WorldWideScience

Sample records for epoch making nirs

  1. Epoch making NIRS studies seen through citation trends

    International Nuclear Information System (INIS)

    Dan, Ippeita

    2009-01-01

    Near-infrared spectroscopy (NIRS) studies through citation trends are investigated of literature concerning only the brain function measurement and its methodology together with NIRS principle, technological development, present state and future view. Investigation is conducted firstly for the survey of important author name of those concerned papers in Web of Science and Google Scholar with search words of NIRS, brain and optical topography as an option. Second, >100 papers of those authors citing any of them are picked up and their papers are ranked in accordance with Web of Science citation number, of which top-nineteen are presented here. Impact and epoch making papers are reviewed with explanations of: the establishment of measuring technology of cerebral blood flow change and subsequent brain function by NIRS; development with multi-channel detection; simultaneous measurement with other imaging modalities; examination of NIRS validity; spatial analysis of NIRS; and measurement of brain function. The highest times of citation are 1,238 of the paper by F. F. Jobsis in 'Science' (1977). It should be noted that 10 of top 19 papers are those by Japanese authors. However, review articles omitted in the present literature survey are mostly described by foreign authors: an effort to systemize the concerned fields might be required in this country. (K.T.)

  2. VizieR Online Data Catalog: LMC NIR Synoptic Survey. II. Wesenheit relations (Bhardwaj+, 2016)

    Science.gov (United States)

    Bhardwaj, A.; Kanbur, S. M.; Macri, L. M.; Singh, H. P.; Ngeow, C.-C.; Wagner-Kaiser, R.; Sarajedini, A.

    2018-03-01

    We make use of NIR mean magnitudes for 775 fundamental-mode and 474 first-overtone Cepheids in the LMC from Macri et al. 2015, J/AJ/149/117 (Paper I). These magnitudes are based on observations from a synoptic survey (average of 16 epochs) of the central region of the LMC using the CPAPIR camera at the Cerro Tololo Interamerican Observatory 1.5-m telescope between 2006 and 2007. Most of these Cepheid variables were previously studied in the optical V and I bands by the third phase of the Optical Gravitational Lensing Experiment (OGLE-III) survey (Soszynski et al. 2008, J/AcA/58/163; Ulaczyk et al. 2013, J/AcA/63/159). The V and I band mean magnitudes are also compiled in Paper I. The calibration into the 2MASS photometric system, extinction corrections, and the adopted reddening law are discussed in detail in Paper I. (4 data files).

  3. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R: A paradigm shift in clinical decision making.

    Science.gov (United States)

    Melani, Christopher; Advani, Ranjana; Roschewski, Mark; Walters, Kelsey M; Chen, Clara C; Baratto, Lucia; Ahlman, Mark A; Miljkovic, Milos D; Steinberg, Seth M; Lam, Jessica; Shovlin, Margaret; Dunleavy, Kieron; Pittaluga, Stefania; Jaffe, Elaine S; Wilson, Wyndham H

    2018-05-10

    Dose-adjusted-EPOCH-R obviates the need for radiotherapy in most patients with primary mediastinal B-cell lymphoma. End-of-treatment PET, however, does not accurately identify patients at risk of treatment failure, thereby confounding clinical decision making. To define the role of PET in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R, we extended enrollment and follow-up on our published phase II trial and independent series. Ninety-three patients received dose-adjusted-EPOCH-R without radiotherapy. End-of-treatment PET was performed in 80 patients, of whom 57 received 144 serial scans. One nuclear medicine physician from each institution blindly reviewed all scans from their respective institution. End-of-treatment PET was negative (Deauville 1-3) in 55 (69%) patients with one treatment failure (8-year event-free and overall survival of 96.0% and 97.7%). Among 25 (31%) patients with a positive (Deauville 4-5) end-of-treatment PET, there were 5 (20%) treatment failures (8-year event-free and overall survival of 71.1% and 84.3%). Linear regression analysis of serial scans showed a significant decrease in SUVmax in positive end-of-treatment PET non-progressors compared to an increase in treatment failures. Among 6 treatment failures, the median end-of-treatment SUVmax was 15.4 (range, 1.9-21.3) and 4 achieved long-term remission with salvage therapy. Virtually all patients with a negative end-of-treatment PET following dose-adjusted-EPOCH-R achieved durable remissions and should not receive radiotherapy. Among patients with a positive end-of-treatment PET, only 5/25 (20%) had treatment-failure. Serial PET imaging distinguished end-of-treatment PET positive patients without treatment failure, thereby reducing unnecessary radiotherapy by 80%, and should be considered in all patients with an initial positive PET following dose-adjusted-EPOCH-R (NCT00001337). Copyright © 2018, Ferrata Storti Foundation.

  4. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    Science.gov (United States)

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  5. Administering an epoch initiated for remote memory access

    Science.gov (United States)

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  6. The quantum epoché.

    Science.gov (United States)

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.

  7. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging

    Science.gov (United States)

    Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei

    2013-11-01

    In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near

  8. [Modeling of sugar content based on NIRS during cider-making fermentation].

    Science.gov (United States)

    Peng, Bang-Zhu; Yue, Tian-Li; Yuan, Ya-Hong; Gao, Zhen-Peng

    2009-03-01

    The sugar content and the matrix always are being changed during cider-making fermentation. In order to measure and monitor sugar content accurately and rapidly, it is necessary for the spectra to be sorted. Calibration models were established at different fermentation stages based on near infrared spectroscopy with artificial neural network. NIR spectral data were collected in the spectral region of 12 000-4 000 cm(-1) for the next analysis. After the different conditions for modeling sugar content were analyzed and discussed, the results indicated that the calibration models developed by the spectral data pretreatment of straight line subtraction(SLS) in the characteristic absorption spectra ranges of 7 502-6 472.1 cm(-1) at stage I and 6 102-5 446.2 cm(-1) at stage II were the best for sugar content. The result of comparison of different data pretreatment methods for establishing calibration model showed that the correlation coefficients of the models (R2) for stage I and II were 98.93% and 99.34% respectively and the root mean square errors of cross validation(RMSECV) for stage I and II were 4.42 and 1.21 g x L(-1) respectively. Then the models were tested and the results showed that the root mean square error of prediction (RMSEP) was 4.07 g x L(-1) and 1.13 g x L(-1) respectively. These demonstrated that the models the authors established are very well and can be applied to quick determination and monitoring of sugar content during cider-making fermentation.

  9. The epochs of international law

    CERN Document Server

    Grewe, Wilhelm G

    2000-01-01

    A theoretical overview and detailed analysis of the history of international law from the Middle Ages through to the end of the twentieth century (updated from the 1984 German language edition). Wilhelm Grewe's "Epochen der Völkerrechtsgeschichte" is widely regarded as one of the classic twentieth century works of international law. This revised translation by Michael Byers of Oxford University makes this important book available to non-German readers for the first time. "The Epochs of International Law" provides a theoretical overview and detailed analysis of the history of international law from the Middle Ages, to the Age of Discovery and the Thirty Years War, from Napoleon Bonaparte to the Treaty of Versailles and the Age of the Single Superpower, and does so in a way that reflects Grewe's own experience as one of Germany's leading diplomats and professors of international law. A new chapter, written by Wilhelm Grewe and Michael Byers, updates the book to 1998, making the revised translation of interest ...

  10. The Reel Deal: Interpreting HST Multi-Epoch Movies of YSO Jets.

    Science.gov (United States)

    Frank, Adam

    2010-09-01

    The goal of this proposal is to bring the theoretical interpretation of Young Stellar Object jets and their environments to a new level of realism. We propose to build on the results of a successful Cycle 16 observing proposal that has obtained 3rd epoch images of HH jets. We will use Adaptive Mesh Refinement MHD simulations {developed by our team} to carry forward a detailed program of modeling and interpretation of the time-dependent behavior revealed in the new, extended multi-epoch data set. Only with the third epoch observations can we explore forces: i.e. accelerations, decelerations and structural changes to develop an accurate understanding of physical processes occurring in hypersonic, magnetized jet flows. Our studies will allow us to characterize the jets and, therefore, make the crucial link with jet central engines. We note an innovative feature of our project is its link with laboratory astrophysical experiments of jets. Our analysis of the observations will be used to determine future laboratory experiments which will explore A?clumpyA? jet propagation issues.

  11. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost.

    Science.gov (United States)

    Maeda, Koki; Toyoda, Sakae; Philippot, Laurent; Hattori, Shohei; Nakajima, Keiichi; Ito, Yumi; Yoshida, Naohiro

    2017-12-19

    The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N 2 O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N 2 O were surveyed to isotopocule analysis, and its 15 N site preference (SP) and δ 18 O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N 2 O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N 2 O production. N 2 O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ 18 O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N 2 O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N 2 O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N 2 O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.

  12. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  13. Linear Covariance Analysis and Epoch State Estimators

    Science.gov (United States)

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  14. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  15. A New Platform for Investigating In-Situ NIR Reflectance in Snow

    Science.gov (United States)

    Johnson, M.; Taubenheim, J. R. L.; Stevenson, R.; Eldred, D.

    2017-12-01

    In-situ near infrared (NIR) reflectance measurements of the snowpack have been shown to have correlations to valuable snowpack properties. To-date many studies take these measurements by digging a pit and setting up a NIR camera to take images of the wall. This setup is cumbersome, making it challenging to investigate things like spatial variability. Over the course of 3 winters, a new device has been developed capable of mitigating some of the downfalls of NIR open pit photography. This new instrument is a NIR profiler capable of taking NIR reflectance measurements without digging a pit, with most measurements taking less than 30 seconds to retrieve data. The latest prototype is built into a ski pole and automatically transfers data wirelessly to the users smartphone. During 2016-2017 winter, the device was used by 37 different users resulting in over 4000 measurements in the Western United States, demonstrating a dramatic reduction in time to data when compared to other methods. Presented here are some initial findings from a full winter of using the ski pole version of this device.

  16. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms.

    Science.gov (United States)

    Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina

    2017-04-01

    The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Geomagnetic Polarity Epochs: Sierra Nevada II.

    Science.gov (United States)

    Cox, A; Doell, R R; Dalrymple, G B

    1963-10-18

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  18. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.

    Science.gov (United States)

    Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  19. On children's dyslexia with NIRS

    Science.gov (United States)

    Gan, Zhuo; Li, Chengjun; Gong, Hui; Luo, Qingming; Yao, Bin; Song, Ranran; Wu, Hanrong

    2003-12-01

    Developmental dyslexia is a kind of prevalent psychologic disease. Some functional imaging technologies, such as FMRI and PET, have been used to study the brain activities of dyslexics. NIRS is a kind of novel technology which is more and more widely being used for study of the cognitive psychology. However, there aren"t reports about the dyslexic research using NIRS to be found until now. This paper introduces a NIRS system of four measuring channels. Brain activities of dyslexic subjects and normal subjects during reading task were studied with the NIRS system. Two groups of subjects, the group of dyslexia and the group of normal, were appointed to perform two reading tasks. At the same time, their cortical activities were measured with the NIRS system. This experimental result indicates that the brain activities of the dyslexic group were significantly higher than the control group in BA 48 and that NIRS can be used for the study of human brain activity.

  20. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  1. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Akihiko; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Kawashima, Yui; Ikoma, Masahiro; Kurosaki, Kenji [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Narita, Norio; Nishiyama, Shogo; Takahashi, Yasuhiro H.; Nagayama, Shogo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Onitsuka, Masahiro; Baba, Haruka; Ryu, Tsuguru [The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ita, Yoshifusa; Onozato, Hiroki [Astronomical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Hirano, Teruyuki; Kawauchi, Kiyoe [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Hori, Yasunori [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Nagayama, Takahiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, and National Astronomical Observatory of Japan (Japan); Kawai, Nobuyuki, E-mail: afukui@oao.nao.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1, Oookayama, Meguro, Tokyo 152-8551 (Japan); and others

    2014-08-01

    WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.

  2. Description of nighttime cough epochs in patients with stable COPD GOLD II-IV.

    Science.gov (United States)

    Fischer, Patrick; Gross, Volker; Kroenig, Johannes; Weissflog, Andreas; Hildebrandt, Olaf; Sohrabi, Keywan; Koehler, Ulrich

    Chronic cough is one of the main symptoms of COPD. Ambulatory objective monitoring provides novel insights into the determinants and characteristics of nighttime cough in COPD. Nighttime cough was monitored objectively by LEOSound lung sound monitor in patients with stable COPD II-IV. In 30 patients, with 10 patients in each stage group, nighttime cough was analyzed for epoch frequency, epoch severity (epoch length and coughs per epoch), and pattern (productive or nonproductive). Cough was found in all patients ranging from 1 to 294 events over the recording period. In 29 patients, cough epochs were monitored, ranging from 1 to 75 epochs. The highest amount of cough epochs was found in patients with COPD stage III. Active smokers had significantly more productive cough epochs (61%) than nonsmokers (24%). We found a high rate of nighttime cough epochs in patients with COPD, especially in those in stage III. Productive cough was predominantly found in patients with persistent smoking. LEOSound lung sound monitor offers a practical and valuable opportunity to evaluate cough objectively.

  3. Identifying individual sleep apnea/hypoapnea epochs using smartphone-based pulse oximetry.

    Science.gov (United States)

    Garde, Ainara; Dekhordi, Parastoo; Ansermino, J Mark; Dumont, Guy A

    2016-08-01

    Sleep apnea, characterized by frequent pauses in breathing during sleep, poses a serious threat to the healthy growth and development of children. Polysomnography (PSG), the gold standard for sleep apnea diagnosis, is resource intensive and confined to sleep laboratories, thus reducing its accessibility. Pulse oximetry alone, providing blood oxygen saturation (SpO2) and blood volume changes in tissue (PPG), has the potential to identify children with sleep apnea. Thus, we aim to develop a tool for at-home sleep apnea screening that provides a detailed and automated 30 sec epoch-by-epoch sleep apnea analysis. We propose to extract features characterizing pulse oximetry (SpO2 and pulse rate variability [PRV], a surrogate measure of heart rate variability) to create a multivariate logistic regression model that identifies epochs containing apnea/hypoapnea events. Overnight pulse oximetry was collected using a smartphone-based pulse oximeter, simultaneously with standard PSG from 160 children at the British Columbia Children's hospital. The sleep technician manually scored all apnea/hypoapnea events during the PSG study. Based on these scores we labeled each epoch as containing or not containing apnea/hypoapnea. We randomly divided the subjects into training data (40%), used to develop the model applying the LASSO method, and testing data (60%), used to validate the model. The developed model was assessed epoch-by-epoch for each subject. The test dataset had a median area under the receiver operating characteristic (ROC) curve of 81%; the model provided a median accuracy of 74% sensitivity of 75%, and specificity of 73% when using a risk threshold similar to the percentage of apnea/hypopnea epochs. Thus, providing a detailed epoch-by-epoch analysis with at-home pulse oximetry alone is feasible with accuracy, sensitivity and specificity values above 73% However, the performance might decrease when analyzing subjects with a low number of apnea/hypoapnea events.

  4. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  5. NIRS in Space?

    Science.gov (United States)

    Peterson, David L.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Proponents of near infrared reflectance spectroscopy (NIRS) have been exceptionally successful in applying NIRS techniques to many instances of organic material analyses. While this research and development began in the 1950s, in recent years, stimulation of advancements in instrumentation is allowing NIRS to begin to find its way into the food processing systems, into food quality and safety, textiles and much more. And, imaging high spectral resolution spectrometers are now being evaluated for the rapid scanning of foodstuffs, such as the inspection of whole chicken carcasses for fecal contamination. The imaging methods are also finding their way into medical applications, such as the non-intrusive monitoring of blood oxygenation in newborns. Can these scientific insights also be taken into space and successfully used to measure the Earth's condition? Is there an analog between the organic analyses in the laboratory and clinical settings and the study of Earth's living biosphere? How are the methods comparable and how do they differ?

  6. Non-contact finger vein acquisition system using NIR laser

    Science.gov (United States)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  7. Greenhouse cooling by NIR-reflection

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2007-01-01

    Wageningen UR investigated the potential of several NIR-filtering methods to be applied in horticulture. In this paper the analysis of the optical properties of available NIR-filtering materials is given including a calculation method to quantify the energy reduction under these materials and to

  8. What's next in carbon ion radiotherapy at NIRS?

    International Nuclear Information System (INIS)

    Kamada, Tadashi

    2011-01-01

    Since its launch by the National Institute of Radiological Sciences (NIRS) in 1994, cancer therapy using heavy ion beams (carbon ion beams) has been used in approximately 5,500 patients. Accumulated clinical experience has identified certain types of malignant tumors that respond exclusively to this treatment. It has also been made clear that this therapy is capable of treating several other types of cancers safely in a relatively short period of time, effecting remission and/or cure without pain or discomfort in a few days or weeks. We can reasonably state that heavy ion radiotherapy has been established as a safe and effective treatment method. NIRS researchers are continuing to make every effort to develop more effective, efficient, and patient-friendly heavy ion irradiation systems. The result of this research and development is also expected to slash the attendant costs of heavy ion radiotherapy. (author)

  9. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiling; Li, Yang, E-mail: msliyang@scut.edu.cn; Qin, Xixi; Chen, Ruchun; Wu, Dakun; Liu, Shijian; Qiu, Jianrong, E-mail: qjr@scut.edu.cn

    2015-11-15

    Recently, long persistent phosphors (LPPs) have been considered to be the most prominent candidates for biomedical applications. However, the LPPs suffer from a dramatic decrease in luminescence intensity after incorporation into the tissue. Therefore, it is very necessary to develop the more competitive LPPs and acquire the reproducible tissue imaging. Here, we propose and experimentally demonstrate an effective bifunctional La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor with the interesting characteristic of near-infrared long persistent phosphorescence and NIR-to-NIR Stokes luminescence. Cr{sup 3+} and Nd{sup 3+} ions are simultaneously selected as the emission centers in order to take advantage of the remarkable phosphorescence properties of Cr{sup 3+}, and the appropriate energy level characteristic of NIR-excitation band (808 nm) and NIR-emission (1064 nm), and the ability as the brilliant auxiliary to create more efficient defects of Nd{sup 3+}. The efficient dual-modal emission is, accordingly utilized to realize the convenient, high-resolution global detection and local imaging. - Highlights: • Dual mode phosphor with NIR long afterglow and NIR-to-NIR Stokes luminescence. • Increasing the persistent duration due to the codoping of Nd. • Avoiding the noteworthy overheating effect due to the strong absorption at 980 nm.

  10. Decoding vigilance with NIRS.

    Science.gov (United States)

    Bogler, Carsten; Mehnert, Jan; Steinbrink, Jens; Haynes, John-Dylan

    2014-01-01

    Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS). NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  11. Pharmaceutical applications using NIR technology in the cloud

    Science.gov (United States)

    Grossmann, Luiz; Borges, Marco A.

    2017-05-01

    NIR technology has been available for a long time, certainly more than 50 years. Without any doubt, it has found many niche applications, especially in the pharmaceutical, food, agriculture and other industries due to its flexibility. There are a number of advantages over other existing analytical technologies we can list, for example virtually no need for sample preparation; usually NIR does not demand sample destruction and subsequent discard; NIR provides fast results; NIR does not require extensive operator training and carries small operating costs. However, the key point about NIR technology is the fact that it's more related to statistics than chemistry or, in other words, we are more concerned about analyzing and distinguishing features within the data than looking deep into the chemical entities themselves. A simple scan reading in the NIR range usually involves huge inflows of data points. Usually we decompose the signals into hundreds of predictor variables and use complex algorithms to predict classes or quantify specific content. NIR is all about math, especially by converting chemical information into numbers. Easier said than done. A NIR signal is a very complex one. Usually the signal responses are not specific to a particular material, rather, each grouṕs responses add up, thus providing low specificity of a spectral reading. This paper proposes a simple and efficient method to analyze and compare NIR spectra for the purpose of identifying the presence of active pharmaceutical ingredients in finished products using low cost NIR scanning devices connected to the internet cloud.

  12. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Budavári, Tamás; Szalay, Alexander S. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Loredo, Thomas J. [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States)

    2017-03-20

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  13. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    International Nuclear Information System (INIS)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    2017-01-01

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  14. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    Science.gov (United States)

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  15. Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS).

    Science.gov (United States)

    Fluckiger, Miriam; Brown, Malcolm R; Ward, Louise R; Moltschaniwskyj, Natalie A

    2011-06-15

    Near infrared reflectance spectroscopy (NIRS) was used to predict glycogen concentrations in the foot muscle of cultured abalone. NIR spectra of live, shucked and freeze-dried abalones were modelled against chemically measured glycogen data (range: 0.77-40.9% of dry weight (DW)) using partial least squares (PLS) regression. The calibration models were then used to predict glycogen concentrations of test abalone samples and model robustness was assessed from coefficient of determination of the validation (R2(val)) and standard error of prediction (SEP) values. The model for freeze-dried abalone gave the best prediction (R2(val) 0.97, SEP=1.71), making it suitable for quantifying glycogen. Models for live and shucked abalones had R2(val) of 0.86 and 0.90, and SEP of 3.46 and 3.07 respectively, making them suitable for producing estimations of glycogen concentration. As glycogen is a taste-active component associated with palatability in abalone, this study demonstrated the potential of NIRS as a rapid method to monitor the factors associated with abalone quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Effect of Motion Artifacts on Near-Infrared Spectroscopy (NIRS Data and Proposal of a Video-NIRS System

    Directory of Open Access Journals (Sweden)

    Masayuki Satoh

    2017-11-01

    Full Text Available Aims: The aims of this study were (1 to investigate the influence of physical movement on near-infrared spectroscopy (NIRS data, (2 to establish a video-NIRS system which simultaneously records NIRS data and the subject’s movement, and (3 to measure the oxygenated hemoglobin (oxy-Hb concentration change (Δoxy-Hb during a word fluency (WF task. Experiment 1: In 5 healthy volunteers, we measured the oxy-Hb and deoxygenated hemoglobin (deoxy-Hb concentrations during 11 kinds of facial, head, and extremity movements. The probes were set in the bilateral frontal regions. The deoxy-Hb concentration was increased in 85% of the measurements. Experiment 2: Using a pillow on the backrest of the chair, we established the video-NIRS system with data acquisition and video capture software. One hundred and seventy-six elderly people performed the WF task. The deoxy-Hb concentration was decreased in 167 subjects (95%. Experiment 3: Using the video-NIRS system, we measured the Δoxy-Hb, and compared it with the results of the WF task. Δoxy-Hb was significantly correlated with the number of words. Conclusion: Like the blood oxygen level-dependent imaging effect in functional MRI, the deoxy-Hb concentration will decrease if the data correctly reflect the change in neural activity. The video-NIRS system might be useful to collect NIRS data by recording the waveforms and the subject’s appearance simultaneously.

  17. Using Massive Multivariate NIRS Data in Ryegrass

    DEFF Research Database (Denmark)

    Edriss, Vahid; Greve-Pedersen, Morten; Jensen, Christian S

    2015-01-01

    Near infrared spectroscopy (NIRS) analytical techniques is a simple, fast and low cost method of high dimensional phenotyping compared to usual chemical techniques. To use this method there is no need for special sample preparation. The aim of this study is to use NIRS data to predict plant traits...... (e.g. dry matter, protein content, etc.) for the next generation. In total 1984 NIRS data from 995 ryegrass families (first cut) were used. The Absorption of radiation in the region of 960 – 1690 nm in every 2 nm distance produced 366 bins to represent the NIRS spectrum. The amount of genetic...

  18. Decoding vigilance with NIRS.

    Directory of Open Access Journals (Sweden)

    Carsten Bogler

    Full Text Available Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS. NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  19. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

    Science.gov (United States)

    Funane, Tsukasa; Sato, Hiroki; Yahata, Noriaki; Takizawa, Ryu; Nishimura, Yukika; Kinoshita, Akihide; Katura, Takusige; Atsumori, Hirokazu; Fukuda, Masato; Kasai, Kiyoto; Koizumi, Hideaki; Kiguchi, Masashi

    2015-01-01

    Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, pdeep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method. PMID:26157983

  20. Aplicação de FT-MIR e FT-NIR ao estudo de reação de cura de sistemas epoxídicos FT-IR MIR and FT-NIR applied to the study of reaction of epoxy systems

    Directory of Open Access Journals (Sweden)

    Benedita M. V. Romão

    2004-09-01

    Full Text Available A reação de cura entre amostras de resina epoxídica (EP e compostos à base de mercaptana (SH, amino-fenol e amina modificada foi estudada nas regiões espectrais do infravermelho médio (MIR e próximo (NIR. Observou-se, basicamente, que a espectroscopia FT-NIR evidencia melhor as alterações espectrométricas ocorridas durante as reações estudadas, permitindo detectar, inclusive, o agente de cura em menor proporção no sistema epoxídico.The cure reaction of epoxy resin (EP and curing agents based on polymercaptans (SH, amine-phenol and modified amine was studied in the MIR and NIR spectral regions. It was observed that the FT-NIR shows better the spectrometric changes of the reactions studied, which makes it possible to detect the curing agent in lower contents in epoxide systems.

  1. NIR analysis of cellulose and lactose--application to ecstasy tablet analysis.

    Science.gov (United States)

    Baer, Ines; Gurny, Robert; Margot, Pierre

    2007-04-11

    Cellulose and lactose are the most frequently used excipients in illicit ecstasy production. The aim of this project was to use near infrared reflectance spectroscopy (NIRS) for the determination of the different chemical forms of these two substances, as well as for the differentiation of their origin (producer). It was possible to distinguish between the different chemical forms of both compounds, as well as between their origins (producers), although within limits. Furthermore, the possibilities to apply NIR for the analysis of substances such as found in illicit tablets were studied. First, a few cellulose and lactose samples were chosen to make mixtures with amphetamine at three degrees of purity (5, 10 and 15%), in order to study the resulting changes in the spectra as well as to simultaneously quantify amphetamine and identify the excipient. A PLS2 model could be build to predict concentrations and excipient. Secondarily, the technique was to be applied to real ecstasy tablets. About 40 ecstasy seizures were analysed with the aim to determine the excipient and to check them against each other. Identification of the excipients was not always obvious, especially when more than one excipient were present. However, a comparison between tablets appeared to give groups of similar samples. NIR analysis results in spectra representing the tablet blend as a whole taking into account all absorbing compounds. Although NIRS seems to be an appropriate method for ecstasy profiling, little is known about intra- and intervariability of compression batches.

  2. Systematic Uncertainties in Black Hole Masses Determined from Single Epoch Spectra

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Peterson, Bradley M.; Dietrich, Matthias

    2008-01-01

    We explore the nature of systematic errors that can arise in measurement of black hole masses from single-epoch spectra of active galactic nuclei (AGNs) by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due...

  3. [In hospital and mid-term outcome of patients with NIR stent implantation: multicenter ESPORT-NIR registry].

    Science.gov (United States)

    Iñiguez, A; García, E; Seabra, R; Bordes, P; Bethencourt, A; Rigla, J

    2001-05-01

    Despite improvements in the results and techniques of catheter-based revascularization, few studies have evaluated the clinical results of the application of new stent designs. We describe the in-hospital and mid-term outcome of patients undergoing a stent NIR implantation. At least 1 Stent NIR was implanted in 1.004 patients (1.136 lesions) recruited from 50 centers in an international, multicenter, prospective, registry (Spain and Portugal NIR stent registry). Inclusion criteria were objective coronary ischemia related to a severe de novo lesion or first restenosis in native vessels with a reference diameter >= 2.75 mm. The primary end-point was the incidence of major adverse cardiac events within the first 7 months of follow-up. The mean age of the patients was 60 years and 82% were male. Angioplasty was indicated due to unstable angina in 61% of the cases. Stent implantation was successfully achieved in 99.6%. Clinical success (angiographic success without in-hospital major events) was achieved in 98.6% of patients. The rate of angiographic restenosis (> 50% stenosis narrowing) was 16% (CI 95%; 11.7-21.2). The accumulated major cardiac adverse event rate at seven months of follow-up was 8.7%: death (0.9%), acute myocardial infarction (1.2%) and target lesion revascularization (6.6%). In the wide setting of the population included in the ESPORT-NIR registry, stent NIR implantation was a highly effective therapy with a good mid-term clinical and angiographic outcome.

  4. Time domain functional NIRS imaging for human brain mapping.

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases......, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase...

  6. Shed a light of wireless technology on portable mobile design of NIRS

    Science.gov (United States)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  7. Designing and testing a wearable, wireless fNIRS patch.

    Science.gov (United States)

    Abtahi, Mohammadreza; Cay, Gozde; Saikia, Manob Jyoti; Mankodiya, Kunal

    2016-08-01

    Optical brain monitoring using near infrared (NIR) light has got a lot of attention in order to study the complexity of the brain due to several advantages as oppose to other methods such as EEG, fMRI and PET. There are a few commercially available functional NIR spectroscopy (fNIRS) brain monitoring systems, but they are still non-wearable and pose difficulties in scanning the brain while the participants are in motion. In this work, we present our endeavors to design and test a low-cost, wireless fNIRS patch using NIR light sources at wavelengths of 770 and 830nm, photodetectors and a microcontroller to trigger the light sources, read photodetector's output and transfer data wirelessly (via Bluetooth) to a smart-phone. The patch is essentially a 3-D printed wearable system, recording and displaying the brain hemodynamic responses on smartphone, also eliminates the need for complicated wiring of the electrodes. We have performed rigorous lab experiments on the presented system for its functionality. In a proof of concept experiment, the patch detected the NIR absorption on the arm. Another experiment revealed that the patch's battery could last up to several hours with continuous fNIRS recording with and without wireless data transfer.

  8. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna

    2018-03-01

    Full Text Available It is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients, i.e. citric acid anhydrous, povidone K25 (PVP, magnesium stearate (Mg stearate, lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4 and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC, FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA and ANOVA were applied.

  9. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Pulsar slow-down epochs

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1981-01-01

    The relative importance of magnetospheric currents and low frequency waves for pulsar braking is assessed and a model is developed which tries to account for the available pulsar timing data under the unifying aspect that all pulsars have equal masses and magnetic moments and are born as rapid rotators. Four epochs of slow-down are distinguished which are dominated by different braking mechanisms. According to the model no direct relationship exists between 'slow-down age' and true age of a pulsar and leads to a pulsar birth-rate of one event per hundred years. (Author) [pt

  11. Brain network segregation and integration during an epoch-related working memory fMRI experiment.

    Science.gov (United States)

    Fransson, Peter; Schiffler, Björn C; Thompson, William Hedley

    2018-05-17

    The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    Science.gov (United States)

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  13. Automatic determination of moisture content in biofuels based on NIR-measurements; Automatisk fukthaltsbestaemning av biobraenslen med NIR-metoden

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Wiklund, Sven Erik [AaF-Process AB, Stockholm (Sweden); Karlsson, Mikael; Tryzell, Robert [Bestwood AB, Sundbyberg (Sweden)

    2005-07-01

    The determination of moisture content of biofuel is of large importance for the energy sector. The used methods for moisture determination are based on fuels samples taken from the bulk followed by drying and weighing. To be able to instead determine the moisture content based on a method with good accuracy and with a short response time would be a large improvement. Both for the fuel sampling and the following analysis there are Swedish standards but concerning the fuel sampling the standards are often not followed. The main reason is the difficulties to sample fuel samples from different depth from a delivery. This is one of the reasons that some plants have installed mechanical samplers but the investment cost for these is relatively high. The aim of this project was to investigate the use of the NIR-method for automatic moisture determination in biofuels. Within the project the NIR-method was used to determine the moisture content on withdrawn fuel samples, in addition the possibility to integrate the NIR-method in an automatic sampling system is also described. A large number of samples, in total over 200 samples, have been evaluated with the NIR-method and compared with the reference method, oven drying and gravimetric determination of moisture content. That the NIR-method can be used to determine moisture content in a number of well defined materials have previously been shown. In this report it has moreover been shown that the method can be used under the conditions at the fuel delivery station and for a large spectrum of biofuels. The accuracy that can be achieved with the NIR-method is in the same magnitude as the standard method, i.e. the reference method used for the measurements. Altogether this shows that the NIR-method is an interesting alternative for integration in an automatic measurement system for determination of fuel moisture content in biofuels. To be able to use the NIR-method for automatic determination of fuel moisture content at the

  14. Estimation of Anthocyanin Content of Berries by NIR Method

    International Nuclear Information System (INIS)

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-01

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  15. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  16. Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters

    DEFF Research Database (Denmark)

    da Silva, Neirivaldo Cavalcante; Cavalcanti, Claudia Jessica; Honorato, Fernanda Araujo

    2017-01-01

    spectral responses of fuel samples (gasoline and biodiesel blends) from a high-resolution benchtop Frontier FT-NIR (PerkinElmer) spectrometer and a handheld MicroNIR™1700 (JDSU). These virtual standards can be created by mathematically mixing spectra from the pure solvents present in gasoline or diesel...... to the handheld MicroNIR using virtual standards as transfer samples...

  17. Sensitivity of fNIRS to cognitive state and load

    Directory of Open Access Journals (Sweden)

    Frank Anthony Fishburn

    2014-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-minute resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC, bilateral ventrolateral PFC (vlPFC, frontopolar cortex (FP, and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.

  18. Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team

    2018-01-01

    The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).

  19. NIRS inaugurated as IAEA Collaborating Centre. Its presence and function

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Watanabe, Naoyuki; Sakai, Kazuo; Kamada, Tadashi; Imai, Reiko; Fujibayashi, Yasuhisa; Nakane, Takeshi; Burkart, W.; Chhem, R.; Matsuura, Shojiro

    2010-01-01

    The feature article is the collection of documents commemorating the 2010 designation of National Institute of Radiological Sciences (NIRS) as one of International Atomic Energy Agency (IAEA) Collaborating Centres (CC) again, involving 4 introductory chapters containing 9 sections in total. The IAEA-CC concept, essentially for the 4-year project, started to globally give shape by designating 3 organizations in some countries in 2004, NIRS as a CC worked from 2006 and the present designation is the renewed one. There are 17 IAEA-CCs at present. The title of Chapter 1 of the article is the same as above title by NIRS President and of Chapter 2, ''IAEA-CC scheme'' by NIRS Senior Specialist/ professor of Gunma Pref. College of Health Sciences/ former IAEA staff. Chapter 3 entitled ''Research Development of Next Four Years in Three Collaboration Areas'', contains 3 topics of the very areas mainly responsible to the project, of biological effect and mechanism of low dose radiation by NIRS Director of Res. Center for Radiation Protection, IAEA-CC plan (radiotherapy) by the Director for Charged Particle Therapy, and IAEA-CC activity and research at Molecular Imaging Center by its Director. Chapter 4 entitled ''Expectation to NIRS'' contains four topics; Expectations for the reinforcement of collaboration with IAEA whose new priority is cancer control by the Japanese Ambassador Extraordinary and Plenipotentiary in Vienna; Welcoming NIRS to join IAEA-CC network (an interview with IAEA Deputy Director General and Head of Nuclear Sciences and Applications); Honoured to invite NIRS to establish a new partnership with IAEA (an interview with IAEA Director of Division of Human Health, Dept. of Nuclear Sciences and Applications); Expectation to NIRS in peaceful use of nuclear and radiation by President of the Nuclear Safety Research Association. (T.T.)

  20. LEDDB : LOFAR Epoch of Reionization Diagnostic Database

    NARCIS (Netherlands)

    Martinez-Rubi, O.; Veligatla, V. K.; de Bruyn, A. G.; Lampropoulos, P.; Offringa, A. R.; Jelic, V.; Yatawatta, S.; Koopmans, L. V. E.; Zaroubi, S.

    2013-01-01

    One of the key science projects of the Low-Frequency Array (LOFAR) is the detection of the cosmological signal coming from the Epoch of Reionization (EoR). Here we present the LOFAR EoR Diagnostic Database (LEDDB) that is used in the storage, management, processing and analysis of the LOFAR EoR

  1. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  2. Towards NIRS-based hand movement recognition.

    Science.gov (United States)

    Paleari, Marco; Luciani, Riccardo; Ariano, Paolo

    2017-07-01

    This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.

  3. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  4. [NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].

    Science.gov (United States)

    Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu

    2015-01-01

    The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.

  5. Improving the repeatability of Motor Unit Number Index (MUNIX) by introducing additional epochs at low contraction levels.

    Science.gov (United States)

    Peng, Yun; Zhang, Yingchun

    2017-07-01

    To evaluate the repeatability of (Motor Unit Number Index) MUNIX under repeatability conditions, specify the origin of variations and provide strategies for quality control. MUNIX calculations were performed on the bicep brachii muscles of eight healthy subjects. Negative effect of suboptimal electrode positions on MUNIX accuracy was eliminated by employing the high-density surface electromyography technique. MUNIX procedures that utilized a variety of surface interferential pattern (SIP) epoch recruitment strategies (including the original MUNIX procedure, two proposed improvement strategies and their combinations) were described. For each MUNIX procedure, ten thousands of different SIP pools were constructed by randomly recruiting necessary SIP epochs from a large SIP epoch pool (3 datasets, 9 independent electromyography recordings at different contraction levels per dataset and 10 SIP epochs per recording) and implemented for MUNIX calculation. The repeatability of each MUNIX procedure was assessed by summarizing the resulting MUNIX distribution and compared to investigate the effect of SIP epoch selection strategy on repeatability performance. SIP epochs selected at lower contraction levels have a stronger influence on the repeatability of MUNIX than those selected at higher contraction levels. MUNIX under repeatability conditions follows a normal distribution and the standard deviation can be significantly reduced by introducing more epochs near the MUNIX definition line. The MUNIX technique shows an inherent variation attributable to SIP epochs at low contraction levels. It is recommended that more epochs should be sampled at these low contraction levels to improve the repeatability. The present study thoroughly documented the inherent variation of MUNIX and the causes, and offered practical solutions to improve the repeatability of MUNIX. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Observing the epoch of galaxy formation.

