WorldWideScience

Sample records for epoxide hydrolase electronic

  1. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    OpenAIRE

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hyd...

  2. Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Lutje Spelberg, Jeffrey H.; Rink, Rick; Kellogg, Richard M.; Janssen, Dick B.

    1998-01-01

    The recombinant epoxide hydrolase from Agrobacterium radiobacter AD1 was used to obtain enantiomerically pure epoxides by means of a kinetic resolution. Epoxides such as styrene oxide and various derivatives thereof and phenyl glycidyl ether were obtained in high enantiomeric excess and in

  3. Generation and characterization of epoxide hydrolase 3 (EPHX3-deficient mice.

    Directory of Open Access Journals (Sweden)

    Samantha L Hoopes

    Full Text Available Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs, which play an important role in blood pressure regulation, protection against ischemia-reperfusion injury, angiogenesis, and inflammation. Epoxide hydrolases metabolize EETs to their corresponding diols (dihydroxyeicosatrienoic acids; DHETs which are biologically less active. Microsomal epoxide hydrolase (EPHX1, mEH and soluble epoxide hydrolase (EPHX2, sEH were identified >30 years ago and are capable of hydrolyzing EETs to DHETs. A novel epoxide hydrolase, EPHX3, was recently identified by sequence homology and also exhibits epoxide hydrolase activity in vitro with a substrate preference for 9,10-epoxyoctadecamonoenoic acid (EpOME and 11,12-EET. EPHX3 is highly expressed in the skin, lung, stomach, esophagus, and tongue; however, its endogenous function is unknown. Therefore, we investigated the impact of genetic disruption of Ephx3 on fatty acid epoxide hydrolysis and EET-related physiology in mice. Ephx3-/- mice were generated by excising the promoter and first four exons of the Ephx3 gene using Cre-LoxP methodology. LC-MS/MS analysis of Ephx3-/- heart, lung, and skin lysates revealed no differences in endogenous epoxide:diol ratios compared to wild type (WT. Ephx3-/- mice also exhibited no change in plasma levels of fatty acid epoxides and diols relative to WT. Incubations of cytosolic and microsomal fractions prepared from Ephx3-/- and WT stomach, lung, and skin with synthetic 8,9-EET, 11,12-EET, and 9,10-EpOME revealed no significant differences in rates of fatty acid diol formation between the genotypes. Ephx3-/- hearts had similar functional recovery compared to WT hearts following ischemia/reperfusion injury. Following intranasal lipopolysaccharide (LPS exposure, Ephx3-/- mice were not different from WT in terms of lung histology, bronchoalveolar lavage fluid cell counts, or fatty acid epoxide and diol levels. We conclude that genetic

  4. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  5. Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis.

    Science.gov (United States)

    Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young

    2015-01-14

    Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.

  6. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Břicháč, Jiří; Kyslík, Pavel

    2005-01-01

    Roč. 120, - (2005), s. 364-375 ISSN 0168-1656 Institutional research plan: CEZ:AV0Z5020903 Keywords : screening * epoxide hydrolase * biotransformation Subject RIV: EE - Microbiology, Virology Impact factor: 2.687, year: 2005

  7. Construction and characterisation of a genetically engineered Escherichia coli strain for the epoxide hydrolase-catalysed kinetic resolution of epoxides

    NARCIS (Netherlands)

    Visser, H.; Oliveira Vil Filho, de M.; Liese, A.; Weijers, C.A.G.M.; Verdoes, J.C.

    2003-01-01

    The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell

  8. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

    Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like

  9. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    Science.gov (United States)

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  11. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa

    KAUST Repository

    Shih, P. B.

    2015-03-31

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment.

  12. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa

    KAUST Repository

    Shih, P. B.; Yang, J.; Morisseau, C.; German, J. B.; Scott-Van Zeeland, A. A.; Armando, A. M.; Quehenberger, O.; Bergen, A. W.; Magistretti, Pierre J.; Berrettini, W.; Halmi, K. A.; Schork, N.; Hammock, B. D.; Kaye, W.

    2015-01-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product

  13. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were

  14. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    OpenAIRE

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrol...

  15. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kyslík, Pavel

    2006-01-01

    Roč. 1760, - (2006), s. 245-252 ISSN 0006-3002 Institutional research plan: CEZ:AV0Z50200510 Keywords : epoxide hydrolase * enantioselectivity * aspergillus niger Subject RIV: EE - Microbiology, Virology

  16. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the

  17. Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis

    NARCIS (Netherlands)

    Visser, H.; Vreugdenhil, S.; Bont, de J.A.M.; Verdoes, J.C.

    2000-01-01

    We cloned and characterized the epoxide hydrolase gene, EPH1, from Rhodotorula glutinis. The EPH1 open reading frame of 1230 bp was interrupted by nine introns and encoded a polypeptide of 409 amino acids with a calculated molecular mass of 46.3 kDa. The amino acid sequence was similar to that of

  18. Interspecies differences in the enantioselectivity of epoxide hydrolases in Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab'jeva & Reshetova) Golubev

    CSIR Research Space (South Africa)

    Botes, AL

    2005-01-01

    Full Text Available Isolates representing Cryptococcus laurentii and Cryptococcus podzolicus, originating from soil of a heath land indigenous to South Africa, were screened for the presence of enantioselective epoxide hydrolases for 2, 2-disubstituted epoxides...

  19. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  20. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.

    2015-01-01

    thermophilic sources, have higher optimal temperatures and apparent melting temperatures than Re-LEH. The new LEH enzymes have been crystallized and their structures solved to high resolution in the native form and in complex with the inhibitor valpromide for Tomsk-LEH and poly(ethylene glycol) for CH55-LEH......,2-epoxide hydrolase (LEH) family of enzymes. These two LEHs (Tomsk-LEH and CH55-LEH) show EH activities towards different epoxide substrates, differing in most cases from those previously identified for Rhodococcus erythropolis (Re-LEH) in terms of stereoselectivity. Tomsk-LEH and CH55-LEH, both from....... The structural analysis has provided insights into the LEH mechanism, substrate specificity and stereoselectivity of these new LEH enzymes, which has been supported by mutagenesis studies....

  1. Nanobody based immunoassay for human soluble epoxide hydrolase detection using polyHRP for signal enhancement—the rediscovery of polyHRP

    Science.gov (United States)

    Soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, cancer, pain and multiple cardiovascular related diseases. A variable domain of a heavy chain only antibody (termed sdAb, nanobody or VHH) possesses advantages of small size, high ...

  2. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  3. Evaluation of the precision-cut liver and lung slice systems for the study of induction of CYP1, epoxide hydrolase and glutathione S-transferase activities.

    Science.gov (United States)

    Pushparajah, Daphnee S; Umachandran, Meera; Plant, Kathryn E; Plant, Nick; Ioannides, Costas

    2007-02-28

    The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.

  4. Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases

    International Nuclear Information System (INIS)

    Bicalho, Beatriz; Chen, Lu S.; Marsaioli, Anita J.; Grognux, Johann; Reymond, Jean-Louis

    2004-01-01

    Biocatalysis reactions were performed on microtiter plates (200 μL) aiming at the utilization of fluorogenic substrates (100 μmol L -1 ) for rapid whole cell screening for epoxide hydrolases (EHs) and Baeyer-Villiger monooxygenases (BVMOs). A final protocol was achieved for EHs, with 3 new enzymatic sources being detected (Agrobacterium tumefaciens, Pichia stipitis, Trichosporom cutaneum). The fluorogenic assay for BVMO did not work as expected. However, an approach to possible variables involved (aeration; pH) provided the first detection of a BVMO activity in T. cutaneum. (author)

  5. Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics

    Czech Academy of Sciences Publication Activity Database

    Archelas, A.; Zhao, W.; Faure, B.; Iacazio, G.; Kotík, Michael

    2016-01-01

    Roč. 591, FEB 2016 (2016), s. 66-75 ISSN 0003-9861 Institutional support: RVO:61388971 Keywords : Catalytic mechanism * Epoxide hydrolase * Electrophilic catalysis Subject RIV: CE - Biochemistry Impact factor: 3.165, year: 2016

  6. Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the genera Rhodotorula and Rhodosporidium

    NARCIS (Netherlands)

    Visser, H.; Weijers, C.A.G.M.; Ooyen, van A.J.J.; Verdoes, J.C.

    2002-01-01

    Epoxide hydrolase-encoding cDNA sequences were isolated from the basidiomycetous yeast species Rhodosporidium toruloides CBS 349, Rhodosporidium toruloides CBS 14 and Rhodotorula araucariae CBS 6031 in order to evaluate the molecular data and potential application of this type of enzymes. The

  7. Stereoselectivity and substrate specificity in the kinetic resolution of methyl-substituted 1-oxaspiro[2.5]octanes by Rhodotorula glutinis epoxide hydrolase

    NARCIS (Netherlands)

    Weijers, C.A.G.M.; Meeuwse, P.; Herpers, R.L.J.M.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2005-01-01

    [GRAPHICS] The kinetic resolution of a range of methyl-substituted 1-oxaspiro[2.5]octanes by yeast epoxide hydrolase (YEH) from Rhodotorula glutinis has been investigated. The structural determinants of substrate specificity and stereoselectivity of YEH toward these substrates appeared to be the

  8. Microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease: A comprehensive meta-analysis

    OpenAIRE

    LI, HUI; FU, WEI-PING; HONG, ZE-HUI

    2012-01-01

    Microsomal epoxide hydrolase (EPHX1) is an enzyme involved in the detoxification the products of smoking and is proposed to be a genetic factor for the development of chronic obstructive pulmonary disease (COPD). Two functional polymorphisms of EPHX1, T113C and A139G, have been analyzed in numerous studies to assess the COPD risk attributed to these variants. However, the conclusions were controversial. We performed a comprehensive meta-analysis to clarify these findings. A total of 24 studie...

  9. Soluble Epoxide Hydrolase Inhibitory Activity of Selaginellin Derivatives from Selaginella tamariscina

    Directory of Open Access Journals (Sweden)

    Jang Hoon Kim

    2015-12-01

    Full Text Available Selaginellin derivatives 1–3 isolated from Selaginella tamariscina were evaluated for their inhibition of soluble epoxide hydrolase (sEH to demonstrate their potential for the treatment of cardiovascular disease. All selaginellin derivatives (1–3 inhibited sEH enzymatic activity and PHOME hydrolysis, in a dose-dependent manner, with IC50 values of 3.1 ± 0.1, 8.2 ± 2.2, and 4.2 ± 0.2 μM, respectively. We further determined that the derivatives function as non-competitive inhibitors. Moreover, the predicted that binding sites and interaction between 1–3 and sEH were solved by docking simulations. According to quantitative analysis, 1–3 were confirmed to have high content in the roots of S. tamariscina; among them, selaginellin 3 exhibited the highest content of 189.3 ± 0.0 μg/g.

  10. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Science.gov (United States)

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 1,3-Disubstituted Ureas Functionalized with Ether Groups are Potent Inhibitors of the Soluble Epoxide Hydrolase with Improved Pharmacokinetic Properties

    OpenAIRE

    Kim, In-Hae; Tsai, Hsing-Ju; Nishi, Kosuke; Kasagami, Takeo; Morisseau, Christophe; Hammock, Bruce D.

    2007-01-01

    Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokineti...

  13. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE2 induced pain model

    International Nuclear Information System (INIS)

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun; Wan, Debin; Kodani, Sean D.; Trindade da Silva, Carlos Antonio; Morisseau, Christophe; Hammock, Bruce D.

    2015-01-01

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100 mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3 mg/kg/day, p.o.) and OME (100 mg/kg/day, p.o., 7 days) + TPPU (3 mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE 2 was monitored. While OME treatment by itself exhibited variable effects on PGE 2 induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME + TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. - Highlights: • The soluble epoxide hydrolase (sEH) inhibitor TPPU is anti-hyperalgesic. • Omeprazole potentiates the anti-hyperalgesic actions of TPPU. • This potentiation is associated with increased P450 activity. • The potentiation is associated with an increase in fatty acid epoxide/diol ratio. • Joint use of sEH inhibitors and P450 inducers could result in drug–drug interactions.

  14. Epoxide hydrolase affects estrogen production in the human ovary.

    Science.gov (United States)

    Hattori, N; Fujiwara, H; Maeda, M; Fujii, S; Ueda, M

    2000-09-01

    To investigate the mechanisms of ovarian cell differentiation, we raised a new monoclonal antibody, HCL-3, which reacted with human luteal cells. It also reacted with human and porcine hepatocytes. The immunoaffinity-purified HCL-3 antigen from human corpora lutea (CL) was shown to be a 46-kDa protein. The N-terminal 22 amino acids of the 46-kDa protein from porcine liver exhibited high homology (82%) to human microsomal epoxide hydrolase (mEH). The purified HCL-3 antigen from human CL or porcine liver showed EH enzyme activity, confirming that HCL-3 antigen is identical to mEH, which is reported to detoxify the toxic substrates in the liver. In human follicles, mEH was immunohistochemically detected on granulosa and theca interna cells. In the menstrual and pregnant CL, mEH was also expressed on large and small luteal cells. A competitive inhibitor of EH, 1,2-epoxy-3,3,3-trichloropropane, inhibited the conversion of estradiol from testosterone by granulosa cells cultured in vitro, indicating the involvement of mEH in ovarian estrogen production. Because anticonvulsant sodium valproate and its analogues were reported to inhibit EH enzyme activity, these findings provide a new insight into the etiology of endocrine disorders that are frequently observed among epileptic patients taking anticonvulsant drugs.

  15. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE{sub 2} induced pain model

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun; Wan, Debin; Kodani, Sean D. [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States); Trindade da Silva, Carlos Antonio [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States); Department of Genetics and Biochemistry, Federal University of Uberlandia, MG (Brazil); Morisseau, Christophe [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States)

    2015-12-15

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100 mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3 mg/kg/day, p.o.) and OME (100 mg/kg/day, p.o., 7 days) + TPPU (3 mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE{sub 2} was monitored. While OME treatment by itself exhibited variable effects on PGE{sub 2} induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME + TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. - Highlights: • The soluble epoxide hydrolase (sEH) inhibitor TPPU is anti-hyperalgesic. • Omeprazole potentiates the anti-hyperalgesic actions of TPPU. • This potentiation is associated with increased P450 activity. • The potentiation is associated with an increase in fatty acid epoxide/diol ratio. • Joint use of sEH inhibitors and P450 inducers could result in drug–drug interactions.

  16. Soluble epoxide hydrolase activity and pharmacologic inhibition in horses with chronic severe laminitis.

    Science.gov (United States)

    Guedes, A; Galuppo, L; Hood, D; Hwang, S H; Morisseau, C; Hammock, B D

    2017-05-01

    The roles of soluble epoxide hydrolase and lipid mediators in inflammatory and neuropathic pain could be relevant in laminitis pain management. To determine soluble epoxide hydrolase (sEH) activity in the digital laminae, sEH inhibitor potency in vitro, and efficacy of a sEH inhibitor as an adjunct analgesic therapy in chronic laminitic horses. In vitro experiments and clinical case series. sEH activity was measured in digital laminae from euthanised healthy and laminitic horses (n = 5-6/group). Potency of 7 synthetic sEH inhibitors was determined in vitro using equine liver cytosol. One of them (t-TUCB; 0.1 mg/kg bwt i.v. every 24 h) was selected based on potency and stability, and used as adjunct therapy in 10 horses with severe chronic laminitis (Obel grades 2, one horse; 3-4, nine horses). Daily assessments of forelimb lifts, pain scores, physiologic and laboratory examinations were performed before (baseline) and during t-TUCB treatment. Data are presented as mean ± s.d. and 95% confidence intervals (CI). sEH activity in the digital laminae from laminitic horses (0.9±0.6 nmol/min/mg; 95% CI 0.16-1.55 nmol/min/mg) was significantly greater (P = 0.01) than in healthy horses (0.17±0.09 nmol/min/mg; CI 0.07-0.26 nmol/min/mg). t-TUCB as an adjunct analgesic up to 10 days (4.3±3 days) in laminitic horses was associated with significant reduction in forelimb lifts (36±22%; 95% CI 9-64%) and in pain scores (18±23%; 95% CI 2-35%) compared with baseline (P = 0.04). One horse developed gas colic and another corneal vascularisation in a blind eye during treatment. No other significant changes were observed. Absence of control group and evaluator blinding in case series. sEH activity is significantly higher in the digital laminae of actively laminitic compared with healthy horses, and use of a potent inhibitor of equine sEH as adjunct analgesic therapy appears to decrease signs of pathologic pain in laminitic horses. © 2016 EVJ Ltd.

  17. Structure-Based Optimization of Arylamides as Inhibitors of Soluble Epoxide Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Eldrup, Anne B.; Soleymanzadeh, Fariba; Taylor, Steven J.; Muegge, Ingo; Farrow, Neil A.; Joseph, David; McKellop, Keith; Man, Chuk C.; Kukulka, Alison; De Lombaert, Stephane; (Boehringer)

    2009-11-04

    Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat liver microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.

  18. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    Science.gov (United States)

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrolysis and inhibitor susceptibility. Low lethality was observed in either larval or embryonic fish exposed to diuron [N-(3,4-dichlorophenyl), N'-dimethyl urea], desmethyl diuron [N-(3,4-dichlorophenyl), N'-methyl urea], or siduron [N-(1-methylcyclohexyl), N'-phenyl urea]. Dose-dependent inhibition of sEH was a sublethal effect of substituted urea exposure with the potency of siduron diuron = diuron, differing from the observed in vitro sEH inhibition potency of siduron > desmethyl diuron > diuron. Further, siduron exposure synergized the toxicity of trans-stilbene oxide in fathead minnows. Medaka embryos exposed to diuron, desmethyl diuron, or siduron displayed dose-dependent delays in hatch, and elevated concentrations of diuron and desmethyl diuron produced developmental toxicity. The dose-dependent toxicity and in vivo sEH inhibition correlated, suggesting a potential, albeit undefined, relationship between these factors. Additionally, the observed inversion of in vitro to in vivo potency suggests that these fish models may provide tools for investigating the in vivo stability of in vitro inhibitors while screening for untoward effects. PMID:11171526

  19. Discovery of potent inhibitors of soluble epoxide hydrolase by combinatorial library design and structure-based virtual screening.

    Science.gov (United States)

    Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L

    2011-03-10

    Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.

  20. Meta-analysis of microsomal epoxide hydrolase gene polymorphism and risk of hepatocellular carcinoma.

    Science.gov (United States)

    Zhong, Jian-Hong; Xiang, Bang-De; Ma, Liang; You, Xue-Mei; Li, Le-Qun; Xie, Gui-Sheng

    2013-01-01

    Hepatocarcinogenesis is a complex process that may be influenced by many factors, including polymorphism in microsomal epoxide hydrolase (mEH). Previous work suggests an association between the Tyr113His and His139Arg mEH polymorphisms and susceptibility to hepatocellular carcinoma (HCC), but the results have been inconsistent. PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association between Tyr113His and His139Arg mEH polymorphism and susceptibility to HCC. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Eleven studies were included in the meta-analysis, involving 1,696 HCC cases and 3,600 controls. The 113His- mEH allele was significantly associated with increased risk of HCC based on allelic contrast (OR = 1.35, 95% CI = 1.04-1.75, p = 0.02), homozygote comparison (OR = 1.65, 95% CI = 1.07-2.54, p = 0.02) and a recessive genetic model (OR = 1.54, 95% CI = 1.21-1.96, penvironment to modulate risk of HCC. Further large and well-designed studies are needed to confirm these conclusions.

  1. Stereo-selectivity and regio-selectivity in the metabolism of 7,8-dihydrobenzo[a]pyrene by cytochrome P450, epoxide hydrolase and hepatic microsomes from 3-methylcholanthrene-treated rats.

    Science.gov (United States)

    Adams, J D; Yagi, H; Levin, W; Jerina, D M

    1995-03-30

    The active site of cytochrome P450 1A1 has been probed with the substrate 7,8-dihydrobenzo[a]pyrene using a purified, reconstituted system composed of cytochrome P450 1A1, NADPH-cytochrome c reductase and lipid in the presence or absence of epoxide hydrolase. The turnover of the substrate was found to be 38 nmol/nmol of cytochrome P450/min. The metabolic products that were identified are: a phenolic 7,8-dihydrobenzo[a]pyrene (20-29%); 9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (17-28%); benzo[a]pyrene (12-19%); 7-hydroxy-7,8-dihydrobenzo[a]pyrene (13-16%); 8-hydroxy-7,8-dihydrobenzo[a]pyrene (7-15%); 3-hydroxybenzo[a]pyrene (7-15%); 4,5-epoxy-4,5,7,8-tetrahydrobenzo[a]pyrene (0-4%); and a triol of 7,8,9,10-tetrahydrobenzo[a]pyrene (0-4%). 9,10-Epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene undergoes rapid hydrolysis to cis- and trans-9,10-dihydroxy-dihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (2:1) by benzylic attack of water at C-10. Approximately 71% of the trans diols are derived from (+)-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, indicating that cytochrome P450 1A1 has more than a 2:1 preference for selective epoxidation of an enantiotopic face of 7,8-dihydrobenzo[a]pyrene. This stereo-selectivity agrees with the postulated stereo-selectivity predicted by a previously described active site model for cytochrome P450 1A1. Epoxide hydrolase in pure form or in hepatic microsomes catalyzes the hydrolysis of 9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, which is inhibited by 1,1,1-trichloropropane 2,3-oxide. The (+)-(9S,10R)-isomer of the epoxide is slightly preferred as a substrate over its enantiomer and is cleaved by benzylic and nonbenzylic attack. Only benzylic attack was found with (-)-(9R,10S)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene.

  2. Epoxide hydrolase Lsd19 for polyether formation in the biosynthesis of lasalocid A: direct experimental evidence on polyene-polyepoxide hypothesis in polyether biosynthesis.

    Science.gov (United States)

    Shichijo, Yoshihiro; Migita, Akira; Oguri, Hiroki; Watanabe, Mami; Tokiwano, Tetsuo; Watanabe, Kenji; Oikawa, Hideaki

    2008-09-17

    Polyether metabolites are an important class of natural products. Although their biosynthesis, especially construction of polyether skeletons, attracted organic chemists for many years, no experimental data on the enzymatic polyether formation has been obtained. In this study, a putative epoxide hydrolase gene lsd19 found on the biosynthetic gene cluster of an ionophore polyether lasalocid was cloned and successfully overexpressed in Escherichia coli. Using the purified Lsd19, a proposed substrate, bisepoxyprelasalocid, and its synthesized analogue were successfully converted into lasalocid A and its derivative via a 6-endo-tet cyclization mode. On the other hand, treatment of the bisepoxide with trichloroacetic acid gave isolasalocid A via a 5-exo-tet cyclization mode. Therefore, the enzymatic conversion observed in this study unambiguously showed that the bisepoxyprelasalocid is an intermediate of the lasalocid biosynthesis and that Lsd19 catalyzes the sequential cyclic ether formations involving an energetically disfavored 6-endo-tet cyclization. This is the first example of the enzymatic epoxide-opening reactions leading to a polyether natural product.

  3. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    Science.gov (United States)

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Soluble epoxide hydrolase inhibitors of indolinone alkaloids and phenolic derivatives from Cimicifuga dahurica (Turcz.) Maxim.

    Science.gov (United States)

    Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Lee, Ji Sun; Kim, Jang Hoon; Kim, Young Ho

    2017-04-15

    The aim of this study was to search for potential therapeutic agents by identifying novel inhibitors of soluble epoxide hydrolase (sEH) from natural plants using an in silico approach. We found that an ethanolic extract from the roots of Cimicifuga dahurica (Turcz.) Maxim. significantly inhibited sEH in vitro. In a phytochemical investigation using assay-guided fractionation of the dichloromethane extract of C. dahurica, we isolated two new indolinone alkaloids (5 and 6) and five related constituents (1-4, and 7) and established their structures based on an extensive analysis using 1D and 2D NMR, and MS methods. All of the isolated compounds inhibited sEH enzymatic activity in a dose-dependent manner, with IC 50 values ranging from 0.8±0.0 to 2.8±0.4μM. A kinetic analysis of compounds 1-7 revealed that compound 2 was non-competitive; 1, 3, and 7 were mixed-type; and 4-6 were competitive inhibitors. Molecular docking was employed to further elucidate their receptor-ligand binding characteristics. These results demonstrated that compounds from C. dahurica are potential sEH inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    Science.gov (United States)

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The rabbit liver microsomal biotransformation of 1,1-dialkylethylenes: enantioface selection of epoxidation and enantioselectivity of epoxide hydrolysis.

    Science.gov (United States)

    Bellucci, G; Chiappe, C; Cordoni, A; Marioni, F

    1994-01-01

    The rabbit liver microsomal biotransformation of alpha-methylstyrene (1a), 2-methyl-1-hexene (1b), 2,4,4-trimethyl-1-pentene (1c), and 1,3,3-trimethyl-1-butene (1d) has been investigated with the aim at establishing the enantioface selection of the cytochrome P-450-promoted epoxidation of the double bond and the enantioselectivity of microsomal epoxide hydrolase(mEH)-catalyzed hydrolysis of the resulting epoxides. GLC on a Chiraldex G-TA (ASTEC) column was used to determine the enantiomeric composition of the products. The epoxides 2 first produced in incubations carried out in the presence of an NADPH regenerating system were not detected, being rapidly hydrolyzed by mEH to diols 3. The enantiomeric composition of the latter showed that no enantioface selection occurred in the epoxidation of 1c and 1d, and a very low (8%) ee of the (R)-epoxide was formed from 1b. Incubation of racemic epoxides 2b-d with the microsomal fraction showed that the mEH-catalyzed hydrolysis of 2c and 2d was practically nonenantioselective, while that of 2b exhibited a selectivity E = 4.9 favoring the hydrolysis of the (S)-enantiomer. A comparison of these results with those previously obtained for linear and branched chain alkyl monosubstituted oxiranes shows that the introduction of the second alkyl substituent suppresses the selectivity of the mEH reaction of the latter and reverses that of the former substrates.

  8. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension

    Czech Academy of Sciences Publication Activity Database

    Neckář, Jan; Kopkan, L.; Husková, Z.; Kolář, František; Papoušek, František; Kramer, H. J.; Hwang, S.H.; Hammock, B.D.; Imig, J. D.; Malý, J.; Netuka, I.; Ošťádal, Bohuslav; Červenka, L.

    2012-01-01

    Roč. 122, č. 11 (2012), s. 513-525 ISSN 0143-5221 R&D Projects: GA AV ČR(CZ) IAAX01110901; GA AV ČR(CZ) KAN200520703; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypertension * angiotensin II * kidney * epoxyeicosatrienoic acids * soluble epoxide hydrolase inhibitor * myocardial ischemia/reperfusion injury Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.859, year: 2012

  9. Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: Insight into lactone biosynthesis in mango fruit (Mangifera indica L.).

    Science.gov (United States)

    Deshpande, Ashish B; Chidley, Hemangi G; Oak, Pranjali S; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2017-06-01

    Uniqueness and diversity of mango flavour across various cultivars are well known. Among various flavour metabolites lactones form an important class of aroma volatiles in certain mango varieties due to their ripening specific appearance and lower odour detection threshold. In spite of their biological and biochemical importance, lactone biosynthetic pathway in plants remains elusive. Present study encompasses quantitative real-time analysis of 9-lipoxygenase (Mi9LOX), epoxide hydrolase 2 (MiEH2), peroxygenase, hydroperoxide lyase and acyl-CoA-oxidase genes during various developmental and ripening stages in fruit of Alphonso, Pairi and Kent cultivars with high, low and no lactone content and explains their variable lactone content. Study also covers isolation, recombinant protein characterization and transient over-expression of Mi9LOX and MiEH2 genes in mango fruits. Recombinant Mi9LOX utilized linoleic and linolenic acids, while MiEH2 utilized aromatic and fatty acid epoxides as their respective substrates depicting their role in fatty acid metabolism. Significant increase in concentration of δ-valerolactone and δ-decalactone upon Mi9LOX over-expression and that of δ-valerolactone, γ-hexalactone and δ-hexalactone upon MiEH2 over-expression further suggested probable involvement of these genes in lactone biosynthesis in mango. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nanobody Based Immunoassay for Human Soluble Epoxide Hydrolase Detection Using Polymeric Horseradish Peroxidase (PolyHRP) for Signal Enhancement: The Rediscovery of PolyHRP?

    Science.gov (United States)

    Li, Dongyang; Cui, Yongliang; Morisseau, Christophe; Gee, Shirley J; Bever, Candace S; Liu, Xiangjiang; Wu, Jian; Hammock, Bruce D; Ying, Yibin

    2017-06-06

    Soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, cancer, pain, and multiple cardiovascular related diseases. A variable domain of the heavy chain antibody (termed single domain antibody (sdAb), nanobody, or VHH) possesses the advantages of small size, high stability, ease of genetic manipulation, and ability for continuous manufacture, making such nanobody a superior choice as an immunoreagent. In this work, we developed an ultrasensitive nanobody based immunoassay for human sEH detection using polymeric horseradish peroxidase (PolyHRP) for signal enhancement. Llama nanobodies against human sEH were used as the detection antibody in sandwich enzyme linked immunosorbent assays (ELISA) with polyclonal anti-sEH as the capture antibody. A conventional sandwich ELISA using a horseradish peroxidase (HRP) labeled anti-hemeagglutinin (HA) tag as the tracer showed a marginal sensitivity (0.0015 optical density (OD)·mL/ng) and limit of detection (LOD) of 3.02 ng/mL. However, the introduction of the PolyHRP as the tracer demonstrated a 141-fold increase in the sensitivity (0.21 OD·mL/ng) and 57-fold decrease in LOD (0.05 ng/mL). Systematic comparison of three different tracers in four ELISA formats demonstrated the overwhelming advantage of PolyHRP as a label for nanobody based immunoassay. This enhanced sEH immunoassay was further evaluated in terms of selectivity against other epoxide hydrolases and detection of the target protein in human tissue homogenate samples. Comparison with an enzyme activity based assay and a Western blot for sEH detection reveals good correlation with the immunoassay. This work demonstrates increased competiveness of nanobodies for practical sEH protein detection utilizing PolyHRP. It is worthwhile to rediscover the promising potential of PolyHRP in nanobody and other affinity based methods after its low-profile existence for decades.

  11. Pharmacological inhibition of soluble epoxide hydrolase or genetic deletion reduces diclofenac-induced gastric ulcers.

    Science.gov (United States)

    Goswami, Sumanta Kumar; Rand, Amelia Ann; Wan, Debin; Yang, Jun; Inceoglu, Bora; Thomas, Melany; Morisseau, Christophe; Yang, Guang-Yu; Hammock, Bruce D

    2017-07-01

    This research was conducted to evaluate the hypothesis that gastric ulcers caused by the NSAID diclofenac sodium (DCF) can be prevented by the soluble epoxide hydrolase inhibitor TPPU. Mice were administered a single dose of 10, 30 or 100mg/kg of DCF. Once an ulcerative dose of DCF was chosen, mice were pretreated with TPPU for 7days at 0.1mg/kg to evaluate anti-ulcer effects of the sEH inhibitor on anatomy, histopathology, pH, inflammatory markers and epithelial apoptosis of stomachs. Diclofenac caused ulceration of the stomach at a dose of 100mg/kg and a time post dose of 6h. Ulcers generated under these conditions were associated with a significant increase in the levels of TNF-α and IL-6 in serum and increased apoptosis compared to control mice. Pretreatment with TPPU resulted in a decrease of ulceration in mice treated with DCF with a significant decrease in the level of apoptosis, TNF-α and IL-6 in the serum in comparison to diclofenac-treated mice. TPPU did not affect the pH of the stomach, whereas omeprazole elevated the pH of the stomach as expected. A similar anti-ulcer effect was observed in sEH gene knockout mice treated with DCF. The sEH inhibitor TPPU decreases the NSAID-induced stomach ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales.

    Directory of Open Access Journals (Sweden)

    Seiya Kitamura

    Full Text Available Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1, showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.

  13. Enhancement of epoxide hydrolase production by 60 Co gamma and UV irradiation mutagenesis of Aspergillus niger ZJB-09103.

    Science.gov (United States)

    Jin, Huo-Xi; OuYang, Xiao-Kun; Hu, Zhong-Ce

    2017-05-01

    An effective epoxide hydrolase (EH) production strain was mutagenized using 60 Co gamma and UV irradiation. Among positive mutant strains, the EH activity of C2-44 reached 33.7 U/g, which was 267% as much as that of the original Aspergillus niger ZJB-09103. Compared with the wild type, there were significant changes in morphology for C2-44, including the color of mycelia on the slants and the shape of conidial head. In addition, glucose and soybean cake were the optimal carbon and nitrogen source in terms of EH activity for the mutant C2-44 instead of soluble starch and peptone for the wild-type strain. The reaction time required to reach 99% enantiomeric excesses of (S)-epichlorohydrin from racemic substrate was shortened significantly by the mutant C2-44. This phenomenon was probably explained by the higher V max for hydrolysis of racemic epichlorohydrin by C2-44 compared with Aspergillus niger ZJB-09103. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  14. Genetic Deletion of Soluble Epoxide Hydrolase Attenuates Inflammation and Fibrosis in Experimental Obstructive Nephropathy

    Directory of Open Access Journals (Sweden)

    Chin-Wei Chiang

    2015-01-01

    Full Text Available Soluble epoxide hydrolase (sEH is abundantly expressed in kidney and plays a potent role in regulating inflammatory response in inflammatory diseases. However, the role of sEH in progression of chronic kidney diseases such as obstructive nephropathy is still elusive. In current study, wild-type (WT and sEH deficient (sEH−/− mice were subjected to the unilateral ureteral obstruction (UUO surgery and the kidney injury was evaluated by histological examination, western blotting, and ELISA. The protein level of sEH in kidney was increased in UUO-treated mice group compared to nonobstructed group. Additionally, UUO-induced hydronephrosis, renal tubular injury, inflammation, and fibrosis were ameliorated in sEH−/− mice with the exception of glomerulosclerosis. Moreover, sEH−/− mice with UUO showed lower levels of inflammation-related and fibrosis-related protein such as monocyte chemoattractant protein-1, macrophage inflammatory protein-2, interleukin-1β (IL-1β, IL-6, inducible nitric oxide synthase, collagen 1A1, and α-actin. The levels of superoxide anion radical and hydrogen peroxide as well as NADPH oxidase activity were also decreased in UUO kidneys of sEH−/− mice compared to that observed in WT mice. Collectively, our findings suggest that sEH plays an important role in the pathogenesis of experimental obstructive nephropathy and may be a therapeutic target for the treatment of obstructive nephropathy-related diseases.

  15. 1,3-disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties.

    Science.gov (United States)

    Kim, In-Hae; Tsai, Hsing-Ju; Nishi, Kosuke; Kasagami, Takeo; Morisseau, Christophe; Hammock, Bruce D

    2007-10-18

    Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokinetic properties. The structure-activity relationship studies showed that a hydrophobic linker between the urea group and the ether function is necessary to keep their potency. In addition, urea-ether inhibitors having a polar group such as diethylene glycol or morpholine significantly improved their physical properties and metabolic stability without any loss of inhibitory potency. Furthermore, improved pharmacokinetic properties in murine and canine models were obtained with the resulting inhibitors. These findings will facilitate the usage of sEH inhibitors in animal models of hypertension and inflammation.

  16. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    International Nuclear Information System (INIS)

    Vito, Stephen T.; Austin, Adam T.; Banks, Christopher N.; Inceoglu, Bora; Bruun, Donald A.; Zolkowska, Dorota; Tancredi, Daniel J.; Rogawski, Michael A.; Hammock, Bruce D.; Lein, Pamela J.

    2014-01-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA A R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA A R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA A R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase inhibitor alters

  17. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Austin, Adam T., E-mail: aaustin@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Inceoglu, Bora, E-mail: abinceoglu@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Bruun, Donald A., E-mail: dabruun@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Zolkowska, Dorota, E-mail: dzolkowska@gmail.com [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Tancredi, Daniel J., E-mail: djtancredi@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Rogawski, Michael A., E-mail: rogawski@ucdavis.edu [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States)

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase

  18. Meta-analysis of microsomal epoxide hydrolase gene polymorphism and risk of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Jian-Hong Zhong

    Full Text Available BACKGROUND: Hepatocarcinogenesis is a complex process that may be influenced by many factors, including polymorphism in microsomal epoxide hydrolase (mEH. Previous work suggests an association between the Tyr113His and His139Arg mEH polymorphisms and susceptibility to hepatocellular carcinoma (HCC, but the results have been inconsistent. METHODS: PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association between Tyr113His and His139Arg mEH polymorphism and susceptibility to HCC. Odds ratios (ORs and 95% confidence intervals (95% CIs were calculated. RESULTS: Eleven studies were included in the meta-analysis, involving 1,696 HCC cases and 3,600 controls. The 113His- mEH allele was significantly associated with increased risk of HCC based on allelic contrast (OR = 1.35, 95% CI = 1.04-1.75, p = 0.02, homozygote comparison (OR = 1.65, 95% CI = 1.07-2.54, p = 0.02 and a recessive genetic model (OR = 1.54, 95% CI = 1.21-1.96, p<0.001, while individuals carrying the Arg139Arg mEH genotype had no association with increased or decreased risk of HCC. CONCLUSION: The 113His- allele polymorphism in mEH may be a risk factor for hepatocarcinogenesis, while the mEH 139Arg- allele may not be a risk or protective factor. There is substantial evidence that mEH polymorphisms interact synergistically with other genes and the environment to modulate risk of HCC. Further large and well-designed studies are needed to confirm these conclusions.

  19. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.

    Science.gov (United States)

    Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua

    2012-07-01

    The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Yoshimura, Kazunori [Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kobayashi, Nobuharu; Sugiyama, Kazuo [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Sawada, Jun-ichi; Saito, Yoshiro [Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  1. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease.

    Directory of Open Access Journals (Sweden)

    Oliver Jung

    2010-08-01

    Full Text Available Epoxyeicotrienoic acids (EETs are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH and sEH inhibitors are considered treatment for chronic renal failure (CRF. We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg, the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway.

