Reactor (EPR) offers the water steam production at low-medium temperatures, from 230 degree Celsius to 330 degree Celsius for the primary and secondary exchange circuits. The use of this water steam for hydrogen production by High Temperature Electrolysis is the subject of this study, under a French context. The study of this coupling, has considered two hypotheses. First, water steam drawing off in secondary circuit has been evaluated in terms of possible impact in electricity production and reactor availability. After the drawing off at 78 bar (EPR secondary circuit pressure), pressure has to be dropped in order to protect the high temperature electrolyser from damage, so an isenthalpic drop has been considered. Liquid-vapour equilibrium happens with pressure drops, so separation of gas phase and recycling of liquid phase are proposed. Second, only water steam production with an EPR has been evaluated. The feed water enters the secondary circuit and passes from liquid phase to vapour in the steam generators, and then all steam is canalized to the high temperature electrolyser. The potentiality of water steam production in the EPR has been evaluated from 15 to 40 bar. Small reactors could be the best choice if only water steam production is considered. After steam production, it steam enters into the High Temperature Electrolysis process, like a cold stream for two parallel series of three heat exchangers reaching temperatures up to 950 degree Celsius. Then the steam is heated by an electric device and finally it enters the electrolyser. The electrolysis product streams (hydrogen-steam mixture and oxygen) are used in the heat exchangers like hot streams. For both hypotheses, information about water composition has been studied in order to minimise

  3. EPR spectroscopy on irradiated nickel tetracyanide in NaCl host lattice: mechanism for the simultaneous formation of reduced and oxidized species

    International Nuclear Information System (INIS)

    Braga de Araujo, M.; Pinhal, Nelson Moreira; Vugman, Ney Vernon

    2002-01-01

    The kinetics of oxidized and reduced Ni 2+ complexes produced by X-ray irradiation on single crystals of NaCl doped with [Ni(CN) 4 ] 2- is studied by Electron Paramagnetic Resonance at room temperature. The interdependent generation of these two complexes is attributed to migration of the charge compensating vacancy from the reduced to the oxidized complex in a reversible reaction. At higher X-ray doses, there is a predominant formation of the reduced complex

  4. EPR and NMR detection of transient radicals and reaction products

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Magnetic resonance methods in radiation chemistry are illustrated. The most recent developments in pulsed EPR and NMR studies in pulse radiolysis are outlined with emphasis on the study of transient radicals and their reaction products. 12 figures

  5. Echo detected EPR as a tool for detecting radiation-induced defect signals in pottery

    International Nuclear Information System (INIS)

    Zoleo, Alfonso; Bortolussi, Claudia; Brustolon, Marina

    2011-01-01

    Archaeological fragments of pottery have been investigated by using CW-EPR and Echo Detected EPR (EDEPR). EDEPR allows to remove the CW-EPR dominant Fe(III) background spectrum, hiding much weaker signals potentially useful for dating purpose. EDEPR spectra attributed to a methyl radical and to feldspar defects have been recorded at room and low temperature for an Iron Age cooking ware (700 B.C.). A study on the dependence of EDEPR intensity over absorbed dose on a series of γ-irradiated brick samples (estimated age of 562 ± 140 B.C.) has confirmed the potential efficacy of the proposed method for spotting defect signals out of the strong iron background. - Highlights: → Fe(III) CW-EPR signals cover CW-EPR-detectable defects in ceramics. → Echo detected EPR gets rid of Fe(III) signals, disclosing defect signals. → Echo detected EPR detects defect signals even at relatively low doses.

  6. Synthesis, spectroscopy, thermal studies and supramolecular ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectroscopy, thermal studies and supramolecular structures of two .... J = 9 Hz), 8∙13 (d, 2H, J = 9 Hz), 7∙69 (s, 1H), 7∙04. (s, 2H). ... 1H NMR (D2O): δ (in ppm); 8∙05 (d, 2H, ..... 86∙33 (2). 86∙92(1). 87∙08(2). V (Ε3). 553∙1(6). 573∙71(5). 561∙56(14). 557∙5(3) .... Mn, Co and Ni complexes.28–30 The observed inter-.

  7. Magnetic resonance spectroscopy studies in migraine

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P.; Cortelli, P.; Barbiroli, B. (Inst. of Medical Pathology, Univ. of Bologna (Italy))

    1994-06-01

    The authors describe the method of [sup 31]phosphorus magnetic resonance spectroscopy and review the results when it is applied to the study of brain and muscle energy metabolism in migraine subjects. Brain energy metabolism appears to be abnormal in all major subtypes of migraine when measured both during and between attacks. Impaired energy metabolism is also documented in skeletal muscle. It is suggested that migraine is associated with a generalized disorder of mitochondrial oxidative phosphorylation and that this may constitute a threshold for the triggering of migraine attacks. 47 refs., 10 figs., 3 tabs.

  8. Femtosecond infrared spectroscopy: study, development and applications

    International Nuclear Information System (INIS)

    Bonvalet, Adeline

    1997-01-01

    This work has been devoted to the development and the applications of a new technique of infrared (5-20 μm) spectroscopy allowing a temporal resolution of 100 fs. This technique relies on a source of ultrashort infrared pulses obtained by frequency mixing in a nonlinear material. In particular, the optical rectification of 12-fs visible pulses in gallium arsenide has allowed us to obtain 40-fs infrared pulses with a spectrum extending from 5 pm up to 15 μm. Spectral resolution has been achieved by Fourier transform spectroscopy, using a novel device we have called Diffracting FTIR. These developments allow to study inter-subband transitions in quantum-well structures. The inter-subband relaxation time has been measured by a pump-probe experiment, in which the sample was excited with a visible pulse, and the variations of inter-subband absorption probed with an infrared pulse. Besides, we have developed a method of coherent emission spectroscopy allowing to monitor the electric field emitted by coherent charge oscillations in quantum wells. The decay of the oscillations due to the loss of coherence between excited levels yields a direct measurement of the dephasing time between these levels. Other applications include biological macromolecules like reaction centers of photosynthetic bacteria. We have shown that we were able to monitor variations of infrared absorption of about 10 -4 optical densities with a temporal resolution of 100 fs. This would constitute a relevant tool to study the role of molecular vibrations during the primary steps of biological processes. (author) [fr

  9. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  10. EPR ohmic heating energy storage

    International Nuclear Information System (INIS)

    Heck, F.M.; Stillwagon, R.E.; King, E.I.

    1977-01-01

    The Ohmic Heating (OH) Systems for all the Experimental Power Reactor (EPR) designs to date have all used temporary energy storage to assist in providing the OH current charge required to build up the plasma current. The energies involved (0.8 x 10 9 J to 1.9 x 10 9 J) are so large as to make capacitor storage impractical. Two alternative approaches are homopolar dc generators and ac generators. Either of these can be designed for pulse duty and can be made to function in a manner similar to a capacitor in the OH circuit and are therefore potential temporary energy storage devices for OH systems for large tokamaks. This study compared total OH system costs using homopolar and ac generators to determine their relative merits. The total system costs were not significantly different for either type of machine. The added flexibility and the lower maintenance of the ac machine system make it the more attractive approach

  11. Retrospective dosimetry using EPR and TL techniques: a status report

    International Nuclear Information System (INIS)

    Haskell, E.H.

    1996-01-01

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance

  12. Retrospective dosimetry using EPR and TL techniques: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.

    1996-12-31

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance.

  13. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  14. EPR study of Gd sup 3 sup + centres in Tl sub 2 ZnF sub 4 crystals

    CERN Document Server

    Arakawa, M; Ebisu, H; Takeuchi, H

    2003-01-01

    EPR measurements have been made at room temperature on Tl sub 2 ZnF sub 4 crystals doped with Gd sup 3 sup + and co-doped with Gd sup 3 sup + and Li sup +. For crystals doped only with Gd sup 3 sup + , a spectrum with tetragonal symmetry (A centre) is observed. For co-doped crystals new spectra with tetragonal (B centre) and monoclinic (C centre) symmetries are observed in place of the spectrum of the A centre. The A centre is identified as the substitutional Gd sup 3 sup + ion at a Zn sup 2 sup + site in six-fold coordination without any local charge compensation in its immediate neighbourhood. On the basis of spin Hamiltonian separation analysis, the separated parameter b sub 2 sub a sub ( sub 1 sub ) for the C centre has a value close to the b sub 2 sup 0 parameter for the B centre. The B and C centres in co-doped crystals are ascribed to a Gd sup 3 sup + ion substituted for a Tl sup + site in nine-fold coordination, where the divalent excess positive charge on Gd sup 3 sup + is compensated by a Li sup + i...