    Science.gov (United States)

    Steidel, C C

    1999-04-13

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

  7. Making humor together: phenomenology and interracial humor

    Directory of Open Access Journals (Sweden)

    Michael D. Barber

    2016-01-01

    Full Text Available This paper explains humor through phenomenological concepts and methods. The three major theories of humor: Superiority, Relief, and Incongruity depend on the thwarting of intentional expectations. Since one experiences an incongruity between what is intended and what is actually experienced, the incongruity theory affords the best explanation, but intentionality remains fundamental for all theories. Theorists of humor rightly insist that the enjoyment of humorous incongruity completes the definition of humor, but such enjoyment also depends on a special epoché, usually elicited by the cues of an interlocutor who invites the listener to leap together into the humorous finite province of meaning. In this province, actions and statements, hurtful in everyday life, such as a pie thrown at someone who ducks as the pie hits another, produce laughter. This comic epoché resembles the phenomenological epoché in its distancing from everyday life, and, like the phenomenological epoché, it opens everyday experience to reflection. Although one often experiences and enjoys humor alone, humor is thoroughly intersubjective and more frequently occurs when two persons participate in the humorous epoché together. The opportunities for making humor together are enhanced to the extent the partners differ in their expectations and responses to situations. Those differences, including bodily differences, often result from the complex intersubjective networks, including culture. As in the case of a seemingly solitary activity like reflection, which one learns from others and exercises on one’s own autonomously, one internalizes others’ styles of humor and discovers such internalization through reflection on one’s «because motives». On the basis of these features – intentionality, epoché, and intersubjectivity, the paper concludes by briefly examining an example of interracial humor. Despite the racist character of much interracial humor, the example

  8. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  9. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  10. Hydrogen Epoch of Reionization Array (HERA)

    Science.gov (United States)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  11. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    Science.gov (United States)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain

  12. Geomagnetic reversal in brunhes normal polarity epoch.

    Science.gov (United States)

    Smith, J D; Foster, J H

    1969-02-07

    The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent.

  13. Primordial black hole formation during the QCD epoch

    International Nuclear Information System (INIS)

    Jedamzik, K.

    1997-01-01

    We consider the formation of horizon-size primordial black holes (PBH close-quote s) from pre-existing density fluctuations during cosmic phase transitions. It is pointed out that the formation of PBH close-quote s should be particularly efficient during the QCD epoch due to a substantial reduction of pressure forces during adiabatic collapse, or equivalently, a significant decrease in the effective speed of sound during the color-confinement transition. Our considerations imply that for generic initial density perturbation spectra PBH mass functions are expected to exhibit a pronounced peak on the QCD-horizon mass scale ∼1M circle-dot . This mass scale is roughly coincident with the estimated masses for compact objects recently observed in our galactic halo by the MACHO Collaboration. Black holes formed during the QCD epoch may offer an attractive explanation for the origin of halo dark matter evading possibly problematic nucleosynthesis and luminosity bounds on baryonic halo dark matter. copyright 1997 The American Physical Society

  14. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    Science.gov (United States)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  15. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication.

    Science.gov (United States)

    Liu, Ning; Mok, Charis; Witt, Emily E; Pradhan, Anjali H; Chen, Jingyuan E; Reiss, Allan L

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.

  16. Clinical and Cost Comparison Evaluation of Inpatient Versus Outpatient Administration of EPOCH-Containing Regimens in Non-Hodgkin Lymphoma.

    Science.gov (United States)

    Evans, Sarah S; Gandhi, Arpita S; Clemmons, Amber B; DeRemer, David L

    2017-08-01

    Etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin (EPOCH)-containing regimens are frequently utilized in non-Hodgkin's lymphoma, however, the incidence of febrile neutropenia (FN) in patients receiving inpatient versus outpatient EPOCH has not been described. Additionally, no comparisons have been made regarding financial implications of EPOCH administration in either setting. This study's primary objective was to compare hospital admissions for FN in patients receiving inpatient or outpatient EPOCH. A single-center, institutional review board-approved review was conducted for adults receiving EPOCH beginning January 2010. Clinical and financial data were collected through chart review and the institution's financial department. Descriptive statistics were utilized for analysis. A total of 25 patients received 86 cycles of an EPOCH-containing regimen (61 [70.9%] inpatient). Five (8.2%) inpatient cycles resulted in an admission for FN compared to 4 (16%) outpatient cycles. Prophylactic antifungal and antiviral agents were prescribed more often after inpatient cycles (>80%) compared to outpatient cycles (cost savings of approximately US$141 116 for both chemotherapy costs and hospital day avoidance. EPOCH-containing regimens can be safely administered in the outpatient setting, which may result in cost savings for healthcare institutions.

  17. A search for changing look quasars in second epoch imaging

    Science.gov (United States)

    Findlay, Joseph; Myers, Adam; McGreer, Ian

    2018-01-01

    Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.

  18. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams

    International Nuclear Information System (INIS)

    Graham, David W.; Trippett, Clare; Dodds, Walter K.; O'Brien, Jonathan M.; Banner, Eric B.K.; Head, Ian M.; Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.

    2010-01-01

    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., K den , which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with K den , as well as phosphorus, although no correlation was found between K den and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. - Denitrification efficiency best correlated to nirS and nirK gene abundances.

  19. NIR techniques create added values for the pellet and biofuel industry.

    Science.gov (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan

    2009-02-01

    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  20. 'Anthropocene': An Ethical Crisis, Not a Geological Epoch

    Science.gov (United States)

    Cuomo, Chris

    2017-04-01

    The term 'anthropocene' has gained enormous popularity among scientists who believe we are in a global phase distinguished by the extensive and lasting impacts of social activities on Earth's sedimentary record and vital systems. Beyond its widespread informal use, a working group of the International Union of Geological Sciences seeks to formalize the term to name a new geological epoch, implying that the Holocene epoch has ended. I argue that the move to formalize the 'anthropocene' and to declare the demise of the Holocene is premature and ethically misguided, at best, and that the very name 'anthropocene' obscures rather than illuminates the serious moral and political/economic implications of the dire warnings evident in recent stratigraphic and ecological changes. If human-caused mass extinction and other ecological catastrophes are serious harms, ethical responses are required. Instead, the move to formalize the idea of an 'anthropocene' epoch treats dire ethical warnings as an opportunity to redefine the current dangerous situation as a new status quo. Have we met our responsibilities to protect Holocene Earth? This presentation will focus on the ethical implications of using the power and discourse of geology to demote Holocene ecological states from their role as the foundational benchmarks for guiding and assessing human relationships with nature and other species. Have geoscientists adequately consulted the biological, ecological and social sciences before declaring the end of the Holocene epoch? Upon what do we base environmental ethics if the Holocene is considered past history? I will also examine the ethical dimensions of naming the so-called 'anthropocene', asking: who is the presumed 'anthro' in the 'anthropocene'? Are the phenomena identified with the 'anthropocene' (nuclear fallout, mass species endangerment, ocean acidification, fossil fuel pollution, deforestation, mining) definitive accomplishments of the human species? Should the practices

  1. In vivo photoacoustic tumor tomography using a quinoline-annulated porphyrin as NIR molecular contrast agent.

    Science.gov (United States)

    Luciano, Michael; Erfanzadeh, Mohsen; Zhou, Feifei; Zhu, Hua; Bornhütter, Tobias; Röder, Beate; Zhu, Quing; Brückner, Christian

    2017-01-25

    The synthesis and photophysical properties of a tetra-PEG-modified and freely water-soluble quinoline-annulated porphyrin are described. We previously demonstrated the ability of quinoline-annulated porphyrins to act as an in vitro NIR photoacoustic imaging (PAI) contrast agent. The solubility of the quinoline-annulated porphyrin derivative in serum now allowed the assessment of the efficacy of the PEGylated derivative as an in vivo NIR contrast agent for the PAI of an implanted tumor in a mouse model. A multi-fold contrast enhancement when compared to the benchmark dye ICG could be shown, a finding that could be traced to its photophysical properties (short triplet lifetimes, low fluorescence and singlet oxygen sensitization quantum yields). A NIR excitation wavelength of 790 nm could be used, fully taking advantage of the optical window of tissue. Rapid renal clearance of the dye was observed. Its straight-forward synthesis, optical properties with the possibility for further optical fine-tuning, nontoxicity, favorable elimination rates, and contrast enhancement make this a promising PAI contrast agent. The ability to conjugate the PAI chromophore with a fluorescent tag using a facile and general conjugation strategy was also demonstrated.

  2. ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL-NIR PERIOD-WESENHEIT RELATIONS

    International Nuclear Information System (INIS)

    Inno, L.; Bono, G.; Buonanno, R.; Genovali, K.; Matsunaga, N.; Caputo, F.; Laney, C. D.; Marconi, M.; Piersimoni, A. M.; Primas, F.; Romaniello, M.

    2013-01-01

    We present the largest near-infrared (NIR) data sets, JHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2-3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VI photometry from OGLE-III. NIR and optical-NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0 FU ≤ 1.65) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45 ± 0.02(random) ± 0.10(systematic) mag (LMC) and 18.93 ± 0.02(random) ± 0.10(systematic) mag (SMC). These estimates are the weighted mean over 10 PW relations and the systematic errors account for uncertainties in the zero point and in the reddening law. We found similar distances using FO Cepheids (18.60 ± 0.03(random) ± 0.10(systematic) mag (LMC) and 19.12 ± 0.03(random) ± 0.10(systematic) mag (SMC)). These new MC distances lead to the relative distance, Δμ = 0.48 ± 0.03 mag (FU, log P = 1) and Δμ = 0.52 ± 0.03 mag (FO, log P = 0.5), which agrees quite well with previous estimates based on robust distance indicators.

  3. Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs

    International Nuclear Information System (INIS)

    Fernández-Ahumada, E; Gómez, A; Vallesquino, P; Guerrero, J E; Pérez-Marín, D; Garrido-Varo, A; Fearn, T

    2008-01-01

    According to the current demands of the authorities, the manufacturers and the consumers, controls and assessments of the feed compound manufacturing process have become a key concern. Among others, it must be assured that a given compound feed is well manufactured and labelled in terms of the ingredient composition. When near-infrared spectroscopy (NIRS) together with linear models were used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, the performance of nonlinear methods has been investigated. Artificial neural networks and least squares support vector machines (LS-SVM) have been applied to a large (N = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared to partial least squares regression, results showed considerable reductions of standard error of prediction values for both methods and ingredients: reductions of 45% with ANN and 49% with LS-SVM for wheat and reductions of 44% with ANN and 46% with LS-SVM for sunflower meal. These improvements together with the facility of NIRS technology to be implemented in the process make it ideal for meeting the requirements of the animal feed industry

  4. Epochs of radioactivity in historical evolution of the earth with reference to evolution of biosphere

    International Nuclear Information System (INIS)

    Neruchev, S.G.

    1976-01-01

    Periodic epochs of intense contamination of the medium by uranium in the course of the Earth's evolution and the biogene mechanism of uranium accumulation in sediments during the lifetime are established. Global differentiation of the radioactivity epochs and essential effect of periodic radiation on the evolution of biosphere are shown. Radiational-mutational mechanism in shown to be extremely nonuniform during the evolution of the organic kingdom. It has been found that the intermittency in radioactive epochs is responsible for peculiarities in the stratigraphic distribution of sedimentary uranium, sapropelic shales, phosphorites, oil-producing rocks and other minerals

  5. NIR: optimerer produktionen af gammeldags modnede sild

    DEFF Research Database (Denmark)

    Svensson, T.; Bro, Rasmus; Nielsen, Henrik Hauch

    2005-01-01

    Måling med nærinfrarødt (NIR) lys er et godt supplement til de nuværende metoder til at følge modningen af sild saltede i tønder. Det viser resultaterne af et forskningsprojekt udført i samarbejde mellem Lykkeberg A/S, Danmarks Fiskeriundersøgelser og Den Kgl Veterinær- og Landbohøjskole. Ved hjælp...... af avanceret matematik er det nemt og hurtigt at bestemme modningsgraden af sild direkte fra en NIR måling....

  6. Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO

    Science.gov (United States)

    Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan

    2015-01-01

    A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270

  7. Linguistic Engineering and Linguistic of Engineering: Adaptation of Linguistic Paradigm for Circumstance of Engineering Epoch

    OpenAIRE

    Natalya Halina

    2014-01-01

    The article is devoted to the problems of linguistic knowledge in the Engineering Epoch. Engineering Epoch is the time of adaptation to the information flows by knowledge management, The system of adaptation mechanisms is connected with linguistic and linguistic technologies, forming in new linguistic patterns Linguistic Engineering and Linguistic of Engineering.

  8. Present status of the NIRS-ECR ion source for the HIMAC

    International Nuclear Information System (INIS)

    Kitagawa, A.; Matsushita, H.; Shibuya, S.

    1995-01-01

    The present status of NIRS-ECR ion source for the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS) is reported. The beam intensity of the NIRS-ECR was increased by modifications on the magnetic field structure, chamber cooling system, vacuum conductance and the extraction configuration. The output current of Ar 6+ reached 365 eμA after improvements. The good stability, easy operation, and good reproducibility were realized. (author)

  9. THE TIME EVOLUTION OF HH 1 FROM FOUR EPOCHS OF HST IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Raga, A. C.; Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510 D.F., México (Mexico); Reipurth, B. [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: raga@nucleares.unam.mx [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2016-05-15

    We present an analysis of four epochs of Hα and [S ii] λλ 6716/6731 Hubble Space Telescope (HST) images of HH 1. For determining proper motions, we explore a new method based on the analysis of spatially degraded images obtained convolving the images with wavelet functions of chosen widths. With this procedure, we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities, and spatial distribution of the line emission. We find that over the last two decades HH 1 shows a clear acceleration. Also, the Hα and [S ii] intensities first dropped and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O iii] λ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O iii]/Hα ratio.

  10. Visible and NIR image fusion using weight-map-guided Laplacian ...

    Indian Academy of Sciences (India)

    Ashish V Vanmali

    fusion perspective, instead of the conventional haze imaging model. The proposed ... Image dehazing; Laplacian–Gaussian pyramid; multi-resolution fusion; visible–NIR image fusion; weight map. 1. .... Tan's [8] work is based on two assumptions: first, images ... responding colour image, since NIR can penetrate through.

  11. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine.

    Science.gov (United States)

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G; Zou, Peng; Smith, Valton; von Gunten, Marc; O'Brien, Nada A

    2016-05-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. © The Author(s) 2016.

  12. The Development of Novel Near-Infrared (NIR Tetraarylazadipyrromethene Fluorescent Dyes

    Directory of Open Access Journals (Sweden)

    Young-Tae Chang

    2013-05-01

    Full Text Available Novel structures of an near-infrared (NIR tetraarylazadipyrromethene (aza-BODIPY series have been prepared. We designed the core structure containing two amido groups at the para-position of the aromatic rings. The amido group was incorporated to secure insensitivity to pH and to ensure a bathochromic shift to the NIR region. Forty members of aza-BODIPY compounds were synthesized by substitution of the acetyl group with commercial amines on the alpha bromide. The physicochemical properties and photostability were investigated and the fluorescence emission maxima (745~755 nm were found to be in the near infrared (NIR range of fluorescence.

  13. The Cosmic Dawn and Epoch of Reionisation with SKA

    NARCIS (Netherlands)

    Koopmans, L.; Pritchard, J.; Mellema, G.; Aguirre, J.; Ahn, K.; Barkana, R.; van Bemmel, I.; Bernardi, G.; Bonaldi, A.; Briggs, F.; de Bruyn, A. G.; Chang, T. C.; Chapman, E.; Chen, X.; Ciardi, B.; Dayal, P.; Ferrara, A.; Fialkov, A.; Fiore, F.; Ichiki, K.; Illiev, I. T.; Inoue, S.; Jelic, V.; Jones, M.; Lazio, J.; Maio, U.; Majumdar, S.; Mack, K. J.; Mesinger, A.; Morales, M. F.; Parsons, A.; Pen, U. L.; Santos, M.; Schneider, R.; Semelin, B.; de Souza, R. S.; Subrahmanyan, R.; Takeuchi, T.; Vedantham, H.; Wagg, J.; Webster, R.; Wyithe, S.; Datta, K. K.; Trott, C.

    2014-01-01

    Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($z\\sim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$\\alpha$ emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no

  14. The Cosmic Dawn and Epoch of Reionisation with SKA

    NARCIS (Netherlands)

    Koopmans, L.; Pritchard, J.; Mellema, G.; Aguirre, J.; Ahn, K.; Barkana, R.; van Bemmel, I.; Bernardi, G.; Bonaldi, A.; Briggs, F.; de Bruyn, A. G.; Chang, T. C.; Chapman, E.; Chen, X.; Ciardi, B.; Dayal, P.; Ferrara, A.; Fialkov, A.; Fiore, F.; Ichiki, K.; Illiev, I. T.; Inoue, S.; Jelic, V.; Jones, M.; Lazio, J.; Maio, U.; Majumdar, S.; Mack, K. J.; Mesinger, A.; Morales, M. F.; Parsons, A.; Pen, U. L.; Santos, M.; Schneider, R.; Semelin, B.; de Souza, R. S.; Subrahmanyan, R.; Takeuchi, T.; Vedantham, H.; Wagg, J.; Webster, R.; Wyithe, S.; Datta, K. K.; Trott, C.

    2015-01-01

    Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($z\\sim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$\\alpha$ emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no

  15. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  16. Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China

    Indian Academy of Sciences (India)

    Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China: ... The Jiapigou gold belt is located on the northern margin of the North China Craton, and is one of the ... 29, Xueyuan Road, Beijing 100083, People's Republic of China.

  17. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram

    2014-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  18. Pliocene geomagnetic polarity epochs

    Science.gov (United States)

    Dalrymple, G.B.; Cox, A.; Doell, Richard R.; Gromme, C.S.

    1967-01-01

    A paleomagnetic and K-Ar dating study of 44 upper Miocene and Pliocene volcanic units from the western United States suggests that the frequency of reversals of the earth's magnetic field during Pliocene time may have been comparable with that of the last 3.6 m.y. Although the data are too limited to permit the formal naming of any new polarity epochs or events, four polarity transitions have been identified: the W10 R/N boundary at 3.7 ?? 0.1 m.y., the A12 N/R boundary at 4.9 ?? 0.1 m.y., the W32 N/R boundary at 9.0 ?? 0.2m.y., and the W36 R/N boundary at 10.8 ?? 0.3 - 1.0 m.y. The loss of absolute resolution of K-Ar dating in older rocks indicates that the use of well defined stratigraphic successions to identify and date polarity transitions will be important in the study of Pliocene and older reversals. ?? 1967.

  19. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    Science.gov (United States)

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  20. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    Science.gov (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  1. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    Pelletizing of biomass as biofuels increases energy density, improves storability and reduces transport costs. This process is a major key factor in the transition from fossil fuels to renewable biomass refined as solid biofuels. The fast growing pellet industry is today producing more than 1.2 Gg wood Pellets in Sweden - one of the leading nations to utilize bioenergy in its energy mix. The multitude of raw biomaterials available for fuel pellet production and their widely different characteristics stress the need for rapid characterization methods. A suitable technique for characterization of variation in biomaterials is near infrared (NIR) spectrometry. NIR radiation interacts with polar molecules and especially with structural groups O-H as in water, C-H as in biomass, but also with C-O bonds and C=C double bonds frequently found in biomass. Biomass contains mostly the atoms C, O and H. This means that transmittance or reflectance in the NIR wavelength region covers most of the covalent bonds in biomass, except for the C-C bonds in carbon chains. The NIR technique is also developed for on-line measurement in harsh industrial conditions. Thus, NIR techniques can be applied for on-line and real time characterization of raw biomass as well as in the refinement process of biomass into standardized solid biofuels. Spectral patterns in the NIR region contain chemical and physical information structure that together with reference parameters can be modeled by multivariate calibration methods to obtain predictions. These predictions can be presented to the operators in real time on screens as charts based on multivariate statistical process controls. This improves the possibilities to overview the raw biomass variation and to control the responses of the treatments the biomass undergo in the pelletizing process. The NIR-technique is exemplified by a 23-factorial experiment that was carried out in a pellet plant using sawdust as raw material to produce wood Pellets as

  2. [Induction and analysis for NIR features of frequently-used mineral traditional Chinese medicines].

    Science.gov (United States)

    Chen, Long; Yuan, Ming-Yang; Chen, Ke-Li

    2016-10-01

    In order to provide theoretical basis for the rapid identification of mineral traditional Chinese medicines(TCM) with near infrared (NIR)diffuse reflectance spectroscopy, Characteristic NIR spectra of 51 kinds of mineral TCMs were generalized and compared on the basis of the previous research, and the characteristic spectral bands were determined and analyzed by referring to mineralogical and geological literatures. It turned out that the NIR features of mineral TCMs were mainly at 8 000-4 000 cm ⁻¹ wavebands, which can be assigned as the absorption of water, -OH and[CO3 ²⁻] and so on. Absorption peaks of water has regularity as follows, the structure water and -OH had a combined peak which was strong and keen-edged around 7 000 cm ⁻¹, the crystal water had two strong peak around 7 000 cm ⁻¹ and 5 100 cm ⁻¹, and water only has a broad peak around 5 100 cm ⁻¹. Due to the differences in the crystal form and the contents of water in mineral TCMs, NIR features of water in mineral TCMs which could be used for identification were different. Mineral TCMs containing sulfate are rich in crystal water, mineral TCMs containing silicate generally had structure water, and mineral TCMs containing carbonate merely had a little of water, so it was reasonable for the use of NIR spectroscopy to classify mineral TCMs with anionic type. In addition, because of the differences in cationic type, impurities, crystal form and crystallinity, mineral TCMs have exclusive NIR features at 4 600-4 000 cm ⁻¹, which can be assigned as Al-OH, Mg-OH, Fe-OH, Si-OH,[CO3 ²⁻] and so on. Calcined mineral TCMs are often associated with water and main composition changes, also changes of the NIR features, which could be used for the monitoring of the processing, and to provide references for the quality control of mineral TCMs. The adaptability and limitation of NIR analysis for mineral TCMs were also discussed:the majority of mineral TCMs had noteworthy NIR features which could be

  3. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  4. Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum.

    Science.gov (United States)

    Daboussi, M J; Langin, T; Deschamps, F; Brygoo, Y; Scazzocchio, C; Burger, G

    1991-12-20

    We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.

  5. Estimation of Sensory Analysis Cupping Test Arabica Coffee Using NIR Spectroscopy

    Science.gov (United States)

    Safrizal; Sutrisno; Lilik, P. E. N.; Ahmad, U.; Samsudin

    2018-05-01

    Flavors have become the most important coffee quality parameters now day, many coffee consuming countries require certain taste scores for the coffee to be ordered, the currently used cupping method of appraisal is the method designed by The Specialty Coffee Association Of America (SCAA), from several previous studies was found that Near-Infrared Spectroscopy (NIRS) can be used to detect chemical composition of certain materials including those associated with flavor so it is possible also to be applied to coffee powder. The aim of this research is to get correlation between NIRS spectrum with cupping scoring by tester, then look at the possibility of testing coffee taste sensors using NIRS spectrum. The coffee samples were taken from various places, altitudes and postharvest handling methods, then the samples were prepared following the SCAA protocol, for sensory analysis was done in two ways, with the expert tester and with the NIRS test. The calibration between both found that Without pretreatment using PLS get RMSE cross validation 6.14, using Multiplicative Scatter Correction spectra obtained RMSE cross validation 5.43, the best RMSE cross-validation was 1.73 achieved by de-trending correction, NIRS can be used to predict the score of cupping.

  6. Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part I: Off-line NIR feasibility study for the characterization of potato composition

    NARCIS (Netherlands)

    Brunt, K.; Drost, W.C.

    2010-01-01

    An off-line near-infrared reflectance (NIR) feasibility study was conducted to explore the critical steps in the NIR determination of the major potato constituents (dry matter, starch, and protein) in relatively large (10 kg) potato samples. The results were important for the design of an automated

  7. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    Science.gov (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    Science.gov (United States)

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  9. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino

    2016-03-01

    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  10. SHARK-NIR: from K-band to a key instrument, a status update

    Science.gov (United States)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  11. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-04-01

    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  12. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    Science.gov (United States)

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  13. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn

    Science.gov (United States)

    Jiang, Hao; Lu, Jiangang

    2018-05-01

    Corn starch is an important material which has been traditionally used in the fields of food and chemical industry. In order to enhance the rapidness and reliability of the determination for starch content in corn, a methodology is proposed in this work, using an optimal CC-PLSR-RBFNN calibration model and near-infrared (NIR) spectroscopy. The proposed model was developed based on the optimal selection of crucial parameters and the combination of correlation coefficient method (CC), partial least squares regression (PLSR) and radial basis function neural network (RBFNN). To test the performance of the model, a standard NIR spectroscopy data set was introduced, containing spectral information and chemical reference measurements of 80 corn samples. For comparison, several other models based on the identical data set were also briefly discussed. In this process, the root mean square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set were used to make evaluations. As a result, the proposed model presented the best predictive performance with the smallest RMSEP (0.0497%) and the highest Rp2 (0.9968). Therefore, the proposed method combining NIR spectroscopy with the optimal CC-PLSR-RBFNN model can be helpful to determine starch content in corn.

  14. Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. E. Colmán

    2014-12-01

    Full Text Available In this work, the ability of on-line NIR spectroscopy for the prediction of the evolution of monomer concentration, conversion and average particle diameter in acrylamide inverse miniemulsion polymerization was evaluated. The spectral ranges were chosen as those representing the decrease in concentration of monomer. An increase in the baseline shift indicated that the NIR spectra were affected by particle size. Multivariate partial least squares calibration models were developed to relate NIR spectra collected by the immersion probe with off-line conversion and polymer particle size data. The results showed good agreement between off-line data and values predicted by the NIR calibration models and these latter were also able to detect different types of operational disturbances. These results indicate that it is possible to monitor variables of interest during acrylamide inverse miniemulsion polymerizations.

  15. Is there Place for Perfectionism in the NIR Spectral Data Reduction?

    Science.gov (United States)

    Chilingarian, Igor

    2017-09-01

    "Despite the crucial importance of the near-infrared spectral domain for understanding the star formation and galaxy evolution, NIR observations and data reduction represent a significant challenge. The known complexity of NIR detectors is aggravated by the airglow emission in the upper atmosphere and the water absorption in the troposphere so that up until now, the astronomical community is divided on the issue whether ground based NIR spectroscopy has a future or should it move completely to space (JWST, Euclid, WFIRST). I will share my experience of pipeline development for low- and intermediate-resolution spectrographs operated at Magellan and MMT. The MMIRS data reduction pipeline became the first example of the sky subtraction quality approaching the limit set by the Poisson photon noise and demonstrated the feasibility of low-resolution (R=1200-3000) NIR spectroscopy from the ground even for very faint (J=24.5) continuum sources. On the other hand, the FIRE Bright Source Pipeline developed specifically for high signal-to-noise intermediate resolution stellar spectra proves that systematics in the flux calibration and telluric absorption correction can be pushed down to the (sub-)percent level. My conclusion is that even though substantial effort and time investment is needed to design and develop NIR spectroscopic pipelines for ground based instruments, it will pay off, if done properly, and open new windows of opportunity in the ELT era."

  16. On the spin-temperature evolution during the epoch of reionization

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem

    Simulations estimating the brightness temperature (delta T-b) of the redshifted 21 cm from the epoch of reionization (EoR) often assume that the spin temperature (T-s) is decoupled from the background cosmic microwave background (CMB) temperature and is much larger than it, i.e. T-s T-CMB. Although

  17. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  18. Radioecological studies in early period of NIRS

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    2004-01-01

    Japanese tuna-fishing boat Fukuryumaru No.5 was exposed to heavy radioactive fallout due to the nuclear test explosion carried out by U.S.A. at Bikini Atoll of Marshal Islands in the central part of Pacific Ocean on March 1, 1954. Following this accident, radioactivity was detected in various environmental samples including rain, marine fishes and agricultural crops. Science Council of Japan organized the new research group of many scientists in the field of fisheries, agricultural, medical and biological studies and radiation protection studies. Government of Japan established National Institute of Radiological Sciences (NIRS) in 1957. In this Institute various radioecological studies have been carried out. In this paper, some of these radioecological studies carried out in early period of NIRS are described. (author)

  19. Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch

    Directory of Open Access Journals (Sweden)

    Mario Brkić

    2013-12-01

    Full Text Available After more than half a century, scientific book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch describes the recent geomagnetic field on Croatian territory. A review of research in the past decade as well as the original solutions makes the book a document of contribution to geodesy and geomagnetism in Croatia.The book’s introduction gives an overview of two centuries of history and the strategic, security, economic and scientific significance of knowing the geomagnetic field on the Croatian territory. All the activities related to the updating of the geomagnetic information, which took place in the last decade, signified a big step toward the countries where geomagnetic survey is a mature scientific and technical discipline, and a scientific contribution to understanding of the nature of the Earth's magnetism.The declination, inclination and total intensity maps (along with the normal annual changes for the epoch 2009.5 are given in the Appendix. The book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch (ISBN 978-953-293-521-9 is published by the State Geodetic Administration of the Republic of Croatia. Beside editor in chief, M. Brkić, the authors are: E. Vujić, D. Šugar, E. Jungwirth, D. Markovinović, M. Rezo, M. Pavasović, O. Bjelotomić, M. Šljivarić, M. Varga and V. Poslončec-Petrić. The book contains 48 pages and 3 maps, and is published in 200 copies. CIP record is available in digital catalogue of the National and University Library in Zagreb under number 861937.

  20. LSST and the Epoch of Reionization Experiments

    Science.gov (United States)

    Ivezić, Željko

    2018-05-01

    The Large Synoptic Survey Telescope (LSST), a next generation astronomical survey, sited on Cerro Pachon in Chile, will provide an unprecedented amount of imaging data for studies of the faint optical sky. The LSST system includes an 8.4m (6.7m effective) primary mirror and a 3.2 Gigapixel camera with a 9.6 sq. deg. field of view. This system will enable about 10,000 sq. deg. of sky to be covered twice per night, every three to four nights on average, with typical 5-sigma depth for point sources of r = 24.5 (AB). With over 800 observations in the ugrizy bands over a 10-year period, these data will enable coadded images reaching r = 27.5 (about 5 magnitudes deeper than SDSS) as well as studies of faint time-domain astronomy. The measured properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. The resulting hundreds of petabytes of imaging data for about 40 billion objects will be used for scientific investigations ranging from the properties of near-Earth asteroids to characterizations of dark matter and dark energy. For example, simulations estimate that LSST will discover about 1,000 quasars at redshifts exceeding 7; this sample will place tight constraints on the cosmic environment at the end of the reionization epoch. In addition to a brief introduction to LSST, I review the value of LSST data in support of epoch of reionization experiments and discuss how international participants can join LSST.

  1. Near-infrared (NIR) optogenetics using up-conversion system

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  2. Suitability of faecal near-infrared reflectance spectroscopy (NIRS) predictions for estimating gross calorific value

    Energy Technology Data Exchange (ETDEWEB)

    De la Roza-Delgado, B.; Modroño, S.; Vicente, F.; Martínez-Fernández, A.; Soldado, A.

    2015-07-01

    A total of 220 faecal pig and poultry samples, collected from different experimental trials were employed with the aim to demonstrate the suitability of Near Infrared Reflectance Spectroscopy (NIRS) technology for estimation of gross calorific value on faeces as output products in energy balances studies. NIR spectra from dried and grounded faeces samples were analyzed using a Foss NIRSystem 6500 instrument, scanning over the wavelength range 400-2500 nm. Validation studies for quantitative analytical models were carried out to estimate the relevance of method performance associated to reference values to obtain an appropriate, accuracy and precision. The results for prediction of gross calorific value (GCV) of NIRS calibrations obtained for individual species showed high correlation coefficients comparing chemical analysis and NIRS predictions, ranged from 0.92 to 0.97 for poultry and pig. For external validation, the ratio between the standard error of cross validation (SECV) and the standard error of prediction (SEP) varied between 0.73 and 0.86 for poultry and pig respectively, indicating a sufficiently precision of calibrations. In addition a global model to estimate GCV in both species was developed and externally validated. It showed correlation coefficients of 0.99 for calibration, 0.98 for cross-validation and 0.97 for external validation. Finally, relative uncertainty was calculated for NIRS developed prediction models with the final value when applying individual NIRS species model of 1.3% and 1.5% for NIRS global prediction. This study suggests that NIRS is a suitable and accurate method for the determination of GCV in faeces, decreasing cost, timeless and for convenient handling of unpleasant samples.. (Author)

  3. Diseno y construccion de un espectrometro NIR; Design and construction of a NIR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J M; Fernandez Marron, J L; Alberdi Primicia, J; Molero Menendez, F; Navarrete Marin, J J; Oller Gonzalez, J C

    2003-07-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  4. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    Science.gov (United States)

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  5. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Automatic moisture content determination on biomass with NIR and radio frequency spectroscopy; Automatisk fukthaltsmaetning paa biobraenslen med NIR samt radiofrekvent spektroskopi

    Energy Technology Data Exchange (ETDEWEB)

    Dahlquist, Erik; Nystroem, Jenny; Thorin, Eva; Paz, Ana de la [Maelardalen Univ. (Sweden). Dept. of Public Technology; Axrup, Lars [Stora Enso AB (Sweden)

    2005-08-01

    The goal with the project has been to evaluate two methods for determination of moisture content in biomass fuels and to determine if these methods can be used in practice in connection with delivery control of biomass at power plants. Tests have been performed with different biomass qualities and with two different measurement methods within a large moisture span, 0.6-72%. The two methods have been NIR (Near Infrared spectroscopy), and RF (Radio Frequency spectroscopy). The NIR-method is a surface analysis method, where hydro-carbons like wood have a different absorption pattern than water. The RF-method is a bulk method and utilizes that wood and water have different dielectric constants. Radio waves thus are affected differently by transportation through wet and dry biomass. In this project we have studied how representative sampling can be achieved from a large volume of delivered biomass fuel. We also have performed calibration with mixtures of the different fuels. Sampling has been performed by extracting biomass in a four meter long screw from the large volume as it is poured into a storage vessel. A conveyor belt is then transporting the material to the measurement systems. Two different NIR-instruments, DA (Diod Array) -NIR respective FT (Fourier Transform)- NIR, were placed above the conveyor belt. The material was collected from the belt into the measuring vessel for the RF, a 200 liter 'oil barrel'. The radio waves were sent from the transceiver into the sample from above without direct contact between the biomass and the transceiver antenna. Six different fuels were studied separately. Calibration was performed where the moisture content was varied by mixing relatively dry fuel with humidified biomass in different proportions a day before the measurements. Samples were taken from each mixture in connection with the measurements, from the conveyor belt. The samples were made in such a way that they represented the whole volume as good as

  7. Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements

    Science.gov (United States)

    Deeg, H. J.

    2015-06-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.

  8. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    , brain and connective tissue, and more recently it has been used in the clinical setting to assess circulatory and metabolic abnormalities. Quantitative measures of blood flow are also possible using NIRS and a light-absorbing tracer, which can be applied to evaluate circulatory responses to exercise......Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood...... vessels (arterioles, capillaries and venules). Refinement of NIRS hardware and the algorithms used to deconvolute the light absorption signal have improved the resolution and validity of cytochrome oxidase measurements. NIRS has been applied to measure oxygenation in a variety of tissues including muscle...

  9. Spectrally constrained NIR tomography for breast imaging: simulations and clinical results

    Science.gov (United States)

    Srinivasan, Subhadra; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Paulsen, Keith D.

    2005-04-01

    A multi-spectral direct chromophore and scattering reconstruction for frequency domain NIR tomography has been implemented using constraints of the known molar spectra of the chromophores and a Mie theory approximation for scattering. This was tested in a tumor-simulating phantom containing an inclusion with higher hemoglobin, lower oxygenation and contrast in scatter. The recovered images were quantitatively accurate and showed substantial improvement over existing methods; and in addition, showed robust results tested for up to 5% noise in amplitude and phase measurements. When applied to a clinical subject with fibrocystic disease, the tumor was visible in hemoglobin and water, but no decrease in oxygenation was observed, making oxygen saturation, a potential diagnostic indicator.

  10. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    Science.gov (United States)

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  11. Automated Processing of fNIRS Data—A Visual Guide to the Pitfalls and Consequences

    Directory of Open Access Journals (Sweden)

    Lia M. Hocke

    2018-05-01

    Full Text Available With the rapid increase in new fNIRS users employing commercial software, there is a concern that many studies are biased by suboptimal processing methods. The purpose of this study is to provide a visual reference showing the effects of different processing methods, to help inform researchers in setting up and evaluating a processing pipeline. We show the significant impact of pre- and post-processing choices and stress again how important it is to combine data from both hemoglobin species in order to make accurate inferences about the activation site.

  12. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  13. [Determination of wine original regions using information fusion of NIR and MIR spectroscopy].

    Science.gov (United States)

    Xiang, Ling-Li; Li, Meng-Hua; Li, Jing-Mingz; Li, Jun-Hui; Zhang, Lu-Da; Zhao, Long-Lian

    2014-10-01

    Geographical origins of wine grapes are significant factors affecting wine quality and wine prices. Tasters' evaluation is a good method but has some limitations. It is important to discriminate different wine original regions quickly and accurately. The present paper proposed a method to determine wine original regions based on Bayesian information fusion that fused near-infrared (NIR) transmission spectra information and mid-infrared (MIR) ATR spectra information of wines. This method improved the determination results by expanding the sources of analysis information. NIR spectra and MIR spectra of 153 wine samples from four different regions of grape growing were collected by near-infrared and mid-infrared Fourier transform spe trometer separately. These four different regions are Huailai, Yantai, Gansu and Changli, which areall typical geographical originals for Chinese wines. NIR and MIR discriminant models for wine regions were established using partial least squares discriminant analysis (PLS-DA) based on NIR spectra and MIR spectra separately. In PLS-DA, the regions of wine samples are presented in group of binary code. There are four wine regions in this paper, thereby using four nodes standing for categorical variables. The output nodes values for each sample in NIR and MIR models were normalized first. These values stand for the probabilities of each sample belonging to each category. They seemed as the input to the Bayesian discriminant formula as a priori probability value. The probabilities were substituteed into the Bayesian formula to get posterior probabilities, by which we can judge the new class characteristics of these samples. Considering the stability of PLS-DA models, all the wine samples were divided into calibration sets and validation sets randomly for ten times. The results of NIR and MIR discriminant models of four wine regions were as follows: the average accuracy rates of calibration sets were 78.21% (NIR) and 82.57% (MIR), and the

  14. Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation

    Science.gov (United States)

    Iwano, Takayuki; Umeyama, Shinji

    2015-12-01

    fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.