  2. Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice

    International Nuclear Information System (INIS)

    El Hadri, L.; Chanas, B.; Ghanayem, B.I.

    2005-01-01

    Methacrylonitrile (MAN) and acrylonitrile (AN) are metabolized via glutathione (GSH) conjugation or epoxide formation. We have recently shown that CYP2E1 is essential for AN epoxidation and subsequent cyanide liberation. Current studies were designed to compare the enzymatic basis of MAN vs. AN metabolism to cyanide using wild-type (WT), CYP2E1-, and mEH-null mice. Mice received a single gavage dose of 0.047, 0.095, 0.19, or 0.38 mmol/kg of MAN or AN, and blood cyanide was measured at 1 or 3 h later. Blood cyanide levels in WT mice treated with AN or MAN were dose and time dependent. At equimolar doses, significantly higher levels of cyanide were detected in the blood of MAN- vs. AN-treated mice. Further, while significant reduction in blood cyanide levels occurred in MAN-treated CYP2E1-null vs. WT mice, AN metabolism to cyanide was largely abolished in CYP2E1-null mice. Pretreatment of mice with 1-aminobenzotriazole (ABT, CYP inhibitor) demonstrated that CYPs other than CYP2E1 also contribute to MAN metabolism to cyanide. Blood cyanide levels in mEH-null mice treated with aliphatic nitriles are generally lower than levels in similarly treated WT mice. Western blot analysis showed that expression of sEH was greater in male vs. female mice. The role of various epoxide hydrolases (EHs) in the production of cyanide from aliphatic nitriles is apparently structure and dose dependent. Regardless of genotype, significantly higher levels of cyanide were measured in the blood of male vs. female mice treated with MAN or AN. In conclusion, these data showed that (1) at equimolar doses, higher blood cyanide levels were detected in mice treated with MAN vs. AN; (2) while CYP2E1 is the only enzyme responsible for AN metabolism to cyanide, other CYPs also contribute to MAN metabolism; and (3) significantly higher levels of cyanide were measured in the blood of male vs. female treated with either nitrile. Higher blood cyanide levels in male vs. female mice and in MAN- vs. AN

  3. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    Science.gov (United States)

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  4. The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension

    Directory of Open Access Journals (Sweden)

    Sean Shaw

    2009-12-01

    Full Text Available Soluble epoxide hydrolase inhibitors (sEHIs are demonstrating promise as potential pharmaceutical agents for the treatment of cardiovascular disease, diabetes, inflammation, and kidney disease. The present study determined the ability of a first-inclass sEHI, AR9281, to decrease blood pressure, improve vascular function, and decrease renal inflammation and injury in angiotensin hypertension. Rats were infused with angiotensin and AR9281 was given orally during the 14-day infusion period. Systolic blood pressure averaged 180 ± 5 mmHg in vehicle treated and AR9281 treatment significantly lowered blood pressure to 142 ± 7 mmHg in angiotensin hypertension. Histological analysis demonstrated decreased injury to the juxtamedullary glomeruli. Renal expression of inflammatory genes was increased in angiotensin hypertension and two weeks of AR9281 treatment decreased this index of renal inflammation. Vascular function in angiotensin hypertension was also improved by AR9281 treatment. Decreased afferent arteriolar and mesenteric resistance endothelial dependent dilator responses were ameliorated by AR9281 treatment of angiotensin hypertensive rats. These data demonstrate that the first-in-class sEHI, AR9281, lowers blood pressure, improves vascular function and reduces renal damage in angiotensin hypertension.

  5. Lipoxin Generation Is Related to Soluble Epoxide Hydrolase Activity in Severe Asthma

    Science.gov (United States)

    Ono, Emiko; Dutile, Stefanie; Kazani, Shamsah; Wechsler, Michael E.; Yang, Jun; Hammock, Bruce D.; Douda, David Nobuhiro; Tabet, Yacine; Khaddaj-Mallat, Rayan; Sirois, Marco; Sirois, Chantal; Rizcallah, Edmond; Rousseau, Éric; Martin, Richard; Sutherland, E. Rand; Castro, Mario; N. Jarjour, Nizar; Israel, Elliot

    2014-01-01

    Rationale: Severe asthma is characterized by airway inflammatory responses associated with aberrant metabolism of arachidonic acid. Lipoxins (LX) are arachidonate-derived pro-resolving mediators that are decreased in severe asthma, yet mechanisms for defective LX biosynthesis and a means to increase LXs in severe asthma remain to be established. Objectives: To determine if oxidative stress and soluble epoxide hydrolase (sEH) activity are linked to decreased LX biosynthesis in severe asthma. Methods: Aliquots of blood, sputum, and bronchoalveolar lavage fluid were obtained from asthma subjects for mediator determination. Select samples were exposed to t-butyl-hydroperoxide or sEH inhibitor (sEHI) before activation. Peripheral blood leukocyte–platelet aggregates were monitored by flow cytometry, and bronchial contraction was determined with cytokine-treated human lung sections. Measurements and Main Results: 8-Isoprostane levels in sputum supernatants were inversely related to LXA4 in severe asthma (r = −0.55; P = 0.03) and t-butyl-hydroperoxide decreased LXA4 and 15-epi-LXA4 biosynthesis by peripheral blood leukocytes. LXA4 and 15-epi-LXA4 levels were inversely related to sEH activity in sputum supernatants and sEHIs significantly increased 14,15-epoxy-eicosatrienoic acid and 15-epi-LXA4 generation by severe asthma whole blood and bronchoalveolar lavage fluid cells. The abundance of peripheral blood leukocyte–platelet aggregates was related to asthma severity. In a concentration-dependent manner, LXs significantly inhibited platelet-activating factor–induced increases in leukocyte–platelet aggregates (70.8% inhibition [LXA4 100 nM], 78.3% inhibition [15-epi-LXA4 100 nM]) and 15-epi-LXA4 markedly inhibited tumor necrosis factor-α–induced increases in bronchial contraction. Conclusions: LX levels were decreased by oxidative stress and sEH activity. Inhibitors of sEH increased LXs that mediated antiphlogistic actions, suggesting a new therapeutic approach

  6. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    International Nuclear Information System (INIS)

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-01-01

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl 4 )-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl 4 -treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl 4 -treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl 4 -treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl 4 , presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity

  7. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Todd R. [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Bettaieb, Ahmed [Department of Nutrition, University of California, Davis, CA 95616 (United States); Kodani, Sean; Dong, Hua [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Myers, Richard; Chiamvimonvat, Nipavan [Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616 (United States); Haj, Fawaz G. [Department of Nutrition, University of California, Davis, CA 95616 (United States); Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States)

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  8. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening.

    Science.gov (United States)

    Amano, Yasushi; Tanabe, Eiki; Yamaguchi, Tomohiko

    2015-05-15

    Soluble epoxide hydrolase (sEH) is a potential target for the treatment of inflammation and hypertension. X-ray crystallographic fragment screening was used to identify fragment hits and their binding modes. Eight fragment hits were identified via soaking of sEH crystals with fragment cocktails, and the co-crystal structures of these hits were determined via individual soaking. Based on the binding mode, N-ethylmethylamine was identified as a promising scaffold that forms hydrogen bonds with the catalytic residues of sEH, Asp335, Tyr383, and Tyr466. Compounds containing this scaffold were selected from an in-house chemical library and assayed. Although the starting fragment had a weak inhibitory activity (IC50: 800μM), we identified potent inhibitors including 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol exhibiting the highest inhibitory activity (IC50: 0.51μM). This corresponded to a more than 1500-fold increase in inhibitory activity compared to the starting fragment. Co-crystal structures of the hit compounds demonstrate that the binding of N-ethylmethylamine to catalytic residues is similar to that of the starting fragment. We therefore consider crystallographic fragment screening to be appropriate for the identification of weak but promising fragment hits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study.

    Science.gov (United States)

    Hennebelle, Marie; Otoki, Yurika; Yang, Jun; Hammock, Bruce D; Levitt, Anthony J; Taha, Ameer Y; Swardfager, Walter

    2017-06-01

    Many cytochrome p450-derived lipids promote resolution of inflammation, in contrast to their soluble epoxide hydrolase(sEH)-derived oxylipin breakdown products. Here we compare plasma oxylipins and precursor fatty acids between seasons in participants with major depressive disorder with seasonal pattern (MDD-s). Euthymic participants with a history of MDD-s recruited in summer-fall were followed-up in winter. At both visits, a structured clinical interview (DSM-5 criteria) and the Beck Depression Inventory II (BDI-II) were administered. Unesterified and total oxylipin pools were assayed by liquid chromatography tandem mass-spectrometry (LC-MS/MS). Precursor fatty acids were measured by gas chromatography. In nine unmedicated participants euthymic at baseline who met depression criteria in winter, BDI-II scores increased from 4.9±4.4 to 19.9±7.7. Four sEH-derived oxylipins increased in winter compared to summer-fall with moderate to large effect sizes. An auto-oxidation product (unesterified epoxyketooctadecadienoic acid) and lipoxygenase-derived 13-hydroxyoctadecadienoic acid also increased in winter. The cytochrome p450-derived 20-COOH-leukotriene B4 (unesterified) and total 14(15)-epoxyeicosatetraenoic acid, and the sEH-derived 14,15-dihydroxyeicostrienoic acid (unesterified), decreased in winter. We conclude that winter depression was associated with changes in cytochrome p450- and sEH-derived oxylipins, suggesting that seasonal shifts in omega-6 and omega-3 fatty acid metabolism mediated by sEH may underlie inflammatory states in symptomatic MDD-s. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Poulomi, E-mail: poulomib@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Sen, Nivedita, E-mail: nsen@email.arizona.edu [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Hoyer, Patricia B., E-mail: Hoyer@u.arizona.edu [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States)

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.

  11. Epoxide-mediated differential packaging of Cif and other virulence factors into outer membrane vesicles.

    Science.gov (United States)

    Ballok, Alicia E; Filkins, Laura M; Bomberger, Jennifer M; Stanton, Bruce A; O'Toole, George A

    2014-10-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Inhibition of soluble epoxide hydrolase lowers portal hypertension in cirrhotic rats by ameliorating endothelial dysfunction and liver fibrosis.

    Science.gov (United States)

    Deng, Wensheng; Zhu, Yiming; Lin, Jiayun; Zheng, Lei; Zhang, Chihao; Luo, Meng

    2017-07-01

    Epoxyeicostrienoic acids (EETs) are arachidonic acid derived meditators which are catalyzed by soluble epoxide hydrolase (sEH) to less active dihydroeicostrienoics acids (DHETS). The aim of our study is to investigate the effects of sEH inhibition on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl4 cirrhotic rats. The sEH inhibitor,trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB) was administered to stabilize hepatic EETs by gavage at a dose of 1mg/kg/d. Our results showed that hepatic sEH expression was markedly increased in portal hypertension, and led to a lower ratio of EETs/DHETs which was effectively reversed by t-TUCB administration. t-TUCB significantly decreased portal pressure without significant changes in systemic hemodynamics, which was associated with the attenuation of intrahepatic vascular resistance (IHVR) and liver fibrosis. t-TUCB ameliorated endothelial dysfunction, increased hepatic endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. In addition, t-TUCB significantly reduced alpha-Smooth Muscle Actin (α-SMA) expression and liver fibrosis, which was associated with a decrease in NF-κB signaling. Taken together, inhibition of sEH reduces portal pressure, liver fibrosis and attenuates hepatic endothelial dysfunction in cirrhotic rats. Our results indicate that sEH inhbitors may be useful in the treatment of portal hypertension in patients with cirrhosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hepatitis B spliced protein (HBSP) promotes the carcinogenic effects of benzo [alpha] pyrene by interacting with microsomal epoxide hydrolase and enhancing its hydrolysis activity

    International Nuclear Information System (INIS)

    Chen, Jin-Yan; Chen, Wan-Nan; Jiao, Bo-Yan; Lin, Wan-Song; Wu, Yun-Li; Liu, Ling-Ling; Lin, Xu

    2014-01-01

    The risk of hepatocellular carcinoma (HCC) increases in chronic hepatitis B surface antigen (HBsAg) carriers who often have concomitant increase in the levels of benzo[alpha]pyrene-7,8-diol-9,10-epoxide(±) (BPDE)-DNA adduct in liver tissues, suggesting a possible co-carcinogenesis of Hepatitis B virus (HBV) and benzo[alpha]pyrene in HCC; however the exact mechanisms involved are unclear. The interaction between hepatitis B spliced protein (HBSP) and microsomal epoxide hydrolase (mEH) was confirmed using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assay; the effects of HBSP on mEH-mediated B[alpha]P metabolism was examined by high performance liquid chromatography (HPLC); and the influences of HBSP on B[alpha]P carcinogenicity were evaluated by bromodeoxyuridine cell proliferation, anchorage-independent growth and tumor xenograft. HBSP could interact with mEH in vitro and in vivo, and this interaction was mediated by the N terminal 47 amino acid residues of HBSP. HBSP could greatly enhance the hydrolysis activity of mEH in cell-free mouse liver microsomes, thus accelerating the metabolism of benzo[alpha]pyrene to produce more ultimate carcinnogen, BPDE, and this effect of HBSP requires the intact HBSP molecule. Expression of HBSP significantly increased the formation of BPDE-DNA adduct in benzo[alpha]pyrene-treated Huh-7 hepatoma cells, and this enhancement was blocked by knockdown of mEH. HBSP could enhance the cell proliferation, accelerate the G1/S transition, and promote cell transformation and tumorigenesis of B[alpha]P-treated Huh-7 hepatoma cells. Our results demonstrated that HBSP could promote carcinogenic effects of B[alpha]P by interacting with mEH and enhancing its hydrolysis activity

  14. The oxidation of copper catalysts during ethylene epoxidation.

    Science.gov (United States)

    Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R

    2015-10-14

    The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of 8/2500) Cu2O forms and eventually covers the surface.

  15. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    Science.gov (United States)

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  16. In silico investigation of cycloartane triterpene derivatives from Cimicifuga dahurica (Turcz.) Maxim. roots for the development of potent soluble epoxide hydrolase inhibitors.

    Science.gov (United States)

    Thao, Nguyen Phuong; Kim, Jang Hoon; Thuy Luyen, Bui Thi; Dat, Nguyen Tien; Kim, Young Ho

    2017-05-01

    In our search for natural soluble epoxide hydrolase (sEH) inhibitors from plants, we found that an ethanolic extract of the roots of Cimicifuga dahurica (Turcz.) Maxim. significantly inhibits sEH in vitro. A phytochemical study on the dichloromethane fraction of C. dahurica resulted in the isolation of two new cycloartane triterpenoids (1 and 6), together with 13 known cycloartane analogues (2-5 and 7-15). The structures of compounds were determined by spectroscopic methods. All of the triterpenoid derivatives inhibited sEH enzymatic activity in a concentration-dependent manner, and 13 of the tested compounds showed significant activity. Among them, compounds 1, 3, 5, 7, 9, and 12 showed the highest levels of inhibitory activity, with IC 50 values of about 5μM or less. Kinetic analysis of compounds 1, 3, 5-9, 11, 12, and 14 revealed that compounds 3, 6, 7, 11, and 14 were non-competitive; 1, 5, 9, and 12 were mixed-type; and 8 was a competitive inhibitor. Furthermore, in silico molecular docking indicated that compounds 3, 6-9, 11, 12, and 14 bound to sEH in a similar manner and had stable binding energies, as calculated by AutoDock 4.2 and processed in a 10,000-ps molecular dynamics simulation to assess the binding stability of compounds 5, 7, and 9. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    International Nuclear Information System (INIS)

    Liu Junyan; Qiu Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-01-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: → Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. → TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. → TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. → TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  18. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability.

    Science.gov (United States)

    Thomaeus, Ann; Naworyta, Agata; Mowbray, Sherry L; Widersten, Mikael

    2008-07-01

    A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro(186), Leu(266), His(269), and the His(153) imidazole. The hydroxyl of Tyr(149) is also an integrated component of the chain, which leads to the hydroxyl of Tyr(154). Available data suggest that Tyr(154) functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 A resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k (cat)/K (M) was similar or slightly increased compared with the wild-type reactions. k (cat) for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K (M). Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k (cat) but lowered thermostability.

  19. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  20. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  1. Differential metabolism of acrylonitrile to cyanide is responsible for the greater sensitivity of male vs female mice: role of CYP2E1 and epoxide hydrolases

    International Nuclear Information System (INIS)

    Chanas, Brian; Wang, Hongbing; Ghanayem, Burhan I.

    2003-01-01

    Acrylonitrile (AN) is a potent toxicant and a known rodent carcinogen. AN epoxidation to cyanoethylene oxide (CEO) via CYP2E1 and its subsequent metabolism via epoxide hydrolases (EH) to yield cyanide is thought to be responsible for the acute toxicity and mortality of AN. Recent reports showed that male mice are more sensitive than females to the acute toxicity/mortality of AN. The present work was undertaken to assess the metabolic and enzymatic basis for the greater sensitivity of male vs female mice to AN toxicity. Male and female wild-type and CYP2E1-null mice received AN at 0, 2.5, 10, 20, or 40 mg/kg by gavage. Cyanide concentrations were measured at 1 or 3 h after dosing. Current data demonstrated that cyanide levels in blood and tissues of AN-treated wild-type mice of both sexes were significantly greater than in vehicle-treated controls and increased in a dose-dependent manner. In contrast, cyanide levels in AN-treated CYP2E1-null mice were not statistically different from those measured in vehicle-treated controls. Furthermore, higher levels of cyanide were detected in male wild-type mice vs females in association with greater sensitivity of males to the acute toxicity/mortality of this chemical. Using Western blot analysis, negligible difference in CYP2E1 expression with higher levels of soluble and microsomal EH (sEH and mEH) was detected in the liver of male vs female mice. In kidneys, male mice exhibited higher expression of both renal CYP2E1 and sEH than did female mice. In conclusion, higher blood and tissue cyanide levels are responsible for the greater sensitivity of male vs female mice to AN. Further, higher expression of CYP2E1 and EH in male mice may contribute to greater formation of CEO and its subsequent metabolism to yield cyanide, respectively

  2. Enantioconvergent hydrolysis of racemic styrene oxide at high concentration by a pair of novel epoxide hydrolases into (R)-phenyl-1,2-ethanediol.

    Science.gov (United States)

    Wang, Rui; Hu, Die; Zong, Xuncheng; Li, Jinping; Ding, Lei; Wu, Minchen; Li, Jianfang

    2017-12-01

    To prepare (R)-phenyl-1,2-ethanediol ((R)-PED) with high enantiomeric excess (ee p ) and yield from racemic styrene oxide (rac-SO) at high concentration by bi-enzymatic catalysis. The bi-enzymatic catalysis was designed for enantioconvergent hydrolysis of rac-SO by a pair of novel epoxide hydrolases (EHs), a Vigna radiata EH3 (VrEH3) and a variant (AuEH2 A250I ) of Aspergillus usamii EH2. The simultaneous addition mode of VrEH3 and AuEH2 A250I , exhibiting the highest average turnover frequency (aTOF) of 0.12 g h -1 g -1 , was selected, by which rac-SO (10 mM) was converted into (R)-PED with 92.6% ee p and 96.3% yield. Under the optimized reaction conditions: dry weight ratio 14:1 of VrEH3-expressing E. coli/vreh3 to AuEH2 A250I -expressing E. coli/Aueh2 A250I and reaction at 20 °C, rac-SO (10 mM) was completely hydrolyzed in 2.3 h, affording (R)-PED with 98% ee p . At the weight ratio 0.8:1 of rac-SO to two mixed dry cells, (R)-PED with 97.4% ee p and 98.7% yield was produced from 200 mM (24 mg/ml) rac-SO in 10.5 h. Enantioconvergent hydrolysis of rac-SO at high concentration catalyzed by both VrEH3 and AuEH2 A250I is an effective method for preparing (R)-PED with high ee p and yield.

  3. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes : Prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Dini Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered

  4. Swelling behaviour in n-pentane and mechanical properties of epoxidized natural rubber with different epoxide content

    Science.gov (United States)

    Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.

    2017-07-01

    Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.

  5. Photochemical epoxidation of olefins by visible light in a redox system involving Sb(V) tetraphenylporphyrin and water

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Haruo; Hida, Mitsuhiko (Tokyo Metropolitan Univ. (Japan))

    1989-03-25

    The authors explore electron donors from the viewpoint of solar energy storage. Much attention has been focused on how a water molecule can be incorporated into electron donor system. In this paper, the authors describe a photochemical epoxidation of alkene sensitized by Sb(V)-, P(V)-, Sn(IV)-, Ge(IV)- tetraphenylporphyrin (TPP) with higher oxidation potential than 1.0 Volts vs. NHE in redox systems with a water molecule as an electron donor. The water molecule acts as an electron donor, and alkene acts as an oxygen atom acceptor in this photoredox system. Epoxidation of alkenes usually requires strong oxidizing agents either by the thermal or photochemical method. This is the first example of the photochemical epoxide formation from alkene and water without any strong oxidizing agent. 1 fig.

  6. Glycoside hydrolases having multiple hydrolase activities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  7. Studies on physical properties and fractography of electron beam irradiated poly(vinyl chloride)/epoxidized natural rubber blend in the presence of trimethylolpropane triacrylate

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    The effect of irradiation on the 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was studied in the presence of 3 phr trimethylolpropane triacrylate (TMPTA). The blend was irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 200 kGy in air and room temperature. The tensile properties, resilience and gel fractions of the blends were measured. Electron beam irradiation of the blend in the presence of the TMPTA were found to cause crosslinking which in effect caused an enhancement in modulus and gel fraction together with a concomitant decline in ultimate elongation. The irradiation has resulted in a less hysteretic poly(vinyl chloride)/epoxidized natural rubber blend, with increased rebound resilience. The tensile strength of the blend reached a maximum at 60 kGy followed by a slight decrease at higher doses, implying embrittlement due to the excessive crosslinking. The scanning electron micrographs of the fracture surfaces of the irradiated blends show evidence consistent with the above contention. (Author)

  8. Epoxidation of linseed oil-Alkyd resins

    International Nuclear Information System (INIS)

    Motawie, A.M.; Ismail, E.A.; Mazroua, A.M.; Abd EI Aziem, M.S.; Ramadan, A.M.

    2004-01-01

    Three types of different linseed oil-alkyd resin ( Alk (I), Alk (II), and Alk (III) ) were prepared with the calculated amounts of mono glycerides and adipic acid (1:1, 1:2, and 2:1 Eq.Wt) respectively via monoglyceride method. The obtained alkyd resins were epoxidized via reaction with the calculated quantities of peracetic acid, which was prepared by the reaction of acetic anhydride with H 2 O 2 . Epoxidation occurred with the ratio (1: 1, 1 :3, and 1:6 Eq. Wt) of alkyd to peracetic acid. The effect of reaction time on the epoxy group content was measured during the epoxidation process. The prepared alkyd resins were analyzed by IR and H 1 NMR. The metal coated film properties of epoxidized alkyd resins were compared with those of unmodified alkyd resins. It was observed that the coating films of epoxidized alkyd resins have better in drying properties, hardness, adhesion, impact and flexibility than those of un epoxidized alkyd resins. The flammability properties of the paper coated films for the prepared brominated epoxidized alkyd resins were found to be fire retardant

  9. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  10. Synthesis of aluminum nanoparticles capped with copolymerizable epoxides

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Brandon J. [Saint Louis University, Department of Chemistry (United States); Bunker, Christopher E. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Propulsion Directorate (United States); Guliants, Elena A. [University of Dayton Research Institute, Department of Electrical and Computer Engineering (United States); Hayes, Sophia E. [Washington University, Department of Chemistry (United States); Kheyfets, Arthur [Saint Louis University, Department of Chemistry (United States); Wentz, Katherine M. [Washington University, Department of Chemistry (United States); Buckner, Steven W., E-mail: buckners@slu.edu; Jelliss, Paul A., E-mail: jellissp@slu.edu [Saint Louis University, Department of Chemistry (United States)

    2013-06-15

    We report on the synthesis of air-stable aluminum nanoparticles (Al NPs) capped with 1,2-epoxy-9-decene. Long-chain epoxides have proven to be effective capping agents for Al NPs as the epoxide ring is highly susceptible to ring-opening polymerization, leading to the formation of putative polyether loops on the nascent Al NP surface. However, these materials are observed to degrade within several hours to days following exposure to ambient air. By inducing polymerization of the additional terminal alkene functionality on the epoxide, we have produced Al NPs that exhibit both a shelf life of {approx}6 weeks and a high active Al content. Transmission electron microscopy confirms that these spherical nanostructures, {approx}25 nm in diameter, are embedded in a covalently bound polymer matrix that serves as a prophylactic barrier against water/air (H{sub 2}O/O{sub 2}) degradation, and {sup 27}Al solid-state NMR is used to nondestructively confirm the presence of both metallic Al{sup 0} and oxidized Al{sup 3+}. In addition, we have induced polymerization of the epoxide terminal alkene functionality with a long-chain diene monomer, 1,13-tetradecadiene, leading to the formation of Al NPs protected by an extremely hydrophobic polymer matrix. These core-shell nanomaterials also have high active Al contents along with extremely long shelf lives (up to 6 months upon air exposure).

  11. Novel metabolic pathways for linoleic and arachidonic acid metabolism.

    Science.gov (United States)

    Moghaddam, M; Motoba, K; Borhan, B; Pinot, F; Hammock, B D

    1996-08-13

    Mouse liver microsomes oxidized linoleic acid to form 9,10- or 12,13-epoxyoctadecenoate. These monoepoxides were subsequently hydrolyzed to their corresponding diols in the absence of the microsomal epoxide hydrolase inhibitor, 1,2-epoxy-3,3,3-trichloropropane. Furthermore, both 9,10- and 12,13-epoxyoctadecenoates were oxidized to diepoxyoctadecanoate at apparently identical rates by mouse liver microsomal P-450 epoxidation. Both epoxyoctadecanoates and diepoxyoctadecanoates were converted to tetrahydrofuran-diols by microsomes. Tetrahydroxides of linoleate were produced as minor metabolites. Arachidonic acid was metabolized to epoxyeicosatrienoates, dihydroxyeicosatrienoates, and monohydroxyeicosatetraenoates by the microsomes. Microsomes prepared from clofibrate (but not phenobarbital) -treated mice exhibited much higher production rates for epoxyeicosatrienoates and vic-dihydroxyeicosatrienoates. This indicated an induction of P-450 epoxygenase(s) and microsomal epoxide hydrolase in mice by clofibrate and not by phenobarbital. Incubation of synthetic epoxyeicosatrienoates with microsomes led to the production of diepoxyeicosadienoates. Among chemically generated diepoxyeicosadienoate isomers, three of them possessing adjacent diepoxides were hydrolyzed to their diol epoxides which cyclized to the corresponding tetrahydrofuran-diols by microsomes as well as soluble epoxide hydrolase at a much higher rate. Larger cyclic products from non-adjacent diepoxides were not observed. The results of our in vitro experiments suggest that linoleic and arachidonic acid can be metabolized to their tetrahydrofuran-diols by two consecutive microsomal cytochrome P-450 epoxidations followed by microsomal or soluble epoxide hydrolase catalyzed hydrolysis of the epoxides. Incubation experiments with the S-9 fractions indicate that the soluble epoxide hydrolase is more important in this conversion. This manuscript is the first report of techniques for the separation and

  12. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    Science.gov (United States)

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  13. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions

    International Nuclear Information System (INIS)

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J.; Wolf, C. Roland; Schmeiser, Heinz H.; Phillips, David H.; Frei, Eva; Arlt, Volker M.

    2014-01-01

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b 5 , and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b 5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b 5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b 5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b 5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR

  14. 21 CFR 172.723 - Epoxidized soybean oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Epoxidized soybean oil. 172.723 Section 172.723... CONSUMPTION Other Specific Usage Additives § 172.723 Epoxidized soybean oil. Epoxidized soybean oil may be... reacting soybean oil in toluene with hydrogen peroxide and formic acid. (b) It meets the following...

  15. Metabolism of polyunsaturated (n-3) fatty acids by monkey seminal vesicles: isolation and biosynthesis of omega-3 epoxides.

    Science.gov (United States)

    Oliw, E H; Sprecher, H W

    1991-11-27

    Monooxygenases of monkey seminal vesicles can metabolize arachidonic acid (20:4(n-6)) by w3-hydroxylation to 18(R)-hydroxyeicosatetraenoic acid (18(R)-HETE) and eicosapentaenoic acid (20:5(n-3)) to 17,18-dihydroxyeicosatetraenoic acid (Oliw, E.H. (1989) J. Biol. Chem. 264, 17845-17853). The present study aimed to further characterize the oxygenation of (n-3) polyunsaturated fatty acids. 14C-Labelled 22:6(n-3), 20:5(n-3), 20:4-(n-3) and 18:3(n-3) were incubated with microsomes of seminal vesicles of the cynomolgus monkey, NADPH and a cyclooxygenase inhibitor, diclofenac, and the main metabolites were identified by capillary gas chromatography-mass spectrometry. 22:6(n-3) was slowly metabolized to 19,20-dihydroxy-4,7,10,13,16-docosapentaenoic acid, while 20:5(n-3), 20:4(n-3) and 18:3(n-3) were metabolized more efficiently to the corresponding w4,w3-diols. The w3 epoxides, which were obtained from 20:5(n-3) and 18:3(n-3), were isolated in the presence of an epoxide hydrolase inhibitor, 1(2)epoxy-3,3,3-trichloropropane, and the geometry of the epoxides was determined to be 17S, 18R and 15S, 16R, respectively. While 20:5(n-3) was metabolized almost exclusively to the epoxide and diol pair of metabolites, 18:3(n-3) was metabolized not only to the w3 epoxide and the corresponding diol, but also to the w2 alcohol, 17(R)-hydroxy-9,12,15-octadecatrienoic acid. 22:6(n-3) and 5,8,11,14-eicosatetraynoic acid inhibited the biosynthesis of 18(R)-HETE from arachidonic acid (IC50 0.16 and 0.14 mM, respectively). In comparison with 20:4 or 18:3(n-3), 18:1(n-9) and 22:5(n-6) appeared to be slowly metabolized by seminal monooxygenases, while 18:2(n-6) was converted to the w3 alcohol and to smaller amounts of the w2 alcohol (4:1). Together, the results indicate that the w3-hydroxylase and w3-epoxygenase enzyme(s) metabolize 20:4(n-6) and 20:5(n-3) almost exclusively to the w3(R) alcohol and the w3(R, S) epoxide, respectively, while longer and shorter fatty acids either are poor

  16. Diastereoselectivity in scalemic tartrate/titanium epoxidations.

    Science.gov (United States)

    Brown, J M; Leppard, S J; Oakes, J; Thornthwaite, D

    2000-06-01

    Nonlinearity in the diastereoselectivity of epoxidation of allylic alcohols with mixtures of titanium isopropoxide, tertbutyl hydroperoxide, and diethyl tartrate was observed. Racemic and enantiomerically pure alcohols E-2-methyl-4-hexen-3-ol and E-1-methoxy-5-(O-tertbutyldimethylsilyloxy)-2-penten-4-ol were prepared. Epoxidation reactions were carried out with Ti(OPri)4 and ButOOH accompanied by diethyl tartrate of varying enantiomeric purity. The simplest explanation of these results is that a dimeric epoxidation reagent is involved, with significantly different reactivity for the homochiral and racemic forms. Copyright 2000 Wiley-Liss, Inc.

  17. Prediction of metabolites of epoxidation reaction in MetaTox.

    Science.gov (United States)

    Rudik, A V; Dmitriev, A V; Bezhentsev, V M; Lagunin, A A; Filimonov, D A; Poroikov, V V

    2017-10-01

    Biotransformation is a process of the chemical modifications which may lead to the reactive metabolites, in particular the epoxides. Epoxide reactive metabolites may cause the toxic effects. The prediction of such metabolites is important for drug development and ecotoxicology studies. Epoxides are formed by some oxidation reactions, usually catalysed by cytochromes P450, and represent a large class of three-membered cyclic ethers. Identification of molecules, which may be epoxidized, and indication of the specific location of epoxide functional group (which is called SOE - site of epoxidation) are important for prediction of epoxide metabolites. Datasets from 355 molecules and 615 reactions were created for training and validation. The prediction of SOE is based on a combination of LMNA (Labelled Multilevel Neighbourhood of Atom) descriptors and Bayesian-like algorithm implemented in PASS software and MetaTox web-service. The average invariant accuracy of prediction (AUC) calculated in leave-one-out and 20-fold cross-validation procedures is 0.9. Prediction of epoxide formation based on the created SAR model is included as the component of MetaTox web-service ( http://www.way2drug.com/mg ).

  18. Zeaxanthin epoxidation - an in vitro approach.

    Science.gov (United States)

    Kuczyńska, Paulina; Latowski, Dariusz; Niczyporuk, Sylvia; Olchawa-Pajor, Monika; Jahns, Peter; Gruszecki, Wiesław I; Strzałka, Kazimierz

    2012-01-01

    Zeaxanthin epoxidase (ZE) is an enzyme operating in the violaxanthin cycle, which is involved in photoprotective mechanisms. In this work model systems to study zeaxanthin (Zx) epoxidation were developed. Two assay systems are presented in which epoxidation of Zx was observed. In these assays two mutants of Arabidopsis thaliana which have active only one of the two xanthophyll cycle enzymes were used. The npq1 mutant possesses an active ZE and is thus able to convert Zx to violaxanthin (Vx) but the violaxanthin de-epoxidase (VDE) is inactive, so that Vx cannot be converted to Zx. The other mutant, npq2, possesses an active VDE and can convert exogenous Vx to Zx under strong light conditions but reverse reaction is not possible. The first assay containing thylakoids from npq1 and npq2 mutants of A. thaliana gave positive results and high efficiency of epoxidation reaction was observed. The amount of Zx was reduced by 25%. To optimize high efficiency of epoxidation reaction additional factors facilitating both fusion of the two types of thylakoids and incorporation of Zx to their membranes were also studied. The second kind of assay contained npq1 mutant thylakoids of A. thaliana supplemented with exogenous Zx and monogalactosyldiacylglycerol (MGDG). Experiments with different proportions of Zx and MGDG showed that their optimal ratio is 1:60. In such system, due to epoxidation, the amount of Zx was reduced by 38% of its initial level. The in vitro systems of Zx epoxidation described in this paper enable analysis some properties of the ZE without necessity of its isolation.

  19. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  20. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    Science.gov (United States)

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  1. Mechanism of titanocene-mediated epoxide opening through homolytic substitution

    DEFF Research Database (Denmark)

    Gansäuer, Andreas; Barchuk, Andriy; Keller, Florian

    2007-01-01

    −titanocene complexes, the transition states of epoxide opening, and the β-titanoxy radicals formed. The results obtained provide a structural basis for the understanding of the factors determining the regioselectivity of ring opening and match the experimentally determined values. By employing substituted titanocenes...... of monomeric and dimeric Ti(III) species was found to be strongly affected by the exact steric conditions. The overall rate constants of the reductive epoxide opening were determined for the first time. These data were employed as the basis for computational studies of the structure and energies of the epoxide...... even more selective epoxide openings could be realized. Moreover, by properly adjusting the steric demands of the catalysts and the substrates the first examples of reversible epoxide openings were designed....

  2. Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation.

    Science.gov (United States)

    Sirish, Padmini; Li, Ning; Timofeyev, Valeriy; Zhang, Xiao-Dong; Wang, Lianguo; Yang, Jun; Lee, Kin Sing Stephen; Bettaieb, Ahmed; Ma, Sin Mei; Lee, Jeong Han; Su, Demetria; Lau, Victor C; Myers, Richard E; Lieu, Deborah K; López, Javier E; Young, J Nilas; Yamoah, Ebenezer N; Haj, Fawaz; Ripplinger, Crystal M; Hammock, Bruce D; Chiamvimonvat, Nipavan

    2016-05-01

    Atrial fibrillation represents the most common arrhythmia leading to increased morbidity and mortality, yet, current treatment strategies have proven inadequate. Conventional treatment with antiarrhythmic drugs carries a high risk for proarrhythmias. The soluble epoxide hydrolase enzyme catalyzes the hydrolysis of anti-inflammatory epoxy fatty acids, including epoxyeicosatrienoic acids from arachidonic acid to the corresponding proinflammatory diols. Therefore, the goal of the study is to directly test the hypotheses that inhibition of the soluble epoxide hydrolase enzyme can result in an increase in the levels of epoxyeicosatrienoic acids, leading to the attenuation of atrial structural and electric remodeling and the prevention of atrial fibrillation. For the first time, we report findings that inhibition of soluble epoxide hydrolase reduces inflammation, oxidative stress, atrial structural, and electric remodeling. Treatment with soluble epoxide hydrolase inhibitor significantly reduces the activation of key inflammatory signaling molecules, including the transcription factor nuclear factor κ-light-chain-enhancer, mitogen-activated protein kinase, and transforming growth factor-β. This study provides insights into the underlying molecular mechanisms leading to atrial fibrillation by inflammation and represents a paradigm shift from conventional antiarrhythmic drugs, which block downstream events to a novel upstream therapeutic target by counteracting the inflammatory processes in atrial fibrillation. © 2016 American Heart Association, Inc.

  3. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Fatin; Chan, Chin Han; Winie, Tan [Faculty of Applied Sciences, UniversitiTeknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Sim, Lai Har; Zainal, Nurul Fatahah Asyqin [Center of Foundation Studies, PuncakAlam Campus, UniversitiTeknologi MARA, 40430 Selangor Darul Ehsan (Malaysia)

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  4. Ring opening of epoxides with C-nucleophiles.

    Science.gov (United States)

    Faiz, Sadia; Zahoor, Ameer Fawad

    2016-11-01

    Ring opening of epoxides has been an area of interest for organic chemists, owing to their reactivity toward nucleophiles. Such reactions yield important products depending on the type of nucleophiles used. This review article covers the synthetic approaches (1991-2015) used for the ring opening of epoxides via carbon nucleophiles.