  15. Low-valent low-coordinated manganese(I) ion dimer: a temperature dependent W-band EPR study.

    Science.gov (United States)

    Sorace, Lorenzo; Golze, Christian; Gatteschi, Dante; Bencini, Alessandro; Roesky, Herbert W; Chai, Jianfang; Stückl, A Claudia

    2006-01-09

    W-Band EPR spectra of [[HC(CMeNAr)(2)]Mn](2) (Ar = 2,6-(i)Pr(2)C(6)H(3)) have been measured at different temperatures. The spectra show a behavior which is typical for an antiferromagnetically coupled dimer with excited states populating upon increasing temperature. By following the intensity variation of the different features of the spectra with temperature, we attributed different groups of resonances to the S = 1, 2, and 3 states of the dimer. Their corresponding spin Hamiltonian parameters were derived from simulations. The zero-field-splitting parameters measured in this way were D(S=1) = 1.57 cm(-1) and E(S=1) = 0.064 cm(-1), D(S=2) = 0.266 cm(-1) and E(S=2) = 0.0045 cm(-1), and D(S=3) = 0.075 cm(-1) and E(S=3) = 0. On the basis of the molecular structure of the system, we could estimate that zero-field splitting (ZFS) is the result of anisotropic exchange and single-ion anisotropic contributions of similar magnitude (|D| approximately 0.2 cm(-1)). These results allow a deeper insight into the electronic structure of the Mn(I) centers in low-coordination environments, further supporting the electronic structure of Mn(I) to be 4s(1)3d(5), as previously indicated by DFT calculations.

  16. EPR DOSIMETRY STUDY FOR POPULATION RESIDING IN THE VICINITY OF FALLOUT TRACE FOR NUCLEAR TEST ON 7 AUGUST 1962.

    Science.gov (United States)

    Zhumadilov, Kassym Sh; Ivannikov, Alexander I; Stepanenko, Valeriy F; Toyoda, Shin; Skvortsov, Valeriy G; Hoshi, Masaharu

    2016-12-01

    The method of electron paramagnetic resonance (EPR) dosimetry using extracted teeth has been applied to human tooth enamel to obtain individual absorbed doses of residents of settlements in the vicinity of the central axis of radioactive fallout trace from the contaminating surface nuclear test on 7 August 1962. Most of the settlements (Kurchatov, Akzhar, Begen, Buras, Grachi, Mayskoe, Semenovka) are located from 70 to 120 km to the North-East from the epicenter of the explosion at the Semipalatinsk Nuclear Test Site (SNTS). This region is basically an agricultural region. A total of 57 teeth samples were collected from these sites. Eight teeth from residents of the Kokpekty settlement, which was not subjected to any radioactive contamination and located 400 km to the Southeast from SNTS, were chosen as a control. The principal findings, using this method, were that the average excess dose obtained after subtraction of the natural background radiation was 13 mGy and ranged up to about 100 mGy all for residents in this region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    Science.gov (United States)

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  19. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  1. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  2. Study of niobium oxidation by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Durand, C.

    1985-01-01

    The chemical composition of thin oxide layers, grown on clean niobium, in low oxygen pressure, was studied by a surface analysis method: X-ray Photoelectron Spectroscopy. The purpose of this study was to find the best conditions for the building of Nb/Nb oxide/Pb Josephson junctions, and particularly to minimise the interface thickness during the formation of the insulator film (Nb 2 O 5 ) on the metal (Nb). This interface is essentially formed by the monoxide (NbO) and dioxide (NbO 2 ). Nb 3d XPS core level peak positions and area ratios (obtained by the signal decomposition) of the components of the total peak, were used to determine the presence of the different oxidation states II, IV and V, their relative abundance, oxide thicknesses and their depth distribution. All this information was extracted by a special numerical procedure [fr

  3. Alcoholic extraction enables EPR analysis to characterize radiation-induced cellulosic signals in spices.

    Science.gov (United States)

    Ahn, Jae-Jun; Sanyal, Bhaskar; Akram, Kashif; Kwon, Joong-Ho

    2014-11-19

    Different spices such as turmeric, oregano, and cinnamon were γ-irradiated at 1 and 10 kGy. The electron paramagnetic resonance (EPR) spectra of the nonirradiated samples were characterized by a single central signal (g = 2.006), the intensity of which was significantly enhanced upon irradiation. The EPR spectra of the irradiated spice samples were characterized by an additional triplet signal at g = 2.006 with a hyperfine coupling constant of 3 mT, associated with the cellulose radical. EPR analysis on various sample pretreatments in the irradiated spice samples demonstrated that the spectral features of the cellulose radical varied on the basis of the pretreatment protocol. Alcoholic extraction pretreatment produced considerable improvements of the EPR signals of the irradiated spice samples relative to the conventional oven and freeze-drying techniques. The alcoholic extraction process is therefore proposed as the most suitable sample pretreatment for unambiguous detection of irradiated spices by EPR spectroscopy.

  4. EPR dating CO2- sites in tooth enamel apatites by ENDOR and triple resonance

    International Nuclear Information System (INIS)

    Vugman, N.V.; Rigby, S.E.J.

    1995-01-01

    In this work we combine electron paramagnetic resonance (EPR), high-resolution electron nucleus double resonance (ENDOR) and general triple resonance (GTR) spectroscopies, to study the local environment of the CO 2 - groups created by ionizing radiation in fossil tooth enamel. We demonstrate that the CO 2 - groups occupy slightly modified phosphate sites in the hydroxyapatite lattice. In quaternary shark enamel we found these groups to be interacting with water molecules in the apatite channels. The absence of water molecules as first neighbours in mammalian samples indicate, however, that these molecules are not significantly responsible for the stabilization of CO 2 - dating centers in enamel. (author)

  5. X-band EPR studies of ferroelectric lead titanate (PT), piezoelectric lead magnesium niobate (PMN), and PMN/PT powders at 10 and 85 K

    International Nuclear Information System (INIS)

    Huang, J.; Fitzgerald, J.J.; Chasteen, N.D.

    1998-01-01

    X-band EPR spectra of lead titanate (PT) and lead magnesium niobate (PMN) powders prepared by different synthetic methods and a PMN/PT powder of the composition 0.9 PMN/01 PT were obtained at 85 and 10 K. Several EPR signals due to adventitious Fe 3+ ion impurities, a signal due to the Ti 3+ ion, and a signal due to the Pb 3+ ion are observed for PT, PMN, and PMN/PT powders. The EPR signals observed at g = 2.0 and 6.0 are assigned to Fe 3+ ions in the B-sites of the perovskite lattice structure of lad titanate with axial symmetry. The EPR signals observed at g = 1.99 and 4.25 are assigned to Fe 3+ ions in the B-sites of the perovskite lattice structure of PMN and 0.9 PMN/0.1 PT materials with cubic and rhombic symmetries, respectively. The sharp EPR signal observed at g = 1.94 is assigned to Ti 3= ion for PT and 0.9 PMN/0.1 PT powders. In addition, a broader EPR signal at g = 2.28--2.30 for PMN obtained by the molten salt method is assigned to axial Pb 3+ ion sites in this PMN material. EPR results obtained here for the e 3+ ions in the B-sites of the PMN materials, in particular, suggest that both cubic and rhombic symmetry sites corresponding to a range of Nb(OMg) x (ONb) 6-x site configurations exist in the PMN. These EPR results indicate that PMN likely exists with partial B-site cation (Mg/Nb) ordering in the perovskite lattice structure

  6. Moessbauer spectroscopy in studies of photosynthesis

    International Nuclear Information System (INIS)

    Burda, Kvetoslava

    2008-01-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the 'heart' of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Moessbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  7. Corrosion Study Using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  8. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  9. EPR Flamanville 3, Site Management

    International Nuclear Information System (INIS)

    Menager, Antoine

    2014-01-01

    Antoine Menager, the EPR Flamanville 3 Site Manager described the organization and the management of the Flamanville site during the construction phase. He placed emphasis on Health and Safety, Environmental and Social Responsibility and on Nuclear Safety and Quality

  10. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  11. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Science.gov (United States)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  12. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  13. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  14. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  15. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    Science.gov (United States)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  16. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    Science.gov (United States)

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. EPR in non-doped irradiated polyacetylene

    International Nuclear Information System (INIS)

    Hola, O.; Stasko, A.; Foeldesova, M.