  15. WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS

    Directory of Open Access Journals (Sweden)

    J. SAFAIE

    2013-07-01

    Full Text Available The wireless distributed acquisition system for near infrared spectroscopy (WDA-NIRS is a portable, ultra-compact, continuous wave (CW NIRS system. Its main advantage is that it allows continuous synchronized multi-site hemodynamic monitoring. The WDA-NIRS system calculates online changes in hemoglobin concentration based on modified Beer–Lambert law and the tissue oxygenation index based on the spatial-resolved spectroscopy method. It consists of up to seven signal acquisition units, sufficiently small to be easily attached to any part of the body. These units are remotely synchronized by a PC base station for independent acquisition of NIRS signals. Each acquisition module can be freely adapted to individual requirements such as local skin properties and the microcirculation of interest, e.g., different muscles, brain, skin, etc. For this purpose, the light emitted by each LED can be individually, interactively or automatically adjusted to local needs. Furthermore, the user can freely create an emitter time-multiplexing protocol and choose the detector sensitivity most suitable to a particular situation. The potential diagnostic value of this advanced device is demonstrated by three typical applications.

  16. Prediction of pH and color in pork meat using VIS-NIR Near-infrared Spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Elton Jhones Granemann FURTADO

    2018-06-01

    Full Text Available Abstract The potential of near-infrared spectroscopy (NIRS to predict the physicochemical characteristics of the porcine longissimus dorsi (LD muscle was evaluated in comparison to the standard methods of pH and color for meat quality analysis compared to the pH results with Colorimeter and pH meter. Spectral information from each sample (n = 77 was obtained as the average of 32 successive scans acquired over a spectral range from 400 - 2498 nm with a 2 - nm gap for calibration and validation models. Partial least squares (PLS regression was used for each individual model. An R2 and a residual predictive deviation (RPD of 0.67/1.7, 0.86/2, and 0.76/1.9 were estimated for color parameters L*, a *, and b*, respectively. Final pH had an R2 of 0.67 and a RPD of 1.6. NIRS showed great potential to predict color parameter a * of porcine LD muscle. Further studies with larger samples should help improve model quality.

  17. Two-dimensional correlation spectroscopy reveals the underlying compositions for FT-NIR identification of the medicinal bulbs of the genus Fritillaria

    Science.gov (United States)

    Chen, Jianbo; Wang, Yue; Liu, Aoxue; Rong, Lixin; Wang, Jingjuan

    2018-03-01

    Fritillariae Bulbus, the dried bulbs of several species of the genus Fritillaria, is often used in traditional Chinese medicine for the treatment of cough and pulmonary diseases. However, the similar appearances make it difficult to identify different kinds of Fritillariae Bulbus. In this research, Fourier transform near-infrared (FT-NIR) spectroscopy with a reflection fiber probe is employed for the direct testing and automatic identification of different kinds of Fritillariae Bulbus to ensure the authenticity, efficacy and safety. The bulbs can be measured directly without pulverizing. According to the two-dimensional (2D) correlation analysis and statistical analysis, the height ratio of the two peaks near 4860 cm-1 and 4750 cm-1 in the second derivative spectra is specific to the species of Fritillariae Bulbus. This indicates that the relative amount of protein and carbohydrate may be critical to identify Fritillariae Bulbus. With the help of the SIMCA model, the four kinds of Fritillariae Bulbus can be identified correctly by FT-NIR spectroscopy. The results show the potential of FT-NIR spectroscopy with a reflection fiber probe in the rapid testing and identification of Fritillariae Bulbus.

  18. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  19. Relationship between muscle oxygenation by NIRS and blood lactate

    International Nuclear Information System (INIS)

    Xu Guodong; Mao Zongzhen; Ye Yanjie; Lv Kunru

    2011-01-01

    The aim of the study was to investigate the relationship of muscle oxygenation in term of oxy-hemoglobin concentration change (ΔHbO 2 ) by NIRS and blood lactate (BLA) in local skeletal muscle and evaluate the capability of NIRS in the research of exercise physiology Twenty-three athlete in the national fin-swimming team took the increasing load training on the power bicycle while their ΔHbO 2 and BLA were simultaneously recorded. The initial powers used in the training were set as 100 w for males and 40 w for females. During the experiment, the power kept constant for 3 min before each abrupt increment of 30 w until the limit of the athlete's capability. Statistical analysis and data visualization were performed. Following the increasing load training, ΔHbO 2 step-likely increased in the phase of aerobic metabolism but linearly decreased in the phase of anaerobic metabolism. The variation tendency of BLA was the same as ΔHbO 2 and the concurrency of crucial turning points between ΔHbO 2 and BLA was revealed. This relationship between ΔHbO 2 and BLA presented in the increasing load training suggested that ΔHbO 2 might be capable for taking the place of the invasively measured parameter BLA. Considering that ΔHbO 2 can be noninvasively measured by NIRS, ΔHbO 2 has the potential in the evaluation of athletes' physiological function and training effect on the athletes and accordingly NIRS can be well used in this field.

  20. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    Science.gov (United States)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  1. NIR spectroscopic properties of aqueous acids solutions.

    Science.gov (United States)

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  2. Dynamic Filtering Improves Attentional State Prediction with fNIRS

    Science.gov (United States)

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.

    2016-01-01

    Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).

  3. [Real-time detection of quality of Chinese materia medica: strategy of NIR model evaluation].

    Science.gov (United States)

    Wu, Zhi-sheng; Shi, Xin-yuan; Xu, Bing; Dai, Xing-xing; Qiao, Yan-jiang

    2015-07-01

    The definition of critical quality attributes of Chinese materia medica ( CMM) was put forward based on the top-level design concept. Nowadays, coupled with the development of rapid analytical science, rapid assessment of critical quality attributes of CMM was firstly carried out, which was the secondary discipline branch of CMM. Taking near infrared (NIR) spectroscopy as an example, which is a rapid analytical technology in pharmaceutical process over the past decade, systematic review is the chemometric parameters in NIR model evaluation. According to the characteristics of complexity of CMM and trace components analysis, a multi-source information fusion strategy of NIR model was developed for assessment of critical quality attributes of CMM. The strategy has provided guideline for NIR reliable analysis in critical quality attributes of CMM.

  4. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer.

    Science.gov (United States)

    Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang

    2018-08-05

    N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.

  5. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint

    Directory of Open Access Journals (Sweden)

    Ang Gong

    2015-12-01

    Full Text Available For Global Navigation Satellite System (GNSS single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  6. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    International Nuclear Information System (INIS)

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphael; Rangon, Luc; Barthes, Bernard G.

    2009-01-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q 2 = 0.75, R 2 = 0.82 for the total set), especially for samples with chlordecone content -1 or when the sample set was rather homogeneous (Q 2 = 0.91, R 2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg -1 , nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  7. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2009-11-15

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  8. Anterior temporal artery tap to identify systemic interference using short-separation NIRS measurements

    DEFF Research Database (Denmark)

    Sood, Mehak; Jindal, Utkarsh; Chowdhury, Shubhajit Roy

    2015-01-01

    that are also affected by tDCS. An approach may be to use short optode separations to measure systemic hemodynamic fluctuations occurring in the superficial layers which can then be used as regressors to remove the systemic contamination. Here, we demonstrate that temporal artery tap may be used to better...... of neural activity is possible with a measure of cerebral hemoglobin oxygenation using near-infrared spectroscopy (NIRS). In principal accordance, NIRS can capture the hemodynamic response to tDCS but the challenge remains in removing the systemic interference occurring in the superficial layers of the head...... identify systemic interference using this short-separation NIRS. Moreover, NIRS-EEG joint-imaging during anodal tDCS was used to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along with changes in the log-transformed mean-power of EEG within 0.5 Hz-11.25 Hz. We found that percent...

  9. Mapping human skeletal muscle perforator vessels using a quantum well infrared photodetector (QWIP) might explain the variability of NIRS and LDF measurements

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T; Delpy, D T; Fauci, M A; Ruefenacht, D

    2004-01-01

    Near-infrared spectroscopy (NIRS) and laser Doppler flowmetry (LDF) have become the techniques of choice allowing the non-invasive study of local human skeletal muscle metabolism and blood perfusion on a small tissue volume (a few cm 3 ). However, it has been shown that both NIRS and LDF measurements may show a large spatial variability depending on the position of the optodes over the investigated muscle. This variability may be due to local morphologic and/or metabolic characteristics of the muscle and makes the data interpretation and comparison difficult. In the present work, we use a third method to investigate this problem which permits fast, non-invasive mapping of the intramuscular vessel distribution in the human vastus lateralis muscle. This method uses an advanced, passive, infrared imaging sensor called a QWIP (quantum well infrared photodetector). We demonstrate, using a recovery-enhanced infrared imaging technique, that there is a significant presence of perforator vessels in the region of interest of ∼30 x 18 cm (the number of vessels being: 14, 9, 8, 33, 17 and 18 for each subject, respectively). The presence of these vessels makes the skeletal muscle highly inhomogeneous, and may explain the observed NIRS and LDF spatial variability. We conclude that accurate comparison of the metabolic activity of two different muscle regions is not possible without reliable maps of vascular 'singularities' such as the perforator vessels, and that the QWIP-based imaging system is one method to obtain this information. (note)

  10. Fluorescence enhancing under UV-NIR simultaneous-excitation in ZnS:Cu,Mn phosphors

    Directory of Open Access Journals (Sweden)

    L. J. Xie

    2012-12-01

    Full Text Available The fluorescence properties of a long-lasting phosphor, ZnS:Cu,Mn was studied for the first time under simultaneously excitation of both UV and NIR light. Up to 20% fluorescence enhancement of the phosphor was observed. In the present simultaneously-excitation process, broad-band NIR light was absorbed and converted to visible photons via a single-photon upconversion path. We propose that a novel kind of spectral-conversion material with the unique ability to simultaneously convert both UV and NIR photons can be developed and is promising in the application of enhancing the EQE of solar cells.

  11. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Daniel C.; Bowman, Judd [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Gugliucci, Nicole E.; Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  12. Single-trial lie detection using a combined fNIRS-polygraph system

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  13. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  14. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina

    2015-01-01

    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  15. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.

    Science.gov (United States)

    Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N

    2016-01-01

    To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p algorithms (all p algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.

  16. Relationship between muscle oxygenation by NIRS and blood lactate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guodong [School of Physical Education, Jianghan University, Hubei Wuhan 430056 (China); Mao Zongzhen; Ye Yanjie; Lv Kunru, E-mail: xguodong@wipe.edu.cn [School of Health Sciences, Wuhan Institute of Physical Education, Hubei Wuhan 430079 (China)

    2011-01-01

    The aim of the study was to investigate the relationship of muscle oxygenation in term of oxy-hemoglobin concentration change ({Delta}HbO{sub 2}) by NIRS and blood lactate (BLA) in local skeletal muscle and evaluate the capability of NIRS in the research of exercise physiology Twenty-three athlete in the national fin-swimming team took the increasing load training on the power bicycle while their {Delta}HbO{sub 2} and BLA were simultaneously recorded. The initial powers used in the training were set as 100 w for males and 40 w for females. During the experiment, the power kept constant for 3 min before each abrupt increment of 30 w until the limit of the athlete's capability. Statistical analysis and data visualization were performed. Following the increasing load training, {Delta}HbO{sub 2} step-likely increased in the phase of aerobic metabolism but linearly decreased in the phase of anaerobic metabolism. The variation tendency of BLA was the same as {Delta}HbO{sub 2} and the concurrency of crucial turning points between {Delta}HbO{sub 2} and BLA was revealed. This relationship between {Delta}HbO{sub 2} and BLA presented in the increasing load training suggested that {Delta}HbO{sub 2} might be capable for taking the place of the invasively measured parameter BLA. Considering that {Delta}HbO{sub 2} can be noninvasively measured by NIRS, {Delta}HbO{sub 2} has the potential in the evaluation of athletes' physiological function and training effect on the athletes and accordingly NIRS can be well used in this field.

  17. PENENTUAN BAHAN KERING BUAH SAWO SECARA TIDAK MERUSAK MENGGUNAKAN NIR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available This work was conducted to develop a new measuring system for nondestructive dry matter prediction in sawo fruit using short wavelength near infrared (SW-NIR spectroscopy. In this research, a number of 100 sawo fruits were used as samples. Spectra were acquired using a portable spectrometer (VIS-NIR USB4000, The Ocean Optics, USA with 100 ms integration time and 50 scans for number of scanning. Dry matter was measured using oven drying. The calibration and validation model was developed using the partial least squares (PLS regression method. The result showed that the best calibration model could be developed for original spectra in the wavelength range of  700-990 nm with F= 8, r = 0.92, SEC = 0.68 and  SEP = 0.86. Keywords:   Absorbance mode, dry matter, nondestructive method, sawo fruit, SW-NIR spectroscopy.

  18. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  19. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene

    2011-01-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...... to remove unimportant baseline signals. In order to model the NIR spectroscopy data the partial least squares regression (PLSR) approach was used on the full spectra. Variable selection based on PLSR by jack-knifing within a cross-model validation (CMV) framework was applied in order to remove non...... quantification of fructans by NIR spectroscopy is possible and that jack-knifing PLSR within a CMV framework is an effective way to eliminate the wavelengths of no interest. Jack-knifing PLSR did not improve the predictive ability because the root mean square error of prediction (RMSEP) increased (1.37) compared...

  20. Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds

    Science.gov (United States)

    Piner, B. Glenn; Edwards, Philip G.

    2018-01-01

    We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.

  1. Filtering natural light at the greenhouse covering - better greenhouse climate and higher production by filtering out NIR?

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2006-01-01

    Wageningen UR investigated the potentials of several NIR-filtering methods to be applied in Dutch horticulture. NIR-filtering can be done by the greenhouse covering or by internal or external moveable screens. The objective of this investigation was to quantify the effect of different NIR-filtering

  2. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo, E-mail: jxliuyd@163.com [School of Mechatronics Engineering, East China Jiaotong University, Changbei Open and Developing District, Nanchang, 330013 (China)

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62{sup 0}Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  3. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    International Nuclear Information System (INIS)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62 0 Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  4. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  5. Episodes and Epochs in the Evolution of Danish Textile and Fashion Industry

    DEFF Research Database (Denmark)

    Boujarzadeh, Behnam; Turcan, Romeo V.; Dholakia, Nikhilesh

    2016-01-01

    In this paper we explore the emergence and evolution of industries. Specifically we investigate the episodes and epochs in the emergence and evolution of Danish Textile and Fashion Industry. We collected historical data on Danish Textile and Fashion Industry between 1945 and 2015. We employ radar...

  6. The Corporate University's Role in Managing an Epoch in Learning Organisation Innovation

    Science.gov (United States)

    Dealtry, Richard

    2006-01-01

    Purpose: The purpose of this paper is to set the scene for some radical epochal thinking about the approach and future strategic directions in the management of organisational learning, following the author's earlier editorial theme concerning the need for exploration and innovation in organisational learning management.…

  7. Determination of the Mechanical Properties of Rubber by FT-NIR

    Directory of Open Access Journals (Sweden)

    Rattapol Pornprasit

    2016-01-01

    Full Text Available Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR, styrene butadiene rubber (SBR, nitrile butadiene rubber (NBR, and ethylene propylene diene monomer (EPDM, were evaluated using a near infrared (NIR spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-NIR spectrometer and fitted with an integration sphere working in a diffused reflectance mode. The spectra were correlated with hardness and tensile properties. Partial least square (PLS calibration models were built from the spectra datasets with preprocessing techniques, that is, smoothing and second derivative. This indicated that reasonably accurate models, that is, with a coefficient of determination [R2] of the validation greater than 0.9, could be achieved for the hardness and tensile properties of rubber materials. This study demonstrated that FT-NIR analysis can be applied to determine hardness and tensile values in rubbers and rubber blends effectively.

  8. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  9. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis...... aluminium content in aluminium hydroxide suspension. (c) 2007 Elsevier Ltd. All rights reserved....

  10. Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy

    Science.gov (United States)

    Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang

    2006-10-01

    The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.

  11. [A review on studies and applications of near infrared spectroscopy technique(NIRS) in detecting quality of hay].

    Science.gov (United States)

    Ding, Wu-Rong; Gan, You-Min; Guo, Xu-Sheng; Yang, Fu-Yu

    2009-02-01

    The quality of hay can directly affect the price of hay and also livestock productivity. Many kinds of methods have been developed for detecting the quality of hay and the method of near infrared spectroscopy (NIRS) has been widely used with consideration of its fast, effective and nondestructive characteristics during detecting process. In the present paper, the feasibility and effectiveness of application of NIRS to detecting hay quality were expounded. Meanwhile, the advance in the study of using NIRS to detect chemical compositions, extent of incursion by epiphyte, amount of toxicant excreted by endogenetic epiphyte and some minim components that can not be detected by using chemical methods were also introduced detailedly. Based on the review of the progresses in using NIRS to detect the quality of hay, it can be concluded that using NIRS to detect hay quality can avoid the disadvantages of time wasting, complication and high cost when using traditional chemical method. And for better utilization of NIRS in practice, some more studies still need to be implemented to further perfect and improve the utilization of NIRS for detecting forage quality, and more accurate modes and systematic analysis software need to be established in times to come.

  12. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS

    NARCIS (Netherlands)

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine

    2016-01-01

    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA).

  13. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  14. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.

    Science.gov (United States)

    Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A

    2018-02-01

    Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.

  15. FT-NIR: A Tool for Process Monitoring and More.

    Science.gov (United States)

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban

    2018-03-30

    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  16. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  17. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.

    Science.gov (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.

  18. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  19. The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment

    Science.gov (United States)

    Trott, Cathryn M.

    2018-05-01

    The Square Kilometre Array (SKA) Epoch of Reionisation and Cosmic Dawn (EoR/CD) experiments aim to explore the growth of structure and production of ionising radiation in the first billion years of the Universe. Here I describe the experiments planned for the future low-frequency components of the Observatory, and work underway to define, design and execute these programs.

  20. Single seed NIR as a fast method to predict germination ability in Pak Choi

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Olesen, Merete Halkjær

    2012-01-01

    Single seed NIR has further been tested to determine the applicability for prediction of seed viability in radish (Raphanus sativus L.) seeds and spinach (Spinacia oleracea L.) seeds. The studies show the possibility of using NIR spectroscopy in a seed separating process in the future, provided...

  1. Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    This final report provides technical information on the development of a near infrared reflectance spectroscopy (NIRS) system for the analysis of alfalfa hay. The purpose of the system is to provide consistent quality for processing alfalfa stems for fuel and alfalfa leaf meal products for livestock feed. Project tasks were to: (1) develop an NIRS driven analytical system for analysis of alfalfa hay and processed alfalfa products; (2) assist in hiring a qualified NIRS technician and recommend changes in testing equipment necessary to provide accurate analysis; (3) calibrate the NIRS instrument for accurate analyses; and (4) develop prototype equipment and sampling procedures as a first step towards development of a totally automated sampling system that would rapidly sample and record incoming feedstock and outbound product. An accurate hay testing program was developed, along with calibration equations for analyzing alfalfa hay and sun-cured alfalfa pellets. A preliminary leaf steam calibration protocol was also developed. 7 refs., 11 figs., 10 tabs.

  2. Measurement of internal quality of watermelon by Vis/NIR diffuse transmittance technique

    Science.gov (United States)

    Tian, Haiqing; Xu, Huirong; Ying, Yibin; Lu, Huishan; Yu, Haiyan

    2006-10-01

    Watermelon is a popular fruit in the world. Soluble solids content (SSC) is major characteristic used for assessing watermelon internal quality. This study was about a method for nondestructive internal quality detection of watermelons by means of visible/Near Infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer when the watermelon was in motion (1.4m/s) and in static state. Spectra data were analyzed by partial least squares (PLS) method. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models and the PLS method can provide good results. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon both in motion and in static state, and the predicted values were highly correlated with destructively measured values. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon internal quality in a nondestructive way.

  3. Evaluation of Pleasure-Displeasure Induced by Use of Lipsticks with Near-Infrared Spectroscopy (NIRS): Usefulness of 2-Channel NIRS in Neuromarketing.

    Science.gov (United States)

    Tanida, M; Okabe, M; Tagai, K; Sakatani, K

    2017-01-01

    In order to examine whether near-infrared spectroscopy (NIRS) would be a useful neuromarketing tool, we employed NIRS to evaluate the difference of pleasure-displeasure in women, induced by the use of different types of lipsticks. The subjects used lipsticks A and B; A is softer than B. Concentration changes of oxy-Hb were measured in the bilateral prefrontal cortex (PFC) during use of lipsticks A and B. We evaluated the right and left dominancy of PFC activity by calculating the Laterality Index (LI) (LI = leftΔoxy-Hb - rightΔoxy-Hb); positive LI indicates left-dominant activity while negative LI indicate right-dominant activity. We found a significant interaction between the use of lipsticks A and B, using a two-way factorial analysis of variance [F(1,13) = 9.63, p neuromarketing tool, since it allows objective assessment of pleasure-unpleasure.

  4. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  5. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  6. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  7. Faint galaxies - Bounds on the epoch of galaxy formation and the cosmological deceleration parameter

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Peterson, B.A.

    1991-01-01

    Models of galaxy luminosity evolution are used to interpret the observed color distributions, redshift distributions, and number counts of faint galaxies. It is found from the color distributions that the redshift corresponding to the epoch of galaxy formation must be greater than three, and that the number counts of faint galaxies, which are sensitive to the slope of the faint end of the luminosity function, are incompatible with q0 = 1/2 and indicate a smaller value. The models assume that the sequence of galaxy types is due to different star-formation rates, that the period of galaxy formation can be characterized by a single epoch, and that after formation, galaxies change in luminosity by star formation and stellar evolution, maintaining a constant comoving space density. 40 refs

  8. Field detection of CO and CH4 by NIR 2f modulation laser spectroscopy

    Directory of Open Access Journals (Sweden)

    A Khorsandi

    2011-12-01

    Full Text Available   A novel compact fiber-coupled NIR system based on a DFB diode laser source is employed as a portable and sensitive gas sensor for trace detection of combustion pollutant molecules. We demonstrate the performance of such an NIR gas sensor by tracing the absorption lines of CO and CH4 using 2f-WMS technique at moderate temperature of T ~ 600°C in the recuperator channel of an industrial furnace provided by Mobarakeh steel company. This measurement shows the excellent sensitivity of the applied NIR gas sensor to the on-line and in-situ monitoring of such molecular species.

  9. Signals from the epoch of cosmological recombination (Karl Schwarzschild Award Lecture 2008)

    Science.gov (United States)

    Sunyaev, R. A.; Chluba, J.

    2009-07-01

    The physical ingredients to describe the epoch of cosmological recombination are amazingly simple and well-understood. This fact allows us to take into account a very large variety of physical processes, still finding potentially measurable consequences for the energy spectrum and temperature anisotropies of the Cosmic Microwave Background (CMB). In this contribution we provide a short historical overview in connection with the cosmological recombination epoch and its connection to the CMB. Also we highlight some of the detailed physics that were studied over the past few years in the context of the cosmological recombination of hydrogen and helium. The impact of these considerations is two-fold: The associated release of photons during this epoch leads to interesting and unique deviations of the Cosmic Microwave Background (CMB) energy spectrum from a perfect blackbody, which, in particular at decimeter wavelength and the Wien part of the CMB spectrum, may become observable in the near future. Despite the fact that the abundance of helium is rather small, it still contributes a sizeable amount of photons to the full recombination spectrum, leading to additional distinct spectral features. Observing the spectral distortions from the epochs of hydrogen and helium recombination, in principle would provide an additional way to determine some of the key parameters of the Universe (e.g. the specific entropy, the CMB monopole temperature and the pre-stellar abundance of helium). Also it permits us to confront our detailed understanding of the recombination process with direct observational evidence. In this contribution we illustrate how the theoretical spectral template of the cosmological recombination spectrum may be utilized for this purpose. We also show that because hydrogen and helium recombine at very different epochs it is possible to address questions related to the thermal history of our Universe. In particular the cosmological recombination radiation may

  10. nirS-type denitrifying bacterial assemblages respond to environmental conditions of a shallow estuary.

    Science.gov (United States)

    Lisa, Jessica A; Jayakumar, Amal; Ward, Bess B; Song, Bongkeun

    2017-12-01

    Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered 'generalist' and 'specialist' archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 8%-29% of the abundant NRE archetypes. Archetypes found in a particular site, 'specialists', were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe 2+ . A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H 2 S respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among nirS-type denitrifying communities and supports the essential role of individual community members in overall ecosystem function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control

    Science.gov (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain–computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface. PMID:28261084

  12. NIR monitoring of in-service wood structures

    Science.gov (United States)

    Michela Zanetti; Timothy G. Rials; Douglas Rammer

    2005-01-01

    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  13. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

    Science.gov (United States)

    Aydöre, Sergül; Mihçak, M Kivanç; Ciftçi, Koray; Akin, Ata

    2010-03-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method, which monitors the brain activation by measuring the successive changes in the concentration of oxy- and deoxyhemoglobin in real time. In this study, we present a method to investigate the functional connectivity of prefrontal cortex (PFC) Sby applying a Gauss-Markov model to fNIRS signals. The hemodynamic changes on PFC during the performance of cognitive paradigm are measured by fNIRS for 17 healthy adults. The color-word matching Stroop task is performed to activate 16 different regions of PFC. There are three different types of stimuli in this task, which can be listed as incongruent stimulus (IS), congruent stimulus (CS), and neutral stimulus (NS), respectively. We introduce a new measure, called "information transfer metric" (ITM) for each time sample. The behavior of ITMs during IS are significantly different from the ITMs during CS and NS, which is consistent with the outcome of the previous research, which concentrated on fNIRS signal analysis via color-word matching Stroop task. Our analysis shows that the functional connectivity of PFC is highly relevant with the cognitive load, i.e., functional connectivity increases with the increasing cognitive load.

  14. The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    Science.gov (United States)

    Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan

    2018-04-01

    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

  15. Polarization leakage in epoch of reionization windows : The Low Frequency Array Case

    NARCIS (Netherlands)

    Asad, Khan

    2017-01-01

    The farther we look in space, the earlier we see in time. By observing a radio signal of 21cm wavelength coming from the epoch of reionization, when the universe was less than a billion years old, we can understand how the first stars, galaxies and black holes formed. This signal has not been

  16. Near-infrared spectroscopy (NIRS) in a piglet model

    DEFF Research Database (Denmark)

    Clausen, Nicola Groes; Spielmann, Nelly; Ringer, Simone K.

    2017-01-01

    Near-infrared spectroscopy (NIRS) in a piglet model: readings are influenced by the colour of the cover Clausen NG1,2, Spielmann N1,3, Weiss M1,3, Ringer SK4 1Children’s Research Center, University Children’s Hospital of Zurich, Switzerland; 2Department of Anaesthesiology and Intensive Care, Odense....... The rSO2 was measured by placing NIRS sensors in the supra glabellar region. In 12 animals sensors were covered with a uni-coloured pink (P) napkin and a turquoise (T) napkin in a random order (Setting A). In further 13 animals sensors were covered with blue-coloured surgical drape (SD) and a napkin...... with a reddish SantaClaus (SC) motive (Setting B). Uncovered (UC) baseline values were captured and measurements obtained for a period of three minutes. During measurements, the animals were kept in normoterm, normotensive, normoglycaemic and normoxic condition. Inspired oxygen fraction and ventilatory settings...

  17. [Determination of acidity and vitamin C in apples using portable NIR analyzer].

    Science.gov (United States)

    Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong

    2011-09-01

    Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.

  18. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    Science.gov (United States)

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  19. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1992-01-01

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  20. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We

  1. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  2. Evaluation of PE Films Having NIR-Reflective Additives for Greenhouse Applications in Arid Regions

    Directory of Open Access Journals (Sweden)

    Syed K. H. Gulrez

    2013-01-01

    Full Text Available Linear-low-density-polyethylene- (LLDPE- based formulations with several near-infrared- (NIR- reflective pigments were prepared by melt blending technique and their subsequent films were prepared by blown film extrusion process. Thermal properties of these films were evaluated using differential scanning calorimetry (DSC. The results showed that the melting and crystallization temperatures (Tm and Tc, resp. of these formulations were almost similar to that of control resin. The melt viscosity was measured by stress-controlled rotational rheometer and melt flow index (MFI instruments. Rheological measurements indicated that the blend formulations with NIR-reflective additive have similar melt viscoelastic behavior (storage modulus and dynamic viscosity to the control resin. The mechanical test performed on NIR-reflective films showed similar values of tensile strength for blend samples as that of control resin. The spectral radiometric properties of the blend films were evaluated in the solar wavelength range of 200–1100 nm and found to be improved over the control sample without having NIR-reflective pigment.

  3. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    International Nuclear Information System (INIS)

    Piattella, O.F.; Martins, D.L.A.; Casarini, L.

    2014-01-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100

  4. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle

    2007-01-01

    The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  5. Coordinating supplier-retailer using multiple common replenishment epochs with retailers’ choices

    Directory of Open Access Journals (Sweden)

    Juhwen Hwang

    2013-06-01

    Full Text Available Purpose: Provide a coordination strategy using multiple common replenishment epochs (MCRE for a single-supplier multi-retailer supply chain. Design/methodology/approach: The demand of a product occurs only with a group of heterogeneous and independent retailers with constant rates, whereas all their order requests are fulfilled by the supplier. The supplier decides a set of MCREs with general price and extra bonus to entice the retailers to join any one of the MCREs, or to let them remain with their original order time epochs. A retailer is willing to participate in a CRE as long as the retailer’s cost increase is within its tolerance. This paper provide a mixed integer programming to determine the MCRE strategies in order to minimize the total costs of the supplier. Findings: The results illustrate that MCRE model provided in the paper can generate a better replenishment coordination scheme than single CRE models. Practical implications: Replenishment coordination is one of the most important mechanisms to improve the efficiency in supply chains, e.g., chain convenience stores in the modern retail industry. Originality/value: This is a follow-up research on Joint Economic Lot Size (JELS models with a focus on multiple retailers with their replenishment coordination.

  6. Remote Estimation of Chlorophyll-a in Inland Waters by a NIR-Red-Based Algorithm: Validation in Asian Lakes

    Directory of Open Access Journals (Sweden)

    Gongliang Yu

    2014-04-01

    Full Text Available Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a concentration (Chl-a in water bodies. Remote sensing algorithms based on near-infrared-red (NIR-red wavelengths have demonstrated great potential for retrieving Chl-a in inland waters. This study tested the performance of a recently developed NIR-red based algorithm, SAMO-LUT (Semi-Analytical Model Optimizing and Look-Up Tables, using an extensive dataset collected from five Asian lakes. Results demonstrated that Chl-a retrieved by the SAMO-LUT algorithm was strongly correlated with measured Chl-a (R2 = 0.94, and the root-mean-square error (RMSE and normalized root-mean-square error (NRMS were 8.9 mg∙m−3 and 72.6%, respectively. However, the SAMO-LUT algorithm yielded large errors for sites where Chl-a was less than 10 mg∙m−3 (RMSE = 1.8 mg∙m−3 and NRMS = 217.9%. This was because differences in water-leaving radiances at the NIR-red wavelengths (i.e., 665 nm, 705 nm and 754 nm used in the SAMO-LUT were too small due to low concentrations of water constituents. Using a blue-green algorithm (OC4E instead of the SAMO-LUT for the waters with low constituent concentrations would have reduced the RMSE and NRMS to 1.0 mg∙m−3 and 16.0%, respectively. This indicates (1 the NIR-red algorithm does not work well when water constituent concentrations are relatively low; (2 different algorithms should be used in light of water constituent concentration; and thus (3 it is necessary to develop a classification method for selecting the appropriate algorithm.

  7. Development of nondestructive sorting method for brown bloody eggs using VIS/NIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Seock; Kim, Dae Yong; Kandpal, Lalit Mohan; Lee, Sang Dae; Cho, Byoung Kwan [Dept. of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun; Hong, Soon Jung [Rural Development Administration, Jeonju (Korea, Republic of)

    2014-02-15

    The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

  8. Design and development of a blood vessel localization system using a Nir viewer; Diseno y desarrollo de un sistema de localizacion de vasos sanguineos mediante Visor NIR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N., E-mail: angelicahr@fisica.ugto.mx [Universidad de Guanajuato, 37150 Leon, Guanajuato (Mexico)

    2017-10-15

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  9. Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery

    Science.gov (United States)

    Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.

    2013-01-01

    This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.

  10. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  11. Importance of epoch length and registration time on accelerometer measurements in younger children

    DEFF Research Database (Denmark)

    Dencker, M; Svensson, J; El-Naaman, B

    2012-01-01

    The aim of this study was to investigate the effect of epoch length on accumulation of minutes of physical activity per day over a spectrum of intensities, and the effect that selection of number of hours of acceptable registration required per day had on number of days that were considered accep...

  12. Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific.

    Science.gov (United States)

    Castro-González, Maribeb; Braker, Gesche; Farías, Laura; Ulloa, Osvaldo

    2005-09-01

    The major sites of water column denitrification in the ocean are oxygen minimum zones (OMZ), such as one in the eastern South Pacific (ESP). To understand the structure of denitrifying communities in the OMZ off Chile, denitrifier communities at two sites in the Chilean OMZ (Antofagasta and Iquique) and at different water depths were explored by terminal restriction fragment length polymorphism analysis and cloning of polymerase chain reaction (PCR)-amplified nirS genes. NirS is a functional marker gene for denitrification encoding cytochrome cd1-containing nitrite reductase, which catalyses the reduction of nitrite to nitric oxide, the key step in denitrification. Major differences were found between communities from the two geographic locations. Shifts in community structure occurred along a biogeochemical gradient at Antofagasta. Canonical correspondence analysis indicated that O2, NO3-, NO2- and depth were important environmental factors governing these communities along the biogeochemical gradient in the water column. Phylogenetic analysis grouped the majority of clones from the ESP in distinct clusters of genes from presumably novel and yet uncultivated denitrifers. These nirS clusters were distantly related to those found in the water column of the Arabian Sea but the phylogenetic distance was even higher compared with environmental sequences from marine sediments or any other habitat. This finding suggests similar environmental conditions trigger the development of denitrifiers with related nirS genotypes despite large geographic distances.

  13. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

    Science.gov (United States)

    Ferrari, Marco; Quaresima, Valentina

    2012-11-01

    This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Superposed epoch analysis applied to large-amplitude travelling convection vortices

    Directory of Open Access Journals (Sweden)

    H. Lühr

    1998-07-01

    Full Text Available For the six months from 1 October 1993 to 1 April 1994 the recordings of the IMAGE magnetometer network have been surveyed in a search for large-amplitude travelling convection vortices (TCVs. The restriction to large amplitudes (>100 nT was chosen to ensure a proper detection of evens also during times of high activity. Readings of all stations of the northern half of the IMAGE network were employed to check the consistency of the ground signature with the notation of a dual-vortex structure moving in an azimuthal direction. Applying these stringent selection criteria we detected a total of 19 clear TCV events. The statistical properties of our selection resemble the expected characteristics of large-amplitude TCVs. New and unexpected results emerged from the superposed epoch analysis. TCVs tend to form during quiet intervals embedded in moderately active periods. The occurrence of events is not randomly distributed but rather shows a clustering around a few days. These clusters recur once or twice every 27 days. Within a storm cycle they show up five to seven days after the commencement. With regard to solar wind conditions, we see the events occurring in the middle of the IMF sector structure. Large-amplitude TCVs seem to require certain conditions to make solar wind transients 'geoeffective', which have the tendency to recur with the solar rotation period.Key words. Ionosphere (Aural ionosphere; Ionosphere- magnetosphere interactions · Magnetospheric Physics (current system

  15. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language.

    Science.gov (United States)

    Soltanlou, Mojtaba; Sitnikova, Maria A; Nuerk, Hans-Christoph; Dresler, Thomas

    2018-01-01

    In this review, we aim to highlight the application of functional near-infrared spectroscopy (fNIRS) as a useful neuroimaging technique for the investigation of cognitive development. We focus on brain activation changes during the development of mathematics and language skills in schoolchildren. We discuss how technical limitations of common neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have resulted in our limited understanding of neural changes during development, while fNIRS would be a suitable and child-friendly method to examine cognitive development. Moreover, this technique enables us to go to schools to collect large samples of data from children in ecologically valid settings. Furthermore, we report findings of fNIRS studies in the fields of mathematics and language, followed by a discussion of the outlook of fNIRS in these fields. We suggest fNIRS as an additional technique to track brain activation changes in the field of educational neuroscience.

  16. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  17. VIS/NIR imaging application for honey floral origin determination

    NARCIS (Netherlands)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; Ruth, van Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.

    2017-01-01

    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in

  18. The estimation of hemodynamic signals measured by fNIRS response to cold pressor test

    Science.gov (United States)

    Ansari, M. A.; Fazliazar, E.