  5. Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer

    Science.gov (United States)

    Shen, Guomin; Cui, Weidong; Zhang, Hao; Zhou, Fengbo; Huang, Wei; Liu, Qian; Yang, Yihu; Li, Shuang; Bowman, Gregory R.; Sadler, J. Evan; Gross, Michael L.; Li, Weikai

    2017-01-01

    Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is at an intermediate redox state of this process containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we are able to conduct structure simulations to reveal a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR. PMID:27918545

  6. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall......-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium...

  7. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  8. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  9. Study of epoxidation and its influence on the poly dienes behavior

    International Nuclear Information System (INIS)

    Rocha, Tatiana L.A.C.; Schuster, Robert H.; Meier, Jens; Jacobi, Marly M.; Samios, Dimitrios

    2001-01-01

    The poly dienes epoxidation is a good method to modify the backbone chain, improving some of its properties. The epoxidation rate changes with the time and reaction temperature, epoxidize agent and polymer microstructure. There are two kinds of different kinetic behavior during the reaction of epoxidation, which are related to the epoxidation of trans 1,4 and cis 1,4 double bonds. An increase in the epoxidation content leads to an increase in the glass temperature (Tg) in all materials studied. Tailor-made linear poly dienes modified by epoxidation also show shifts of the flow region of the viscoelastic spectra to lower frequencies and significant changes in the dynamic mechanical storage and loss moduli. With higher side group density, the plateau modulus decreases due to lower entanglement density and the frequency limits of the rubber elastic region shift to lower values. Higher molecular weights shift the onset of the flow region towards lower frequencies extending the rubbery plateau. The predictions of refined tube models, which are derived directly from molecular considerations are in good correlation with the experimental data. (author)

  10. Epoxide reduction with hydrazine on graphene: a first principles study.

    Science.gov (United States)

    Kim, Min Chan; Hwang, Gyeong S; Ruoff, Rodney S

    2009-08-14

    Mechanisms for epoxide reduction with hydrazine on a single-layer graphene sheet are examined using quantum mechanical calculations within the framework of gradient-corrected spin-polarized density-functional theory. We find that the reduction reaction is mainly governed by epoxide ring opening which is initiated by H transfer from hydrazine or its derivatives. In addition, our calculations suggest that the epoxide reduction by hydrazine may predominantly follow a direct Eley-Rideal mechanism rather than a Langmuir-Hinshelwood mechanism. We also discuss the generation of various hydrazine derivatives during the reduction of graphene oxide with hydrazine and their potential contribution to lowering the barrier height of epoxide ring opening.

  11. Properties of composite laminates based on basalt fibers with epoxidized vegetable oils

    International Nuclear Information System (INIS)

    Samper, M.D.; Petrucci, R.; Sanchez-Nacher, L.; Balart, R.; Kenny, J.M.

    2015-01-01

    Highlights: • New environmentally friendly composites from biobased epoxies and basalt fibers. • Improved performance with conventional silane treatment on basalt fabrics. • Composites with excellent appearance due to basalt shiny brown color. • Potential applications as substitute of glass fiber reinforced composites in engineering design. • Processing with conventional resin transfer molding (RTM) techniques. - Abstract: This paper deals with the development of polymeric materials derived from epoxidized vegetable oils which have been used in the manufacture of laminated composite materials with basalt fabrics. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO) were used as biobased matrices. The basalt fabrics were modified with amino-silane and glycidyl-silane to increase fiber–matrix interactions. The curing behavior of both resins was evaluated by differential scanning calorimetry (DSC) and oscillatory rheometry (OR). The evaluation of mechanical properties was made by tensile, flexural and Charpy tests. The extent of the fiber–matrix interactions among interface was evaluated by scanning electron microscopy (SEM). The obtained results revealed that surface modification of basalt fibers with glycidyl-silane clearly improves the mechanical properties of the composites. The use of the ELO resin as matrix for composite laminates improved substantially the mechanical performance compared to composites made with ESBO

  12. Deep Eutectic Solvents Enable More Robust Chemoenzymatic Epoxidation Reactions

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Zeng, Chaoxi; Wang, Weifei; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    A chemoenzymatic method for the production of epoxidized vegetable oils was developed. The unique combination of the commercial lipase G from Penicillieum camembertii with certain deep eutectic solvents enabled the efficient production of epoxidized vegetable oils.

  13. Catalytic Epoxidation of Limonene

    Directory of Open Access Journals (Sweden)

    E. Herrero

    2000-03-01

    Full Text Available The epoxidation of limonene with hidrogen peroxide was studied over zeolite Tibeta (a large pore material and heteropoly acids on carbono and alumina supported. PW11/C was catalyst the best tested.

  14. Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com [Faculty of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Kashef, Z. [Faculty of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of)

    2012-04-15

    New heterogeneous molybdenum catalyst was prepared through covalent attachment of a Schiff base ligand on the surface of silica coated magnetite nanoparticles via aminopropyl spacer and subsequent complexation with MoO{sub 2}(acac){sub 2}. The prepared nanocatalyst was characterized with Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopies and vibrating sample magnetometry. Catalytic epoxidation of some olefins and allylic alcohols by prepared nanocatalyst using tert-butyl hydroperoxide and cumene hydroperoxide as oxidants was achieved with good activities and selectivities. - Highlights: Black-Right-Pointing-Pointer Silica coated magnetite nanoparticles were modified with a Schiff base ligand. Black-Right-Pointing-Pointer Next reaction with MoO{sub 2}(acac){sub 2} afforded magnetically recoverable nanocatalyst. Black-Right-Pointing-Pointer The prepared nanocatalyst catalyzed the epoxidation of olefins with TBHP.

  15. Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of Bentonite with enhanced catalytic activity for epoxidation of alkenes

    International Nuclear Information System (INIS)

    Salavati, Hossein; Rasouli, Nahid

    2011-01-01

    Highlights: → The PVMo and nanocomposite catalyst (PVMo/Bentonite) as catalyst for epoxidation of alkenes. → The composite catalyst showed higher catalytic activity than parent heteropolymolybdate (PVMo). →The use of ultrasonic irradiation increased the conversions and reduced the reaction times. → The H 2 O 2 is a green and eco-friendly oxidant in this catalytic system. -- Abstract: A new heterogeneous catalyst (PVMo/Bentonite) consisting of vanadium substituted heteropolymolybdate with Keggin-type structure Na 5 [PV 2 Mo 10 O 40 ].14H 2 O (PVMo) supported between silicate layers of bentonite has been synthesized by impregnation method and characterized using X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy and elemental analysis. X-ray diffraction and scanning electron microscopy analysis indicated that PVMo was finely dispersed into layers of bentonite as support. The PVMo/Bentonite used as an efficient heterogeneous catalyst for epoxidation of alkenes. Various cyclic and linear alkenes were oxidized into the corresponding epoxides in high yields and selectivity with 30% aqueous H 2 O 2 . The catalyst was reused several times, without observable loss of activity and selectivity. The obtained results showed that the catalytic activity of the PVMo/Bentonite was higher than that of pure heteropolyanion (PVMo).

  16. Reaction of cyclic epoxide compounds with triphenylphosphine

    International Nuclear Information System (INIS)

    Kas'yan, L.I.; Stepanova, N.V.; Galafeeva, M.F.; Boldeskul, I.E.; Trachevskii, V.V.; Zefirov, N.S.

    1987-01-01

    Significant differences were found in the reactivity of a series of epoxides of cycloalkenes and methylenecycloalkanes and diepoxides in reaction with triphenylphosphine, depending both on the steric effects of the cyclic fragments and on their strain. The level of the strain can be judged indirectly from the chemical shifts of the 1 H and 13 C nuclei and the spin-spin coupling constants of the C-H bonds in the epoxide ring

  17. Diversity screening for novel enzymes degrading synthetic polymers

    DEFF Research Database (Denmark)

    Lezyk, Mateusz Jakub

    plant cell wall polymers. Several enzymes catalysed transglycosylation either using lactose or pNP-Fuc as acceptor and Mfuc6 exhibited an unusually high transglycosylation/hydrolysis ratio. Using 25 mM pNP-Fuc as donor and under conditions tested, the maximum yields of 1.6 ± 0.1 mM 2’-fucosyllactose...... of glucose during cellulase-catalyzed hydrolysis of pretreated sugarcane bagasse. We have further utilized the constructed metagenomic library for functional identification of epoxide hydrolase activities using a new agar-plate assay. Using this method, clones with epoxide hydrolase activity were identified...

  18. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Science.gov (United States)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  19. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  20. Development of cationically initiated UV curable coating systems based on cyclo-aliphatic diepoxide, ENR, epoxidized poly-butadiene and epoxidized soybean oil

    International Nuclear Information System (INIS)

    Kumar, R.N.; Quah, S.H.; Kong, K.W.; Rozman, H.D.; Tin, W.C.

    1999-01-01

    Epoxidized Natural Rubber (ENR) had been earlier found to impart toughness to otherwise brittle epoxy resin. Since the high viscosity of solutions of ENR in reactive solvent glycidyl methacrylate,imposed a limitation to the incorporation of higher percentages of the elastomer to the epoxy systems, experiments were initiated to employ the liquid elastomer, namely, epoxidized polybutadiene In the formulations. 'Mixture Design', a statistical experimental design, was adopted to study the effect of compositional and process variables on the curing of surface coatings formulated from the above system by UV radiation initiated by cationic photo-initiators. This paper also reports the results of the experiments carded out with epoxidized soybean oil Employed as a flexibilizer in the cycloaliphatic epoxy-ENR system

  1. Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers

    International Nuclear Information System (INIS)

    Salleh, S.N.M.; Ubaidillah, E.A.E.; Abidin, M.F.Z.

    2010-01-01

    Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

  2. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide.

    Science.gov (United States)

    de Almeida, Antonia Amanda Cardoso; Silva, Renan Oliveira; Nicolau, Lucas Antonio Duarte; de Brito, Tarcísio Vieira; de Sousa, Damião Pergentino; Barbosa, André Luiz Dos Reis; de Freitas, Rivelilson Mendes; Lopes, Luciano da Silva; Medeiros, Jand-Venes Rolim; Ferreira, Paulo Michel Pinheiro

    2017-04-01

    D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.

  3. Kinetics of the Epoxidation of Geraniol and Model Systems by Dimethyldioxirane

    Directory of Open Access Journals (Sweden)

    B. S. Crow

    2004-02-01

    Full Text Available The mono-epoxidation of geraniol by dimethyldioxirane was carried out invarious solvents. In all cases, the product ratios for the 2,3 and 6,7 mono-epoxides werein agreement with literature values. Kinetic studies were carried out at 23 oC in thefollowing dried solvent systems: acetone (k2 = 1.49 M-1s-1, carbon tetrachloride/acetone(9/1, k2=2.19 M-1s-1, and methanol/acetone (9/1, k2 = 17 M-1s-1. Individual k2 valueswere calculated for epoxidation of the 2,3 and 6,7 positions in geraniol. The non-conjugated diene system was modeled employing two simple independent alkenes:2-methyl-2-pentene and 3-methyl-2-buten-1-ol by determining the respective k2 valuesfor epoxidation in various solvents. The kinetic results for each independent alkeneshowed that the relative reactivity of the two epoxidation sites in geraniol as a function ofsolvent was not simply a summation of the independent alkene systems.

  4. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  5. Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst.

    Science.gov (United States)

    Bhalerao, Machhindra S; Kulkarni, Vaishali M; Patwardhan, Anand V

    2018-01-01

    The present work reports the use of ultrasonic irradiation for enhancing lipase catalyzed epoxidation of soybean oil. Higher degree of unsaturated fatty acids, present in the soybean oil was converted to epoxidized soybean oil by using an immobilized lipase, Candida antarctica (Novozym 435). The effects of various parameters on the relative percentage conversion of the double bond to oxirane oxygen were investigated and the optimum conditions were established. The parameters studied were temperature, hydrogen peroxide to ethylenic unsaturation mole ratio, stirring speed, solvent ratio, catalyst loading, ultrasound frequency, ultrasound input power and duty cycle. The main objective of this work was to intensify chemoenzymatic epoxidation of the soybean oil by using ultrasound, to reduce the time required for epoxidation. Epoxidation of the soybean oil was achieved under mild reaction conditions by indirect ultrasonic irradiations (using ultrasonic bath). The relative percentage conversion to oxirane oxygen of 91.22% was achieved within 5h. The lipase was remarkably stable under optimized reaction conditions, later was recovered and reused six times to produce epoxidized soybean oil (ESO). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    Science.gov (United States)

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  7. Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: Efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Esnaashari, Fariba; Moghadam, Majid; Mirkhani, Valiollah; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad Reza; Zakeri, Maryam

    2012-01-01

    Efficient epoxidation of olefins catalyzed by MoO 2 (acac) 2 supported on amines functionalized MWCNTs is reported. The MWCNTs bearing carboxylic acid groups were modified with 2-aminophenol and 2-aminothiophenol. These amine–MWCNTs act as bidentate ligand for attachment of Mo catalyst. These catalysts were characterized by elemental analysis, scanning electron microscopy, FT-IR and diffuse reflectance UV–Vis spectroscopic methods. The prepared catalysts were used for efficient epoxidation of different alkenes such as cyclic and linear ones with tert-butyl hydroperoxide in refluxing 1,2-dichloroethane. These heterogeneous catalysts can be reused several times without significant loss of their catalytic activity. Highlights: ► Supporting of molybdenyl acetylacetonate on amine-modified MWCNTs. ► Heterogeneous catalysts were prepared. ► These catalysts were highly efficient in the epoxidation of alkenes with TBHP. ► Makes the catalysts reusable.

  8. Cycloadditions to Epoxides Catalyzed by GroupIII-V Transition-Metal Complexes

    KAUST Repository

    D'Elia, Valerio

    2015-05-25

    Complexes of groupIII-V transition metals are gaining increasing importance as Lewis acid catalysts for the cycloaddition of dipolarophiles to epoxides. This review examines the latest reports, including homogeneous and heterogeneous applications. The pivotal step for the cycloaddition reactions is the ring opening of the epoxide following activation by the Lewis acid. Two modes of cleavage (C-C versus C-O) have been identified depending primarily on the substitution pattern of the epoxide, with lesser influence observed from the Lewis acid employed. The widely studied cycloaddition of CO2 to epoxides to afford cyclic carbonates (C-O bond cleavage) has been scrutinized in terms of catalytic efficiency and reaction mechanism, showing that unsophisticated complexes of groupIII-V transition metals are excellent molecular catalysts. These metals have been incorporated, as well, in highly performing, recyclable heterogeneous catalysts. Cycloadditions to epoxides with other dipolarophiles (alkynes, imines, indoles) have been conducted with scandium triflate with remarkable performances (C-C bond cleavage). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cycloadditions to Epoxides Catalyzed by GroupIII-V Transition-Metal Complexes

    KAUST Repository

    D'Elia, Valerio; Pelletier, Jeremie; Basset, Jean-Marie

    2015-01-01

    Complexes of groupIII-V transition metals are gaining increasing importance as Lewis acid catalysts for the cycloaddition of dipolarophiles to epoxides. This review examines the latest reports, including homogeneous and heterogeneous applications. The pivotal step for the cycloaddition reactions is the ring opening of the epoxide following activation by the Lewis acid. Two modes of cleavage (C-C versus C-O) have been identified depending primarily on the substitution pattern of the epoxide, with lesser influence observed from the Lewis acid employed. The widely studied cycloaddition of CO2 to epoxides to afford cyclic carbonates (C-O bond cleavage) has been scrutinized in terms of catalytic efficiency and reaction mechanism, showing that unsophisticated complexes of groupIII-V transition metals are excellent molecular catalysts. These metals have been incorporated, as well, in highly performing, recyclable heterogeneous catalysts. Cycloadditions to epoxides with other dipolarophiles (alkynes, imines, indoles) have been conducted with scandium triflate with remarkable performances (C-C bond cleavage). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synergistic dual activation catalysis by palladium nanoparticles for epoxide ring opening with phenols.

    Science.gov (United States)

    Seth, Kapileswar; Roy, Sudipta Raha; Pipaliya, Bhavin V; Chakraborti, Asit K

    2013-07-04

    Synergistic dual activation catalysis has been devised for epoxide phenolysis wherein palladium nanoparticles induce electrophilic activation via coordination with the epoxide oxygen followed by nucleophilic activation through anion-π interaction with the aromatic ring of the phenol, and water (reaction medium) also renders assistance through 'epoxide-phenol' dual activation.

  11. Effect of epoxide equivalent on microstructure of epoxy/rectorite nanocomposite studied by positrons

    International Nuclear Information System (INIS)

    Liu, L.M.; Fang, P.F.; Zhang, S.P.; Wang, S.J.

    2005-01-01

    The epoxy/rectorite nanocomposites with different epoxide equivalent ranging from 188 to 1110 were prepared and the effects of epoxide equivalent on microstructure of materials were studied by X-ray diffraction (XRD) and positron annihilation lifetime spectroscope (PALS). In nanocomposites, the formation of exfoliated structure was observed from XRD pattern at epoxide equivalent >263. The PALS measurements reveal that the fractional free volume in nanocomposites was strongly affected by epoxide equivalent, in particular, the free-volume concentration was dramatically decreased with the increasing epoxide equivalent from 188 to 263, and the S parameter indicates the rectorite structure change and the high sensitivity of positron annihilation to the entry of rectorite into epoxy. These results indicate that positron annihilation characteristics are useful for study the microstructure of epoxy/rectorite nanocomposites

  12. Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: Efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Esnaashari, Fariba [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad Reza; Zakeri, Maryam [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2012-11-15

    Efficient epoxidation of olefins catalyzed by MoO{sub 2}(acac){sub 2} supported on amines functionalized MWCNTs is reported. The MWCNTs bearing carboxylic acid groups were modified with 2-aminophenol and 2-aminothiophenol. These amine-MWCNTs act as bidentate ligand for attachment of Mo catalyst. These catalysts were characterized by elemental analysis, scanning electron microscopy, FT-IR and diffuse reflectance UV-Vis spectroscopic methods. The prepared catalysts were used for efficient epoxidation of different alkenes such as cyclic and linear ones with tert-butyl hydroperoxide in refluxing 1,2-dichloroethane. These heterogeneous catalysts can be reused several times without significant loss of their catalytic activity. Highlights: Black-Right-Pointing-Pointer Supporting of molybdenyl acetylacetonate on amine-modified MWCNTs. Black-Right-Pointing-Pointer Heterogeneous catalysts were prepared. Black-Right-Pointing-Pointer These catalysts were highly efficient in the epoxidation of alkenes with TBHP. Black-Right-Pointing-Pointer Makes the catalysts reusable.

  13. Recent trends in ring opening of epoxides with sulfur nucleophiles.

    Science.gov (United States)

    Ahmad, Sajjad; Zahoor, Ameer Fawad; Naqvi, Syed Ali Raza; Akash, Muhammad

    2018-02-01

    Thiolysis of epoxides offers an efficient and simple synthetic approach to access [Formula: see text]-hydroxy sulfides which are valuable scaffold in the synthesis of various important molecules in medicinal chemistry. This review article presents a recent compilation of the synthetic approaches developed after 2000 for the thiolysis of epoxides.

  14. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H

    1982-01-01

    Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis in the pres......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...... membranes (basolateral and intracellular membranes) exhibited in SDS-polyacrylamide gel electrophoresis the same size of constituent polypeptides and the same catalytic and immunological properties as a normal brush border lactase/phlorizin hydrolase....

  15. Simple and cheap steric and electronic characterization of the reactivity of Ru(II) complexes containing oxazoline ligands as epoxidation catalysts

    KAUST Repository

    Poater, Albert

    2013-07-01

    The reactivity of a new family of complexes with general formula [Ru IV(T)(R-D)(O)]2+ (T = trispyrazolylmethane (tpm); D = N-(1-hydroxy-3-methylbutan-(2S)-(-)-2-yl)-(4S)-(-)-4-isopropyl-4, 5-dihydrooxazole-2-carbimidate, R = Bz (1); iPr (2)) has been analyzed. There is a significant difference in regioselectivity between the two catalysts in the epoxidation of 4-vinylcyclohexene; 1 leads to the regioselective oxidation at the ring alkene position, whereas 2 leads to the oxidation at the terminal position. Although computational calculations indicate small energy differences, both the geometry through steric maps and the electronic parameters of the reactants via conceptual DFT, or charges via NPA, explain the reactivity differences found for the catalysts depending on the substituents of the oxazoline ligands. © 2013 Elsevier B.V. All rights reserved.

  16. Effect of irradiation on poly(vinyl chloride)/epoxidized natural rubber blend in the presence of additives: FTIR analysis

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Dahlan; Baharin, A.; Nasir, M.

    2001-01-01

    The effect of irradiation on the structure of 50/50 poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR) was studied using the Fourier Transform Spectroscopy (FTIR). The 50/50 PVC/ENR blend was irradiated by using 3.0 MeV electron beam machine at 0 and 200 kGy irradiation doses. The influence of several additives such as TMPTA, Irganox 1010, and tribasic lead sulfate on the irradiation induced changes of the blend was investigated. It was found that upon irradiation, ring opening of the epoxide groups, oxidation as well crosslinking at residual double bonds occurred, leading to decreases in the intensities of the epoxide and cis double bond bands and an increases in ether and furan bands. The addition of Irganox 1010 and tribasic lead sulfate were found to inhibit the irradiation-induced reaction in the blend to a considerable extent. The importance of TMPTA in preventing the intramolecular ring opening side chain reaction was also discussed. However, studies did not reveal the exact nature of the irradiation-induced reactions involved in the blend. (Author)

  17. A strategy for position-selective epoxidation of polyprenols.

    Science.gov (United States)

    Gnanadesikan, Vijay; Corey, E J

    2008-06-25

    An effective strategy has been developed for the efficient site-selective epoxidation of poylolefinic isoprenoid alcohols, based on the use of an internal control element for intramolecular reaction. The approach is illustrated by application to a series of polyisoprenoid alcohols (polyprenols) at substrate concentration of 0.5 mM. With polyprenol substrates having the hydroxyl function at one terminus, the internal epoxidation can be directed at the double bond of the polyprenol, which is either four or five away from the terminal hydroxyprenyl subunit.

  18. Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species.

    Science.gov (United States)

    Kruk, Jerzy; Szymańska, Renata

    2008-01-01

    In the present study, xanthophyll composition of eight parasitic Cuscuta species under different light conditions was investigated. Neoxanthin was not detected in four of the eight species examined, while in others it occurred at the level of several percent of total xanthophylls. In C. gronovii and C. lupuliformis it was additionally found that the neoxanthin content was considerably stimulated by strong light. In dark-adapted plants, lutein epoxide level amounted to 10-22% of total xanthophylls in only three species, the highest being for C. lupuliformis, while in others it was below 3%, indicating that the lutein epoxide cycle is limited to only certain Cuscuta species. The obtained data also indicate that the presence of the lutein epoxide cycle and of neoxanthin is independent and variable among the Cuscuta species. The xanthophyll cycle carotenoids violaxanthin, antheraxanthin and zeaxanthin were identified in all the examined species and occurred at the level found in other higher plants. The xanthophyll and lutein epoxide cycle pigments showed typical response to high light stress. The obtained results also suggest that the ability of higher plants to synthesize lutein epoxide probably does not depend on the substrate specificity of zeaxanthin epoxidase but on the availability of lutein for the enzyme.

  19. Anti-Leishmania and cytotoxic activities of perillaldehyde epoxide synthetic positional isomers.

    Science.gov (United States)

    Keesen, Tatjana Souza Lima; da Silva, Larisse Virgolino; da Câmara Rocha, Juliana; Andrade, Luciana Nalone; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2018-03-13

    Leishmaniasis belongs to a complex of zoonotic disease caused by protozoa of the genus Leishmania and is considered a major public health problem. Several essential oil chemical components have inhibitory effect against protozoa, including Leishmania donovani. Thus, the aim of this study was to evaluate for the first time the anti-Leishmania activity of two p-menthane monoterpene isomers (EPER-1: perillaldehyde 1,2-epoxide and EPER-2: perillaldehyde 8,9-epoxide) against L. donovani promastigotes as well as evaluating cytotoxic effect on mononuclear peripheral blood cells. Results of anti-Leishmania assay revealed that EPER-2 (IC 50  = 3.8 μg.mL -1 ) was 16-fold more potent than its isomer EPER-1 (IC 50  = 64.6 μg.mL -1 ). In contrast to PBMC cells, EPER-2 was not cytotoxic (IC 50  > 400 μg.mL -1 ) when compared to positive control. These data suggest that the disposition of epoxide group into the p-menthane skeleton affects the anti-Leishmania activity, being that the presence of the exocyclic epoxide group considerably increased potency. Thus, it was possible to observe that the location of the epoxide group into the p-menthane skeleton resulted in different potencies.

  20. Electrocatalytic aerobic epoxidation of alkenes: Experimental and DFT investigation

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Borisova, Nataliya E.; Dolganov, Alexander V.; Ustynyuk, Yuri A.

    2012-01-01

    A new method for electrocatalytic aerobic epoxidation of alkenes catalyzed by binuclear Cu(II) complexes with azomethine ligands based on 2,6-diformyl-4-tert-butylphenol is described. In acetonitrile–water (5%), at the potential of Cu II /Cu I redox couple (–0.8 V vs. Ag/AgCl/KCl) at room temperature the epoxide is obtained in an average yield of around 50%. Contrary to the majority of known epoxidations, no strong oxidants are involved and no free hydrogen peroxide is formed in the reaction, thus making it ecologically friendly. The DFT quantum-chemical modeling of the reaction mechanism revealed that a copper hydroperoxo-complex rather than hydrogen peroxide or a copper oxo-complex oxidizes alkene. The process is very selective since neither products of hydroxylation of benzene ring in styrene nor of allylic oxidation of cyclohexene were detected.

  1. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Tsai, Shih Chang

    2010-01-01

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  2. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats

    Science.gov (United States)

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W.; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-01-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention. PMID:27208083

  3. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  4. Resolution of limonene 1,2-epoxide diastereomers by mercury(II) ions

    NARCIS (Netherlands)

    Werf, M. van der; Jongejan, H.; Franssen, M.C.R.

    2001-01-01

    When HgCl2 was added to a diastereomeric mixture of cis- and trans-(4S)-limonene 1,2-epoxide, the Hg(II) ions stereoselectively complexed to the cis epoxide, enabling ring opening by water. The resulting mercuric salt could be demetalated by treatment with NaBH4, giving a mixture of diastereomeric

  5. A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water

    Directory of Open Access Journals (Sweden)

    Francesco P. Ballistreri

    2018-03-01

    Full Text Available A new chiral Mn–salen catalyst, functionalized with a long aliphatic chain and a choline group, able to act as surfactant catalyst for green epoxidation in water, is here described. This catalyst was employed with a commercial surfactant (CTABr leading to a nanoreactor for the enantioselective epoxidation of some selected alkenes in water, using NaClO as oxidant. This is the first example of a nanoreactor for enantioselective epoxidation of non-functionalized alkenes in water.

  6. Markedly Elevated Carbamazepine-10,11-epoxide/Carbamazepine Ratio in a Fatal Carbamazepine Ingestion

    Directory of Open Access Journals (Sweden)

    Jason L. Russell

    2015-01-01

    Full Text Available Carbamazepine is a widely used anticonvulsant. Its metabolite, carbamazepine-10,11-epoxide, has been found to display similar anticonvulsant and neurotoxic properties. While the ratio of parent to metabolite concentration varies significantly, at therapeutic doses the epoxide concentration is generally about 20% of the parent. We report a case of fatal carbamazepine overdose in which the epoxide metabolite concentration was found to be 450% higher than the parent compound, suggesting a potential role for metabolite quantification in severe toxicity.

  7. Hydroxyl-substituted ladder polyethers via selective tandem epoxidation/cyclization sequence.

    Science.gov (United States)

    Czabaniuk, Lara C; Jamison, Timothy F

    2015-02-20

    A new and highly selective method for the synthesis of hydroxyl-substituted tetrahydropyrans is described. This method utilizes titanium(IV) isopropoxide and diethyl tartrate to perform a diastereoselective epoxidation followed by in situ epoxide activation and highly selective endo-cyclization to form the desired tetrahydropyran ring. The HIJ ring fragment of the marine ladder polyether yessotoxin was synthesized using this two-stage tactic that proceeds with high efficiency and excellent regioselectivity.

  8. The fabrication of porous 4A-zeolite-supported Ag nanoparticles catalysts and its catalytic activity for styrene epoxidation

    Directory of Open Access Journals (Sweden)

    Youkui Wu

    Full Text Available Binderless hierarchically porous 4A-zeolite has been successful produced through hydrothermal crystallization, in which silicon-aluminum sol binded to the carbon nanofibers (CNFs, that is to say, where the CNFs powder was coated during the crystallization 4A-zeolite. The mixing of silica-alumina sol and CNFs was only a simple physical mixing process. The samples of micropores-macroporous hierarchical 4A-zeolite (P-4A-zeolite was analyzed by a series of characterization techniques, such as field emission scanning electron microscope (FESEM, transmission electron microscopy (TEM, simultaneous thermal analysis (STA and CO2 adsorption-desorption (BET and BJH, and so on. In addition, the adsorption test of silver nanoparticles was carried out. The characterization results indicated the presence of micropores and the formation of macroporous. At the same time, silver adsorption test proved that the prepared P-4A-zeolite had good adsorption performance and the catalytic performance of Ag/P-4A-zeolite was further investigated through the epoxidation of styrene. Keywords: Carbon nanofibers, Porous 4A-zeolite, Silver nanoparticles, Styrene epoxidation

  9. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  10. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Wu Jiajie

    2010-10-01

    Full Text Available Abstract Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice, the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar. To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model and Sorghum bicolor (sorghum. We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51, we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets

  11. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    Science.gov (United States)

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  12. Epoxidation of limonene over Ti MCM 41 and Ti BETA

    International Nuclear Information System (INIS)

    Cubillos Lobo, Jairo Antonio; Gonzalez Rodriguez, Lina Maria; Montes de Correa, Consuelo

    2002-01-01

    Ti MCM 41 were synthesized and evaluated in the epoxidation of limonene, using peroxide of hydrogen (H 2 O) as agent oxidizer. The characteristic hexagonal phase of Ti MCM 41 was obtained by heating the precursor gel during three days at 100 centigrade degrees. Further heating up to ten days leads to a decrease of this phase. The increase (Ti) in the synthesis gel also decreases that phase. The increase of Ti in the synthesis gel also decreases that phase UV VIS and FTIR spectroscopy indicates that Ti was incorporated in the lattice of Ti MCM 41 as well as, in Ti BETA. SEM micrographs of Ti MCM 41 show that the morphology changes with the Ti loading. Ti MCM 41 was most active than Ti BETA for limonene epoxidation even though both show high selectivity to epoxides

  13. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  14. Use of full recovery hydrolasing equipment for facility decommissioning - 16325

    International Nuclear Information System (INIS)

    Martin, Scott A.; Adams, Scott R.

    2009-01-01

    The removal of surface contamination is a major challenge for nearly all nuclear facilities undergoing, or awaiting, decommissioning. Conventional means of surface decontamination can expose workers to unnecessary hazards, and are often not fit-for-purpose due to size constraints or weight restrictions. Additionally, conventional methods are not always easily deployed remotely due to their complexity or required services. The use of ultra high pressure water for surface decontamination, known as hydrolasing, is recognized as a technology which can be used in various applications requiring surface removal. Hydrolasing is an advantageous technology for many reasons including its versatility, overall simplicity and relative ease of remote deployment. For the nuclear industry, one of the largest challenges with regards to the use of hydrolasing is the requirement for the full recovery of the injected water and removed solids. For nonnuclear applications, there is often no requirement for recovery of the liquid and solid waste, which has led to few system designs which will recover the waste in full. S.A. Robotics' experience with the deployment of ultra high pressure water systems for nuclear applications has shown that full recovery of injected water and removed solids is achievable in both underwater and in-air applications. Innovative equipment and system design have allowed S.A. Robotics' hydrolasing systems to achieve near 100% solid and liquid recovery during concrete hydrolasing. This technology has been deployed for Fluor Hanford at Hanford's K-Basins, as well as for UKAEA as part of the Windscale Piles decommissioning project. The purpose of this paper is to provide a short description of the hydrolasing process and the associated waste issues, describe the unique design features of S.A. Robotics' hydrolasing systems which combat these issues, and provide an overview of two of the hydrolasing projects that S.A. Robotics has completed. (authors)

  15. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  16. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    International Nuclear Information System (INIS)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin

    2011-01-01

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14–74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core–shell structures with CNTs at the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core–shell structures with CNTs at the center. Highlights: ► CNTs were functionalized by epoxide ring-opening polymerization. ► Polyether and epoxide group covalently attached to the sidewalls of CNTs. ► Functionalized CNTs have a polymer weight percentage of ca. 14–74 wt%. ► Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.

  17. Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com; Ghorbani, M.

    2016-04-15

    Highlights: • Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles were synthesized by using microemulsion system. • The nanoparticles have uniform size of about 25 nm and spherical morphologies. • The prepared nanoparticles act as reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}. - Abstract: Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles (Q = cetyltrimethylammonium cation) were synthesized in water-in-oil (w/o) microemulsion consisted of water/cetyltrimethylammonium bromide/n-butanol/isooctane. Reaction of Na{sub 2}WO{sub 4}, Na{sub 2}HPO{sub 4} and hydrochloric acid within water containing nanoreactors of reverse micelles resulted in the preparation of Q{sub 3}PW{sub 12}O{sub 40} nanoparticles. The resultant nanoparticles were analyzed by physicochemical methods such as FT-IR spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, thermogravimetric analyses (TGA-DTA), scanning and transmission electron microscopy and atomic force microscopy which show nearly uniform spherical nanoparticles with size of about 15 nm. Finally, catalytic activity of the Q{sub 3}PW{sub 12}O{sub 40} nanoparticles was examined in the epoxidation of olefins with H{sub 2}O{sub 2}. The prepared nanoparticles acted as recoverable and reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}.

  18. Microwave absorption properties of barium titanate/epoxide resin composites

    International Nuclear Information System (INIS)

    Chen Xiaodong; Wang Guiqin; Duan Yuping; Liu Shunhua

    2007-01-01

    Nano-barium titanate (BT) was prepared by a sol-gel method. The prepared powders were characterized by x-ray powder diffraction and transmission electron microscopy. The complex relative dielectric permittivity (ε = ε' - jε-prime) and magnetic permeability (μ = μ' - jμ-prime) of the BT powders were measured in the frequency range 8 ∼ 18 GHz. The BT/epoxide resin (EP) composite with different volume contents was investigated. The effects of thickness on the BT/EP composite were studied. It was found that an optimum thickness and contents of the absorber can yield the maximum reflection loss which could be obtained over a broad frequency region in the X and Ku bands. Our results indicate that BT could be a promising microwave absorption material

  19. Synthesis and Tribological Studies of Branched Alcohol Derived Epoxidized Biodiesel

    Directory of Open Access Journals (Sweden)

    Qinggong Ren

    2015-09-01

    Full Text Available The optimization and kinetics of the ring-opening reaction of an epoxidized biodiesel (epoxidized rapeseed oil methyl ester (EBD with 2-ethyl hexanol (2-EH were studied. The determined optimum conditions were 4:1 2-EH/oil molar ratio, 90 °C, 18 h, and 7 wt % of Amberlyst D001 (dry catalyst; the product’s oxirane oxygen content was 0.081% with 38.32 mm2/s viscosity at 40 °C. The catalyst retained its high catalytic power after recycling five times. Furthermore, the determined non-catalyzed activation energy was 76 kJ·mol−1 and 54 kJ·mol−1 with the D001 resin catalyst. The product’s chemical structure was investigated through FT-IR and 1H NMR. The viscosity, flash point, pour point, and anti-wear properties of the product were improved compared with those of epoxidized biodiesel.

  20. Derivatization of castor oil based estolide esters: Preparation of epoxides and cyclic carbonates

    Science.gov (United States)

    Estolides that are based on castor oil and oleic acid are versatile starting points for the production of industrial fluids with new properties. A variety of unsaturated estolides were derivatized by epoxidation with hydrogen peroxide. The epoxidized estolides were further modified using supercritic...

  1. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  2. General regularities of olefin epoxidation by hydroperoxide catalyzed by V, W and Ti compounds

    International Nuclear Information System (INIS)

    Sapunov, V.N.; Sharykin, V.G.; Logvinov, A.S.; Litvintsev, I.Yu.; Lebedev, N.N.

    1983-01-01

    The kinetic analysis of cyclohexane epoxidation by ethylbenzene hydroperoxide when catalyzed by titanium- and tungsten cyclohexandiolates has shown that the reaction follows the main regularities of hydroperoxide epoxidation previously established for catalysis by molybdenum- and vanadiUm compounds. The catalyst activity varies depending on the metal nature and forms the following series: Mo>V>W>Ti, which agrees with their π-acceptor capacity. During the cyclohexane epoxidation on all catalysts the hydroperoxide activities vary according to the following series: ethylbenzene hydroperoxide>cumene>tertiarybutyl>tertiaryamyl. Correlation relationships between the olefine structure, characterized by th constants, and the reactivity of olefines are foUnd. The reaction sensitivity during catalysis by WV, and Ti cyclohexandiolates is -1.2, -1.0- and -1.3, respectively. The mechanism of hydroperoxide epoxidation of olefine is discussed

  3. Modification of olefinic double bonds of unsaturated fatty acids and other vegetable oil derivatives via epoxidation: A review

    International Nuclear Information System (INIS)

    Noor Armylisas, A.H.; Siti Hazirah, M.F.; Yeong, S.K.; Hazimah, A.H.

    2017-01-01

    The highly strained ring in epoxides makes these compounds very versatile intermediates. Epoxidized vegetable oils are gaining a lot of attention as renewable and environmentally friendly feedstock with various industrial applications such as plasticizers, lubricant base oils, surfactants, etc. Numerous papers have been published on the development of the epoxidation methods and the number is still growing. This review reports the synthetic approaches and applications of epoxidized vegetable oils. [es

  4. Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.