    1993-01-01

    The influence of γ-irradiation on the paramagnetic properties of non-doped polyacetylene at low and high radiation doses has been studied and summarized. The dependence of the EPR spectra on the radiation dose in irradiated polyacetylene has been measured. No essential changes of the spin mobility as a consequence of irradiation were observed. The measurements of spin concentration confirm the high resistivity of non-doped polyacetylene to radiation. (author) 9 refs

  18. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    Energy Technology Data Exchange (ETDEWEB)

    Bercu, V., E-mail: vbercu@gmail.co [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania); Negut, C.D., E-mail: dnegut@nipne.r [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Ilfov) (Romania); Duliu, O.G., E-mail: duliu@b.astral.r [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania)

    2010-12-15

    The suitability of the EPR spectroscopy for detection of {gamma}-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel-Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom-Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle-Cantharellus cibarius Fr., as well as oyster mushroom-Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  19. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    Science.gov (United States)

    Bercu, V.; Negut, C. D.; Duliu, O. G.

    2010-12-01

    The suitability of the EPR spectroscopy for detection of γ-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel— Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom— Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle— Cantharellus cibarius Fr., as well as oyster mushroom— Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  20. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    International Nuclear Information System (INIS)

    Bercu, V.; Negut, C.D.; Duliu, O.G.

    2010-01-01

    The suitability of the EPR spectroscopy for detection of γ-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel-Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom-Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle-Cantharellus cibarius Fr., as well as oyster mushroom-Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  1. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    Science.gov (United States)

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  2. Multisite EPR oximetry from multiple quadrature harmonics.

    Science.gov (United States)

    Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C

    2012-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    Dubner, D.L.; Spinella, M.R.; Bof, E.

    2010-01-01

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors) [es

  4. Emergency EPR and OSL dosimetry with table vitamins and minerals.

    Science.gov (United States)

    Sholom, S; McKeever, S W S

    2016-12-01

    Several table vitamins, minerals and L-lysine amino acid have been preliminarily tested as potential emergency dosemeters using electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) techniques. Radiation-induced EPR signals were detected in samples of vitamin B2 and L-lysine while samples of multivitamins of different brands as well as mineral Mg demonstrated prominent OSL signals after exposure to ionizing radiation doses. Basic dosimetric properties of the radiation-sensitive substances were studied, namely dose response, fading of the EPR or OSL signals and values of minimum measurable doses (MMDs). For EPR-sensitive samples, the EPR signal is converted into units of dose using a linear dose response and correcting for fading using the measured fading dependence. For OSL-sensitive materials, a multi-aliquot, enhanced-temperature protocol was developed to avoid the problem of sample sensitization and to minimize the influence of signal fading. The sample dose in this case is also evaluated using the dose response and fading curves. MMDs of the EPR-sensitive samples were below 2 Gy while those of the OSL-sensitive materials were below 500 mGy as long as the samples are analyzed within 1 week after exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. EPR by Areva. EPR the 1600+ MWe reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system.

  6. EPR by Areva. EPR the 1600+ MWe reactor

    International Nuclear Information System (INIS)

    2008-01-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system

  7. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  8. The EPR detection of foods preserved with the use of ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlińska, G.; Michalik, J.; Dziedzic-Gocławska, A.; Ostrowski, K.

    1995-02-01

    Solid constituents extracted from irradiated foods have been examined by the epr (esr) spectroscopy. It has been proved that some epr active species produced by radiation in foods are specific and stable enough to be used for the detection of irradiation treatment. The most promising results have been obtained with bones extracted from frozen raw meat (beef, pork, poultry and fish), with seeds of fruits (dates and figs), with dried mushrooms, gelatin and macaroni.

  9. Photochemical sensitization by azathioprine and its metabolites. Part 3. A direct EPR and spin-trapping study of light-induced free radicals from 6-mercaptopurine and its oxidation products.

    Science.gov (United States)

    Moore, D E; Sik, R H; Bilski, P; Chignell, C F; Reszka, K J

    1994-12-01

    Sunlight has been implicated in the high incidence of skin cancer found in patients receiving 6-mercaptopurine (PSH) in the form of its pro-drug azathioprine. In this study we have used EPR spectroscopy in conjunction with the spin-trapping technique to determine whether PSH and its metabolic or photochemical oxidation products generate highly reactive free radicals upon UV irradiation. When an aqueous anaerobic solution (pH 5 or 9) of PSH (pKa = 7.7) and either 2-methyl-2-nitrosopropane (MNP) or nitromethane (NM) were irradiated (lambda > 300 nm) with a Xe arc lamp, the corresponding purine-6-thiyl (PS.) radical adduct and the reduced form of the spin trap (MNP/H. or CH3NO2.-) were observed. However, no radical adducts were detected when PSH and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were irradiated (lambda = 320 nm) in oxygen-free buffer. These findings suggest that PSH does not photoionize but that instead MNP and NM are reduced by direct electron transfer from excited state PSH, 1.3(PSH)*. In aerobic solution, oxygen can act as an electron acceptor and the O2.- and PS. radicals are formed and trapped by DMPO. 6-Mercaptopurine did photoionize when irradiated with a Nd:YAG laser at 355 nm as evidenced by the appearance of the DMPO/H.(eq- + H+) adduct, which decreased in intensity in the presence of N2O. 1.3(6-Mercaptopurine)* oxidized ascorbate, formate and reduced glutathione to the corresponding ascorbyl, CO2.- or glutathiyl radicals. The photochemical behavior of 6-thioxanthine and 6-thiouric acid was similar to PSH. However, the excited states of these metabolic oxidation products exhibited stronger reducing properties than 1.3(PSH)*.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Study of clusters using negative ion photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuexing [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs-. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  11. Study of clusters using negative ion photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Zhao, Yuexing.

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs - . In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy

  12. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  13. Comparison Study on I&C System Architecture of the Third Generation NPP Between EPR 1600 and US-APWR 1700

    International Nuclear Information System (INIS)

    Nafi Feridian; Arief Heru Kuncoro

    2009-01-01

    In order to support government's programs on research and development of nuclear energy, so a comparative study has been conducted on I&C system architecture of the third generation Nuclear Power Plant (NPP) of EPR 1600 and US-APWR 1700. I&C system is one of supporting systems in nuclear power plant in such away that the nuclear reactor operation can be safely and control. This study compares parameters on main structure of I&C system architecture related with safety system of nuclear power plant operation.The methodology of this study are literature study, data collection, review and analysis. It can be concluded although the two system have some have similarities, both of them have implemented a modern digital and computerized I&C system architecture with high ability of safety level and suitable with American code standard. But in general, they have difference parameters, such as classification of safety-related and non safety-related group, control and monitoring system, supporting systems of defence in depth and also supporting systems of I&C safety. (author)

  14. Xanthines Studied via Femtosecond Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pascale Changenet-Barret

    2016-12-01

    Full Text Available Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10−4 and average decay time (0.9 ps are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  15. Seventy Years of the EPR Paradox

    Science.gov (United States)

    Kupczynski, Marian

    2006-11-01

    In spite of the fact that statistical predictions of quantum theory (QT) can only be tested if large amount of data is available a claim has been made that QT provides the most complete description of an individual physical system. Einstein's opposition to this claim and the paradox he presented in the article written together with Podolsky and Rosen in 1935 inspired generations of physicists in their quest for better understanding of QT. Seventy years after EPR article it is clear that without deep understanding of the character and limitations of QT one may not hope to find a meaningful unified theory of all physical interactions, manipulate qubits or construct a quantum computer.. In this paper we present shortly the EPR paper, the discussion, which followed it and Bell inequalities (BI). To avoid various paradoxes we advocate purely statistical contextual interpretation (PSC) of QT. According to PSC a state vector is not an attribute of a single electron, photon, trapped ion or quantum dot. A value of an observable assigned to a physical system has only a meaning in a context of a particular physical experiment PSC does not provide any mental space-time picture of sub phenomena. The EPR paradox is avoided because the reduction of the state vector in the measurement process is a passage from a description of the whole ensemble of the experimental results to a particular sub-ensemble of these results. We show that the violation of BI is neither a proof of the completeness of QT nor of its non-locality. Therefore we rephrase the EPR question and ask whether QT is "predictably "complete or in other words does it provide the complete description of experimental data. To test the "predictable completeness" it is not necessary to perform additional experiments it is sufficient to analyze more in detail the existing experimental data by using various non-parametric purity tests and other specific statistical tools invented to study the fine structure the time-series.