    2018-04-01

    The estimation of cerebral hemodynamic signals has an important role for monitoring the stage of neurological diseases. Functional Near-Infrared Spectroscopy (fNIRS) can be used for monitoring of brain activities. fNIRS utilizes light in the near-infrared spectrum (650-1000 nm) to study the response of the brain vasculature to the changes in neural activities, called neurovascular coupling, within the cortex when cognitive activation occurs. The neurovascular coupling may be disrupted in the brain pathological condition. Therefore, we can also use fNIRS to diagnosis brain pathological conditions or to monitor the efficacy of related treatments. The Cold pressor test (CPT), followed by immersion of dominant hand or foot in the ice water, can induce cortical activities. The perception of pain induced by CPT can be related to cortical neurovascular coupling. Hence, the variation of cortical hemodynamic signals during CPT can be an indicator for studying neurovascular coupling. Here, we study the effect of pain induced by CPT on the temporal variation of concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in the healthy brains. We use fNIRS data collected on forehead during a CPT from 11 healthy subjects, and the average data are compared with post-stimulus pain rating scores. The results show that the variation of [Hb] and [HbO2] are positively correlated with self-reported scores during the CPT. These results depict that fNIRS can be potentially applied to study the decoupling of neurovascular process in brain pathological conditions.

  19. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization.

    Science.gov (United States)

    Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang

    2017-09-13

    Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.

  20. Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)

    OpenAIRE

    Lestander, Torbjörn

    2003-01-01

    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potenti...

  1. NIR responsive liposomal system for rapid release of drugs in cancer therapy

    Directory of Open Access Journals (Sweden)

    Chen MM

    2017-06-01

    Full Text Available Ming-Mao Chen,1 Yuan-Yuan Liu,1 Guang-Hao Su,2 Fei-Fei Song,1 Yan Liu,3 Qi-Qing Zhang1,4 1Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 2Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, 3State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 4Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People’s Republic of China Abstract: To design a rapid release liposomal system for cancer therapy, a NIR responsive bubble-generating thermosensitive liposome (BTSL system combined with photothermal agent (Cypate, doxorubicin (DOX, and NH4HCO3 was developed. Cypate/DOX-BTSL exhibited a good aqueous stability, photostability, and photothermal effect. In vitro release suggested that the amounts of DOX released from BTSL were obviously higher than that of (NH42SO4 liposomes at 42°C. After NIR irradiation, the hyperthermic temperature induced by Cypate led to the decomposition of NH4HCO3 and the generation of a large number of CO2 bubbles, triggering a rapid release of drugs. Confocal laser scanning microscope and acridine orange staining indicated that Cypate/DOX-BTSL upon irradiation could facilitate to disrupt the lysosomal membranes and realize endolysosomal escape into cytosol, improving the intracellular uptake of DOX clearly. MTT and trypan blue staining implied that the cell damage of Cypate/DOX-BTSL with NIR irradiation was more severe than that in the groups without irradiation. In vivo results indicated that Cypate/DOX-BTSL with irradiation could dramatically increase the accumulation of DOX in tumor, inhibit tumor growth, and reduce systemic side effects of DOX. These data demonstrated that Cypate/DOX-BTSL has the potential to be used as a NIR responsive liposomal system for a rapid

  2. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*

    OpenAIRE

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-01-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  3. NIRS database of the original research database

    International Nuclear Information System (INIS)

    Morita, Kyoko

    1991-01-01

    Recently, library staffs arranged and compiled the original research papers that have been written by researchers for 33 years since National Institute of Radiological Sciences (NIRS) established. This papers describes how the internal database of original research papers has been created. This is a small sample of hand-made database. This has been cumulating by staffs who have any knowledge about computer machine or computer programming. (author)

  4. Agricultural applications of NIR reflectance and transmittance

    DEFF Research Database (Denmark)

    Gislum, René

    2009-01-01

    There has been a considerable increase in the use of near infrared (NIR) reflectance and transmittance spectroscopy technologies for rapid determination of quality parameters in agriculture, including applications within crop product quality, feed and food quality, manure quality, soil analyses etc....... As a result it was decided to arrange a seminar within the Nordic Association of Agricultural Scientists. This is a report of the meeting....

  5. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  6. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Molero Menendez, F.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  7. Developing and evaluating a multisite and multispecies NIR ...

    African Journals Online (AJOL)

    To elevate NIR from proof-of-concept to a pilot scale, a large multisite, multispecies calibration was developed over iterative cycles to: (1) determine whether KPY in eucalypts can be predicted from a single calibration independent of site and species, and (2) identify the potential limits of accuracy and precision. This paper ...

  8. Near infrared spectroscopic (NIRS) analysis of grapes and red-wines

    International Nuclear Information System (INIS)

    Guggenbichler, W.

    2003-04-01

    In this work vine varieties of the genus Vitis as well as grape-must and fully developed wines were examined by Near Infrared Spectroscopy (NIRS). The spectra were obtained by methods of transflection and transmission measurements. It was shown, that spectra of different varieties of grapes and red-wines can be combined in clusters by means of NIR spectroscopy and subsequent principle components analysis (PCA). In addition to this, it was possible to identify blends of two different varieties of wines as such and to determine the ratio of mixture. In several varieties of grape-must these NIR spectroscopic measurements further allowed a quantitative determination of important parameters concerning the quality of grapes, such as: sugar, total acidity, tartaric acid, malic acid, and pH-value. The content of polyphenols in grapes was also analyzed by this method. The total parameter for polyphenols in grapes is a helpful indicator for the optimal harvest time and the quality of grapes. All quantitative calculations were made by the method of partial least square regression (PLS). As these spectroscopic measurements require minimal sample preparations and due to the fact that measurements can be accomplished and results obtained within a few seconds, this method turned out to be a promising option in order to classify wines and to quantify relevant ingredients in grapes. (author)

  9. Use of FT-NIR Spectroscopy for Bovine Colostrum Analysis

    Directory of Open Access Journals (Sweden)

    P. Navrátilová

    2006-01-01

    Full Text Available Fourier transformation near infrared spectroscopy (FT-NIR in combination with partial least squares (PLS method were used to determine the content of total solids, fat, non-fatty solids, lactose and proteins in bovine colostrum. Spectra of 90 samples were measured in the reflectance mode with a transflectance cuvette in the 10000-4000 cm-1 spectral ranges with 100 scans. Calibration was performed and statistical values of correlation coefficients (R and standard error of calibration values (SEC were computed for total solids (0.986 and 0.919, respectively, fat (0.997 and 0.285, respectively, non-fatty solids (0.995 and 0.451, respectively, lactose (0.934 and 0.285, respectively and protein (0.999 and 0.149, respectively. The calibration models developed were verified by cross validation. It follows from the study that FT-NIR spectroscopy can be used to determine the components of bovine colostrum.

  10. Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats.

    Science.gov (United States)

    Núñez-Sánchez, N; Martínez-Marín, A L; Polvillo, O; Fernández-Cabanás, V M; Carrizosa, J; Urrutia, B; Serradilla, J M

    2016-01-01

    Milk fatty acid (FA) composition is important for the goat dairy industry because of its influence on cheese properties and human health. The aim of the present work was to evaluate the feasibility of NIRS reflectance (oven-dried milk using the DESIR method) and transflectance (liquid milk) analysis to predict milk FA profile and groups of fats in milk samples from individual goats. NIRS analysis of milk samples allowed to estimate FA contents and their ratios and indexes in fat with high precision and accuracy. In general, transflectance analysis gave better or similar results than reflectance mode. Interestingly, NIRS analysis allowed direct prediction of the Atherogenicity and Thrombogenicity indexes, which are useful for the interpretation of the nutritional value of goat milk. Therefore, the calibrations obtained in the present work confirm the viability of NIRS as a fast, reliable and effective analytical method to provide nutritional information of milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The application of Near Infrared Reflectance Spectroscopy (NIRS for the quantitative analysis of hydrocortisone in primary materials

    Directory of Open Access Journals (Sweden)

    A. PITTAS

    2001-03-01

    Full Text Available Near Infrared Reflectance Spectroscopy (NIRS, coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to develop an NIRS method with higher precision and accuracy than the official UV/VIS spectroscopic method (BP '99, 19 samples, taken from one year’s production and several prepared in the laboratory, having a hydrocortisone sodium succinate concentration in the range from 89.05%to 95.83 %, were analysed by NIR and UV/VIS spectroscopy. Three frequency ranges: 5939.73–5627.32 cm-1; 4863.64 – 4574.36 cm-1; 4308.23–4200.24 cm-1, with the best positive correlation between the changes in the spectral and concentration data, were chosen. The validity of the developed NIRS chemometric method for the determination of the hydrocortisone sodium succinate concentration, constructed by the partial least squares (PLS regression technique, is discussed. A correlation coefficient of 0.9758 and a standard error of cross validation (RMSECVof 1.06%were found between the UV/VI Sand òhe NIR spectroscopic results of the hydrocortisone sodium succinate concentration in the samples.

  12. On-chip integrated functional near infra-red spectroscopy (fNIRS) photoreceiver for portable brain imaging

    Science.gov (United States)

    Kamrani, Ehsan

    Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant advantages of fNIRS systems, they still suffer from few drawbacks including low spatial-resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome the limitations of currently available non-portable fNIRS systems, we have introduced a new low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench- Reset circuitry implemented using standard CMOS technologies to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting applications. Several SiAPDs have been implemented in novel structures and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using different premature edge breakdown prevention techniques. The main characteristics of the SiAPDs are validated and the impact of each parameter and the device simulators (TCAD, COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around 12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark-count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product (GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept, logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power

  13. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  14. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  15. Infrared and Optical Spectroscopy of Type Ia Supernovae in the Nebular Phase

    OpenAIRE

    Bowers, E. J. C.; Meikle, W. P. S.; Geballe, T. R.; Walton, N. A.; Pinto, P. A.; Dhillon, V. S.; Howell, S. B.; Harrop-Allin, M. K.

    1997-01-01

    We present near-infrared (NIR) spectra for Type Ia supernovae at epochs of 13 to 338 days after maximum blue light. Some contemporary optical spectra are also shown. All the NIR spectra exhibit considerable structure throughout the J-, H- and K-bands. In particular they exhibit a flux `deficit' in the J-band which persists as late as 175 days. This is responsible for the well-known red J-H colour. To identify the emission features and test the $^{56}$Ni hypothesis for the explosion and subseq...

  16. Intercomparisons for integrating the radon-thoron detector of NIRP, China with NIRS, Japan

    International Nuclear Information System (INIS)

    Wu, Yunyun; Cui, Hongxing; Zhang, Qingzhao; Shang, Bing

    2015-01-01

    Intercomparisons play an important role in maintaining a reasonable and accurate standard of measurement and quality. Integrating the radon-thoron detector of the National Institute for Radiological Protection (NIRP), China has continuously been a subject of four rounds of international intercomparisons organised by the National Institute of Radiological Sciences (NIRS), Japan during 2007-12. The intercomparisons were held at NIRS. The exercises included different exposures for both radon and thoron. The results of the intercomparison for the detectors of NIRP for both radon and thoron exposures were in the range of ±20 % from the reference value and were categorised as 'Category I' in the intercomparison carried out in 2011. The radon and thoron results of the LD-P detector in four rounds of intercomparison exercises were summarised, and uncertainties of all the radon and thoron results of NIRP were within the acceptable range of 30 % in environment. Radon and thoron measurement results between NIRP and NIRS were basically in agreement. (authors)

  17. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging

    Science.gov (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun

    2018-04-01

    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.

  18. XRF and UV-Vis-NIR analyses of medieval wall paintings of al-Qarawiyyin Mosque (Morocco)

    Science.gov (United States)

    Fikri, I.; El Amraoui, M.; Haddad, M.; Ettahiri, A. S.; Bellot-Gurlet, L.; Falguères, C.; Lebon, M.; Nespoulet, R.; Ait Lyazidi, S.; Bejjit, L.

    2018-05-01

    Medieval wall painting fragments, taken at the medieval Mosque of al-Qarawiyyin in Fez, have been investigated by means of X-ray fluorescence and UV-Vis-NIR diffuse reflectance spectroscopies. The analyses permitted to determine the palette of pigments used by craftsmen of the time. Hematite or red ochre were used to obtain red brown colours, calcite for white, copper-based pigments for blue and blue-grey shades while a mixture of cinnabar, lead-based pigments and hematite was adopted to make red-orange colours. Furthermore, the analysis of mortars (external layer and plaster) on these wall painting samples revealed that they are composed mainly by calcite and sometimes by additional compounds such as quartz and gypsum.

  19. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy

    Science.gov (United States)

    Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao

    2006-10-01

    To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.

  1. Espectroscopía NIR como Técnica Exploratoria Rápida para Detección de Amarillamiento Hojas Crisantemo (Dendranthema grandiflora var. Zembla / NIR Spectroscopy as Quick Exploratory Technique for Detection of Chrysanthemum Leaf Yellowing (Dendranthema

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pérez Naranjo

    2014-03-01

    Full Text Available Resumen. El diagnóstico seguro de enfermedades en lasplantas depende de técnicas costosas, que requieren de tiempo y entrenamiento especializado. Esta investigación evaluó el uso de espectroscopia infrarroja cercana NIR (por sus siglas en ingles near-infrared para la detección rápida del “amarillamiento de hojas de crisantemo”, una enfermedad de etiología incierta que genera pérdidas económicas importantes. En este experimento se tomaron espectros infrarrojos en hojas con niveles de amarillamiento diferentes según la clasificación empleada por los agricultores (asintomáticas, síntomas intermedios y hojasdeformadas con síntomas avanzados. Mediante un análisis de componentes principales y con los valores de los espectros de esas muestras, se desarrolló un modelo de clasificación de hojas. Ese modelo aplicado en espectros de hojas tomados al azar separó adecuadamente el grupo de espectros NIR de hojas asintomáticas de un grupo indiferenciado de espectros obtenidos de hojas consíntomas intermedios o avanzados. Los resultados sugieren que para esta enfermedad es posible desarrollar un modelo de detección en muestras problema. Para ello, se requerirá incorporar al modelo un mayor número de muestras en rangos de enfermedad bien definidos. Estos resultados permiten vislumbrar las posibilidades del uso de esta técnica no destructiva, para detección temprana de los síntomas del amarillamiento foliar en crisantemo y como herramienta para el diseño de estrategias oportunas y efectivas demanejo de esta y otras enfermedades en las plantas. / Abstract. The safe diagnostic of plant diseases depends on expensive techniques which require time and specialized training. This study evaluated the use of near-infrared spectroscopy (NIR for the rapid detection of “chrysanthemum leaf yellowing”, a disease of unknown etiology causing important economic losses in Antioquia’s chrysanthemum main producing areas

  2. Less transpiration and good quality thanks to NIR-screen

    NARCIS (Netherlands)

    Stanghellini, C.; Kempkes, F.L.K.; Hemming, S.; Jianfeng, D.

    2009-01-01

    Materials or additives for greenhouse cover that reflect or absorb a part of the NIR radiation can decrease the cooling requirement for the greenhouse and increase water use efficiency of the crop. By reducing the ventilation requirement, it might even decrease emissions of carbon dioxide from

  3. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    Science.gov (United States)

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  4. Post-maximum Near-infrared Spectra of SN 2014J: A Search for Interaction Signatures

    Science.gov (United States)

    Sand, D. J.; Hsiao, E. Y.; Banerjee, D. P. K.; Marion, G. H.; Diamond, T. R.; Joshi, V.; Parrent, J. T.; Phillips, M. M.; Stritzinger, M. D.; Venkataraman, V.

    2016-05-01

    We present near-infrared (NIR) spectroscopic and photometric observations of the nearby Type Ia SN 2014J. The 17 NIR spectra span epochs from +15.3 to +92.5 days after B-band maximum light, while the {{JHK}}s photometry include epochs from -10 to +71 days. These data are used to constrain the progenitor system of SN 2014J utilizing the Paβ line, following recent suggestions that this phase period and the NIR in particular are excellent for constraining the amount of swept-up hydrogen-rich material associated with a non-degenerate companion star. We find no evidence for Paβ emission lines in our post-maximum spectra, with a rough hydrogen mass limit of ≲ 0.1 M ⊙, which is consistent with previous limits in SN 2014J from late-time optical spectra of the Hα line. Nonetheless, the growing data set of high-quality NIR spectra holds the promise of very useful hydrogen constraints. Based on observations obtained at the Gemini Observatory under program GN-2014A-Q-8 (PI: Sand). Gemini is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  5. Monitoring of human brain functions in risk decision-making task by diffuse optical tomography using voxel-wise general linear model

    Science.gov (United States)

    Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.

  6. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    Science.gov (United States)

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  7. Joint attention studies in normal and autistic children using NIRS

    Science.gov (United States)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha

    2011-03-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  8. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  9. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  10. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    Science.gov (United States)

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Two-epoch cross-sectional case record review protocol comparing quality of care of hospital emergency admissions at weekends versus weekdays.

    Science.gov (United States)

    Bion, Julian; Aldridge, Cassie P; Girling, Alan; Rudge, Gavin; Beet, Chris; Evans, Tim; Temple, R Mark; Roseveare, Chris; Clancy, Mike; Boyal, Amunpreet; Tarrant, Carolyn; Sutton, Elizabeth; Sun, Jianxia; Rees, Peter; Mannion, Russell; Chen, Yen-Fu; Watson, Samuel Ian; Lilford, Richard

    2017-12-22

    The mortality associated with weekend admission to hospital (the 'weekend effect') has for many years been attributed to deficiencies in quality of hospital care, often assumed to be due to suboptimal senior medical staffing at weekends. This protocol describes a case note review to determine whether there are differences in care quality for emergency admissions (EAs) to hospital at weekends compared with weekdays, and whether the difference has reduced over time as health policies have changed to promote 7-day services. Cross-sectional two-epoch case record review of 20 acute hospital Trusts in England. Anonymised case records of 4000 EAs to hospital, 2000 at weekends and 2000 on weekdays, covering two epochs (financial years 2012-2013 and 2016-2017). Admissions will be randomly selected across the whole of each epoch from Trust electronic patient records. Following training, structured implicit case reviews will be conducted by consultants or senior registrars (senior residents) in acute medical specialities (60 case records per reviewer), and limited to the first 7 days following hospital admission. The co-primary outcomes are the weekend:weekday admission ratio of errors per case record, and a global assessment of care quality on a Likert scale. Error rates will be analysed using mixed effects logistic regression models, and care quality using ordinal regression methods. Secondary outcomes include error typology, error-related adverse events and any correlation between error rates and staffing. The data will also be used to inform a parallel health economics analysis. The project has received ethics approval from the South West Wales Research Ethics Committee (REC): reference 13/WA/0372. Informed consent is not required for accessing anonymised patient case records from which patient identifiers had been removed. The findings will be disseminated through peer-reviewed publications in high-quality journals and through local High-intensity Specialist-Led Acute

  12. Sun in the Epoch ``LOWERED'' Solar Activity: the Comparative Analysis of the Current 24 Solar Cycle and Past Authentic Low Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    A reliable series of the relative numbers of sunspots (14 solar cycles ‒ 165 years) it leads to the only scenario of solar activity cycles - to the alternation of epochs of “increased” (18 ‒ 22 cycles of solar activity) and “lowered” (12 ‒ 16 and 24 ‒ ...) solar activity with the periods of solar magnetic field reconstruction in solar zone of the sunspots formation (11, 12, 23) from one epoch to another. The regime of the produce of magnetic field significantly changes in these periods, providing to the subsequent 5 cycles the stable conditions of solar activity. Space solar research made it possible to sufficiently fully investigate characteristics and parameters of the solar cycles for the epoch of “increased” (20 ‒ 22 cycles) solar activity and period of the reconstruction (22 ‒ 23 cycles) to the epoch of “lowered” solar activity (24 ‒ ... cycles). In this scenario 24 solar cycle is the first solar cycle of the second epoch of “lowered” solar activity. Therefore his development and characteristics roughly must be described in the context of the low solar cycles development (12, 14, and 16). In the current solar cycle the sunspot-forming activity is lowered, the average areas of the sunspot groups correspond to values for epoch of “lowered “solar activity, average magnetic field in the umbra of sunspots was reduced approximately to 700 gauss, and for this time was observed only 4 very large sunspot groups (≥1500 mvh). Flare activity substantially was lowered: for the time of the current solar cycle development it was occurrence of M-class flares M - 368, class X - 32, from which only 2 solar flares of class X> 5. Solar proton events are observed predominantly small intensity; but only 5 from them were the intensity of ≥100 pfu (S2) and 4 - ≥1000 pfu (S3). The first five years of the 24 cycle evolution confirm this assumption and the possibility to give the qualitative forecast of his evolution and development of the

  13. Assessing worst case scenarios in movement demands derived from global positioning systems during international rugby union matches: Rolling averages versus fixed length epochs

    Science.gov (United States)

    Cunningham, Daniel J.; Shearer, David A.; Carter, Neil; Drawer, Scott; Pollard, Ben; Bennett, Mark; Eager, Robin; Cook, Christian J.; Farrell, John; Russell, Mark

    2018-01-01

    The assessment of competitive movement demands in team sports has traditionally relied upon global positioning system (GPS) analyses presented as fixed-time epochs (e.g., 5–40 min). More recently, presenting game data as a rolling average has become prevalent due to concerns over a loss of sampling resolution associated with the windowing of data over fixed periods. Accordingly, this study compared rolling average (ROLL) and fixed-time (FIXED) epochs for quantifying the peak movement demands of international rugby union match-play as a function of playing position. Elite players from three different squads (n = 119) were monitored using 10 Hz GPS during 36 matches played in the 2014–2017 seasons. Players categorised broadly as forwards and backs, and then by positional sub-group (FR: front row, SR: second row, BR: back row, HB: half back, MF: midfield, B3: back three) were monitored during match-play for peak values of high-speed running (>5 m·s-1; HSR) and relative distance covered (m·min-1) over 60–300 s using two types of sample-epoch (ROLL, FIXED). Irrespective of the method used, as the epoch length increased, values for the intensity of running actions decreased (e.g., For the backs using the ROLL method, distance covered decreased from 177.4 ± 20.6 m·min-1 in the 60 s epoch to 107.5 ± 13.3 m·min-1 for the 300 s epoch). For the team as a whole, and irrespective of position, estimates of fixed effects indicated significant between-method differences across all time-points for both relative distance covered and HSR. Movement demands were underestimated consistently by FIXED versus ROLL with differences being most pronounced using 60 s epochs (95% CI HSR: -6.05 to -4.70 m·min-1, 95% CI distance: -18.45 to -16.43 m·min-1). For all HSR time epochs except one, all backs groups increased more (p < 0.01) from FIXED to ROLL than the forward groups. Linear mixed modelling of ROLL data highlighted that for HSR (except 60 s epoch), SR was the only group not

  14. The epoch of cosmic heating by early sources of X-rays

    Science.gov (United States)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  15. Spectrophotometric versus NIR-MIR assessments of cowpea pods for discriminating the impact of freezing.

    Science.gov (United States)

    Machado, Nelson; Domínguez-Perles, Raúl; Ramos, Ana; Rosa, Eduardo As; Barros, Ana Irna

    2017-10-01

    Freezing represents an important storage method for vegetal foodstuffs, such as cowpea pods, and thus the impact of this process on the chemical composition of these matrices arises as a prominent issue. In this sense, the phytochemical contents in frozen cowpea pods (i.e. at 6 and 9 months) have been compared with fresh cowpea pods material, with the samples being concomitantly assessed by Fourier-transform infrared spectroscopy (FTIR), both mid-infrared (MIR) and near infrared (NIR), aiming to evaluate the potential of these techniques as a rapid tool for the traceability of these matrices. A decrease in phytochemical contents during freezing was observed, allowing the classification of samples according to the freezing period based on such variations. Also, MIR and NIR allowed discrimination of samples: the use of the first derivative demonstrated a better performance for this purpose, whereas the use of the normalized spectra gave the best correlations between the spectra and specific contents. In both cases, NIR displayed the best performance. Freezing of cowpea pods leads to a decrease of phytochemical contents, which can be monitored by FTIR spectroscopy, both within the MIR and NIR ranges, whereas the use of this technique, in tandem with chemometrics, constitutes a suitable methodology for the traceability of these matrices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges

    International Nuclear Information System (INIS)

    Abay, T Y; Kyriacou, P A

    2016-01-01

    Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p  <  0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG. (paper)

  17. Development of a low-cost NIR instrument for minced meat analysis: Part 1 - Spectrophotometer and sample presentations

    Science.gov (United States)

    The feasibility of using a compact, low-cost NIR spectrophotometer to predict moisture (MC) and total fat content of minced pork was demonstrated. Results were compared with those obtained using two research type instruments with high signal to noise ratio (S/N). The NIR measuring head of the compac...

  18. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults.

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-05-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have a time resolution of 1-10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution of about 1cm. The goal of this brief review is to report infants, children and adults fNIRS language studies. Since 1998, 60 studies have been published on cortical activation in the brain's classic language areas in children/adults as well as newborns using fNIRS instrumentations of different complexity. In addition, the basic principles of fNIRS including features, strengths, advantages, and limitations are summarized in terms that can be understood even by non specialists. Future prospects of fNIRS in the field of language processing imaging are highlighted. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Determination of drug, excipients and coating distribution in pharmaceutical tablets using NIR-CI

    Directory of Open Access Journals (Sweden)

    Anna Palou

    2012-04-01

    Full Text Available The growing interest of the pharmaceutical industry in Near Infrared-Chemical Imaging (NIR-CI is a result of its high usefulness for quality control analyses of drugs throughout their production process (particularly of its non-destructive nature and expeditious data acquisition. In this work, the concentration and distribution of the major and minor components of pharmaceutical tablets are determined and the spatial distribution from the internal and external sides has been obtained. In addition, the same NIR-CI allowed the coating thickness and its surface distribution to be quantified. Images were processed to extract the target data and calibration models constructed using the Partial Least Squares (PLS algorithms. The concentrations of Active Pharmaceutical Ingredient (API and excipients obtained for uncoated cores were essentially identical to the nominal values of the pharmaceutical formulation. But the predictive ability of the calibration models applied to the coated tablets decreased as the coating thickness increased. Keywords: Near infrared Chemical Imaging (NIR-CI, Hyperspectral imaging, Component distribution, Tablet coating distribution, Partial Least Squares (PLS regression

  20. New Finds of Painted Ceramics of the Epoch of the Abkhazian Kingdom

    Directory of Open Access Journals (Sweden)

    Armarchuk Ekaterina A.

    2012-03-01

    Full Text Available The painted polished red-clay ceramic items of the 8th-10th centuries, found on the Anakopia and other sites of Northern Abkhazia and the adjoining district of the city of Sochi are considered in the article. These are small and medium sized single-handled narrow-necked jugs. The painting is made in dark brown paint. The ornament consists mainly of straight and wavy lines; hatching in the form of oblique grids, braids and patterns of specks occur. Taking into account the new finds made during the 2007-2008 excavations of the necropolis on the Sakharnaya Golovka Mountain and of the church near Veseloye village, the analysis of painted polished ware of the Abkhazian Kingdom epoch makes it possible to determine its territorial and chronological distribution limits. The area of this pottery covers the Black Sea coast from the mouth of the Mzymta river to New Athos. Based on the results of the 1950-1980s excavations, it has been dated to the 8th-10th centuries; however, the new materials allow restricting the interval to the 9th-10th centuries. The differences in the vessels manufacturing technology indicate the presence of at least two production centers. The small painted burnished jars discovered in Christian graves suggest that they had been used to store incense or chrism.

  1. EVIDENCE FOR PopIII-LIKE STELLAR POPULATIONS IN THE MOST LUMINOUS Lyα EMITTERS AT THE EPOCH OF REIONIZATION: SPECTROSCOPIC CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, David; Santos, Sérgio [Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, PT1349-018 Lisbon (Portugal); Matthee, Jorryt; Röttgering, Huub J. A. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Darvish, Behnam; Mobasher, Bahram; Hemmati, Shoubaneh [Department of Physics and Astronomy, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Schaerer, Daniel, E-mail: sobral@iastro.pt [Observatoire de Genève, Département d’Astronomie, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland)

    2015-08-01

    Faint Lyα emitters become increasingly rarer toward the reionization epoch (z ∼ 6–7). However, observations from a very large (∼5 deg{sup 2}) Lyα narrow-band survey at z = 6.6 show that this is not the case for the most luminous emitters, capable of ionizing their own local bubbles. Here we present follow-up observations of the two most luminous Lyα candidates in the COSMOS field: “MASOSA” and “CR7.” We used X-SHOOTER, SINFONI, and FORS2 on the Very Large Telescope, and DEIMOS on Keck, to confirm both candidates beyond any doubt. We find redshifts of z = 6.541 and z = 6.604 for “MASOSA” and “CR7,” respectively. MASOSA has a strong detection in Lyα with a line width of 386 ± 30 km s{sup −1} (FWHM) and with very high EW{sub 0} (>200 Å), but undetected in the continuum, implying very low stellar mass and a likely young, metal-poor stellar population. “CR7,” with an observed Lyα luminosity of 10{sup 43.92±0.05} erg s{sup −1} is the most luminous Lyα emitter ever found at z > 6 and is spatially extended (∼16 kpc). “CR7” reveals a narrow Lyα line with 266 ± 15 km s{sup −1} FWHM, being detected in the near-infrared (NIR) (rest-frame UV; β = −2.3 ± 0.1) and in IRAC/Spitzer. We detect a narrow He ii 1640 Å emission line (6σ, FWHM = 130 ± 30 km s{sup −1}) in CR7 which can explain the clear excess seen in the J-band photometry (EW{sub 0} ∼ 80 Å). We find no other emission lines from the UV to the NIR in our X-SHOOTER spectra (He ii/O iii] 1663 Å > 3 and He ii/C iii] 1908 Å > 2.5). We conclude that CR7 is best explained by a combination of a PopIII-like population, which dominates the rest-frame UV and the nebular emission, and a more normal stellar population, which presumably dominates the mass. Hubble Space Telescope/WFC3 observations show that the light is indeed spatially separated between a very blue component, coincident with Lyα and He ii emission, and two red components (∼5 kpc away), which

  2. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Filippo Molinari

    2010-01-01

    Full Text Available Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated (O2Hb and reduced (HHb hemoglobin in the brain cortex. O2Hb and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  3. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Liboni William

    2010-01-01

    Full Text Available Abstract Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated ( and reduced (HHb hemoglobin in the brain cortex. and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  4. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).

    Science.gov (United States)

    Genisheva, Z; Quintelas, C; Mesquita, D P; Ferreira, E C; Oliveira, J M; Amaral, A L

    2018-04-25

    This work aims to explore the potential of near infrared (NIR) spectroscopy to quantify volatile compounds in Vinho Verde wines, commonly determined by gas chromatography. For this purpose, 105 Vinho Verde wine samples were analyzed using Fourier transform near infrared (FT-NIR) transmission spectroscopy in the range of 5435 cm -1 to 6357 cm -1 . Boxplot and principal components analysis (PCA) were performed for clusters identification and outliers removal. A partial least square (PLS) regression was then applied to develop the calibration models, by a new iterative approach. The predictive ability of the models was confirmed by an external validation procedure with an independent sample set. The obtained results could be considered as quite good with coefficients of determination (R 2 ) varying from 0.94 to 0.97. The current methodology, using NIR spectroscopy and chemometrics, can be seen as a promising rapid tool to determine volatile compounds in Vinho Verde wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. REM optical/NIR observations of MAXI J1659-152

    NARCIS (Netherlands)

    D'Avanzo, P.; Goldoni, P.; Patruno, A.; Casella, P.; Campana, S.; Russell, D.M.; Belloni, T.M.

    2010-01-01

    We observed the optical and NIR counterpart of the recently discovered X-ray transient MAXI J1659-152 (Negoro et al. 2010, ATel #2873; Mangano et al. 2010, GCN #11296) with the REM telescope located in La Silla (Chile) in imaging mode using the V, R, I, J, H and K filters.

  6. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.

    2016-01-01

    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale....

  7. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  8. [Rapid assessment of critical quality attributes of Chinese materia medica (II): strategy of NIR assignment].

    Science.gov (United States)

    Pei, Yan-Ling; Wu, Zhi-Sheng; Shi, Xin-Yuan; Zhou, Lu-Wei; Qiao, Yan-Jiang

    2014-09-01

    The present paper firstly reviewed the research progress and main methods of NIR spectral assignment coupled with our research results. Principal component analysis was focused on characteristic signal extraction to reflect spectral differences. Partial least squares method was concerned with variable selection to discover characteristic absorption band. Two-dimensional correlation spectroscopy was mainly adopted for spectral assignment. Autocorrelation peaks were obtained from spectral changes, which were disturbed by external factors, such as concentration, temperature and pressure. Density functional theory was used to calculate energy from substance structure to establish the relationship between molecular energy and spectra change. Based on the above reviewed method, taking a NIR spectral assignment of chlorogenic acid as example, a reliable spectral assignment for critical quality attributes of Chinese materia medica (CMM) was established using deuterium technology and spectral variable selection. The result demonstrated the assignment consistency according to spectral features of different concentrations of chlorogenic acid and variable selection region of online NIR model in extract process. Although spectral assignment was initial using an active pharmaceutical ingredient, it is meaningful to look forward to the futurity of the complex components in CMM. Therefore, it provided methodology for NIR spectral assignment of critical quality attributes in CMM.

  9. Test-retest assessment of functional near-infrared spectroscopy to measure risk decision making in young adults

    Science.gov (United States)

    Li, Lin; Lin, Zijing; Cazzell, Mary; Liu, Hanli

    2013-03-01

    Investigation of the reliability and reproducibility of the hemodynamic response is important for interpretation and understanding of the results of functional near-infrared spectroscopy (fNIRS). It measures optical signals absorbed by the brain tissue and reflects the neuronal activities indirectly. Here we described an fNIRS study measured in the prefrontal region (Brodman area 9, 10, part of 46)to examine the risk decision-making behavior in nine young adults. The Balloon Analog Risk Task (BART) is widely used to test the level of risk taking ability in the field of psychology. BART was a protocol utilized in this study to evoke a risk-taking environment with a gambling-like balloon game in each subject. Specifically, we recorded the brain oxygenated-hemoglobin (HbO) and deoxygenated-hemoglobin (HHb) changes during the two repeated measurements within a time interval of 3 weeks. The results demonstrate that the changes in HbO2 amplitudes have high reliability at the group level, and that the spatial patterns of the tomographic images have high reproducibility in size and a moderate degree of overlap. Overall, this study confirms that the hemodynamic response to risk decision-making (i.e., BART) seen by fNIRS is highly reliable and reproducible.

  10. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    Science.gov (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  11. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce; Song, Xin; Toppare, Levent; Baran, Derya; Gunbas, Gorkem

    2018-01-01

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm

  12. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy

    DEFF Research Database (Denmark)

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-01-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination...... on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded...... less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles....

  13. Different habitats within a region contain evolutionary heritage from different epochs depending on the abiotic environment

    NARCIS (Netherlands)

    Bartish, I.V.; Ozinga, W.A.; Bartish, M.I.; Wamelink, G.W.W.; Hennekens, S.M.; Prinzing, Andreas

    2016-01-01

    Aim: Biodiversity hot-spots are regions containing evolutionary heritage from ancient or recent geological epochs, i.e. evolutionary 'museums' or 'cradles', respectively. We hypothesize that: (1) there are also 'museums' and 'cradles' within regions - some species pools of particular habitat

  14. Visible and NIR spectral band combination to produce high security ID tags for automatic identification

    Science.gov (United States)

    Pérez-Cabré, Elisabet; Millán, María S.; Javidi, Bahram

    2006-09-01

    Verification of a piece of information and/or authentication of a given object or person are common operations carried out by automatic security systems that can be applied, for instance, to control the entrance to restricted areas, access to public buildings, identification of cardholders, etc. Vulnerability of such security systems may depend on the ease of counterfeiting the information used as a piece of identification for verification and authentication. To protect data against tampering, the signature that identifies an object is usually encrypted to avoid an easy recognition at human sight and an easy reproduction using conventional devices for imaging or scanning. To make counterfeiting even more difficult, we propose to combine data from visible and near infrared (NIR) spectral bands. By doing this, neither the visible content nor the NIR data by theirselves are sufficient to allow the signature recognition and thus, the identification of a given object. Only the appropriate combination of both signals permits a satisfactory authentication. In addition, the resulting signature is encrypted following a fully-phase encryption technique and the obtained complex-amplitude distribution is encoded on an ID tag. Spatial multiplexing of the encrypted signature allows us to build a distortion-invariant ID tag, so that remote authentication can be achieved even if the tag is captured under rotation or at different distances. We also explore the possibility of using partial information of the encrypted signature to simplify the ID tag design.

  15. Design and development of a blood vessel localization system using a Nir viewer

    International Nuclear Information System (INIS)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N.

    2017-10-01

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  16. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  17. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    Science.gov (United States)

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data

    Science.gov (United States)

    Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria

    2017-08-01

    Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

  19. [Study on predicting firmness of watermelon by Vis/NIR diffuse transmittance technique].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Lu, Hui-Shan; Xu, Hui-Rong; Xie, Li-Juan; Fu, Xia-Ping; Yu, Hai-Yan

    2007-06-01

    Watermelon is a popular fruit in the world and firmness (FM) is one of the major characteristics used for assessing watermelon quality. The objective of the present research was to study the potential of visible/near Infrared (Vis/NIR) diffuse transmittance spectroscopy as a way for the nondestructive measurement of FM of watermelon. Statistical models between the spectra and FM were developed using partial least square (PLS) and principle component regression (PCR) methods. Performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples and root mean square errors of prediction (RMSEP). Models for three kinds of mathematical treatments of spectra (original, first derivative and second derivative) were established. Savitsky-Goaly filter smoothing method was used for spectra data smoothing. The PLS model of the second derivative spectra gave the best prediction of FM, with a correlation coefficient (r) of 0. 974 and root mean square errors of prediction (RMSEP) of 0. 589 N using Savitsky-Goaly filter smoothing method. The results of this study indicate that NIR diffuse transmittance spectroscopy can be used to predict the FM of watermelon. The Vis/NIR diffuse transmittance technique will be valuable for the nandestructive detection large shape and thick peel fruits'.