    Science.gov (United States)

    Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W

    2017-10-15

    A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Strengths, Weaknesses, Opportunities and Threats: Computational Studies of Mn- and Fe-Catalyzed Epoxidations

    Directory of Open Access Journals (Sweden)

    Filipe Teixeira

    2016-12-01

    Full Text Available The importance of epoxides as synthetic intermediates in a number of highly added-value chemicals, as well as the search for novel and more sustainable chemical processes have brought considerable attention to the catalytic activity of manganese and iron complexes towards the epoxidation of alkenes using non-toxic terminal oxidants. Particular attention has been given to Mn(salen and Fe(porphyrin catalysts. While the former attain remarkable enantioselectivity towards the epoxidation of cis-alkenes, the latter also serve as an important model for the behavior of cytochrome P450, thus allowing the exploration of complex biological processes. In this review, a systematic survey of the bibliographical data for the theoretical studies on Mn- and Fe-catalyzed epoxidations is presented. The most interesting patterns and trends are reported and finally analyzed using an evaluation framework similar to the SWOT (Strengths, Weaknesses, Opportunities and Threats analysis performed in enterprise media, with the ultimate aim to provide an overview of current trends and areas for future exploration.

  6. Natural Optical Activity of Chiral Epoxides: the Influence of Structure and Environment on the Intrinsic Chiroptical Response

    Science.gov (United States)

    Lemler, Paul M.; Craft, Clayton L.; Vaccaro, Patrick

    2017-06-01

    Chiral epoxides built upon nominally rigid frameworks that incorporate aryl substituents have been shown to provide versatile backbones for asymmetric syntheses designed to generate novel pharmaceutical and catalytic agents. The ubiquity of these species has motivated the present studies of their intrinsic (solvent-free) circular birefringence (CB), the measurement of which serves as a benchmark for quantum-chemical predictions of non-resonant chiroptical behavior and as a beachhead for understanding the often-pronounced mediation of such properties by environmental perturbations (e.g., solvation). The optical rotatory dispersion (or wavelength-resolved CB) of (R)-styrene oxide (R-SO) and (S,S)-phenylpropylene oxide (S-PPO) have been interrogated under ambient solvated and isolated conditions, where the latter efforts exploited the ultrasensitive techniques of cavity ring-down polarimetry. Both of the targeted systems display marked solvation effects as evinced by changes the magnitude and (in the case of R-SO) the sign of the extracted specific optical rotation, with the anomalously large response evoked from S-PPO distinguishing it from other members of the epoxide family. Linear-response calculations of dispersive optical activity have been performed at both density-functional and coupled-cluster levels of theory to unravel the structural and electronic origins of experimental findings, thereby suggesting the possible involvement of hindered torsional motion along dihedral coordinates adjoining phenyl and epoxide moieties.

  7. Impact of Stereochemistry on Ligand Binding: X-ray Crystallographic Analysis of an Epoxide-Based HIV Protease Inhibitor.

    Science.gov (United States)

    Benedetti, Fabio; Berti, Federico; Campaner, Pietro; Fanfoni, Lidia; Demitri, Nicola; Olajuyigbe, Folasade M; De March, Matteo; Geremia, Silvano

    2014-09-11

    A new pseudopeptide epoxide inhibitor, designed for irreversible binding to HIV protease (HIV-PR), has been synthesized and characterized in solution and in the solid state. However, the crystal structure of the complex obtained by inhibitor-enzyme cocrystallization revealed that a minor isomer, with inverted configuration of the epoxide carbons, has been selected by HIV-PR during crystallization. The structural characterization of the well-ordered pseudopeptide, inserted in the catalytic channel with its epoxide group intact, provides deeper insights into inhibitor binding and HIV-PR stereoselectivity, which aids development of future epoxide-based HIV inhibitors.

  8. MOLEKULARNE INTERAKCIJE MYCOTOXINA SA JETRENIM ENZIMIMA KOJI SUDJELUJU U METABOLIZMU MEDIKAMENATA U GLODAVCA I DOMAĆIH ŽIVOTINJA

    OpenAIRE

    Galtier, Pierre; Meissonnier, Guylaine; Laffitte, Joëlle; P. Oswald, Isabelle; Loiseau, Nicolas

    2008-01-01

    Mycotoxins are well known for underging liver biotransformation in humans and animal species. Metabolites correspond to either oxydative derivatives such as hydroxymetabolites of aflatoxin B1 or ochratoxin A or hydrolytic derivatives in case of trichothecenes. In some cases, highly reactive epoxides represent the first step in the formation of carcinogenic intermediates like exo-epoxides of aflatoxins. Hepatic phase II enzymes including transferases and hydrolases are involved in the conjugat...

  9. Teaching Green Chemistry with Epoxidized Soybean Oil

    Science.gov (United States)

    Barcena, Homar; Tuachi, Abraham; Zhang, Yuanzhuo

    2017-01-01

    The synthesis of epoxidized soybean oil (ESO) provides students a vantage point on the application of green chemistry principles in a series of experiments. Qualitative tests review the reactions of alkenes, whereas spectroscopic analyses provide insight in monitoring functional group transformations.

  10. Titanium impregnated borosilicate zeolites for epoxidation catalysis

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan; Vitvarová, Dana; Lupínková, Lenka; Kubů, Martin; Čejka, Jiří

    2015-01-01

    Roč. 212, AUG 2015 (2015), s. 28-34 ISSN 1387-1811 R&D Projects: GA ČR GAP106/11/0819 Institutional support: RVO:61388955 Keywords : borosilicate * titanium impregnation * epoxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2015

  11. Kinetic investigation on enantioselective hydrolytic resolution of ...

    African Journals Online (AJOL)

    Kinetic investigation on enantioselective hydrolytic resolution of epichlorohydrin by crude epoxide hydrolase from domestic duck liver. X Ling, D Lu, J Wang, J Chen, L Ding, J Chen, H Chai, P Ouyang ...

  12. Defect Stabilized Gold Atoms on Graphene as Potential Catalysts for Ethylene Epoxidation: A First-principles Investigation

    KAUST Repository

    Liu, Xin

    2015-11-24

    We performed a first-principles based investigation on the potential role of Au atoms stabilized by defects on graphene in ethylene epoxidation. We showed that the interactions between the Au atoms and vacancies on graphene not only make the Au atomic diffusion a 2.10 eV endothermic process, but also tune the energy level of Au-d states for the activation of O2 and ethylene and promote the formation and dissociation of the peroxametallacycle intermediate. The catalytic cycle of ethylene epoxidation is initiated with the formation of a peroxametallacycle intermediate by the coadsorbed ethylene and O2, through the dissociation of which an ethylene epoxide molecule and an adsorbed O atom are formed. Then, gaseous ethylene reacts with the remnant O atom directly for the formation of another ethylene epoxide molecule. The desorption of ethylene epoxide is facilitated by the subsequent adsorption of O2 or ethylene and a new reaction cycle initiates. The calculated energy barriers for the formation and dissociation of the peroxametallacycle intermediate and the regeneration of Au sites are 0.30, 0.84 and 0.18 eV, respectively, and are significantly lower than those for aldehyde formation. These findings suggest the potential high catalytic performance of these Au atoms for ethylene epoxidation.

  13. Defect Stabilized Gold Atoms on Graphene as Potential Catalysts for Ethylene Epoxidation: A First-principles Investigation

    KAUST Repository

    Liu, Xin; Yang, Yang; Chu, Minmin; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    We performed a first-principles based investigation on the potential role of Au atoms stabilized by defects on graphene in ethylene epoxidation. We showed that the interactions between the Au atoms and vacancies on graphene not only make the Au atomic diffusion a 2.10 eV endothermic process, but also tune the energy level of Au-d states for the activation of O2 and ethylene and promote the formation and dissociation of the peroxametallacycle intermediate. The catalytic cycle of ethylene epoxidation is initiated with the formation of a peroxametallacycle intermediate by the coadsorbed ethylene and O2, through the dissociation of which an ethylene epoxide molecule and an adsorbed O atom are formed. Then, gaseous ethylene reacts with the remnant O atom directly for the formation of another ethylene epoxide molecule. The desorption of ethylene epoxide is facilitated by the subsequent adsorption of O2 or ethylene and a new reaction cycle initiates. The calculated energy barriers for the formation and dissociation of the peroxametallacycle intermediate and the regeneration of Au sites are 0.30, 0.84 and 0.18 eV, respectively, and are significantly lower than those for aldehyde formation. These findings suggest the potential high catalytic performance of these Au atoms for ethylene epoxidation.

  14. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton.

    Science.gov (United States)

    Minami, Atsushi; Oguri, Hiroki; Watanabe, Kenji; Oikawa, Hideaki

    2013-08-01

    Diversity of natural polycyclic polyethers originated from very simple yet versatile strategy consisting of epoxidation of linear polyene followed by epoxide opening cascade. To understand two-step enzymatic transformations at molecular basis, a flavin containing monooxygenase (EPX) Lsd18 and an epoxide hydrolase (EH) Lsd19 were selected as model enzymes for extensive investigation on substrate specificity, catalytic mechanism, cofactor requirement and crystal structure. This pioneering study on prototypical lasalocid EPX and EH provides insight into detailed mechanism of ionophore polyether assembly machinery and clarified remaining issues for polyether biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  16. Determination of the kinetics of ethene epoxidation

    NARCIS (Netherlands)

    Schouten, E.P.S.; Schouten, E.P.S.; Borman, P.C.; Borman, P.C.; Westerterp, K.R.

    1996-01-01

    Several problems and pitfalls in the use of laboratory reactors for the determination of the kinetics of ethene epoxidation over industrial silver on α-alumina catalyst are discussed. Also, commonly used methodologies for kinetic studies are dealt with because of the general nature of some problems.

  17. Solar Synthesis of Limonene Epoxide

    OpenAIRE

    Ciriminna, Rosaria; Parrino, Francesco; Pasquale, Claudio De; Palmisano, Leonardo; Pagliaro, Mario

    2017-01-01

    The silylation of crystalline titania P25, commonly used for photocatalytic degradation of pollutants, results in an exceptionally selective catalyst for the aerobic limonene epoxidation to 1,2-limonene oxide under solar light irradiation. The hypothesized mechanism involves the singlet oxygen generated through energy transfer from the excited TiO2 to adsorbed O2 molecules. The reaction product is the valued precursor of bio-based poly(limonene carbonate), a thermoplastic po...

  18. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  19. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Science.gov (United States)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  20. Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades

    Directory of Open Access Journals (Sweden)

    Timothy F. Jamison

    2010-03-01

    Full Text Available The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqualenoid natural products can be traced to these hypothesized cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of ladder polyethers and oxasqualenoid natural products.

  1. Preparation of Epoxidized Palm Olein as Renewable Material by Using Peroxy Acids

    International Nuclear Information System (INIS)

    Darfizzi Derawi; Jumat Salimon; Waled Abdo Ahmed

    2014-01-01

    Epoxidized palm olein (EPO o ) was prepared through generated in situ of performic acid (HCOOOH), and peracetic acid (CH 3 COOOH) as epoxidation agent with the presence of sulphuric acid (H 2 SO 4 ) 3 % v/ wt as catalyst. Formic acid (HCOOH) or acetic acid (CH 3 COOH) as oxygen carrier and hydrogen peroxide (H 2 O 2 ) as oxygen donor in the reaction system. Highly conversion (95.5 %) of oxirane ring was obtained by using performic acid as epoxidation agent at 150 minutes of reaction time. The reaction yield was 90 % by weight. EPO o has showed good physicochemical properties as renewable material for industrial applications. Carbon ( 13 C-NMR) and proton ( 1 H-NMR) spectra showed the present of epoxy profile at 54 ppm and 2.9 ppm. Epoxy group was detected on 844 cm -1 by fourier transformation infra-red (FTIR) spectra. (author)

  2. Synthesis and essay of an Ionomer like catalyst of olefins epoxidation

    International Nuclear Information System (INIS)

    Boyaca Mendivelso, Alejandro; Tempesti, Ezio

    1995-01-01

    The purpose of the present work is the preparation of an ionomer with base in Molybdenum and to evaluate its activity like catalyst of olefins epoxidation like alternative of synthesis of catalysts of the Hawk process. A polymer is synthesized with available functional groups to stabilize the metal starting from sodium molybdate; the characterization is made by atomic absorption, spectroscopy to GO, and X.P.S. The characterization indicates that indeed it is possible to stabilize the Mo in the main polymeric. The evaluation in reaction in liquid phase allows similar conversions to those of a homogeneous catalyst. The selective epoxidation of olefins for alkyl hydroperoxides, it has acquired great importance inside the industrial processes obtaining of propylene oxide due to the recent use of the terbutilic alcohol (co-produced together with the epoxide), as preservative in gasoline free of lead. In the environment of these processes, and in particular in the Hawk process possibilities of technological innovation, in the concerning to the heterogenization of conventional catalysts, at the moment used in homogeneous phase. The present work collaborate to some tentative that look for to generate alternative of preparation of catalysts for the process Hawk, synthesizing and testing the activity of an ionomer like epoxidation catalyst, which tries to reproduce the chemical structure of the complexes organ-metallic pear to suppress the separation stages and necessary recovery facilitating its recurrent reutilization with eventual economic repercussions in the industrial process. It is described the procedure of synthesis of the ionomer, the characterization and the evaluation of the activity in reaction under diverse conditions. Of the made characterization it comes off that the heterogenization of catalysts for olefins epoxidation, according to the Hawk process, is possible by means of the preparation of polymers modified appropriately. Likewise the evaluation in

  3. Pilot scale production, characterization, and optimization of epoxidized vegetable oil-based resins

    Science.gov (United States)

    Monono, Ewumbua Menyoli

    Novel epoxidized sucrose soyate (ESS) resins perform much better than other vegetable oil-based resins; thus, they are of current interest for commercial scale production and for a wide range of applications in coatings and polymeric materials. However, no work has been published that successfully scaled-up the reaction above a 1 kg batch size. To achieve this goal, canola oil was first epoxidized at a 300 g scale to study the epoxidation rate and thermal profile at different hydrogen peroxide (H2O2) addition rates, bath temperatures, and reaction times. At least 83% conversion of double bonds to oxirane was achieved by 2.5 h, and the reaction temperature was 8-15 °C higher than the water bath temperature within the first 30-40 min of epoxidation. A 38 L stainless steel kettle was modified as a reactor to produce 10 kg of ESS. Twenty 7-10 kg batches of ESS were produced with an overall 87.5% resin yield and > 98% conversion after batch three. The conversion and resin quality were consistent across the batches due to the modifications on the reaction that improved mixing and reaction temperature control within 55-65 oC. The total production time was reduced from 8 to 4 days due to the fabrication of a 40 L separatory funnel for both washing and filtration. A math model was developed to optimize the epoxidation process. This was done by using the Box-Behnken design to model the conversion at various acetic acid, H2O2, and Amberlite ratios and at various reaction temperatures and times. The model had an adjusted R2 of 97.6% and predicted R2 of 96.8%. The model showed that reagent amounts and time can be reduced by 18% without compromising the desired conversion value and quality.

  4. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    Directory of Open Access Journals (Sweden)

    Milchert Eugeniusz

    2016-09-01

    Full Text Available A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils.

  5. Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE.

    Science.gov (United States)

    Cibik, R; Chapot-Chartier, M P

    2000-11-01

    The autolysis of lactic acid bacteria plays a major role during cheese ripening. The aim of this study was to evaluate the autolytic properties and peptidoglycan hydrolase content of dairy leuconostocs. Autolysis of 59 strains of dairy Leuconostoc was examined under starvation conditions in potassium phosphate buffer. The ability of dairy leuconostocs to lyse is strain dependant and not related to the species. The peptidoglycan hydrolase profile of Leuc. mesenteroides subsp. mesenteroides 10L was analysed by renaturing gel electrophoresis. Two major activity bands migrating at 41 and 52 kDa were observed. According to the specificity analysis, strain 10L seems to contain a glycosidase and an N-acetyl-muramyl-L-alanine amidase, or an endopeptidase. The peptidoglycan hydrolase profiles of various Leuconostoc species were also compared. Several peptidoglycan hydrolase activities could be detected in the different Leuconostoc species. Further characterization of the peptidoglycan hydrolases will help to control autolysis of leuconostocs in cheese.

  6. Soybean epoxide production with in situ peracetic acid using homogeneous catalysis

    Directory of Open Access Journals (Sweden)

    Luis Alejandro Boyacá Mendivelso

    2010-01-01

    Full Text Available Using vegetable oils has become an excellent option for petrochemical product substitution. The epoxides obtained from such oils have wide applications as plastifiers and PVC stabilisers and as raw material in polyol synthesis for the polyurethane industry. This paper presents soybean oil epoxidation using a homogeneous catalyst in a well-mixed, stirred reactor being operated in iso- thermal conditions. The best result achieved was a 6.4% oxyrane oxygen content using hydrogen peroxide (25% molar excess, a- cetic acid (5% p/p and sulphuric acid (2% p/p concentrations at 80°C.

  7. Bakers yeast-mediated transformations of alpha-keto epoxides

    CSIR Research Space (South Africa)

    Meth-Cohn, O

    1994-06-07

    Full Text Available Alpha beta-Epoxy ketones on treatment with baker's yeast yield different types of products depending on their substitution. Small groups such as H or Me attached at the epoxy end protect that end from attack. Thus, 1-acyl epoxides with H, methyl...

  8. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    International Nuclear Information System (INIS)

    Garcia-Vidal, Jesus A.; Duran-Valle, Carlos J.; Ferrera-Escudero, Santiago

    2006-01-01

    Two activated carbons treated with mineral acids (HNO 3 and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min

  9. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vidal, Jesus A. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain); Duran-Valle, Carlos J. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain)]. E-mail: carlosdv@unex.es; Ferrera-Escudero, Santiago [Departamento de Quimica Inorganica y Quimica Tecnica, Universidad Nacional de Educacion a Distancia, C/Senda del Rey, 9, E-28040 Madrid (Spain)

    2006-06-30

    Two activated carbons treated with mineral acids (HNO{sub 3} and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min.

  10. Asymmetric aminolytic kinetic resolution of racemic epoxides using recyclable chiral polymeric Co(III)-salen complexes: a protocol for total utilization of racemic epoxide in the synthesis of (R)-Naftopidil and (S)-Propranolol.

    Science.gov (United States)

    Kumar, Manish; Kureshy, Rukhsana I; Shah, Arpan K; Das, Anjan; Khan, Noor-ul H; Abdi, Sayed H R; Bajaj, Hari C

    2013-09-20

    Chiral polymeric Co(III) salen complexes with chiral ((R)/(S)-BINOL, diethyl tartrate) and achiral (piperazine and trigol) linkers with varying stereogenic centers were synthesized for the first time and used as catalysts for aminolytic kinetic resolution (AKR) of a variety of terminal epoxides and glycidyl ethers to get enantio-pure epoxides (ee, 99%) and N-protected β-amino alcohols (ee, 99%) with quantitative yield in 16 h at RT under optimized reaction conditions. This protocol was also used for the synthesis of two enantiomerically pure drug molecules (R)-Naftopidil (α1-blocker) and (S)-Propranolol (β-blocker) as a key step via AKR of single racemic naphthylglycidyl ether with Boc-protected isoproylamine with 100% epoxide utilization at 1 g level. The catalyst 1 was successfully recycled for a number of times.

  11. Dinuclear ru-aqua complexes for selective epoxidation catalysis based on supramolecular substrate orientation effects

    KAUST Repository

    Di Giovanni, Carlo; Poater, Albert; Benet-Buchholz, Jordi; Cavallo, Luigi; Solà , Miquel; Llobet, Antoni A.

    2014-01-01

    Ru-aqua complex {[RuII(trpy)(H2O)] 2(μ-pyr-dc)}+ is a powerful epoxidation catalyst for a wide range of linear and cyclic alkenes. High turnover numbers (TNs), up to 17000, and turnover frequencies (TOF), up to 24120 h-1 (6.7 s -1), have been obtained using PhIO as oxidant. This species presents an outstanding stereospecificity for both cis and trans olefins towards the formation of their corresponding cis and trans epoxides. In addition, it shows different reactivity to cis and trans olefins due to a substrate orientation supramolecular effect transmitted by its ligand scaffold. This effect together with the impressive reaction rates are rationalized using electrochemical techniques and DFT calculations. A new Ru-aqua complex that behaves as a powerful epoxidation catalyst for a wide range of linear and cyclic alkenes is reported. High turnover numbers and frequencies are obtained by using PhIO as oxidant. The complex shows an outstanding stereospecificity for both cis and trans olefins towards the formation of their corresponding cis and trans epoxides (see figure). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dinuclear ru-aqua complexes for selective epoxidation catalysis based on supramolecular substrate orientation effects

    KAUST Repository

    Di Giovanni, Carlo

    2014-03-03

    Ru-aqua complex {[RuII(trpy)(H2O)] 2(μ-pyr-dc)}+ is a powerful epoxidation catalyst for a wide range of linear and cyclic alkenes. High turnover numbers (TNs), up to 17000, and turnover frequencies (TOF), up to 24120 h-1 (6.7 s -1), have been obtained using PhIO as oxidant. This species presents an outstanding stereospecificity for both cis and trans olefins towards the formation of their corresponding cis and trans epoxides. In addition, it shows different reactivity to cis and trans olefins due to a substrate orientation supramolecular effect transmitted by its ligand scaffold. This effect together with the impressive reaction rates are rationalized using electrochemical techniques and DFT calculations. A new Ru-aqua complex that behaves as a powerful epoxidation catalyst for a wide range of linear and cyclic alkenes is reported. High turnover numbers and frequencies are obtained by using PhIO as oxidant. The complex shows an outstanding stereospecificity for both cis and trans olefins towards the formation of their corresponding cis and trans epoxides (see figure). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Propene epoxidation over Au/Ti-SBA-15 catalysts

    NARCIS (Netherlands)

    Sacaliuc, E.; Beale, A.M.; Weckhuysen, B.M.; Nijhuis, T.A.

    2007-01-01

    Highly dispersed gold nanoparticles were synthesized within the channels of a mesoporous Ti-SBA-15 support, followed by thorough catalyst characterization and testing in the selective epoxidation of propene to propene oxide. For this purpose, two series of Ti-SBA-15 materials differing in their Ti

  14. Epoxidation of bulky organic molecules over pillared titanosilicates

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan; Eliášová, Pavla; Aldhayan, D.; Kubů, Martin

    2015-01-01

    Roč. 243, APR 2014 (2015), s. 134-140 ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Cyclooctene * Epoxidation * Layered TS-1 zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.312, year: 2015

  15. Epoxidation and oxidation reactions using 1,4-butanediol ...

    Indian Academy of Sciences (India)

    Unknown

    and aryl halides to hydroxy compounds through a .... Epoxidation of olefins using 1,4-BDDMA-crosslinked polystyrene supported t- butyl hydroperoxide. Reaction. Isolated. Olefina timeb (h). Productc yield (%). Cinnamic acid. 39 ... aCinnamic acid; bcyclohexene; csubstrate to resin 1 : 2; solvent, dioxan, temperature, 70°C.

  16. Highly selective sulfur ylide mediated asymmetric epoxidations and aziridinations using an inexpensive chiral sulfide and applications to the synthesis of quinine and quinidine (abstract)

    International Nuclear Information System (INIS)

    Arshad, M.; Illa, O.; Mcgarrigle, E.M.

    2011-01-01

    Asymmetric sulfur ylide mediated epoxidation, which is considered a complimentary method to asymmetric epoxidation of alkene has been utilized as a key step in the asymmetric total synthesis of complex cinchona alkaloids quinine and quinidine. Isothiocineole 1, which was readily available in one step from very inexpensive starting materials, is employed as a chiral sulfide to prepare the desired sulfonium salt 2. The semi-stabilised ylide derived from this salt on epoxidation with meroquinene aldehyde 3, afforded the required epoxide 4 in 81% yield and 89:11 diastereoselectivity (trans/cis). The epoxide was converted to the target quinine 5 in 73% yield over four steps in one pot. Similarly, the opposite enantiomer of isothiocineole was used to synthesise the corresponding sulfonium salt, which on reaction with meroquinene aldehyde gave epoxide in 73% yield and 84:16 diastereoselectivity (trans/cis). This epoxide was transformed to the target quinidine in 78% yield over four steps in one pot. The epoxidation reactions proceeded under reagent control with high trans selectivity. The effect of sulfide and ylide substituents on the stereochemical outcome of the epoxidation reaction is also prescribed. (author)

  17. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  18. The reactivity of linseed and soybean oil with different epoxidation degree towards vinyl acetate and impact of the resulting copolymer on the wood durability

    Directory of Open Access Journals (Sweden)

    M. Jebrane

    2017-05-01

    Full Text Available Linseed (LO and soybean oil (SO were in–situ epoxidized with peracetic acid to produce different degree of epoxidized LO and epoxidized SO. For comparison purpose, commercial epoxidized linseed oil (ELO® and epoxidized soybean oil (ESO® were also included in the study. The effect of epoxidation degree on the copolymerization reaction between epoxidized oils and vinyl acetate (VAc was investigated. Results showed that a copolymer can be formed between VAc and epoxidized LO with high epoxy content, while no reaction occurred between VAc and SO or its epoxidized derivatives. As the most reactive monomer among the studied oils, the epoxidized LO with highest epoxy content (i.e. ELO® was mixed with VAc and then impregnated into the wood using three different ELO®/VAc formulations either as solution or as emulsions. After curing, the impact of the resulting copolymer issued from the three tested formulations on the wood durability was evaluated. Results showed that the formulation comprising VAc, ELO®, H2O, K2S2O8 and alkaline emulsifier (Formulation 3 can significantly improve wood’s durability against white rot- (Trametes versicolor and brown rot fungi (Postia placenta and Coniophora puteana. Treated wood of 8% weight percentage gain (WPG was sufficient to ensure decay resistance against the test fungi with less than 5% mass loss.

  19. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  20. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  1. Synthesis of Dinaphtho-dioxaphosphocin-8-oxides, Epoxides and ...

    African Journals Online (AJOL)

    South African Journal of Chemistry ... Preparation of 8-substituted-16H-dinaphtho [2,1-d:1',2'-g] [1,3,2] dioxaphosphocin 8-oxides (5a–g) with an eight-membered phosphorus heterocyclic system (2) and their epoxides and bisphosphonates ... Some of these compounds are found to possess moderate antimicrobial activity.

  2. Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium radiobacter AD1 : A new tool for the kinetic resolution of epoxides

    NARCIS (Netherlands)

    Hasnaoui, Ghania; Lutje Spelberg, Jeffrey H.; de Vries, Erik; Tang, Lixia; Hauer, Bernhard; Janssen, Dick B.

    2005-01-01

    Halohydrin dehalogenase obtained from Agrobacterium radiobacter AD1, has been tested for the nitrite-mediated ring opening of epoxides. This reaction mainly leads to the formation of unstable hydroxynitrite ester intermediates, which can be further hydrolyzed to the corresponding diols. This

  3. Catalytic Efficiency of Titanium Dioxide (TiO2) and Zeolite ZSM-5 Catalysts in the in-situ Epoxidation of Palm Olein

    Science.gov (United States)

    Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.

    2018-05-01

    Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.

  4. Bonding two surfaces by exposing to actinic radiation an epoxide liquid composition

    International Nuclear Information System (INIS)

    Green, G.E.

    1981-01-01

    A method for preparing a film adhesive from an epoxide resin is described. A liquid containing an epoxide resin and a photopolymerizable compound is polymerized to form a solid continuous film by exposure to actinide radiation. A catalyst can be used but no thermal crosslinking should be allowed to occur. The film so obtained is used to bond surfaces together by the application of heat and pressure. The period of heating can be very short, as there need be no solvent to evaporate and the films need not be thick, typically 20 to 250 μm. (O.T.)

  5. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    Science.gov (United States)

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  6. Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 1/4 olefins by tert. -butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmann, J; Hoeft, E; Boeden, H F; Dilcher, H

    1979-09-01

    Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 14/ olefins by tert.-butyl hydroperoxide (TBHP) avoids large product losses to side reactions, associated with the use of homogeneous catalysts, such as Mo(CO)/sub 6/. With an unsupported MoO/sub 3/ catalyst, 48% TBHP conversion was achieved after one hour (vs. 24% after two hours for Mo(CO)/sub 6/) in 1-octene epoxidation at 90/sup 0/C and 2:1:3 octene/TBHP/toluene (solvent) molar ratio. The use of silica-supported catalysts, such as Bi/sub 9/PMo/sub 12/O/sub 52//30% SiO/sub 2/ (ACN, an industrial catalyst for acrylonitrile), MoO/sub 3//30% SiO/sub 2/ (D-1), 3MoO/sub 3/-Sb/sub 2/O/sub 5//50% SiO/sub 2/ (D-2), or 2MoO/sub 3/-As/sub 2/O/sub 3//50% SiO/sub 2/ (D-3) increased the conversion to 68, 67, 70, and 73%, respectively, with up to 95-99% selectivities for the epoxide. Under optimum conditions of 3:1 olefin/TBHP, 110/sup 0/C, and 2-4 g/l. catalyst, TBHP conversions in epoxidation of 1-tetradecene in a batch reactor over ACN, D-2, and D-3 after two hours were 94, 88, and 91%, respectively, but they decreased to 52, 78, and 79%, respectively, after five two-hour operating cycles. In epoxidation of 1-decene or a mixture of decene isomers (a model for the industrial olefin mixtures obtained by paraffin dehydrogenation via the Parex process) carried out in a continuous flow reactor over the D-3 catalyst at 90/sup 0/-110/sup 0/C, stable catalytic activities with TBHP conversions of approx. 90% and 90-96% selectivities for epoxides were observed for about 900 hr.

  7. Alternating copolymerization of epoxides with anhydrides initiated by organic bases

    Czech Academy of Sciences Publication Activity Database

    Hošťálek, Z.; Trhlíková, Olga; Walterová, Zuzana; Martinez, T.; Peruch, F.; Cramail, H.; Merna, J.

    2017-01-01

    Roč. 88, March (2017), s. 433-447 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : copolymerization * epoxides * anhydrides Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  8. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide.

    Science.gov (United States)

    Wu, Xiao; North, Michael

    2017-01-10

    A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    Directory of Open Access Journals (Sweden)

    Christina Hung Hung Ha

    2015-01-01

    Full Text Available Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol. These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases.

  10. Enzymatic epoxidation of biodiesel optimized by response surface ...

    African Journals Online (AJOL)

    During the enzymatic epoxidation of biodiesel, stearic acid was selected as oxygen carrier. Enzyme screening and the load of stearic acid were investigated. The effects of four main reaction conditions including reaction time, temperature, enzyme load, and mole ratio of H2O2/C=C-bonds on the epoxy oxygen group content ...

  11. New mechanistic insight in the gold-based propene epoxidation

    NARCIS (Netherlands)

    Parvulescu, E.

    2009-01-01

    Propene oxide is a very important intermediate for the synthesis of commercial products, including adhesives, paints, and cosmetics. The gas-phase epoxidation of propene over Au/Ti-based catalysts is an intriguing scientific topic, not only because of the industrial importance of the production of

  12. Epoxidation of cyclohexene by ethyl-benzene hydroperoxide in the presence of molybdenum catalyst

    International Nuclear Information System (INIS)

    Sapunov, V.N.; Litvintsev, I.Yu.; Margitfal'vi, J.; Lebedev, N.N.

    1977-01-01

    A study has been made of the kinetic experimental pattern and mechanism of epoxidation of cyclohexene by ethylbenzene hydroperoxide during catalysis by Mo(CO) 6 in various solvents. A first order of reaction with respect to the catalyst and complex order of reaction with respect to the hydroperoxide and olefine have been established. Simple (square and cross) inhibition by reaction products, cyclohexene oxide and methylphenylcarbinol, have been found. An increase in the dielectric constant of the solvent diminishes the epoxidation rate. The mechanism scheme of the process is proposed and main kinetic parameters calculated

  13. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    Science.gov (United States)

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  14. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  15. Isotope labelling study of CO oxidation-assisted epoxidation of propene. Implications for oxygen activation on Au catalysts.

    Science.gov (United States)

    Jiang, Jian; Oxford, Sean M; Fu, Baosong; Kung, Mayfair C; Kung, Harold H; Ma, Jiantai

    2010-06-07

    (18)O isotope labelling studies of the CO oxidation-assisted epoxidation of propene, catalyzed by a mixture of Au/TiO(2) and TS-1, using a methanol-H(2)O solvent showed the O in the epoxide was exclusively from O(2) and not H(2)O or methanol.

  16. FTIR and morphology of liquid epoxidized natural rubber acrylate (LENRA)/silica hybrid composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2009-01-01

    Synthesis of organic-inorganic hybrid composites was carried out by combination of liquid epoxidized natural rubber acrylate (LENRA) and silica. Silica was introduce to the matrix by sol gel technique. The sol-gel technique was employed to prepare silica using tetraethyorthosilicate (TEOS) as precursor. HDDA and irga cure 184 were added to the formulations as reactive diluents and photosensitizer, respectively. The chemical modification was studied by Fourier Transform Infrared (FTIR) and energy dispersive X-ray analysis (EDAX). The morphological studies were conducted by the optical and scanning electron microscopes (SEM). It shows that silica was dispersed very well in the matrix for lower concentration of TEOS while agglomeration occurs at the higher concentration. The average particles size of silica were less than 100 nm. (Author)

  17. In-Situ Generated Graphene as the Catalytic Site for Visible-Light Mediated Ethylene Epoxidation on AG Nanocatalysts

    Science.gov (United States)

    Zhang, Xueqiang Alex; Jain, Prashant

    2017-06-01

    Despite the harsh conditions for chemical conversion, ethylene oxide produced from ethylene epoxidation on Ag-based heterogeneous catalyst constitutes one of the largest volume chemicals in chemical industry. Recently, photocatalytic epoxidation of ethylene over plasmonic Ag nanoparticles enables the chemical conversion under significantly decreased temperature and ambient pressure conditions. Yet a detailed understanding of the photocatalytic process at the reactant/catalyst interface is under debate. Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that enables the localized detection of rare and/or transient chemical species with high sensitivity under in situ and ambient conditions. Using SERS, we are able to monitor at individual sites of an Ag nanocatalyst the visible-light-mediated adsorption and epoxidation of ethylene. From detected intermediates, we find that the primary step in the photoepoxidation is the transient formation of graphene catalyzed by the Ag surface. Density functional theory (DFT) simulations that model the observed SERS spectra suggest that the defective edge sites of the graphene formed on Ag constitute the active site for C2H4 adsorption and epoxidation. Further studies with pre-formed graphene/Ag catalyst composites confirm the indispensable role of graphene in visible-light-mediated ethylene epoxidation. Carbon is often thought to be either an innocent support or a poison for metallic catalysts; however our studies reveal a surprising role for crystalline carbon layers as potential co-catalysts.

  18. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  19. Efficient epoxidation over cyanocobalamine containing SBA-15 organic-inorganic nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Z. [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mahjoub, A.R., E-mail: mahjouba@modares.ac.ir [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2010-05-01

    SBA-15 mesoporous silica is synthesized using triblock copolymer P123 surfactant and chemically modified by aminopropyl, thiol, ammonium and sulfonic acid functional groups. Functionalization is performed via post synthesize method using 3-aminopropyltriethoxysilane (APTES) or 3-mercatopropyl trimethoxysilane (MPTMS) precursor. The as synthesized mesoporous systems are applied for immobilization of cyanocobalamine. Functionalization effectively improves sorption properties of the supports, while different functional groups exert different effects. The organic-inorganic mesoporous materials are characterized via X-ray diffraction (XRD), nitrogen adsorption and desorption, transmission electron microscopy (TEM), FT-IR and inductively coupled plasma-optical emission (ICP). The newly synthesized systems exhibit high catalytic activity for heterogeneous epoxidation of cyclooctene in presence of hydrogen peroxide. Reaction conditions are optimized, effect of functional groups on performance of the catalysts is taken into consideration and reusability of the designed heterogeneous systems is studied. Systems with chemically modified supports are shown to be more efficient and stable catalysts however; chemical nature of functional groups plays a crucial role.

  20. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    OpenAIRE

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence

    2014-01-01

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were inc...

  1. Microdroplets Accelerate Ring Opening of Epoxides

    Science.gov (United States)

    Lai, Yin-Hung; Sathyamoorthi, Shyam; Bain, Ryan M.; Zare, Richard N.

    2018-05-01

    The nucleophilic opening of an epoxide is a classic organic reaction that has widespread utility in both academic and industrial applications. We have studied the reaction of limonene oxide with morpholine to form 1-methyl-2-morpholino-4-(prop-1-en-2-yl) cyclohexan-1-ol in bulk solution and in electrosprayed microdroplets with a 1:1 v/ v water/methanol solvent system. We find that even after 90 min at room temperature, there is no product detected by nuclear magnetic resonance spectroscopy in bulk solution whereas in room-temperature microdroplets (2-3 μm in diameter), the yield is already 0.5% in a flight time of 1 ms as observed by mass spectrometry. This constitutes a rate acceleration of 105 in the microdroplet environment, if we assume that as much as 5% of product is formed in bulk after 90 min of reaction time. We examine how the reaction rate depends on droplet size, solvent composition, sheath gas pressure, and applied voltage. These factors profoundly influence the extent of reaction. This dramatic acceleration is not limited to just one system. We have also found that the nucleophilic opening of cis-stilbene oxide by morpholine is similarly accelerated. Such large acceleration factors in reaction rates suggest the use of microdroplets for ring opening of epoxides in other systems, which may have practical significance if such a procedure could be scaled. [Figure not available: see fulltext.

  2. Microdroplets Accelerate Ring Opening of Epoxides

    Science.gov (United States)

    Lai, Yin-Hung; Sathyamoorthi, Shyam; Bain, Ryan M.; Zare, Richard N.

    2018-03-01

    The nucleophilic opening of an epoxide is a classic organic reaction that has widespread utility in both academic and industrial applications. We have studied the reaction of limonene oxide with morpholine to form 1-methyl-2-morpholino-4-(prop-1-en-2-yl) cyclohexan-1-ol in bulk solution and in electrosprayed microdroplets with a 1:1 v/v water/methanol solvent system. We find that even after 90 min at room temperature, there is no product detected by nuclear magnetic resonance spectroscopy in bulk solution whereas in room-temperature microdroplets (2-3 μm in diameter), the yield is already 0.5% in a flight time of 1 ms as observed by mass spectrometry. This constitutes a rate acceleration of 105 in the microdroplet environment, if we assume that as much as 5% of product is formed in bulk after 90 min of reaction time. We examine how the reaction rate depends on droplet size, solvent composition, sheath gas pressure, and applied voltage. These factors profoundly influence the extent of reaction. This dramatic acceleration is not limited to just one system. We have also found that the nucleophilic opening of cis-stilbene oxide by morpholine is similarly accelerated. Such large acceleration factors in reaction rates suggest the use of microdroplets for ring opening of epoxides in other systems, which may have practical significance if such a procedure could be scaled. [Figure not available: see fulltext.