  16. Self-testing through EPR-steering

    International Nuclear Information System (INIS)

    Šupić, Ivan; Hoban, Matty J

    2016-01-01

    The verification of quantum devices is an important aspect of quantum information, especially with the emergence of more advanced experimental implementations of quantum computation and secure communication. Within this, the theory of device-independent robust self-testing via Bell tests has reached a level of maturity now that many quantum states and measurements can be verified without direct access to the quantum systems: interaction with the devices is solely classical. However, the requirements for this robust level of verification are daunting and require high levels of experimental accuracy. In this paper we discuss the possibility of self-testing where we only have direct access to one part of the quantum device. This motivates the study of self-testing via EPR-steering, an intermediate form of entanglement verification between full state tomography and Bell tests. Quantum non-locality implies EPR-steering so results in the former can apply in the latter, but we ask what advantages may be gleaned from the latter over the former given that one can do partial state tomography? We show that in the case of self-testing a maximally entangled two-qubit state, or ebit, EPR-steering allows for simpler analysis and better error tolerance than in the case of full device-independence. On the other hand, this improvement is only a constant improvement and (up to constants) is the best one can hope for. Finally, we indicate that the main advantage in self-testing based on EPR-steering could be in the case of self-testing multi-partite quantum states and measurements. For example, it may be easier to establish a tensor product structure for a particular party’s Hilbert space even if we do not have access to their part of the global quantum system. (paper)

  17. Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma (EPR-CAT)

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-07-1-0682 TITLE: Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma ( EPR -CAT) PRINCIPAL INVESTIGATOR...thoracotomy and open chest CPR, results in unacceptably low survival rates. Emergency Preservation and Resuscitation ( EPR ) was developed to rapidly preserve...further recommended that the trauma surgeons involved in the study obtain hospital privileges for cannulation for the EPR flush. This has been

  18. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  19. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  20. The EPR layout design

    International Nuclear Information System (INIS)

    Mast, U.; Le Carrer, P.Y.

    2001-01-01

    General: The European Pressurised Water Reactor (EPR) is a French - German development for the next generation of Pressurised Water Reactor. The new reactor design is based on the experiences of operation and design of nuclear power plants in both countries. The EPR fulfils enhanced safety standards, higher availability and a longer service life. Utilities aspects: For the Utilities one important requirement is the reduction of personnel exposure during maintenance and in-service inspection. The other significant requirement is of economic nature. The main points influencing costs, which have also impact on the layout, are: outage times, accessibility of the reactor building and the available maintenance and set down areas. The Utilities have also required to load the spent fuel assemblies into the shipping cask from the bottom of the fuel pool, because of the exclusion of the drop of the cask and in order to avoid contamination at the outer cask shell. Layout and safety aspects: All safety relevant Nuclear Island (NI) buildings are designed against design earthquake as well as explosion pressure wave. The protection against Airplane Crash (APC) is realised by civil and layout dispositions. The Reactor Building, the Safeguard Buildings division 2 and 3 and the Fuel Building are protected by concrete structures. The other safety relevant nuclear buildings are protected by geographical separation. Important safety requirements are the further reduction of the probability of severe accidents and the mitigation of such an accident on the plant area. For that, a spreading area for molten corium, a channel from the reactor pit to the spreading area and the In Containment Refuelling Water Storage Tank (IRWST) for flooding and initial cooling of the corium, were implemented in the design of the Reactor Building. Layout results: The following buildings are arranged on a common raft to protect them against design earthquake: Reactor Building (RB), Safeguard Buildings (SAB

  1. Theoretical studies of the local structures and EPR parameters for the rhombic Cu{sup 2+} center in Cu{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao-Ying [Shangrao Normal College, Jiangxi (China). College of Physics and Electronic Information; Huang, Ying; Tu, Qiu [Shangrao Normal College, Jiangxi (China). School of Physics and Electronic Information

    2015-07-01

    The local structure of the rhombic Cu{sup 2+} center in Cu{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} phosphate is investigated by using the high-order perturbation formulas of electron paramagnetic resonance (EPR) parameters, g-factors g{sub i} (i = x, y, z), and hyperfine structure constants A{sub i} for 3d{sup 9} ions in rhombically elongated octahedral symmetry. According to the studies, the local axial distortion angle Δα (∼ 5.1 ) and the planar bond angle θ (∼ 83.8 ) in [CuO{sub 6}]{sup 10-} cluster was obtained. The theoretical EPR parameters based on the aforementioned local structure parameters show good agreement with the observed values, and some improvement have been made as compared with the previous studies.

  2. Theoretical and experimental EPR and optical studies of [Cu(1-meim){sub 4}(H{sub 2}O)]·2Cl·H{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yıldırım, İlkay, E-mail: iyildirim@biruni.edu.tr [Biruni University, Department of Radiotherapy, Vocational School of Health Services, Istanbul (Turkey); Çelik, Yunus, E-mail: yunus.celik@omu.edu.tr [Ondokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences, Samsun (Turkey); Karabulut, Bünyamin, E-mail: bbulut@omu.edu.tr [Ondokuz Mayıs University, Department of Computer Engineering, Faculty of Engineering, Samsun (Turkey)

    2016-03-25

    [Cu(1-meim){sub 4}(H{sub 2}O)]·2Cl·H{sub 2}O (1-meim: 1-methylimidazole) complex has been investigated by EPR and UV techniques. EPR spectra of [Cu(1-meim){sub 4}(H{sub 2}O)]·2Cl·H{sub 2}O single crystal have been studied at room temperature. The spin Hamiltonian parameters (g and hyperfine (A) values) have been calculated. The results indicate the rhombic symmetry around the paramagnetic Cu{sup 2+} center. The perturbation approach has been applied to spin Hamiltonian to calculate the g and A values theoretically. Crystal field parameters were also obtained both experimentally and theoretically. Using both types of spectroscopic techniques the molecular bonding coefficients were calculated. The consistency of results with some other studies was reached.

  3. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  4. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  5. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations.

    Science.gov (United States)

    Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; Long, Jeffrey R; Neese, Frank

    2017-03-06

    The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh 4 ) 2 [Co(SPh) 4 ] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh) 4 ] 2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh) 4 ] 2- : (PPh 4 ) 2 [Co(SPh) 4 ] (1) and (NEt 4 ) 2 [Co(SPh) 4 ] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh) 4 ] 2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm -1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm -1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

  6. Combination is the dominant free radical process initiated in DNA by ionizing radiation: an overview based on solid-state EPR studies

    International Nuclear Information System (INIS)

    Bernhard, W.A.; Mroczka, N.; Barnes, J.

    1994-01-01

    An overview of the early processes initiated in DNA by ionizing radiation is given from the perspective of studies done by solid-state EPR with the focus on radical combination. Comparisons with free radical formation and trapping in crystalline pyrimidines (1-methylcytosine, thymine, 1-methylthymine, 1-methyluracil, and cytosine monohydrate) provide insight into the processes occurring in DNA. Between 25 and 50% of low LET ionizations in fully hydrated DNA at 4 K lead to trapped free radicals, the remaining unobserved radicals are assumed to have combined. The majority of the radicals trapped in DNA at 4 K (G ∼ 0.3 μmol/J) are believed to be in clusters. Based on the value of G, it is argued that the range of holes and bound electrons in DNA at 4 K are, in the main, limited to within the cluster diameter, ∼ 4 nm. Proton transfer across hydrogen bonds promotes radical trapping and inhibits combination but is thermally reversible. Warming to room temperature mobilizes the reversibly trapped radicals and gives additional combination (50-80% of those trapped at 4 K). The yield of free radicals, after anneal, is sufficient to account for the yield of single-strand breaks produced by direct effects. (Author)

  7. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Radicals as EPR probes of magnetization of gadolinium stearate Langmuir-Blodgett film

    DEFF Research Database (Denmark)

    Koksharov, Y.A.; Bykov, I.V.; Malakho, A.P.

    2002-01-01

    In the present work we have applied the method of the EPR spin probes which allows performing simultaneously EPR and magnetization measurements to the investigation of magnetism of the Cid stearate Langmuir-Blodgett (LB) films. For this purpose we have prepared and studied by the EPR technique...... the Gd and Y stearate LB films. Placing the small BDPA crystal on the film surface we have found that for the Gd LB sample the effective g-value of the radical's resonance depends on the film orientation in respect to the external magnetic field direction. The relative shift of the EPR signal...

  9. EPR study of gamma irradiated N-methyl taurine (C 3H 9NO 3S) and sodium hydrogen sulphate monohydrate (NaHSO 3·H 2O) single crystals

    Science.gov (United States)

    Yıldırım, İlkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C 3H 9NO 3S and NaHSO 3.H 2O single crystals have been carried out at room temperature. There is one site for the radicals in C 3H 9NO 3S and two magnetically distinct sites for the radicals in NaHSO 3. The observed lines in the EPR spectra have been attributed to the species of SO3- and RH radicals for N-methyl taurine, and to the SO3- and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO3-, the hyperfine values of RH and OH proton splitting have been calculated and discussed.

  10. The EPR in a few words: all you need to know about the EPR nuclear reactor

    International Nuclear Information System (INIS)

    2009-01-01

    After a brief presentation of the EPR (European - or Evolutionary - Pressurized Reactor) type nuclear reactor, this paper, proposed by the collective group 'Stop EPR', develops the following points: EPR is as dangerous as other reactors; EPR flouts democracy; France's energy demand do not need the construction of EPRs; the construction of EPRs is not a factor of economical and social development; EPR should not be constructed neither in France nor elsewhere and the present building sites should be cancelled; the EPR will not help France to increase its energy independence and protect itself from oil price increases; choosing the EPR is incompatible with the large investments to be made in energy conservation and renewable energies; the EPR is not a solution to climate change; the VHV line corridor that will starts at Flamanville is not justified and poses risks to the environment and public health

  11. EPR: Some History and Clarification

    Science.gov (United States)

    Fine, Arthur

    2002-04-01

    Locality, separation and entanglement 1930s style. We’ll explore the background to the 1935 paper by Einstein, Podolsky and Rosen, how it was composed, the actual argument of the paper, the principles used, and how the paper was received by Schroedinger, and others.We’ll also look at Bohr’s response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to EPR marks a shift in Bohr’s thinking about the quantum theory.

  12. Some ideas on the EPR

    International Nuclear Information System (INIS)

    2003-01-01

    Facing the debate and controversial between partisans and opponents of the European Pressurized Reactor construction, the SFP energy Group aims to offer some reflexions. In this framework the following topics are discussed: the french nuclear park and its replacement, the energy costs, the nuclear reactors profitability, the generation IV reactors. The paper examines then the EPR technology and its cost to conclude on the advantage of an EPR construction, in the case of an energy policy based on the nuclear. This last point seems to be the real challenge of the problem. (A.L.B.)

  13. EPR in B physics and elsewhere

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Tel Aviv Univ.; Argonne National Lab., IL

    1997-01-01

    The application of Einstein-Podolsky-Rosen correlations in Υ(4s) → B anti B decays to research in CP violation is the first and probably only use of EPR as a technique for research in new physics. Elsewhere highly sophisticated EPR projects question EPR and test its predictions to look for violations of quantum mechanics, hidden variables, Bell''s inequalities, etc

  14. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  15. EPR: the nuclear impasse; EPR: l'impasse nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Marillier, F. [Association Ecologiste Greenpeace (France)

    2008-07-01

    The questions relative to the climatic change constitute crucial challenges for the next ten years. In this context the author aims to show how the EPR project illustrates the nuclear french ''autism''. He presents and analyzes the international and environmental impacts of this obsolete technology, as a project useless and dangerous. (A.L.B.)

  16. Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter.

    Science.gov (United States)

    Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier

    2013-07-17

    Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR line and used as a new datation method for organic matter in the field of exobiology. Combined to classical EPR parameters, the proposed shape parameter provides a full description of an EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line. The paper is a literate program-written using Noweb within the Org-mode as provided by the Emacs editor- and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.

  17. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    Science.gov (United States)

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  18. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures

  19. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. EPR spectral investigation of radiation-induced radicals of gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tuner, Hasan [Balikesir University, Department of Physics, Faculty of Art and Science, Balikesir (Turkey)

    2017-11-15

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH){sub 2}C{sub 6}H{sub 2}COOH radicals for both compounds. (orig.)

  1. Application of Moessbauer spectroscopy to study corrosion

    International Nuclear Information System (INIS)

    Ramshesh, V.; Ravichandran, K.; Venkateswarlu, K.S.

    1976-01-01

    The system components in a nuclear power station include steel, stainless steel and various alloys such as Monel, Inconel, Stellite etc. Usually water/heavy water used as the coolant flows at high temperatures and pressures. Under such conditions the interaction of system components with the coolant produces a host of corrosion products. The deposition of such products is essential. This report attempts to review the salient features of identification of such corrosion products using Moessbauer spectroscopy. (author)

  2. EPR correlations and EPW distributions

    International Nuclear Information System (INIS)

    Bell, J.S.

    1995-01-01

    In the case of two free spin-zero particles, the wave function originally considered by Einstein, Podolsky and Rosen to exemplify EPR correlations has a non-negative Wigner distribution. This distribution gives an explicitly local account of the correlations. For an irreducible non-locality, more elaborate wave functions are required, with Wigner distributions which are not non-negative. (author)

  3. Proton MR spectroscopy in solitary pulmonary nodules: a preliminary study

    International Nuclear Information System (INIS)

    Yang Chunshan; Xiao Xiangsheng; Li Huimin; Liu Shiyuan; Li Chengzhou; Li Shenjiang

    2005-01-01

    Objective: To study the characteristics and the regularities of the metabolites in solitary pulmonary nodules with proton MR spectroscopy, and to investigate the clinical value of MR spectroscopy in differentiating benign from malignant pulmonary nodules. Methods: Sixty-nine patients with solitary pulmonary nodules underwent routine MRI and single-voxel MR spectroscopy using Siemens Vision 1.5 T MR system. MR spectroscopy characteristics and parameters of the metabolites were observed and recorded. Ten pathologic specimens were examined with single-voxel MR spectroscopy. The MR spectroscopy results of the pathologic specimens were compared with those of the solitary pulmonary nodules in vivo. Results: The Cho peak (2.86 ± 1.89) of the malignant nodules was higher than that of the inflammatory (0.87 ± 0.74), tuberculous nodules (0.97 ± 1.09), and hamartoma (0.42 ± 0.53) (P 0.05). Conclusion: MR spectroscopy is reliable in evaluating pulmonary nodules in vivo. The Cho peak, Cho/Cr, and Lac peak of the malignant nodules were higher than those of inflammatory, tuberculous nodules, and hamartoma. MR spectroscopy is helpful in differentiating benign from malignant pulmonary nodules. (authors)

  4. Free radical EPR in delineating oil bearing zones

    International Nuclear Information System (INIS)

    Sharma, R.K.; Kumar, V.; Das, T.K.; Gundu Rao, T.K.

    1993-01-01

    Presence of naturally occurring gamma ray activity has long been detected in oil/gas wells is invariably carried out for formation evaluation. Similarly, presence of free radicals in oil bearing formations has also been known for quite sometime. Present paper deals with a systematic study of detecting these free radicals in oil wells and correlations of these with x-ray and other logs for identification of hydrocarbon bearing zones. Present study attempts to establish EPR as as inexpensive and reliable tool in comparison with gamma ray and neutron density logs recorded in exploratory oil wells. EPR studies have been carried out in an exploratory well between depth intervals 1600 m-1400 m located in south of existing producing field in Bombay Offshore region. Based on these results, an EPR log has been prepared and compared with gamma ray and neutron density logs. (author). 4 refs., 1 fig., 1 tab

  5. The use of deciduous molars in EPR dose reconstruction

    International Nuclear Information System (INIS)

    El-faramawy, N.A.; Wieser, A.

    2005-01-01

    The use of deciduous teeth in EPR dose reconstruction has the unique potential to measure individual doses that were accumulated in the early childhood in the age up to 12 years. It was found previously that due to the small size of deciduous incisors, the available amount of enamel is not sufficient for EPR measurements. Therefore, dose assessment with deciduous incisors can only be done by measurement of whole teeth, including enamel and dentine. The measurement of whole teeth instead of enamel alone is possibly less reliable for dose reconstruction because the stability of CO 2 - radicals (that are an indicator for the absorbed dose) in biologically active dentine is not known. In the present study naturally loosed deciduous molars were investigated. The feasibility of separating enamel from small size molars was analysed. EPR spectrum parameters of whole molars and separated enamel only were evaluated before and after laboratory irradiation. The EPR signal amplitudes of the CO 2 - and native signals were determined by spectrum deconvolution, in dependence on radiation dose in the range 0.1 - 10 Gy. The fading at room temperature of native and CO 2 - EPR signals was analysed. The detection threshold for absorbed dose in enamel was determined.

  6. Development of a new dosimeter of EPR based on lactose

    International Nuclear Information System (INIS)

    Cruz C, L.; Torijano C, E.; Azorin N, J.; Aguirre G, F.; Cruz Z, E.

    2014-08-01

    50 years have passed since was proposed using the amino acid alanine as dosimeter advantage the phenomenon of electron paramagnetic resonance (EPR); this dosimetric method has reached a highly competitive level regarding others dosimetry classic methods, for example the thermoluminescence or the use of Fricke dosimeters, to measure high dose of radiation. In this type of materials, the free radicals induced by the radiation are stable and their concentration is proportional to the absorbed dose may be determined by the amplitude pick to pick of the first derived of the EPR absorption spectrum. The obtained results studying the EPR response of lactose tablets elaborated in the Universidad Autonoma Metropolitana, Unidad Iztapalapa are presented. The tablets were irradiated with gamma radiation of 60 Co in the irradiator Gamma beam 651-Pt of the Instituto de Ciencias Nucleares de la Universidad Nacional Autonoma de Mexico to a dose rate of 8 kGy-h -1 and their EPR response in a EPR spectrometer e-scan Bruker. The obtained response in function of the dose was lineal in the interval of 1 at 10 kGy. The lactose sensibility was compared with the l-alanine, used as reference, and the result was consistently 0.25 of this. Due to the linearity shown in the interval of used dose and their low production cost, we conclude that the lactose is a promissory option for the dosimetry of high dose of radiation. (author)

  7. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  8. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    Science.gov (United States)

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed

  9. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M.O.; Shagina, N.B.; Shishkina, E.A.; Vozilova, A.V.; Volchkova, A.Y.; Vorobiova, M.I. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Wieser, A. [Helmholtz Centrum Munich, Neuherberg (Germany); Fattibene, P.; Della Monaca, S. [Instituto Superiore di Sanita, Rome (Italy); Ainsbury, E.; Moquet, J. [Public Health England, Chilton, Didcot (United Kingdom); Anspaugh, L.R. [University of Utah, Salt Lake City, UT (United States); Napier, B.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-11-15

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated {sup 89,90}Sr, the EPR and FISH assays were supported by measurements of {sup 90}Sr-body burdens and estimates of {sup 90}Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from {sup 137}Cs incorporated in donors' soft tissues. It is shown here that the

  10. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River

    International Nuclear Information System (INIS)

    Degteva, M.O.; Shagina, N.B.; Shishkina, E.A.; Vozilova, A.V.; Volchkova, A.Y.; Vorobiova, M.I.; Wieser, A.; Fattibene, P.; Della Monaca, S.; Ainsbury, E.; Moquet, J.; Anspaugh, L.R.; Napier, B.A.

    2015-01-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated "8"9","9"0Sr, the EPR and FISH assays were supported by measurements of "9"0Sr-body burdens and estimates of "9"0Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from "1"3"7Cs incorporated in donors' soft tissues. It is shown here that the TRDS

  11. EPR-technical codes - a common basis for the EPR

    International Nuclear Information System (INIS)

    Zaiss, W.; Appell, B.

    1997-01-01

    The design and construction of Nuclear Power Plants implies a full set of codes and standards to define the construction rules of components and equipment. Rules are existing and are currently implemented, respectively in France and Germany (mainly RCCs and KTA safety standards). In the frame of the EPR-project, the common objective requires an essential industrial work programme between engineers from both countries to elaborate a common set of codes and regulations. These new industrial rules are called the ETCs (EPR Technical Codes). In the hierarchy the ETCs are - in case of France - on the common level of basic safety rules (RFS), design and construction rules (RCC) and - in Germany - belonging to RSK guidelines and KTA safety standards. A set of six ETCs will be elaborated to cover: safety and process, mechanical components, electrical equipment, instrumentation and control, civil works, fire protection. (orig.)

  12. The Flamanville 3 EPR reactor; Le reacteur EPR Flamanville 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    On April 10. 2007, the french government authorized EDF to create on the site of Flamanville ( La Manche) a nuclear base installation containing a pressurized water EPR type reactor. This nuclear reactor, conceived by AREVA NP and EDF, is the first copy of a generation susceptible to replace later, at least partly, the French nuclear reactors at present in operation.Within the framework of its mission of technical support of the Authority of Nuclear Safety ( A.S.N.), the I.R.S.N. widely contributed successively: to define the general objectives of safety assigned to this new generation of pressurized water nuclear reactors; to analyze the options of safety proposed by EDF for the EPR project; To deepen, upstream to the authorization of creation, the evaluation of the step of safety and the measures of conception retained by EDF that have to allow to respect the objectives of safety which were notified to it. (N.C.)

  13. EPR dosimetry in a mixed neutron and gamma radiation field.

    Science.gov (United States)

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  14. EPR of defects in semiconductors: past, present, future

    International Nuclear Information System (INIS)

    Watkins, G.D.

    1999-01-01

    Important physical concepts learned from early EPR studies of defects in silicon are reviewed. Highlighted are the studies of shallow effective-mass-liked donors and acceptors of deep transition element impurities, and of vacancies and interstitials. It is shown that the concepts learned in silicon translate remarkable well to the corresponding defects in the other elemental and compound semiconductors. The introduction of sensitive optical and electrical detection methods and the recent progress in single defects detection insure the continued vital role of EPR in the future

  15. EPR compared to international requirements (Mainly EUR)

    International Nuclear Information System (INIS)

    Broecker, B.