  20. Interference Tolerant Functional Near Infrared Spectrometer (fNIRS) for Cognitive State Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — Measuring hemoglobin concentration changes in the brain with Functional Near Infrared Spectroscopy (fNIRS) is a promising technique for monitoring cognitive state...

  1. A Method for Exploring Program and Portfolio Affordability Tradeoffs Under Uncertainty Using Epoch-Era Analysis: A Case Application to Carrier Strike Group Design

    Science.gov (United States)

    2015-04-30

    design for affordability by augmenting Epoch-Era Analysis with aspects of Modern Portfolio Theory . The method is demonstrated through the design of a...introduces a method to conduct portfolio design for affordability by augmenting Epoch-Era Analysis with aspects of Modern Portfolio Theory . The method...through the integration of elements of Modern Portfolio Theory (MPT) and the SoS design literature. The proposed method is demonstrated in a case study

  2. Schubert and Beethoven - Adorno’s early antipods of the music in bougeois epoch

    Directory of Open Access Journals (Sweden)

    Jeremić-Molnar Dragana

    2012-01-01

    Full Text Available In this article the authors are reconstructing the dichotomies which the young Theodor Adorno was trying to detect in the music of the bourgeois epoch and personify in two antipodes - Franz Schubert and Ludwig van Beethoven. Although already a devotee of Arnold Schönberg and the 20th century music avantgardism, Adorno was, in his works prior to his exile from Germany (1934, intensively dealing with Schubert and his opposition towards Beethoven. While Beethoven was a bold and progressive revolutionary, fascinated by the “practical reason” and the mission to rise up and reach the stars, Schubert wanted none of it (almost anticipating the failure of the whole revolutionary project. Instead, he was looking backwards, to primordial nature and the possibility of man to participate in its mythic cycles of death and regeneration. The lack of synthesis between this two opposing tendencies in the music of early bourgeois epoch lead to the “negative dialectics” of Schönberg and 20th century music avantgardism and to the final separation of Beethovenian musical progress and Schubertian musical mimesis. [Projekat Ministarstva nauke Republike Srbije, br. 177019: Identiteti srpske muzike u svetskom kulturnom kontekstu, i br. 179035: Izazovi nove društvene integracije u Srbiji - koncepti i akteri

  3. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2008-12-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  4. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  5. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  6. Clinical uses of I-123 produced by 127I(p, 5n)123Xe to 123I reaction in NIRS

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Uchiyama, Guio; Tateno, Yukio; Rikitake, Tomoyuki.

    1978-01-01

    123 I capsules produced by NIRS which are believed to be uncontaminated by radioactive impurities other than 125 I were compared with commercial 123 I capsules regarding gamma-ray spectra, thyroid phantoms and clinical scintigrams. Absorbed radiation doses of 123 I contaminated with nuclides other than 123 I to thyroid and whole body were also estimated. Regarding gamma-ray spectra, any nuclides other than 125 I(0.53%) did not contaminate in 123 I produced by NIRS, and it was superior to commercial capsules. Regarding phantoms and clinical scintigrams, background counts around the thyroid gland seemed to be slightly higher in commercial capsules than that produced by NIRS because of contamination with other nuclides. Exposed doses in thyroid and whole body were counted. Ratios in thyroid and whole body were increased by 30% and 9%, respectively in 123 I produced by NIRS because of contamination with 0.53% of 125 I in the event that the intake ratio of thyroid was determined as 25%. In commercial capsules the doses in thyroid and whole body were increased by 500% and 150%, respectively. Doses of commercial capsules and NIRS capsules were 7.87 rad and 1.72 rad, respectively per 100 μCi in thyroid. The ratio of NIRS capsules to commercial capsules in thyroid was 1/4.6, and that in the whole body was less than 1/2. (Ichikawa, K.)

  7. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    Science.gov (United States)

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  8. Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques

    International Nuclear Information System (INIS)

    Saleh, B.

    2012-01-01

    This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)

  9. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    Science.gov (United States)

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Synthesis of nir-sensitive Au-Au{sub 2}S nanocolloids for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L.; Chow, G.M

    2003-01-15

    Near IR (NIR) sensitive Au-Au{sub 2}S nanocolloids were prepared by mixing HAuCl{sub 4} and Na{sub 2}S in aqueous solutions. An anti-tumor drug, cis-platin, was adsorbed onto Au-Au{sub 2}S nanoparticle surface via the 11-mercaptoundecanoic acid (MUA) layers. The results show that the degree of adsorption of cis-platin onto Au-Au{sub 2}S nanoparticles was controlled by the solution pH value, and the drug release was sensitive to near-infrared irradiation. The cis-platin-loaded Au-Au{sub 2}S nanocolloids can be potentially applied as NIR activated drug delivery carrier.

  12. Near-infrared spectroscopy (NIRS neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD – a pilot study

    Directory of Open Access Journals (Sweden)

    Anna-Maria eMarx

    2015-01-01

    Full Text Available In this pilot study near-infrared spectroscopy (NIRS neurofeedback was investigated as a new method for the treatment of ADHD. Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus. The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS, to produce positive or negative shifts of SCP (EEG or to increase or decrease muscular activity (EMG. In each group nine children with ADHD, aged 7 to 10 years, took part. Changes in parents’ ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers’ ratings of ADHD symptoms, parents’ and teachers’ ratings of associated behavioral symptoms, childrens’ self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents’ ratings. In teachers’ ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessions of NIRS-, EEG- and EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG- and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, the results of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to

  13. Narrative Discourse in Young and Older Adults: Behavioral and NIRS Analyses

    Directory of Open Access Journals (Sweden)

    Charles-Olivier Martin

    2018-03-01

    Full Text Available Discourse comprehension is at the core of communication capabilities, making it an important component of elderly populations’ quality of life. The aim of this study is to evaluate changes in discourse comprehension and the underlying brain activity. Thirty-six participants read short stories and answered related probes in three conditions: micropropositions, macropropositions and situation models. Using near-infrared spectroscopy (NIRS, the variation in oxyhemoglobin (HbO2 and deoxyhemoglobin (HbR concentrations was assessed throughout the task. The results revealed that the older adults performed with equivalent accuracy to the young ones at the macroproposition level of discourse comprehension, but were less accurate at the microproposition and situation model levels. Similar to what is described in the compensation-related utilization of neural circuits hypothesis (CRUNCH model, older participants tended to have greater activation in the left dorsolateral prefrontal cortex while reading in all conditions. Although it did not enable them to perform similarly to younger participants in all conditions, this over-activation could be interpreted as a compensation mechanism.

  14. Measurement of quadriceps endurance by fNIRS

    Science.gov (United States)

    Erdem, Devrim; Şayli, Ömer; Karahan, Mustafa; Akin, A.

    2006-02-01

    In this paper, the changes in muscle deoxygenation trends during a sustained isometric quadriceps (chair squat/half squat) endurance exercise were evaluated among twelve male subjects and the relationship between muscle oxygenation and endurance times was investigated by means of functional near-infrared spectroscopy (fNIRS). Neuromuscular activation and predictions of muscle performance decrements during extended fatiguing task was investigated by means of surface electromyography (sEMG). The results of the study showed that in the subjects who maintained exercise longer than five minutes (group 1), mean Hb recovery time (33 [sec.]) was 37.4% less than the others (group 2, 52.7 [sec.]). Also mean HbO II decline amplitude (2.53 [a.u.] in group 1 and 2.07 [a.u.] in group 2) and oxy decline amplitude (8.4 [a.u.] in group 1 and 3.04 [a.u.] in group 2) in the beginning of squat exercise are found to be 22.6% and 176.9% bigger in these group. For the EMG parameters, mean slope of MNF and MDF decline are found to be 57.5% and 42.2% bigger in magnitude in group 2 which indicates higher degree of decrement in mean and median frequencies although their mean squat duration time is less. This indicates higher index of fatigue for this group. It is concluded that training leads to altered oxygenation and oxygen extraction capability in the exercising muscle and investigated fNIRS parameters could be used for endurance evaluation.

  15. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Directory of Open Access Journals (Sweden)

    Xue Mengfan

    2016-06-01

    Full Text Available X-ray pulsar-based navigation (XPNAV is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint probability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC and nonlinear least squares (NLS estimators, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML estimators.

  16. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  17. Room temperature solution processed low dimensional CH3NH3PbI3 NIR detector

    Science.gov (United States)

    Besra, N.; Paul, T.; Sarkar, P. K.; Thakur, S.; Sarkar, S.; Das, A.; Chanda, K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Metal halide perovskites have recently drawn immense research interests among the worldwide scientific community due to their excellent light harvesting capabilities and above all, cost effectiveness. These new class of materials have already been used as efficient optoelectronic devices e.g. solar cells, photo detectors, etc. Here in this work, room temperature NIR (near infra red) response of organic-inorganic lead halide perovskite CH3NH3PbI3 (Methylammonium lead tri iodide) nanorods has been studied. A very simple solution process technique has been adopted to synthesize CH3NH3PbI3 nanostructures at room temperature. The NIR exposure upon the sample resulted in a considerable hike in its dark current with very good responsivity (0.37 mA/W). Along with that, a good on-off ratio (41.8) was also obtained when the sample was treated under a pulsed NIR exposure with operating voltage of 2 V. The specific detectivity of the device came in the order of 1010 Jone.

  18. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    Science.gov (United States)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  19. Satellite- and Epoch Differenced Precise Point Positioning Based on a Regional Augmentation Network

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2012-06-01

    Full Text Available Precise Point Positioning (PPP has been demonstrated as a simple and effective approach for user positioning. The key issue in PPP is how to shorten convergence time and improve positioning efficiency. Recent researches mainly focus on the ambiguity resolution by correcting residual phase errors at a single station. The success of this approach (referred to hereafter as NORM-PPP is subject to how rapidly one can fix wide-lane and narrow-lane ambiguities to achieve the first ambiguity-fixed solution. The convergence time of NORM-PPP is receiver type dependent, and normally takes 15–20 min. Different from the general algorithm and theory by which the float ambiguities are estimated and the integer ambiguities are fixed, we concentrate on a differential PPP approach: the satellite- and epoch differenced (SDED approach. In general, the SDED approach eliminates receiver clocks and ambiguity parameters and thus avoids the complicated residual phase modeling procedure. As a further development of the SDED approach, we use a regional augmentation network to derive tropospheric delay and remaining un-modeled errors at user sites. By adding these corrections and applying the Robust estimation, the weak mathematic properties due to the ED operation is much improved. Implementing this new approach, we need only two epochs of data to achieve PPP positioning converging to centimeter-positioning accuracy. Using seven days of GPS data at six CORS stations in Shanghai, we demonstrate the success rate, defined as the case when three directions converging to desired positioning accuracy of 10 cm, reaches 100% when the interval between the two epochs is longer than 15 min. Comparing the results of 15 min’ interval to that of 10 min’, it is observed that the position RMS improves from 2.47, 3.95, 5.78 cm to 2.21, 3.93, 4.90 cm in the North, East and Up directions, respectively. Combining the SDED coordinates at the starting point and the ED relative

  20. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Science.gov (United States)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  1. An analysis of systemic thinking in decision-making processes in the municipalities within the province of KwaZulu-Natal

    OpenAIRE

    Mbuyiseni Goodlife Ntuli; Lawrence Mpela Lekhanya

    2015-01-01

    This paper advocates the adoption of systemic thinking in decision-making processes in municipalities. Most importantly, in this epoch of managing in complex and thought-provoking business environment, decision making is one of the most important skills required by any manager to remain effective. The success of a municipality or any business hinges on how well decisions are taken and implemented. In this paper, I intend to scrutinize decision making processes at strategic management levels i...

  2. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique.

    Science.gov (United States)

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-02-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 degrees Brix (QL); 0.58 degrees Brix (ZC)], low RMSEC [0.48 degrees Brix (QL); 0.34 degrees Brix (ZC)] and small difference between the RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a

  3. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments

    DEFF Research Database (Denmark)

    Priemé, Anders; Wolsing, Martin

    2004-01-01

    Temporal and spatial variation of communities of soil denitrifying bacteria at sites receiving mineral fertilizer (60 and 120 kg N ha-1 year-1) and cattle manure (75 and 150 kg N ha-1 year-1) were explored using terminal restriction fragment length polymorphism (T-RFLP) analyses of PCR amplified...... nitrite reductase (nirK and nirS) gene fragments. The analyses were done three times during the year: in March, July and October. nirK gene fragments could be amplified in all three months, whereas nirS gene fragments could be amplified only in March. Analysis of similarities in T-RFLP patterns revealed...... a significant seasonal shift in the community structure of nirK-containing bacteria. Also, sites treated with mineral fertilizer or cattle manure showed different communities of nirK-containing denitrifying bacteria, since the T-RFLP patterns of soils treated with these fertilizers were significantly different...

  4. Late Globalization and Evolution, Episodes and Epochs of Industries

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Boujarzadeh, Behnam; Dholakia, Nikhilesh

    While the empirical focus of this paper is the Danish Textile and Fashion Industry (DTFI) – specifically the episodes and epochs in the emergence and evolution of DTFI, in essence the micro and macro time-slices – the theoretical intent is wider. We aim to explore the conceptual terrain of what we...... for further exploration of the late globalization phenomenon. To get to the empirical case study, we follow a macro-conceptual to a micro-empirical path. We discuss the multidisciplinary and multifaceted field of late globalization and employing the historic-analytic approach to study DTFI we draw out very...... specific, empirically derived, conceptual themes about the patterns of global interactions that characterized the evolutionary trajectory of DTFI. We return to a final macro-conceptual section on late globalization where the particular DTFI case study advances the knowledge register only slightly; and we...

  5. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    Science.gov (United States)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  6. Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol.

    Science.gov (United States)

    Grabska, Justyna; Czarnecki, Mirosław A; Beć, Krzysztof B; Ozaki, Yukihiro

    2017-10-19

    In this work, we studied methanol and its deuterated derivatives (CH 3 OH, CH 3 OD, CD 3 OH, CD 3 OD) by NIR spectroscopy and anharmonic quantum chemical calculations. Vibrational bands corresponding to up to three quanta transitions (first and second overtones, binary and ternary combination modes) were predicted by the use of the VPT2 route. The accuracy of prediction of NIR modes was evaluated through density functional theory (DFT) with selected density functionals and basis sets. On the basis of the theoretical NIR spectra, detailed band assignments for all studied molecules were proposed. It was found that the pattern of bands in NIR spectra of deuterated methanols can be used for identification of isotopically equalized forms. Calculations of NIR spectra of all possible forms of CXXXOX (X = H, D) molecules demonstrated that the isotopic contamination can be identified due to a coexistence of bands specific to OH and OD groups. Also, bands from partially deuterated methyl groups can be distinguished in NIR spectra. Since the VPT2 framework is known to be sensitive to inaccuracy in the case of highly anharmonic modes, we obtained an independent insight by numerical solving of the time-independent Schrödinger equation corresponding to the O-X stretching mode scanned within -0.4 to 2.0 Å over a dense grid of 0.005 Å. This way the energies of vibrational levels of the CX1X2X3OX4 (X = H, D) isotopomers and the corresponding transition frequencies were obtained with high accuracy (<0.1 cm -1 ). The change in normal coordinate influences the reduced mass of the oscillator and thus its frequency. Our results lead to a conclusion that the effect of deuterization of the methyl group introduces a very specific and consistent frequency shift of the first overtone of the O-X stretching mode depending on the substitution of X1, X2, or X3 positions (<2 cm -1 ). However, the pattern of this shift is not reproduced accurately and is also largely overestimated by VPT2

  7. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals.

    Directory of Open Access Journals (Sweden)

    Neethu Robinson

    Full Text Available Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS for developing Brain-Computer Interface (BCI by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM, so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity.

  8. Development and validation of NIR-chemometric methods for chemical and pharmaceutical characterization of meloxicam tablets.

    Science.gov (United States)

    Tomuta, Ioan; Iovanov, Rares; Bodoki, Ede; Vonica, Loredana

    2014-04-01

    Near-Infrared (NIR) spectroscopy is an important component of a Process Analytical Technology (PAT) toolbox and is a key technology for enabling the rapid analysis of pharmaceutical tablets. The aim of this research work was to develop and validate NIR-chemometric methods not only for the determination of active pharmaceutical ingredients content but also pharmaceutical properties (crushing strength, disintegration time) of meloxicam tablets. The development of the method for active content assay was performed on samples corresponding to 80%, 90%, 100%, 110% and 120% of meloxicam content and the development of the methods for pharmaceutical characterization was performed on samples prepared at seven different compression forces (ranging from 7 to 45 kN) using NIR transmission spectra of intact tablets and PLS as a regression method. The results show that the developed methods have good trueness, precision and accuracy and are appropriate for direct active content assay in tablets (ranging from 12 to 18 mg/tablet) and also for predicting crushing strength and disintegration time of intact meloxicam tablets. The comparative data show that the proposed methods are in good agreement with the reference methods currently used for the characterization of meloxicam tablets (HPLC-UV methods for the assay and European Pharmacopeia methods for determining the crushing strength and disintegration time). The results show the possibility to predict both chemical properties (active content) and physical/pharmaceutical properties (crushing strength and disintegration time) directly, without any sample preparation, from the same NIR transmission spectrum of meloxicam tablets.

  9. Supplementing predictive mapping of acid sulfate soil occurrence with Vis-NIR spectroscopy

    DEFF Research Database (Denmark)

    Beucher, Amélie; Peng, Yi; Knadel, Maria

    , including geology, landscape type and terrain parameters. Visible-Near-Infrared (Vis-NIR) spectroscopy constitutes a rapid and cheap alternative to soil analysis, and was successfully utilized for the prediction of soil chemical, physical and biological properties. In particular, the Vis-NIR spectra contain......Releasing acidity and metals into watercourses, acid sulfate soils represent a critical environmental problem worldwide. Identifying the spatial distribution of these soils enables to target the strategic areas for risk management. In Denmark, the occurrence of acid sulfate soils was first studied...... during the 1980’s through conventional mapping (i.e. soil sampling and the subsequent determination of pH at the time of sampling and after incubation, the pyrite content and the acid-neutralizing capacity). Since acid sulfate soils mostly occur in wetlands, the survey specifically targeted these areas...

  10. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  11. Combinations of Epoch Durations and Cut-Points to Estimate Sedentary Time and Physical Activity among Adolescents

    Science.gov (United States)

    Fröberg, Andreas; Berg, Christina; Larsson, Christel; Boldemann, Cecilia; Raustorp, Anders

    2017-01-01

    The purpose of the current study was to investigate how combinations of different epoch durations and cut-points affect the estimations of sedentary time and physical activity in adolescents. Accelerometer data from 101 adolescents were derived and 30 combinations were used to estimate sedentary time, light, moderate, vigorous, and combined…

  12. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    Science.gov (United States)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  13. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Wijayasiri, Pramudi; Hartley, Douglas E H; Wiggins, Ian M

    2017-08-01

    The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique based on optical principles, is suitable for studying the brain activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing adults listened to sentences that were either clear or degraded (noise vocoded). These sentences were presented simultaneously with a non-speech distractor, and on each trial participants were instructed to attend either to the speech or to the distractor. The primary region of interest for the fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-order language processing. The fNIRS results confirmed findings previously reported in the functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated response to degraded versus clear speech, but only when attention was directed towards the speech. This attention-dependent increase in frontal brain activation may be a neural marker for effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting the engagement of working memory to help reconstruct the meaning of degraded sentences. The homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural signature of effortful listening. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    Science.gov (United States)

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  15. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    NARCIS (Netherlands)

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  16. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    Science.gov (United States)

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  17. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale

    International Nuclear Information System (INIS)

    Baghchesara, Mohammad Amin; Yousefi, Ramin; Cheraghizade, Mohsen; Jamali-Sheini, Farid; Saáedi, Abdolhossein; Mahmmoudian, M.R.

    2016-01-01

    Highlights: • PbTe nanowires were grown by tellurization of the Pb sheets for the first time. • It was observed a band gap value for the PbTe nanostructures in the NIR region. • NIR detector was fabricated in a large scale using a simple method. • Effect of Te concentration on morphology of PbTe nanostructures was investigated. - Abstract: A simple method was used to fabricate a near-infrared (NIR) detector using PbTe nanostructures. Samples were synthesized by tellurization of lead sheets in a tube furnace. PbTe nanostructures with wires and flakes shapes were grown on the lead sheets that were placed at 300 and 330 °C, respectively, while, PbTe nanoporous were grown at 360 and 390 °C. X-ray diffraction patterns and X-ray photoelectron spectra results indicated that, the PbTe phase was formed in all samples. UV–vis diffuse reflectance spectra measurements showed a band gap for the PbTe nanostructures in the near-infrared region of the electromagnetic spectrum. Actually, the results indicated that, the band gap values of the PbTe nanowires and nanoporous were 1.54 eV and 1.61 eV, respectively. Finally, the PbTe nanostructures were used as a simple photoresponse device under a red light source. The photoresponse results revealed, PbTe nanowires are promising for photoelectrical applications in the NIR region.

  18. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.

    Science.gov (United States)

    Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata

    2014-02-15

    Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, pnoise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts

  19. A NIR-remote controlled upconverting nanoparticle: an improved tool for living cell dye-labeling

    International Nuclear Information System (INIS)

    Zheng, Bin; Gong, Xiaoqun; Wang, Hanjie; Wang, Sheng; Chang, Jin; Wang, Huiquan; Li, Wei; Tan, Jian

    2015-01-01

    In living cells, due to the selective permeability and complicated cellular environment, the uptake efficiency and fluorescence decay of organic dyes during dye-labeling may be influenced, which may eventually result in poor fluorescent imaging. In this work, a protocol of UCNs@mSiO_2-(FA and Azo) core–shell nanocarriers was designed and prepared successfully. The core–shell nanocarriers were assembled from two parts, including a mesoporous silica shell surface modified by folate (FA) and azobenzene (Azo), and an upconverting nanocrystal (UCN) core. The mesoporous silica shell is used for loading organic dyes and conjugating folate which helps to enhance the cellular uptake of nanocarriers. The UCN core works as a transducer to convert near infrared (NIR) light to local UV and visible light to activate a back-and-forth wagging motion of azobenzene molecules on the surface, while the azobenzene acts as a molecular impeller for propelling the release of organic dyes. The nanocarriers of loading organic dyes can maintain the stability of the fluorescent imaging effect better than free organic dyes. The experimental results show that with the help of the nanoparticle, cell uptake efficiency of the model dyes of rhodamine and 4′, 6-diamidino-2-phenylindole (DAPI) was significantly improved. The release of dyes can only be triggered by NIR light exposure and their quantity is highly dependent on the duration of NIR light exposure, thus realizing NIR-regulated dye release spatiotemporally. Our work may open a novel avenue for precisely controlling UCN-based living cell imaging in biotechnology and diagnostics, as well as studying cell dynamics, cell–cell interactions, and tissue morphogenesis. (paper)

  20. Evaluation of combined near-IR spectroscopic (NIRS)-IVUS imaging as a means to detect lipid-rich plaque burden in human coronary autopsy specimens

    Science.gov (United States)

    Su, Jimmy L.; Grainger, Stephanie J.; Greiner, Cherry A.; Hendricks, Michael J.; Goode, Meghan M.; Saybolt, Matthew D.; Wilensky, Robert L.; Madden, Sean P.; Muller, James E.

    2016-02-01

    Intracoronary near-infrared spectroscopy (NIRS) can identify lipid in the coronary arteries, but lacks depth resolution. A novel catheter is currently in clinical use that combines NIRS with intravascular ultrasound (IVUS), which provides depth-resolved structural information via the IVUS modality. A measure designated as lipid-rich plaque burden (LRPB) has been proposed as a means to interpret the combined acoustic and optical information of NIRS-IVUS. LRPB is defined as the area created by the intersection of the NIRS lipid-rich arc with the corresponding IVUS-measured plaque burden. We determined the correlation in human coronary autopsy specimens between LRPB, a measure of lipid presence and extent available via intravascular imaging in patients, and the area of lipid-rich plaque as determined by the gold-standard of histology. Fifteen artery segments from 8 human autopsy hearts were imaged with the NIRS-IVUS system (TVC Imaging System, Infraredx Inc., Burlington, MA). Arteries were imaged in a specialty fixture that assured accurate co-registration between imaging and histology. The arteries were then fixed and divided into 2 mm blocks for histological staining. Pathological contouring of lipid-rich areas was performed on the stained thin sections for 54 lipid-rich blocks. Computation of LRPB was performed on transverse NIRS-IVUS frames corresponding to the histologic sections. The quantified LRPB was frequently higher than the lipid-rich plaque area determined by histology, because the region denoted by the EEL and lumen within the NIRS lipid-rich arc is not entirely comprised of lipid. Overall, a moderate to strong correlation (R = 0.73) was found between LRPB determined by NIRS-IVUS imaging and the lipid-rich plaque area determined by histology. LRPB, which can be measured in patients with NIRS-IVUS imaging, corresponds to the amount of lipid-rich plaque in a coronary artery. LRPB should be evaluated in prospective clinical trials for its ability to

  1. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    Energy Technology Data Exchange (ETDEWEB)

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki [Astronomy Department, U. California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, U. Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, U. Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, Dave; Dexter, Matthew; MacMahon, Dave [Radio Astronomy Laboratory, U. California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, U. Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State U., Tempe, AZ (United States); Klima, Patricia J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  2. NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on SMAPEx-4/5 in Southeastern Australia

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2017-01-01

    Full Text Available To meet the demand of regional hydrological and agricultural applications, a new method named near infrared-red (NIR-red spectra-based disaggregation (NRSD was proposed to perform a disaggregation of Soil Moisture Active Passive (SMAP products from 36 km to 250 m resolution. The NRSD combined proposed normalized soil moisture index (NSMI with SMAP data to obtain 250 m resolution soil moisture mapping. The experiment was conducted in southeastern Australia during SMAP Experiments (SMAPEx 4/5 and validated with the in situ SMAPEx network. Results showed that NRSD performed a decent downscaling (root-mean-square error (RMSE = 0.04 m3/m3 and 0.12 m3/m3 during SMAPEx-4 and SMAPEx-5, respectively. Based on the validation, it was found that the proposed NSMI was a new alternative indicator for denoting the heterogeneity of soil moisture at sub-kilometer scales. Attributed to the excellent performance of the NSMI, NRSD has a higher overall accuracy, finer spatial representation within SMAP pixels and wider applicable scope on usability tests for land cover, vegetation density and drought condition than the disaggregation based on physical and theoretical scale change (DISPATCH has at 250 m resolution. This revealed that the NRSD method is expected to provide soil moisture mapping at 250-resolution for large-scale hydrological and agricultural studies.

  3. Prediction of Caffeine Content in Java Preanger Coffee Beans by NIR Spectroscopy Using PLS and MLR Method

    Science.gov (United States)

    Budiastra, I. W.; Sutrisno; Widyotomo, S.; Ayu, P. C.

    2018-05-01

    Caffeine is one of important components in coffee that contributes to the coffee beverages flavor. Caffeine concentration in coffee bean is usually determined by chemical method which is time consuming and destructive method. A nondestructive method using NIR spectroscopy was successfully applied to determine the caffeine concentration of Arabica gayo coffee bean. In this study, NIR Spectroscopy was assessed to determine the caffeine concentration of java preanger coffee bean. A hundred samples, each consist of 96 g coffee beans were prepared for reflectance and chemical measurement. Reflectance of the sample was measured by FT-NIR spectrometer in the wavelength of 1000-2500 nm (10000-4000 cm-1) followed by determination of caffeine content using LCMS method. Calibration of NIR spectra and the caffeine content was carried out using PLS and MLR methods. Several spectra data processing was conducted to increase the accuracy of prediction. The result of the study showed that caffeine content could be determined by PLS model using 7 factors and spectra data processing of combination of the first derivative and MSC of spectra absorbance (r = 0.946; CV = 1.54 %; RPD = 2.28). A lower accuracy was obtained by MLR model consisted of three caffeine and other four absorption wavelengths (r = 0.683; CV = 3.31%; RPD = 1.18).

  4. Direct measurements for highly-exposed TEPCO workers and NIRS first responders involved in the Fukushima NPS accident

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi; Kim, Eunjoo; Akahane, Keiichi; Tominaga, Takako; Tatsuzaki, Hideo; Kurihara, Osamu; Sugiura, Nobuyuki [National Inst. of Radiological Sciences, Chiba (Japan)

    2012-11-15

    Direct measurements for internal dose estimates were performed at National Institute of Radiological Sciences (NIRS) on seven highly exposed workers of Tokyo Electric Power Company (TEPCO) and eight NIRS staff members who were first responders to the accident at the TEPCO Fukushima Daiichi Nuclear Power Station. For the TEPCO workers, the measurements were performed by both the whole-body counting and thyroid counting. The average effective half-life values of {sup 131}I in the thyroid and of {sup 134}Cs and {sup 137}Cs in the body were 7.8 days, 92.0 days and 104.3 days, respectively. These values were consistent with biokinetic models proposed by the International Commission on Radiological Protection (ICRP). For the NIRS staff members, the thyroid counting was made on the day when they had returned. The amount of {sup 131}I that was detected in the thyroid of all the eight subjects was small ({approx}100 Bq) even though they went to places near the site of the accident in its early stage. This level was found to be comparable to those of other NIRS staff members who stayed in the Chiba area (about 200 km south of the reactor) during the early stage of the accident. (author)

  5. [Research progress on standardization study of NIR spectroscopy based method for quality control of traditional Chinese medicine].

    Science.gov (United States)

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In recent years, the near infrared (NIR) spectroscopy has gained wide acceptance within the quantitative analysis of traditional Chinese medicine (TCM). However, the lack of technical standards is the bottleneck problem in this process. To address this issue, standardization study of the NIR spectroscopy based method for the quantitative analysis of TCM is needed, in which the specific characteristics of TCM should be given full considerations. The main research contents include:the scope definition for the application of NIR spectroscopy in the TCM quantitative analysis field, the selection criteria for the sample pretreatment and spectral acquisition conditions, the rules for the model optimization and evaluation, and the regulations for the model update and transfer. In this paper, some foreign studies in the agricultural areas are reviewed for reference. Different chemometrics methods reported in the literature are investigated and compared systematically. This research is important actual significance to the theoretical development of NIR spectroscopy analytical techniques, and will effectively promote the application of the technology in the TCM industry. Furthermore, it is beneficial to improve the technical level of TCM quality control, and can also be used as references to achieve similar purposes for other natural products. Copyright© by the Chinese Pharmaceutical Association.

  6. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    Science.gov (United States)

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  7. In situ NIR reflectance and LIBS measurements in lava tubes in preparation for future Mars missions

    Science.gov (United States)

    Leveille, R.; Sobron, P.

    2017-12-01

    The ATiLT (Astrobiology Training in Lava Tubes) program addresses Mars astrobiology exploration objectives by performing field work and instrumental analyses in lava tubes as high fidelity analog environments to putative lava tubes on Mars. The main field location for ATiLT is the Lava Beds National Monument (LABE) in Northern California. LABE is situated on the lower north flank of the Medicine Lake Volcano of the Cascade arc. This location features hundreds of caves, most of which are relatively shallow, typically well above the water table, reaching 20-45m below land surface at their maximum depth. Some LABE caves feature `cold sinks' where cold air sinks and becomes trapped in deeper cave passages, thus allowing perennial ice to accumulate despite above freezing surface temperatures. Several lava tube caves in LABE also contain seasonal or perennial ice accumulations, which makes them excellent analogs to Mars lava tubes where the presence of ice has been predicted. While lava tubes are very attractive systems to test hypotheses related to habitability and the possibility for life on Mars, at present there are no comprehensive in-situ instrument-driven characterizations of the mineralogy and geochemistry of lava tubes. ATiLT fills this gap by providing detailed, in-situ investigations with scientific instruments relevant to Mars exploration. Our aim is to help constrain future exploration targets on Mars and define future mission operations and requirements. For this purpose, in May 2017 we carried out a field campaign in several lava tubes at LABE. We deployed two miniature spectroscopic sensors suitable for dark, humid, cave conditions: NIR reflectance (1-5 μm) and LIBS (300-900 nm). The advantages of combining NIR reflectance and LIBS are evident: LIBS can reveal the relative concentration of major (and often trace) elements present in a bulk sample, whereas NIR reflectance yields information on the individual mineral species and their chemical and

  8. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  9. NIR detection of honey adulteration reveals differences in water spectral pattern.

    Science.gov (United States)

    Bázár, György; Romvári, Róbert; Szabó, András; Somogyi, Tamás; Éles, Viktória; Tsenkova, Roumiana

    2016-03-01

    High fructose corn syrup (HFCS) was mixed with four artisanal Robinia honeys at various ratios (0-40%) and near infrared (NIR) spectra were recorded with a fiber optic immersion probe. Levels of HFCS adulteration could be detected accurately using leave-one-honey-out cross-validation (RMSECV=1.48; R(2)CV=0.987), partial least squares regression and the 1300-1800nm spectral interval containing absorption bands related to both water and carbohydrates. Aquaphotomics-based evaluations showed that unifloral honeys contained more highly organized water than the industrial sugar syrup, supposedly because of the greater variety of molecules dissolved in the multi-component honeys. Adulteration with HFCS caused a gradual reduction of water molecular structures, especially water trimers, which facilitate interaction with other molecules. Quick, non-destructive NIR spectroscopy combined with aquaphotomics could be used to describe water molecular structures in honey and to detect a rather common form of adulteration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The application of Near Infrared Reflectance Spectroscopy (NIRS) for the quantitative analysis of hydrocortisone in primary materials

    OpenAIRE

    A. PITTAS; C. SERGIDES; K. NIKOLICH

    2001-01-01

    Near Infrared Reflectance Spectroscopy (NIRS), coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to deve...

  11. The variation of the baryon-to-photon ratio during different cosmological epochs due to decay and annihilation of dark matter

    International Nuclear Information System (INIS)

    Zavarygin, E O; Ivanchik, A V

    2015-01-01

    An influence of annihilation and decay of the dark matter particles on the baryon-to-photon ratio has been studied for different cosmological epochs. We consider the different parameter values of the dark matter particles such as mass, annihilation cross section, lifetime and so on. The obtained results are compared with the data which come from the Big Bang nucleosynthesis calculation and from the analysis of the anisotropy of the cosmic microwave background radiation. It has been shown that the modern value of the dark matter density Ω CDM = 0.26 is enough to provide the variation of the baryon-to-photon ratio up to Δη/η ∼ 0.01÷1 for decay of the dark matter particles, but it also leads to an excess of the diffuse gamma ray background. We use the observational data on the diffuse gamma ray background in order to determine our constraints on the model of the dark matter particle decay and on the corresponding variation of the baryon-to-photon ratio: Δη/η ≲ 10 -5 . It has been shown that the variation of the baryon-to-photon ratio caused by the annihilation of the dark matter particles is negligible during the cosmological epochs from Big Bang nucleosynthesis to the present epoch. (paper)

  12. Moisture content determination in solid biofuels by dielectric and NIR reflection methods

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter Daugbjerg; Morsing, Merete [Department of Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe (TFZ), Schulgasse 18, D-94315 Straubing (Germany); Temmerman, Michael; Rabier, Fabienne [Departement Genie Rural, Chee de Namur 146, B-5030 Gembloux (Belgium)

    2006-11-15

    One near infrared (NIR) reflectance and five dielectric moisture meters were tested for their capability of measuring moisture content (MC) in solid biofuels. Ninety-eight samples were tested at up to eight moisture levels covering the MC range from fresh fuel to approximately 10% MC (w.b.). The fuel types ranged from typical solid biofuels such as coniferous and deciduous wood chips over short rotation coppice (SRC) to sunflower seed and olive stones. The most promising calibrations were obtained with the NIR reflection method and two dielectric devices where the sample is placed in a container integrated in the device. The calibration equations developed show that there is a profound influence from both laboratory and fuel type. It is suggested that individual calibrations that are based on the specific fuel types used at the individual heating plant could be applied. (author)

  13. Application of process analytical technology in tablet process development using NIR spectroscopy : Blend uniformity, content uniformity and coating thickness measurements

    NARCIS (Netherlands)

    Moes, Johannes J; Ruijken, Marco M; Gout, Erik; Frijlink, Henderik W; Ugwoke, Michael I

    2008-01-01

    Near-infrared (NIR)spectroscopy was employed as a process analytical technique in three steps of tabletting process: to monitor the blend homogeneity, evaluate the content uniformity of tablets and determine the tablets coating thickness. A diode-array spectrometer mounted on a lab blender (SP15 NIR

  14. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Directory of Open Access Journals (Sweden)

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  15. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system

    Science.gov (United States)

    Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.

    2018-05-01

    The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.

  16. SYSTEMATIC UNCERTAINTIES IN BLACK HOLE MASSES DETERMINED FROM SINGLE-EPOCH SPECTRA

    International Nuclear Information System (INIS)

    Denney, Kelly D.; Peterson, Bradley M.; Dietrich, Matthias; Bentz, Misty C.; Vestergaard, Marianne

    2009-01-01

    We explore the nature of systematic errors that can arise in measurement of black hole masses from single-epoch (SE) spectra of active galactic nuclei (AGNs) by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping (RM) databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio (S/N)), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of SE masses calculated from two commonly used line width measures by comparing these results to recent RM studies. We calculate masses by characterizing the broad Hβ emission line by both the full width at half maximum and the line dispersion, and demonstrate the importance of removing narrow emission-line components and host starlight. We find that the reliability of line width measurements rapidly decreases for S/N lower than ∼ 10-20 (per pixel), and that fitting the line profiles instead of direct measurement of the data does not mitigate this problem but can, in fact, introduce systematic errors. We also conclude that a full spectral decomposition to deblend the AGN and galaxy spectral features is unnecessary, except to judge the contribution of the host galaxy to the luminosity and to deblend any emission lines that may inhibit accurate line width measurements. Finally, we present an error budget which summarizes the minimum observable uncertainties as well as the amount of additional scatter and/or systematic offset that can be expected from the individual sources of error investigated. In particular, we find that the minimum observable uncertainty in SE mass estimates due to variability is ∼ 20 pixel -1 ) spectra.