  3. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Crystallization of mouse S-adenosyl-l-homocysteine hydrolase

    International Nuclear Information System (INIS)

    Ishihara, Masaaki; Kusakabe, Yoshio; Ohsumichi, Tsuyoshi; Tanaka, Nobutada; Nakanishi, Masayuki; Kitade, Yukio; Nakamura, Kazuo T.

    2010-01-01

    Mouse S-adenosyl-l-homocysteine hydrolase has been crystallized in the presence of the reaction product adenosine. Diffraction data to 1.55 Å resolution were collected using synchrotron radiation. S-Adenosyl-l-homocysteine hydrolase (SAHH; EC 3.3.1.1) catalyzes the reversible hydrolysis of S-adenosyl-l-homocysteine to adenosine and l-homocysteine. For crystallographic investigations, mouse SAHH (MmSAHH) was overexpressed in bacterial cells and crystallized using the hanging-drop vapour-diffusion method in the presence of the reaction product adenosine. X-ray diffraction data to 1.55 Å resolution were collected from an orthorhombic crystal form belonging to space group I222 with unit-cell parameters a = 100.64, b = 104.44, c = 177.31 Å. Structural analysis by molecular replacement is in progress

  5. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    Science.gov (United States)

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  6. The apo structure of sucrose hydrolase from Xanthomonas campestris pv. campestris shows an open active-site groove

    DEFF Research Database (Denmark)

    Champion, Elise; Remaud-Simeon, Magali; Skov, Lars Kobberøe

    2009-01-01

    Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestris...... of GH-13. Comparisons with structures of the highly similar sucrose hydrolase from X. axonopodis pv. glycines most notably showed that residues Arg516 and Asp138, which form a salt bridge in the X. axonopodis sucrose complex and define part of the subsite -1 glucosyl-binding determinants...

  7. Highly efficient epoxidation of alkenes with m-chloroperbenzoic acid ...

    Indian Academy of Sciences (India)

    on a solid support such as polymer, zeolite and silica have recently been reported as innovation in the cat- alytic properties of such compounds.19 23 ..... the homogeneous phases, the Co(III) complex was used ..... solvent-extraction and catalase-like activity studies J. ... 15 as highly active catalysts for epoxidation of styrene.

  8. Hydrolase activity in Jerusalem artichoke and chicory

    Energy Technology Data Exchange (ETDEWEB)

    Klaushofer, H.; Abraham, B.; Leichtfried, G.

    1988-03-01

    Post-harvest storage of chicory and Jerusalem artichoke and overwintering of Jerusalem artichoke in the soil cause a more or less pronounced shortening of the fructan chain, depending on the variety. The proportion of fructose in the total fructan thus shifts towards glucose. This reduction on the fructose/glucose ratio is undesirable if the intention is to obtain a sweetener of high fructose content. In this work an attempt was made, via the quantity of fructose formed after a 4(3)-hour reaction of a tuber (root) extract with inulin, to assign a characteristic value to the depolymerization tendency of the material in question. However, since the plant extract not only contains enzymes (hydrolase A and B) that shorten the fructan chains but the activity of fructosyltransferase (SST, FFT) and enzymes of microbial origin (inulinase II, invertase) must also be considered, the concept of 'hydrolase activity' used by the authors is essentially an expression of 'total activity'. The activity unit (EU) is defined as the ability to split of 1 ..mu..mol of fructose from (chicory) inulin per minute under experimental conditions. Values of 0.25 to 0.77 EU/g dry solids were found in Jerusalem artichoke. Considerable differences may occur between varieties from the same cultivated area and the same harvest period. With one and the same variety, the activity appears to be subject to marked yearly fluctuations, so that at present, because of hydrolase activity, nothing certain can be said about the depolymerization tendency of a variety.

  9. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; DeVeaux, Linda C.

    2018-04-16

    Background Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Results Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were down-regulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Conclusions Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases was not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader

  10. A glutathione conjugate of hepoxilin A3: Formation and action in the rat central nervous system

    International Nuclear Information System (INIS)

    Pace-Asciak, C.R.; Laneuville, O.; Su, W.G.; Corey, E.J.; Gurevich, N.; Wu, P.; Carlen, P.L.

    1990-01-01

    Incubation of (8R)- and (8S)-[1-14C]hepoxilin A3 [where hepoxilin A3 is 8-hydroxy-11,12-epoxyeicosa-(5Z,9E,14Z)-trienoic acid] and glutathione with homogenates of rat brain hippocampus resulted in a product that was identified as the (8R) and (8S) diastereomers of 11-glutathionyl hepoxilin A3 by reversed-phase high performance liquid chromatographic comparison with the authentic standard made by total synthesis. Identity was further confirmed by cleavage of the isolated product with gamma-glutamyltranspeptidase to yield the corresponding cysteinylglycinyl conjugate that was identical by reversed-phase high performance liquid chromatographic analysis with the enzymic cleavage product derived from the synthetic glutathionyl conjugate. The glutathionyl and cysteinylglycinyl conjugate are referred to as hepoxilin A3-C and hepoxilin A3-D, respectively, by analogy with the established leukotriene nomenclature. Formation of hepoxilin A3-C was greatly enhanced with a concomitant decrease in formation of the epoxide hydrolase product, trioxilin A3, when the epoxide hydrolase inhibitor trichloropropene oxide was added to the incubation mixture demonstrating the presence of a dual metabolic pathway in this tissue involving hepoxilin epoxide hydrolase and glutathione S-transferase processes. Hepoxilin A3-C was tested using intracellular electrophysiological techniques on hippocampal CA1 neurons and found to be active at concentrations as low as 16 nM in causing membrane hyperpolarization, enhanced amplitude and duration of the post-spike train afterhyperpolarization, a marked increase in the inhibitory postsynaptic potential, and a decrease in the spike threshold. These findings suggest that these products in the hepoxilin pathway of arachidonic acid metabolism formed by the rat brain may function as neuromodulators

  11. Epoxidized Vegetable Oils Plasticized Poly(lactic acid Biocomposites: Mechanical, Thermal and Morphology Properties

    Directory of Open Access Journals (Sweden)

    Buong Woei Chieng

    2014-10-01

    Full Text Available Plasticized poly(lactic acid PLA with epoxidized vegetable oils (EVO were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO and mixture of epoxidized palm oil and soybean oil (EPSO, respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.

  12. A remote but significant sequence homology between glycoside hydrolase clan GH-H and glycoside hydrolase family GH 31

    DEFF Research Database (Denmark)

    Janecek, S.; Svensson, Birte; MacGregor, E.A.

    2007-01-01

    Although both the α-amylase super-family, i.e. the glycoside hydrolase (GH) clan GH-H (the GH families 13, 70 and 77), and family GH31 share some characteristics, their different catalytic machinery prevents classification of GH31 in clan GH-H. A significant but remote evolutionary relatedness is...

  13. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    CHRONISTER, G.B.

    2005-01-01

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  14. Salphen-Co(III) complexes catalyzed copolymerization of epoxides with CO2

    Czech Academy of Sciences Publication Activity Database

    Hošťálek, Z.; Mundil, R.; Císařová, I.; Trhlíková, Olga; Grau, E.; Peruch, F.; Cramail, H.; Merna, J.

    2015-01-01

    Roč. 63, 20 April (2015), s. 52-61 ISSN 0032-3861 Institutional support: RVO:61389013 Keywords : cobalt salphen catalyst * CO2 epoxide copolymerization * MALDI-TOF Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.586, year: 2015

  15. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann

    2014-01-01

    of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α...... investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases....

  16. Genome Sequence of Bacillus pumilus S-1, an Efficient Isoeugenol-Utilizing Producer for Natural Vanillin

    Science.gov (United States)

    Su, Fei; Hua, Dongliang; Zhang, Zhaobin; Wang, Xiaoyu; Tang, Hongzhi; Tao, Fei; Tai, Cui; Wu, Qiulin; Wu, Geng; Xu, Ping

    2011-01-01

    Bacillus pumilus S-1 is an efficient isoeugenol-utilizing producer of natural vanillin. The genome of B. pumilus S-1 contains the epoxide hydrolase and six candidate monooxygenases that make it possible to explore the mechanism involved in conversion of isoenguenol to vanillin in the B. pumilus strain. PMID:22038964

  17. Combination of natural fiber Boehmeria nivea (ramie) with matrix epoxide for bullet proof vest body armor

    Energy Technology Data Exchange (ETDEWEB)

    Anggoro, Didi Dwi, E-mail: anggorophd@gmail.com; Kristiana, Nunung, E-mail: nuna.c631@gmail.com [Master of Chemical Engineering, Faculty of Engineering, Diponegoro University Jln. Prof. Sudharto, Tembalang, Semarang, 50239 (Indonesia)

    2015-12-29

    Ballistic protection equipment, such as a bulletproof vest, is a soldier’s most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user’s chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg)

  18. Combination of natural fiber Boehmeria nivea (ramie) with matrix epoxide for bullet proof vest body armor

    International Nuclear Information System (INIS)

    Anggoro, Didi Dwi; Kristiana, Nunung

    2015-01-01

    Ballistic protection equipment, such as a bulletproof vest, is a soldier’s most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user’s chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg)

  19. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Science.gov (United States)

    Su, Xiaoyun; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  20. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Su

    Full Text Available The glycoside hydrolases (GH of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  1. Preparation, crystallization and preliminary X-ray crystallographic studies of diadenosine tetraphosphate hydrolase from Shigella flexneri 2a

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenxin; Wang, Qihai; Bi, Ruchang, E-mail: rcbi@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2005-12-01

    The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Diadenosine tetraphosphate (Ap{sub 4}A) hydrolase (EC 3.6.1.41) hydrolyzes Ap{sub 4}A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap{sub 4}A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap{sub 4}A hydrolase crystals diffract X-rays to 3.26 Å and belong to space group P2{sub 1}, with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 Å, β = 95.7°.

  2. Persistence and changes in bioavailability of dieldrin, DDE and heptachlor epoxide in earthworms over 45 years

    Science.gov (United States)

    Beyer, W. Nelson; Gale, Robert W.

    2013-01-01

    The finding of dieldrin (88 ng/g), DDE (52 ng/g), and heptachlor epoxide (19 ng/g) in earthworms from experimental plots after a single moderate application (9 kg/ha) 45 years earlier attests to the remarkable persistence of these compounds in soil and their continued uptake by soil organisms. Half-lives (with 95 % confidence intervals) in earthworms, estimated from exponential decay equations, were as follows: dieldrin 4.9 (4.3-5.7) years, DDE 5.3 (4.7-6.1) years, and heptachlor epoxide 4.3 (3.8-4.9) years. These half-lives were not significantly different from those estimated after 20 years. Concentration factors (dry weight earthworm tissue/dry weight soil) were initially high and decreased mainly during the first 11 years after application. By the end of the study, average concentration factors were 1.5 (dieldrin), 4.0 (DDE), and 1.8 (heptachlor epoxide), respectively.

  3. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour.

    Science.gov (United States)

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-10-31

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  4. Effect of Organo-Modified Nanoclay on the Thermal and Bulk Structural Properties of Poly(3-hydroxybutyrate-Epoxidized Natural Rubber Blends: Formation of Multi-Components Biobased Nanohybrids

    Directory of Open Access Journals (Sweden)

    Ali Salehabadi

    2014-06-01

    Full Text Available Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT and immiscible biopolymer blends of poly(3-hydroxybutyrate (PHB and epoxidized natural rubber (ENR-50 were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM and Scanning Electron Microscopy (SEM. Differential scanning calorimetry (DSC technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature (Tm and enthalpy of melting (ΔHm of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.

  5. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    Science.gov (United States)

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  6. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    Science.gov (United States)

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  7. Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes

    Czech Academy of Sciences Publication Activity Database

    Ghosh, R.; Rössner ml., Pavel; Hoňková, Kateřina; Dostál, Miroslav; Šrám, Radim; Hertz-Picciotto, I.

    2016-01-01

    Roč. 87, feb. (2016), s. 94-100 ISSN 0160-4120 R&D Projects: GA MŽP(CZ) SP/1B3/50/07 Institutional support: RVO:68378041 Keywords : obstructive pulmonary-disease * microsomal epoxide hydrolase * oxidative stress * damage Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 7.088, year: 2016

  8. Optimization of the In Situ Epoxidation of Linoleic Acid of Jatropha Curcas Oil With Performic Acid

    International Nuclear Information System (INIS)

    Hong, L.K.; Rahimi Mohd Yusop; Nadia Salih; Jumat Salimon

    2015-01-01

    The aim of this study is to optimise the epoxidation of linoleic acid of Jatropha curcas oil. This experiment was carried out with performic acid generated in situ by using hydrogen peroxide and formic acid. The method was evaluated on different parameters such as reaction temperature, mole ratios of formic acid to ethylenic unsaturation and hydrogen peroxide to ethylenic unsaturation. The optimum relative conversion into oxirane (80.4 %) and conversion of iodine (94.7 %) was achieved with ∼70 % yield at the condition of 45 degree Celsius reaction temperature, formic acid to ethylenic unsaturation mole ratio of 2.0, hydrogen peroxide to ethylenic unsaturation mole ratio of 12.0 for 2 hours of reaction time. The epoxidized linoleic acid was characterized by using Fourier transform infrared (FTIR) spectroscopy and NMR analysis. The result was also found that the formations of an epoxide and oxirane ring cleavage were both occurred at the same time if low amount of hydrogen peroxide was used. (author)

  9. Metal-Free Alternating Copolymerization of CO2with Epoxides: Fulfilling “Green” Synthesis and Activity

    KAUST Repository

    Zhang, Dongyue

    2016-08-16

    Polycarbonates were successfully synthesized for the first time through the anionic copolymerization of epoxides with CO2, under metal-free conditions. Using an approach based on the activation of epoxides by Lewis acids and of CO, by appropriate cations, well-defined alternating copolymers made of CO, and propylene oxide (PO) or cyclohexene oxide (CHO) were indeed obtained. Triethyl borane was the Lewis acid chosen to activate the epoxides, and onium halides or onium alkoxides involving either ammonium, phosphonium, or phosphazenium cations were selected to initiate the copolymerization. In the case of PO, the carbonate content of the poly(propylene carbonate) formed was in the range of 92-99% and turnover numbers (TON) were close to 500; in the case of CHO perfectly alternating poly(cyclohexene carbonate) were obtained and TON values were close to 4000. The advantages of such a copolymerization system are manifold: (i) no need for multistep catalyst/ligand synthesis as in previous works; (ii) no transition metal involved in the copolymer synthesis and therefore no coloration of the samples isolated; and (iii) no necessity for postsynthesis purification.

  10. Selective Propene Epoxidation on Immobilized Au6-10 Clusters: The Effect of Hydrogen and Water on Activity and Selectivity

    DEFF Research Database (Denmark)

    Lee, Sungsik; Molina, Luis M.; López, María J.

    2009-01-01

    Epoxidation made easy: Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations ...

  11. Crack resistance increasing in epoxide-rubber coatings of NPP room floors

    International Nuclear Information System (INIS)

    Khorenzhenko, V.I.

    1986-01-01

    Problems of crack resistance increasing in epoxide-rubber coatings for the floors are considered. Exploitation experience of the floors in the special rooms of NPP is given. Perspectivity of application of the compositions described as the building materials for nuclear power stations is pointed out

  12. Effects of experimental variables on the degree of epoxidation of ...

    African Journals Online (AJOL)

    Results show that the acid treatment of the bentonite clay improved its support characteristics by achieving some increase in surface area and optimum treatment condition was found to be 10g bentonite clay treated with 30cm3 sulphuric acid for 6 hours. It was found that higher epoxidation was achieved with treated ...

  13. The use of neutron scattering to determine the functional structure of glycoside hydrolase.

    Science.gov (United States)

    Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko

    2016-10-01

    Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthesis, characterization and catalytic property of CuO and Ag/CuO nanoparticles for the epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Lashanizadegan, Maryam; Erfaninia, Nasrin [Alzahra University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    CuO nanorodes, CuO nanoplates and Ag/CuO nanoparticles were synthesized in the presence of polyethylene glycol by depositional in alkaline environment. Oxide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared absorption spectra (FT-IR). CuO and Ag/CuO nanoparticles show high catalytic activity for the selective epoxidation of styrene to styrene oxide by TBHP. Under the optimized reaction condition, the oxidation of styrene catalyzed by CuO nanorods gave 100% conversion with 60 and 35% styrene oxide and benzaldehyde, respectively. Ag/CuO gave 99% conversion and styrene oxide (71%) and benzaldehyde (12%) being the major product.

  15. Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide

    NARCIS (Netherlands)

    Wang, Y.M.; Magusin, P.C.M.M.; Santen, van R.A.; Abbenhuis, H.C.L.

    2007-01-01

    Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide were synthesized through the acid-catalyzed hydrolysis and co-condensation of organotrialkoxysilane monomers and a,¿-bis(trialkoxysilyl) alkane cross-linkers in ethanol–water solution, with

  16. Comparative Study of Chemical, Mechanical, Thermal, and Barrier Properties of Poly(Lactic Acid Plasticized with Epoxidized Soybean Oil and Epoxidized Palm Oil

    Directory of Open Access Journals (Sweden)

    Yee Bond Tee

    2015-12-01

    Full Text Available To investigate epoxidized palm oil’s (EPO potential as plasticizer for poly(lactic acid (PLA, its plasticizing effect was compared with commercialized epoxidized soybean oil (ESO. The plasticizers were respectively melt-compounded into PLA at 3, 5, 10, and 15 wt.%. As it was aimed for the blends to be characterized towards packaging appropriate for food products, they were hot-pressed into ~0.3-mm sheets, which is the approximate thickness of clamshell packaging. Fourier transform infrared spectroscopy (FTIR confirmed the plasticizers’ compatibility with PLA. At similar loadings, EPO was superior in reinforcing elongation at break (EAB, thermal, and barrier properties of PLA. The ductility of PLA was notably improved to 50.0% with addition of 3 wt.% of EPO. From thermogravimetric analysis (TGA, PLA/EPO5 improved PLA’s thermal stability, while all PLA/ESO blends reported reduced thermal stability. From differential scanning calorimetry (DSC, the increase in crystallinity and the shifts in enthalpy of fusions in all plasticized blends denoted facilitation of PLA to form thermally stable α-form crystals. The addition of EPO enabled PLA to become highly impermeable to oxygen, which can extend its potential in packaging extensive range of oxygen sensitive food.

  17. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance.

    Science.gov (United States)

    Tripathi, Prabhanshu; Shine, Emilee E; Healy, Alan R; Kim, Chung Sub; Herzon, Seth B; Bruner, Steven D; Crawford, Jason M

    2017-12-13

    Certain commensal Escherichia coli contain the clb biosynthetic gene cluster that codes for small molecule prodrugs known as precolibactins. Precolibactins are converted to colibactins by N-deacylation; the latter are postulated to be genotoxic and to contribute to colorectal cancer formation. Though advances toward elucidating (pre)colibactin biosynthesis have been made, the functions and mechanisms of several clb gene products remain poorly understood. Here we report the 2.1 Å X-ray structure and molecular function of ClbS, a gene product that confers resistance to colibactin toxicity in host bacteria and which has been shown to be important for bacterial viability. The structure harbors a potential colibactin binding site and shares similarity to known hydrolases. In vitro studies using a synthetic colibactin analog and ClbS or an active site residue mutant reveal cyclopropane hydrolase activity that converts the electrophilic cyclopropane of the colibactins into an innocuous hydrolysis product. As the cyclopropane has been shown to be essential for genotoxic effects in vitro, this ClbS-catalyzed ring-opening provides a means for the bacteria to circumvent self-induced genotoxicity. Our study provides a molecular-level view of the first reported cyclopropane hydrolase and support for a specific mechanistic role of this enzyme in colibactin resistance.

  18. Species difference in metabolism of inhaled butadiene

    International Nuclear Information System (INIS)

    Sabourin, P.J.; Dahl, A.R.; Bechtold, W.E.; Henderson, R.F.; Burka, L.T.

    1991-01-01

    Chronic exposure of B6C3F 1 mice and Sprague-Dawley rats to butadiene (BD) produced a very high incidence of cancer in mice while the incidence in rats was much lower with different tissues affected. Studies at this institute indicate that for equivalent exposures, the blood BD epoxide concentrations in mice are 5-fold higher than in rats and > 10-fold higher than in Cynomolgus monkeys. In this study, the profiles of urinary metabolites of butadiene were determined in Cynomolgus monkeys, F344/N rats, Sprague Dawley rats, B6C3F 1 mice and Syrian hamsters, species containing widely divergent hepatic epoxide hydrolase (EH) activities. Animals were exposed for 2 hr to 8,000 ppm [ 14 C]BD and 24-hr urine samples were analyzed for metabolites. Two major urinary metabolites were identified, N-acetyl-S-(-1(or 2)-3-butene-2(or 1)-ol)cysteine (1) and N-acetyl-S-(-4-butane-1,2-diol)cysteine (2). Monkeys exposed by inhalation produced primarily metabolite 2, while rodent species produced 1-4 times as much of 1 compared to 2. The ratio of 2/1 formation was related to the hepatic epoxide hydrolase activity in different species. The high 2/1 ratio in monkeys was consistent with the lower blood epoxide levels in this species. If BD metabolism by humans is similar to that in the monkey, exposure of humans to BD may result in lower tissue concentrations of reactive metabolites than an equivalent exposure of rodents. This has important implications for assessing the risk to humans of BD exposure based on rodent studies

  19. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    Directory of Open Access Journals (Sweden)

    Javed Alam

    2014-10-01

    Full Text Available A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA was first plasticized by epoxidized linseed oil (ELO in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %, with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC, tensile test, and thermo gravimetric analysis (TGA. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME in the resulting nanocomposite was investigated by a fold-deploy “U”-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  20. Stabilizing effect of epoxidized sunflower oil as a secondary stabilizer for Ca/Hg stabilized PVC

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available Unsaturated triglyceride oil sunflower was epoxidized and characterized by chemical and spectroscopic methods. Epoxidized sunflower oil (ESO was used as an organic thermal co-stabilizer for rigid poly(vinyl chloride (PVC in the presence of tricalcium dicitrate (Ca3(C6H5O72 and mercury (II acetate (Hg(CH3COO2. The thermo-oxidative degradation of PVC was studied in the presence of these ternary stabilizer systems at 170, 180, 190 and 200°C in N2 atmosphere. The effects of metal carboxylate combination Ca/Hg in the absence and in the presence of epoxidized sunflower oil on static heat treatment of PVC have been studied. The formation of polyene sequences was investigated by UV-visible and FT-IR spectroscopy and by comparing viscosity data obtained in the presence and in the absence of the additives. It was found that the additives retard the rate of degradation and reduce the extent of polymer chain scission associated with the thermal degradation of poly(vinyl chloride. Synergistic effects were found when stabilizer was blended in 50:50 weight ratios with either. It was found that ESO exerted a stabilizing effect on the degradation of PVC. The activation energy for degraded PVC in absence of stabilizers was 38.6 kJ•mol–1 and in the presence of Ca/Hg and Ca/Hg/ESO were 53.3 and 64.7 kJ•mol–1 respectively. In order of compare the efficiency of the epoxidized sunflower oil with these metal soap stabilizers, thermal stabilities were evaluated on the basis of evolved hydrogen chloride determined by conductometry technique and degree of discoloration are discussed.

  1. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    International Nuclear Information System (INIS)

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  2. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  3. Rapid epoxidation of palm acid oil with lipase action under microwave irradiation

    International Nuclear Information System (INIS)

    Saifuddin, N.; Wei Zhan Lee; Koh, X.N.; Ramesh, S.; Abdullah, S.F.

    2010-01-01

    In view of growing environmental concerns and tightened regulations over contaminants and pollution in the environment in recent years, calls for biodegradable and nontoxic vegetable oil-based lubricants are abound. They have very low volatility due to the higher molecular weight of the triacylglycerol molecule and a narrow range of viscosity changes with temperature. Polar ester groups in the molecule are able to adhere to metal surfaces, and therefore, possess good boundary lubrication properties. In addition, vegetable oils have high solubilising power for polar contaminants and additive molecules. However, vegetable oils show poor oxidative and thermal stability primarily due to the presence of unsaturation. The presence of ester functionality also renders these oils susceptible to hydrolytic breakdown. The proposed modification of the vegetable oils is an important manner to obtain potentially useful products using a renewable feedstock. In designing a green process to effectively carry out the epoxidation reaction, we report herein, an inexpensive, practical, safe and environmentally friendly method to epoxidize palm acid oil under extremely mild conditions. This work highlights the increased reaction rate of the epoxidation process when microwave irradiation is introduced. The starting material used is Palm Acid Oil, a by-product of the alkali refining process of palm oil. Acid oil can serve as an inexpensive raw materials and are very good substitute for neat vegetable oil such as palm oil for the production of bio lubricant. It is high in Free Fatty Acids (FFA) and is the ideal material for the epoxidation process due to the importance of FFAs in producing peroxy-acids as an oxygen carrier. The double bonds the triglycerides are reacted with a per acid, generated for safety reasons in situ using hydrogen peroxide. Novozym 435 acts as the catalyst in the process and with its good selectivity, the occurrence of by-products is controlled. The method and

  4. Epoxidation of Alkenes with Aqueous Hydrogen Peroxide and Quaternary Ammonium Bicarbonate Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kegnæs, Søren

    2013-01-01

    A range of solid and liquid catalysts containing bicarbonate anions were synthesised and tested for the epoxidation of alkenes with aqueous hydrogen peroxide. The combination of bicarbonate anions and quaternary ammonium cations opens up for new catalytic systems that can help to overcome...

  5. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    International Nuclear Information System (INIS)

    Cho, Donghwan; Cheon, Jinsil

    2013-01-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm -1 . The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network

  6. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Donghwan; Cheon, Jinsil [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2013-07-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm{sup -1}. The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network.

  7. Characterization Study of EPDM Rubber Vulcanized by Gamma Radiation in The Presence of Epoxidized Soybean Oil

    International Nuclear Information System (INIS)

    Radi, H.; Mousaa, I.M.

    2015-01-01

    Composites based on ethylene-propylene-diene rubber (EPDM) were prepared. EPDM loaded with 40 phr fumed silica in the presence of different concentrations of epoxidized soybean oil ranging between 4 and 8 phr. The composites were subjected to various gamma irradiation doses up to 200 kGy. The physical, mechanical and thermal properties of rubber composition as a function of irradiation dose were investigated. Gamma irradiation led to a significant improvement in the properties of the all compositions. Besides, an improvement in the mechanical properties was attained with the addition of 4 phr of epoxidized soybean oil.

  8. Identification and characterization of some Aspergillus pectinolytic glycoside hydrolases

    NARCIS (Netherlands)

    Zandleven, J.S.

    2006-01-01

    Keywords: Aspergillusniger , Arabidopsis thaliana , homogalacturonan, rhamnogalacturonan, xylogalacturonan, xylogalacturonan hydrolase, exo-polygalacturonasePectinases are used for many food

  9. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.

  10. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  11. UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan; Čejka, Jiří

    2016-01-01

    Roč. 277, č. 1 (2016), s. 2-8 ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : titanosilicate UTL * top-down synthesis * epoxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.636, year: 2016

  12. Effective immobilization of Candida antarctica lipase B in organic-modified clays: Application for the epoxidation of terpenes

    International Nuclear Information System (INIS)

    Tzialla, Aikaterini A.; Kalogeris, Emmanuel; Enotiadis, Apostolos; Taha, Ali A.; Gournis, Dimitrios; Stamatis, Haralambos

    2009-01-01

    The use of three smectite nanoclays (Laponite, SWy-2 and Kunipia) organic-modified with octadecyl-trimethyl-ammonium surfactant, as suitable host matrices for the immobilization of lipase B from Candida antarctica (CaLB) was demonstrated. The resulting hybrid biocatalysts were characterized by a combination of powder X-ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and infrared spectroscopy. The experimental results confirmed the remarkable binding capacity of the three organoclays for CaLB. Activity and operational stability of immobilized CaLB were determined for the chemo-enzymatic epoxidation of terpenes (α-pinene and d-limonene) in organic media using various oxidizing agents. The immobilized enzyme retains a significant part of its activity after repeated use under drastic reaction conditions originating from the use of oxidants.

  13. Epoxidation of polybutadiene rubber in non polar solvent

    International Nuclear Information System (INIS)

    Schneider, Luciane K. de A.; Jacobi, Marly A.M.

    2005-01-01

    The epoxidation of polybutadiene rubber in cyclohexane, at 50 deg C, by the method of performic acid generated in situ, at different reagent concentration was investigated. The epoxy degree was determined by 1 H-RMN, and because of the gelation and coagulation of modified rubber during the reaction, only a maximum of 30 mol % of epoxy degree could be achieved. The reaction followed a first order kinetic in relation to hydrogen peroxide and acid concentration showing a rate constant of 4,0 (± 0,5) x 10 -5 L.mol-1.seg -1 . (author)

  14. Performance of magnetorheological elastomer based green epoxidized natural rubber/sucrose acetate isobutyrate hybrid matrix

    Science.gov (United States)

    Khairi, Muntaz Hana Ahmad; Amri Mazlan, Saiful; Aziz, Siti Aishah Abdul; Ubaidillah; Tan Shilan, Salihah

    2018-04-01

    This study introduces a sucrose acetate isobutyrate (SAIB) as a novel additive of magnetorheological elastomers (MREs). The MREs utilized an epoxidized natural rubber (ENR) as the matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt%. The viscosity of the compound was observed using a viscometer. Meanwhile, the microstructures were observed by using field emission scanning electron microscope (FESEM). Rheological properties regarding shear storage modulus were measured by using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the MREs-based ENR/SAIB had a decrement in their viscosity by 40% reduction. Moreover, the magnetorheological (MR) effect increased by 23% as the increment of magnetic fields. The morphological photograph showed that the CIPs embedded well within the matrix. The fabricated MREs samples were strain dependent, where all MREs samples exhibit the deteriorating trend when increasing the strain amplitude.

  15. Metal–organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    M. Hassan eBeyzavi

    2015-01-01

    Full Text Available As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs, a functionality having many important industrial applications, is an attractive reaction for the utilization of CO2 as a chemical feedstock. Metal–organic frameworks (MOFs are promising candidates in catalysis as they are a class of crystalline, porous and functional materials with remarkable properties including great surface area, high stability, open channels and permanent porosity. MOFs structure tunability and their affinity for CO2, makes them great catalysts for the formation of OCs using CO2 and epoxides. In this review, we examine MOF-based catalytic materials for the cycloaddition of carbon dioxide to epoxides. Catalysts are grouped based on the location of catalytic sites, i.e., at the struts, nodes, defect sites, or some combination thereof. Additionally, important features of each catalyst system are critically discussed.

  16. Cytosolic cholesterol ester hydrolase in adrenal cortex

    OpenAIRE

    Tocher, Douglas R.

    1983-01-01

    Cholesterol ester hydrolase (CEH) in adrenocortical cytosol was known to be phosphorylated and activated, in response to ACTH in a cAMPdependent protein kinase mediated process. The purification of CEH from bovine adrenocortical cytosol was attempted. The use of detergents to solubilise the enzyme from lipid-rich aggregates was investigated and sodium cholate was found to be effective. A purification procedure using cholate solubilised enzyme was developed. The detergent int...

  17. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Science.gov (United States)

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  18. Role of keto–enol tautomerization in a chiral phosphoric acid catalyzed asymmetric thiocarboxylysis of meso-epoxide: a DFT study

    KAUST Repository

    Ajitha, Manjaly John; Huang, Kuo-Wei

    2015-01-01

    The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X). The nucleophilic ring opening of epoxide by thiobenzoic acid was found to proceed via a concerted termolecular transition state with a simultaneous dual proton transfer to yield the β-hydroxy thioester product. Electrostatic interactions together with the steric environment inside the chiral catalyst play an important role in determining the enantioselectivity of the reaction.

  19. Role of keto–enol tautomerization in a chiral phosphoric acid catalyzed asymmetric thiocarboxylysis of meso-epoxide: a DFT study

    KAUST Repository

    Ajitha, Manjaly John

    2015-09-15

    The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X). The nucleophilic ring opening of epoxide by thiobenzoic acid was found to proceed via a concerted termolecular transition state with a simultaneous dual proton transfer to yield the β-hydroxy thioester product. Electrostatic interactions together with the steric environment inside the chiral catalyst play an important role in determining the enantioselectivity of the reaction.

  20. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel.

    Science.gov (United States)

    Bera, Asim K; Aukema, Kelly G; Elias, Mikael; Wackett, Lawrence P

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  1. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    Science.gov (United States)

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  2. An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis

    DEFF Research Database (Denmark)

    Yuan, Q.C.; Hagen, A.; Roessner, F.

    2006-01-01

    The structure of titanium species grafted on a purely siliceous MCM-41 and their catalysis in the epoxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) were investigated. FT-IR, XANES and UV-vis were used for the examination of the Ti-grafted MCM-41. The results indicated...... that the titanium atoms are grafted on the wall surface of the MCM-41 by four-fold coordination. The four-fold coordinated titanium species are mainly grafted by two or one -O-Si-O- bridges on the MCM-41, resulting in so-called bipodal or monopodal titanium centres in partially polymerised states. The ratio...... of monopodal to bipodal titanium increases with the increase in Ti-content. These partially polymerised titanium species considered as catalytic active centres have high activity and selectivity in the epoxidation reaction. The used Ti-grafted MCM-41 samples were regenerated by heating in nitrogen or air...

  3. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  4. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  5. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and Al2O3 nanoparticles

    International Nuclear Information System (INIS)

    Zhu, Lin; Jin, Fanlong; Park, Soojin

    2012-01-01

    This study examined the effects of the epoxidized castor oil (ECO) and Al 2 O 3 content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/Al 2 O 3 ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and Al 2 O 3 nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and Al 2 O 3 nanoparticles. The composite containing 3 wt % Al 2 O 3 nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/Al 2 O 3 composites, which prevented deformation and crack propagation

  6. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    Science.gov (United States)

    1986-07-01

    M 4 Q r 000 44 Table 11. Purification of arylester hydrolase Specific Total Total Activity Volume Activity Proteina (Umoles/ Purifi- Fraction (mL...did get re-adjusted after the sample was applied. After the sample was applied the column was washed with the above MES buffer an.+eluted with 100 ml...Lieske (94) and compared them to the reversed phase HPLC retention times we have previously reported (16). We get an excellent linear correlation

  7. The epoxide-diol pathway in the metabolism of vinylbital in rat and man

    NARCIS (Netherlands)

    Vermeulen, N P; Bakker, B H; Eylers, D; Breimer, D D

    1. In urine of rats given vinylbital (5-vinyl-5-(1'-methylbutyl)barbituric acid) i.p., unchanged vinylbital and its devinylated metabolite, 5-(1'-methylbutyl)barbituric acid, were identified. Rats synthetic 1',2'-epoxyvinylbital excreted the same compound as a major metabolite. No unchanged epoxide,

  8. Why eicosanoids could represent a new class of tocolytics on uterine activity in pregnant women.

    Science.gov (United States)

    Corriveau, Stéphanie; Berthiaume, Maryse; Rousseau, Eric; Pasquier, Jean-Charles

    2009-10-01

    The purpose of this study was to assess the effects of exogenous eicosanoids on spontaneous uterine contractile activity. Eight uterine biopsies were performed from women who were undergoing elective cesarean delivery. Tension measurements were performed in vitro on myometrial strips. Contractile activities were quantified by the calculation of the area under the curve. The effects of eicosanoids and specific enzyme inhibitors were assessed. Fractions from various uterine tissues were analyzed by Western blot. Data demonstrate the presence, in some tested tissues, of cytochrome P-450 epoxygenase and soluble epoxide hydrolase, which respectively produce and degrade epoxyeicosatrienoic acid regioisomers. Inhibition of soluble epoxide hydrolase with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid or omega-hydroxylase with N-methylsulfonyl-12,12-dibromododec-11-enamide resulted in a tocolytic effect; N-methylsulfonyl-6-[2-propargyloxyphenyl] hexanamide, which is an epoxygenase inhibitor, had no effect. Exogenous epoxyeicosatrienoic acids displayed significant tocolytic effects on spontaneous contractile activities. Epoxy- and hydroxyeicosanoids represent new bioactive, arachidonic acid by-products with in vitro tocolytic activities. These findings suggest that cytochrome P-450 isozymes may represent relevant pharmacologic targets under physiopathologic conditions.

  9. Comparison of epoxide and free-radical mechanisms for activation of benzo[a]pyrene by Sprague-Dawley rat liver microsomes

    International Nuclear Information System (INIS)

    Selkirk, J.K.

    1980-01-01

    Coincubation of [6- 3 H]benzo[a]pyrene ([6- 3 H]BP) and [ 14 C]BP with SD rat liver microsomes produced metabolic profiles that showed that the C-6 of BP was not affected by formation of 4,5-dihydro-4,5-dihydroxy-BP, 7,8-dihydro-7,8-dihydroxy-BP, and 9,10-dihydro-9,10-dihydroxy-BP nor the 3- and 9-phenols of BP. Complete retention of tritium at C-6, except in the three quinones, confirmed the radical-cation model for formation of the 6-oxo-radical followed by oxidation to quinone. Epoxide formation at the carcinogenically active regions of BP appeared to biochemically isolate from 6-position activation and suggested that the microsomal epoxide pathway is unrelated to the radicalcation scheme. These molar ratios derived from double-label experiments reinforced the current literature that indicates the epoxide mechanism as the major pathway toward carcinogenic forms of BP

  10. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    Energy Technology Data Exchange (ETDEWEB)

    Khristov, D; Marinopolski, G

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions.

  11. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    International Nuclear Information System (INIS)

    Khristov, D.; Marinopolski, G.

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions

  12. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Science.gov (United States)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  13. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    Science.gov (United States)

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  14. Synthesis and Absolute Configuration of Enantiomerically Pure Vitamin K3 2,3-Epoxide

    NARCIS (Netherlands)

    Snatzke, Günther; Wijnberg, Hans; Feringa, Bernard; Marsman, Bea G.; Greydanus, Ben; Pluim, Henk

    1980-01-01

    The 2,3-epoxide of vitamin K3 (menadione, 1) has been prepared in enantiomerically pure form, and the absolute configuration has been deduced from the CD spectrum. The compound with the negative Cotton effect between 340 and 400 nm has the 2R,3S configuration.

  15. Synthesis of epoxidized cardanol and its antioxidative properties for vegetable oils and biodiesel

    Science.gov (United States)

    A novel antioxidant epoxidized cardanol (ECD), derived from cardanol, was synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD used in vegetable oils and biodiesel was evaluated by pressurized differential scanning calorimetry (PDSC) and the Rancimat method, respect...

  16. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  17. Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient and Reusable Catalyst for the Regioselective Ring Opening of Epoxides in Water

    Directory of Open Access Journals (Sweden)

    Eshagh Rezaee Nezhad

    2016-01-01

    Full Text Available An efficient and simple method for the preparation of Si-Imidazole-HSO4 functionalized magnetic Fe3O4 nanoparticles (Si-Im-HSO4 MNPs and used as an efficient and reusable magnetic catalysts for the regioselective ring opening of epoxides under green conditions in water. This catalyst was used for the ring opening of epoxide corresponding to the thiocyanohydrins and azidohydrines. Compared to the classical ring opening of epoxides, this new method consistently has the advantage of excellent yields, short reaction times, and methodological simplicity.

  18. Structural insight into catalytic mechanism of PET hydrolase

    OpenAIRE

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-01-01

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  19. Structural insight into catalytic mechanism of PET hydrolase.

    Science.gov (United States)

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-12-13

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  20. Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure.

    Science.gov (United States)

    Jarupatrakorn, Jonggol; Don Tilley, T

    2002-07-17

    A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.

  1. High-throughput screening for gene libraries expressing carbohydrate hydrolase activity

    NARCIS (Netherlands)

    Leemhuis, Hans; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert

    2003-01-01

    A simple and fast method is described allowing screening of large number of Escherichia coli clones (4000 per day) for the presence of functional or improved carbohydrate hydrolase enzymes. The procedure is relatively cheap and has the advantage that carbohydrate degrading activity can be directly

  2. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  3. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15

    NARCIS (Netherlands)

    Santen, van R.A.; Zhang, Lei; Abbenhuis, H.C.L.; Gerritsen, G.; Ní Bhriain, N.M.; Magusin, P.C.M.M.; Mezari, B.; Han, W.; Yang, Q.; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active

  4. A screening method for β-glucan hydrolase employing Trypan Blue-coupled β-glucan agar plate and β-glucan zymography.

    Science.gov (United States)

    Park, Chang-Su; Yang, Hee-Jong; Kim, Dong-Ho; Kang, Dae-Ook; Kim, Min-Soo; Choi, Nack-Shick

    2012-06-01

    A new screening method for β-(1,3-1,6) glucan hydrolase was developed using a pure β-glucan from Aureobaisidum pullulans by zymography and an LB-agar plate. Paenibacillus sp. was screened as a producer a β-glucan hydrolase on the Trypan Blue-coupled β-glucan LB-agar plate and the activity of the enzyme was analyzed by SDS-β-glucan zymography. The β-glucan was not hydrolyzed by Bacillus spp. strains, which exhibit cellulolytic activity on CMC zymography. The gene, obtaining by shotgun cloning and encoding the β-glucan hydrolase of Paenibacillus sp. was sequenced.

  5. Mechanical, Thermal and Morphological Properties of Poly(lactic acid/Epoxidized Palm Olein Blend

    Directory of Open Access Journals (Sweden)

    Hazimah Abu Hassan

    2012-10-01

    Full Text Available Poly(lactic acid (PLA is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt% through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.

  6. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Lack, Nathan; Lowe, Edward D.; Liu, Jie; Eltis, Lindsay D.; Noble, Martin E. M.; Sim, Edith; Westwood, Isaac M.

    2007-01-01

    The structure of HsaD, a carbon–carbon bond serine hydrolase involved in steroid catabolism that is critical for the survival of M. tuberculosis inside human macrophages, has been solved by X-ray crystallography. Data were collected at the Diamond Light Source in Oxfordshire, England: this paper describes one of the first structures determined at the new synchrotron. Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon–carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 Å resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors’ knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors

  7. High-temperature epoxidation of soybean oil in flow : speeding up elemental reactions wanted and unwanted

    NARCIS (Netherlands)

    Cortese, B.; Croon, de M.H.J.M.; Hessel, V.

    2012-01-01

    The soybean oil epoxidation reaction is investigated theoretically through kinetic modeling of temperature effects enabled through flow processing under superheated conditions. Different from previous studies on such processing, here a complex reaction network superimposed by multiphase transport is

  8. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    Science.gov (United States)

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  9. Enhancement of catalyst performance in the direct propene epoxidation: a study into gold-titanium synergy

    NARCIS (Netherlands)

    Chen, J.; Halin, S.J.A.; Pidko, E.A.; Verhoeven, M.W.G.M.; Perez Ferrandez, D.M.; Hensen, E.J.M.; Schouten, J.C.; Nijhuis, T.A.

    2013-01-01

    Enhanced productivity toward propene oxide in the direct propene epoxidation with hydrogen and oxygen over gold nanoparticles supported on titanium-grafted silica was achieved by adjusting the gold–titanium synergy. Highly isolated titanium sites were obtained by lowering the titanium loading

  10. Mechanistic aspects of the metal catalyzed alternating copolymerization of epoxides and carbon monoxide.

    Science.gov (United States)

    Allmendinger, Markus; Molnar, Ferenc; Zintl, Manuela; Luinstra, Gerrit A; Preishuber-Pflügl, Peter; Rieger, Bernhard

    2005-09-05

    The cobalt-catalyzed alternating copolymerization of epoxides and CO is a novel, direct approach to aliphatic polyesters, such as poly(hydroxybutyrate) (PHB). This reaction was found to be catalyzed by Ph3Si[Co(CO)4] (4) and pyridine affording in a first step the stable mono-insertion product Ph3Si-O-CH(CH3)-CH2-CO-Co(CO)4 (5). However, a profound mechanistic understanding, especially of the role of pyridine as the key component for the polymerization reaction was missing. ATR-IR online monitoring under catalytic conditions and DFT calculations were used to show that an acylpyridinium cation is formed by cleavage of the cobalt-acyl bond of 5 in the presence of pyridine. The Lewis acid thus generated activates the next incoming epoxide monomer for ring opening through [Co(CO)4]-. The catalytic cycle is completed by a subsequent CO insertion in the new cobalt-alkyl bond. The calculations are used to explore the energetic hypersurface of the polymerization reaction and are complemented by extended experimental investigations that also support the mechanistic hypotheses.

  11. High-throughput analysis of endogenous fruit glycosyl hydrolases using a novel chromogenic hydrogel substrate assay

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Lausen, Thomas Frederik

    2017-01-01

    A broad range of enzyme activities can be found in a wide range of different fruits and fruiting bodies but there is a lack of methods where many samples can be handled in a high-throughput and efficient manner. In particular, plant polysaccharide degrading enzymes – glycosyl hydrolases (GHs) play...... led to a more profound understanding of the importance of GH activity and regulation, current methods for determining glycosyl hydrolase activity are lacking in throughput and fail to keep up with data output from transcriptome research. Here we present the use of a versatile, easy...

  12. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    International Nuclear Information System (INIS)

    Pavlidis, Ioannis V.; Vorhaben, Torge; Gournis, Dimitrios; Papadopoulos, George K.; Bornscheuer, Uwe T.; Stamatis, Haralambos

    2012-01-01

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme–nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme–nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  13. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pavlidis, Ioannis V. [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece); Vorhaben, Torge [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Gournis, Dimitrios [University of Ioannina, Department of Materials Science and Engineering (Greece); Papadopoulos, George K. [Epirus Institute of Technology, Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology (Greece); Bornscheuer, Uwe T. [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Stamatis, Haralambos, E-mail: hstamati@cc.uoi.gr [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece)

    2012-05-15

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme-nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme-nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  14. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  15. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  16. S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling.

    Science.gov (United States)

    Miller, Danielle; Xu, Huimin; White, Robert H

    2015-07-01

    S-Adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine (SAM) methyltransferases, is known to be a strong feedback inhibitor of these enzymes. A hydrolase specific for S-adenosyl-L-homocysteine produces L-homocysteine, which is remethylated to methionine and can be used to regenerate SAM. Here, we show that the annotated S-adenosyl-L-homocysteine hydrolase in Methanocaldococcus jannaschii is specific for the hydrolysis and synthesis of S-inosyl-L-homocysteine, not S-adenosyl-L-homocysteine. This is the first report of an enzyme specific for S-inosyl-L-homocysteine. As with S-adenosyl-L-homocysteine hydrolase, which shares greater than 45% sequence identity with the M. jannaschii homologue, the M. jannaschii enzyme was found to copurify with bound NAD(+) and has Km values of 0.64 ± 0.4 mM, 0.0054 ± 0.006 mM, and 0.22 ± 0.11 mM for inosine, L-homocysteine, and S-inosyl-L-homocysteine, respectively. No enzymatic activity was detected with S-adenosyl-L-homocysteine as the substrate in either the synthesis or hydrolysis direction. These results prompted us to redesignate the M. jannaschii enzyme an S-inosyl-L-homocysteine hydrolase (SIHH). Identification of SIHH demonstrates a modified pathway in this methanogen for the regeneration of SAM from S-adenosyl-L-homocysteine that uses the deamination of S-adenosyl-L-homocysteine to form S-inosyl-L-homocysteine. In strictly anaerobic methanogenic archaea, such as Methanocaldococcus jannaschii, canonical metabolic pathways are often not present, and instead, unique pathways that are deeply rooted on the phylogenetic tree are utilized by the organisms. Here, we discuss the recycling pathway for S-adenosyl-L-homocysteine, produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions, which uses a hydrolase specific for S-inosyl-L-homocysteine, an uncommon metabolite. Identification of the pathways and the enzymes involved in the unique pathways in the methanogens will provide insight into the

  17. Exploiting epoxidized natural rubber latex (ENRL) as a starting raw material for latex-based products

    Science.gov (United States)

    Siti Nor Qamarina, M.; Fatimah Rubaizah, M. R.; Nurul Suhaira, A.; Norhanifah, M. Y.

    2017-12-01

    Epoxidized natural rubber latex (ENRL) is a chemically modified natural rubber latex produced from epoxidation process that involves usage of organic peracids. Conversion of the ENRL into dry rubber products has been known to exhibit many beneficial properties, however limited published works were found on diversifiying the ENRL latex-based products applications. In this preliminary work, different source of raw materials and neutralization systems were investigated. The objective was to explore possibilities in producing distinctive ENRL. Findings have demonstrated that different source of raw materials and neutralization systems influenced the typical ENRL specifications, stability behavior and particle size distribution. Morphological observations performed on these ENRL systems appeared to agree with the ENRL characteristics achieved. Since experimenting these two main factors resulted in encouraging ENRL findings, detailed work shall be further scrutinized to search for an optimum condition in producing marketable ENRL specifically for latex-based products applications.

  18. A Lewis acid β-diiminato-zinc-complex as all-rounder for co- and terpolymerisation of various epoxides with carbon dioxide.

    Science.gov (United States)

    Reiter, M; Vagin, S; Kronast, A; Jandl, C; Rieger, B

    2017-03-01

    A β-diiminato-zinc-N(SiMe 3 ) 2 complex ( 1 ) was synthesised and fully characterised, including an X-ray diffraction study. The activity of catalyst 1 towards the coupling reaction of CO 2 and various epoxides, including propylene oxide (PO), cyclohexene oxide (CHO), styrene oxide (SO), limonene oxide (LO), octene oxide (OO) and epichlorohydrin (ECH), was investigated. Terpolymerisation of CO 2 , PO and LO, as well as CO 2 , CHO and PO, was successfully realised, resulting in polymers with adjustable glass transition temperatures and transparencies. Reaction conditions such as temperature, pressure and catalyst concentration were varied to find the optimal reaction values, especially regarding LO/CO 2 . In situ IR experiments hinted that at 60 °C and a critical LO concentration, polymerisation and depolymerisation are in an equilibrium (ceiling effect). Pressurising catalyst 1 with carbon dioxide resulted in a dimeric catalyst ( 2 ) with a OSiMe 3 group as a new initiator. Homopolymerisation of different epoxides was carried out in order to explain the reactivity concerning copolymerisation reaction of CO 2 and epoxides.

  19. IMMOBILIZATION OF TANNIN ACYL HYDROLASE FROM ASPERGILLUS NIGER

    OpenAIRE

    B. Lenin Kumar*, N. Lokeswari and D. Sriramireddy

    2013-01-01

    ABSTRACT: Tannin acyl hydrolase, commonly referred to as tannase (E.C. 3.1.1.20), an inducible extra-cellular enzyme produced by a number of animals, plants and microbes. In this investigation, tannase production under solid-state fermentation by using Aspergillus niger and the waste residue of cashew husk was used as substrate for obtaining the desired fermented product. Microbial tannase is more stable than tannase from other sources like plants or animals. Tannase from fungal sources are r...

  20. Laboratory evolution of an epoxide hydrolase - Towards an enantioconvergent biocatalyst

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Archelas, A.; Faměrová, Veronika; Oubrechtová, Pavla; Křen, Vladimír

    2011-01-01

    Roč. 156, č. 1 (2011), s. 1-10 ISSN 0168-1656 R&D Projects: GA ČR GAP207/10/0135 Institutional research plan: CEZ:AV0Z50200510 Keywords : Directed evolution * Regioselectivity * Enantioconvergence Subject RIV: EE - Microbiology, Virology Impact factor: 3.045, year: 2011

  1. Production, enrichment and immobilization of a metagenome-derived epoxide hydrolase

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Maršálek, Jaroslav; Kyslík, Pavel; Štěpánek, Václav; Kotík, Michael

    2011-01-01

    Roč. 46, č. 2 (2011), s. 526-532 ISSN 1359-5113 R&D Projects: GA ČR GAP207/10/0135; GA ČR GAP504/10/0137 Institutional research plan: CEZ:AV0Z50200510 Keywords : Overexpression * Fed-batch * Aqueous two-phase system Subject RIV: EE - Microbiology, Virology Impact factor: 2.627, year: 2011

  2. Synthesis and properties of cross-linked polymers from epoxidized rubber seed oil and triethylenetetramine

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; Iqbal, Muhammad; Picchioni, Francesco; Manurung, Robert; Heeres, Hero J.

    2015-01-01

    A series of epoxidized oils were prepared from rubber seed, soybean, jatropha, palm, and coconut oils. The epoxy content varied from 0.03 to 7.4 wt %, in accordance with the degree of unsaturation of the oils (lowest for coconut, highest for rubber seed oil). Bulk polymerization/curing of the

  3. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  4. Organic carbonates as solvents in macrocyclic Mn(III) salen catalyzed asymmetric epoxidation of non-functionalized olefins

    Czech Academy of Sciences Publication Activity Database

    Maity, N. Ch.; Rao, G. V. S.; Prathap, Kaniraj Jeya; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. H.; Bajaj, H. C.

    2013-01-01

    Roč. 366, January (2013), s. 380-389 ISSN 1381-1169 Institutional support: RVO:61388963 Keywords : asymmetric epoxidation * organic carbonate * macrocyclic Mn(III) salen complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2013

  5. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  6. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Directory of Open Access Journals (Sweden)

    María Inés Marchesini

    Full Text Available Choloylglycine hydrolase (CGH, E.C. 3.5.1.24 is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  7. Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides

    NARCIS (Netherlands)

    Zandleven, J.S.; Beldman, G.; Bosveld, M.; Benen, J.A.E.; Voragen, A.G.J.

    2005-01-01

    XGH (xylogalacturonan hydrolase; GH 28) is an enzyme that is capable of degrading XGA (xylogalacturonan), which is a polymer of ¿-D-galacturonic acid, highly substituted with ß-D-xylose. XGA is present in cell walls of various plants and exudates, such as gum tragacanth. XGA oligosaccharides were

  8. Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase

    NARCIS (Netherlands)

    Zandleven, J.S.; Beldman, G.; Bosveld, M.; Schols, H.A.; Voragen, A.G.J.

    2006-01-01

    Action of xylogalacturonan hydrolase (XGH) towards xylogalacturonan (XGA) present in the alkali saponified ¿modified hairy regions¿ from potato and apple pectin was studied. Analysis of enzymatic degradation products from XGA in these complex pectins demonstrated that the degradable

  9. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    International Nuclear Information System (INIS)

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad. The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family

  10. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  11. Experimental and theoretical study on the reactivity of the R-CN/H2O2 system in the epoxidation of unfunctionalized olefins

    Directory of Open Access Journals (Sweden)

    von Holleben Maria Luiza A.

    2001-01-01

    Full Text Available A study on the reactivity of peroxycarboximidic acids in situ generated from acetonitrile, trichloroacetonitrile, benzonitrile, m-chlorobenzonitrile, 3-cyanopyridine, 1-naphthonitrile and 9-anthracenenitrile was performed by semiempirical AM1 method and experimentally in the epoxidation of cyclohexene and R-(+-limonene. Experimental results showed that the reactivity of Cl3CCN/H2O2 was quite similar to MCPBA in the epoxidation of unfunctionalized olefins when a biphasic mixture CH2Cl2/H2O was employed as solvent.

  12. Oxidoreductases provide a more generic response to metallic stressors (Cu and Cd) than hydrolases in soil fungi: new ecotoxicological insights.

    Science.gov (United States)

    Lebrun, Jérémie D; Demont-Caulet, Nathalie; Cheviron, Nathalie; Laval, Karine; Trinsoutrot-Gattin, Isabelle; Mougin, Christian

    2016-02-01

    The present study investigates the effect of metals on the secretion of enzymes from 12 fungal strains maintained in liquid cultures. Hydrolases (acid phosphatase, β-glucosidase, β-galactosidase, and N-acetyl-β-glucosaminidase) and ligninolytic oxidoreductases (laccase, Mn, and lignin peroxidases) activities, as well as biomass production, were measured in culture fluids from fungi exposed to Cu or Cd. Our results showed that all fungi secreted most of the selected hydrolases and that about 50% of them produced a partial oxidative system in the absence of metals. Then, exposure of fungi to metals led to the decrease in biomass production. At the enzymatic level, Cu and Cd modified the secretion profiles of soil fungi. The response of hydrolases to metals was contrasted and complex and depended on metal, enzyme, and fungal strain considered. By contrast, the metals always stimulated the activity of ligninolytic oxidoreductases in fungal strains. In some of them, oxidoreductases were specifically produced following metal exposure. Fungal oxidoreductases provide a more generic response than hydrolases, constituting thus a physiological basis for their use as biomarkers of metal exposure in soils.

  13. Aerobic Epoxidation of Olefins Catalyzed by the Cobalt‐Based Metal–Organic Framework STA‐12(Co)

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Kleist, Wolfgang; Wharmby, Michael T.

    2012-01-01

    , (E)‐stilbene was converted with high selectivities between 80 and 90 %. Leaching of Co was low and the reaction was found to proceed mainly heterogeneously. The catalyst was reusable with only a small loss of activity. The catalytic epoxidation of stilbene with the MOF featured an induction period...

  14. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Binti Jamek, Shariza; Nyffenegger, Christian; Muschiol, Jan

    2017-01-01

    "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer...

  15. Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and hydrogen peroxide in deep eutectic solvents

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    Epoxides are important synthetic intermediates for the synthesis of a broad range of industrial products. This study presents a promising solution to the current limitation of enzyme instability. By using simple deep eutectic solvents such as choline chloride/sorbitol, significant stabilization

  16. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Dandanell, Gert

    2005-01-01

    as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 k...... the neutral form of xanthosine....

  17. Iron-functionalized nanoporous silica type SBA-15: Synthesis, characterization and application in alkene epoxidation in presence of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Mahdieh Ghazizadeh

    2017-05-01

    Full Text Available Fe(IIIsalophen complex on a SBA-15 support functionalized with (3-aminopropyltriethoxysilane as a linker. It has been synthesized and characterized by XRD, adsorption–desorption of nitrogen, SEM, FT-IR and UV–Vis. The formation of metal-salophen complex with the amino groups as connectors to the SBA-15 surface was confirmed. This material was successfully used as a heterogeneous catalyst for the epoxidation of alkenes and the effects of reaction time, different solvents and amount of catalyst on catalytic activity were investigated. This catalyst gave suitable and comparable yield and percentage conversion values. It is also stable and can be recycled and reused in the epoxidation of alkenes.

  18. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.

    Science.gov (United States)

    de Visser, Sam P

    2007-10-25

    Density functional theory calculations are presented on the catalytic properties of a horseradish peroxidase mutant whereby the axial nitrogen atom is replaced by phosphorus. This mutant has never been studied experimentally and only one theoretical report on this system is known (de Visser, S. P. J. Phys. Chem. B 2006, 110, 20759-20761). Thus, a one-atom substitution in horseradish peroxidase changes the properties of the catalytic center of the enzyme to more cytochrome P450-type qualities. In particular, the phosphorus-substituted horseradish peroxidase mutant reacts with substrates via a unique reactivity pattern, whereby alkanes are regioselectively hydroxylated even in the presence of a double bond. Reaction barriers of propene epoxidation and hydroxylation are almost identical to ones observed for a cytochrome P450 catalyst and significantly higher than those obtained for a horseradish peroxidase catalyst. It is shown that the regioselectivity difference is entropy and thermally driven and that the electron-transfer processes that occur during the reaction mechanism follow cytochrome P450-type patterns in the hydroxylation reaction.

  19. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridinemoieties as well as epoxide groups, were synthesized via free-radical polymerization. The products were cross-linked non-covalently with iron(II) ions and covalently by treatment with AlCl3. Both steps could be combined in

  20. Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals.

    Science.gov (United States)

    Elder, D P; Snodin, D; Teasdale, A

    2010-04-06

    This review summarizes the analytical approaches reported in the literature relating to epoxide and hydroperoxide impurities. It is intended that it should provide guidance for analysts faced by the need to control such impurities, particularly where this is due to concerns relating to their potential genotoxicity. An extensive search of the literature relating to this class of impurities revealed a large number of references relating to analysis of epoxides/hydroperoxides associated with herbal remedies. Given the general applicability of the analytical methodology and due to the widespread use of herbal products the authors decided to include herbal medicines in this review. The review also reflects on the very different approaches taken in terms of the assessment/control of genotoxic impurities for such herbal remedies to that required for pharmaceutical products. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridine-moieties as well as epoxide groups, were synthesized via free-radical polymeri-zation. The products were cross-linked non-covalently with iron(II) ions and cova-lently by treatment with AlCl3. Both steps could be combined in

  2. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii.

    Directory of Open Access Journals (Sweden)

    Riccardo Arrigucci

    Full Text Available Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs. Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB. The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.

  3. Effects of Polyethylene Grafted Maleic Anhydride on the Mechanical, Morphological, and Swelling Properties of Poly (Vinyl Chloride / Epoxidized Natural Rubber / Kenaf Core Powder Composites

    Directory of Open Access Journals (Sweden)

    Rohani Abdul Majid

    2014-10-01

    Full Text Available The effects of polyethylene grafted maleic anhydride (PE-g-MA on the properties of poly (vinyl chloride/epoxidized natural rubber (PVC/ENR kenaf core powder composites were studied, with four different loadings of kenaf core powder (5, 10, 15, and 20 phr. The tensile properties indicated that the strength and elongation at break of the composites exhibited an increase for samples with PE-g-MA. Morphological analysis using a scanning electron microscope (SEM showed better dispersion of kenaf fiber with the addition of PE-g-MA and less kenaf powder agglomeration. Furthermore, the swelling index indicated that composites with PE-g-MA showed lower toluene absorption than composites without PE-g-MA.

  4. Functional analysis of the Escherichia coli genome for members of the alpha/beta hydrolase family.

    Science.gov (United States)

    Zhang, L; Godzik, A; Skolnick, J; Fetrow, J S

    1998-01-01

    Database-searching methods based on sequence similarity have become the most commonly used tools for characterizing newly sequenced proteins. Due to the often underestimated functional diversity in protein families and superfamilies, however, it is difficult to make the characterization specific and accurate. In this work, we have extended a method for active-site identification from predicted protein structures. The structural conservation and variation of the active sites of the alpha/beta hydrolases with known structures were studied. The similarities were incorporated into a three-dimensional motif that specifies essential requirements for the enzymatic functions. A threading algorithm was used to align 651 Escherichia coli open reading frames (ORFs) to one of the members of the alpha/beta hydrolase fold family. These ORFs were then screened according to our three-dimensional motif and with an extra requirement that demands conservation of the key active-site residues among the proteins that bear significant sequence similarity to the ORFs. 17 ORFs from E. coli were predicted to have hydrolase activity and their putative active-site residues were identified. Most were in agreement with the experiments and results of other database-searching methods. The study further suggests that YHET_ECOLI, a hypothetical protein classified as a member of the UPF0017 family (an uncharacterized protein family), bears all the hallmarks of the alpha/beta hydrolase family. The novel feature of our method is that it uses three-dimensional structural information for function prediction. The results demonstrate the importance and necessity of such a method to fill the gap between sequence alignment and function prediction; furthermore, the method provides a way to verify the structure predictions, which enables an expansion of the applicable scope of the threading algorithms.

  5. Polymerization of Oriental Lacquer (Urushi with Epoxidized Linseed Oil as a New Reactive Diluent

    Directory of Open Access Journals (Sweden)

    Takahisa Ishimura

    2015-01-01

    Full Text Available A hybrid lacquer (HBL paint prepared by combining a natural kurome lacquer (KL paint and an amino silane reagent, for example, N-(2-aminoethyl-3-aminopropyl triethoxysilane (AATES, produced a polymerized film faster than the KL paint alone. However, the viscosity of the HBL paint was too viscous for easy handling. Addition of 10 wt% of an epoxidized linseed oil, ELO-6, with 6.4 mol% epoxidation as a reactive diluent to the HBL paint decreased the viscosity by 1/2 from 25476 mPa·s to 12841 mPa·s and improved the ease of coatability. The polymerization mechanism was elucidated by NMR measurements of extracts from the resulting polymerization films, suggesting that amino groups in the HBL paint reacted with epoxy groups of ELO-6 in the lacquer matrix, and then the complex reacted with double bonds of the urushiol side-chain by autooxidation and cross-linking reactions to give a hard polymerized film with a high quality of color and gloss. These results indicate that the addition of ELO-6 improved the polymerizability of both KL and HBL paints without decreasing the quality of the resulting films.

  6. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog.

    Science.gov (United States)

    Singh, Neha; Dalal, Vikram; Mahto, Jai Krishna; Kumar, Pravindra

    2017-09-15

    Three bacterial strains capable of degrading phthalates namely Pseudomonas sp. PKDM2, Pseudomonas sp. PKDE1 and Pseudomonas sp. PKDE2 were isolated and characterized for their degradative potential. These strains efficiently degraded 77.4%-84.4% of DMP, 75.0%-75.7% of DEP and 71.7%-74.7% of DEHP, initial amount of each phthalate is 500mgL -1 of each phthalate, after 44h of incubation. GC-MS results reveal the tentative DEHP degradation pathway, where hydrolases mediate the breakdown of DEHP to phthalic acid (PA) via an intermediate MEHP. MEHP hydrolase is a serine hydrolase which is involved in the reduction of the MEHP to PA. The predicted 3D model of MEHP hydrolase from Pseudomonas mosselii was docked with phthalate monoesters (PMEs) such as MEHP, mono-n-hexyl phthalate (MHP), mono-n-butyl phthalate (MBP) and mono-n-ethyl phthalate (MEP), respectively. Docking results show the distance between the carbonyl carbon of respective phthalate monoester and the hydroxyl group of catalytic serine lies in the range of 2.9 to 3.3Å, which is similar to the ES complex of other serine hydrolases. This structural study highlights the interaction and the role of catalytic residues of MEHP hydrolase involved in the biodegradation of PMEs to phthalate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a proteolytic......The pig intestinal brush border enzymes aminopeptidase N (EC 3.4.11.2) and lactase-phlorizin hydrolase (EC 3.2.1.23-62) are present in the microvillar membrane as homodimers. Dimethyl adipimidate was used to cross-link the two [35S]methionine-labeled brush border enzymes from cultured mucosal...... explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...

  8. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators

    Energy Technology Data Exchange (ETDEWEB)

    Flitter, Becca A.; Hvorecny, Kelli L.; Ono, Emiko; Eddens, Taylor; Yang, Jun; Kwak, Daniel H.; Bahl, Christopher D.; Hampton, Thomas H.; Morisseau, Christophe; Hammock, Bruce D.; Liu, Xinyu; Lee, Janet S.; Kolls, Jay K.; Levy, Bruce D.; Madden, Dean R.; Bomberger, Jennifer M.

    2016-12-15

    Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate diol, eliminating a proresolving signal that potently suppresses IL-8–driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.

  9. Transient changes of enzyme activity of five acid hydrolases in the supernatants of homogenates of hearts of mice due to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Droba, B.; Jagiellonian Univ., Krakow

    1977-01-01

    Enzymatic activity of five lysosomal hydrolases: acid p-nitrophenyl phosphatase (EC 3.1.3.2), acid β-glycerophosphatase (EC 3.1.3.2), arylsulphatase (EC 3.1.6.1), β-galactosidase (EC 3.2.1.23) and β-N-acetylhexoaminidase (EC 3.2.1.30) was studied in the supernatants of homogenates of hearts of unirradiated mice, serving as controls, and a group of UV-irradiated mice. In the control group, determinations made at 6-hr intervals showed rhythmic diurnal changes in activities of three acid hydrolases. These changes were statistically significant in the case of acid p-nitrophenyl phosphatase, acid β-glycerophosphatase, and β-N-acetylhexosaminidase. The effect of UV-irradiation was manifested mainly by depression of enzyme activities of the acid hydrolases during the first few hours after exposure. Depression of activities of arylsulphatase and β-N-acetylhexosaminidase by UV light was statistically significant. Presumably, the fall in enzyme activities of the acid hydrolases was due to chemical mediators formed in the skin under the influence of UV-radiation and adrenal corticoids secreted into the blood

  10. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Milstein, D.

    1977-02-01

    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  11. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects.

    Science.gov (United States)

    Bausinger, Julia; Schütz, Petra; Piberger, Ann Liza; Speit, Günter

    2016-03-01

    The present study aims to further characterize benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects. Therefore, we measured DNA effects by the comet assay and adduct levels by high-performance liquid chromatography (HPLC) in human lymphocytes and A549 cells exposed to (±)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(±)-anti-BPDE] or (+)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(+)-anti-BPDE]. Both, the racemic form and (+)-anti-BPDE, which is the most relevant metabolite with regard to mutagenicity and carcinogenicity, induced DNA migration in cultured lymphocytes in the same range of concentrations to a similar extent in the alkaline comet assay after exposure for 2h. Nevertheless, (+)-anti-BPDE induced significantly enhanced DNA migration after 16 and 18h post-cultivation which was not seen in response to (±)-anti-BPDE. Combination of the comet assay with the Fpg (formamidopyrimidine-DNA glycosylase) protein did not enhance BPDE-induced effects and thus indicated the absence of Fpg-sensitive sites (oxidized purines, N7-guanine adducts, AP-sites). The aphidicolin (APC)-modified comet assay suggested significant excision repair activity of cultured lymphocytes during the first 18h of culture after a 2 h-exposure to BPDE. In contrast to these repair-related effects measured by the comet assay, HPLC analysis of stable adducts did not reveal any significant removal of (+)-anti-BPDE-induced adducts from lymphocytes during the first 22h of culture. On the other hand, HPLC measurements indicated that A549 cells repaired about 70% of (+)-anti-BPDE-induced DNA-adducts within 22h of release. However, various experiments with the APC-modified comet assay did not indicate significant repair activity during this period in A549 cells. The conflicting results obtained with the comet assay and the HPLC-based adduct analysis question the real cause for BPDE-induced DNA migration in the comet assay and the reliability of the APC-modified comet assay for the

  12. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Directory of Open Access Journals (Sweden)

    Luis V. Rodríguez-Durán

    2011-01-01

    Full Text Available Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  13. Novel strategies for upstream and downstream processing of tannin acyl hydrolase.

    Science.gov (United States)

    Rodríguez-Durán, Luis V; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  14. Differentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCCPY13

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Raghukumar, C.; Verma, A.K.; Meena, R.M.

    Epoxide hydrolase [Rhodotorula mucilaginosa], AAV64029.1 Arachidonic acid metabolism 58 2e-22 PH_13 Hypothetical Protein RTG_00533 [Rhodotorula glutinis ATCC 204091], EGU13356.1 Amp binding enzyme 85 2e-29 PH_15 C-4 methylsterol oxidase [Puccinia..., PTH_30 Hypothetical protein SNOG_09178 [Phaeosphaeria nodorum SN15], XP_001799479.1 AMP-activated protein kinase 52 2.7 PTH_25 Family 2 glycosyltransferase [Melampsora larici-populina 98AG31], EGF99634.1 Catalyzes the incorporation of GlcNAc from...

  15. (SalenMn(III Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Ballistreri

    2016-07-01

    Full Text Available Enantioselective epoxidation reactions of some chosen reactive alkenes by a chiral Mn(III salen catalyst were performed in H2O employing H2O2 as oxidant and diethyltetradecylamine N-oxide (AOE-14 as surfactant. This procedure represents an environmentally benign protocol which leads to e.e. values ranging from good to excellent (up to 95%.

  16. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  17. STUDY OF EPOXIDE DECYCLISATION OF CARYOPHYLENE OXIDE WITH SYNTHETIC ZEOLITE AS CATALYSTS

    Directory of Open Access Journals (Sweden)

    Winarto Haryadi

    2010-06-01

    Full Text Available The reaction of epoxide ring opening of caryophillene oxide has been done using zeolite H-Y, H-sodalit, and H-ZSM-5 as catalysts. The reactions were done in two types, there were in dioxane solvent at temperature of 110 oC and without solvent at temperature of 175 oC. The catalyst weight was 10 % from caryophillene oxide weight, and the time of reaction was four hours. The product of reaction was analyzed using GC, FTIR, and GC-MS. The reactions of caryophillene oxide in dioxane solvent with the three kinds of zeolites did not give any targeted product. Whereas, the reactions without solvent gave three main products, there was one compound with one group of secondary hidroxyl (secondary alcohol, and two compounds of ketone from caryophillene. The reaction product of caryophillene oxide obtained without using solvent with the three type of catalysts were then compared. Conversion of three main products produced by H-ZSM-5 catalyst, H-sodalit catalyst and H-Y catalyst were 82.11 %, 54.92 % and 38.53 % respectively. For that reason, the transformation of caryophillene oxide using H-ZSM-5 catalyst was considered to be the best selective product. The alcohol product was resulted from reaction between caryophillene oxide and Bronsted acid, and  the ketone products was resulted from the reaction with Lewis acid in zeolite.   Keywords: Epoxide ring opening, HY, H-sodalit and HZSM-5

  18. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae*

    Science.gov (United States)

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko

    2016-01-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-d-xylopyranose-(1→6)-d-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  19. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  20. Assessment of epoxidized soy bean oil (ESBO) migrating into foods: comparison with ESBO-like epoxy fatty acids in our normal diet.

    Science.gov (United States)

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2006-08-01

    Epoxidized soy bean oil (ESBO) was found to be toxic for rats, but the toxic constituent is unknown. It became an issue as the migration from the gaskets in the lids for jars into oily foods regularly far exceeds the European legal limit (overall migration limit and specific migration limit derived from the tolerable daily intake (TDI)). In the context of risk management it was of interest to determine the epoxidized fatty acids of ESBO in those foods of our normal diet which are expected to contain the highest concentrations, i.e., oxidized edible oils (including degraded frying oils), fried foods, bakery ware and roasted meat. The contribution of epoxy oleic acid from ESBO to our diet turned out to be negligible. If this acid were the toxic component in ESBO, the toxicological assessment would primarily be a warning regarding oxidized fats and oils. The contribution of diepoxy linoleic acid from ESBO might be similar to the exposure from oxidized fats and oils of our diet, whereas the intake of triepoxy linolenic acid from ESBO exceeds that from normal food by around two orders of magnitude. Hence use of an epoxidized edible oil virtually free of linolenic acid would be inconspicuous in our diet.

  1. POTENT UREA AND CARBAMATE INHIBITORS OF SOLUBLE EPOXIDE HYDROLASES. (R825433)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Krzysztof [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland); Bujacz, Grzegorz [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Faculty of Food Chemistry and Biotechnology, Technical University of Lodz (Poland); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland)

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  3. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    International Nuclear Information System (INIS)

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4 3 2 1 2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4 3 2 1 2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation

  4. (Salen)Ti(Ⅳ)-Catalyzed Asymmetric Ring-opening of meso Epoxides Using Dithiophosphorus Acid as the Nucleophile

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong ZHOU; Zhao Ming LI; Bing LIU; Kang Ying LI; Li Xin WANG; Guo Feng ZHAO; Qi Lin ZHOU; Chu Chi TANG

    2006-01-01

    The asymmetric ring-opening of epoxides with dithiophosphorus acids catalyzed by a (salen)Ti(Ⅳ) complex formed in situ from the reaction of Ti(OPr-i)4 and the chiral Schiff base derived from (1R,2R)-(+)-diaminocyclohexane was realized. The resulting products were obtained with low to good enantioselectivity (up to 73% ee).

  5. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vivo and in vitro

    DEFF Research Database (Denmark)

    Weinstein, I.B.; Jeffrey, A.M.; Jennette, K.W.

    1976-01-01

    Evidence has been obtained that a specific isomer of a diol epoxide derivative of benzo(a)pyrene, (+/-)-7 beta,8alpha-dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, is an intermediate in the binding of benzo(a)pyrene to RNA in cultured bovine bronchial mucosa. An adduct is for...

  6. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.

    Science.gov (United States)

    Hotta, Kinya; Chen, Xi; Paton, Robert S; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N; Kim, Chu-Young

    2012-03-04

    Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. © 2012 Macmillan Publishers Limited. All rights reserved

  7. Glycoside Hydrolases across Environmental Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2016-12-01

    Full Text Available Across many environments microbial glycoside hydrolases support the enzymatic processing of carbohydrates, a critical function in many ecosystems. Little is known about how the microbial composition of a community and the potential for carbohydrate processing relate to each other. Here, using 1,934 metagenomic datasets, we linked changes in community composition to variation of potential for carbohydrate processing across environments. We were able to show that each ecosystem-type displays a specific potential for carbohydrate utilization. Most of this potential was associated with just 77 bacterial genera. The GH content in bacterial genera is best described by their taxonomic affiliation. Across metagenomes, fluctuations of the microbial community structure and GH potential for carbohydrate utilization were correlated. Our analysis reveals that both deterministic and stochastic processes contribute to the assembly of complex microbial communities.

  8. Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene.

    Science.gov (United States)

    Vernimmen, Jarian; Guidotti, Matteo; Silvestre-Albero, Joaquin; Jardim, Erika O; Mertens, Myrjam; Lebedev, Oleg I; Van Tendeloo, Gustaaf; Psaro, Rinaldo; Rodríguez-Reinoso, Francisco; Meynen, Vera; Cool, Pegie

    2011-04-05

    Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.

  9. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-01-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC 50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined

  10. Synthesis of Carbasugars from Aldonolactones: Ritter-Type Epoxide Opening of Polyhydroxylated Aminocyclopentanes

    DEFF Research Database (Denmark)

    Lundt, Inge; Johansen, Steen Karsk; Kornø, Hanne Tøfting

    1999-01-01

    Using the cis-fused cyclopentane-1,4-lactone, 1(R),5(S)-7(R),8(R)-dihydroxy-2-oxabicyclo[3.3.0]oct-3-one (1), as starting material, 5-deoxycarba-*-L-xylo-hexofuranose (6) together with ?- (12) and ?-1-amino-1,5-dideoxycarba-L-xylo-hexofuranose (16) have been prepared using a number...... of stereoselective transformations. The key step was the regioselective opening of the epoxide 1(R),5(S)-7(R),8(R)-epoxy-2-oxabicyclo[3.3.0]oct-3-one (4) with different nucleophiles....

  11. Epoxide resin coatings of cans - substance transfer to oil-containing foods possible

    OpenAIRE

    German Federal Institute for Risk Assessment

    2016-01-01

    Oily foods in cans can contain levels of Cyclo-di-BADGE (CdB) that present a health risk for high consumers. This is the result of a health risk assessment of the Federal Institute for Risk Assessment (BfR) in which the institute analysed data on the CdB content of canned fish preserved in oil. CdB is a molecule consisting of Bisphenol A (BPA) and Bisphenol A diglycidyl ether (BADGE). It is formed as a by-product during the production of epoxide resins which are, for example, used for the int...

  12. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase

    DEFF Research Database (Denmark)

    Holt, S.; J. Fowler, C.; Rocksén, D.

    2004-01-01

    The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor a into the bronchoalveolar......-acyltransferase and N-acylphosphatidylethanolamine phospholipase D and the activity of fatty acid amide hydrolase in lung membrane fractions did not change significantly following the exposure to lipopolysaccharide. The non-selective fatty acid amide hydrolase inhibitor phenylmethylsulfonyl fluoride was a less potent...... inhibitor of lung fatty acid amide hydrolase than expected from the literature, and a dose of 30 mg/kg i.p. of this compound, which produced a complete inhibition of brain anandamide metabolism, only partially inhibited the lung metabolic activity....

  13. Precursor effect on the property and catalytic behavior of Fe-TS-1 in butadiene epoxidation

    Science.gov (United States)

    Wu, Mei; Zhao, Huahua; Yang, Jian; Zhao, Jun; Song, Huanling; Chou, Lingjun

    2017-11-01

    The effect of iron precursor on the property and catalytic behavior of iron modified titanium silicalite molecular sieve (Fe-TS-1) catalysts in butadiene selective epoxidation has been studied. Three Fe-TS-1 catalysts were prepared, using iron nitrate, iron chloride and iron sulfate as precursors, which played an important role in adjusting the textural properties and chemical states of TS-1. Of the prepared Fe-TS-1 catalysts, those modified by iron nitrate (FN-TS-1) exhibited a significant enhanced performance in butadiene selective epoxidation compared to those derived from iron sulfate (FS-TS-1) or iron chloride (FC-TS-1) precursors. To obtain a deep understanding of their structure-performance relationship, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed desorption of NH3 (NH3-TPD), Diffuse reflectance UV-Vis spectra (DR UV-Vis), Fourier transformed infrared spectra (FT-IR) and thermal gravimetric analysis (TGA) were conducted to characterize Fe-TS-1 catalysts. Experimental results indicated that textural structures and acid sites of modified catalysts as well as the type of Fe species influenced by the precursors were all responsible for the activity and product distribution.

  14. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    Science.gov (United States)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  15. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  16. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  17. In situ epoxide generation by dimethyldioxirane oxidation and the use of epichlorohydrin in the flow synthesis of a library of β-amino alcohols.

    Science.gov (United States)

    Cossar, Peter J; Baker, Jennifer R; Cain, Nicholas; McCluskey, Adam

    2018-04-01

    The flow coupling of epichlorohydrin with substituted phenols, while efficient, limits the nature of the epoxide available for the development of focused libraries of β-amino alcohols. This limitation was encountered in the production of analogues of 1-(4-nitrophenoxy)-3-((2-((4-(trifluoromethyl)pyrimidin-2-yl)amino)ethyl)amino)propan-2-ol 1 , a potential antibiotic lead. The in situ (flow) generation of dimethyldoxirane (DMDO) and subsequent flow olefin epoxidation abrogates this limitation and afforded facile access to structurally diverse β-amino alcohols. Analogues of 1 were readily accessed either via (i) a flow/microwave hybrid approach, or (ii) a sequential flow approach. Key steps were the in situ generation of DMDO, with olefin epoxidation in typically good yields and a flow-mediated ring opening aminolysis to form an expanded library of β-amino alcohols 1 and 10a - 18g , resulting in modest ( 11a , 21%) to excellent ( 12g , 80%) yields. Alternatively flow coupling of epichlorohydrin with phenols 4a - 4m (22%-89%) and a Bi(OTf) 3 catalysed microwave ring opening with amines afforded a select range of β-amino alcohols, but with lower levels of aminolysis regiocontrol than the sequential flow approach.

  18. Regulatory regions in the rat lactase-phlorizin hydrolase gene that control cell-specific expression

    NARCIS (Netherlands)

    Verhave, Menno; Krasinski, Stephen D.; Christian, Sara I.; van Schaik, Sandrijn; van den Brink, Gijs R.; Doting, Edwina M. H.; Maas, Saskia M.; Wolthers, Katja C.; Grand, Richard J.; Montgomery, Robert K.

    2004-01-01

    OBJECTIVES: Lactase-phlorizin hydrolase (LPH) is an enterocyte-specific gene whose expression has been well-characterized, not only developmentally but also along the crypt-villus axis and along the length of the small bowel. Previous studies from the authors' laboratory have demonstrated that 2 kb

  19. The impact of nonpolar lipids on the regulation of the steryl ester hydrolases Tgl1p and Yeh1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Klein, Isabella; Korber, Martina; Athenstaedt, Karin; Daum, Günther

    2017-12-01

    In the yeast Saccharomyces cerevisiae degradation of steryl esters is catalyzed by the steryl ester hydrolases Tgl1p, Yeh1p and Yeh2p. The two steryl ester hydrolases Tgl1p and Yeh1p localize to lipid droplets, a cell compartment storing steryl esters and triacylglycerols. In the present study we investigated regulatory aspects of these two hydrolytic enzymes, namely the gene expression level, protein amount, stability and enzyme activity of Tgl1p and Yeh1p in strains lacking both or only one of the two major nonpolar lipids, steryl esters and triacylglycerols. In a strain lacking both nonpolar lipids and consequently lipid droplets, Tgl1p as well as Yeh1p were present at low amount, became highly unstable compared to wild-type cells, and lost their enzymatic activity. Under these conditions both steryl ester hydrolases were retained in the endoplasmic reticulum. The lack of steryl esters alone was not sufficient to cause an altered intracellular localization of Tgl1p and Yeh1p. Surprisingly, the stability of Tgl1p and Yeh1p was markedly reduced in a strain lacking triacylglycerols, but their capacity to mobilize steryl esters remained unaffected. We also tested a possible cross-regulation of Tgl1p and Yeh1p by analyzing the behavior of each hydrolase in the absence of its counterpart steryl ester hydrolases. In summary, this study demonstrates a strong regulation of the two lipid droplet associated steryl ester hydrolases Tgl1p and Yeh1p due to the presence/absence of their host organelle. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  1. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  2. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  3. Epoxidation of soybean oil with [MoO{sub 2}(acac){sub 2}]/TBHP Catalytic system in [bmim][PF{sub 6}]; Epoxidacao do oleo de soja com o sistema catalitico [MoO{sub 2}(acac){sub 2}]/TBHP em [bmim][PF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Maritana [Instituto Federal de Educacao, Ciencia e Tecnologia Sul-rio-grandense, Pelotas, RS (Brazil); Martinelli, Marcia, E-mail: maritana@pelotas.ifsul.edu.br [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica

    2012-07-01

    Epoxidation of soybean oil was investigated using 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF{sub 6}] ionic liquid as biphasic medium with molybdenum(VI) acetylacetonate complex and tert-butyl hydroperoxide TBHP as oxidizing agent. Reaction conditions were molar ratio TBHP:number of double bonds of oil:catalyst of 100:100:1, reaction temperature of 60 deg C and reaction time between 2 and 24 h. The proposed system showed catalytic activity for epoxidation reactions under tested conditions. Reuse of ionic liquid/catalyst system for epoxidation reactions was also investigated. Evaluation of epoxidation observed in this catalytic system was done by quantitative {sup 1}H NMR data. (author)

  4. Anhydrous ZnCl2: A Highly Efficient Reagent for Facile and Regioselective Conversion of Epoxides to β-Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Ronak Eisavi

    2016-01-01

    Full Text Available Facile conversion of structurally different epoxides to the corresponding β-chlorohydrins was carried out successfully with anhydrous ZnCl2 in CH3CN. The reactions were carried out within 10-50 min to give β-chlorohydrins with perfect regioselectivity and high yields (80-97%.

  5. Synthesis of Biolubricant Basestocks from Epoxidized Soybean Oil

    Directory of Open Access Journals (Sweden)

    Rosa Turco

    2017-10-01

    Full Text Available This work deals with the preparation of biolubricant basestocks through the ring-opening reaction of epoxidized soybean oil (ESO by alcohols in presence of solid acid catalysts (SAC-13 resin. To this end, different experimental runs were carried out in a lab-scale reactor, analyzing the effect of the alcohol (methanol, ethanol, 2-propanol, 2-butanol, catalyst mass loading (from 1 to 10 wt % with respect to the oil mass and operating temperature (60–90 °C. The main focus of investigation was oxirane conversion. The study was complemented by FT-IR, 1H NMR and kinematic viscosity characterization of the different products of the ring-opening reaction. Experimental conversion data were fitted through a suitable kinetic model. Values of the best-fitting parameters in terms of rate constant, activation energy and catalyst reaction order were obtained, and were potentially useful for the design of an industrial process.

  6. In-silico gene co-expression network analysis in Paracoccidioides brasiliensis with reference to haloacid dehalogenase superfamily hydrolase gene

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2015-01-01

    Full Text Available Context: Paracoccidioides brasiliensis, a dimorphic fungus is the causative agent of paracoccidioidomycosis, a disease globally affecting millions of people. The haloacid dehalogenase (HAD superfamily hydrolases enzyme in the fungi, in particular, is known to be responsible in the pathogenesis by adhering to the tissue. Hence, identification of novel drug targets is essential. Aims: In-silico based identification of co-expressed genes along with HAD superfamily hydrolase in P. brasiliensis during the morphogenesis from mycelium to yeast to identify possible genes as drug targets. Materials and Methods: In total, four datasets were retrieved from the NCBI-gene expression omnibus (GEO database, each containing 4340 genes, followed by gene filtration expression of the data set. Further co-expression (CE study was performed individually and then a combination these genes were visualized in the Cytoscape 2. 8.3. Statistical Analysis Used: Mean and standard deviation value of the HAD superfamily hydrolase gene was obtained from the expression data and this value was subsequently used for the CE calculation purpose by selecting specific correlation power and filtering threshold. Results: The 23 genes that were thus obtained are common with respect to the HAD superfamily hydrolase gene. A significant network was selected from the Cytoscape network visualization that contains total 7 genes out of which 5 genes, which do not have significant protein hits, obtained from gene annotation of the expressed sequence tags by BLAST X. For all the protein PSI-BLAST was performed against human genome to find the homology. Conclusions: The gene co-expression network was obtained with respect to HAD superfamily dehalogenase gene in P. Brasiliensis.

  7. Structure of XC6422 from Xanthomonas campestris at 1.6 Å resolution: a small serine α/β-hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao-Yu; Chin, Ko-Hsin [Institute of Biochemistry, National Chung-Hsing University, Taichung 40227,Taiwan (China); Chou, Chia-Cheng; Wang, Andrew H.-J. [Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei,Taiwan (China); Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei,Taiwan (China); Chou, Shan-Ho, E-mail: shchou@nchu.edu.tw [Institute of Biochemistry, National Chung-Hsing University, Taichung 40227,Taiwan (China)

    2006-06-01

    The crystal structure of a conserved hypothetical protein from X. campestris has been determined to a resolution of 1.6 Å. The determined X. campestris structure shows that it belongs to the superfamily of serine α/β hydrolase, with an extra strand preceding the first β-strand to lead to extensive subunit interactions in the crystal. XC6422 is a conserved hypothetical protein from Xanthomonas campestris pathovar campestris (Xcc), a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. The protein consists of 220 amino acids and its structure has been determined to 1.6 Å resolution using the multi-wavelength anomalous dispersion (MAD) method. Although it has very low sequence identity to protein sequences in the PDB (less than 20%), the determined structure nevertheless shows that it belongs to the superfamily of serine α/β-hydrolases, with an active site that is fully accessible to solvent owing to the absence of a lid domain. Modelling studies with the serine esterase inhibitor E600 indicate that XC6422 adopts a conserved Ser-His-Asp catalytic triad common to this superfamily and has a preformed oxyanion hole for catalytic activation. These structural features suggest that XC6422 is most likely to be a hydrolase active on a soluble ester or a small lipid. An extra strand preceding the first β-strand in the canonical α/β-hydrolase fold leads to extensive subunit interactions between XC6422 monomers, which may explain why XC6422 crystals of good diffraction quality can grow to dimensions of up to 1.5 mm in a few days.

  8. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2015-05-01

    Full Text Available In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme cocktail, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60°C to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

  9. Induction of hepatic aryl hydrocarbon hydroxylase and epoxide hydrase in Wistar rats pretreated with oral methadone hydrochloride.

    Science.gov (United States)

    Bellward, G D; Gontovnick, L S; Otten, M

    1977-01-01

    Methadone-HCl added to the drinking water of adult female Wistar rats for 4 weeks produced an increase in the aryl hydrocarbon hydroxylase activity of the hepatic microsomal fraction to 222% of control levels. No change was seen in epoxide hydrase activity. In contrast, when male rats were treated similarly, there was an increase in epoxide hydrase activity to 212% of controls with no change in aryl hydrocarbon hydroxylase activity. No such changes were observed when the subcutaneous route of administration or chronic, low-dose, intraperitoneal injections were used. There were no differences in hepatic cytochrome P-450 or protein concentrations in treated animals as compared to their respective control groups. Control studies were carried out with quinine sulfate in the drinking water to decrease water intake to the level of the methadone-treated group. No elevation in either enzyme activity occurred in this control group. Similarly, paired-feeding studies showed the elevation of enzyme activity to be due to the methadone, not food deprivation. The effects of concurrent therapy of methadone with phenobarbital sodium or 3-methylcholanthrene were compared.

  10. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  11. The Serine Hydrolase ABHD6 Is a Critical Regulator of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gwynneth Thomas

    2013-10-01

    Full Text Available The serine hydrolase α/β hydrolase domain 6 (ABHD6 has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6’s role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  12. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  13. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  14. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  15. Bifunctional nanocrystalline MgO for chiral epoxy ketones via Claisen-Schmidt condensation-asymmetric epoxidation reactions.

    Science.gov (United States)

    Choudary, Boyapati M; Kantam, Mannepalli L; Ranganath, Kalluri V S; Mahendar, Koosam; Sreedhar, Bojja

    2004-03-24

    Design and development of a truly nanobifunctional heterogeneous catalyst for the Claisen-Schmidt condensation (CSC) of benzaldehydes with acetophenones to yield chalcones quantitatively followed by asymmetric epoxidation (AE) to afford chiral epoxy ketones with moderate to good yields and impressive ee's is described. The nanomagnesium oxide (aerogel prepared) NAP-MgO was found to be superior over the NA-MgO and CM-MgO in terms of activity and enantioselectivity as applicable in these reactions. An elegant strategy for heterogenization of homogeneous catalysts is presented here to evolve single-site chiral catalysts for AE by a successful transfer of molecular chemistry to surface metal-organic chemistry with the retention of activity, selectivity/enantioselectivity. Brønsted hydroxyls are established as sole contributors for the epoxidation reaction, while they add on to the CSC, which is largely driven by Lewis basic O2-sites. Strong hydrogen-bond interactions between the surface -OH on MgO and -OH groups of diethyl tartrate are found inducing enantioselectivity in the AE reaction. Thus, the nanocrystalline NAP-MgO with its defined shape, size, and accessible OH groups allows the chemisorption of TBHP, DET, and olefin on its surface to accomplish single-site chiral catalysts to provide optimum ee's in AE reactions.

  16. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Science.gov (United States)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  17. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles.

    Science.gov (United States)

    Hieber, A David; Kawabata, Osamu; Yamamoto, Harry Y

    2004-01-01

    The dynamics of the xanthophyll cycle relative to non-photochemical quenching (NPQ) were examined in tobacco plants overexpressing violaxanthin de-epoxidase (VDE), PsbS and PsbS+VDE for effects on NPQ and violaxanthin (V) de-epoxidation over a range of light intensities. Induction of de-epoxidation and NPQ increased in overexpressed VDE and PsbS plants, respectively. Surprisingly, under low light, overexpressing PsbS enhanced de-epoxidation in addition to NPQ. The effect was hypothesized as due to PsbS binding zeaxanthin (Z) or inducing the binding of Z within the quenching complex, thus shifting the equilibrium toward higher de-epoxidation states. Studies in model systems show that Z can stereospecifically inhibit VDE activity against violaxanthin. This effect, observed under conditions of limiting lipid concentration, was interpreted as product feedback inhibition. These results support the hypothesis that the capacity of the thylakoid lipid phase for xanthophylls is limited and modulates xanthophyll-cycle activity, in conjunction with the release of V and binding of Z by pigment-binding proteins. These modulating factors are incorporated into a lipid-matrix model that has elements of a signal transduction system wherein the light-generated protons are the signal, VDE the signal receptor, Z the secondary messenger, the lipid phase the transduction network, and Z-binding proteins the targets.

  18. Zirconium(IV)-Catalyzed Ring Opening of on-DNA Epoxides in Water.

    Science.gov (United States)

    Fan, Lijun; Davie, Christopher P

    2017-05-04

    DNA-encoded library technology (ELT) has spurred wide interest in the pharmaceutical industry as a powerful tool for hit and lead generation. In recent years a number of "DNA-compatible" chemical modifications have been published and used to synthesize vastly diverse screening libraries. Herein we report a newly developed, zirconium tetrakis(dodecyl sulfate) [Zr(DS) 4 ] catalyzed ring-opening of on-DNA epoxides in water with amines, including anilines. Subsequent cyclization of the resulting on-DNA β-amino alcohols leads to a variety of biologically interesting, nonaromatic heterocycles. Under these conditions, a library of 137 million on-DNA β-amino alcohols and their cyclization products was assembled. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: Pseudo-homogeneous model

    Directory of Open Access Journals (Sweden)

    Janković Milovan

    2017-01-01

    Full Text Available A kinetic model was proposed for the epoxidation of vegetable oils with peracetic acid formed in situ from acetic acid and hydrogen peroxide in the presence of an acidic ion exchange resin as a catalyst. The model is pseudo-homogeneous with respect to the catalyst. Besides the main reactions of peracetic acid and epoxy ring formation, the model takes into account the side reaction of epoxy ring opening with acetic acid. The partitioning of acetic acid and peracetic acid between the aqueous and organic phases and the change in the phases’ volumes during the process were considered. The temperature dependency of the apparent reaction rate coefficients is described by a reparameterized Arrhenius equation. The constants in the proposed model were estimated by fitting the experimental data obtained for the epoxidations of soybean oil conducted under defined reaction conditions. The highest epoxy yield of 87.73% was obtained at 338 K when the mole ratio of oil unsaturation:acetic acid:hydrogen peroxide was 1:0.5:1.35 and when the amount of the catalyst Amberlite IR-120H was 4.04 wt.% of oil. Compared to the other reported pseudo-homogeneous models, the model proposed in this study better correlates the change of double bond and epoxy group contents during the epoxidation process. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45022

  20. Synthesis of nanostructured NiO/Co3O4 through thermal decomposition of a bimetallic (Ni/Co) metal-organic framework as catalyst for cyclooctene epoxidation

    Science.gov (United States)

    Abbasi, Alireza; Soleimani, Mohammad; Najafi, Mahnaz; Geranmayeh, Shokoofeh

    2017-04-01

    Hydrothermal approach has led to the formation of a three-dimensional metal-organic framework (MOF), [NiCo(μ2-tp)(μ4-tp)(4,4‧-bpy)2]n (1) (tp = terephthalic acid and 4,4‧-bpy = 4,4‧-bipyridine) which was characterized by means of single-crystal X-ray diffraction analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy, scanning electron microscopy (SEM) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Thermal decomposition of the MOF afforded nanostructured mixed metal oxide, namely NiO/Co3O4. The XRD and SEM analysis confirm the formation of the mixed metal oxide. The nanostructured NiO/Co3O4 demonstrated good catalytic activity and selectivity in the epoxidation of cyclooctene in the presence of tert-butyl hydroperoxide (TBHP) as oxidant.

  1. Optimization and validation of bioanalytical SPE – HPLC method for the simultaneous determination of carbamazepine and its main metabolite, carbamazepine-10, 11-epoxide, in plasma

    Directory of Open Access Journals (Sweden)

    Jasmina Tonic – Ribarska

    2012-03-01

    Full Text Available Carbamazepine is widely used as an antiepileptic drug in the treatment of partial and generalized tonic-clonic seizures. Carbamazepine 10,11-epoxide is the most important metabolite of carbamazepine, because it is a pharmacologically active compound with anticonvulsant properties. According to that, the routine analysis of carbamazepine 10,11-epoxide along with carbamazepine may provide optimal therapeutic monitoring of carbamazepine treatment. The aim of this study was to optimize and validate a simple and reliable solid - phase extraction method followed by RP-HPLC for the simultaneous determination of plasma levels of carbamazepine and carbamazepine-10,11-epoxide, in order to assure the implementation of the method for therapeutic monitoring. The extraction of the analytes from the plasma samples was performed by means of a solid-phase extraction procedure. The separation was carried out on a reversed-phase column using isocratic elution with acetonitrile and water (35:65, v/v as a mobile phase. The temperature was 30°C and UV detection was set at 220 nm. The extraction yield values were more than 98% for all analytes, measured at four concentration levels of the linear concentration range. The method displayed excellent selectivity, sensitivity, linearity, precision and accuracy. Stability studies indicate that stock solutions and plasma samples were stabile under different storage conditions at least during the observed period. The method was successfully applied to determine the carbamazepine and carbamazepine-10,11-epoxide in plasma of epileptic patients treated with carbamazepine as monotherapy and in polytherapy. In conclusion, the proposed method is suitable for application in therapeutic drug monitoring of epileptic patients undergoing treatment with carbamazepine.

  2. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    Energy Technology Data Exchange (ETDEWEB)

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D' haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  3. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.

    Science.gov (United States)

    Robinson, Serina L; Badalamenti, Jonathan P; Dodge, Anthony G; Tassoulas, Lambros J; Wackett, Lawrence P

    2018-03-12

    Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min -1 mg -1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  5. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.

    Science.gov (United States)

    Whitney, John C; Chou, Seemay; Russell, Alistair B; Biboy, Jacob; Gardiner, Taylor E; Ferrin, Michael A; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D

    2013-09-13

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.

  6. Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair*

    Science.gov (United States)

    Whitney, John C.; Chou, Seemay; Russell, Alistair B.; Biboy, Jacob; Gardiner, Taylor E.; Ferrin, Michael A.; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D.

    2013-01-01

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity. PMID:23878199

  7. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo.

    Science.gov (United States)

    Weinstein, I B; Jeffrey, A M; Jennette, K W; Blobstein, S H; Harvey, R G; Harris, C; Autrup, H; Kasai, H; Nakanishi, K

    1976-08-13

    Evidence has been obtained that a specific isomer of a diol epoxide derivative of benzo(a)pyrene, (+/-)-7 beta,8alpha-dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, is an intermediate in the binding of benzo(a)pyrene to RNA in cultured bovine bronchial mucosa. An adduct is formed between position 10 of this derivative and the 2-amino group of guanine.

  8. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor; Rondelli, Manuel; Krause, Maximilian; Rö tzer, Marian David; Hedhili, Mohamed N.; Heiz, Ulrich; Basset, Jean-Marie; Schweinberger, Florian; D'Elia, Valerio

    2018-01-01

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  9. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor

    2018-01-22

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  10. NMR study of the epoxidation of liquid hydrolyzed poly-butadiene and meta-chloro-per-benzoic acid; Estudo atraves de RMN da reacao de epoxidacao de polibutadieno liquido hidroxilado (PBLH) e acido m-cloro perbenzoico (AMCPB)

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Marcelo [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Akcelrud, L [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica; Menezes, Sonia Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-12-31

    This work presents a study concerning the selectivity of the different configurations of the double bond present in liquid hydrolyzed poly-butadiene towards the epoxidation reaction with meta-chloro-per-benzoic acid through hydrogen-1, carbon-13 NMR aiming the production of new materials, varying the epoxidation level 12 refs., 7 figs., 4 tabs.

  11. Steady state kinetic analysis of substrate specificity of glycoside hydrolases from families 13 and 38

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum

    Glycosidases are widespread in nature, where they perform a diverse range of functions. The glycoside hydrolase (GH) family 38, α-mannosidase II enzymes play a crucial role in mammalian cells, in the maturation of N-glycosylated proteins in the Golgi apparatus and in catabolism in cytosol...

  12. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  13. Screening brazilian macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases

    OpenAIRE

    Schinke, Cláudia; Germani, Jose Carlos

    2012-01-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipas...

  14. Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania

    KAUST Repository

    Mendez, Violaine; Guillois, Kevin; Daniè le, Sté phane; Tuel, Alain; Caps, Valerie

    2010-01-01

    Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influence on gold intrinsic activity but more on the apparent reaction rates which are a combination of catalytic activity and diffusion limitations. These are here minimized by using gadolinium-doped titania nanocrystallites as support for gold nanoparticles. This material is obtained by mild hydrolysis of a new Gd4TiO(OiPr)14 bimetallic oxoalkoxide. It leads to enhanced wettability of the < 3 nm gold particles in the tert-butyl hydroperoxide (TBHP)-initiated epoxidation of stilbene in methylcyclohexane; Au/TiO2:Gd3+ is in turn as active as the state-of-the-art hydrophobic Au/SiO2 catalyst. The rate-determining step of this reaction is identified as the gold-catalyzed homolytic decomposition of TBHP generating radicals and initiating the methylcyclohexane-mediated epoxidation of stilbene, yielding a methylcyclohexan-1-ol/trans-stilbene oxide mixture. Methylcyclohexan-1-ol can also be obtained in the absence of the alkene in the gold-catalyzed solvent-free autoxidation of methylcyclohexane, evidencing the catalytic potential of gold nanoparticles for low temperature C-H activation. © 2010 The Royal Society of Chemistry.

  15. Microencapsulation of Epoxidized Linseed Oil Liquid Cross-Linker in Poly(N-vinyl-pyrrolidone): Optimization by a Design-of-Experiments Approach

    NARCIS (Netherlands)

    Senatore, D.; Laven, J.; Benthem, van R.A.T.M.; La Camera, D.; With, de G.

    2010-01-01

    A liquid cross-linker, epoxidized linseed oil (ELO), was encapsulated in a plastic with a high glass transition temperature (poly(N-vinyl-2-pyrrolidone); PVP). The process parameters of the spray-drying employed were optimized by a Design-of-Experiments (DoE) approach. Three factors concerning both

  16. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose

    NARCIS (Netherlands)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical

  17. Protein features as determinants of wild-type glycoside hydrolase thermostability

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus; Kiemer, Lars; Nielsen, Morten

    2017-01-01

    -silico methods guiding the discovery process would be of high value. To develop such an in-silico method and provide the data foundation of it, we determined the melting temperatures of 602 fungal glycoside hydrolases from the families GH5, 6, 7, 10, 11, 43 and AA9 (formerly GH61). We, then used sequence...... and homology modeled structure information of these enzymes to develop the ThermoP melting temperature prediction method. Futhermore, in the context of thermostability, we determined the relative importance of 160 molecular features, such as amino acid frequencies and spatial interactions, and exemplified...

  18. Quantum chemical study of the mechanism of action of vitamin K epoxide reductase (VKOR)

    Science.gov (United States)

    Deerfield, David, II; Davis, Charles H.; Wymore, Troy; Stafford, Darrel W.; Pedersen, Lee G.

    Possible model, but simplistic, mechanisms for the action of vitamin K epoxide reductase (VKOR) are investigated with quantum mechanical methods (B3LYP/6-311G**). The geometries of proposed model intermediates in the mechanisms are energy optimized. Finally, the energetics of the proposed (pseudo-enzymatic) pathways are compared. We find that the several pathways are all energetically feasible. These results will be useful for designing quantum mechanical/molecular mechanical method (QM/MM) studies of the enzymatic pathway once three-dimensional structural data are determined and available for VKOR.

  19. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Science.gov (United States)

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  20. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying; Takagi, Akira [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kayano, Hidekazu [Department of Pathology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Koyama, Isamu [Department of Digestive and General Surgery, Saitama International Medical Center, Faculty of Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell surface has great variation between the cells.

  1. MICROSOMAL EPOXIDE HYDROLASE (EPHX) POLYMORPHISM AND RISK OF SPONTANEOUS ABORTION. (R825818)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community.

    Directory of Open Access Journals (Sweden)

    Martin Allgaier

    Full Text Available Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, approximately 10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 degrees C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  3. Enantioselective syntheses of aeruginosin 298-A and its analogues using a catalytic asymmetric phase-transfer reaction and epoxidation.

    Science.gov (United States)

    Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu

    2003-09-17

    We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).

  4. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    Science.gov (United States)

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  5. AMPEROMETRIC THICK-FILM STRIP ELECTRODES FOR MONITORING ORGANOPHOSPHATE NERVE AGENTS BASED ON IMMOBILIZED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    An amperometric biosensor based on the immobilization of organophosphorus hydrolase(OPH) onto screen-printed carbon electrodes is shown useful for the rapid, sensitive, and low-costdetection of organophosphate (OP) nerve agents. The sensor relies upon the sensitive and ra...

  6. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2

    Science.gov (United States)

    Li, Naixu; Chen, Yong; Shen, Quanhao; Yang, Bin; Liu, Ming; Wei, Lingfei; Tian, Wei; Zhou, Jiancheng

    2018-05-01

    We report a simple and efficient method for the preparation of highly dispersed Au nanoparticles (< 5 nm) on TS-1 substrate. The synthesis relies on the use of NaBH4 as a reductant for rapid Au atom generation, as well as PVA as a capping agent confining the particle size and dispersion. The samples were characterized by N2 physisorption, inductively coupled plasma mass spectrometry, power X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, CO pulse chemisorption and thermogravimetric analysis. The size of Au particles can be controlled in the range of 3-5 nm. The supported catalyst shows both good activity and selectivity for propylene oxide (PO) generation from direct propylene epoxidation. An optimal performance with PO formation rate of 102.94 gPO h-1 kg-1cat and selectivity of 84.83% is achieved over 2.0 wt% Au/TS-1 catalyst, which is prepared by controlling PVA/Au3+ mass ratio of 1.5/1 and NaBH4/Au3+ mole ratio of 5/1. After 50 h test at 200 °C, no significant decrement of both catalytic activity and PO selectivity can be observed, indicating the excellent thermally stability of the catalyst. Furthermore, a possible reaction mechanism is described on basis of the previous researches and our experimental results.

  7. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    Science.gov (United States)

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P media identified CMM 2105, CMM 1091, and PEL as the fastest-growing isolates. The lipase activity of four isolates grown on olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  8. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, van der C.J.B.; Werf, van der M.J.

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  9. Genetic and biochemical characterization of a novel monoterpene e-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, C.J.B. van der; Werf, M.J. van der

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  10. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  11. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 82, Revision 1 (FGE.82Rev1): Consideration of Epoxides evaluated by the JECFA (65 th meeting)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of five epoxides evaluated by the JECFA at the 65th meeting in 2005. This revision is made due to inclusion of one additional substance, beta-ionone epoxide [FL-no: 07.170], cleared...

  12. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    Science.gov (United States)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  13. Variation in bleomycin hydrolase gene is associated with reduced survival after chemotherapy for testicular germ cell cancer

    NARCIS (Netherlands)

    de Haas, Esther C.; Zwart, Nynke; Meijer, Coby; Nuver, Janine; Boezen, H. Marike; Suurmeijer, Albert J. H.; Hoekstra, Harald J.; van der Steege, Gerrit; Sleijfer, Dirk Th.; Gietema, Jourik A.

    2008-01-01

    Purpose Response to chemotherapy may be determined by gene polymorphisms involved in metabolism of cytotoxic drugs. A plausible candidate is the gene for bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, an essential component of chemotherapy regimens for disseminated testicular

  14. Optimization of the fermentation conditions and substrate specifity of mycelium-bound ester hydrolases of Aspergillus oryzae Cs007

    Directory of Open Access Journals (Sweden)

    de Hong Yan

    2015-01-01

    Full Text Available In order to improve mycelium-bound ester hydrolases activities of Aspergillus oryzae Cs007, the main production conditions were investigated. The ester hydrolases activities were simultaneously determined by titration assay and spectrophotometric assay methods, using olive oil and p-nitrophenyl esters as substrates, respectively. The optimum carbon source and nitrogen source were olive oil and peptone, with the concentrations of 1% and 2.2%, respectively. The effects of carbon source, nitrogen source and their concentrations on the production of enzymes were identical when the enzymes activities were assayed by the two methods. The mycelium-bound enzymes showed hydrolytic activity toward all the tested p-nitrophenyl esters, triglycerides and fatty acid ethyl esters. But it showed greater preference for long-chain triglycerides and short-chain p-nitrophenyl esters.

  15. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    Science.gov (United States)

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Lutein from Deepoxidation of Lutein Epoxide Replaces Zeaxanthin to Sustain an Enhanced Capacity for Nonphotochemical Chlorophyll Fluorescence Quenching in Avocado Shade Leaves in the Dark1

    Science.gov (United States)

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-01-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m−2 s−1, increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQΔpH) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQΔLAZ); and after epoxidation of A+Z but with residual ΔL (NPQΔL). The capacity of both NPQΔLAZ and NPQΔL was similar and 45% larger than NPQΔpH, but dark relaxation of NPQΔLAZ was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQΔLAZ and NPQΔL provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to “lock in” enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools. PMID:21427278

  17. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids

    Directory of Open Access Journals (Sweden)

    Nilakshi Jayawardena

    2015-01-01

    Full Text Available The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P<0.05 increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P<0.05 reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities.

  18. Use of epoxidized natural rubber as a compatibilizer in silica-filled natural rubber tire tread compounds ; Verwendung von epoxydiertem Naturkautschuk als Verträglichkeitsvermittler in Zusammensetzungen aus kieselsäuregefülltem Naturkautschuk für Reifenlaufflächen

    NARCIS (Netherlands)

    Sengloyluan, K.; Sahakaro, Kannika; Noordermeer, Jacobus W.M.

    2012-01-01

    Silica-reinforced natural rubber (NR) tire tread compounds with epoxidized natural rubber (ENR) as a compatibilizer are investigated. ENR contents of 2.5-15.0 phr, with epoxide levels of 10, 38 and 51 mol%, are used. The addition of ENRs, especially ENR-38 and ENR-51, as compatibilizers decreases

  19. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  20. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    Science.gov (United States)

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  1. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  2. Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface: Structural sensitivity

    International Nuclear Information System (INIS)

    Campbell, C.T.

    1984-01-01

    The selective oxidation of ethylene to ethylene epoxide (C 2 H 4 +1/2O 2 →C 2 H 4 O) over Ag is the simplest example of kinetically controlled, selective heterogeneous catalysis. We have studied the steady-state kinetics and selectivity of this reaction for the first time on a clean, well-characterized Ag(110) surface by using a special apparatus which allows rapid (approx.20 s) transfer between a high-pressure catalytic microreactor and an ultrahigh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The effects of temperature and reactant pressures upon the rate and selectivity are virtually identical on Ag(110) and supported, high surface area Ag catalysts. The absolute specific rate (per Ag surface atom) is, however, some 100-fold higher for Ag(110) than for high surface area catalysts. This is related to the well-known structural sensitivity of this reaction. It is postulated that a small percentage of (110) planes (or [110]-like sites) are responsible for most of the catalytic activity of high surface area catalysts. The high activity of the (110) plane is attributed to its high sticking probability for dissociative oxygen adsorption, since the rate of ethylene epoxidation is shown in a related work [Ref. 1: C. T. Campbell and M. T. Paffett, Surf. Sci. (in press)] to be proportional to the coverage of atomically adsorbed oxygen at constant temperature and ethylene pressure

  3. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion associated peptidoglycan hydrolase: fusions, deletions and synergy with LysH5

    Science.gov (United States)

    Virion-associated peptidoglycan hydrolases have a potential as antimicrobial agents due to their ability to lyse Gram positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriopha...

  4. Murein Hydrolase Activity in the Surface Layer of Lactobacillus acidophilus ATCC 4356▿

    OpenAIRE

    Prado Acosta, Mariano; Palomino, María Mercedes; Allievi, Mariana C.; Rivas, Carmen Sanchez; Ruzal, Sandra M.

    2008-01-01

    We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal domain in Bacillus subtilis resulted in the functional verificati...

  5. Manganese catalyzed cis-dihydroxylation of electron deficient alkenes with H(2)O(2).

    Science.gov (United States)

    Saisaha, Pattama; Pijper, Dirk; van Summeren, Ruben P; Hoen, Rob; Smit, Christian; de Boer, Johannes W; Hage, Ronald; Alsters, Paul L; Feringa, Ben L; Browne, Wesley R

    2010-10-07

    A practical method for the multigram scale selective cis-dihydroxylation of electron deficient alkenes such as diethyl fumarate and N-alkyl and N-aryl-maleimides using H(2)O(2) is described. High turnovers (>1000) can be achieved with this efficient manganese based catalyst system, prepared in situ from a manganese salt, pyridine-2-carboxylic acid, a ketone and a base, under ambient conditions. Under optimized conditions, for diethyl fumarate at least 1000 turnovers could be achieved with only 1.5 equiv. of H(2)O(2) with d/l-diethyl tartrate (cis-diol product) as the sole product. For electron rich alkenes, such as cis-cyclooctene, this catalyst provides for efficient epoxidation.

  6. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    Science.gov (United States)

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition

    Science.gov (United States)

    Liu, Dan; Li, Gang; Liu, Haiou

    2018-01-01

    A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.

  8. A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine-10,11-epoxide in plasma and comparison with HPLC

    Science.gov (United States)

    Hemmateenejad, Bahram; Rezaei, Zahra; Khabnadideh, Soghra; Saffari, Maryam

    2007-11-01

    Carbamazepine (CBZ) undergoes enzyme biotransformation through epoxidation with the formation of its metabolite, carbamazepine-10,11-epoxide (CBZE). A simple chemometrics-assisted spectrophotometric method has been proposed for simultaneous determination of CBZ and CBZE in plasma. A liquid extraction procedure was operated to separate the analytes from plasma, and the UV absorbance spectra of the resultant solutions were subjected to partial least squares (PLS) regression. The optimum number of PLS latent variables was selected according to the PRESS values of leave-one-out cross-validation. A HPLC method was also employed for comparison. The respective mean recoveries for analysis of CBZ and CBZE in synthetic mixtures were 102.57 (±0.25)% and 103.00 (±0.09)% for PLS and 99.40 (±0.15)% and 102.20 (±0.02)%. The concentrations of CBZ and CBZE were also determined in five patients using the PLS and HPLC methods. The results showed that the data obtained by PLS were comparable with those obtained by HPLC method.

  9. Discovery of α-L-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Katayama, Takane; Arakawa, Takatoshi

    2017-01-01

    Enzymes of the glycoside hydrolase family 42 (GH42) are widespread in bacteria of the human gut microbiome and play fundamental roles in the decomposition of both milk and plant oligosaccharides. All GH42 enzymes characterized so far have β-galactosidase activity. Here, we report the existence...

  10. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile

    Directory of Open Access Journals (Sweden)

    Yu Fangyou

    2010-11-01

    Full Text Available Abstract Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated. Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria.

  11. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides

    KAUST Repository

    Zhao, Junpeng

    2015-02-04

    Organocatalytic ring-opening polymerization (ROP) reactions of three renewable 5-alkyl δ-lactones, namely δ-hexalactone (HL), δ-nonalactone (NL) and δ-decalactone (DL), using diphenyl phosphate (DPP) were investigated. Room temperature, together with a relatively high monomer concentration (≥3 M), was demonstrated to be suitable for achieving a living ROP behavior, a high conversion of the lactone, a controlled molecular weight and a low dispersity of the polyester. HL, containing a 5-methyl substituent, showed a much higher reactivity (polymerization rate) and a slightly higher equilibrium conversion than the compounds with longer alkyl substituents (NL and DL). The effectiveness of DPP-catalyzed ROP of 5-alkyl δ-lactones facilitated the one-pot performance following the t-BuP4-promoted ROP of monosubstituted epoxides. It has been shown in an earlier study that substituted polyethers acted as "slow initiators" for non-substituted lactones. However, efficient initiations were observed in the present study as substituted lactones were polymerized from the substituted polyethers. Therefore, this reinforces the previously developed "catalyst switch" strategy, making it a more versatile tool for the synthesis of well-defined polyether-polyester block copolymers from a large variety of epoxide and lactone monomers. © The Royal Society of Chemistry 2015.

  12. Serum concentration of ubiquitin c-terminal hydrolase-L1 in detecting severity of traumatic brain injury

    Science.gov (United States)

    Siahaan, A. M. P.; Japardi, I.; Hakim, A. A.

    2018-03-01

    One of the main problems with ahead injury is assessing the severity. While physical examination and imaging had limitations, neuronal damage markers, ubiquitin C-terminal hydrolase-L1 (UCH-L1), released in theblood may provide valuable information about diagnosis the traumatic brain injury (TBI).Analyzing the concentrations of serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), there must have a neuronal injury biomarker, in theTBI patients serum and their association with clinical characteristics and outcome. There were 80 TBI subjects, and there are mild, moderate, and severe involved in this study of case- control. By using ELISA, we studied the profile of serum UCH-L1 levels for TBI patients. TheUCH-L1 serum level of moderate and severe head injury is higher than in mild head injury (pinjury patients. There is no particular correlation found between serum UCH-L1 level and outcome. Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI but do not correlate with outcome.

  13. Studying the iodine leaching from the compositions based on epoxide resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    When studying iodine leaching, the possibility to use solid compositions, produced by incorporation of dry powdered lead iodide and its aqueous suspension into epoxide resin for long-term immobilization of iodine-129 under conditions of monitored storage, is evaluated. Analysis of the results obtained has shown that leaching rate in the first 4 days has the maximum value and constitutes (4.2 - 2700.0) x 10 -6 cm/day. Then the process of leaching is determined by diffusion mechanism. For samples, prepared by wet lead iodide incorporation the rate of leaching is higher than that of the corresponding samples prepared by dry compound incorporation

  14. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities.

    Science.gov (United States)

    Lee, Yian Hoon; Choo, Candy; Watawana, Mindani I; Jayawardena, Nilakshi; Waisundara, Viduranga Y

    2015-11-01

    Eighteen edible plants were assessed for their antioxidant potential based on oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, total phenolics, vitamin C content and various lipophilic antioxidants. The inhibitory activities of the plant extracts against the enzymatic activities of α-amylase and α-glucosidase were also evaluated. The antioxidant and starch hydrolase activities of the plants varied widely across a single batch of analysis. The ORAC and DPPH radical scavenging EC50 values varied between 298 and 1984 Trolox equivalents g(-1) fresh weight and between 91 and 533 mg kg(-1) fresh weight, respectively. The total phenolics and vitamin C contents varied between 32 and 125 mg gallic acid equivalents g(-1) fresh weight and between 96 and 285 µg g(-1) fresh weight, respectively. All the plants contained neoxanthin, violaxanthin, and α- and β-carotene in varying amounts. Coccinia grandis, Asparagus racemosus, Costus speciosus, Amaranthus viridis and Annona muricata displayed the highest inhibitory activities against starch hydrolases. They were the most efficient against the breakdown of seven starches exposed to the two enzymes as well. Overall, the edible plants were observed to display a high antioxidant potential with starch hydrolase inhibitory properties, which were beneficial in their being recognized as functional food. © 2014 Society of Chemical Industry.

  15. Spectroscopic studies of organic-inorganic composite film cured by low energy electron beam

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ibrahim Abdullah; Eda Yuhana Ariffin

    2009-01-01

    Liquid epoxidized natural rubber acrylate (LENRA) film was reinforced with silica particles formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethyl orthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reactions was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. The compounds that contain silica were crosslinked by electron beam. Structural properties studies were carried out by Fourier Transform Infrared Spectrometer (FTIR). It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. Morphology study by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at any concentrations of TEOS. (author)

  16. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Basseres, Eugene; Coppotelli, Giuseppe; Pfirrmann, Thorsten

    2010-01-01

    Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria monocyto......Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria...... of downstream ERK1/2- and AKT-dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH-L1(C90S...

  17. Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Qing; Luo, Huadong; Cao, Di; Zhang, Haibo; Wang, Wenjing; Zhou, Xiaohai [Wuhan University, Wuhan (China)

    2012-06-15

    Rhodamine B (RhB) and rhodamine 6G (Rh6G) were employed as catalysts for the synthesis of cyclic carbonate from carbon dioxide and epoxide. It turned out that the catalytic activity of Rh6G was nearly 29 times higher than that of RhB at 1 atm pressure, 90 .deg. C. Furthermore, the catalytic efficiency of RhB and Rh6G was greatly enhanced with triethylamine as co-catalyst. Under the optimized conditions, the best isolated yield (93%) of cyclic carbonate was achieved without organic solvent and metal component

  18. Catalytic applications of immobilized ionic liquids for synthesis of cyclic carbonates from carbon dioxide and epoxides

    International Nuclear Information System (INIS)

    Kim, Dong-Woo; Roshan, Roshith; Tharun, Jose; Cherian, Amal; Park, Dae-Won

    2013-01-01

    The catalytic applicability of ionic liquids immobilized on various support materials such as silica, polystyrene and biopolymers in the cycloaddition of carbon dioxide with epoxides is reviewed in this work. Comparisons of the catalytic efficiency of these various catalysts have been done from the aspect of turnover number and reusability. The studies revealed that ionic liquids or support materials possessing hydrogen bonding capable groups exhibited enhanced catalytic activity towards cyclic carbonate synthesis. Moreover, the increased quest towards environmentally benign materials has renewed the search for biocompatible materials as support for ionic liquids

  19. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism

    DEFF Research Database (Denmark)

    Kory, Nora; Grond, Susanne; Kamat, Siddhesh S

    2017-01-01

    Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids...

  20. Identification of hepatic metabolites of two highly carcinogenic polycyclic aza-aromatic compounds, 7,9-dimethylbenz[c]acridine and 7,10-dimethylbenz[c]acridine.

    Science.gov (United States)

    Ye, Y; Duke, C C; Holder, G M

    1995-03-01

    The hepatic microsomal metabolites of the highly carcinogenic dimethylbenzacridines, 7,9-dimethylbenz[c]acridine (7,9-DMBAC), and 7,10-dimethylbenz[c]acridine (7,10-DMBAC) were obtained with preparations from 3-methylcholanthrene-pretreated rats. Metabolites were separated by reversed-phase HPLC and characterized using UV spectral data and chemical ionization-mass spectrometry after trimethylsilylation and GC. Comparisons with products formed in the presence of the epoxide hydrolase inhibitor, 1,1,1-trichloropropane 2,3-oxide and with those formed from the three synthetic alcohol derivatives of each parent compound, aided the assignment of firm or tentative structures to 16 products from 7,9-DMBAC found in 22 reversed-phase chromatographic peaks, and for 17 products of 7,10-DMBAC found in 19 chromatographic peaks. The more abundant metabolites were derived from oxidation of the methyl groups. Other metabolites were dihydrodiols, epoxides, phenols and secondary metabolites. The 9-methyl group prevented dihydrodiol formation at the 8,9-position from 7,9-DMBAC, and for each carcinogen, the 3,4-dihydrodiol was formed. As well, 3,4-dihydrodiols of methyl oxidized compounds were found.

  1. Reactivity of the biphasic trichloroacetonitrile-CH2Cl2/H2O2 system in the epoxidation of soybean oil

    Directory of Open Access Journals (Sweden)

    Martinelli, Márcia

    2002-06-01

    Full Text Available In this work we report on the epoxidation of soybean oil by the trichloroacetonitrile -CH2Cl2/H2O2 byphasic system. The reaction was carried out at room temperature and, most importantly, in non acid conditions which prevent the opening of the oxirane ring. The epoxidized soybean oil was characterized by infrared, 1H and 13C NMR. A maximum conversion of 81 % was achieved in two hours with 86% of selectivity in epoxy groupsEn el presente trabajo informamos sobre la epoxidación de aceite de soja mediante el sistema bifásico tricloroacetonitrilo-CH2Cl2/H2O2. La reacción fue realizada bajo condiciones de temperatura ambiente y, lo más importante, en condición no ácida, lo que evita la apertura del anillo oxirano. El aceite de soja fue caracterizado por infrarrojo y RMN de 1H and 13C. En dos horas se alcanzó una conversión máxima del 81 % obteniéndose una selectividad del 86 % en grupos epóxidos

  2. A DFT-Based Computational-Experimental Methodology for Synthetic Chemistry: Example of Application to the Catalytic Opening of Epoxides by Titanocene.

    Science.gov (United States)

    Jaraíz, Martín; Enríquez, Lourdes; Pinacho, Ruth; Rubio, José E; Lesarri, Alberto; López-Pérez, José L

    2017-04-07

    A novel DFT-based Reaction Kinetics (DFT-RK) simulation approach, employed in combination with real-time data from reaction monitoring instrumentation (like UV-vis, FTIR, Raman, and 2D NMR benchtop spectrometers), is shown to provide a detailed methodology for the analysis and design of complex synthetic chemistry schemes. As an example, it is applied to the opening of epoxides by titanocene in THF, a catalytic system with abundant experimental data available. Through a DFT-RK analysis of real-time IR data, we have developed a comprehensive mechanistic model that opens new perspectives to understand previous experiments. Although derived specifically from the opening of epoxides, the prediction capabilities of the model, built on elementary reactions, together with its practical side (reaction kinetics simulations of real experimental conditions) make it a useful simulation tool for the design of new experiments, as well as for the conception and development of improved versions of the reagents. From the perspective of the methodology employed, because both the computational (DFT-RK) and the experimental (spectroscopic data) components can follow the time evolution of several species simultaneously, it is expected to provide a helpful tool for the study of complex systems in synthetic chemistry.

  3. Efficacy of S-adenosylhomocysteine hydrolase inhibitors, D-eritadenine and (S)-DHPA, against the growth of Cryptosporidium parvum in vitro

    Czech Academy of Sciences Publication Activity Database

    Čtrnáctá, Vlasta; Fritzler, J. M.; Šurínová, M.; Hrdý, I.; Zhu, G.; Stejskal, F.

    2010-01-01

    Roč. 126, č. 2 (2010), s. 113-116 ISSN 0014-4894 Institutional research plan: CEZ:AV0Z50520701 Keywords : S-adenosylhomocysteine hydrolase * D-eritadenine * (S)-DHPA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.869, year: 2010

  4. Genetic variation in the bleomycin hydrolase gene and bleomycin-induced pulmonary toxicity in germ cell cancer patients

    NARCIS (Netherlands)

    Nuver, J; Lutke-Holzik, MF; van Zweeden, M; Hoekstra, HJ; Meijer, C; Suurmeijer, AJH; Hofstra, RM; Sluiter, WJ; Sleijfer, D; Gietema, JA; Groen, Hendricus; Groen, Herman

    Objective Use of bleomycin as a cytotoxic agent is limited by its pulmonary toxicity. Bleomycin is mainly excreted by the kidneys, but can also be inactivated by bleomycin hydrolase (BMH). An 1450A > G polymorphic site in the BMH gene results in an amino acid substitution in the C-terminal domain of

  5. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  6. Potassium biphthalate buffer for pH control to optimize glycosyl hydrolase production in shake flasks using filamentous fungi

    Directory of Open Access Journals (Sweden)

    Patrícia dos Santos Costa

    Full Text Available Abstract The optimization of culture medium with statistical methods is widely used in filamentous fungi glycosyl hydrolase production. The implementation of such methodology in bioreactors is very expensive as it requires several pH-controlled systems operating in parallel in order to test a large number of culture media components. The objective of this study was to evaluate potassium biphthalate buffer for pH control, which allows the optimization studies to be performed in shake flasks.The results have shown that buffering the culture medium with 0.1 M potassium biphthalate allowed pH control, resulting in a decrease of the standard deviation of triplicates for pH and activities of glycosyl hydrolase measurements. The use of this buffer allowed shake flask culture media optimization of enzyme production by Trichoderma harzianum, increasing the cellulase activity by more than 2 times compared to standard unbuffered culture medium. The same buffer can be used for culture media optimization of other fungi, such as Penicillium echinulatum.

  7. Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice

    OpenAIRE

    Murthy, Vishakantha; Reyes, Santiago; Geng, Liyi; Gao, Yang; Brimijoin, Stephen

    2016-01-01

    Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains...

  8. Synthesis, Characterization and Epoxidation of cis-Enriched New Polycarbonates Catalyzed by Efficient Organotin Compound

    Directory of Open Access Journals (Sweden)

    A. H. Massoudi

    2011-01-01

    Full Text Available Presence of active functional groups on polymer chain is a suitable aspect of polymer structure which allows performing next favourite reactions on polymer molecule. In this research a novel aromatic derivative of cis-but-2-endiol was synthesized as monomer. The synthesized monomer was polymerized using diphenyl carbonate and 1,4-butandiol as second and third monomer along with organotin catalyst. Polymerization reaction performed by using melt-phase transesterification process to produce a new terpolymer of polycarbonate. During the reaction the double bonds are preserved on polymer chain and epoxidized by m-chloroperbenzoic acid (MCBPA in good yield to demonstrate the reactivity and possibility of performing further reactions on double bonds of polymer.

  9. Reaction of biscyclopentadienyl molybdendihalides with tert.-butyl hydroperoxide and its using for cyclohexene epoxidation

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.; Fomin, V.M.; Kolmakov, A.O.

    1983-01-01

    As a result of reactions of biscyclopentadienyl molybden-dihalides (Cp 2 MoX 2 , X=Cl, Br or I) with tert.-butyl hydroperoxide, tert.-butylperoxides of biscyclopentadienyl molybdendichloride and-dibromide are synthesized for the first time, which are characterized by physico-chemical properties. Cyclohexene in the reaction mixture of Cp 2 MoX 2 with tert -butyl hydroperoxide is oxidated to form cyclohexene oxide, the reaction proceeding at a high rate and with a quantitative yield. Tert.-butylperoxide of biscyclopentadienyl molybdendihalide is responsible for the cyclohexene epoxidation reaction. The schemes for the mechanism of Cp 2 MoX 2 reactions with tert.-butyl hydroperoxide in the absence and presence of olefine are suggested

  10. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion

    Directory of Open Access Journals (Sweden)

    Jay E. Mellon

    2015-08-01

    Full Text Available Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates.

  11. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    Science.gov (United States)

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    Directory of Open Access Journals (Sweden)

    Ramez A Al-Mansob

    Full Text Available Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  13. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S-3-(Oxiran-2-ylpropanoates from Renewable Levoglucosenone: An Access to Enantiopure (S-Dairy Lactone

    Directory of Open Access Journals (Sweden)

    Aurélien A. M. Peru

    2016-07-01

    Full Text Available Chiral epoxides—such as ethyl and methyl (S-3-(oxiran-2-ylpropanoates ((S-1a/1b—are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation in low to moderate overall yield (20%–50%. Moreover, this procedure requires some harmful reagents such as sodium nitrite ((ecotoxic and borane (carcinogen. Herein, starting from levoglucosenone (LGO, a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S-3-(oxiran-2-ylpropanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.

  14. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    Science.gov (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  15. Modification of olefinic double bonds of unsaturated fatty acids and other vegetable oil derivatives via epoxidation: A review; Modificación del doble enlace olefínico en ácidos grasos insaturados y en derivados de aceites vegetales via epoxidación: Revisión

    Energy Technology Data Exchange (ETDEWEB)

    Noor Armylisas, A.H.; Siti Hazirah, M.F.; Yeong, S.K.; Hazimah, A.H.

    2017-07-01

    The highly strained ring in epoxides makes these compounds very versatile intermediates. Epoxidized vegetable oils are gaining a lot of attention as renewable and environmentally friendly feedstock with various industrial applications such as plasticizers, lubricant base oils, surfactants, etc. Numerous papers have been published on the development of the epoxidation methods and the number is still growing. This review reports the synthetic approaches and applications of epoxidized vegetable oils. [Spanish] La alta tensión del anillo en los epóxidos hace que estos compuestos intermediarios sean muy versátiles. Los aceites vegetales epoxidados están ganando mucha atención como materia prima renovable y respetuosa con el medio ambiente con diversas aplicaciones industriales, tales como plastificantes, aceites base para lubricantes, tensioactivos, etc. Por esta razón, se han publicado numerosos trabajos sobre el desarrollo de métodos de epoxidación y el número todavía es creciente. Esta revisión aporta información sobre enfoques sintéticos y aplicaciones de aceites vegetales epoxidados.

  16. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes

    Directory of Open Access Journals (Sweden)

    Pascal Viens

    2015-10-01

    Full Text Available Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC or chitosan oligosaccharides (CHOS from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.

  17. N (6-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1.

    Directory of Open Access Journals (Sweden)

    Claire Amiable

    Full Text Available The gene dnph1 (or rcl encodes a hydrolase that cleaves the 2'-deoxyribonucleoside 5'-monophosphate (dNMP N-glycosidic bond to yield a free nucleobase and 2-deoxyribose 5-phosphate. Recently, the crystal structure of rat DNPH1, a potential target for anti-cancer therapies, suggested that various analogs of AMP may inhibit this enzyme. From this result, we asked whether N (6-substituted AMPs, and among them, cytotoxic cytokinin riboside 5'-monophosphates, may inhibit DNPH1. Here, we characterized the structural and thermodynamic aspects of the interactions of these various analogs with DNPH1. Our results indicate that DNPH1 is inhibited by cytotoxic cytokinins at concentrations that inhibit cell growth.

  18. CO2 Conversion: The Potential of Porous–Organic Polymers (POPs) for the cycloaddition of CO2 and epoxides

    KAUST Repository

    Alkordi, Mohamed Helmi

    2016-03-30

    Novel porous organic polymers (POPs) have been synthesized using functionalized Cr and Co-salen complexes as molecular building blocks. The integration of metalosalen catalysts into the porous polymers backbone permits the successful utilization of the materials as solid-state catalysts for CO2-epoxide cycloadditions reactions with excellent catalytic performance under mild conditions of temperature and pressure. The catalyst proved to be fully recyclable and robust thus showing the potential of POPs as smart functional materials for the heterogenization of key catalytic elements.

  19. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S O; Baumann, T F; Wang, Y M; van Buuren, T; Satcher, J H

    2004-08-13

    Monolithic nanocrystalline anatase titania aerogels are synthesized by the epoxide sol-gel method followed by thermal annealing at 550 C. These aerogels are formed by {approx}10-20 nm size anatase nanoparticles which are randomly oriented and interconnected into an open-cell solid network. Aerogel monoliths have an apparent density of {approx}6% and a surface area of {approx} 100 m{sup 2} g{sup -1}. High-resolution transmission electron microscopy and soft x-ray absorption near-edge structure spectroscopy reveal good crystallinity of the anatase nanoparticles forming the aerogel skeleton.

  20. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    Science.gov (United States)

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Adam, Nurul Ilham [Faculty of Applied Sciences, Universiti Teknologi MARA, KampusTapah, 35400 Tapah Road, Tapah, Perak (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Sciences and Technology, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Ali, Ab Malik Marwan [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  2. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    International Nuclear Information System (INIS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-01-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ( 1 HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1 HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF 3 SO 3 show the highest conductivity. The complexation between EMG30 and LiCF 3 SO 3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  3. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Science.gov (United States)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  4. In vivo imaging of vesicular monoamine transporter 2 in pancreas using an {sup 18}F epoxide derivative of tetrabenazine

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kunghf@sunmac.spect.upenn.edu; Lieberman, Brian P. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhuang Zhiping [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Oya, Shunichi; Kung Meiping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Choi, Seok Rye [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Poessl, Karl; Blankemeyer, Eric; Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-11-15

    Objectives: Development of imaging agents for pancreatic beta cell mass may provide tools for studying insulin-secreting beta cells and their relationship with diabetes mellitus. In this paper, a new imaging agent, [{sup 18}F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7, 11b-hexahydro-1H-pyrido[2,1-a]isoquinoline [{sup 18}F](+)4, which displays properties targeting vesicular monoamine transporter 2 (VMAT2) binding sites of beta cells in the pancreas, was evaluated as a positron emission tomography (PET) agent for estimating beta cell mass in vivo. The hydrolyzable epoxide group of (+)4 may provide a mechanism for shifting biodistribution from liver to kidney, thus reducing the background signal. Methods: Both {sup 18}F- and {sup 19}F-labeled (+) and (-) isomers of 4 were synthesized and evaluated. Organ distribution was carried out in normal rats. Uptake of [{sup 18}F](+)4 in pancreas of normal rats was measured and correlated with blocking studies using competing drugs, (+)dihydrotetrabenazine [(+)-DTBZ] or 9-fluoropropyl-(+)dihydro tetrabenazine [FP-(+)-DTBZ, (+)2]. Results: In vitro binding study of VMAT2 using rat brain striatum showed a K{sub i} value of 0.08 and 0.15 nM for the (+)4 and ({+-})4, respectively. The in vivo biodistribution of [{sup 18}F](+)4 in rats showed the highest uptake in the pancreas (2.68 %ID/g at 60 min postinjection). In vivo competition experiments with cold FP-(+)-DTBZ, (+)2, (3.5 mg/kg, 5 min iv pretreatment) led to a significant reduction of pancreas uptake (85% blockade at 60 min). The inactive isomer [{sup 18}F](-)4 showed significantly lower pancreas uptake (0.22 %ID/g at 30 min postinjection). Animal PET imaging studies of [{sup 18}F](+)4 in normal rats demonstrated an avid pancreatic uptake in rats. Conclusion: The preliminary results suggest that the epoxide, [{sup 18}F](+)4, is highly selective in binding to VMAT2 and it has an excellent uptake in the pancreas of rats. The liver uptake was significantly

  5. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    Science.gov (United States)

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-03-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.

  6. Evaluation of the Stability of the Total Antioxidant Capacity, Polyphenol Contents, and Starch Hydrolase Inhibitory Activities of Kombucha Teas Using an In Vitro Model of Digestion

    Directory of Open Access Journals (Sweden)

    Mindani I. Watawana

    2015-01-01

    Full Text Available The objective of this study was to evaluate and compare antioxidant and starch hydrolase inhibitory activity of three different types of Kombucha beverages prepared by three pellicles with different microbial compositions. The fermentation process was carried out for 7 days and the assessments of antioxidant and starch hydrolase inhibitory activities as well as tea phenolic compounds were carried out. These parameters were also evaluated after subjecting the final fermented samples to gastric and duodenal digestion in an in vitro digestion model. The pH had a statistically significant decrease during the period of fermentation. The total phenolics content and antioxidant activities had increased during the fermentation process as well as when subjected to digestion. The starch hydrolase inhibitory activities also increased in a similar manner during the different phases. The α-amylase and α-glucosidase inhibitory activities showed statistically significant increases (P<0.05 as the fermentation progressed, while an increase was observed after being subjected to pancreatic and duodenal digestion as well. All three types of tea showed a higher α-amylase inhibitory activity than α-glucosidase inhibitory activity.

  7. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII).

    Science.gov (United States)

    Schaller, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Wilhelm, Christian; Strzałka, Kazimierz; Goss, Reimund

    2010-03-01

    In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Epoxidação "in situ" aplicada ao látex de borracha natural "In situ" epoxidation of natural rubber latex

    Directory of Open Access Journals (Sweden)

    Cristiane K. Santin

    2012-01-01

    Full Text Available O comportamento da borracha natural na forma látex frente à reação de epoxidação foi avaliado visando estabelecer as melhores condições reacionais sem a ocorrência de reações laterais, que promovem a coagulação do látex e o desenvolvimento de um aglomerado de borracha. Grupos epóxidos foram gerados através da reação de epoxidação a partir da formação in situ do ácido perfórmico. As amostras foram caracterizadas qualitativamente por espectroscopia de infravermelho (FTIR e o grau de modificação determinado por ressonância magnética nuclear de hidrogênio (1H-RMN. Análises de calorimetria exploratória diferencial (DSC demonstraram que a mobilidade da cadeia polimérica foi influenciada pela presença de grupos epóxidos, com aumento linear na temperatura de transição vítrea (Tg. Os resultados indicaram que a epoxidação do látex de borracha natural, sem a ocorrência de reações laterais, é possível e dependente das condições reacionais.Natural rubber latex was submitted to epoxidation reaction to establish the best reaction conditions without the occurrence of side reactions, which promote coagulation of the latex and development of an agglomerate of rubber. Epoxy groups were produced by in situ epoxidation with formic acid and hydrogen peroxide. The samples were characterized qualitatively by Fourier Transform Infrared (FTIR analysis and the degree of modification determined by Hydrogen Nuclear Magnetic Resonance Spectroscopy (1H-NMR analysis. A linear increase in the glass transition temperature (Tg was observed. The results show that the epoxidation of natural rubber latex is possible and depends on the reaction conditions.

  9. Some hydrolase activities from the tick Hyalomma lusitanicum Koch, 1844 (Ixodoidea: Ixodida

    Directory of Open Access Journals (Sweden)

    Giménez-Pardo C.

    2008-12-01

    Full Text Available In this work has been made a detection and preliminary characterization of some hydrolases in whole extracts from unfed adult males and females of Hyalomma lusitanicum, one of the vectors for Theileria annulata that causes Mediterranean theileriosis in cattle. We have elected as targets, proteases as enzymes implicated in the nutritional processes of ticks, esterases that are usually implicated in resistance to organophosphates and phosphatises often implicated in protein phosphorilation and control of ticks salivary gland. The biological role and physiological significance are discussed in terms of the possibility of use these enzymes as possible in future anti-tick vaccination or acaricide resistance.

  10. Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism

    NARCIS (Netherlands)

    Rozeboom, Henriëtte J.; Yu, Shukun; Madrid, Susan; Kalk, Kor H.; Zhang, Ran; Dijkstra, Bauke W.

    2013-01-01

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades

  11. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tasuku; Saikawa, Kyo [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Kim, Seonah [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Fujita, Kiyotaka [Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima (Japan); Ishiwata, Akihiro [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); Kaeothip, Sophon [ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Arakawa, Takatoshi; Wakagi, Takayoshi [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Beckham, Gregg T., E-mail: Gregg.Beckham@nrel.gov [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Fushinobu, Shinya, E-mail: asfushi@mail.ecc.u-tokyo.ac.jp [Department of Biotechnology, The University of Tokyo, Tokyo (Japan)

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.

  12. Production and characterisation of glycoside hydrolases from GH3, GH5, GH10, GH11 and GH61 for chemo-enzymatic synthesis of xylo- and mannooligosaccharides

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol

    Produktion og karakterisering af glykosid hydrolaser fro GH3, GH5, GH10, GH11 og GH61 til chemo-enzymatisk syntese af xylo- og mannooligosakkarider Biprodukter fra hydrolyse af plantecellevægge er kilder til oligosakkarider, som potentielt kan fungere som prebiotika ved at stimulere væksten af...... omfatter karakterisering af de producerede enzymer samt cDNA kloning af formodet GH61 endo Produktion og karakterisering af glykosid hydrolaser fro GH3, GH5, GH10, GH11 og GH61 til chemo-enzymatisk syntese af xylo- og mannooligosakkarider Biprodukter fra hydrolyse af plantecellevægge er kilder til...

  13. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    Science.gov (United States)

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented. PMID:24690139

  14. Supertoughened Biobased Poly(lactic acid)-Epoxidized Natural Rubber Thermoplastic Vulcanizates: Fabrication, Co-continuous Phase Structure, Interfacial in Situ Compatibilization, and Toughening Mechanism.

    Science.gov (United States)

    Wang, Youhong; Chen, Kunling; Xu, Chuanhui; Chen, Yukun

    2015-09-10

    In the presence of dicumyl peroxide (DCP), biobased thermoplastic vulcanizates (TPVs) composed of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) were prepared through dynamic vulcanization. Interfacial in situ compatibilization between PLA and ENR phases was confirmed by Fourier transform infrared spectroscopy (FT-IR). A novel "sea-sea" co-continuous phase in the PLA/ENR TPVs was observed through scanning electron microscopy (SEM) and differed from the typical "sea-island" morphology that cross-linked rubber particles dispersed in plastic matrix. A sharp, brittle-ductile transition occurred with 40 wt % of ENR, showing a significantly improved impact strength of 47 kJ/m(2), nearly 15 times that of the neat PLA and 2.6 times that of the simple blend with the same PLA/ENR ratio. Gel permeation chromatography (GPC) and dynamic mechanical analysis (DMA) results suggested that a certain amount of DCP was consumed in the PLA phase, causing a slight cross-linking or branching of PLA molecules. the effects of various DCP contents on the impact property were investigated. The toughening mechanism under impact testing was researched, and the influence factors for toughening were discussed.

  15. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L. (Michigan)

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  16. Heterologous expression of the methyl carbamate-degrading hydrolase MCD.

    Science.gov (United States)

    Naqvi, Tatheer; Cheesman, Matthew J; Williams, Michelle R; Campbell, Peter M; Ahmed, Safia; Russell, Robyn J; Scott, Colin; Oakeshott, John G

    2009-10-26

    The methyl carbamate-degrading hydrolase (MCD) of Achromobacter WM111 has considerable potential as a pesticide bioremediation agent. However this potential has been unrealisable until now because of an inability to express MCD in heterologous hosts such as Escherichia coli. Herein, we describe the first successful attempt to express appreciable quantities of MCD in active form in E. coli, and the subsequent characterisation of the heterologously expressed material. We find that the properties of this material closely match the previously reported properties of MCD produced from Achromobacter WM111. This includes the presence of two distinct forms of the enzyme that we show are most likely due to the presence of two functional translational start sites. The purified enzyme catalyses the hydrolysis of a carbamate (carbaryl), a carboxyl ester (alpha-naphthyl acetate) and a phophotriester (dimethyl umbelliferyl phosphate) and it is relatively resistant to thermal and solvent-mediated denaturation. The robust nature and catalytic promiscuity of MCD suggest that it could be exploited for various biotechnological applications.

  17. Ubiquitin C-Terminal Hydrolase-Activity Is Involved in Sperm Acrosomal Function and Anti-polyspermy Defense During Porcine Fertilization

    Czech Academy of Sciences Publication Activity Database

    Yi, Y. J.; Manandhar, G.; Sutovsky, M.; Rongfeng, L.; Jonáková, Věra; Oko, R.; Park, C. S.; Prather, R.S.; Sutovsky, P.

    2007-01-01

    Roč. 77, č. 5 (2007), s. 780-793 ISSN 0006-3363 R&D Projects: GA ČR GA303/06/0895; GA MŠk 1M06011 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : Ubiquitin * proteasome * hydrolase * spermadhesin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.670, year: 2007

  18. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Wuttichai Natongchai

    2017-11-01

    Full Text Available A simple, efficient, and environmentally benign approach for the synthesis of β-amino alcohols is herein described. YCl3 efficiently carried out the ring opening of epoxides by amines to produce β-amino alcohols under solvent-free conditions at room temperature. This catalytic approach is very effective, with several aromatic and aliphatic oxiranes and amines. A mere 1 mol % concentration of YCl3 is enough to deliver β-amino alcohols in good to excellent yields with high regioselectivity.

  19. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    Science.gov (United States)

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).

  20. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes.

    Science.gov (United States)

    Kuntze, Kevin; Shinoda, Yoshifumi; Moutakki, Housna; McInerney, Michael J; Vogt, Carsten; Richnow, Hans-Hermann; Boll, Matthias

    2008-06-01

    In anaerobic bacteria, most aromatic growth substrates are channelled into the benzoyl-coenzyme A (CoA) degradation pathway where the aromatic ring is dearomatized and cleaved into an aliphatic thiol ester. The initial step of this pathway is catalysed by dearomatizing benzoyl-CoA reductases yielding the two electron-reduction product, cyclohexa-1,5-diene-1-carbonyl-CoA, to which water is subsequently added by a hydratase. The next two steps have so far only been studied in facultative anaerobes and comprise the oxidation of the 6-hydroxyl-group to 6-oxocyclohex-1-ene-1-carbonyl-CoA (6-OCH-CoA), the addition of water and hydrolytic ring cleavage yielding 3-hydroxypimelyl-CoA. In this work, two benzoate-induced genes from the obligately anaerobic bacteria, Geobacter metallireducens (bamA(Geo)) and Syntrophus aciditrophicus (bamA(Syn)), were heterologously expressed in Escherichia coli, purified and characterized as 6-OCH-CoA hydrolases. Both enzymes consisted of a single 43 kDa subunit. Some properties of the enzymes are presented and compared with homologues from facultative anaerobes. An alignment of the nucleotide sequences of bamA(Geo) and bamA(Syn) with the corresponding genes from facultative anaerobes identified highly conserved DNA regions, which enabled the discrimination of genes coding for 6-OCH-CoA hydrolases from those coding for related enzymes. A degenerate oligonucleotide primer pair was deduced from conserved regions and applied in polymerase chain reaction reactions. Using these primers, the expected DNA fragment of the 6-OCH-CoA hydrolase genes was specifically amplified from the DNA of nearly all known facultative and obligate anaerobes that use aromatic growth substrates. The only exception was the aromatic compound-degrading Rhodopseudomonas palustris, which uniquely uses a modified benzoyl-CoA degradation pathway. Using the oligonucleotide primers, the expected DNA fragment was also amplified in a toluene-degrading and a m