    1996-01-01

    A number of European Utilities have entered an agreement to write common requirements dedicated to future light water nuclear power plants to be built in Europe. The activities are known under the sign EUR (European Utilities Requirements). EPR, the future European Pressurized water Reactor, is the first installation of this type which will be operational from the year 2000 onwards, must fulfill the European requirements. EPR will serve as a test whether these requirements are realistic and well balanced. At the basic design stage of EPR, this paper concentrates on four main topics: the requirements which are new compared with existing reactors and which put a major challenge to the designer; the requirements today still open and the way they can be met by the EPR or not; the points for which already today the EPR special requirements exceed the EUR; the examples where the design of the EPR has given feedback which has led to a change of the EUR. EPR and EUR are different approaches to the reactor of the future. EUR is a set of requirements which leaves a flexibility to the designer while EPR is a real project which defines the technical solutions. EPR will fulfill the EUR and will at the same time serve as a test whether these requirements are realistic. EPR will also fulfill international requirements with minor changes. (J.S.). 7 figs

  16. EPR structure of the gamma irradiated alanine spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A; Jimenez D, H; Urena N, F; Galindo, S; Bosch, P

    1992-03-15

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of {gamma}-irradiated powder DL- and L-alanine. (Author)

  17. EPR and TL correlation in some powdered Greek white marbles

    International Nuclear Information System (INIS)

    Baieetto, Vanessa; Villeneuve, Gerard; Guibert, Pierre; Schvoerer, Max

    2000-01-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 deg. C and 360 deg. C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g perp =2.0038 and g par =2.0024 due to the SO - 3 centre and the B one with g 1 =2.0005; g 2 =2.0001; g 3 =1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 deg. C TL peak is associated to the A signal and thus to the SO - 3 centre and the 360 deg. C TL peak is caused by mechanical treatment corresponding to the B EPR signal

  18. EPR and TL correlation in some powdered Greek white marbles

    Energy Technology Data Exchange (ETDEWEB)

    Baieetto, Vanessa E-mail: crpaa@montaigne.u-bordeaux.fr; Villeneuve, Gerard; Guibert, Pierre; Schvoerer, Max

    2000-02-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 deg. C and 360 deg. C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g{sub perp}=2.0038 and g{sub par} =2.0024 due to the SO{sup -}{sub 3} centre and the B one with g{sub 1}=2.0005; g{sub 2}=2.0001; g{sub 3}=1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 deg. C TL peak is associated to the A signal and thus to the SO{sup -}{sub 3} centre and the 360 deg. C TL peak is caused by mechanical treatment corresponding to the B EPR signal.

  19. EPR and TL correlation in some powdered Greek white marbles.

    Science.gov (United States)

    Baïetto, V; Villeneuve, G; Guibert, P; Schvoerer, M

    2000-02-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 degrees C and 360 degrees C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g perpendicular = 2.0038 and g parallel = 2.0024 due to the SO3- centre and the B one with g1 = 2.0005; g2 = 2.0001; g3 = 1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 degrees C TL peak is associated to the A signal and thus to the SO3- centre and the 360 degrees C TL peak is caused by mechanical treatment corresponding to the B EPR signal.

  20. EPR structure of the gamma irradiated alanine spectrum

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez D, H.; Urena N, F.; Galindo, S.; Bosch, P.

    1992-03-01

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of γ-irradiated powder DL- and L-alanine. (Author)

  1. In vitro Ca(2+)-dependent maturation of milk-clotting recombinant Epr: minor extracellular protease: from Bacillus licheniformis.

    Science.gov (United States)

    Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G

    2013-06-01

    The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.

  2. EPR studies on binuclear copper(II) complexes with N,N',N'',N'''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraaza-cyclotetradecane in solutions

    International Nuclear Information System (INIS)

    Jezierska, J.; Ozarowski, A.; Vuckovic, G.

    1997-01-01

    Binuclear copper(II) complexes of macrocyclic ligand TMPC (tetraazamacrocycle with four pendant 2-pirydylmethyl groups attached to the ring nitrogen atoms) with various anions forming bridge between copper ions, or coordinating to copper(II) ions at the apex, were prepared and their frozen solutions in DMF and NMF were investigated by EPR. The spectroscopic results have been interpreted in terms of molecular structure of investigated complexes

  3. Redox Properties of Ruthenium Nitrosyl Porphyrin Complexes with Different Axial Ligation: Structural, Spectroelectrochemical (IR, UV-VIS, EPR) and Theoretical Studies

    Czech Academy of Sciences Publication Activity Database

    Singh, P.; Das, A. K.; Sarkar, B.; Niemeyer, M.; Roncaroli, F.; Olabe, J. A.; Fiedler, Jan; Záliš, Stanislav; Kaim, W.

    2008-01-01

    Roč. 47, č. 16 (2008), s. 7106-7113 ISSN 0020-1669 R&D Projects: GA AV ČR KAN100400702; GA MŠk OC 139; GA MŠk 1P05OC068 Institutional research plan: CEZ:AV0Z40400503 Keywords : ruthenium nitrosyl porphyrin complexes * tetraphenylporphyrin dianiom * EPR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.147, year: 2008

  4. Hydrogen Analyses in the EPR

    International Nuclear Information System (INIS)

    Worapittayaporn, S.; Eyink, J.; Movahed, M.

    2008-01-01

    In severe accidents with core melting large amounts of hydrogen may be released into the containment. The EPR provides a combustible gas control system to prevent hydrogen combustion modes with the potential to challenge the containment integrity due to excessive pressure and temperature loads. This paper outlines the approach for the verification of the effectiveness and efficiency of this system. Specifically, the justification is a multi-step approach. It involves the deployment of integral codes, lumped parameter containment codes and CFD codes and the use of the sigma criterion, which provides the link to the broad experimental data base for flame acceleration (FA) and deflagration to detonation transition (DDT). The procedure is illustrated with an example. The performed analyses show that hydrogen combustion at any time does not lead to pressure or temperature loads that threaten the containment integrity of the EPR. (authors)

  5. EPR of VHal centres in SrS

    International Nuclear Information System (INIS)

    Seeman, V.; Danilkin, M.; Must, M.; Ots, A.; Paernoja, E.; Pung, L.; Tarkpea, K.

    2006-01-01

    V Hal centres were studied by EPR in SrS doped with halogens after X-raying the samples at 77 K. V Hal centre arises when a hole is captured by sulphide-ion next to a cation vacancy with a halogen ion substituting the opposite sulphide-ion. EPR parameters and thermal decay characteristics are measured for V Cl , V Br , and V I centres. The efficiency of different halogens to produce and stabilise cation vacancies is shown to vary for different alkaline earth sulphides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  7. X - Band EPR Study on Poly(Li-2-Hydroxyethyl Methacrylate)-Co-Poly(4-Vinly Pyridine)

    International Nuclear Information System (INIS)

    Usta, A.

    2008-01-01

    Some copolymers have important properties that it is alter rapidly from a liquid to a solid state when an external electric field is applied. In this study, the polymer was synthesized by six ionomers with different molar masses. The polymer has been irradiated with 60 C o - γ rays at room temperature along three days. After irradiation, the material has been investigated by X-band Electron Spin Resonance (ESR) spectrometer at various conditions. A very intensity ESR peaks have been observed at temperature between 130-450K along with that displayed, this ESR peaks were changed with temperature and produced radical was stable

  8. EPR pilot study on the population of Stepnogorsk city living in the vicinity of a uranium processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym; Akilbekov, Abdirash; Morzabayev, Aidar [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Ivannikov, Alexander; Stepanenko, Valeriy [Medical Radiological Research Center, Obninsk (Russian Federation); Abralina, Sholpan; Sadvokasova, Lyazzat; Rakhypbekov, Tolebay [Semey State Medical University, Semey (Kazakhstan); Hoshi, Masaharu [Hiroshima University, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2015-03-15

    The aim of this pilot study was to evaluate possible doses in teeth received by workers of a uranium processing plant, in excess to the natural background dose. For this, the electron paramagnetic resonance dosimetry method was applied. Absorbed doses in teeth from the workers were compared with those measured in teeth from the Stepnogorsk city population and a control pool population from Astana city. The measured tooth samples were extracted according to medical indications. In total, 32 tooth enamel samples were analyzed, 5 from Astana city, Kazakhstan (control population), 21 from the residents of Stepnogorsk city (180 km from Astana city), and 6 from the workers of a uranium processing plant. The estimated doses in tooth enamel from the uranium processing plant workers were not significantly different to those measured in enamel from the control population. In teeth from the workers, the maximum dose in excess to background dose was 33 mGy. In two teeth from residents of Stepnogorsk city, however, somewhat larger doses were measured. The results of this pilot study encourage further investigations in an effort to receiving a final conclusion on the exposure situation of the uranium processing plant workers and the residents of Stepnogorsk city. (orig.)

  9. Pharmaceutical applications of in vivo EPR

    International Nuclear Information System (INIS)

    Maeder, K.

    1998-01-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained. (author)

  10. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  11. Point defects and the blue emission in fired quartz at high doses: a comparative luminescence and EPR study

    International Nuclear Information System (INIS)

    Woda, C.; Schilles, T.; Riser, U.; Mangini, A.; Wagner, G.A.

    2002-01-01

    The dose response of the 375 deg/ C, 470 nm TL peak in fired quartz is studied by using thermoluminescence emission spectra and monochromatic glow curves. The blue emission displays a significant sensitivity increase for doses in excess of 1000 Gy, subsequent saturation at 16 kGy and a pre-dose effect over the entire dose range. Comparison with the growth of the known electron paramagnetic resonance centres and radioluminescence emission spectra indicates that the [AlO 4 ] centre is the recombination site for the blue emission, whereas the electron trap remains unknown. The sensitivity change seems to be linked to the dose-induced reduction of the [GeO 4 /Li] centre. Possible mechanisms for the observed dose response are discussed. (author)

  12. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR.

    Science.gov (United States)

    Kurdziel, Magdalena; Filek, Maria; Łabanowska, Maria

    2018-05-01

    UV irradiation has ionisation character and leads to the generation of reactive oxygen species (ROS). The destructive character of ROS was observed among others during interaction of cereal grains with ozone and was caused by changes in structures of biomolecules leading to the formation of stable organic radicals. That effect was more evident for stress sensitive genotypes. In this study we investigated the influence of UV irradiation on cereal grains originating from genotypes with different tolerance to oxidative stress. Grains and their parts (endosperm, embryo and seed coat) of barley, wheat and oat were subjected to short-term UV irradiation. It was found that UV caused the appearance of various kinds of reactive species (O 2 -• , H 2 O 2 ) and stable radicals (semiquinone, phenoxyl and carbon-centred). Simultaneously, lipid peroxidation occurred and the organic structure of Mn(II) and Fe(III) complexes become disturbed. UV irradiation causes damage of main biochemical structures of plant tissues, the effect is more significant in sensitive genotypes. In comparison with ozone treatment, UV irradiation leads to stronger destruction of biomolecules in grains and their parts. It is caused by the high energy of UV light, facilitating easier breakage of molecular bonds in biochemical compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR); Dosimetrie d'accident en champ mixte (neutrons, photons) utilisant la spectrometrie par resonance paramagnetique electronique (RPE)

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.L

    2006-03-15

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  14. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  15. H?, D? and HD adsorption upon the metal-organic framework [Cu?Zn?(btc)?]? studied by pulsed ENDOR and HYSCORE spectroscopy

    Science.gov (United States)

    Jee, Bettina; Hartmann, Martin; Pöppl, Andreas

    2013-10-01

    The adsorption of hydrogen has become interesting in terms of gas separation as well as safe and reversible storage of hydrogen as an energy carrier. In this regard, metal-organic framework compounds are potential candidates. The metal-organic framework [Cu?Zn?(btc)?]? as a partially Zn-substituted analogue of the well known compound HKUST-1 is well suited for studying adsorption geometries at cupric ions by electron paramagnetic resonance (EPR) methods due to the formation of few mixed Cu/Zn paddle wheel units with isolated S = 1/2 electron spins. The adsorption of hydrogen (H2) as well as the deuterium (D2) and HD molecules were investigated by continuous wave EPR and pulsed ENDOR and HYSCORE spectroscopy. The principal values of the proton and deuterium hyperfine coupling tensors ? and ? were determined by spectral simulations as well as of the deuterium nuclear quadrupole tensor ? for adsorbed HD and D2. The results show a side-on coordination of HD and D2 with identical Cu-H and Cu-D distances rCuX = 2.8 Å with the tensors ? and ? aligned parallel to the C4 symmetry axis of the paddle wheel unit. A thermodynamic non-equilibrium state with J = 1, mJ = ±1 is indicated by the experimental data with ? and ? averaged by rotation around C4.

  16. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    International Nuclear Information System (INIS)

    Santos, J.V. dos; Mangrich, A.S.; Pereira, B.F.; Pillon, C.N.; Bonagamba, T.J.

    2013-01-01

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13 C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO 2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13 C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  17. EPR examination of Zn2+ and Cu2+ binding by pigmented soil fungi Cladosporium cladosporioides

    International Nuclear Information System (INIS)

    Buszman, Ewa; Pilawa, Barbara; Zdybel, Magdalena; Wilczynski, Slawomir; Gondzik, Anna; Witoszynska, Teresa; Wilczok, Tadeusz

    2006-01-01

    The purpose of this study was to examine the usefulness of electron paramagnetic resonance spectroscopy (EPR) to estimate zinc and copper ions biosorption from the environment by pigmented soil fungi Cladosporium cladosporioides. The existence of a low amount of pheomelanin, besides eumelanin, in C. cladosporioides samples was proved by the analysis of shape of their EPR spectra. Concentration of o-semiquinone free radicals in crude mycelium was 2.4 x 10 17 spin/g. Changes in free radicals system of C. cladosporioides cultured in the presence of Zn 2+ and Cu 2+ were analysed. Both magnetic and chemical interactions of zinc and copper ions with free radicals in C. cladosporioides melanin were found. Magnetically interacting diamagnetic Zn 2+ ions increased the concentration of o-semiquinone free radicals in melanin existing in C. cladosporioides mycelium, whereas paramagnetic Cu 2+ ions decreased this concentration. Chemical interactions of Zn 2+ and Cu 2+ ions decreased the free radical concentrations in C. cladosporioides melanin. Homogeneously distributed free radicals in C. cladosporioides melanin rise its activity in biosorption processes

  18. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  19. Design of the EPR containment

    International Nuclear Information System (INIS)

    Appell, B.; Zaiss, W.

    1996-01-01

    In order to respect the safety objectives set for the EPR (European Pressurized water Reactor), the confinement function must be designed to guard against in the design uncontrolled releases in the environment in all conditions taken into account and to preserve its structural integrity. The concept chosen is a double-wall confinement with technology identical derived from the current French N4 containments and the associated systems ensuring the isolation and the control of leaks. The basic principles aiming to minimize leaks are as follows: no direct leak; state-of-the-art leak tight design of the systems and components passing through the containment building; recovery of potential leaks through the inner wall and the penetration sleeves in the inter-wall space; recovery in the peripheral buildings; and specific measures if necessary. The inner wall is a prestressed concrete shell (55 tendons cables arranged in two horizontal layers and a vertical layer for the barrel) without liner, of free volume 90000 m 3 , an internal diameter of 48 m and 1.3 m thickness. The free volume is chosen so as to rule out the risk of global detonation and the use of catalytic recombiners limits the risk of hydrogen explosion. The design pressure (6.5 bar abs) and temperature of the inner wall are defined for a given volume by the set of three conditions: Pee-4 conditions such as LOCA or SLB, global deflagration of hydrogen and core melt scenario. The rate of leakage in accident conditions from the inner wall must not be higher than 1% per day. The chosen concept must enable satisfactory leak tightness to be preserved for beyond design conditions in order to have margins and to guard against phenomenological uncertainties. The possibility of adding an internal composite liner is being studied. A large scale mockup is being built to validate the hypothesis and methods of leak rates of the inner wall and for the performance testing of the composite liner. The outer wall, made of

  20. New developed cylindrical TM010 mode EPR cavity for X-band in vivo tooth dosimetry.

    Directory of Open Access Journals (Sweden)

    Guo Junwang

    Full Text Available EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity's cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed. Theoretical calculations and simulations were used to design and optimize the cavity parameters. The cavity features were evaluated by measuring DPPH sample, intact incisor samples embed in a gum model and the rhesus monkey teeth. The results showed that the cavity worked at designed frequency and had the ability to make EPR spectroscopy in relative high sensitivity. Sufficient modulation amplitude and microwave power could be applied into the aperture. Radiation induced EPR signal could be observed remarkably from 1 Gy irradiated intact incisor within only 30 seconds, which was among the best in scan time and detection limit. The in vivo spectroscopy was also realized by acquiring the radiation induced EPR signal from teeth of rhesus monkey whose teeth was irradiated by dose of 2 Gy. The results suggested that the cavity was sensitive to meet the demand to assess doses of significant level in short time. This cavity provided a very potential option for the development of X-band in vivo dosimetry.