  17. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    African Journals Online (AJOL)

    resias

    Keywords: NIRS, ostrich TMR, chemical composition, nutritive value ... For adequate feeding of livestock, farmers need information about the nutritive value of available .... presented a SD/SECV ratio value of less than three, which is regarded as fair, .... The current and future role of near infrared reflectance spectroscopy in.

  18. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  19. MEMS-based microspectrometer technologies for NIR and MIR wavelengths

    International Nuclear Information System (INIS)

    Schuler, Leo P; Milne, Jason S; Dell, John M; Faraone, Lorenzo

    2009-01-01

    Commercially manufactured near-infrared (NIR) instruments became available about 50 years ago. While they have been designed for laboratory use in a controlled environment and boast high performance, they are generally bulky, fragile and maintenance intensive, and therefore expensive to purchase and maintain. Micromachining is a powerful technique to fabricate micromechanical parts such as integrated circuits. It was perfected in the 1980s and led to the invention of micro electro mechanical systems (MEMSs). The three characteristic features of MEMS fabrication technologies are miniaturization, multiplicity and microelectronics. Combined, these features allow the batch production of compact and rugged devices with integrated intelligence. In order to build more compact, more rugged and less expensive NIR instruments, MEMS technology has been successfully integrated into a range of new devices. In the first part of this paper we discuss the UWA MEMS-based Fabry-Perot spectrometer, its design and issues to be solved. MEMS-based Fabry-Perot filters primarily isolate certain wavelengths by sweeping across an incident spectrum and the resulting monochromatic signal is detected by a broadband detector. In the second part, we discuss other microspectrometers including other Fabry-Perot spectrometer designs, time multiplexing devices and mixed time/space multiplexing devices. (topical review)

  20. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography

    NARCIS (Netherlands)

    Brugaletta, Salvatore; Garcia-Garcia, Hector M.; Serruys, Patrick W.; de Boer, Sanneke; Ligthart, Jurgen; Gomez-Lara, Josep; Witberg, Karen; Diletti, Roberto; Wykrzykowska, Joanna; van Geuns, Robert-Jan; Schultz, Carl; Regar, Evelyn; Duckers, Henricus J.; van Mieghem, Nicolas; de Jaegere, Peter; Madden, Sean P.; Muller, James E.; van der Steen, Antonius F. W.; van der Giessen, Wim J.; Boersma, Eric

    2011-01-01

    The aim of this study was to compare the findings of near-infrared spectroscopy (NIRS), intravascular ultrasound (IVUS) virtual histology (VH), and grayscale IVUS obtained in matched coronary vessel segments of patients undergoing coronary angiography. Intravascular ultrasound VH has been developed

  1. A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.

    Science.gov (United States)

    Pinti, Paola; Merla, Arcangelo; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul W; Tachtsidis, Ilias

    2017-07-15

    Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is

  2. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  3. Epochality, Global Capitalism and Ecology

    Directory of Open Access Journals (Sweden)

    Wayne Hope

    2018-05-01

    Full Text Available What type of capitalism do we live in today? My answer to this question draws upon two interrelated lines of argument. Firstly, I will argue that we inhabit an epoch of global capitalism. The precursors of this kind of capitalism originated from the late nineteenth century when the development of telegraph networks, modern transport systems and world time zones provided a global template for industrialisation and Western imperialism. From about 1980 a confluence of global events and processes bought a fully-fledged global capitalism into being. These included the collapse of Fordist Keynesianism, national Keynesianism and Soviet Communism along with First, Second and Third World demarcations; the international proliferation of neo-liberal policy regimes; the growth of transnational corporations in all economic sectors; the predominance of financialisation and the reconstitution of global workforces. Secondly, I will argue that the shift from organic surface energy to underground fossil energy intertwined the time of the earth with the time of human history as nature was being instrumentalised as a resource for humanity. Understanding the capitalist relations of power involved here requires that we rethink the emergence of industrial capitalism in the historical context of a world system built upon unequal socio-ecological exchange between core and periphery. Today, global capitalism has intensified the anthropogenic feedback loops associated with CO2 emissions and climate change and universalised the organisational frameworks of profit extraction and socio-ecological destruction. I refer here to the transnational systems of fossil fuel capitalism along with their interlinkages with financialisation and advertising/commodity fetishism. From the preceding lines of argument I will briefly outline the intra-capitalist and planetary-ecological crises out of which transnational coalitions of opposition might emerge.

  4. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG)

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-01

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.

  5. Referential framework for transcranial anatomical correspondence for fNIRS based on manually traced sulci and gyri of an infant brain.

    Science.gov (United States)

    Matsui, Mie; Homae, Fumitaka; Tsuzuki, Daisuke; Watanabe, Hama; Katagiri, Masatoshi; Uda, Satoshi; Nakashima, Mitsuhiro; Dan, Ippeita; Taga, Gentaro

    2014-03-01

    Functional near infrared spectroscopy (fNIRS), which is compact, portable, and tolerant of body movement, is suitable for monitoring infant brain functions. Nevertheless, fNIRS also poses a technical problem in that it cannot provide structural information. Supplementation with structural magnetic resonance images (MRI) is not always feasible for infants who undergo fNIRS measurement. Probabilistic registration methods using an MRI database instead of subjects' own MRIs are optimized for adult studies and offer only limited resources for infant studies. To overcome this, we used high-quality infant MRI data for a 12-month-old infant and manually delineated segmented gyri from among the highly visible macroanatomies on the lateral cortical surface. These macroanatomical regions are primarily linked to the spherical coordinate system based on external cranial landmarks, and further to traditional 10-20-based head-surface positioning systems. While macroanatomical structures were generally comparable between adult and infant atlases, differences were found in the parietal lobe, which was positioned posteriorly at the vertex in the infant brain. The present study provides a referential framework for macroanatomical analyses in infant fNIRS studies. With this resource, multichannel fNIRS functional data could be analyzed in reference to macroanatomical structures through virtual and probabilistic registrations without acquiring subject-specific MRIs. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  7. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    International Nuclear Information System (INIS)

    Pradhan, Jitendra K; Behera, Gangadhar; Anantha Ramakrishna, S; Agarwal, Amit K; Ghosh, Amitava

    2017-01-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR–LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated. (paper)

  8. A Multifunctional Biomaterial with NIR Long Persistent Phosphorescence, Photothermal Response and Magnetism.

    Science.gov (United States)

    Wu, Yiling; Li, Yang; Qin, Xixi; Qiu, Jianrong

    2016-09-20

    There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3 Ga2 SnO8 : Cr(3+) , Nd(3+) , Gd(3+) with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging-guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A dusty, normal galaxy in the epoch of reionization

    DEFF Research Database (Denmark)

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg

    2015-01-01

    Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts $z > 7$, have been found in large numbers with extremely deep restframe-UV imaging. But it has proved difficult for existing spectrographs to characterise them in the UV. The detailed properties...... of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at $z = 3.25$, and recent results have cast doubt on whether...... dust and molecules can be found in typical galaxies at this early epoch. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be $z = 7.5\\pm0.2$ from a spectroscopic detection...

  10. The “Anthropocene” epoch: Scientific decision or political statement?

    Science.gov (United States)

    Finney, Stanley C.; Edwards, Lucy E.

    2016-01-01

    The proposal for the “Anthropocene” epoch as a formal unit of the geologic time scale has received extensive attention in scientific and public media. However, most articles on the Anthropocene misrepresent the nature of the units of the International Chronostratigraphic Chart, which is produced by the International Commission on Stratigraphy (ICS) and serves as the basis for the geologic time scale. The stratigraphic record of the Anthropocene is minimal, especially with its recently proposed beginning in 1945; it is that of a human lifespan, and that definition relegates considerable anthropogenic change to a “pre-Anthropocene.” The utility of the Anthropocene requires careful consideration by its various potential users. Its concept is fundamentally different from the chronostratigraphic units that are established by ICS in that the documentation and study of the human impact on the Earth system are based more on direct human observation than on a stratigraphic record. The drive to officially recognize the Anthropocene may, in fact, be political rather than scientific.

  11. In-line monitoring and interpretation of an indomethacin anti-solvent crystallization process by near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Hea-Eun; Lee, Min-Jeong; Kim, Woo-Sik; Jeong, Myung-Yung; Cho, Young-Sang; Choi, Guang Jin

    2011-11-28

    PAT (process analytical technology) has been emphasized as one of key elements for the full implementation of QbD (quality-by-design) in the pharmaceutical area. NIRS (near-infrared spectroscopy) has been studied intensively as an in-line/on-line monitoring tool in chemical and biomedical industries. A precise and reliable monitoring of the particle characteristics during crystallization along with a suitable control strategy should be highly encouraged for the conformance to new quality system of pharmaceutical products. In this study, the anti-solvent crystallization process of indomethacin (IMC) was monitored using an in-line NIRS. IMC powders were produced via anti-solvent crystallization using two schemes; 'S-to-A' (solvent-to-antisolvent) and 'A-to-S' (antisolvent-to-solvent). In-line NIR spectra were analyzed by a PCA (principal component analysis) method. Although pure α-form IMC powder was resulted under A-to-S scheme, a mixture of the α-form and γ-form was produced for S-to-A case. By integrating the PCA results with off-line characterization (SEM, XRD, DSC) data, the crystallization process under each scheme was elucidated by three distinct consecutive steps. It was demonstrated that in-line NIRS, combined with PCA, can be very useful to monitor in real time and interpret the anti-solvent crystallization process with respect to the polymorphism and particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Encapsulation of Protonated Diamines in a Water-Soluble Chiral, Supramolecular Assembly Allows for Measurement of Hydrogen-Bond Breaking Followed by Nitrogen Inversion/Rotation (NIR)

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-19

    Amine nitrogen inversion, difficult to observe in aqueous solution, is followed in a chiral, supramolecular host molecule with purely-rotational T-symmetry that reduces the local symmetry of encapsulated monoprotonated diamines and enables the observation and quantification of {Delta}G{double_dagger} for the combined hydrogen-bond breaking and nitrogen inversion rotation (NIR) process. Free energies of activation for the combined hydrogen-bond breaking and NIR process inside of the chiral assembly were determined by the NMR coalescence method. Activation parameters for ejection of the protonated amines from the assembly confirm that the NIR process responsible for the coalescence behavior occurs inside of the assembly rather than by a guest ejection/NIR/re-encapsulation mechanism. For one of the diamines, N,N,N{prime},N{prime}-tetramethylethylenediamine (TMEDA), the relative energy barriers for the hydrogen-bond breaking and NIR process were calculated at the G3(MP2)//B3LYP/6-31++G(d,p) level of theory, and these agreed well with the experimental data.

  13. The effects of water and lipids on NIR optical breast measurements

    Science.gov (United States)

    Cerussi, Albert E.; Bevilacqua, Frederic; Shah, Natasha; Jakubowski, Dorota B.; Berger, Andrew J.; Lanning, Ryan M.; Tromberg, Bruce J.

    2001-06-01

    Near infrared diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR spectroscopy yields quantitative functional information that cannot be obtained with other non-invasive radiological techniques. In this study we focused upon the origins of this contrast in healthy breast, especially from water and lipids.

  14. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Science.gov (United States)

    Sun, Pei-Pei; Tan, Fu-Lun; Zhang, Zong; Jiang, Yi-Han; Zhao, Yang; Zhu, Chao-Zhe

    2018-01-01

    The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS. PMID:29556185

  15. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Directory of Open Access Journals (Sweden)

    Pei-Pei Sun

    2018-03-01

    Full Text Available The mirror neuron system (MNS, mainly including the premotor cortex (PMC, inferior frontal gyrus (IFG, superior parietal lobule (SPL, and rostral inferior parietal lobule (IPL, has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.

  16. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  17. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NARCIS (Netherlands)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.; Mellema, G.

    2013-01-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find

  18. [Study on Vis/NIR spectra detecting system for watermelons and quality predicting in motion].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Xu, Hui-Rong; Lu, Hui-Shan; Xie, Li-Juan

    2009-06-01

    To make Vis/NIR diffuse transmittance technique applied to quality prediction for watermelon in motion, the dynamic spectra detecting system was rebuilt. Spectra detecting experiments were conducted and the effects of noises caused by motion on spectra were analyzed. Then the least--square filtering method and Norris differential filtering method were adopted to eliminate the effects of noise on spectra smoothing, and statistical models between the spectra and soluble solids content were developed using partial least square method. The performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples, root mean square errors of calibration (RMSEC) and root mean square errors of prediction (RMSEP). Calibration and prediction results indicated that Norris differential method was an effective method to smooth spectra and improve calibration and prediction results, especially, with r of 0.895, RMSEC of 0.549, and RMSEP of 0.760 for the calibration and prediction result of the first derivative spectra.

  19. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    International Nuclear Information System (INIS)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron; Bradley, Richard F.; DeBoer, David R.; Parsons, Aaron R.; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S.; Aguirre, James E.; Kohn, Saul A.; Thyagarajan, Nithyanandan; Bowman, Judd; Jacobs, Daniel C.; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia J.

    2016-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m 2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  20. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron [MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); DeBoer, David R.; Parsons, Aaron R.; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S. [Department of Astronomy, University of California, Berkeley, CA (United States); Aguirre, James E.; Kohn, Saul A. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Thyagarajan, Nithyanandan; Bowman, Judd; Jacobs, Daniel C. [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); and others

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  1. Fast on-line analysis of process alkane gas mixtures by NIR spectroscopy

    NARCIS (Netherlands)

    Boelens, H. F. M.; Kok, W. T.; de Noord, O. E.; Smilde, A. K.

    2000-01-01

    Proper operation of a molecular sieve process for the separation of iso- and cyclo-alkanes front normal alkanes requires the fast online detection of normal alkanes breaking through the column. The feasibility of using near-infrared (NIR) spectroscopy for this application was investigated. Alkane

  2. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows

    NARCIS (Netherlands)

    Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A.

    2018-01-01

    Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the

  3. The Effect of NIR Light and the Light-Activated Antimicrobial Agent on Wound Pathogenic Biofilms; Implication for Nonpharmacologic Chronic Wound Treatment

    DEFF Research Database (Denmark)

    Omar, Ghada Said Mohammed

    2015-01-01

    to the increase of lifestyle diseases, as diabetes, obesity, and cardiovascular diseases. The presence of bacterial biofilms is considered an important factor responsible for wounds chronicity. Therefore, this study investigates the efficacy of near-infrared (NIR) laser in vitro, in disrupting wound pathogenic...... biofilms. Metoder / Methods Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa were grown in a 96-well microtiter plate for 18-22 h. The study included 4 arms: (a) control; (b) 200 µg/mL Indocyanin green (ICG) kept in the dark, (c) NIR laser alone; (d) NIR laser combined with 200 µg/mL. ICG....... The biofilms were exposed to different light doses from the 808 nm NIR laser at a fluence rate of 0.3 W/cm2. Crystal violate assay and viable count were used to detect the effect. (Foreløbige) resultater / (Preliminary) Results A light dose of 90 J/cm2 killed approximately 99.9% of P. aeruginosa bacterial...

  4. Temporal Comparison Between NIRS and EEG Signals During a Mental Arithmetic Task Evaluated with Self-Organizing Maps.

    Science.gov (United States)

    Oyama, Katsunori; Sakatani, Kaoru

    2016-01-01

    Simultaneous monitoring of brain activity with near-infrared spectroscopy and electroencephalography allows spatiotemporal reconstruction of the hemodynamic response regarding the concentration changes in oxyhemoglobin and deoxyhemoglobin that are associated with recorded brain activity such as cognitive functions. However, the accuracy of state estimation during mental arithmetic tasks is often different depending on the length of the segment for sampling of NIRS and EEG signals. This study compared the results of a self-organizing map and ANOVA, which were both used to assess the accuracy of state estimation. We conducted an experiment with a mental arithmetic task performed by 10 participants. The lengths of the segment in each time frame for observation of NIRS and EEG signals were compared with the 30-s, 1-min, and 2-min segment lengths. The optimal segment lengths were different for NIRS and EEG signals in the case of classification of feature vectors into the states of performing a mental arithmetic task and being at rest.

  5. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    Science.gov (United States)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  6. The 21-cm Signal from the cosmological epoch of recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A. [Departement de Physique, Ecole Normale Superieure, CNRS, 24 rue Lhomond, Paris, 75005 (France); Loeb, A., E-mail: anastasia.fialkov@phys.ens.fr, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, MS-51, Cambridge, MA, 02138 (United States)

    2013-11-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies.

  7. The 21-cm Signal from the cosmological epoch of recombination

    International Nuclear Information System (INIS)

    Fialkov, A.; Loeb, A.

    2013-01-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies

  8. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    Science.gov (United States)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  9. Aplicación de la espectroscopia NIR para la predicción de sólidos solubles en pulpa de guayaba

    Directory of Open Access Journals (Sweden)

    ányelo Andrey Gutiérrez Devia

    2015-04-01

    Full Text Available Utilizando la técnica NIRS (espectroscopia de reflectancia en el infrarrojo cercano se realizó la predicción de sólidos solubles en pulpa de guayaba (Psidium guajava L. y (Psidium friedrichsthalianum sobre 92 muestras en dos estados de madurez de la fruta. Cada fruto fue procesado hasta obtener la fracción comestible en la cual se determinó el contenido de sólidos solubles (%. De esta fracción se tomaron dos submuestras que fueron escaneadas en el espectrofotómetro NIR en un rango entre 400 y 2500 nm. Para la calibración se generaron modelos de regresión mediante MPLS (mínimos cuadrados parciales modificados en un rango entre 1108 y 2498.2 nm. Para la elección del modelo final de calibración del NIR se consideraron como criterios el coeficiente de determinación (R² y la desviación residual predictiva (RPD. Para establecer la existencia de diferencias entre los resultados obtenidos por el método primario o de referencia y los de NIR se realizó un análisis de varianza y prueba de medias mediante el programa estadístico SAS v 9.0. Los resultados mostraron una alta capacidad de predicción del modelo (R² = 0.990 entre las mediciones primarias y las de NIR. El valor de RPD fue 6.20, que indica una excelente precisión de la predicción. Entre las estimaciones por NIR y primarias no se presentaron diferencias significativas, pero sí se observaron entre muestras.

  10. Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965.

    Science.gov (United States)

    Turney, Chris S M; Palmer, Jonathan; Maslin, Mark A; Hogg, Alan; Fogwill, Christopher J; Southon, John; Fenwick, Pavla; Helle, Gerhard; Wilmshurst, Janet M; McGlone, Matt; Bronk Ramsey, Christopher; Thomas, Zoë; Lipson, Mathew; Beaven, Brent; Jones, Richard T; Andrews, Oliver; Hua, Quan

    2018-02-19

    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the 'Anthropocene'. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon ( 14 C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14 C, demonstrating the 'bomb peak' in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II 'Great Acceleration' in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or 'golden spike', marking the onset of the Anthropocene Epoch.

  11. Light interaction with nano-structured diatom frustule, from UV-A to NIR

    DEFF Research Database (Denmark)

    Maibohm, Christian; Nielsen, Josefine Holm; Rottwitt, Karsten

    2016-01-01

    symmetry where morphological parameters vary between the different investigated species. We report how light interacts with the frustule in the wavelength range from UV-A (320-380 nm) to NIR (900 nm). High resolution spectroscopy and CCD images are used to identify photoluminescence (PL) and variations...

  12. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    OpenAIRE

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O?Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machin...

  13. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  14. Cosmological constraints on variations of the fine structure constant at the epoch of recombination

    International Nuclear Information System (INIS)

    Menegoni, E; Galli, S; Archidiacono, M; Calabrese, E; Melchiorri, A

    2013-01-01

    In this brief work we investigate any possible variation of the fine structure constant at the epoch of recombination. The recent measurements of the Cosmic Microwave Background anisotropies at arcminute angular scales performed by the ACT and SPT experiments are probing the damping regime of Cosmic Microwave Background fluctuations. We study the role of a mechanism that could affect the shape of the Cosmic Microwave Background angular fluctuations at those scales, namely a change in the recombination process through variations in the fine structure constant α

  15. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    Science.gov (United States)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  16. Characterizing and Authenticating Montilla-Moriles PDO Vinegars Using Near Infrared Reflectance Spectroscopy (NIRS Technology

    Directory of Open Access Journals (Sweden)

    María-José De la Haba

    2014-02-01

    Full Text Available This study assessed the potential of near infrared (NIR spectroscopy as a non-destructive method for characterizing Protected Designation of Origin (PDO “Vinagres de Montilla-Moriles” wine vinegars and for classifying them as a function of the manufacturing process used. Three spectrophotometers were evaluated for this purpose: two monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; spectral range 400–2,500 nm in both cases and a diode-array instrument (Corona 45 VIS/NIR; spectral range 380–1,700 nm. A total of 70 samples were used to predict major chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color (tonality and intensity, and alcohol content, and to construct models for the classification of vinegars as a function of the manufacturing method used. The results obtained indicate that this non-invasive technology can be used successfully by the vinegar industry and by PDO regulators for the routine analysis of vinegars in order to authenticate them and to detect potential fraud. Slightly better results were achieved with the two monochromator instruments. The findings also highlight the potential of these NIR instruments for predicting the manufacturing process used, this being of particular value for the industrial authentication of traditional wine vinegars.

  17. MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Becker, Andrew C.; Kowalski, Adam F.; Hawley, Suzanne L.; Schmidt, Sarah J.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc, E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-20

    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied {approx}50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r - i) and (i - z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have {approx}1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to K{sub s} . We determine that red optical filters are sensitive to flares with u-band amplitudes {approx}>2 mag, and NIR filters to flares with {Delta}u {approx}> 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of {Delta}J {>=} 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope.

  18. MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS

    International Nuclear Information System (INIS)

    Davenport, James R. A.; Becker, Andrew C.; Kowalski, Adam F.; Hawley, Suzanne L.; Schmidt, Sarah J.; Hilton, Eric J.; Sesar, Branimir; Cutri, Roc

    2012-01-01

    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied ∼50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r – i) and (i – z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have ∼1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to K s . We determine that red optical filters are sensitive to flares with u-band amplitudes ∼>2 mag, and NIR filters to flares with Δu ∼> 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of ΔJ ≥ 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope.

  19. The optical variability of SDSS quasars from multi-epoch spectroscopy. I. Results from 60 quasars with ≥ six-epoch spectra

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hengxiao; Gu, Minfeng, E-mail: hxguo@shao.ac.cn, E-mail: gumf@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-09-01

    In a sample of 60 quasars selected from the Sloan Digital Sky Survey with at least six-epoch spectroscopy, we investigate the variability of emission lines and continuum luminosity at various aspects. A strong anti-correlation between the variability and continuum luminosity at 2500 Å is found for the sample, which is consistent with previous works. In individual sources, we find that half of the sample objects follow the trend of being bluer when brighter, while the remaining half follow the redder-when-brighter (RWB) trend. Although the mechanism for RWB is unclear, the effects of host galaxy contribution due to seeing variations cannot be completely ruled out. As expected from the photoionization model, the positive correlations between the broad emission line and continuum luminosity are found in most individual sources, as well as for the whole sample. We confirm the Baldwin effect in most individual objects and the whole sample, while a negative Baldwin effect is also found in several quasars, which can be at least partly (if not all) due to the host galaxy contamination. We find positive correlations between the broad emission line luminosity and line width in most individual quasars, as well as the whole sample, implying a line base that is more variable than the line core.

  20. [On-site evaluation of raw milk qualities by portable Vis/NIR transmittance technique].

    Science.gov (United States)

    Wang, Jia-Hua; Zhang, Xiao-Wei; Wang, Jun; Han, Dong-Hai

    2014-10-01

    To ensure the material safety of dairy products, visible (Vis)/near infrared (NIR) spectroscopy combined with che- mometrics methods was used to develop models for fat, protein, dry matter (DM) and lactose on-site evaluation. A total of 88 raw milk samples were collected from individual livestocks in different years. The spectral of raw milk were measured by a porta- ble Vis/NIR spectrometer with diffused transmittance accessory. To remove the scatter effect and baseline drift, the diffused transmittance spectra were preprocessed by 2nd order derivative with Savitsky-Golay (polynomial order 2, data point 25). Changeable size moving window partial least squares (CSMWPLS) and genetic algorithms partial least squares (GAPLS) meth- ods were suggested to select informative regions for PLS calibration. The PLS and multiple linear regression (MLR) methods were used to develop models for predicting quality index of raw milk. The prediction performance of CSMWPLS models were similar to GAPLS models for fat, protein, DM and lactose evaluation, the root mean standard errors of prediction (RMSEP) were 0.115 6/0.103 3, 0.096 2/0.113 7, 0.201 3/0.123 7 and 0.077 4/0.066 8, and the relative standard deviations of prediction (RPD) were 8.99/10.06, 3.53/2.99, 5.76/9.38 and 1.81/2.10, respectively. Meanwhile, the MLR models were also cal- ibrated with 8, 10, 9 and 7 variables for fat, protein, DM and lactose, respectively. The prediction performance of MLR models was better than or close to PLS models. The MLR models to predict fat, protein, DM and lactose yielded the RMSEP of 0.107 0, 0.093 0, 0.136 0 and 0.065 8, and the RPD of 9.72, 3.66, 8.53 and 2.13, respectively. The results demonstrated the usefulness of Vis/NIR spectra combined with multivariate calibration methods as an objective and rapid method for the quality evaluation of complicated raw milks. And the results obtained also highlight the potential of portable Vis/NIR instruments for on-site assessing quality indexes of

  1. Identification enhancement of auditory evoked potentials in EEG by epoch concatenation and temporal decorrelation.

    Science.gov (United States)

    Zavala-Fernandez, H; Orglmeister, R; Trahms, L; Sander, T H

    2012-12-01

    Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. EPOCH 0013 - the impact of elevated CO{sub 2} upon the response of European forests

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.J.; Jarvis, P.G. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Ecology and Resource Management

    1994-12-31

    Apart from details on the EPOCH project, this paper includes information on the currently funded project under the Environment R & D programme (the likely impact of rising CO{sub 2} and temperature on European forests, 1993 & 1994) and the proposed extension of this is Environment R & D, phase II (predicting the response of European forests to global change, 1995 & 1996). Some suggestions for future work under Framework IV are also proposed. 30 refs., 14 refs., 8 tabs.

  3. Atlas Basemaps in Web 2.0 Epoch

    Science.gov (United States)

    Chabaniuk, V.; Dyshlyk, O.

    2016-06-01

    The authors have analyzed their experience of the production of various Electronic Atlases (EA) and Atlas Information Systems (AtIS) of so-called "classical type". These EA/AtIS have been implemented in the past decade in the Web 1.0 architecture (e.g., National Atlas of Ukraine, Atlas of radioactive contamination of Ukraine, and others). One of the main distinguishing features of these atlases was their static nature - the end user could not change the content of EA/AtIS. Base maps are very important element of any EA/AtIS. In classical type EA/AtIS they were static datasets, which consisted of two parts: the topographic data of a fixed scale and data of the administrative-territorial division of Ukraine. It is important to note that the technique of topographic data production was based on the use of direct channels of topographic entity observation (such as aerial photography) for the selected scale. Changes in the information technology of the past half-decade are characterized by the advent of the "Web 2.0 epoch". Due to this, in cartography appeared such phenomena as, for example, "neo-cartography" and various mapping platforms like OpenStreetMap. These changes have forced developers of EA/AtIS to use new atlas basemaps. Our approach is described in the article. The phenomenon of neo-cartography and/or Web 2.0 cartography are analysed by authors using previously developed Conceptual framework of EA/AtIS. This framework logically explains the cartographic phenomena relations of three formations: Web 1.0, Web 1.0x1.0 and Web 2.0. Atlas basemaps of the Web 2.0 epoch are integrated information systems. We use several ways to integrate separate atlas basemaps into the information system - by building: weak integrated information system, structured system and meta-system. This integrated information system consists of several basemaps and falls under the definition of "big data". In real projects it is already used the basemaps of three strata: Conceptual

  4. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  5. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  6. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  7. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions Based on a Bank of Norm-Inequality-Constrained Epoch-State Filters

    Science.gov (United States)

    Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.

    2011-01-01

    Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.

  8. Determination of the Mechanical Properties of Rubber by FT-NIR

    OpenAIRE

    Pornprasit, Rattapol; Pornprasit, Philaiwan; Boonma, Pruet; Natwichai, Juggapong

    2016-01-01

    Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and ethylene propylene diene monomer (EPDM), were evaluated using a near infrared (NIR) spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-...

  9. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10 4 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources

  10. `VIS/NIR mapping of TOC and extent of organic soils in the Nørre Å valley

    Science.gov (United States)

    Knadel, M.; Greve, M. H.; Thomsen, A.

    2009-04-01

    Organic soils represent a substantial pool of carbon in Denmark. The need for carbon stock assessment calls for more rapid and effective mapping methods to be developed. The aim of this study was to compare traditional soil mapping with maps produced from the results of a mobile VIS/NIR system and to evaluate the ability to estimate TOC and map the area of organic soils. The Veris mobile VIS/NIR spectroscopy system was compared to traditional manual sampling. The system is developed for in-situ near surface measurements of soil carbon content. It measures diffuse reflectance in the 350 nm-2200 nm region. The system consists of two spectrophotometers mounted on a toolbar and pulled by a tractor. Optical measurements are made through a sapphire window at the bottom of the shank. The shank was pulled at a depth of 5-7 cm at a speed of 4-5 km/hr. 20-25 spectra per second with 8 nm resolution were acquired by the spectrometers. Measurements were made on 10-12 m spaced transects. The system also acquired soil electrical conductivity (EC) for two soil depths: shallow EC-SH (0- 31 cm) and deep conductivity EC-DP (0- 91 cm). The conductivity was recorded together with GPS coordinates and spectral data for further construction of the calibration models. Two maps of organic soils in the Nørre Å valley (Central Jutland) were generated: (i) based on a conventional 25 m grid with 162 sampling points and laboratory analysis of TOC, (ii) based on in-situ VIS/NIR measurements supported by chemometrics. Before regression analysis, spectral information was compressed by calculating principal components. The outliers were determined by a mahalanobis distance equation and removed. Clustering using a fuzzy c- means algorithm was conducted. Within each cluster a location with the minimal spatial variability was selected. A map of 15 representative sample locations was proposed. The interpolation of the spectra into a single spectrum was performed using a Gaussian kernel weighting

  11. NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat

    Science.gov (United States)

    Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...

  12. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  13. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    Science.gov (United States)

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  14. Rapid Discrimination of Chlorpheniramine Maleate and Assessment of Its Surface Content Uniformity in a Pharmaceutical Formulation by NIR-CI Coupled with Statistical Measurement

    Directory of Open Access Journals (Sweden)

    Luwei Zhou

    2014-01-01

    Full Text Available This study demonstrated that near infrared chemical imaging (NIR-CI was a rapid and nondestructive technique for discrimination of chlorpheniramine maleate (CPM and assessment of its surface content uniformity (SCU in a pharmaceutical formulation. The characteristic wavenumber method was used for discriminating CPM distribution on the tablet surface. To assess the surface content uniformity of CPM, binary image and statistical measurement were proposed. Furthermore, high-performance liquid chromatography (HPLC was used as reference method for accurately determining volume content of CPM in the sample. Moreover, HPLC was performed to assess volume content uniformity (VCU of CPM in whole region and part region of the tablets. The NIR-CI result showed that the spatial distribution of CPM was heterogeneous on the tablet surface. Through the comparison of content uniformity of CPM determined by NIR-CI and HPLC, respectively, it demonstrated that a high degree of VCU did not imply a high degree of SCU of the samples. These results indicate that HPLC method is not suitable for testing SCU, and this has been verified by NIR-CI. This study proves the feasibility of NIR-CI for rapid discrimination of CPM and assessment of its SCU, which is helpful for the quality control of commercial CPM tablets.

  15. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    Science.gov (United States)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  16. On the link between extreme floods and excess monsoon epochs in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Vishwas [University of Pune, Department of Geography, Pune (India)

    2012-09-15

    This paper provides a synoptic view of extreme monsoon floods on all the nine large rivers of South Asia and their association with the excess (above-normal) monsoon rainfall periods. Annual maximum flood series for 18 gauging stations spread over four countries (India, Pakistan, Bangladesh and Nepal) and long-term monsoon rainfall data were analyzed to ascertain whether the extreme floods were clustered in time and whether they coincided with multi-decade excess monsoon rainfall epochs at the basin level. Simple techniques, such as the Cramer's t-test, regression and Mann-Kendall (MK) tests and Hurst method were used to evaluate the trends and patterns of the flood and rainfall series. MK test reveals absence of any long-term tendency in all the series. However, the Cramer's t test and Hurst-Mandelbrot rescaled range statistic provide evidence that both rainfall and flood time series are persistent. Using the Cramer's t-test the excess monsoon epochs for each basin were identified. The excess monsoon periods for different basins were found to be highly asynchronous with respect to duration as well as the beginning and end. Three main conclusions readily emerge from the analyses. Extreme floods (>90th percentile) in South Asia show a tendency to cluster in time. About three-fourth of the extreme floods have occurred during the excess monsoon periods between {proportional_to}1840 and 2000 AD, implying a noteworthy link between the two. The frequency of large floods was higher during the post-1940 period in general and during three decades (1940s, 1950s and 1980s) in particular. (orig.)

  17. On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHK s ) Census of ω Centauri RR Lyrae Variables

    Science.gov (United States)

    Braga, V. F.; Stetson, P. B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A. J.; Neeley, J.; Persson, S. E.; Beaton, R. L.; Buonanno, R.; Calamida, A.; Castellani, M.; Di Carlo, E.; Fabrizio, M.; Freedman, W. L.; Inno, L.; Madore, B. F.; Magurno, D.; Marchetti, E.; Marinoni, S.; Marrese, P.; Matsunaga, N.; Minniti, D.; Monelli, M.; Nonino, M.; Piersimoni, A. M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A. R.; Valenti, E.; Zoccali, M.

    2018-03-01

    We present a new complete near-infrared (NIR, JHK s ) census of RR Lyrae stars (RRLs) in the globular ω Cen (NGC 5139). We collected 15,472 JHK s images with 4–8 m class telescopes over 15 years (2000–2015) covering a sky area around the cluster center of 60 × 34 arcmin2. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K s ) RRLs. These data were supplemented with single-epoch JK s magnitudes from VHS and with single-epoch H magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK s magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P > 0.7 days) fundamental RRLs. Using predicted period–luminosity–metallicity relations, we derive a true distance modulus of 13.674 ± 0.008 ± 0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698 ± 0.004 ± 0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%–10% level in the zero-point of the period–luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST. This publication makes use of data gathered with the Magellan/Baade Telescope at Las Campanas Observatory, the Blanco Telescope at Cerro Tololo Inter-American Observatory, NTT at La Silla (ESO Program IDs: 64.N-0038(A), 66.D-0557(A), 68.D-0545(A), 073.D-0313(A), ID 073.D-0313(A) and 59.A-9004(D)), VISTA at Paranal (ESO Program ID: 179.A-2010) and VLT at Paranal (ESO Program ID: ID96406).

  18. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance

    Science.gov (United States)

    Omurtag, Ahmet; Aghajani, Haleh; Onur Keles, Hasan

    2017-12-01

    Objective. Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system’s ability to decode mental states and compare it with its unimodal components. Approach. We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. Main results. EEG+fNIRS’s decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. Significance. Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.

  19. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  20. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich

    2011-01-01

    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011 http://iopscience.iop.org/1367-2630/13/5/053049

  1. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Oyama, Yoshihiko [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Sekiguchi, Toyokazu [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), 193, Munjiro, Yuseoung-gu, Daejeon 34051 (Korea, Republic of); Takahashi, Tomo, E-mail: kohri@post.kek.jp, E-mail: oyamayo@icrr.u-tokyo.ac.jp, E-mail: sekiguti@ibs.re.kr, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2017-02-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8∼< z ∼<1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  2. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  3. Relative biological effectiveness of the therapeutic proton beams at NIRS and Tsukuba University

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Kawachi, Kiyomitsu

    1985-01-01

    Relative biological effectiveness (RBE) of proton beams dedicated to radiotherapy was examined using a method of simultaneous irradiation. Mice received i.v. transplantation of syngeneic fibrosarcoma (NFSa) cells. These mice were divided into 3 groups on the following day, and thorax was simultaneously irradiated with one of the following beams: 70MeV proton beam at National Institute of Radiological Sciences (NIRS), 250 MeV Proton beam at Tsukuba University (PARMS) and 60 Co γ ray. Ten to 13 days thereafter, lungs were removed for colony counts to give dose-cell survival relationships. RBE of NIRS proton was ranging from 1.01 to 1.12 with an average of 1.06 while that of PARMS proton was ranging from 1.03 to 1.09 with an average of 1.06 at surviving fraction of 0.01. The simultaneous irradiation for RBE study was found to be reliable at large dose-low survival regions. (author)

  4. High-throughput prediction of tablet weight and trimethoprim content of compound sulfamethoxazole tablets for controlling the uniformity of dosage units by NIR.

    Science.gov (United States)

    Dong, Yanhong; Li, Juan; Zhong, Xiaoxiao; Cao, Liya; Luo, Yang; Fan, Qi

    2016-04-15

    This paper establishes a novel method to simultaneously predict the tablet weight (TW) and trimethoprim (TMP) content of compound sulfamethoxazole tablets (SMZCO) by near infrared (NIR) spectroscopy with partial least squares (PLS) regression for controlling the uniformity of dosage units (UODU). The NIR spectra for 257 samples were measured using the optimized parameter values and pretreated using the optimized chemometric techniques. After the outliers were ignored, two PLS models for predicting TW and TMP content were respectively established by using the selected spectral sub-ranges and the reference values. The TW model reaches the correlation coefficient of calibration (R(c)) 0.9543 and the TMP content model has the R(c) 0.9205. The experimental results indicate that this strategy expands the NIR application in controlling UODU, especially in the high-throughput and rapid analysis of TWs and contents of the compound pharmaceutical tablets, and may be an important complement to the common NIR on-line analytical method for pharmaceutical tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The importance of bilateral monitoring of cerebral oxygenation (NIRS): Clinical case of asymmetry during cardiopulmonary bypass secondary to previous cerebral infarction.

    Science.gov (United States)

    Matcan, S; Sanabria Carretero, P; Gómez Rojo, M; Castro Parga, L; Reinoso-Barbero, F

    2018-03-01

    Cerebral oximetry based on near infrared spectroscopy (NIRS) technology is used to determine cerebral tissue oxygenation. We hereby present the clinical case of a 12-month old child with right hemiparesis secondary to prior left middle cerebral artery stroke 8 months ago. The child underwent surgical enlargement of the right ventricular outflow tract (RVOT) with cardiopulmonary bypass. During cardiopulmonary bypass, asymmetric NIRS results were detected between both hemispheres. The utilization of multimodal neuromonitoring (NIRS-BIS) allowed acting on both perfusion pressure and anesthetic depth to balance out the supply and demand of cerebral oxygen consumption. No new neurological sequelae were observed postoperatively. We consider bilateral NIRS monitoring necessary in order to detect asymmetries between cerebral hemispheres. Although asymmetries were not present at baseline, they can arise intraoperatively and its monitoring thus allows the detection and treatment of cerebral ischemia-hypoxia in the healthy hemisphere, which if undetected and untreated would lead to additional neurological damage. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  7. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics.

    Science.gov (United States)

    Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L

    2016-07-01

    The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. NIRS report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    2001-01-01

    This report is a detailed account of the roles that National Institute of Radiological Sciences (NIRS) played at the criticality accident in the title, which occurred at around 10:35, on Sep. 30, 1999 and resulted in death of two workers after all, and is published to discharge NIRS responsibilities in regards to the accident. The accident caused many residents concern on their health and rumors had both social and economic consequences. The report involves chapters of detailed outline of the accident; demand for acceptance of the victims and communications until the identification of the criticality'' accident; the acceptance and initial treatment; the exposure dose estimation (based on acute symptoms, on physics, on chromosomal analyses and on neutron-activated dental metals, and detailed analyses for dose distribution); decision made for therapeutic strategies; cooperation with the Network Council for Radiation Emergency and with other medical facilities; the urgent import of medicine; treatment and processes (patients, nursing system and radiation injuries); radiation protection in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hopefully useful in preventing the occurrence of future accidents. (N.I.)

  9. A Proof of Concept Study of Function-Based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared to Typically-Developing Controls.

    Science.gov (United States)

    Fu, Guifang; Wan, Nicholas J A; Baker, Joseph M; Montgomery, James W; Evans, Julia L; Gillam, Ronald B

    2016-01-01

    Functional near infrared spectroscopy (fNIRS) is a neuroimaging technology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100 ms increments). Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis (FDA) approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without SLI wore two, 3 × 5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. FDA was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular GLM, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the bilateral inferior frontal and left inferior posterior parietal brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the importance of these two areas for syntax comprehension. The proposed FDA was consistent with the

  10. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS

    Directory of Open Access Journals (Sweden)

    Yukifumi Monden

    2015-01-01

    Full Text Available While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD, an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS, which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.

  11. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration

    International Nuclear Information System (INIS)

    Xu Lu; Zhou Yanping; Tang Lijuan; Wu Hailong; Jiang Jianhui; Shen Guoli; Yu Ruqin

    2008-01-01

    Preprocessing of raw near-infrared (NIR) spectral data is indispensable in multivariate calibration when the measured spectra are subject to significant noises, baselines and other undesirable factors. However, due to the lack of sufficient prior information and an incomplete knowledge of the raw data, NIR spectra preprocessing in multivariate calibration is still trial and error. How to select a proper method depends largely on both the nature of the data and the expertise and experience of the practitioners. This might limit the applications of multivariate calibration in many fields, where researchers are not very familiar with the characteristics of many preprocessing methods unique in chemometrics and have difficulties to select the most suitable methods. Another problem is many preprocessing methods, when used alone, might degrade the data in certain aspects or lose some useful information while improving certain qualities of the data. In order to tackle these problems, this paper proposes a new concept of data preprocessing, ensemble preprocessing method, where partial least squares (PLSs) models built on differently preprocessed data are combined by Monte Carlo cross validation (MCCV) stacked regression. Little or no prior information of the data and expertise are required. Moreover, fusion of complementary information obtained by different preprocessing methods often leads to a more stable and accurate calibration model. The investigation of two real data sets has demonstrated the advantages of the proposed method

  12. Influence of wood barrels classified by NIRS on the ellagitannin content/composition and on the organoleptic properties of wine.

    Science.gov (United States)

    Michel, Julien; Jourdes, Michael; Le Floch, Alexandra; Giordanengo, Thomas; Mourey, Nicolas; Teissedre, Pierre-Louis

    2013-11-20

    Ellagitannins are extracted from oak wood during wine aging in oak barrels. This research is based on the NIRS (Oakscan) oak wood classification according to their index polyphenolic (IP) (between 21.07 and 70.15). Their level in wood is very variable (between 5.95 and 32.91 mg/g dry wood) and influenced their concentration in red wine (between 2.30 and 32.56 mg/L after 24 months of aging) and thus their impact on wine organoleptic properties. The results show a good correlation between the NIRS classification and the chemical analysis (HPLC-UV-MS and acidic hydrolysis procedure) and with the wood ellagitannin level, the ellagitannin extraction kinetic, and the ellagitannins evolution in red wine (Cabernet Sauvignon). Moreover, a correlation between the NIRS classification and the increasing intensity of some wood aromas (woody, spicy, vanilla, and smoked/toasted), flavors (bitterness and astringency), and a decreasing intensity of fruitiness was also observed.

  13. Data preprocessing methods of FT-NIR spectral data for the classification cooking oil

    Science.gov (United States)

    Ruah, Mas Ezatul Nadia Mohd; Rasaruddin, Nor Fazila; Fong, Sim Siong; Jaafar, Mohd Zuli

    2014-12-01

    This recent work describes the data pre-processing method of FT-NIR spectroscopy datasets of cooking oil and its quality parameters with chemometrics method. Pre-processing of near-infrared (NIR) spectral data has become an integral part of chemometrics modelling. Hence, this work is dedicated to investigate the utility and effectiveness of pre-processing algorithms namely row scaling, column scaling and single scaling process with Standard Normal Variate (SNV). The combinations of these scaling methods have impact on exploratory analysis and classification via Principle Component Analysis plot (PCA). The samples were divided into palm oil and non-palm cooking oil. The classification model was build using FT-NIR cooking oil spectra datasets in absorbance mode at the range of 4000cm-1-14000cm-1. Savitzky Golay derivative was applied before developing the classification model. Then, the data was separated into two sets which were training set and test set by using Duplex method. The number of each class was kept equal to 2/3 of the class that has the minimum number of sample. Then, the sample was employed t-statistic as variable selection method in order to select which variable is significant towards the classification models. The evaluation of data pre-processing were looking at value of modified silhouette width (mSW), PCA and also Percentage Correctly Classified (%CC). The results show that different data processing strategies resulting to substantial amount of model performances quality. The effects of several data pre-processing i.e. row scaling, column standardisation and single scaling process with Standard Normal Variate indicated by mSW and %CC. At two PCs model, all five classifier gave high %CC except Quadratic Distance Analysis.

  14. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  15. Evaluation of cerebral activity in the prefrontal cortex in mood [affective] disorders during animal-assisted therapy (AAT) by near-infrared spectroscopy (NIRS): a pilot study.

    Science.gov (United States)

    Aoki, Jun; Iwahashi, Kazuhiko; Ishigooka, Jun; Fukamauchi, Fumihiko; Numajiri, Maki; Ohtani, Nobuyo; Ohta, Mitsuaki

    2012-09-01

    Previous studies have shown the possibility that animal-assisted therapy (AAT) is useful for promoting the recovery of a patient's psychological, social, and physiological aspect. As a pilot study, we measured the effect that AAT had on cerebral activity using near-infrared spectroscopy (NIRS), and examined whether or not NIRS be used to evaluate the effect of AAT biologically and objectively. Two patients with mood [affective] disorders and a healthy subject participated in this study. We performed two AAT and the verbal fluency task (VFT). The NIRS signal during AAT showed great [oxy-Hb] increases in most of the prefrontal cortex (PFC) in the two patients. When the NIRS pattern during AAT was compared with that during VFT, greater or lesser differences were observed between them in all subjects. The present study suggested that AAT possibly causes biological and physiological changes in the PFC, and that AAT is useful for inducing the activity of the PFC in patients with depression who have generally been said to exhibit low cerebral activity in the PFC. In addition, the possibility was also suggested that the effect of AAT can be evaluated using NIRS physiologically and objectively.

  16. NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors.

    Science.gov (United States)

    Li, Haixia; Dong, Hao; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Sun, Ling-Dong; Zhang, Hongyan

    2017-09-05

    It is crucial for cell physiology to keep the homeostasis of pH, and it is highly demanded yet challenging to develop luminescence resonance energy transfer (LRET)-based near-infrared (NIR) ratiometric luminescent sensor for the detection of pH fluctuation with NIR excitation. As promising energy donors for LRET, upconversion nanoparticles (UCNPs) have been widely used to fabricate nanosensors, but the relatively low LRET efficiency limits their application in bioassay. To improve the LRET efficiency, core/shell/shell structured β-NaGdF 4 @NaYF 4 :Yb,Tm@NaYF 4 UCNPs were prepared and decorated with hemicyanine dyes as an LRET-based NIR ratiometric luminescent pH fluctuation-nanosensor for the first time. The as-developed nanosensor not only exhibits good antidisturbance ability, but it also can reversibly sense pH and linearly sense pH in a range of 6.0-9.0 and 6.8-9.0 from absorption and upconversion emission spectra, respectively. In addition, the nanosensor displays low dark toxicity under physiological temperature, indicating good biocompatibility. Furthermore, live cell imaging results revealed that the sensor can selectively monitor pH fluctuation via ratiometric upconversion luminescence behavior.

  17. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  18. SDSS J14584479+3720215: A BENCHMARK JHK{sub S} BLAZAR LIGHT CURVE FROM THE 2MASS CALIBRATION SCANS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Ruan, John J.; Becker, Andrew C. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Macleod, Chelsea L. [Physics Department, The United States Naval Academy, 572c Holloway Road, Annapolis, MD 21402 (United States); Cutri, Roc M., E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-04-10

    Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR (NIR) variability of the most luminous AGNs, we conduct a search for variability using well sampled JHK{sub s}-band light curves from the Two Micron All Sky Survey (2MASS) calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSS J14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for active galactic nucleus (AGN) candidates based on fitting CARMA(1,0) models (damped-random walk) uncovered only seven candidates. All seven were young stellar objects within the ρ Ophiuchus star forming region, five with previous X-ray detections. A significant γ-ray detection (5σ) for the known blazar using 4.5 yr of Fermi photon data is also found. We suggest that strong NIR variability of blazars, such as seen for SDSS J14584479+3720215, can be used as an efficient method of identifying previously unidentified γ-ray blazars, with low contamination from other AGNs.

  19. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    DEFF Research Database (Denmark)

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong

    2005-01-01

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70/30, w/w) with the catalysis of Lipozyme TL IM at 70°C in a batch reactor...

  20. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    International Nuclear Information System (INIS)

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  1. NIRS as an alternative to conventional soil analysis for Greenland soils (focus on SOC)

    DEFF Research Database (Denmark)

    Knadel, Maria; Ogric, Mateja; Adhikari, Kabindra

    Soil organic carbon (SOC) is an important soil property. It is the main constituents of soil organic matter and a good indicator of soil quality. The estimation and mapping of SOC content could be used to select potential agricultural areas in the Arctic areas. However, conventional analysis of SOC...... are time consuming and expensive. They involve a lot of sample preparation, and chemicals and are destructive. Near infrared spectroscopy (NIRS) in the range between 400 and 2500 nm is an alternative method for SOC analysis. It is fast and non-destructive. The aims of this study where to test...... the feasibility of using NIRS to estimate SOC content on a landscape and field scale in Greenland. Partial Least squares regression models were built to correlated soil spectra and their reference SOC data to develop calibration models. Very good predictive ability for both landscape and field scale were obtained...

  2. THE LICK AGN MONITORING PROJECT: RECALIBRATING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, Daeseong; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Treu, Tommaso; Bennert, Vardha N. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Barth, Aaron J.; Walsh, Jonelle [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University Atlanta, GA 30303 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, 900 University Ave., Riverside, CA 92521 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Malkan, Matthew A., E-mail: woo@astro.snu.ac.kr [Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 (United States)

    2012-03-01

    We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE H{beta} line width (full width at half-maximum intensity, FWHM{sub H{beta}} or dispersion, {sigma}{sub H{beta}}) and of the AGN continuum luminosity at 5100 A (L{sub 5100}). From the distribution of the 'virial products' ({proportional_to} FWHM{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100} or {sigma}{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100}) measured from SE spectra, we estimate the uncertainty due to the combined variability as {approx}0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be {approx}0.46 dex (factor of {approx}3). By comparing the H{beta} line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the H{beta} line is broader in the mean (and SE) spectra than in the rms spectra by {approx}0.1 dex (25%) for our sample with FWHM{sub H{beta}} <3000 km s{sup -1}. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the H{beta} line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.

  3. Cerebral time domain-NIRS: Reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects

    OpenAIRE

    Giacalone, Giacomo; Zanoletti, Marta; Contini, Davide; Rebecca, Re; Spinelli, Lorenzo; Roveri, Luisa; Torricelli, Alessandro

    2017-01-01

    The reproducibility of cerebral time-domain near-infrared spectroscopy (TD-NIRS) has not been investigated so far. Besides, reference intervals of cerebral optical properties, of absolute concentrations of deoxygenated-hemoglobin (HbR), oxygenated-hemoglobin (HbO), total hemoglobin (HbT) and tissue oxygen saturation (StO2) and their variability have not been reported. We have addressed these issues on a sample of 88 adult healthy subjects. TD-NIRS measurements at 690, 785, 830 nm were fitted ...

  4. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    Science.gov (United States)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  5. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, Maria P

    2016-02-16

    Plant phenotyping is a very important topic in agriculture. In this context, data mining strategies may be applied to agricultural data retrieved with new non-invasive devices, with the aim of yielding useful, reliable and objective information. This work presents some applications of machine learning algorithms along with in-field acquired NIR spectral data for plant phenotyping in viticulture, specifically for grapevine variety discrimination and assessment of plant water status. Support vector machine (SVM), rotation forests and M5 trees models were built using NIR spectra acquired in the field directly on the adaxial side of grapevine leaves, with a non-invasive portable spectrophotometer working in the spectral range between 1600 and 2400 nm. The ν-SVM algorithm was used for the training of a model for varietal classification. The classifiers' performance for the 10 varieties reached, for cross- and external validations, the 88.7% and 92.5% marks, respectively. For water stress assessment, the models developed using the absorbance spectra of six varieties yielded the same determination coefficient for both cross- and external validations (R² = 0.84; RMSEs of 0.164 and 0.165 MPa, respectively). Furthermore, a variety-specific model trained only with samples of Tempranillo from two different vintages yielded R² = 0.76 and RMSE of 0.16 MPa for cross-validation and R² = 0.79, RMSE of 0.17 MPa for external validation. These results show the power of the combined use of data mining and non-invasive NIR sensing for in-field grapevine phenotyping and their usefulness for the wine industry and precision viticulture implementations.

  6. Brain and muscle oxygenation monitoring using near-infrared spectroscopy (NIRS) during all-night sleep

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2013-03-01

    The hemodynamic changes during natural human sleep are still not well understood. NIRS is ideally suited for monitoring the hemodynamic changes during sleep due to the properties of local measurement, totally safe application and good tolerance to motion. Several studies have been conducted using NIRS in both normal subjects and patients with various sleep disorders during sleep to characterize the hemodynamic changing patterns during different sleep stages and during different symptoms such as obstructive apneas. Here we assessed brain and muscle oxygenation changes in 7 healthy adults during all-night sleep with combined polysomnography measurement to test the notion if hemodynamic changes in sleep are indeed brain specific. We found that muscle and brain showed similar hemodynamic changes during sleep initiation. A decrease in HbO2 and tissue oxygenation index (TOI) while an increase in HHb was observed immediately after sleep onset, and an opposite trend was found after transition with progression to deeper slow-wave sleep (SWS) stage. Spontaneous low frequency oscillations (LFO) and very low frequency oscillations (VLFO) were smaller (Levene's test, psleep (LS) and rapid-eye-movement (REM) sleep in both brain and muscle. Spectral analysis of the NIRS signals measured from brain and muscle also showed reductions in VLFO and LFO powers during SWS with respect to LS and REM sleep. These results indicate a systemic attenuation rather than local cerebral reduction of spontaneous hemodynamic activity in SWS. A systemic physiological mechanism may exist to regulate the hemodynamic changes in brain and muscle during sleep.

  7. Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS.

    Science.gov (United States)

    Herff, Christian; Heger, Dominic; Fortmann, Ole; Hennrich, Johannes; Putze, Felix; Schultz, Tanja

    2013-01-01

    When interacting with technical systems, users experience mental workload. Particularly in multitasking scenarios (e.g., interacting with the car navigation system while driving) it is desired to not distract the users from their primary task. For such purposes, human-machine interfaces (HCIs) are desirable which continuously monitor the users' workload and dynamically adapt the behavior of the interface to the measured workload. While memory tasks have been shown to elicit hemodynamic responses in the brain when averaging over multiple trials, a robust single trial classification is a crucial prerequisite for the purpose of dynamically adapting HCIs to the workload of its user. The prefrontal cortex (PFC) plays an important role in the processing of memory and the associated workload. In this study of 10 subjects, we used functional Near-Infrared Spectroscopy (fNIRS), a non-invasive imaging modality, to sample workload activity in the PFC. The results show up to 78% accuracy for single-trial discrimination of three levels of workload from each other. We use an n-back task (n ∈ {1, 2, 3}) to induce different levels of workload, forcing subjects to continuously remember the last one, two, or three of rapidly changing items. Our experimental results show that measuring hemodynamic responses in the PFC with fNIRS, can be used to robustly quantify and classify mental workload. Single trial analysis is still a young field that suffers from a general lack of standards. To increase comparability of fNIRS methods and results, the data corpus for this study is made available online.

  8. Mental workload during n-back task - quantified in the prefrontal cortex using fNIRS

    Directory of Open Access Journals (Sweden)

    Christian eHerff

    2014-01-01

    Full Text Available When interacting with technical systems, users experience mental workload. Particularly in multitasking scenarios (e.g. interacting with the car navigation system while driving it is desired to not distract the users from their primary task. For such purposes, human-machine interfaces (HCIs are desirable which continuously monitor the users' workload and dynamically adapt the behavior of the interface to the measured workload. While memory tasks have been shown to illicit hemodynamic responses in the brain when averaging over multiple trials, a robust single trial classification is a crucial prerequisite for the purpose of dynamically adapting HCIs to the workload of its user.The prefrontal cortex (PFC plays an important role in the processing of memory and the associated workload. In this study of 10 subjects, we used functional Near-Infrared Spectroscopy (fNIRS, a non-invasive imaging modality, to sample workload activity in the PFC. The results show up to 78% accuracy for single-trial discrimination of three levels of workload from each other. We use an n-back task (n ∈ {1, 2, 3} to induce different levels of workload, forcing subjects to continuously remember the last one, two or three of rapidly changing items.Our experimental results show that measuring hemodynamic responses in the PFC with fNIRS, can be used to robustly quantify and classify mental workload.Single trial analysis is still a young field that suffers from a general lack of standards. To increase comparability of fNIRS methods and results, the data corpus for this study is made available online.

  9. Neuroimaging in autism spectrum disorders: 1H-MRS and NIRS study.

    Science.gov (United States)

    Mori, Kenji; Toda, Yoshihiro; Ito, Hiromichi; Mori, Tatsuo; Mori, Keiko; Goji, Aya; Hashimoto, Hiroko; Tani, Hiroe; Miyazaki, Masahito; Harada, Masafumi; Kagami, Shoji

    2015-01-01

    Using proton magnetic resonance spectroscopy ((1)H-MRS), we measured chemical metabolites in the left amygdala and the bilateral orbito-frontal cortex (OFC) in children with autism spectrum disorders (ASD). The concentrations of N-acetylaspartate (NAA) in these regions of ASD were significantly decreased compared to those in the control group. In the autistic patients, the NAA concentrations in these regions correlated with their social quotient. These findings suggest the presence of neuronal dysfunction in the amygdala and OFC in ASD. Dysfunction in the amygdala and OFC may contribute to the pathogenesis of ASD. We performed a near-infrared spectroscopy (NIRS) study to evaluate the mirror neuron system in children with ASD. The concentrations of oxygenated hemoglobin (oxy-Hb) were measured with frontal probes using a 34-channel NIRS machine while the subjects imitated emotional facial expressions. The increments in the concentration of oxy-Hb in the pars opercularis of the inferior frontal gyrus in autistic subjects were significantly lower than those in the controls. However, the concentrations of oxy-Hb in this area were significantly elevated in autistic subjects after they were trained to imitate emotional facial expressions. The results suggest that mirror neurons could be activated by repeated imitation in children with ASD.

  10. An Extended ADOP for Performance Evaluation of Single-Frequency Single-Epoch Positioning by BDS/GPS in Asia-Pacific Region

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-09-01

    Full Text Available Single-Frequency Single-Epoch (SFSE high-precision positioning has always been the hot spot of Global Navigation Satellite System (GNSS, and ambiguity dilution of precision (ADOP is a well-known scalar measure for success rate of ambiguity resolution. Traditional ADOP expression is complicated, thus the SFSE extended ADOP (E-ADOP, with the newly defined Summation-Multiplication Ratio of Weight (SMRW and two theorems for short baseline, was developed. This simplifies the ADOP expression; gives a clearer insight into the influences of SMRW and number of satellites on E-ADOP; and makes theoretical analysis of E-ADOP more convenient than that of ADOP, and through that the E-ADOP value can be predicted more accurately than through the ADOP expression for ADOP value. E-ADOP reveals that number of satellites and SMRW or high-elevation satellite are important for ADOP and, through E-ADOP, we studied which factor is dominant to control ADOP in different conditions and make ADOP different between BeiDou Navigation Satellite System (BDS, Global Positioning System (GPS, and BDS/GPS. Based on experimental results of SFSE positioning with different baselines, some conclusions are made: (1 ADOP decreases when new satellites are added mainly because the number of satellites becomes larger; (2 when the number of satellites is constant, ADOP is mainly affected by SMRW; (3 in contrast to systems where the satellites with low-elevation are the majority or where low- and high-elevation satellites are equally distributed, in systems where the high-elevation satellites are the majority, the SMRW mainly makes ADOP smaller, even if there are fewer satellites than in the two previous cases, and the difference in numbers of satellites can be expanded as the proportion of high-elevation satellites becomes larger; and (4 ADOP of BDS is smaller than ADOP of GPS mainly because of its SMRW.

  11. Newton law corrections and instabilities in f(R) gravity with the effective cosmological constant epoch

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2007-01-01

    We consider class of modified f(R) gravities with the effective cosmological constant epoch at the early and late universe. Such models pass most of solar system tests as well they satisfy to cosmological bounds. Despite their very attractive properties, it is shown that one realistic class of such models may lead to significant Newton law corrections at large cosmological scales. Nevertheless, these corrections are small at solar system as well as at the future universe. Another realistic model with acceptable Newton law regime shows the matter instability

  12. Predicting water-holding capacity of intact chicken broiler breast fillets with Vis/NIR spectroscopy

    Science.gov (United States)

    The ability of using visible and near-infrared (Vis/NIR) spectroscopy to predict water-holding capacity (WHC) of intact chicken broiler breast fillets (pectoralis major) was assessed in this study. Boneless and skinless chicken fillets (214 in total) were procured from a commercial processing plant ...

  13. CPV system based on NIR reflecting lamellae integrated into a greenhouse: Optimizing of Optics

    NARCIS (Netherlands)

    Piet Sonneveld; Gert-Jan Swinkels

    2010-01-01

    In an previous research project a new type of greenhouse with an integrated concentrated photovoltaic system (CPV) was developed which has an integrated filter for reflecting the near infrared radiation (NIR) to the greenhouse and exploiting this radiation in a solar energy system. The performance

  14. Modeling high-order synchronization epochs and transitions in the cardiovascular system

    Science.gov (United States)

    García-Álvarez, David; Bahraminasab, Alireza; Stefanovska, Aneta; McClintock, Peter V. E.

    2007-12-01

    We study a system consisting of two coupled phase oscillators in the presence of noise. This system is used as a model for the cardiorespiratory interaction in wakefulness and anaesthesia. We show that longrange correlated noise produces transitions between epochs with different n:m synchronisation ratios, as observed in the cardiovascular system. Also, we see that, the smaller the noise (specially the one acting on the slower oscillator), the bigger the synchronisation time, exactly as happens in anaesthesia compared with wakefulness. The dependence of the synchronisation time on the couplings, in the presence of noise, is studied; such dependence is softened by low-frequency noise. We show that the coupling from the slow oscillator to the fast one (respiration to heart) plays a more important role in synchronisation. Finally, we see that the isolines with same synchronisation time seem to be a linear combination of the two couplings.

  15. Analysis of Accuracy and Epoch on Back-propagation BFGS Quasi-Newton

    Science.gov (United States)

    Silaban, Herlan; Zarlis, Muhammad; Sawaluddin

    2017-12-01

    Back-propagation is one of the learning algorithms on artificial neural networks that have been widely used to solve various problems, such as pattern recognition, prediction and classification. The Back-propagation architecture will affect the outcome of learning processed. BFGS Quasi-Newton is one of the functions that can be used to change the weight of back-propagation. This research tested some back-propagation architectures using classical back-propagation and back-propagation with BFGS. There are 7 architectures that have been tested on glass dataset with various numbers of neurons, 6 architectures with 1 hidden layer and 1 architecture with 2 hidden layers. BP with BFGS improves the convergence of the learning process. The average improvement convergence is 98.34%. BP with BFGS is more optimal on architectures with smaller number of neurons with decreased epoch number is 94.37% with the increase of accuracy about 0.5%.

  16. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    Science.gov (United States)

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  17. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.

    Science.gov (United States)

    Takai, Isamu; Matsubara, Hiroyuki; Soga, Mineki; Ohta, Mitsuhiko; Ogawa, Masaru; Yamashita, Tatsuya

    2016-03-30

    A single-photon avalanche diode (SPAD) with enhanced near-infrared (NIR) sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR) systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE) without compromising the fill factor (FF) and a low breakdown voltage of approximately 20.5 V. These properties are obtained by employing two custom layers that are designed to provide a full-depletion layer with a high electric field profile. Experimental evaluation of the proposed SPAD reveals an FF of 33.1% and a PDE of 19.4% at 870 nm, which is the laser wavelength of our LIDAR system. The dark count rate (DCR) measurements shows that DCR levels of the proposed SPAD have a small effect on the ranging performance, even if the worst DCR (12.7 kcps) SPAD among the test samples is used. Furthermore, with an eye toward vehicle installations, the DCR is measured over a wide temperature range of 25-132 °C. The ranging experiment demonstrates that target distances are successfully measured in the distance range of 50-180 cm.

  18. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification

    Science.gov (United States)

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Objective. Brain–computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. Approach. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. Main results. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. Significance. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  19. Development of a NIR-based blend uniformity method for a drug product containing multiple structurally similar actives by using the quality by design principles.

    Science.gov (United States)

    Lin, Yiqing; Li, Weiyong; Xu, Jin; Boulas, Pierre

    2015-07-05

    The aim of this study is to develop an at-line near infrared (NIR) method for the rapid and simultaneous determination of four structurally similar active pharmaceutical ingredients (APIs) in powder blends intended for the manufacturing of tablets. Two of the four APIs in the formula are present in relatively small amounts, one at 0.95% and the other at 0.57%. Such small amounts in addition to the similarity in structures add significant complexity to the blend uniformity analysis. The NIR method is developed using spectra from six laboratory-created calibration samples augmented by a small set of spectra from a large-scale blending sample. Applying the quality by design (QbD) principles, the calibration design included concentration variations of the four APIs and a main excipient, microcrystalline cellulose. A bench-top FT-NIR instrument was used to acquire the spectra. The obtained NIR spectra were analyzed by applying principal component analysis (PCA) before calibration model development. Score patterns from the PCA were analyzed to reveal relationship between latent variables and concentration variations of the APIs. In calibration model development, both PLS-1 and PLS-2 models were created and evaluated for their effectiveness in predicting API concentrations in the blending samples. The final NIR method shows satisfactory specificity and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. 801.7 Section 801.7 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.7 Reference...

  1. NIR annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The fourth annual report of the Niedersaechsisches Institut fuer Radiooekologie (NIR) is intended to describe the scientific work of the institute and its members in 1987. The central part of this publication are the fourteen reports on scientific activities, to be divided into four large categories: - Behaviour of tritium in the atmosphere and the soil - on this, important new knowledge was gained in 1987 in an experiment in Canada on the release of this substance; - Investigations in the radioecology of iodine 129, the dependence of its mobility in the soil on humus substances and microorganisms, and its enrichment in the human thyroid gland; - Establishment of transfer factors in the food chain for fission products like cesium 137, cesium 134 and strontium 90 - this being a field where exact knowledge has regained great importance after the accident at Chernobyl; - Aerosol-physical investigations: on the one hand, to obtain data on the propagation of nutrient aerosols and aerosols carrying harmful substances in areas with vegetation, and on the other hand to measure 'snow-out' and 'fog-out' coefficients. To this are added a number of papers on the stability of the decontamination substance for cesium 137 - ammonium-iron-hexacyanoferrate (AIHCF) - in the soil, on the translocation of cesium in apple-trees, and on the improvement of the analytics for uranium and plutonium in environmental specimens. (orig./MG) [de

  2. A Proof of Concept Study of Function-based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared To Typically-Developing Controls

    Directory of Open Access Journals (Sweden)

    Guifang eFu

    2016-06-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a neuroimaging techonology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100ms increments. Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without specific language impairment wore two, 3*5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. Functional data analysis was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular general linear model, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the right inferior frontal cortex and left inferior posterior parietal cortex brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction brain region. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the

  3. Thinking social sciences from Latin America at the epochal change

    Directory of Open Access Journals (Sweden)

    Jaime Antonio Preciado Coronado

    2016-07-01

    Full Text Available From the legacy of an original disciplinary approach, as the Dependence theory and its Marxian critics, or the neo-structural economic theory founded by The Economic Commission for Latin America (ECLA, the Latin-American social sciences deny the Anglo-European centered approaches, in the way of reaffirming its own critical thinking, including the neo-colonial practices. The challenge for this critical thinking is to be, simultaneously, cosmopolitan and Latin American’s one. In this process, the Latin-American social thinking is regaining its own originality and its vigorous proposals, thanks to a rich south-south dialogue, that implies a global character of its reflections and the questioning of its universal references. Although neither classical nor western Marxism are hegemonic within critical theory, the (neo Marxism enriched with criticism of the coloniality of power, the theory of World-System, critical geopolitics and political ecology recover the field of critical theory in key founder of an epochal thinking time. Epistemological debates with post-structuralism and postmodern approaches configure various recent developments in critical theory

  4. Chromosome aberrations in human lymphocytes after irradiation with NIRS-cyclotron fast neutrons in vitro

    International Nuclear Information System (INIS)

    Muramatsu, Susumu; Maruyama, Takashi

    1977-01-01

    The dose-response relationships for inducing chromosome aberrations (dicentrics) in human lymphocytes were studied by whole-blood microculture following in vitro exposures at various doses either 200 kVp x-rays or NIRS-cyclotron fast neutrons. The yields of dicentrics induced were dependent on the exposure dose of two types of radiations between 48 to 384 rad and 25 to 400 rad by x-rays and fast neutrons, respectively. The dicentrics yields gave the best fit to the linear quadratic function Y=αD + βD 2 ; namely Y sub(X)=3.66 x 10 -4 D + 8.01 x 10 -6 D 2 for x-rays and Y sub(N)=28.90 x 10 -4 D + 4.04 x 10 -6 D 2 for fast neutrons. The RBE value of NIRS-cyclotron fast neutrons versus 200 kVP x-rays decreased with increasing neutron doses, for example from 2.3 at 50 rad to 1.2 at doses up to 300 rad. (auth.)

  5. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  6. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  7. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles

    Science.gov (United States)

    Yuan, Youyong; Min, Yuanzeng; Hu, Qinglian; Xing, Bengang; Liu, Bin

    2014-09-01

    The design of nanoplatforms with target recognition and near-infrared (NIR) laser photoregulated chemo- and photodynamic therapy is highly desirable but remains challenging. In this work, we have developed such a system by taking advantage of a conjugated polyelectrolyte (CPE)-drug conjugate and upconversion nanoparticles (UCNPs). The poly(ethylene glycol) (PEG) grafted CPE not only serves as a polymer matrix for UCNP encapsulation, but also as a fluorescent imaging agent, a photosensitizer as well as a carrier for chemotherapeutic drug doxorubicin (DOX) through a UV-cleavable ortho-nitrobenzyl (NB) linker. Upon 980 nm laser irradiation, the UCNPs emit UV and visible light. The up-converted UV light is utilized for controlled drug release through the photocleavage of the ortho-nitrobenzyl linker, while the up-converted visible light is used to initiate the polymer photosensitizer to produce reactive oxygen species (ROS) for photodynamic therapy. The NIR photo-regulated UCNP@CPE-DOX showed high efficiency of ROS generation and controlled drug release in cancer cells upon single laser irradiation. In addition, the combination therapy showed enhanced inhibition of U87-MG cell growth as compared to sole treatments. As two light sources with different wavelengths are always needed for traditional photodynamic therapy and photoregulated drug release, the adoption of UCNPs as an NIR light switch is highly beneficial to combined chemo- and photodynamic therapy with enhanced therapeutic effects.

  8. RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study

    International Nuclear Information System (INIS)

    Zhang, Y; Sun, J W; Rolfe, P

    2012-01-01

    The non-invasive measurement of cerebral functional haemodynamics using near-infrared spectroscopy (NIRS) instruments is often affected by physiological interference. The suppression of this interference is crucial for reliable recovery of brain activity measurements because it can significantly affect the signal quality. In this study, we present a recursive least-squares (RLS) algorithm for adaptive filtering to reduce the magnitude of the physiological interference component. To evaluate it, we implemented Monte Carlo simulations based on a five-layer slab model of a human adult head with a multidistance source–detector arrangement, of a short pair and a long pair, for NIRS measurement. We derived measurements by adopting different interoptode distances, which is relevant to the process of optimizing the NIRS probe configuration. Both RLS and least mean squares (LMS) algorithms were used to attempt the removal of physiological interference. The results suggest that the RLS algorithm is more capable of minimizing the effect of physiological interference due to its advantages of faster convergence and smaller mean squared error (MSE). The influence of superficial layer thickness on the performance of the RLS algorithm was also investigated. We found that the near-detector position is an important variable in minimizing the MSE and a short source–detector separation less than 9 mm is robust to superficial layer thickness variation. (paper)

  9. Optimization of NIR Spectral Data Management for Quality Control of Grape Bunches during On-Vine Ripening

    Directory of Open Access Journals (Sweden)

    María-Teresa Sánchez

    2011-06-01

    Full Text Available NIR spectroscopy was used as a non-destructive technique for the assessment of chemical changes in the main internal quality properties of wine grapes (Vitis vinifera L. during on-vine ripening and at harvest. A total of 363 samples from 25 white and red grape varieties were used to construct quality-prediction models based on reference data and on NIR spectral data obtained using a commercially-available diode-array spectrophotometer (380–1,700 nm. The feasibility of testing bunches of intact grapes was investigated and compared with the more traditional must-based method. Two regression approaches (MPLS and LOCAL algorithms were tested for the quantification of changes in soluble solid content (SSC, reducing sugar content, pH-value, titratable acidity, tartaric acid, malic acid and potassium content. Cross-validation results indicated that NIRS technology provided excellent precision for sugar-related parameters (r2 = 0.94 for SSC and reducing sugar content and good precision for acidity-related parameters (r2 ranging between 0.73 and 0.87 for the bunch-analysis mode assayed using MPLS regression. At validation level, comparison of LOCAL and MPLS algorithms showed that the non-linear strategy improved the predictive capacity of the models for all study parameters, with particularly good results for acidity-related parameters and potassium content.

  10. Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR

    Science.gov (United States)

    Taylor, Andrew S.; Batishchev, Oleg V.

    2017-11-01

    We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.

  11. Optofluidic interferometry chip designs of differential NIR absorbance based sensors for identification and quantification of electrolytes

    NARCIS (Netherlands)

    Steen, Gerrit W.; Wexler, Adam D.; Offerhaus, Herman L.

    2014-01-01

    Design and optimization of integrated photonic NIR absorbance based sensors for identification and quantification of aqueous electrolytes was performed by simulation in MATLAB and Optodesigner. Ten designs are presented and compared for suitability.

  12. Efficient and selective singlet oxygen sensitized NIR luminescence of a neodymium(III) complex and its application in biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wai-Sum [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Li, Hongguang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Law, Ga-Lai, E-mail: ga-lai.law@polyu.edu.hk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Wong, Wing-Tak, E-mail: bcwtwong@polyu.edu.hk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Wong, Ka-Leung, E-mail: klwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-01-15

    A responsive neodymium NIR emission ({sup 4}F{sub 3/2}→{sup 4}I{sub 11/2,} {sub 9/2}) was recorded upon binding with singlet oxygen (K{sub B}=1.79×10{sup 6} M{sup −1}) via the anthracene moiety. The motif ytterbium analog served as a negative control with no significant NIR enhancement/quenching with the addition of the same amount of singlet oxygen. Our complex was also found to react with {sup 1}O{sub 2} generated by a known photosensitizer TMPyP inside HeLa cells without inducing cell death and display no significant cytotoxicity. - Highlights: • A turn-on NIR-emissive {sup 1}O{sub 2} probe has been synthesized for potential biological applications. • It has a binding constant of 1.9×10{sup 6} M{sup −1} and the emission intensity has a 5-fold increase upon binding. • The probe was also found to quench singlet oxygen in vitro generated by known photosensitizer TMPyP.

  13. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Baumjohann, W.; Nagai, T.

    1993-01-01

    The authors report on an analysis of pressure and magnetic configuration within the plasma sheet following the initiation of substorm events. They have constructed this time dependent picture by using an epoch analysis of data from the AMPTE/IRM spacecraft. This analysis procedure can be used to construct a unified picture of events, provided they are reproducible, from a statistical analysis of a series of point measurements. The authors first determine the time dependent pressure changes in the plasma sheet. With some simplifying assumptions they then determine the z dependence of the pressure profiles, and from this distribution determine how field lines in the plasma sheet map to the neutral sheet

  14. Synthesis, characterization and optical properties of a high NIR reflecting yellow inorganic pigment: Mo6+ doped Y2Ce2O7 as a cool colorant

    International Nuclear Information System (INIS)

    Vishnu, V.S.; Reddy, M.L.P.

    2010-01-01

    Full text: Pigments possessing the ability to confer high solar reflectance have received considerable attention in recent years. The inorganic class of NIR reflective pigments are mainly metal oxides and are primarily employed in two applications: (i) visual camouflage and (ii) reducing heat build up. More than half of the solar radiation consists of near-infrared radiation (52%), the remaining being 43% visible light and 5% ultraviolet radiation. Over heating due to solar radiation negatively affects comfort in the built environment and contributes substantially to electrical consumption for air conditioning and release of green house gases. A pigment which has strong reflections in the NIR region (780-2500 nm) can be referred to as a 'cool' pigment. However, most of the NIR reflective inorganic pigments particularly yellow (eg. cadmium yellow, lead chromate, chrome titanate yellow etc.) contain toxic metals and hence their consumption is being limited. Replacing them with environmentally benign cool pigments that absorb less NIR radiation can yield coatings similar in color, but with higher NIR reflectance. A new class of yellow inorganic pigments possessing high near-infrared reflectance (above 90% at 1100 nm), having the general formula Y 2 Ce 2-x Mo x O 7+δ (x ranges from 0 to 0.5) were synthesized by traditional solid state route. The synthesized samples were characterized by powder X-ray diffraction, Scanning Electron Microscopy, UV-Vis-NIR Diffuse Reflectance Spectroscopy, CIE 1976Lab color scales and TG/DTA analysis. XRD analysis reveals the existence of a major cubic fluorite phase for the pigment samples. The diffuse reflectance analysis of the pigments shows a significant shift in the absorption edge towards higher wavelengths (from 410 nm to 506 nm) for the molybdenum doped samples in comparison with the parent compound. The band gap of the designed pigments changes from 3.01 to 2.44 eV and displays colors varying from ivory white to yellow. The

  15. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay].

    Science.gov (United States)

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi

    2014-10-01

    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  16. Classification of real farm conditions Iberian pigs according to the feeding regime with multivariate models developed by using fatty acids composition or NIR spectral data

    Directory of Open Access Journals (Sweden)

    De Pedro, Emiliano

    2009-07-01

    Full Text Available Multivariate Classification models to classify real farm conditions Iberian pigs, according to the feeding regime were developed by using fatty acids composition or NIR spectral data of liquid fat samples. A total of 121 subcutaneous fat samples were taken from Iberian pigs carcasses belonging to 5 batches reared under different feeding systems. Once the liquid sample was extracted from each subcutaneous fat sample, it was determined the percentage of 11 fatty acids (C14:0, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C20:1. At the same time, Near Infrared (NIR spectrum of each liquid sample was obtained. Linear Discriminant Analysis (LDA was considered as pattern recognition method to develop the multivariate models. Classification errors of the LDA models generated by using NIR spectral data were 0.0% and 1.7% for the model generated by using fatty acids composition. Results confirm the possibility to discriminate Iberian pig liquid samples from animals reared under different feeding regimes on real farm conditions by using NIR spectral data or fatty acids composition. Classification error obtained using models generated from NIR spectral data were lower than those obtained in models based on fatty acids composition.Se han desarrollado modelos multivariantes, generados a partir de la composición en ácidos grasos o datos espectrales NIR, para clasificar según el régimen alimenticio cerdos Ibéricos producidos bajo condiciones no experimentales. Se han empleado 121 muestras de grasa líquida procedentes de grasa subcutánea de canales de cerdos Ibéricos pertenecientes a 5 partidas con regímenes alimenticios diferentes. A dichas muestras líquidas se les determinó el contenido en 11 ácidos grasos (C14:0, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C20:1 y se obtuvo su espectro NIR. Los modelos de clasificación multivariantes se desarrollaron mediante Análisis Discriminante Lineal. Dichos

  17. The International Commission of Non-Ionizing Radiation Protection: meeting the challenges in NIR protection

    Energy Technology Data Exchange (ETDEWEB)

    McKinlay, A [National Radiological Protection Board, Didcot (United Kingdom). ICNIRP

    2002-07-01

    This paper summarises ICNIRP's brief history from its beginnings as a committee of the International Radiation Protection Association (IRPA) to the present as an independent International Commission, and examines how it has structured itself to meet the challenges in non-ionising radiation (NIR) protection now and in the future.

  18. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.

    Science.gov (United States)

    von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert

    2017-06-01

    For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).

  19. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    2016-02-01

    Full Text Available Plant phenotyping is a very important topic in agriculture. In this context, data mining strategies may be applied to agricultural data retrieved with new non-invasive devices, with the aim of yielding useful, reliable and objective information. This work presents some applications of machine learning algorithms along with in-field acquired NIR spectral data for plant phenotyping in viticulture, specifically for grapevine variety discrimination and assessment of plant water status. Support vector machine (SVM, rotation forests and M5 trees models were built using NIR spectra acquired in the field directly on the adaxial side of grapevine leaves, with a non-invasive portable spectrophotometer working in the spectral range between 1600 and 2400 nm. The ν-SVM algorithm was used for the training of a model for varietal classification. The classifiers’ performance for the 10 varieties reached, for cross- and external validations, the 88.7% and 92.5% marks, respectively. For water stress assessment, the models developed using the absorbance spectra of six varieties yielded the same determination coefficient for both cross- and external validations (R2 = 0.84; RMSEs of 0.164 and 0.165 MPa, respectively. Furthermore, a variety-specific model trained only with samples of Tempranillo from two different vintages yielded R2 = 0.76 and RMSE of 0.16 MPa for cross-validation and R2 = 0.79, RMSE of 0.17 MPa for external validation. These results show the power of the combined use of data mining and non-invasive NIR sensing for in-field grapevine phenotyping and their usefulness for the wine industry and precision viticulture implementations.

  20. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    Science.gov (United States)

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  1. FIVE NEW TRANSIT EPOCHS OF THE EXOPLANET OGLE-TR-111b

    International Nuclear Information System (INIS)

    Hoyer, S.; Rojo, P.; Lopez-Morales, M.; DIaz, R. F.; Chambers, J.; Minniti, D.

    2011-01-01

    We report five new transit epochs of the extrasolar planet OGLE-TR-111b, observed in the v-HIGH and Bessell I bands with the FORS1 and FORS2 at the ESO Very Large Telescope between 2008 April and May. The new transits have been combined with all previously published transit data for this planet to provide a new transit timing variations (TTVs) analysis of its orbit. We find no TTVs with amplitudes larger than 1.5 minutes over a four-year observation time baseline, in agreement with the recent result by Adams et al. Dynamical simulations fully exclude the presence of additional planets in the system with masses greater than 1.3, 0.4, and 0.5 M + at the 3:2, 1:2, and 2:1 resonances, respectively. We also place an upper limit of about 30 M + on the mass of potential second planets in the region between the 3:2 and 1:2 mean-motion resonances.

  2. Motion tracking and electromyography assist the removal of mirror hand contributions to fNIRS images acquired during a finger tapping task performed by children with cerebral palsy

    Science.gov (United States)

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2013-03-01

    Functional neurological imaging has been shown to be valuable in evaluating brain plasticity in children with cerebral palsy (CP). In recent studies it has been demonstrated that functional near-infrared spectroscopy (fNIRS) is a viable and sensitive method for imaging motor cortex activities in children with CP. However, during unilateral finger tapping tasks children with CP often exhibit mirror motions (unintended motions in the non-tapping hand), and current fNIRS image formation techniques do not account for this. Therefore, the resulting fNIRS images contain activation from intended and unintended motions. In this study, cortical activity was mapped with fNIRS on four children with CP and five controls during a finger tapping task. Finger motion and arm muscle activation were concurrently measured using motion tracking cameras and electromyography (EMG). Subject-specific regressors were created from motion capture and EMG data and used in a general linear model (GLM) analysis in an attempt to create fNIRS images representative of different motions. The analysis provided an fNIRS image representing activation due to motion and muscle activity for each hand. This method could prove to be valuable in monitoring brain plasticity in children with CP by providing more consistent images between measurements. Additionally, muscle effort versus cortical effort was compared between control and CP subjects. More cortical effort was required to produce similar muscle effort in children with CP. It is possible this metric could be a valuable diagnostic tool in determining response to treatment.

  3. Development of NIR calibration models to assess year-to-year variation in total non-structural carbohydrates in grasses using PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, René; Jensen, Anne Mette Dahl

    2012-01-01

    Near-infrared (NIR) spectroscopy was used in combination with chemometrics to quantify total nonstructural carbohydrates (TNC) in grass samples in order to overcome year-to-year variation. A total of 1103 above-ground plant and root samples were collected from different field and pot experiments...... and with various experimental designs in the period from 2001 to 2005. A calibration model was developed using partial least squares regression (PLSR). The calibration model on a large data set spanning five years demonstrated that quantification of TNC using NIR spectroscopy was possible with an acceptable low...

  4. The critical role of NIR spectroscopy and statistical process control (SPC) strategy towards captopril tablets (25 mg) manufacturing process understanding: a case study.

    Science.gov (United States)

    Curtivo, Cátia Panizzon Dal; Funghi, Nathália Bitencourt; Tavares, Guilherme Diniz; Barbosa, Sávio Fujita; Löbenberg, Raimar; Bou-Chacra, Nádia Araci

    2015-05-01

    In this work, near-infrared spectroscopy (NIRS) method was used to evaluate the uniformity of dosage units of three captopril 25 mg tablets commercial batches. The performance of the calibration method was assessed by determination of Q value (0.9986), standard error of estimation (C-set SEE = 1.956), standard error of prediction (V-set SEP = 2.076) as well as the consistency (106.1%). These results indicated the adequacy of the selected model. The method validation revealed the agreement of the reference high pressure liquid chromatography (HPLC) and NIRS methods. The process evaluation using the NIRS method showed that the variability was due to common causes and delivered predictable results consistently. Cp and Cpk values were, respectively, 2.05 and 1.80. These results revealed a non-centered process in relation to the average target (100% w/w), in the specified range (85-115%). The probability of failure was 21:100 million tablets of captopril. The NIRS in combination with the method of multivariate calibration, partial least squares (PLS) regression, allowed the development of methodology for the uniformity of dosage units evaluation of captopril tablets 25 mg. The statistical process control strategy associated with NIRS method as PAT played a critical role in understanding of the sources and degree of variation and its impact on the process. This approach led towards a better process understanding and provided the sound scientific basis for its continuous improvement.

  5. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique : a review

    Directory of Open Access Journals (Sweden)

    Li eXiao

    2014-08-01

    Full Text Available Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR and pyrolysis-molecular beam mass spectrometry (Py-mbms are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis and for building regression models (partial least square regression between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated

  6. Error propagation of partial least squares for parameters optimization in NIR modeling

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  7. Error propagation of partial least squares for parameters optimization in NIR modeling.

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  8. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems

    Directory of Open Access Journals (Sweden)

    Isamu Takai

    2016-03-01

    Full Text Available A single-photon avalanche diode (SPAD with enhanced near-infrared (NIR sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE without compromising the fill factor (FF and a low breakdown voltage of approximately 20.5 V. These properties are obtained by employing two custom layers that are designed to provide a full-depletion layer with a high electric field profile. Experimental evaluation of the proposed SPAD reveals an FF of 33.1% and a PDE of 19.4% at 870 nm, which is the laser wavelength of our LIDAR system. The dark count rate (DCR measurements shows that DCR levels of the proposed SPAD have a small effect on the ranging performance, even if the worst DCR (12.7 kcps SPAD among the test samples is used. Furthermore, with an eye toward vehicle installations, the DCR is measured over a wide temperature range of 25–132 °C. The ranging experiment demonstrates that target distances are successfully measured in the distance range of 50–180 cm.

  9. Ability of combined Near-Infrared Spectroscopy-Intravascular Ultrasound (NIRS-IVUS) imaging to detect lipid core plaques and estimate cap thickness in human autopsy coronary arteries

    Science.gov (United States)

    Grainger, S. J.; Su, J. L.; Greiner, C. A.; Saybolt, M. D.; Wilensky, R. L.; Raichlen, J. S.; Madden, S. P.; Muller, J. E.

    2016-03-01

    The ability to determine plaque cap thickness during catheterization is thought to be of clinical importance for plaque vulnerability assessment. While methods to compositionally assess cap integrity are in development, a method utilizing currently available tools to measure cap thickness is highly desirable. NIRS-IVUS is a commercially available dual imaging method in current clinical use that may provide cap thickness information to the skilled reader; however, this is as yet unproven. Ten autopsy hearts (n=15 arterial segments) were scanned with the multimodality NIRS-IVUS catheter (TVC Imaging System, Infraredx, Inc.) to identify lipid core plaques (LCPs). Skilled readers made predictions of cap thickness over regions of chemogram LCP, using NIRS-IVUS. Artery segments were perfusion fixed and cut into 2 mm serial blocks. Thin sections stained with Movat's pentachrome were analyzed for cap thickness at LCP regions. Block level predictions were compared to histology, as classified by a blinded pathologist. Within 15 arterial segments, 117 chemogram blocks were found by NIRS to contain LCP. Utilizing NIRSIVUS, chemogram blocks were divided into 4 categories: thin capped fibroatheromas (TCFA), thick capped fibroatheromas (ThCFA), pathological intimal thickening (PIT)/lipid pool (no defined cap), and calcified/unable to determine cap thickness. Sensitivities/specificities for thin cap fibroatheromas, thick cap fibroatheromas, and PIT/lipid pools were 0.54/0.99, 0.68/0.88, and 0.80/0.97, respectively. The overall accuracy rate was 70.1% (including 22 blocks unable to predict, p = 0.075). In the absence of calcium, NIRS-IVUS imaging provided predictions of cap thickness over LCP with moderate accuracy. The ability of this multimodality imaging method to identify vulnerable coronary plaques requires further assessment in both larger autopsy studies, and clinical studies in patients undergoing NIRS-IVUS imaging.

  10. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device.

    Science.gov (United States)

    Nieuwhof, Freek; Reelick, Miriam F; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Olde Rikkert, Marcel G M; Bloem, Bastiaan R; Muthalib, Makii; Claassen, Jurgen A H R

    2016-01-01

    Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O 2 Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O 2 Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual

  11. Mössbauer spectroscopy: epoch-making biological and chemical applications

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Volfová, Lenka

    2017-01-01

    Roč. 89, č. 4 (2017), s. 461-470 ISSN 0033-4545. [International Conference Solid State Chemistry 2016 /12./. Prague, 18.09.2016-23.09.2016] R&D Projects: GA MŠk(CZ) LO1409; GA MŠk(CZ) LM2015088 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:61388980 ; RVO:68378271 Keywords : biological tissue * boron chemistry * Fe2+ and Fe3+ * Mössbauer spectrometry * vivianite Subject RIV: CA - Inorganic Chemistry ; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Inorganic and nuclear chemistry ; Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) (FZU-D) Impact factor: 2.626, year: 2016

  12. Prediction of purine derivatives, creatinine and total nitrogen concentrations in urine by FT-Near-lnfrared Reflectance spectroscopy (FT-NIR)

    International Nuclear Information System (INIS)

    Susmel, P.; Piani, B.; Toso, B.; Stefanon, B.

    2004-01-01

    The objective of this study was to provide an alternative method for the determination of purine derivatives (PD, which include allantoin, uric acid, hypoxanthine and xanthine), creatinine and total nitrogen (N) concentrations in urine. About 180 urine samples from cattle, buffaloes and rabbit were collected and analyzed for PD by HPLC, creatinine by spectrophotometry and N by Kjeldahl method. The urine samples were then analyzed by Fourier Transformed Near Infrared Reflectance Spectroscopy (FT-NIR) to find conformity between this technique and the HPLC and colorimetric methods. FT-NIR can predict allantoin, uric acid, hypoxanthine, xanthine, creatinine, total N and sum of N in both allantoin and uric acid with a satisfactory level of accuracy: the determination coefficient (r 2 ) of validation ranged from 0.888% for uric acid to 0.982% for total N. The coefficients of determination for allantoin, creatinine and sum of N in both allantoin and uric acid were 0.92, 0.894 and 0.90%, respectively. Hypoxanthine and xanthine in urine samples were not detectable by NIRS, probably because of their low concentrations, and therefore they were not considered for instrumental calibration. (author)

  13. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    Science.gov (United States)

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  14. A portable, multi-channel fNIRS system for prefrontal cortex: Preliminary study on neurofeedback and imagery tasks (Conference Presentation)

    Science.gov (United States)

    Paik, Seung-ho; Kim, Beop-Min

    2016-03-01

    fNIRS is a neuroimaging technique which uses near-infrared light source in the 700-1000 nm range and enables to detect hemodynamic changes (i.e., oxygenated hemoglobin, deoxygenated hemoglobin, blood volume) as a response to various brain processes. In this study, we developed a new, portable, prefrontal fNIRS system which has 12 light sources, 15 detectors and 108 channels with a sampling rate of 2 Hz. The wavelengths of light source are 780nm and 850nm. ATxmega128A1, 8bit of Micro controller unit (MCU) with 200~4095 resolution along with MatLab data acquisition algorithm was utilized. We performed a simple left and right finger movement imagery tasks which produced statistically significant changes of oxyhemoglobin concentrations in the dorsolateral prefrontal cortex (dlPFC) areas. We observed that the accuracy of the imagery tasks can be improved by carrying out neurofeedback training, during which a real-time feedback signal is provided to a participating subject. The effects of the neurofeedback training was later visually verified using the 3D NIRfast imaging. Our portable fNIRS system may be useful in non-constraint environment for various clinical diagnoses.

  15. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    Science.gov (United States)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  16. Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia.

    Science.gov (United States)

    Kosmowski, Frédéric; Worku, Tigist

    2018-01-01

    Crop cultivar identification is fundamental for agricultural research, industry and policies. This paper investigates the feasibility of using visible/near infrared hyperspectral data collected with a miniaturized NIR spectrometer to identify cultivars of barley, chickpea and sorghum in the context of Ethiopia. A total of 2650 grains of barley, chickpea and sorghum cultivars were scanned using the SCIO, a recently released miniaturized NIR spectrometer. The effects of data preprocessing techniques and choosing a machine learning algorithm on distinguishing cultivars are further evaluated. Predictive multiclass models of 24 barley cultivars, 19 chickpea cultivars and 10 sorghum cultivars delivered an accuracy of 89%, 96% and 87% on hold-out sample. The Support Vector Machine (SVM) and Partial least squares discriminant analysis (PLS-DA) algorithms consistently outperformed other algorithms. Several cultivars, believed to be widely adopted in Ethiopia, were identified with perfect accuracy. These results advance the discussion on cultivar identification survey methods by demonstrating that miniaturized NIR spectrometers represent a low-cost, rapid and viable tool. We further discuss the potential utility of the method for adoption surveys, field-scale agronomic studies, socio-economic impact assessments and value chain quality control. Finally, we provide a free tool for R to easily carry out crop cultivar identification and measure uncertainty based on spectral data.

  17. Functional Connectivity Analysis of NIRS Data under Rubber Hand Illusion to Find a Biomarker of Sense of Ownership.

    Science.gov (United States)

    Arizono, Naoki; Ohmura, Yuji; Yano, Shiro; Kondo, Toshiyuki

    2016-01-01

    The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.

  18. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  19. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  20. Up-conversion nanoparticles sensitized inverse opal photonic crystals enable efficient water purification under NIR irradiation

    Science.gov (United States)

    Zhang, Yuanyuan; Wang, Lili; Ma, Xiumei; Ren, Junfeng; Sun, Qinxing; Shi, Yongsheng; Li, Lin; Shi, Jinsheng

    2018-03-01

    A novel porous monolayer inverse opal (IO) structure was prepared by a simple sol-gel method combined with a self-assembly PS photonic crystal (PC) as template. By prolonging deposition time of PS spheres, three-dimensional multilayer TiO2 IOPC was also fabricated. Up-conversion nanoparticles (UCNPs) were selected to sensitize TiO2 IOPCs. Photocatalytic activity of as-prepared materials was investigated by disinfection of bacteria and organic pollutant degradation. Under NIR light irradiation, a large improvement in bacterial inactivation and photodegradation efficiency could be seen for NYF/TiO2 composites in comparison with other samples. As for monolayer NYF/TiO2, water disinfection of 100% inactivation of bacteria is realized within 11 h and kinetic constant of RhB degradation is 0.133 h-1, which is about 10 times higher than that of pure TiO2 IOPCs. Reasons of enhanced photocatalytic activity were systematically investigated and a possible mechanism for NIR-driven photocatalysis was reasonably proposed.

  1. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Byun, Do-Young; Kang, Sincheol; Kim, Soon-Wook; Kino, Motoki [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Trippe, Sascha [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Miyazaki, Atsushi [Japan Space Forum, 3-2-1, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 Japan (Japan); Kim, Jeong-Sook, E-mail: sslee@kasi.re.kr [National Astronomical Observatory of Japan, 2211 Osawa, Mitaka, Tokyo 1818588 (Japan)

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).

  2. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  3. Gravitationally neutral dark matter–dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    International Nuclear Information System (INIS)

    Gribov, I A; Trigger, S A

    2016-01-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” ( M + gr and M -gr ), which have the same positive inertial mass M in = | M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M +gr -M -gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M ±gr superclusters without Big Rip. (paper)

  4. Sequential coating upconversion NaYF{sub 4}:Yb,Tm nanocrystals with SiO{sub 2} and ZnO layers for NIR-driven photocatalytic and antibacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Tou, Meijie; Luo, Zhenguo; Bai, Song; Liu, Fangying; Chai, Qunxia; Li, Sheng; Li, Zhengquan, E-mail: zqli@zjnu.edu.cn

    2017-01-01

    ZnO is one of the most promising materials for both photocatalytic and antibacterial applications, but its wide bandgap requires the excitation of UV light which limits their applications under visible and NIR bands. Herein, we demonstrate a facile approach to synthesize core-shell-shell hybrid nanoparticles consisting of hexagonal NaYF{sub 4}:Yb,Tm, amorphous SiO{sub 2} and wurtzite ZnO. The upconversion nanocrystals are used as the core seeds and sequentially coated with an insulting shell and a semiconductor layer. Such hybrid nanoparticles can efficiently utilize the NIR light through the upconverting process, and display notable photocatalytic performance and antibacterial activity under NIR irradiation. The developed NaYF{sub 4}:Yb,Tm@SiO{sub 2}@ZnO nanoparticles are characterized with TEM, XRD, EDS, XPS and PL spectra, and their working mechanism is also elucidated. - Highlights: • Core-shell NaYF{sub 4}:Yb,Tm@SiO{sub 2}@TiO{sub 2} NPs were synthesized via a sequential coating method. • Hybrid NaYF{sub 4}:Yb,Tm@SiO{sub 2}@TiO{sub 2} NPs show NIR-light enhanced photocatalytic activity. • NIR-driven antibacterial performance has been realized with NaYF{sub 4}:Yb,Tm@SiO{sub 2}@TiO{sub 2} NPs. • Working mechanism of the hybrid photocatalysts as antibacterial agents was proposed.

  5. Elucidation of the role of biological factors and device design in cerebral NIRS using an in vivo hematoma model based on high-intensity focused ultrasound

    Science.gov (United States)

    Wang, Jianting; Huang, Stanley; Myers, Matthew; Chen, Yu; Welle, Cristin; Pfefer, Joshua

    2016-03-01

    Near-Infrared Spectroscopy (NIRS) is an emerging medical countermeasure for rapid, field detection of hematomas caused by traumatic brain injury (TBI). Bench and animal tests to determine NIRS sensitivity and specificity are needed. However, current animal models involving non-invasively induced, localized neural damage are limited. We investigated an in vivo murine hematoma model in which cerebral hemorrhage was induced noninvasively by high-intensity focused ultrasound (HIFU) with calibrated positioning and parameters. To characterize the morphology of induced hematomas, we used skull-intact histological evaluation. A multi-wavelength fiber-optic NIRS system with three source-detector separation distances was used to detect hematoma A 1.1 MHz transducer produced consistent small-to-medium hematoma localized to a single hemisphere, along with bruising of the scalp, with a low mortality rate. A 220 kHz transducer produced larger, more diffuse hematomas, with higher variability in size and a correspondingly higher mortality rate. No skin bruising or blood accumulation between the skin and skull was observed following injury application with the 220 kHz transducer. Histological analysis showed higher sensitivity for larger hematomas (>4x4 mm2). NIRS optical density change after HIFU was able to detect all hematomas, with sensitivity dependent on wavelength and separation distance. While improvements in methods for validating cerebral blood distribution are needed, the HIFU hematoma model provided useful insights that will inform development of biologically relevant, performance test methods for cerebral NIRS systems.

  6. A beam energy measurement system at NIRS-930 cyclotron

    International Nuclear Information System (INIS)

    Hojo, S.; Honma, T.; Sakamoto, Y.; Miyahara, N.; Okada, T.; Komatsu, K.; Tsuji, N.; Yamada, S.

    2005-01-01

    A beam energy measurement system employing a set of capacitive probes has been developed at NIRS-930 cyclotron. Principle of the measurement is applying a modified-TOF method, so that the two proves are installed at one of the straight section in the beam transport line. Usually they are separated about 5.8 m, which is equivalent to the almost final path length of the beam extracted in the cyclotron. In the measurement, two beam signals are superimposed by adjusting a position of the downstream-probe along the beam direction with watching an oscilloscope screen roughly. In order to determine the beam energy accurately the signals are processed by MCA with suitable electric module. (author)

  7. Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system.

    Science.gov (United States)

    Safaie, J; Grebe, R; Abrishami Moghaddam, H; Wallois, F

    2013-10-01

    Interactions between neuronal electrical activity and regional changes in microcirculation are assumed to play a major role in physiological brain activity and the development of pathological disorders, but have been poorly elucidated to date. There is a need for advanced diagnostic tools to investigate the relationships between these two physiological processes. To meet these needs, a wireless wearable system has been developed, which combines a near infrared spectroscopy (NIRS) system using light emitting diodes (LEDs) as a light source and silicon photodiodes as a detector with an integrated electroencephalography (EEG) system. The main advantages over currently available devices are miniaturization and integration of a real-time electrical and hemodynamic activity monitor into one wearable device. For patient distributed monitoring and creating a body-area network, up to seven same devices can be connected to a single base station (PC) synchronously. Each node presents enhanced portability due to the wireless communication and highly integrated components resulting in a small, lightweight signal acquisition device. Further progress includes the individual control of LEDs output to automatically or interactively adjust emitted light to the actual local situation online, the use of silicon photodiodes with a safe low-voltage power supply, and an integrated three dimensional accelerometer for movement detection for the identification of motion artifacts. The device was tested and validated using our enhanced EEG-NIRS tissue mimicking fluid phantom for sensitivity mapping. Typical somatotopic electrical evoked potential experiments were performed to verify clinical applicability.

  8. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.

    Science.gov (United States)

    Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K

    2013-04-01

    In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.

  9. Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system

    Science.gov (United States)

    Safaie, J.; Grebe, R.; Abrishami Moghaddam, H.; Wallois, F.

    2013-10-01

    Objective. Interactions between neuronal electrical activity and regional changes in microcirculation are assumed to play a major role in physiological brain activity and the development of pathological disorders, but have been poorly elucidated to date. There is a need for advanced diagnostic tools to investigate the relationships between these two physiological processes.Approach. To meet these needs, a wireless wearable system has been developed, which combines a near infrared spectroscopy (NIRS) system using light emitting diodes (LEDs) as a light source and silicon photodiodes as a detector with an integrated electroencephalography (EEG) system. Main results. The main advantages over currently available devices are miniaturization and integration of a real-time electrical and hemodynamic activity monitor into one wearable device. For patient distributed monitoring and creating a body-area network, up to seven same devices can be connected to a single base station (PC) synchronously. Each node presents enhanced portability due to the wireless communication and highly integrated components resulting in a small, lightweight signal acquisition device. Further progress includes the individual control of LEDs output to automatically or interactively adjust emitted light to the actual local situation online, the use of silicon photodiodes with a safe low-voltage power supply, and an integrated three dimensional accelerometer for movement detection for the identification of motion artifacts. Significance. The device was tested and validated using our enhanced EEG-NIRS tissue mimicking fluid phantom for sensitivity mapping. Typical somatotopic electrical evoked potential experiments were performed to verify clinical applicability.

  10. 2003-2004 ACADEMIC TRAINING PROGRAMME: Y. NIR

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING Françoise Benz tel. 73127 academic.training@cern.ch 22, 23, 24, 25 and 26 March LECTURE SERIES From 11:00 to 12:00 hrs Main Auditorium bldg. 500 on 22, 24, 25 and 26 March TH Auditorium bldg 4 on 23 March Neutrinos Y. NIR, Weizmann Institute of Science, Rehovot, Israel The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new physics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. T...

  11. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    Science.gov (United States)

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  12. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    International Nuclear Information System (INIS)

    Picou, Laura; McMann, Casey; Boldor, Dorin; Elzer, Philip H; Enright, Frederick M; Biris, Alexandru S

    2010-01-01

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  13. Search for the NIR counterpart to GRB130807A/SWIFTJ1759.2-2736 in quiescence

    NARCIS (Netherlands)

    Greiss, S.; Steeghs, D.; Jonker, P.G.; Maccarone, T.; Torres, M.A.P.; Heinke, C.; Wijnands, R.

    2013-01-01

    In order to search for the counterpart of the transient source SWIFTJ1759.2-2736 (Atel #5268), we investigated near-infrared (NIR) data of the Galactic Bulge region obtained as part of the VVV survey (Minniti et al. 2010, New Astronomy, Volume 15, 433). The observations took place while the source

  14. Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press.

    Science.gov (United States)

    De Leersnyder, Fien; Peeters, Elisabeth; Djalabi, Hasna; Vanhoorne, Valérie; Van Snick, Bernd; Hong, Ke; Hammond, Stephen; Liu, Angela Yang; Ziemons, Eric; Vervaet, Chris; De Beer, Thomas

    2018-03-20

    A calibration model for in-line API quantification based on near infrared (NIR) spectra collection during tableting in the tablet press feed frame was developed and validated. First, the measurement set-up was optimised and the effect of filling degree of the feed frame on the NIR spectra was investigated. Secondly, a predictive API quantification model was developed and validated by calculating the accuracy profile based on the analysis results of validation experiments. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, the robustness of the API quantification model was evaluated. An NIR probe (SentroPAT FO) was implemented into the feed frame of a rotary tablet press (Modul™ P) to monitor physical mixtures of a model API (sodium saccharine) and excipients with two different API target concentrations: 5 and 20% (w/w). Cutting notches into the paddle wheel fingers did avoid disturbances of the NIR signal caused by the rotating paddle wheel fingers and hence allowed better and more complete feed frame monitoring. The effect of the design of the notched paddle wheel fingers was also investigated and elucidated that straight paddle wheel fingers did cause less variation in NIR signal compared to curved paddle wheel fingers. The filling degree of the feed frame was reflected in the raw NIR spectra. Several different calibration models for the prediction of the API content were developed, based on the use of single spectra or averaged spectra, and using partial least squares (PLS) regression or ratio models. These predictive models were then evaluated and validated by processing physical mixtures with different API concentrations not used in the calibration models (validation set). The β-expectation tolerance intervals were calculated for each model and for each of the validated API concentration levels (β was set at 95%). PLS models showed the best predictive performance. For each examined saccharine

  15. NIRS of body and tissues in growing rabbits fed diets with different fat sources and supplemented with Curcuma longa

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti

    2013-06-01

    Full Text Available A portable Near Infrared Reflectance Spectroscopy (NIRS instrument was applied to 40 growing rabbits to determine body and tissue differences induced by experimental factors. The rabbits were examined at 2 live sites, in 7 warm carcass tissues and in longissimus dorsi muscle samples prepared in ethanol. For this purpose, the method was applied in a bi-factorial experiment concerning the dietary oil source (O (maize vs. palm oil and Curcuma longa (C supplementation (0 and 3 g/kg, respectively. Significant chemical differences emerged for palmitic, oleic and linoleic acids in the longissimus dorsi muscle due to the O factor and for linolenic acid due to the C factor. The NIRS spectra and chemical analyses were elaborated by the Partial Least Squares (PLS method, and the rsquares in cross-validation (R2cv were retained as measure of the unoriented differentiation between the levels of the planned factor for each landmark and fatty acid (FA profile. Multivariate PLS analysis of the FA muscular fat showed that the O factor induced strong differentiation (R2cv: 0.96, while less influence (0.33 was observed for the C factor. The model based on the NIRS radiation of the landmarks clearly shows the O factor effects, not only in the perirenal (0.90 and scapular (0.85 fats, but also in the belly (0.76, liver (0.73 and hind legs (0.72. Whereas the C effects were only expressed in the live animals (ears: 0.66 and abdominal wall: 0.58 and in post-mortem (liver: 0.60. It was concluded that a preliminary NIRS scan of the carcass and of live rabbits can point out the presence of intrinsic experimental effects concerning the lipid metabolism of polyunsaturated FA of the n-6 series (O factor and n-3 series (C factor.

  16. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Science.gov (United States)

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Cost Effective Process Monitoring using UV-VIS-NIR Spectroscopy

    International Nuclear Information System (INIS)

    Cipiti, B.; McDaniel, M.; Bryan, S.; Pratt, S.

    2015-01-01

    UV-VIS-NIR Spectroscopy is a simple and inexpensive measurement technology which has been proposed for process monitoring applications at reprocessing plants. The purpose of this work was to examine if spectroscopy could replace more costly analytical measurements to reduce the safeguards burden to the operator or inspector. Recognizing that the higher measurement uncertainty of spectroscopy makes it unsuited for the accountability tanks, the approach instead was to focus on replacing mass spectrometry for random samples that are taken in a plant. The Interim Inventory Verification and Short Inventory Verification (IIV/SIV) at the Rokkasho Reprocessing Plant utilize random sampling of internal process vessels and laboratory measurement using Isotope Dilution Mass Spectrometry (IDMS) to account for plutonium on a timely basis. These measurements are time-consuming, and the low uncertainty may not always be required. For this work, modelling was used to examine if spectroscopy could be used without adversely affecting the safeguards of the plant. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, was utilized to examine the replacement of IDMS measurements with spectroscopy. Modeling results showed that complete replacement of IDMS with spectroscopy lowered the detection probability for diversion by an unacceptable amount. However, partial replacement (only for samples from vessels with low plutonium content) did not adversely affect the detection probability. This partial replacement covers roughly half of the twenty or so sampling points used for the IIV/SIVA cost-benefit analysis was completed to determine the cost savings that this approach can provide based on lower equipment costs, maintenance, and reduction of analysts' time. This work envisions working with the existing sampling system and performing the spectroscopic measurements in the analytical laboratory, but future work could examine incorporating

  18. Rare earth activated NaY (MoO4)2 phosphors for NIR emission

    Science.gov (United States)

    Tawalare, P. K.; Bhatkar, V. B.; Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2018-05-01

    Efficient NIR emission is reported for NaY(MoO4)2 activated with Nd3+ or Yb3+. Characteristic emission of rare earth ions is sensitized by MoO4-2 group. The excitation is in the near UV region of 350-400 nm. These phosphors could be useful for modifying the solar spectrum so as to match with the spectral response of c-Si solar cells.

  19. Characterisation of PDO olive oil Chianti Classico by non-selective (UV–visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    International Nuclear Information System (INIS)

    Casale, M.; Oliveri, P.; Casolino, C.; Sinelli, N.; Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S.

    2012-01-01

    Highlights: ► Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. ► Comparison between non-selective (UV–vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. ► Synergy among spectroscopic techniques, by the fusion of the respective spectra. ► Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV–visible (UV–vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV–vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV–vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV–vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico.

  20. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Casale, M., E-mail: monica@dictfa.unige.it [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Oliveri, P.; Casolino, C. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Sinelli, N. [Universita degli Studi di Milano, Department of Food Science and Technology, Via Celoria, 2 - I-20133 Milan (Italy); Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. Black-Right-Pointing-Pointer Comparison between non-selective (UV-vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Black-Right-Pointing-Pointer Synergy among spectroscopic techniques, by the fusion of the respective spectra. Black-Right-Pointing-Pointer Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil