WorldWideScience

Sample records for epithelium barrier function

  1. Proton nuclear magnetic resonance study on the barrier function of pig corneal epithelium and endothelium

    International Nuclear Information System (INIS)

    Yokoi, Norihiko; Kinoshita, Shigeru; Morimoto, Taketoshi; Yoshizaki, Kazuo.

    1995-01-01

    Using gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) as a tracer, the barrier function of the corneal epithelium and endothelium was evaluated by proton nuclear magnetic resonance. Whole pig eyes and cornea excised with scleral rim, which had been incubated in dextran-added Gd-DTPA solution, were subjected to T 1 relaxation measurement and magnetic resonance imaging (MRI). After incubation, the T 1 relaxation rate (1/T 1 ) of the excised cornea increased to a steady value, whereas that of the cornea from the whole eye increased only slightly. These results indicated that the increase in the T 1 relaxation rate of the excised cornea was attributable to Gd-DTPA penetration from the corneal endothelium and that the corneal epithelium exhibited a strong barrier function against Gd-DTPA entry. The MRI study also confirmed the strong barrier, enhanced signals being detected within the aqueous fluid in the T 1 -weighted image only when the corneal epithelium was abraded. Since Gd-DTPA scarcely penetrates the intact corneal epithelium, Gd-DTPA-enhanced MRI shows potential as a quantitative tracer in evaluating epithelial barrier disruption. (author)

  2. Prolonged phonation impairs the integrity and barrier function of porcine vocal fold epithelium: a preliminary study.

    Science.gov (United States)

    Zhang, Chi; Paddock, Kieran; Chou, Adriana; Scholp, Austin; Gong, Ting; Jiang, Jack J

    2018-04-18

    Voice abuse is known to be a common risk factor of voice disorders and prolonged; high-intensity phonation has been shown to damage the vocal fold epithelium. We aim to evaluate the effects of phonation on the integrity and barrier function of vocal fold epithelium using a porcine laryngeal model. Ex vivo porcine larynges were phonated at low intensity or high intensity for 15, 30, or 60 min within 4 h after harvest. Vocal fold epithelium was visualized using transmission electron microscopy (TEM). The barrier function of vocal fold epithelium was evaluated by measuring the permeability to model molecules, fluorescein (376 Da), and fluorescein isothiocyanate (FITC)-dextrans of 4000 and 10,000 Da (FD4, FD10), in a Franz diffusing cell. Cell death and dilated intercellular space after phonation were observed using TEM. Thickness of vocal fold epithelium was significantly reduced after low-intensity phonation for 30 and 60 min and high-intensity phonation for 15, 30, and 60 min. Epithelial permeability to fluorescein was significantly increased after low-intensity phonation for 30 and 60 min, and high-intensity phonation. Permeability to FD4 was significantly increased after high-intensity phonation for 30 and 60 min. Phonation did not alter the permeability to FD10 significantly. Long-duration phonation destroys the integrity and barrier function of vocal fold epithelium. These effects likely make vocal folds more vulnerable to other environmental irritants, such as tobacco smoke, reflux components, allergens, and inhaled pollutants. Destroyed barrier function may be an important factor in the pathogenesis of voice lesions related to voice abuse.

  3. Barrier properties of cultured retinal pigment epithelium.

    Science.gov (United States)

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    Science.gov (United States)

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  5. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

    Science.gov (United States)

    Benedicto, Ignacio; Lehmann, Guillermo L; Ginsberg, Michael; Nolan, Daniel J; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M; Prusky, Glen T; Llanos, Pierre; Rabbany, Sina Y; Maminishkis, Arvydas; Miller, Sheldon S; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-05-19

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.

  6. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated bovine ruminal epithelium.

    Science.gov (United States)

    Foote, A P; Penner, G B; Walpole, M E; Klotz, J L; Brown, K R; Bush, L P; Harmon, D L

    2014-07-01

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in volatile fatty acids (VFA) absorption from the washed rumen of steers. Previous data also indicates that incubating an extract of endophyte-infected tall fescue seed causes an increase in the amount of VFA absorbed per unit of blood flow, which could result from an alteration in the absorptive or barrier function of the rumen epithelium. An experiment was conducted to determine the acute effects of an endophyte-infected tall fescue seed extract (EXT) on total, passive or facilitated acetate and butyrate flux across the isolated bovine rumen as well as the barrier function measured by inulin flux and tissue conductance (G t ). Flux of ergovaline across the rumen epithelium was also evaluated. Rumen tissue from the caudal dorsal sac of Holstein steers (n=6), fed a common diet, was collected and isolated shortly after slaughter and mounted between two halves of Ussing chambers. In vitro treatments included vehicle control (80% methanol, 0.5% of total volume), Low EXT (50 ng ergovaline/ml) and High EXT (250 ng ergovaline/ml). Results indicate that there is no effect of acute exposure to ergot alkaloids on total, passive or facilitated flux of acetate or butyrate across the isolate bovine rumen epithelium (P>0.51). Inulin flux (P=0.16) and G t (P>0.17) were not affected by EXT treatment, indicating no alteration in barrier function due to acute ergot alkaloid exposure. Ergovaline was detected in the serosal buffer of the High EXT treatment indicating that the flux rate is ~0.25 to 0.44 ng/cm2 per hour. Data indicate that specific pathways for VFA absorption and barrier function of the rumen epithelium are not affected by acute exposure to ergot alkaloids from tall fescue at the concentrations tested. Ergovaline has the potential to be absorbed from the rumen of cattle that

  7. Requirement of the Epithelium-specific Ets Transcription Factor Spdef for Mucous Gland Cell Function in the Gastric Antrum*

    OpenAIRE

    Horst, David; Gu, Xuesong; Bhasin, Manoj; Yang, Quanli; Verzi, Michael; Lin, Dongxu; Joseph, Marie; Zhang, Xiaobo; Chen, Wei; Li, Yi-Ping; Shivdasani, Ramesh A.; Libermann, Towia A.

    2010-01-01

    Mucus-secreting cells of the stomach epithelium provide a protective barrier against damage that might result from bacterial colonization or other stimuli. Impaired barrier function contributes to chronic inflammation and cancer. Knock-out mice for the epithelium-specific transcription factor Spdef (also called Pdef) have defects in terminal differentiation of intestinal and bronchial secretory cells. We sought to determine the physiologic function of Spdef in the stomach, another site of sig...

  8. Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4

    Directory of Open Access Journals (Sweden)

    Judith Radloff

    2017-08-01

    Full Text Available The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE covering porcine Peyer's patches (PP has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE, employing the Ussing chamber technique. Transepithelial resistance (TER and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ proteins (claudin-1, -2, -3, -4, -5, and -8 were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology.

  9. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.

    Science.gov (United States)

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an "inverse" configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this

  10. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier

    Directory of Open Access Journals (Sweden)

    Ana eCamelo

    2014-01-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterised by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5b genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic TGF-β and continuous deposition of extracellular matrix stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation and myofibroblast activation in the fibrotic lung.

  11. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery

    DEFF Research Database (Denmark)

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei

    2018-01-01

    , especially to avoid lysosomal degradation, and basolateral release. Here, the functional material, deoxycholic acid-conjugated chitosan, is synthesized and loaded with the model protein drug insulin into deoxycholic acid-modified nanoparticles (DNPs). The DNPs designed in this study are demonstrated......Oral absorption of protein/peptide-loaded nanoparticles is often limited by multiple barriers of the intestinal epithelium. In addition to mucus translocation and apical endocytosis, highly efficient transepithelial absorption of nanoparticles requires successful intracellular trafficking...... to endolysosomal escape of DNPs. Additionally, DNPs can interact with a cytosolic ileal bile acid-binding protein that facilitates the intracellular trafficking and basolateral release of insulin. In rats, intravital two-photon microscopy also reveals that the transport of DNPs into the intestinal villi...

  12. Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review

    Science.gov (United States)

    Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.

    2013-01-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the

  13. A study of the barrier function of the upper respiratory tract covering epithelium in the event of combined respiratory tract injuries

    International Nuclear Information System (INIS)

    Ivanov, Z.; Kolev, K.; Dermendzhiev, Kh.; Nikolova, M.; Kantardzhiev, V.

    1976-01-01

    Functional and morphologic impairment of upper respiratory tract mucous membranes after chronic exposure to the three major occupational noxious agents in ore mining - radon-222, silica dust, and respirable dust - has been studied experimentally. Over a 6-month period, rats were given daily treatments, with the agents applied either individually or in combination. Radon-222 (at 1 x 10 -10 Ci/l, corresponding to the maximum permissible concentrotion in uranium mine atmospheres) and respirable dust (dispersed silicogen at 100 mg/m 3 ) were administered four hours daily in toxicological chambers. Monodisperse silica dust was given by tracheal tube, at 50 mg in 1 ml of saline per rat. At the end of the treatment period, the barrier function of the respiratory epithelium was tested, and found to have been affected, by measuring beta radioactivity in blood following introduction into -the animal's nasopharynx of a 32 P-labelled staphylococcus culture. The most severe degree if impairment was found to result from simultaneous exposure to radon and respirable dust. Any of ti'e agents given individually caused a similar degree of impairment. Intratracheal administration of silicic acid anhydride appeared to have no deleterious consequences. The evidence for functional impairment was supported by histologic findings, indicating Jevelopment of ulcerous bronchitis, metaplasia of cylindrical epithelium, etc., after both individual and combined radon exposure. (A.B.)

  14. Standards for the Protection of Skin Barrier Function.

    Science.gov (United States)

    Giménez-Arnau, Ana

    2016-01-01

    The skin is a vital organ, and through our skin we are in close contact with the entire environment. If we lose our skin we lose our life. The barrier function of the skin is mainly driven by the sophisticated epidermis in close relationship with the dermis. The epidermal epithelium is a mechanically, chemically, biologically and immunologically active barrier submitted to continuous turnover. The barrier function of the skin needs to be protected and restored. Its own physiology allows its recovery, but many times this is not sufficient. This chapter is focused on the standards to restore, treat and prevent barrier function disruption. These standards were developed from a scientific, academic and clinical point of view. There is a lack of standardized administrative recommendations. Still, there is a walk to do that will help to reduce the social and economic burden of diseases characterized by an abnormal skin barrier function. © 2016 S. Karger AG, Basel.

  15. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    Science.gov (United States)

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Alterations in Factors Involved in Differentiation and Barrier Function in the Epithelium in Oral and Genital Lichen Planus.

    Science.gov (United States)

    Danielsson, Karin; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin

    2017-02-08

    Lichen planus is a chronic recurrent inflammatory disease affecting both skin and mucosa, mainly in oral and/or genital regions. Keratinocytes go through a well-regulated process of proliferation and differentiation, alterations in which may result in defects in the protective epithelial barrier. Long-term barrier impairment might lead to chronic inflammation. In order to broaden our understanding of the differentiation process in mucosal lichen planus, we mapped the expression of 4 factors known to be involved in differentiation. Biopsies were collected from oral and genital lichen planus lesions and normal controls. Altered expression of all 4 factors in epithelium from lichen planus lesions was found, clearly indicating disturbed epithelial differentiation in lichen planus lesions.

  17. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    Science.gov (United States)

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  18. LOCALIZATION OF PERMEABILITY BARRIERS IN THE FROG SKIN EPITHELIUM

    Science.gov (United States)

    Martinez-Palomo, A.; Erlij, D.; Bracho, H.

    1971-01-01

    Ruthenium red and colloidal lanthanum were used to determine the site of the structural barriers to diffusion within the intercellular spaces of frog skin epithelium. Electron micrographs show that occluding zonules located at the outer border of the stratum corneum and at the outer layer of the stratum granulosum are true tight junctions since they are impermeable to these tracers. Measurement of 140La uptake by the living skin shows that lanthanum moves across the external surface of the skin readily, into and out of a compartment that has a limited capacity and is bounded on its internal side by a barrier impermeable to lanthanum. Examination of these skins with the electron microscope suggests that the compartment is localized between the external membrane of the cells at the outer layer of the s. granulosum and at the outermost surface of the skin. These observations and other findings described in the literature indicate that the site of the external high resistance barrier of the frog skin is localized at the outer border of the s. granulosum. PMID:4329611

  19. Process of tight junction recovery in the injured vocal fold epithelium: Morphological and paracellular permeability analysis.

    Science.gov (United States)

    Suzuki, Ryo; Katsuno, Tatsuya; Kishimoto, Yo; Nakamura, Ryosuke; Mizuta, Masanobu; Suehiro, Atsushi; Yamashita, Masaru; Nakamura, Tatsuo; Tateya, Ichiro; Omori, Koichi

    2018-04-01

    The vocal fold epithelium that includes tight junction (TJ)-based barrier function protects underlying connective tissues from external insults. TJs play an important role to control paracellular permeability of not only solutes but also ions, and preserve the vocal fold homeostasis. However, the distribution of TJs and paracellular diffusion barrier across the entire vocal fold epithelium are still unknown. The aim of this study was to identify the distribution of TJs in the vocal fold epithelium and to characterize the recovery process of TJ-based paracellular diffusion barrier in a rat model of vocal fold injury. Animal experiments with controls. Normal and vocal fold-injured rats were used. Larynges were harvested for immunohistochemical examination of TJ proteins. For functional analysis, a tracer permeability assay was performed using EZ-Link Sulfo-NHS-LC-Biotin. TJ proteins occludin and zonula occludens 1 signals were localized to the junctional regions of the most luminal cell layers of the vocal fold epithelium. The injured region had been recovered with epithelium at 5 days postinjury, but the paracellular diffusion barrier assays revealed that biotinylation reagents diffused into the lamina propria at 5 days postinjury, and were blocked at the epithelium at 14 and 28 days postinjury. It was strongly suggested that TJs in the vocal fold epithelium exist at the junctional regions of the first layer of stratified squamous epithelium. TJ-based paracellular diffusion barrier following vocal fold injury is recovered by 14 days postinjury, and this period corresponds with the time course of structural changes in the regenerating epithelium layer. NA. Laryngoscope, 128:E150-E156, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Blood-aqueous Barrier Function in a Patient With Choroideremia

    Directory of Open Access Journals (Sweden)

    Muh-Shy Chen

    2010-02-01

    Full Text Available The purpose was to determine whether there was a breakdown of the blood-aqueous barrier in a patient with choroideremia. A 27-year-old man with typical choroideremia underwent standardized ophthalmo-logical evaluation, including quantitative measurement of aqueous flare intensity, by a laser flare-cell meter. The results showed areas of atrophy of the choriocapillaries and retinal pigment epithelium in the mid-periphery and posterior pole, although not in the macula. Fluorescein angiography showed areas of loss of the choriocapillaries and retinal pigment epithelium. The fovea was spared with a surrounding zone of hy-perfluorescence. Electroretinography showed a subnormal photopic amplitude and extinguished scotopic response. Electrooculography revealed that the light peak/dark trough ratio was reduced. Goldmann perimetry showed constricted peripheral fields. Laser photometry showed an increase in the aqueous flare intensity in both eyes, as compared with normal subjects. We conclude that the function of the blood-aqueous barrier might be affected in patients with choroideremia.

  1. Claudin-8d is a cortisol-responsive barrier protein in the gill epithelium of trout.

    Science.gov (United States)

    Kolosov, Dennis; Kelly, Scott P

    2017-10-01

    The influence of claudin (Cldn) 8 tight junction (TJ) proteins on cortisol-mediated alterations in gill epithelium permeability was examined using a primary cultured trout gill epithelium model. Genes encoding three Cldn-8 proteins ( cldn-8b, -8c and -8d ) have been identified in trout and all are expressed in the model gill epithelium. Cortisol treatment 'tightened' the gill epithelium, as indicated by increased transepithelial resistance (TER) and reduced paracellular [ 3 H]polyethylene glycol (MW 400 Da; PEG-400) flux. This occurred in association with elevated cldn-8d mRNA abundance, but no alterations in cldn-8b and -8c mRNA abundance were observed. Transcriptional knockdown (KD) of cldn-8d inhibited a cortisol-induced increase in Cldn-8d abundance and reduced the 'epithelium tightening' effect of cortisol in association with increased paracellular PEG-400 flux. Under simulated in vivo conditions (i.e. apical freshwater), cldn-8d KD hindered a cortisol-mediated reduction in basolateral to apical Na + and Cl - flux (i.e. reduced the ability of cortisol to mitigate ion loss). However, cldn-8d KD did not abolish the tightening effect of cortisol on the gill epithelium. This is likely due, in part, to the effect of cortisol on genes encoding other TJ proteins, which in some cases appeared to exhibit a compensatory response. Data support the idea that Cldn-8d is a barrier protein of the gill epithelium TJ that contributes significantly to corticosteroid-mediated alterations in gill epithelium permeability. © 2017 Society for Endocrinology.

  2. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  3. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...... of inflammatory bowel disease (IBD). Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets....

  4. Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Selina Beasley

    2014-01-01

    Full Text Available We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR. Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose on caspase-14 expression in human RPE (ARPE-19 cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose. We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER. These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema.

  5. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  6. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  7. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-05-01

    Full Text Available Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ loci occludin and zona occludens (ZO-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  8. Expressions of TRPVs in the cholesteatoma epithelium.

    Science.gov (United States)

    Do, Ba Hung; Koizumi, Hiroki; Ohbuchi, Toyoaki; Kawaguchi, Rintaro; Suzuki, Hideaki

    2017-10-01

    We have recently proposed a hypothesis that acid leakage through the cholesteatoma epithelium mediates bone resorption in middle ear cholesteatoma. In the present study, we investigated the expressions of transient receptor potential vanilloid (TRPV) channels, which have been shown to play roles in the regulation of epidermal barrier function, in the cholesteatoma epithelium in comparison with the normal skin. Cholesteatoma epithelium and postauricular skin were collected from 17 patients with primary acquired middle ear cholesteatoma who underwent tympanomastoidectomy. Expressions of TRPV1, TRPV3, TRPV4, and TRPV6 were explored by fluorescence immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). TRPV1, TRPV3, TRPV4, and TRPV6 mRNAs were all detected by qRT-PCR both in the skin and cholesteatoma tissue. Immunohistochemical staining showed that TRPV1 and TRPV3 were positive in the viable cell layers of the epidermis of the skin, and only TRPV3 was positive in those of the cholesteatoma epithelium. The immunoreactivity for TRPV3 was significantly weaker in cholesteatoma than in the skin. The lower expression of TRPV3 in cholesteatoma may be one of the mechanisms underlying the increased permeability of this tissue. On the other hand, TRPV1, TRPV4, and TRPV6 are unlikely to be involved in the regulation of epithelial permeability in cholesteatoma.

  9. Role of airway epithelial barrier dysfunction in pathogenesis of asthma.

    Science.gov (United States)

    Gon, Yasuhiro; Hashimoto, Shu

    2018-01-01

    Bronchial asthma is characterized by persistent cough, increased sputum, and repeated wheezing. The pathophysiology underlying these symptoms is the hyper-responsiveness of the airway along with chronic airway inflammation. Repeated injury, repair, and regeneration of the airway epithelium following exposure to environmental factors and inflammation results in histological changes and functional abnormalities in the airway mucosal epithelium; such changes are believed to have a significant association with the pathophysiology of asthma. Damage to the barrier functions of the airway epithelium enhances mucosal permeability of foreign substances in the airway epithelium of patients with asthma. Thus, epithelial barrier fragility is closely involved in releasing epithelial cytokines (e.g., TSLP, IL-25, and IL-33) because of the activation of airway epithelial cells, dendritic cells, and innate group 2 innate lymphoid cells (ILC2). Functional abnormalities of the airway epithelial cells along with the activation of dendritic cells, Th2 cells, and ILC2 form a single immunopathological unit that is considered to cause allergic airway inflammation. Here we use the latest published literature to discuss the potential pathological mechanisms regarding the onset and progressive severity of asthma with regard to the disruption of the airway epithelial function. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  10. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    Science.gov (United States)

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  11. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    The administration of helminths is considered a promising strategy for the treatment of autoimmune diseases due to their immunomodulatory properties. Currently, the application of the helminth Trichuris suis as a treatment for Crohn's disease is being studied in large multi-center clinical trials....... The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...

  12. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  13. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure.

    Science.gov (United States)

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S; Heijink, Irene H

    2018-02-01

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are interconnected structures that restrict permeability to inhaled pathogens and environmental stressors. Destruction of the epithelial barrier not only exposes subepithelial layers to hazardous agents in the inspired air, but also alters the normal function of epithelial cells, which may eventually contribute to the development of COPD. Of note, disruption of epithelial junctions may lead to modulation of signaling pathways involved in differentiation, repair, and proinflammatory responses. Epithelial barrier dysfunction may be particularly relevant in COPD, where repeated injury by cigarette smoke exposure, pathogens, inflammatory mediators, and impaired epithelial regeneration may compromise the barrier function. In the current review, we discuss recent advances in understanding the mechanisms of barrier dysfunction in COPD, as well as the molecular mechanisms that underlie the impaired repair response of the injured epithelium in COPD and its inability to redifferentiate into a functionally intact epithelium.

  14. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  15. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  16. Challenges and opportunities for tissue-engineering polarized epithelium.

    Science.gov (United States)

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  17. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases.

    Science.gov (United States)

    Sturgeon, Craig; Fasano, Alessio

    2016-01-01

    Beside digesting nutrients and absorbing solutes and electrolytes, the intestinal epithelium with its barrier function is in charge of a tightly controlled antigen trafficking from the intestinal lumen to the submucosa. This trafficking dictates the delicate balance between tolerance and immune response causing inflammation. Loss of barrier function secondary to upregulation of zonulin, the only known physiological modulator of intercellular tight junctions, leads to uncontrolled influx of dietary and microbial antigens. Additional insights on zonulin mechanism of action and the recent appreciation of the role that altered intestinal permeability can play in the development and progression of chronic inflammatory disorders has increased interest of both basic scientists and clinicians on the potential role of zonulin in the pathogenesis of these diseases. This review focuses on the recent research implicating zonulin as a master regulator of intestinal permeability linked to the development of several chronic inflammatory disorders.

  18. HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy.

    Science.gov (United States)

    Tan, Suiyi; Duan, Heng; Xun, Tianrong; Ci, Wei; Qiu, Jiayin; Yu, Fei; Zhao, Xuyan; Wu, Linxuan; Li, Lin; Lu, Lu; Jiang, Shibo; Liu, Shuwen

    2014-07-01

    The breakdown of human retinal pigment epithelial (HRPE) barrier is considered as the etiology of retinopathy, which affects the quality of life of HIV/AIDS patients. Here we demonstrate that HIV-1 could directly impair HRPE barrier function, which leads to the translocation of HIV-1 and bacteria. HRPE cells (D407) were grown to form polarized, confluent monolayers and treated with different HIV-1 infectious clones. A significant increase of monolayer permeability, as measured by trans-epithelial electrical resistance (TEER) and apical-basolateral movements of sodium fluorescein, was observed. Disrupted tightness of HRPE barrier was associated with the downregulation of several tight junction proteins in D407 cells, including ZO-1, Occludin, Claudin-1, Claudin-2, Claudin-3, Claudin-4, and Claudin-5, after exposure to HIV-1, without affecting the viability of cells. HIV-1 gp120 was shown to participate in the alteration of barrier properties, as evidenced by decreased TEER and weakened expression of tight junction proteins in D407 monolayers after exposure to pseudotyped HIV-1, UV-inactivated HIV-1, and free gp120, but not to an envelope (Env)-defective mutant of HIV. Furthermore, exposure to HIV-1 particles could induce the release of pro-inflammatory cytokines in D407, including IL-6 and MCP-1, both of which downregulated the expression of ZO-1 in the HRPE barrier. Disrupted HRPE monolayer allowed translocation of HIV-1 and bacteria across the epithelium. Overall, these findings suggest that HIV-1 may exploit its Env glycoprotein to induce an inflammatory state in HRPE cells, which could result in impairment of HRPE monolayer integrity, allowing virus and bacteria existing in ocular fluids to cross the epithelium and penetrate the HRPE barrier. Our study highlights the role of HIV-1 in the pathogenesis of HIV/AIDS-related retinopathy and suggests potential therapeutic targets for this ocular complication.

  19. Gene expression and functional annotation of the human and mouse choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available BACKGROUND: The choroid plexus epithelium (CPE is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF, which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE

  20. Conserved form and function of the germinal epithelium through 500 million years of vertebrate evolution.

    Science.gov (United States)

    Grier, Harry J; Uribe, Mari Carmen; Lo Nostro, Fabiana L; Mims, Steven D; Parenti, Lynne R

    2016-08-01

    The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates

  1. Transport across the choroid plexus epithelium.

    Science.gov (United States)

    Praetorius, Jeppe; Damkier, Helle Hasager

    2017-06-01

    The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1 ) the choroid plexus epithelium as the source of mediators necessary for central nervous system development, 2 ) the choroid plexus as a route for microorganisms and immune cells into the central nervous system, and 3 ) the choroid plexus as a potential route for drug delivery into the central nervous system, bypassing the blood-brain barrier. Thus, the purpose of this review is to highlight current active areas of research in the choroid plexus physiology and a few matters of continuous controversy. Copyright © 2017 the American Physiological Society.

  2. Recovery of Vocal Fold Epithelium after Acute Phonotrauma.

    Science.gov (United States)

    Rousseau, Bernard; Kojima, Tsuyoshi; Novaleski, Carolyn K; Kimball, Emily E; Valenzuela, Carla V; Mizuta, Masanobu; Daniero, James J; Garrett, C Gaelyn; Sivasankar, M Preeti

    2017-01-01

    We investigated the timeline of tissue repair of vocal fold epithelium after acute vibration exposure using an in vivo rabbit model. Sixty-five New Zealand white breeder rabbits were randomized to 120 min of modal- or raised-intensity phonation. After the larynges were harvested at 0, 4, 8, and 24 h, and at 3 and 7 days, the vocal fold tissue was evaluated using electron microscopy and quantitative real-time polymerase chain reaction. There was an immediate decrease in the microprojection depth and height following raised-intensity phonation, paired with upregulation of cyclooxygenase-2. This initial 24-h period was also characterized by the significant downregulation of junction proteins. Interleukin 1β and transforming growth factor β1 were upregulated for 3 and 7 days, respectively, followed by an increase in epithelial cell surface depth at 3 and 7 days. These data appear to demonstrate a shift from inflammatory response to the initiation of a restorative process in the vocal fold epithelium between 24 h and 3 days. Despite the initial damage from raised-intensity phonation, the vocal fold epithelium demonstrates a remarkable capacity for the expeditious recovery of structural changes from transient episodes of acute phonotrauma. While structurally intact, the return of functional barrier integrity may be delayed by repeated episodes of phonotrauma and may also play an important role in the pathophysiology of vocal fold lesions. © 2017 S. Karger AG, Basel.

  3. In vivo models of human airway epithelium repair and regeneration

    Directory of Open Access Journals (Sweden)

    C. Coraux

    2005-12-01

    Full Text Available Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions. The in vivo study of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to reconstitute a functional respiratory epithelium after several weeks. Humanised tracheal xenograft models have been developed in immunodeficient nude and severe combined immunodeficient (SCID mice in order to mimic the natural regeneration process of the human airway epithelium and to analyse the cellular and molecular events involved during the different steps of airway epithelial reconstitution. These models represent very powerful tools for analysing the modulation of the biological functions of the epithelium during its regeneration. They are also very useful for identifying stem/progenitor cells of the human airway epithelium. A better knowledge of the mechanisms involved in airway epithelium regeneration, as well as the characterisation of the epithelial stem and progenitor cells, may pave the way to regenerative therapeutics, allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases, such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.

  4. The distribution of free calcium ions in the cholesteatoma epithelium

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Rasmussen, Gurli; Ottosen, Peter D

    2005-01-01

    The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside...... appeared where oblong accumulations of free calcium ions were found basally in the stratum. These findings provide evidence that fluctuations in epidermal calcium in cholesteatoma epithelium may underlie the abnormal desquamation, may contribute to the formation of an abnormal permeability barrier and may...

  5. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  6. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    Science.gov (United States)

    Arason, Ari Jon; Jonsdottir, Hulda R; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.

  7. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

    NARCIS (Netherlands)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R.; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A.

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In

  8. "Targeted disruption of the epithelial-barrier by Helicobacter pylori"

    Directory of Open Access Journals (Sweden)

    Wroblewski Lydia E

    2011-11-01

    Full Text Available Abstract Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.

  9. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.

    Science.gov (United States)

    Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B

    2017-11-01

    Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models ( Villin-CreER T2 ;Klf5 fl/fl designated as Klf5 ΔIND and Villin-Cre;Klf5 fl/fl as Klf5 ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND ). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2 , which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2 , a gene encoding a major component of desmosome structures. NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function

  10. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  11. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    Science.gov (United States)

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  12. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Science.gov (United States)

    Liu, Xinxin; Zheng, Wei; Sivasankar, M Preeti

    2016-01-01

    Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3) expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001). Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (pacrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (pacrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  13. Epithelium

    Science.gov (United States)

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Kierszenbaum AL, Tres LL. Epithelium. In: Kierszenbaum AL, Tres LL, ... to Pathology . 4th ed. Philadelphia, PA: Elsevier Saunders; ...

  14. Functional and structural alterations of epithelial barrier properties of rat ileum following X-irradiation

    International Nuclear Information System (INIS)

    Dublineau, I.; Lebrun, F.; Grison, S.; Griffiths, N.M.

    2004-01-01

    Irradiation of the digestive system leads to alterations of the small intestine. We have characterized the disruption of the barrier integrity in rat ileum from 1 to 14 days following irradiation ranging from 6 to 12 Gy. The intestinal permeability to 14 C-mannitol and 3 H-dextran 70,000 was measured in vitro in Ussing chambers. In parallel to these functional studies, immunohistochemical analyses of junctional proteins (ZO-1 and β-catenin) of ileal epithelium were performed by confocal microscopy. Irradiation with 10 Gy induced a marked decrease in epithelial tissue resistance at three days and a fivefold increase in mannitol permeability, without modifications of dextran permeability. A disorganization of the localization for ZO-1 and β-catenin was also observed. At 7 days after irradiation, we observed a recovery of the organization of junctional proteins in parallel to a return of intestinal permeability to control value. In addition to these time-dependent effects, a gradual effect on epithelial integrity of the radiation doses was observed 3 days after irradiation. This study shows a disruption of the integrity of the intestinal barrier in rat ileum following abdominal X-irradiation, depending on the time postirradiation and on the delivered dose. The loss of barrier integrity was characterized by a disorganization of proteins of tight and adherent junctions, leading to increased intestinal permeability to mannitol. (author)

  15. Claudin expression in follicle-associated epithelium of rat Peyer's patches defines a major restriction of the paracellular pathway.

    Science.gov (United States)

    Markov, A G; Falchuk, E L; Kruglova, N M; Radloff, J; Amasheh, S

    2016-01-01

    Members of the tight junction protein family of claudins have been demonstrated to specifically determine paracellular permeability of the intestinal epithelium. In small intestinal mucosa, which is generally considered to be a leaky epithelium, Peyer's patches are a primary part of the immune system. The aim of this study was to analyse the tight junctional barrier of follicle-associated epithelium covering Peyer's patches (lymphoid follicles). Employing small intestinal tissue specimens of male Wistar rats, electrophysiological analyses including the Ussing chamber technique, marker flux measurements and one-path impedance spectroscopy were performed. Morphometry of HE-stained tissue sections was taken into account. Claudin expression and localization was analysed by immunoblotting and confocal laser scanning immunofluorescence microscopy. Almost twofold higher parameters of epithelial and transepithelial tissue resistance and a markedly lower permeability for the paracellular permeability markers 4 and 20 kDa FITC-dextran were detected in follicle-associated epithelium compared to neighbouring villous epithelium. Analysis of claudin expression and localization revealed a stronger expression of major sealing proteins in follicle-associated epithelium, including claudin-1, claudin-4, claudin-5 and claudin-8. Therefore, the specific expression and localization of claudins is in accordance with barrier properties of follicle-associated epithelium vs. neighbouring villous epithelium. We demonstrate that follicle-associated epithelium is specialized to ensure maximum restriction of the epithelial paracellular pathway in Peyer's patches by selective sealing of tight junctions. This results in an exclusive transcellular pathway of epithelial cells as the limiting and mandatory route for a controlled presentation of antigens to the underlying lymphocytes under physiological conditions. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Loss of Retinal Function and Pigment Epithelium Changes in a Patient with Common Variable Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Jakob Halborg

    2012-01-01

    Full Text Available Common variable immunodeficiency (CVID has only scarcely been associated with ocular symptoms and rarely with retinal disease. In this case we describe a patient with distinct morphological and functional alterations in the retina. The patient presents with characteristic changes in retinal pigment epithelium, autofluorescence, and electrophysiology.

  17. Toll-8/Tollo negatively regulates antimicrobial response in the Drosophila respiratory epithelium.

    Directory of Open Access Journals (Sweden)

    Idir Akhouayri

    2011-10-01

    Full Text Available Barrier epithelia that are persistently exposed to microbes have evolved potent immune tools to eliminate such pathogens. If mechanisms that control Drosophila systemic responses are well-characterized, the epithelial immune responses remain poorly understood. Here, we performed a genetic dissection of the cascades activated during the immune response of the Drosophila airway epithelium i.e. trachea. We present evidence that bacteria induced-antimicrobial peptide (AMP production in the trachea is controlled by two signalling cascades. AMP gene transcription is activated by the inducible IMD pathway that acts non-cell autonomously in trachea. This IMD-dependent AMP activation is antagonized by a constitutively active signalling module involving the receptor Toll-8/Tollo, the ligand Spätzle2/DNT1 and Ect-4, the Drosophila ortholog of the human Sterile alpha and HEAT/ARMadillo motif (SARM. Our data show that, in addition to Toll-1 whose function is essential during the systemic immune response, Drosophila relies on another Toll family member to control the immune response in the respiratory epithelium.

  18. Effect of acute exposure to ergot alkaloids on short-chain fatty acid absorption and barrier function of isolated bovine ruminal epithelium

    Science.gov (United States)

    Ergot alkaloids present in endophyte-infected tall fescue are the causative agents for fescue toxicosis in cattle. Ergot alkaloids have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in short-chain fatty acid (SCFA) absorption from the washed rumen of ste...

  19. Piezoelectric materials mimic the function of the cochlear sensory epithelium.

    Science.gov (United States)

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-11-08

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application.

  20. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  1. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea

    Directory of Open Access Journals (Sweden)

    Zheng Guiliang

    2012-06-01

    Full Text Available Abstract Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear

  2. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen...

  3. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated ruminal epithelium

    Science.gov (United States)

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in VFA absorption from the washed rumen of steers. Previous data also indicates that incubating an extr...

  4. Hair cell regeneration in the avian auditory epithelium.

    Science.gov (United States)

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  5. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  6. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    Science.gov (United States)

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Artificial Cochlear Sensory Epithelium with Functions of Outer Hair Cells Mimicked Using Feedback Electrical Stimuli

    Directory of Open Access Journals (Sweden)

    Tetsuro Tsuji

    2018-05-01

    Full Text Available We report a novel vibration control technique of an artificial auditory cochlear epithelium that mimics the function of outer hair cells in the organ of Corti. The proposed piezoelectric and trapezoidal membrane not only has the acoustic/electric conversion and frequency selectivity of the previous device developed mainly by one of the authors and colleagues, but also has a function to control local vibration according to sound stimuli. Vibration control is achieved by applying local electrical stimuli to patterned electrodes on an epithelium made using micro-electro-mechanical system technology. By choosing appropriate phase differences between sound and electrical stimuli, it is shown that it is possible to both amplify and dampen membrane vibration, realizing better control of the response of the artificial cochlea. To be more specific, amplification and damping are achieved when the phase difference between the membrane vibration by sound stimuli and electrical stimuli is zero and π , respectively. We also demonstrate that the developed control system responds automatically to a change in sound frequency. The proposed technique can be applied to mimic the nonlinear response of the outer hair cells in a cochlea, and to realize a high-quality human auditory system.

  8. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  9. Organ Culture as a Model System for Studies on Enterotoxin Interactions with the Intestinal Epithelium

    DEFF Research Database (Denmark)

    Lorenzen, Ulver Spangsberg; Hansen, Gert H; Danielsen, E Michael

    2015-01-01

    Studies on bacterial enterotoxin-epithelium interactions require model systems capable of mimicking the events occurring at the molecular and cellular levels during intoxication. In this chapter, we describe organ culture as an often neglected alternative to whole-animal experiments or enterocyte......-like cell lines. Like cell culture, organ culture is versatile and suitable for studying rapidly occurring events, such as enterotoxin binding and uptake. In addition, it is advantageous in offering an epithelium with more authentic permeability/barrier properties than any cell line, as well...

  10. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-01-01

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  11. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march.

    Science.gov (United States)

    Egawa, Gyohei; Kabashima, Kenji

    2016-08-01

    Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    Science.gov (United States)

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  13. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Directory of Open Access Journals (Sweden)

    Xinxin Liu

    Full Text Available Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3 expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001. Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (p<0.05 and a reduction in transepithelial electrical resistance (TEER by 180.0% (p<0.001. While the expression of tight junctional protein did not change in acrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (p<0.05. Taken together, these data provide evidence that acute acrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  14. Fine structure and function of the alimentary epithelium in Artemia salina nauplii

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, S R; Conte, F P

    1974-01-01

    The fine structure of the alimentary tract in the second instar nauplius of the brine shrimp, Artemia salina, has been described. The foregut and hindgut of the larva are composed of cuboidal epithelium which is cuticularized. The epithelium of the midgut and gastric caeca is columnar and is characterized by apical microvilli, basal membrane infolds, and abundant mitochondria. The structural characteristics of the midgut cells correlate with previous physiological and biochemical evidence on both adult and larval brine shrimp which indicates that the midgut plays an important role in absorption and osmoregulation in these animals.

  15. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.

    Science.gov (United States)

    Fujita, Tsuyoshi; Yoshimoto, Tetsuya; Kajiya, Mikihito; Ouhara, Kazuhisa; Matsuda, Shinji; Takemura, Tasuku; Akutagawa, Keiichi; Takeda, Katsuhiro; Mizuno, Noriyoshi; Kurihara, Hidemi

    2018-05-01

    Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro , in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.

  16. The intestinal barrier function and its involvement in digestive disease

    Directory of Open Access Journals (Sweden)

    Eloísa Salvo-Romero

    2015-11-01

    Full Text Available The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  17. Functional annotation of the human retinal pigment epithelium transcriptome

    Directory of Open Access Journals (Sweden)

    Gorgels Theo GMF

    2009-04-01

    Full Text Available Abstract Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE, the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years were laser dissected and used for 22k microarray studies (Agilent technologies. Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194 expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776 genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194 of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the

  18. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of

  19. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nazzy Pakpour

    Full Text Available Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC

  20. Coelomic epithelium-derived cells in visceral morphogenesis.

    Science.gov (United States)

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans. © 2015 Wiley Periodicals, Inc.

  1. Ultrastructural study on the embryonic development of the orthokeratinized epithelium and its cornified layer (lingual nail) on the ventral surface of the lingual apex in the domestic duck (Anas platyrhynchos f. domestica).

    Science.gov (United States)

    Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Ratajczak, Marlena

    2018-02-01

    The lingual nail as the cornified layer of the orthokeratinized epithelium in birds is responsible for the collection of solid food by pecking. The aim of the present study is to determine the manner of orthokeratinized epithelium development and assess the degree of readiness of the epithelium to fulfill its mechanical function at hatching. Three developmental phases are distinguished, i.e. embryonic, transformation and pre-hatching stage. In the embryonic stage lasting until day 13 of incubation the epithelium is composed of several layers of undifferentiated cells. During the transformation stage, from day 14 to 20 of incubation, the epithelium becomes differentiated to form three layers. A characteristic feature is the formation of osmophilic granules in the superficial layer, referred to as periderm granules. Until the pre-hatching stage the fibrous cytoskeleton of epithelial cells and an impermeable epithelial barrier are gradually developed. In the pre-hatching stage, a cornified lingual nail is formed, while the periderm is exfoliated. At hatching the orthokeratinized epithelium and lingual nail are fully developed and ready to perform feeding activities. The presence of periderm, similarly as in the epidermis, indicates the ectodermal derivation of the oral cavity epithelium. Moreover, occurrence of osmophilic granules may be considered as evidence for the phylogenetic affinity of birds and reptiles. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  3. Functional short- and long-term effects of nasal CPAP with and without humidification on the ciliary function of the nasal respiratory epithelium.

    Science.gov (United States)

    Sommer, J Ulrich; Kraus, Marius; Birk, Richard; Schultz, Johannes D; Hörmann, Karl; Stuck, Boris A

    2014-03-01

    Continuous positive airway pressure (CPAP) is the gold standard in the treatment of obstructive sleep apnea (OSA), but its impact on ciliary function is unclear to date. Furthermore, CPAP is associated with numerous side effects related to the nose and upper airway. Humidified CPAP is used to relieve these symptoms, but again, little is known regarding its effect on ciliary function of the nasal respiratory epithelium. In this prospective, randomized, crossover trial, 31 patients with OSA (AHI >15/h) were randomized to two treatment arms: nasal continuous positive airway pressure (nCPAP) with humidification or nCPAP without humidification for one night in each modality to assess short-term effects of ciliary beat frequency (CBF) and mucus transport time (MTT) and consecutively for 8 weeks in each modality to assess long-term effects in a crossover fashion. The baseline CBF was 4.8 ± 0.6 Hz, and baseline MTT was 540 ± 221 s. After one night of CPAP with and without humidification, ciliary function increased moderately yet with statistical significance (p humidification did not differ statistically significant. Regarding long-term effects of CPAP, a statistically significant increase in ciliary function above the baseline level and above the short-term level was shown without humidification (7.2 ± 0.4 Hz; 402 ± 176 s; p humidification (9.3 ± 0.7 Hz; 313 ± 95 s; p humidification, nCPAP has moderate effects on short-term ciliary function of the nasal respiratory epithelium. However, a significant increase in ciliary function-both in terms of an increased CBF and a decreased MTT-was detected after long-term use. The effect was more pronounced when humidification was used during nCPAP.

  4. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  5. Sensing of EGTA Mediated Barrier Tissue Disruption with an Organic Transistor

    Directory of Open Access Journals (Sweden)

    Scherrine Tria

    2013-01-01

    Full Text Available Barrier tissue protects the body against external factors by restricting the passage of molecules. The gastrointestinal epithelium is an example of barrier tissue with the primary purpose of allowing the passage of ions and nutrients, while restricting the passage of pathogens and toxins. It is well known that the loss of barrier function can be instigated by a decrease in extracellular calcium levels, leading to changes in protein conformation and an increase in paracellular transport. In this study, ethylene glycol-bis(beta-aminoethyl ether-N,N,N',N'-tetra acetic acid (EGTA, a calcium chelator, was used to disrupt the gastrointestinal epithelial barrier. The effect of EGTA on barrier tissue was monitored by a novel label-free method based on an organic electrochemical transistor (OECT integrated with living cells and validated against conventional methods for measuring barrier tissue integrity. We demonstrate that the OECT can detect breaches in barrier tissue upon exposure to EGTA with the same sensitivity as existing methods but with increased temporal resolution. Due to the potential of low cost processing techniques and the flexibility in design associated with organic electronics, the OECT has great potential for high-throughput, disposable sensing and diagnostics.

  6. Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium

    Science.gov (United States)

    Chen, Jichao; Krasnow, Mark A.

    2012-01-01

    Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215

  7. Accident Analysis and Barrier Function (AEB) Method. Manual for Incident Analysis

    International Nuclear Information System (INIS)

    Svenson, Ola

    2000-02-01

    The Accident Analysis and Barrier Function (AEB) Method models an accident or incident as a series of interactions between human and technical systems. In the sequence of human and technical errors leading to an accident there is, in principle, a possibility to arrest the development between each two successive errors. This can be done by a barrier function which, for example, can stop an operator from making an error. A barrier function can be performed by one or several barrier function systems. To illustrate, a mechanical system, a computer system or another operator can all perform a given barrier function to stop an operator from making an error. The barrier function analysis consists of analysis of suggested improvements, the effectiveness of the improvements, the costs of implementation, probability of implementation, the cost of maintaining the barrier function, the probability that maintenance will be kept up to standards and the generalizability of the suggested improvement. The AEB method is similar to the US method called HPES, but differs from that method in different ways. To exemplify, the AEB method has more emphasis on technical errors than HPES. In contrast to HPES that describes a series of events, the AEB method models only errors. This gives a more focused analysis making it well suited for checking other HPES-type accident analyses. However, the AEB method is a generic and stand-alone method that has been applied in other fields than nuclear power, such as, in traffic accident analyses

  8. Accident Analysis and Barrier Function (AEB) Method. Manual for Incident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-02-01

    The Accident Analysis and Barrier Function (AEB) Method models an accident or incident as a series of interactions between human and technical systems. In the sequence of human and technical errors leading to an accident there is, in principle, a possibility to arrest the development between each two successive errors. This can be done by a barrier function which, for example, can stop an operator from making an error. A barrier function can be performed by one or several barrier function systems. To illustrate, a mechanical system, a computer system or another operator can all perform a given barrier function to stop an operator from making an error. The barrier function analysis consists of analysis of suggested improvements, the effectiveness of the improvements, the costs of implementation, probability of implementation, the cost of maintaining the barrier function, the probability that maintenance will be kept up to standards and the generalizability of the suggested improvement. The AEB method is similar to the US method called HPES, but differs from that method in different ways. To exemplify, the AEB method has more emphasis on technical errors than HPES. In contrast to HPES that describes a series of events, the AEB method models only errors. This gives a more focused analysis making it well suited for checking other HPES-type accident analyses. However, the AEB method is a generic and stand-alone method that has been applied in other fields than nuclear power, such as, in traffic accident analyses.

  9. Review: Exogenous butyrate: implications for the functional development of ruminal epithelium and calf performance.

    Science.gov (United States)

    Niwińska, B; Hanczakowska, E; Arciszewski, M B; Klebaniuk, R

    2017-09-01

    The importance of the use of exogenous butyrate in calves' diets is due to its role as a factor stimulating the functional development of ruminal epithelium and improving calf performance during the transition from preruminant to ruminant status. Our review will first present results related to effects of the administration of butyrate in calves' diets on the development of ruminal epithelium toward a more effective absorption and metabolism of fermentation products from the rumen. The introduction of sodium butyrate at a level of about 0.3% of diet dry matter is accompanied by an increase to 35% in butyrate concentration in the rumen of 33-day-old calves. Mutual reliance between an enhanced ruminal concentration of butyrate and the activities of transcription factors, genes and proteins involved in cell proliferation, ketogenesis and the maintenance of cell pH homeostasis in the ruminal epithelial cells has been clearly confirmed in many experiments. Second, the review presents results related to the effects of the introduction of butyrate salts in the diet on calf performance. Of 11 studies a positive effect was found in six; five of these were obtained from the calves that started receiving butyrate supplement at a level of about 0.3% diet dry matter from the age of 3 to 5 days. Results indicate that when a supplement is given to calves soon after birth the functional development of ruminal epithelium in cooperation with the endocrine and digestion systems is transferred into improving the efficiency of rearing. There have been no studies on the effects of greater amounts of butyrate salts in milk replacer; butyrate constitutes about 1.2% of the whole cow's milk dry matter. In older calves, when butyrate administration is provided as a component of a starter concentrate at the increasing inclusion rate from 0.3% to 3.0%, the practical effect in calf performance relates to the risk of depression of rumen pH below 5.5 and accompanying disruption of the

  10. A study on the quantitative evaluation of skin barrier function

    Science.gov (United States)

    Maruyama, Tomomi; Kabetani, Yasuhiro; Kido, Michiko; Yamada, Kenji; Oikaze, Hirotoshi; Takechi, Yohei; Furuta, Tomotaka; Ishii, Shoichi; Katayama, Haruna; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    We propose a quantitative evaluation method of skin barrier function using Optical Coherence Microscopy system (OCM system) with coherency of near-infrared light. There are a lot of skin problems such as itching, irritation and so on. It has been recognized skin problems are caused by impairment of skin barrier function, which prevents damage from various external stimuli and loss of water. To evaluate skin barrier function, it is a common strategy that they observe skin surface and ask patients about their skin condition. The methods are subjective judgements and they are influenced by difference of experience of persons. Furthermore, microscopy has been used to observe inner structure of the skin in detail, and in vitro measurements like microscopy requires tissue sampling. On the other hand, it is necessary to assess objectively skin barrier function by quantitative evaluation method. In addition, non-invasive and nondestructive measuring method and examination changes over time are needed. Therefore, in vivo measurements are crucial for evaluating skin barrier function. In this study, we evaluate changes of stratum corneum structure which is important for evaluating skin barrier function by comparing water-penetrated skin with normal skin using a system with coherency of near-infrared light. Proposed method can obtain in vivo 3D images of inner structure of body tissue, which is non-invasive and non-destructive measuring method. We formulate changes of skin ultrastructure after water penetration. Finally, we evaluate the limit of performance of the OCM system in this work in order to discuss how to improve the OCM system.

  11. Could tight junctions regulate the barrier function of the aged skin?

    Science.gov (United States)

    Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš

    2016-03-01

    The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  13. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  14. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  15. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  16. Permanent isolation surface barrier: Functional performance

    International Nuclear Information System (INIS)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release

  17. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Stevens, Elizabeth Munkebjerg; Larsen, Lars Allan

    2017-01-01

    BACKGROUND: Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical...... surface facing the outside and accessible for analysis of ciliary function. METHODS: We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls...... in the investigation of pathophysiological aspects and drug effects in human nasal airway epithelium....

  18. Progenitor Epithelium

    Science.gov (United States)

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  19. Uniting Control Lyapunov and Control Barrier Functions

    NARCIS (Netherlands)

    Romdlony, Zakiyullah; Jayawardhana, Bayu

    2014-01-01

    In this paper, we propose a nonlinear control design for solving the problem of stabilization with guaranteed safety. The design is based on the merging of a Control Lyapunov Function and a Control Barrier Function. The proposed control method allows us to combine the design of a stabilizer based on

  20. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  1. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  2. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function.

    Science.gov (United States)

    Sanz, Yolanda; De Palma, Giada

    2009-01-01

    The intestinal tract mucosa is exposed to a vast number of environmental antigens and a large community of commensal bacteria. The mucosal immune system has to provide both protection against pathogens and tolerance to harmless bacteria. Immune homeostasis depends on the interaction of indigenous commensal and transient bacteria (probiotics) with various components of the epithelium and the gut-associated lymphoid tissue. Herein, an update is given of the mechanisms by which the gut microbiota and probiotics are translocated through the epithelium, sensed via pattern-recognition receptors, and activate innate and adaptive immune responses.

  3. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  4. Defining the Interaction of HIV-1 with the Mucosal Barriers of the Female Reproductive Tract

    Science.gov (United States)

    Carias, Ann M.; McCoombe, Scott; McRaven, Michael; Anderson, Meegan; Galloway, Nicole; Vandergrift, Nathan; Fought, Angela J.; Lurain, John; Duplantis, Maurice; Veazey, Ronald S.

    2013-01-01

    Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4+ target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection. PMID:23966398

  5. Radiation effects of electromagnetic pulses on mouse blood-testis barrier

    International Nuclear Information System (INIS)

    Hou Wugang; Zhao Jie; Zhang Yuanqiang

    2005-01-01

    Radiation effects caused by 100 kV/m and 400 kV/m electromagnetic pulse (EMP) irradiations on mouse blood-testis barrier were studied by means of routine HE staining, Lanthanum traced electron microscope and injection of caudal vein with Evans Blue. The EMP irradiation of different dose rates damaged Sertoli's cell and blood-testis barrier of mouse testis in different levels. Severe injuries were observed with the 400 kV/m irradiation group, with apoptosis and necrosis in a large quantity of the spermatogenic cells, shape and structural changes of the Sertoli's cells, and serious injuries to the blood-testis barrier, one day after the irradiation. The basal compartment separated from the adluminal compartment in most of the VIII stage seminiferous epithelium, and a great number of apoptosis and necrosis spermatogenic cells were released into the cavities. Injuries of blood-testis barrier could be observed 21 days after the 400 kV/m irradiation. The injuries of 100 kV/m irradiation groups were less severe than the 400 kV/m groups, in which the damages to the Sertoli's cells, the seminiferous epithelium and blood-testis barrier recovered to some extent 14 days after the irradiation. The authors conclude that EMP irradiation can damage mouse blood-tests barrier. The injuries, and the time for recovery, are related to EMP power intensity. (authors)

  6. Asymmetric [14C]albumin transport across bullfrog alveolar epithelium

    International Nuclear Information System (INIS)

    Kim, K.J.; LeBon, T.R.; Shinbane, J.S.; Crandall, E.D.

    1985-01-01

    Bullfrog lungs were prepared as planar sheets and bathed with Ringer solution in Ussing chambers. In the presence of a constant electrical gradient (20, 0, or -20 mV) across the tissue, 14 C-labeled bovine serum albumin or inulin was instilled into the upstream reservoir and the rate of appearance of the tracer in the downstream reservoir was monitored. Two lungs from the same animal were used to determine any directional difference in tracer fluxes. An apparent permeability coefficient was estimated from a relationship between normalized downstream radioactivities and time. Results showed that the apparent permeability of albumin in the alveolar to pleural direction across the alveolar epithelial barrier is 2.3 X 10(-7) cm/s, significantly greater (P less than 0.0005) than that in the pleural to alveolar direction (5.3 X 10(-8) cm/s) when the tissue was short circuited. Permeability of inulin, on the other hand, did not show any directional dependence and averaged 3.1 X 10(-8) cm/s in both directions. There was no effect on radiotracer fluxes permeabilities of different electrical gradients across the tissue. Gel electrophoretograms and corresponding radiochromatograms suggest that the large and asymmetric isotope fluxes are not primarily due to digestion or degradation of labeled molecules. Inulin appears to traverse the alveolar epithelial barrier by simple diffusion through hydrated paracellular pathways. On the other hand, [ 14 C]albumin crosses the alveolar epithelium more rapidly than would be expected by simple diffusion. These asymmetric and large tracer fluxes suggest that a specialized mechanism is present in alveolar epithelium that may be capable of helping to remove albumin from the alveolar space

  7. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    OpenAIRE

    Strazielle, Nathalie; Ghersi-Egea, Jean-Fran?ois

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system dise...

  8. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  9. EMMPRIN Modulates Epithelial Barrier Function through a MMP–Mediated Occludin Cleavage

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E.

    2011-01-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. PMID:21777561

  10. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  11. Development of a human corneal epithelium model utilizing a collagen vitrigel membrane and the changes of its barrier function induced by exposing eye irritant chemicals.

    Science.gov (United States)

    Takezawa, Toshiaki; Nishikawa, Kazunori; Wang, Pi-Chao

    2011-09-01

    The brief TEER (trans-epithelial electrical resistance) assay after exposing chemicals to corneal epithelium in vivo is known as a suitable method for evaluating corneal irritancy and permeability quantitatively and continuously. A collagen vitrigel membrane we previously developed is a thin (about 20 μm thick) and transparent membrane composed of high density collagen fibrils equivalent to connective tissues in vivo, e.g. corneal Bowman's membrane. To develop such a TEER assay system in vitro utilizing a human corneal epithelial model, HCE-T cells (a human corneal epithelial cell line) were cultured on the collagen vitrigel membrane substratum prepared in a Millicell chamber suitable for TEER measurement. Human corneal epithelium model possessing 5-6 cell layers sufficient for TEER assay was successfully reconstructed on the substratum in the Millicell chamber by culturing the cells in monolayer for 2 days and subsequently in air-liquid interface for 7 days. The exposure of chemicals to the model induced the time-dependent relative changes of TEER in response to the characteristic of each chemical within a few minutes. These results suggest that the TEER assay using the human corneal epithelial model is very useful for an ocular irritancy evaluation as an alternative to the Draize eye irritation test. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF effects

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Fedan

    2013-10-01

    Full Text Available In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF, which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated, perfused tracheas (IPT. Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG chloride, Na gluconate (Glu, NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4' diisothiocyano 2,2' stilbenedisulfonic acid (DIDS inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro 9 (2 hydroxy 3 nonyladenine (EHNA, actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium .

  13. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Science.gov (United States)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  14. Vocal Fold Epithelial Barrier in Health and Injury A Research Review

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2015-01-01

    Purpose Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially hazardous insults including environmental or systemic-based irritants such as pollutants and reflux, surgical procedures, and vibratory trauma. Small disruptions in the epithelial barrier may have a large impact on susceptibility to injury and overall vocal health. The purpose of this article is to provide a broad-based review of our current knowledge of the vocal fold epithelial barrier. Methods A comprehensive review of the literature was conducted. Details of the structure of the vocal fold epithelial barrier are presented and evaluated in the context of function in injury and pathology. The importance of the epithelial-associated vocal fold mucus barrier is also introduced. Results/Conclusions Information presented in this review is valuable for clinicians and researchers as it highlights the importance of this understudied portion of the vocal folds to overall vocal health and disease. Prevention and treatment of injury to the epithelial barrier is a significant area awaiting further investigation. PMID:24686981

  15. The Structure of Urethral Epithelium in Merinos Lambs

    Directory of Open Access Journals (Sweden)

    Vasile RUS

    2018-05-01

    Full Text Available The aim of this study was to investigate by histological techniques the structure of urethral epithelium in lambs. In this study, we harvested several fragments (prostatic, membranous and cavernous from urethra from 5 merino’s lambs of 3 months old. The first anatomical segment, the prostatic urethra, is lined by a urinary epithelium. The intermediary layer of this epithelium is formed of 5-6 rows of oval cells. The second segment of urethra has the same type of epithelium but the intermediary layer is formed of 6-7 rows of oval cells. In the last anatomical segment, the penile urethra, the epithelium is the same, but the intermediary layer has 3-4 rows of oval cells. In lambs, the urethra is lined by urinary epithelium. The urethral epithelium does not have the same thickness in all segments. The thinner epithelium it is in the cavernous urethra, the ticker is the membranous urethra.

  16. Histone Deacetylase Inhibition Restores Retinal Pigment Epithelium Function in Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Danielle Desjardins

    Full Text Available In diabetic individuals, macular edema is a major cause of vision loss. This condition is refractory to insulin therapy and has been attributed to metabolic memory. The retinal pigment epithelium (RPE is central to maintaining fluid balance in the retina, and this function is compromised by the activation of advanced glycation end-product receptors (RAGE. Here we provide evidence that acute administration of the RAGE agonist, glycated-albumin (gAlb or vascular endothelial growth factor (VEGF, increased histone deacetylase (HDAC activity in RPE cells. The administration of the class I/II HDAC inhibitor, trichostatin-A (TSA, suppressed gAlb-induced reductions in RPE transepithelial resistance (in vitro and fluid transport (in vivo. Systemic TSA also restored normal RPE fluid transport in rats with subchronic hyperglycemia. Both gAlb and VEGF increased HDAC activity and reduced acetyl-α-tubulin levels. Tubastatin-A, a relatively specific antagonist of HDAC6, inhibited gAlb-induced changes in RPE cell resistance. These data are consistent with the idea that RPE dysfunction following exposure to gAlb, VEGF, or hyperglycemia is associated with increased HDAC6 activity and decreased acetyl-α-tubulin. Therefore, we propose inhibiting HDAC6 in the RPE as a potential therapy for preserving normal fluid homeostasis in the hyperglycemic retina.

  17. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  18. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  19. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    therapy in dermatological patients on ceramides and skin barrier function.We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy.......The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified.The aim of this study was to examine the effect of UV...

  20. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    therapy in dermatological patients on ceramides and skin barrier function. We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy.......The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified. The aim of this study was to examine the effect of UV...

  1. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    Science.gov (United States)

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  2. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  3. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet.

    Science.gov (United States)

    Kurundkar, Ashish R; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Hartman, Yolanda E; He, Dongning; Karnatak, Rajendra K; Neel, Mary L; Clancy, John P; Anantharamaiah, G M; Maheshwari, Akhil

    2010-08-01

    Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.

  4. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  5. Crossing safety barriers: influence of children's morphological and functional variables.

    Science.gov (United States)

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Maintenance of sweat glands by stem cells located in the acral epithelium

    International Nuclear Information System (INIS)

    Ohe, Shuichi; Tanaka, Toshihiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Nakamura, Naohiro; Ohsugi, Haruyuki; Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Yamazaki, Fumikazu; Okamoto, Hiroyuki; Ueno, Hiroo

    2015-01-01

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. - Highlights: • The acral epithelium have two types of stem cells. • Lgr6-positive cells are rapid-cycling, short-term stem cells. • Bmi1-positive cells are slow-cycling stem cells that act as reserver stem cells. • Lgr5 may be a useful sweat gland marker in mice.

  7. Maintenance of sweat glands by stem cells located in the acral epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Ohe, Shuichi [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Dermatology, Kansai Medical University, Osaka 573-1010 (Japan); Tanaka, Toshihiro [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010 (Japan); Yanai, Hirotsugu [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Surgery, Kansai Medical University, Osaka 573-1010 (Japan); Komai, Yoshihiro [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Urology and Andrology, Kansai Medical University, Osaka 573-1010 (Japan); Omachi, Taichi [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Pediatrics, Kansai Medical University, Osaka 573-1010 (Japan); Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Nakamura, Naohiro [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010 (Japan); Ohsugi, Haruyuki [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Urology and Andrology, Kansai Medical University, Osaka 573-1010 (Japan); Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Yamazaki, Fumikazu; Okamoto, Hiroyuki [Department of Dermatology, Kansai Medical University, Osaka 573-1010 (Japan); Ueno, Hiroo, E-mail: hueno@hirakata.kmu.ac.jp [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan)

    2015-10-23

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. - Highlights: • The acral epithelium have two types of stem cells. • Lgr6-positive cells are rapid-cycling, short-term stem cells. • Bmi1-positive cells are slow-cycling stem cells that act as reserver stem cells. • Lgr5 may be a useful sweat gland marker in mice.

  8. Improved cell line IPEC-J2, characterized as a model for porcine jejunal epithelium.

    Directory of Open Access Journals (Sweden)

    Silke S Zakrzewski

    Full Text Available Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS or species-specific (porcine serum, PS conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS, compared to conventional FBS culture (IPEC-J2/FBS, the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line's initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.

  9. Glucose, epithelium, and enteric nervous system: dialogue in the dark.

    Science.gov (United States)

    Pfannkuche, H; Gäbel, G

    2009-06-01

    The gastrointestinal epithelium is in close contact with the various components of the chymus, including nutrients, bacteria and toxins. The epithelial barrier has to decide which components are effectively absorbed and which components are extruded. In the small intestine, a nutrient like glucose is mainly absorbed by the sodium linked glucose cotransporter 1 (SGLT1) and the glucose transporter 2 (GLUT2). The expression and activity of both transport proteins is directly linked to the amount of intraluminal glucose. Besides the direct interaction between glucose and the enterocytes, glucose also stimulates different sensory mechanisms within the intestinal wall. The most important types of cells involved in the sensing of intraluminal contents are enteroendocrine cells and neurones of the enteric nervous system. Regarding glucosensing, a distinct type of enteroendocrine cells, the enterochromaffine (EC) cells are involved. Excitation of EC cells by intraluminal glucose results in the release of serotonin (5-HT), which modulates epithelial functions and activates enteric secretomotorneurones. Enteric neurones are not only activated by 5-HT, but also directly by glucose. The activation of different cell types and the subsequent crosstalk between these cells may trigger appropriate absorptive and secretory processes within the intestine.

  10. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Directory of Open Access Journals (Sweden)

    Musah Sadiatu

    2012-11-01

    Full Text Available Abstract Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5 and keratin 14 (K14 for basal cells, Clara cell secretory protein (CCSP for Clara cells, and acetylated tubulin (AcTub for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10, but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion

  11. Antioxidant effect of minocycline in gingival epithelium induced by Actinobacillus actinomycetemcomitans serotype B toxin

    Directory of Open Access Journals (Sweden)

    Ernie Maduratna Setiawati

    2009-03-01

    Full Text Available Background: Actinobacillus actinomycetemcomitans (Aa serotype B has been associated with aggressive periodontitis. Gingival epithelial cell is exquisitely sensitive to the toxin and may lead to the epithel protective barrier disruption. Experimental models show that minocycline is not related to it’s antimicrobial effect and protection against neuron cell apoptosis of a number experimental models of brain injury and Parkinson’s disease. Purpose: This study, examined antioxidant effect of minocycline to inhibit apoptosis of gingival epithelium induced crude toxin bacteria Aa serotype B in mice. Methods: Thirty adult mice strain Swiss Webster (balb C were divided randomly into three groups: control group (group A, toxin group (group B and toxin and minocycline group (group C. The mice were taken at 24 hours after application, and then the tissue sections of gingival epithelium were stained with tunnel assay and immunohistochemistry. Result: Treatment with these toxin induced apoptosis of gingival epithelium and was associated with DNA fragmentation and reduced gluthatione (GSH. Minocycline 100 nM significantly increased GSH and reduced apoptosis (p < 0.05. Minocycline provides antioxidant effect against citotoxicity of bacteria Aa serotipe B. Conclusion: Nanomolar concentration of minocycline potential as new therapeutic agent to prevent progressivity of aggressiveness of periodontitis.

  12. The important role of stratum corneum lipids for the cutaneous barrier function.

    Science.gov (United States)

    van Smeden, J; Janssens, M; Gooris, G S; Bouwstra, J A

    2014-03-01

    The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Reinstatement of "germinal epithelium" of the ovary

    Directory of Open Access Journals (Sweden)

    Nishida Naoyo

    2006-08-01

    Full Text Available Abstract Background The existing dogma that the former term ovarian "germinal epithelium" resulted from a mistaken belief that it could give rise to new germ cells is now strongly challenged. Discussion Two years ago, a research group of the University of Tennessee led by Antonin Bukovsky successfully demonstrated the oogenic process from the human ovarian covering epithelium now commonly called the ovarian surface epithelium. They showed the new oocyte with zona pellucida and granulosa cells, both originated from the surface epithelium arising from mesenchymal cells in the tunica albuginea, and stressed that the human ovary could form primary follicles throughout the reproductive period. This gives a big impact not only to the field of reproductive medicine, but also to the oncologic area. The surface epithelium is regarded as the major source of ovarian cancers, and most of the neoplasms exhibit the histology resembling müllerian epithelia. Since the differentiating capability of the surface epithelium has now expanded, the histologic range of the neoplasms in this category may extend to include both germ cell tumors and sex cord-stromal cell tumors. Summary Since the oogenic capability of ovarian surface cells has been proven, it is now believed that the oocytes can originate from them. The term "germinal epithelium", hence, might reasonably be reinstated.

  14. Loss of the Wnt receptor frizzled 7 in the mouse gastric epithelium is deleterious and triggers rapid repopulation in vivo

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2017-08-01

    Full Text Available The gastric epithelium consists of tubular glandular units, each containing several differentiated cell types, and populations of stem cells, which enable the stomach to secrete the acid, mucus and various digestive enzymes required for its function. Very little is known about which cell signalling pathways are required for homeostasis of the gastric epithelium. Many diseases, such as cancer, arise as a result of deregulation of signalling pathways that regulate homeostasis of the diseased organ. Therefore, it is important to understand the biology of how normal conditions are maintained in a tissue to help inform the mechanisms driving disease in that same tissue, and to identify potential points of therapeutic intervention. Wnt signalling regulates several cell functions, including proliferation, differentiation and migration, and plays a crucial role during homeostasis of several tissues, including the intestinal epithelium. Wnt3a is required in the culture medium of gastric organoids, suggesting it is also important for the homeostasis of the gastric epithelium, but this has not been investigated in vivo. Here, we show that the Wnt receptor frizzled 7 (Fzd7, which is required for the homeostasis of the intestine, is expressed in the gastric epithelium and is required for gastric organoid growth. Gastric-specific loss of Fzd7 in the adult gastric epithelium of mice is deleterious and triggers rapid epithelial repopulation, which we believe is the first observation of this novel function for this tissue. Taken together, these data provide functional evidence of a crucial role for Wnt signalling, via the Fzd7 receptor, during homeostasis of the gastric epithelium.

  15. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Directory of Open Access Journals (Sweden)

    Wu-Lin Zuo

    Full Text Available The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+/HCO(3(- cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH solution, the intracellular pH (pHi recovery from NH(4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+/H(+ exchanger (NHE. Immediately changing of the KH solution from HEPES buffered to HCO(3(- buffered would cause another pHi recovery. The pHi recovery in HCO(3(- buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, the inhibitor of HCO(3(- transporter or by removal of extracellular Na(+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  17. Transport across the choroid plexus epithelium

    DEFF Research Database (Denmark)

    Praetorius, Jeppe; Damkier, Helle Hasager

    2017-01-01

    The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus...... is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature......, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1) the choroid plexus epithelium as the source of mediators necessary for central nervous system...

  18. A search for parameters of universal sub-barrier fusion excitation function

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-11-15

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections. (orig.)

  19. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  20. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  1. The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model.

    Science.gov (United States)

    Sutovska, Martina; Kocmalova, Michaela; Joskova, Marta; Adamkov, Marian; Franova, Sona

    2015-04-01

    Previously, therapeutic potency of CRAC channels blocker was evidenced as a significant decrease in airway smooth muscle hyperreactivity, antitussive and anti-inflammatory effects. The major role of the respiratory epithelium in asthma pathogenesis was highlighted only recently and CRAC channels were proposed as the most significant route of Ca2+ entry into epithelial cells. The aim of the study was to analyse the impact of long-term administered CRAC channels blocker on airway epithelium, e.g. cytokine production and ciliary beat frequency (CBF) using an animal model of allergic asthma. Ovalbumin-induced allergic airway inflammation of guinea pigs was followed by long-term (14 days lasted) therapy by CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA). The influence of long-term therapy on cytokines (IL-4, IL-5 and IL-13) in BALF and in plasma, immunohistochemical staining of pulmonary tissue (c-Fos positivity) and CBF in vitro were used for analysis. Decrease in cytokine levels and in c-Fos positivity confirmed an anti-inflammatory effect of long-term administered FPCA. Cytokine levels in BALF and distribution of c-Fos positivity suggested that FPCA was a more potent inhibitor of respiratory epithelium secretory functions than budesonide. FPCA and budesonide reduced CBF only insignificantly. All findings supported CRAC channels as promising target in the new strategy of antiasthmatic treatment.

  2. Impact of thymectomy and antilymphocytic serum on stem cells of the intestinal epithelium

    International Nuclear Information System (INIS)

    Aparovich, G.G.; Trufakin, V.A.

    1982-01-01

    The population of stem cells of the intestinal epithelium was studied under conditions of the disturbed balance in the immune system on F 1 (CBAxC57B1) mice. It has been shown that thymectomy in adult mice does not influence the stem region of the intestinal epithelium at early time of observation but causes a tendency to the changed number of epithelial stem cells in 4-6 months. Administration of specific sera against T-, B- and mixed lymphoid populations on the 1st day of observation produces an ambi us effect on the stem region and results in an increase of the number of epithelial stem cells on the 5th day. After administration of the antilymphocytic serum there have been determined morphological changes in the population of mature erythrocytes and undulatory fluctuations in the number of mitotic cells of the intestinal epithelium. These data suggest functional correlation of the intestinal epithelium and the state of the immunocompetent tissue [ru

  3. A nuclide transfer model for barriers of the seabed repository using response function

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Kang, Chul Hyung; Hahn, Pil Soo

    1996-01-01

    A nuclide transfer by utilizing mass transfer coefficient and barrier response function defined for each barrier is proposed, by which the final nuclide transfer rate into the sea water can be evaluated. When simple and immediate quantification of the nuclide release is necessary in the conservative aspect, using this kind of approach may be advantageous since each layered barrier can be treated separately from other media in series in the repository system, making it possible to apply separate solutions in succession to other various media. Although one disadvantage is that while flux continuity can be maintained at the interface by using the exit nuclide flux from the first medium as the source flux for the next one, there may be no guarantee for concentration continuity, this problem could be eliminated assuming that there is no boundary resistance to mass transfer across the interface. Mass transfer coefficient can be determined by the assumption that the nuclide concentration gradient at the interface between adjacent barriers remains constant and barrier response function is obtained from an analytical expression for nuclide flow rate out of each barrier in response to a unit impulse into the barrier multiplied by mass transfer coefficient. Total time-dependent nuclide transfer rate from the barrier can then be obtained by convoluting the response function for the barrier with a previously calculated set of time-varying input of nuclide flow rate for the previous barrier. 18 refs., 5 figs. (author)

  4. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  5. Loss of the Wnt receptor frizzled 7 in the mouse gastric epithelium is deleterious and triggers rapid repopulation in vivo.

    Science.gov (United States)

    Flanagan, Dustin J; Barker, Nick; Nowell, Cameron; Clevers, Hans; Ernst, Matthias; Phesse, Toby J; Vincan, Elizabeth

    2017-08-01

    The gastric epithelium consists of tubular glandular units, each containing several differentiated cell types, and populations of stem cells, which enable the stomach to secrete the acid, mucus and various digestive enzymes required for its function. Very little is known about which cell signalling pathways are required for homeostasis of the gastric epithelium. Many diseases, such as cancer, arise as a result of deregulation of signalling pathways that regulate homeostasis of the diseased organ. Therefore, it is important to understand the biology of how normal conditions are maintained in a tissue to help inform the mechanisms driving disease in that same tissue, and to identify potential points of therapeutic intervention. Wnt signalling regulates several cell functions, including proliferation, differentiation and migration, and plays a crucial role during homeostasis of several tissues, including the intestinal epithelium. Wnt3a is required in the culture medium of gastric organoids, suggesting it is also important for the homeostasis of the gastric epithelium, but this has not been investigated in vivo Here, we show that the Wnt receptor frizzled 7 (Fzd7), which is required for the homeostasis of the intestine, is expressed in the gastric epithelium and is required for gastric organoid growth. Gastric-specific loss of Fzd7 in the adult gastric epithelium of mice is deleterious and triggers rapid epithelial repopulation, which we believe is the first observation of this novel function for this tissue. Taken together, these data provide functional evidence of a crucial role for Wnt signalling, via the Fzd7 receptor, during homeostasis of the gastric epithelium. © 2017. Published by The Company of Biologists Ltd.

  6. Stabilization with guaranteed safety using Control Lyapunov–Barrier Function

    NARCIS (Netherlands)

    Romdlony, Muhammad Zakiyullah; Jayawardhana, Bayu

    2016-01-01

    We propose a novel nonlinear control method for solving the problem of stabilization with guaranteed safety for nonlinear systems. The design is based on the merging of the well-known Control Lyapunov Function (CLF) and the recent concept of Control Barrier Function (CBF). The proposed control

  7. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    International Nuclear Information System (INIS)

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W.

    1990-01-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments

  8. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    Science.gov (United States)

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Crossing the entropy barrier of dynamical zeta functions

    International Nuclear Information System (INIS)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F.

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.)

  10. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  11. Effects of carprofen on the integrity and barrier function of canine colonic mucosa.

    Science.gov (United States)

    Briere, Catherine A; Hosgood, Giselle; Morgan, Timothy W; Hedlund, Cheryl S; Hicks, Merrin; McConnico, Rebecca S

    2008-02-01

    To measure effects of carprofen on conductance and permeability to mannitol and histologic appearance in canine colonic mucosa. Colonic mucosa from 13 mature mixed-breed dogs. Procedures-Sections of mucosa from the transverse colon and proximal and distal portions of the descending colon were obtained immediately after dogs were euthanized. Sections were mounted in Ussing chambers. Carprofen (400 microg/mL) was added to the bathing solution for treated sections. Conductance was calculated at 15-minute intervals for 240 minutes. Flux of mannitol was calculated for three 1-hour periods. Histologic examination of sections was performed after experiments concluded. Conductance was graphed against time for each chamber, and area under each curve was calculated. Conductance X time, flux of mannitol, and frequency distribution of histologic findings were analyzed for an effect of region and carprofen. Carprofen significantly increased mean conductance X time, compared with values for control (untreated) sections for all regions of colon. Carprofen significantly increased mean flux of mannitol from period 1 to period 2 and from period 2 to period 3 for all regions of colon. Carprofen caused a significant proportion of sections to have severe sloughing of cells and erosions involving >or= 10% of the epithelium, compared with control sections. Carprofen increased in vitro conductance and permeability to mannitol in canine colonic mucosa. Carprofen resulted in sloughing of cells and erosion of the colonic mucosa. These findings suggested that carprofen can compromise the integrity and barrier function of the colonic mucosa of dogs.

  12. Effects of x-irradiation on cell kinetics of oral epithelium in mice

    International Nuclear Information System (INIS)

    Jinnouchi, Kenichi

    1982-01-01

    The acute radiation effects on the tongue and lip mucosa epithelium were cytokinetically investigated after the local irradiation at the head part of C 3 Hf/He mice with single dose of 516 mC/kg(2000R) of X rays. The microautoradiographic study was performed for these two kinds of oral epithelium at various times after the pulse-labeling with 3 H-thymidine, which followed immediately after the irradiation. The cell kinetics of irradiated as well as unirradiated basal cells were investigated by observing the changes in frequencies of the labeled cells and the labeled mitoses in the epithelium along the time course after irradiation. The results of the analysis of the percent frequencies of mitotic cells as a function of time after the labeling and the irradiation showed that the movement of the labeled cells were blocked at G 2 phase for about 6 hr and that the cell cycle time after the 1st post irradiation mitoses became shorter than that of the unirradiated cells. However, no change was found in the migration rate of the tongue epithelium, i.e., the time required for labeled cells to migrate from basal cell layer to prickle-granular cell layer. On the other hand, only 25% of labeled cells in the lip mucosa epithelium migrated into prickle-granular cell layer until 40 hr after irradiation, and it was hardly observed that the labeled cells moved into mitotic phase. These results suggest that basal cell of the lip mucosa is more radiosensitive than that of the tongue epithelium. (author)

  13. Stratum Corneum Barrier Lipids in Cholesteatoma

    DEFF Research Database (Denmark)

    Svane-Knudsen, V; Halkier-Sørensen, L; Rasmussen, G

    2000-01-01

    emerged. When the corneocyte reaches the transitional stage to the stratum corneum, the Odland bodies accumulate near the cell membrane and discharge their contents of lipid and enzymes. The lipids are reorganized into multiple long sheets of lamellar structures that embrace the keratinized corneocytes......, as seen in the formation and maintenance of the cutaneous permeability barrier. In this study we draw the attention to the facts that the cholesteatoma epithelium is capable of producing not only cholesterol, but also several lipids, and that the lipid molecules are organized in multilamellar structures......Specimens from primary cholesteatomas were examined under the electron microscope using a lipid-retaining method that is best suited for intracellular lipids and a method that is best for intercellular lipids. In the stratum granulosum of the squamous epithelium, a large number of Odland bodies...

  14. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  15. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  16. Relationships between Electrokinetic Index of buccal epithelium and some functional and metabolic parameters at men with chronic pyelonephrite

    Directory of Open Access Journals (Sweden)

    Iryna G. Kyrylenko

    2016-01-01

      Abstracts   Background. Known for a number of parameters of the body, which through regression equations derived can assess biological age. We examined relationships between electrokinetic mobility buccal epithelium cell nuclei, named Electrokinetic Index (EKI, and some functional and metabolic parameters of body. Methods. Under a observations were 23 men by age 24-70 years with chronic pyelonephrite in the phase of remission. We estimated the EKI, state of the vegetative and hormonal regulation as well as metabolism of cholesterol. Results. We confirned closely correlation (r=-0,89 between Metric Age and EKI. Baevskiy’s Adaptation Potential and Stange’s Test together determines EKI on 28%. RMSSD, VLF and Baevskiy’s Stress Index determines EKI on 31%. Plasma Colesterol and Klimov’s Atherogenicity Coefficient determines EKI on 56%. In summary model of multiple regression with stepwise excluding are currently two last parameters as well as Plasma Testosterone and relative Power Spectral VLF HRV, which together determines EKI on 73%: R=0,868; R2=0,754; Adjusted R2=0,730;F(4,4=31,4; χ2(4=58,9; p<10-5. Conclusion. Electrokinetic Index of buccal epithelium really rellects neuro-endocrine regulation and metabolism of Cholesterol.   Keywords: Electrokinetic Index, Biological Age, HRV, Cholesterol, Testosterone, Cortisol, Relationships.

  17. Maintenance of sweat glands by stem cells located in the acral epithelium.

    Science.gov (United States)

    Ohe, Shuichi; Tanaka, Toshihiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Nakamura, Naohiro; Ohsugi, Haruyuki; Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Yamazaki, Fumikazu; Okamoto, Hiroyuki; Ueno, Hiroo

    2015-10-23

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Functional and Genetic Analysis of Choroid Plexus Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hannah Elizabeth Henson

    2014-11-01

    Full Text Available The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFPsj2, that expresses enhanced green fluorescent protein (EGFP in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFPsj2, we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease.

  19. Vocal Fold Epithelial Barrier in Health and Injury: A Research Review

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2014-01-01

    Purpose: Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially…

  20. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  1. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  2. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Shu, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-07-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.

  3. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    International Nuclear Information System (INIS)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng; Shu, Yongqian; Gu, Yanhong; Wu, Xudong; Xu, Qiang

    2014-01-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction

  4. Cyclosporine a inhibits apoptosis of rat gingival epithelium.

    Science.gov (United States)

    Ma, Su; Liu, Peihong; Li, Yanwu; Hou, Lin; Chen, Li; Qin, Chunlin

    2014-08-01

    The use of cyclosporine A (CsA) induces hyperplasia of the gingival epithelium in a site-specific response manner, but the molecular mechanism via which the lesion occurs is unclear. The present research aims to investigate the site-specific effect of CsA on the apoptosis of gingival epithelium associated with gingival hyperplasia. Forty Wistar rats were divided into CsA-treated and non-treated groups. Paraffin-embedded sections of mandibular first molars were selected for hematoxylin and eosin staining, immunohistochemistry analyses of bcl-2 and caspase-3, and the staining of terminal deoxynucleotidyl transfer-mediated dUTP nick-end labeling (TUNEL). The area of the whole gingival epithelium and the length of rete pegs were measured, and the number of bcl-2- and caspase-3-positive cells in the longest rete peg were counted. The analysis of variance for factorial designs and Fisher least significant difference test for post hoc analysis were used to determine the significance levels. In CsA-treated rats, bcl-2 expression was significantly upregulated, whereas caspase-3 expression was downregulated, along with a reduced number of TUNEL-positive cells. The site-specific distribution of bcl-2 was consistent with the site-specific hyperplasia of the gingival epithelium in CsA-treated rats. CsA inhibited gingival epithelial apoptosis via the mitochondrial pathway and common pathway. The antiapoptotic protein bcl-2 might play a critical role in the pathogenesis of the site-specific hyperplasia of gingival epithelium induced by CsA. There were mechanistic differences in the regulation of apoptosis for cells in the attached gingival epithelium, free gingival epithelium, and junctional epithelium.

  5. Barrier function test: Laboratory evaluation of the protective function of some barrier creams against cashewnut shell oil

    Directory of Open Access Journals (Sweden)

    Pasricha J

    1991-01-01

    Full Text Available A barrier function test has been designed to screen the protective capacity of a cream against the cauterizing effect of cashew nut shell oil (CNSO on the skin. The test consists of applying the barrier cream on a 5 cm circular area of skin on the back of a human volunteer and then at its centre applying a 1 cm sq Whatman no. 3 paper disc soaked in the CNSO for 15 minutes and looking for the evidence of cauterization reaction after 48 hours. Of the various creams containing a variety of paraffins, bees wax, polyethylene glycols, methyl cellulose gel, and petrolatum, only polyethylene glycol (PEG cream was found to afford adequate protection against cashew nut shell oil. Addition of 10% zinc oxide or 10% kaolin to the PEG cream did not seem to afford any additional protection. Castor oil already being used by the workers was found to be inferior to the PEG cream.

  6. Barrier functions for Pucci-Heisenberg operators and applications

    OpenAIRE

    Cutri , Alessandra; Tchou , Nicoletta

    2007-01-01

    International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...

  7. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    Science.gov (United States)

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721

  8. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    Science.gov (United States)

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  9. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Directory of Open Access Journals (Sweden)

    Maria Fiorentino

    Full Text Available Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa and might contribute (along with enterotoxins to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them

  10. Comparison of transepithelial corneal crosslinking with epithelium-off crosslinking (epithelium-off CXL in adult Pakistani population with progressive keratoconus

    Directory of Open Access Journals (Sweden)

    Bushra Akbar

    2017-01-01

    CONCLUSION: Transepithelial CXL is not recommended to be replaced completely by standard epithelium-off CXL due to continued ectatic progression in 25% of cases. However, thin corneas, unfit for standard epithelium-off CXL, can benefit from transepithelial CXL.

  11. Xyloglucan, a Plant Polymer with Barrier Protective Properties over the Mucous Membranes: An Overview

    Directory of Open Access Journals (Sweden)

    Núria Piqué

    2018-02-01

    Full Text Available Disruption of the epithelial barrier function has been recently associated with a variety of diseases, mainly at intestinal level, but also affecting the respiratory epithelium and other mucosal barriers. Non-pharmacological approaches such as xyloglucan, with demonstrated protective barrier properties, are proposed as new alternatives for the management of a wide range of diseases, for which mucosal disruption and, particularly, tight junction alterations, is a common characteristic. Xyloglucan, a natural polysaccharide derived from tamarind seeds, possesses a “mucin-like” molecular structure that confers mucoadhesive properties, allowing xyloglucan formulations to act as a barrier capable of reducing bacterial adherence and invasion and to preserve tight junctions and paracellular flux, as observed in different in vitro and in vivo studies. In clinical trials, xyloglucan has been seen to reduce symptoms of gastroenteritis in adults and children, nasal disorders and dry eye syndrome. Similar mucosal protectors containing reticulated proteins have also been useful for the treatment of irritable bowel syndrome and urinary tract infections. The role of xyloglucan in other disorders with mucosal disruption, such as dermatological or other infectious diseases, deserves further research. In conclusion, xyloglucan, endowed with film-forming protective barrier properties, is a safe non-pharmacological alternative for the management of different diseases, such as gastrointestinal and nasal disorders.

  12. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  13. Neoplasia versus hyperplasia of the retinal pigment epithelium

    DEFF Research Database (Denmark)

    Heegaard, Steffen; Larsen, J.N.B.; Fledelius, Hans C.

    2001-01-01

    ophthalmology, retinal pigment epithelium, adenoma, tumor-like hyperplasia, histology, immunohistochemistry, tumor, neoplasm, ultrasonography......ophthalmology, retinal pigment epithelium, adenoma, tumor-like hyperplasia, histology, immunohistochemistry, tumor, neoplasm, ultrasonography...

  14. The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium

    OpenAIRE

    Marshall, Thomas W.; Lloyd, Isaac E.; Delalande, Jean Marie; N?thke, Inke; Rosenblatt, Jody

    2011-01-01

    Despite high rates of cell death, epithelia maintain intact barriers by squeezing dying cells out using a process termed cell extrusion. Cells can extrude apically into the lumen or basally into the tissue the epithelium encases, depending on whether actin and myosin contract at the cell base or apex, respectively. We previously found that microtubules in cells surrounding a dying cell target p115 RhoGEF to the actin cortex to control where contraction occurs. However, what controls microtubu...

  15. Prevalence of ciliated epithelium in apical periodontitis lesions.

    Science.gov (United States)

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Safety barriers and safety functions a comparison of different applications

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1998-01-01

    A study is being made with the focus on different theories and applications concerning 'safety barriers' and 'safety functions'. One aim is to compare the characteristics of different kinds of safely functions, which can be purpose, efficiency, reliability, weak points etc. A further aim is to summarize how the combination of different barriers are described and evaluated. Of special interest are applications from nuclear and chemical process safety. The study is based on a literature review, interviews and discussions. Some preliminary conclusions are made. For example, it appears to exist a need for better tools to support the design and evaluation of procedures. There are a great number of theoretical models describing safety functions. However, it still appears to be an interest in further development of models, which might give the basis for improved practical tools. (author)

  17. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration.

    Science.gov (United States)

    Feng, Lili; Ju, Meihua; Lee, Kei Ying V; Mackey, Ashley; Evangelista, Mariasilvia; Iwata, Daiju; Adamson, Peter; Lashkari, Kameran; Foxton, Richard; Shima, David; Ng, Yin Shan

    2017-10-01

    Current treatments for choroidal neovascularization, a major cause of blindness for patients with age-related macular degeneration, treat symptoms but not the underlying causes of the disease. Inflammation has been strongly implicated in the pathogenesis of choroidal neovascularization. We examined the inflammatory role of Toll-like receptor 2 (TLR2) in age-related macular degeneration. TLR2 was robustly expressed by the retinal pigment epithelium in mouse and human eyes, both normal and with macular degeneration/choroidal neovascularization. Nuclear localization of NF-κB, a major downstream target of TLR2 signaling, was detected in the retinal pigment epithelium of human eyes, particularly in eyes with advanced stages of age-related macular degeneration. TLR2 antagonism effectively suppressed initiation and growth of spontaneous choroidal neovascularization in a mouse model, and the combination of anti-TLR2 and antivascular endothelial growth factor receptor 2 yielded an additive therapeutic effect on both area and number of spontaneous choroidal neovascularization lesions. Finally, in primary human fetal retinal pigment epithelium cells, ligand binding to TLR2 induced robust expression of proinflammatory cytokines, and end products of lipid oxidation had a synergistic effect on TLR2 activation. Our data illustrate a functional role for TLR2 in the pathogenesis of choroidal neovascularization, likely by promoting inflammation of the retinal pigment epithelium, and validate TLR2 as a novel therapeutic target for reducing choroidal neovascularization. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Increase of corneal epithelium cell radioresistance during regeneration

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1985-01-01

    A comparative study of the radiosensitivity of the normal and regenerating cornea epithelium of C 57 Bl mice was performed on the cellular level, the duration of the cell cycle being taken into account. Criteria of radiation injuries were the number of chromosome aberrations, mitotic index and duration of mitotic block. The anterior part of the head was irradiated singly with 1.75, 3.5 or 7.0 Gy and also repeatedly 3.5 + 3.5 at a 24-hours interval. The corneas were fixed 2, 4, 6, 12, 24, 48, 72 and 96 hours after irradiation. In all cases of irradiated mice the regenerating epithelium showed a shorter mitotic block and significantly lower cytogenetic injury as compared with the controls. Effects of fractionated irradiation were only shown in the regenerating epithelium. The results obtained indicate that regenerating epithelium cells of the cornea are significantly more radioresistant than normal epithelium due to activation of post-radiation recovery, and also, possibly, due to an increase in the content of endogenous radioprotectors. (author)

  19. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  20. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  1. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  2. Tests of potential functional barriers for laminated multilayer food packages. Part I: Low molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R

    2000-08-01

    The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.

  3. LM and TEM study of the orthokeratinized and parakeratinized epithelium of the tongue in the domestic duck (Anas platyrhynchos f. domestica).

    Science.gov (United States)

    Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Ratajczak, Marlena

    2014-12-01

    The previous histological studies of the lingual mucosa in birds characterized two types of keratinized epithelium, i.e. orthokeratinized and parakeratinized. These epithelia are composed of three layers: basal, intermediate and keratinized. The present study showed detailed ultrastructural features of cells in particular layers of two types of keratinized epithelia on the tongue in the domestic duck and defined structural differences. TEM observations showed a gradual reduction in cell organelles in the following layers, at increasing amounts of keratin fibers. The characteristic feature of the ortho- and parakeratinized epithelium is the presence of sub-layers in the intermediate layer, i.e. the upper and lower part, which results from the different shape of cell nuclei and dye affinity of the cytoplasm. The keratinized layer of ortho- and parakeratinized epithelium is built of two types of cells such as electron dark and light cells, which undergo exfoliation. The basic difference between the keratinized epithelia is the presence of flattened cell nuclei in the keratinized layer of the parakeratinized epithelium. The differentiating feature is also an arrangement of keratin fibers in the cell cytoplasm of the keratinized layer. The analysis of the thickness of the epithelium and the keratinized layer, indicated differences between keratinized epithelia, which result from two variants of performing protective functions, either through a thick keratinized layer or by a higher epithelium. Differences in the ultrastructure of the ortho- and parakeratinized epithelium are associated with mechanical functions of the epithelium resulting from different forces acting on the tongue during feeding activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Posttranslational regulation of glucose-6-phosphate dehydrogenase activity in tongue epithelium

    NARCIS (Netherlands)

    Biagiotti, E.; Bosch, K. S.; Ninfali, P.; Frederiks, W. M.; van Noorden, C. J.

    2000-01-01

    Expression of glucose-6-phosphate dehydrogenase (G6PD) activity is high in tongue epithelium, but its exact function is still unknown, it may be related;either to the high proliferation rate of this tissue or to protection against oxidative stress. To elucidate its exact role, we localized

  5. Barrier and system performances within a safety case: their functioning and evolution with time

    International Nuclear Information System (INIS)

    Hedin, A.; Voinis, S.; Fillion, E.; Keller, S.; Lalieux, Ph.; Nachmilner, L.; Nys, V.; Rodriguez, J.; Sevougian, D.; Wollrath, J.

    2002-01-01

    The following six questions were used as the basis for the discussions in a Working Group: - What is the role of each barrier as a function of time or in the different time frames? What is its contribution to the overall system performance or safety as a function of time? - Which are the main uncertainties on the performance of barriers in the timescales? To what extent should we enhance the robustness of barriers because of the uncertainties of some component behaviour with time? - What is the requested or required performance versus the expected realistic or conservative behaviour with time? How are these safety margins used as arguments in a safety case? - What is the issue associated with the geosphere stability for different geological systems? - How are barriers and system performances, as a function of time, evaluated (presented and communicated) in a safety case? - What kind of measures are used for siting, designing and optimising robust barriers corresponding to situations that can vary with time? Are human actions considered to be relevant? (authors)

  6. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  7. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  8. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  9. Functional characterization and localization of a gill-specific claudin isoform in Atlantic salmon

    DEFF Research Database (Denmark)

    Engelund, Morten Buch; Yu, Alan S L; Li, Jiahua

    2012-01-01

    Claudins are the major determinants of paracellular epithelial permeability in multicellular organisms. In Atlantic salmon (Salmo salar L.), we previously found that mRNA expression of the abundant gill-specific claudin 30 decreases during seawater (SW) acclimation, suggesting that this claudin i...... that claudin 30 functions as a cation barrier between pavement cells in the gill and also has a general role in cell-cell adhesion in deeper layers of the epithelium....

  10. Executive Functioning, Barriers to Adherence, and Nonadherence in Adolescent and Young Adult Transplant Recipients.

    Science.gov (United States)

    Gutiérrez-Colina, Ana M; Eaton, Cyd K; Lee, Jennifer L; Reed-Knight, Bonney; Loiselle, Kristin; Mee, Laura L; LaMotte, Julia; Liverman, Rochelle; Blount, Ronald L

    2016-08-01

    OBJECTIVE : To evaluate levels of executive functioning in a sample of adolescent and young adult (AYA) transplant recipients, and to examine executive functioning in association with barriers to adherence and medication nonadherence.  METHOD : In all, 41 caregivers and 39 AYAs were administered self- and proxy-report measures.  RESULTS : AYA transplant recipients have significant impairments in executive functioning abilities. Greater dysfunction in specific domains of executive functioning was significantly associated with more barriers to adherence and greater medication nonadherence.  CONCLUSION : AYA transplant recipients are at increased risk for executive dysfunction. The assessment of executive functioning abilities may guide intervention efforts designed to decrease barriers to adherence and promote developmentally appropriate levels of treatment responsibility. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  12. Influence of functional food components on gut health.

    Science.gov (United States)

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  13. Ultrastructure of respiratory tract epithelium following irradiation or application of cytostatics

    International Nuclear Information System (INIS)

    Konradova, V.; Smelhaus, V.; Kanta, J.

    1988-01-01

    The ultrastructure was studied of the large bronchi epithelium in 3 patients with malignant tumors where signs of pulmonary fibrosis were found following irradiation and combined therapy. In 2 patients, pseudostratified cylindrical epithelium was observed with signs of pathological alteration, in the third patient an altered pseudostratified cylindrical epithelium with ultrastructural signs of commencing reconstructure into stratified squamous epithelium. The findings in the respiratory track epithelium of the patients were similar to those observed in a group of children with chronic or relapsing bronchitis and bronchopneumonia. The findings show marked disturbance of the ciliary border caused by reduction in the number of kinocilia which is associated with an impairment of the self-cleaning capacity of epithelium. (author). 1 tab., 10 refs

  14. Radio-iodination of plasma membranes of toad bladder epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, H J; Edelman, I S [California Univ., San Francisco (USA). Cardiovascular Research Inst.; California Univ., San Francisco (USA). Dept. of Medicine; California Univ., San Francisco (USA). Dept. of Biochemistry and Biophysics)

    1979-01-01

    The present report describes high yield enzymatic radio-iodination of the apical and basal-lateral plasma membranes of toad bladder epithelium with /sup 125/I-Na, by a procedure that does not breach the functional integrity of the epithelium, as assessed by the basal and vasopressin-sensitive short-circuit current (SCC). Iodination of basal-lateral plasma membranes, at a yield comparable to that obtained with apical labelling, was attained after about 30 min of exposure of the intact bladder to the labelling solutions. Approximately 25% of the basal-lateral labeling was lost when the epithelial cells were harvested after collagenase treatment, implying that some iodination of the basement membrane had taken place. Less than 10% of iodination of the apical or basal-lateral surfaces was accounted for by lipid-labeling. Analysis of the labeled apical and basal-lateral species by enzymatic digestion and thin layer chromatography disclosed that virtually all the radioactivity was present as mono-iodotyrosine (MIT). (orig./AJ).

  15. Developmental origin of the posterior pigmented epithelium of iris.

    Science.gov (United States)

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  16. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  17. Epithelium percentage estimation facilitates epithelial quantitative protein measurement in tissue specimens.

    Science.gov (United States)

    Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui

    2013-12-01

    The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results

  18. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  20. Generation of tooth-periodontium complex structures using high-odontogenic potential dental epithelium derived from mouse embryonic stem cells.

    Science.gov (United States)

    Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng

    2017-06-08

    A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental

  1. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Micha Pedersen, Rune; Grønnemose, Rasmus Birkholm; Stærk, Kristian

    2018-01-01

    a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell......Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching...... the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial...

  2. Fibronectin changes in eosinophilic meningitis with blood-CSF barrier disruption.

    Science.gov (United States)

    Shyu, Ling-Yuh; Hu, Ming-E; Chou, Chun-Hui; Chen, Ke-Min; Chiu, Ping-Sung; Lai, Shih-Chan

    2015-01-01

    Fibronectin, which is present at relatively low levels in healthy central nervous systems (CNS), shows increased levels in meningitis. In this study, fibronectin processing was correlated with the increased permeability of the blood-cerebrospinal fluid (CSF) barrier as well as with the formation of eosinophil infiltrates in angiostrongyliasis meningitis. The immunohistochemistry results show matrix metalloproteinase-9 (MMP-9) is localized in the choroid plexus epithelium. Coimmunoprecipitation demonstrated fibronectin strongly binds MMP-9. Furthermore, treatment with the MMP-9 inhibitor GM6001 significantly inhibited fibronectin processing, reduced the blood-CSF barrier permeability, and decreased the eosinophil counts. The decreased fibronectin processing in CSF implies decreased cellular invasion of the subarachnoid space across the blood-CSF barrier. Therefore, increased fibronectin processing may be associated with barrier disruption and participate in the extravasation and migration of eosinophils into the CNS during experimental parasitic infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ultrastructure and Glycoconjugate Pattern of the Foot Epithelium of the Abalone Haliotis tuberculata (Linnaeus, 1758 (Gastropoda, Haliotidae

    Directory of Open Access Journals (Sweden)

    I. Bravo Portela

    2012-01-01

    Full Text Available The foot epithelium of the gastropod Haliotis tuberculata is studied by light and electron microscopy in order to contribute to the understanding of the anatomy and functional morphology of the mollusks integument. Study of the external surface by scanning electron microscopy reveals that the side foot epithelium is characterized by a microvillus border with a very scant presence of small ciliary tufts, but the sole foot epithelium bears a dense field of long cilia. Ultrastructural examination by transmission electron microscopy of the side epithelial cells shows deeply pigmented cells with high electron-dense granular content which are not observed in the epithelial sole cells. Along the pedal epithelium, seven types of secretory cells are present; furthermore, two types of subepithelial glands are located just in the sole foot. The presence and composition of glycoconjugates in the secretory cells and subepithelial glands are analyzed by conventional and lectin histochemistry. Subepithelial glands contain mainly N-glycoproteins rich in fucose and mannose whereas secretory cells present mostly acidic sulphated glycoconjugates such as glycosaminoglycans and mucins, which are rich in galactose, N-acetyl-galactosamine, and N-acetyl-glucosamine. No sialic acid is present in the foot epithelium.

  4. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  5. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  6. Scanning electron microscopical study of the lingual epithelium of green iguana (Iguana iguana).

    Science.gov (United States)

    Abbate, F; Latella, G; Montalbano, G; Guerrera, M C; Levanti, M B; Ciriaco, E

    2008-08-01

    During the last few years, green iguanas (Iguana iguana) have turned out to be one of the most popular pets. They are omnivorous. In their way of feeding, this crucial function is performed by capturing of the preys and mostly, this is carried out by the tongue. The role of the tongue is also fundamental during the intra-oral transport and during the swallowing of food. This has been reported in several studies about chameleons, agamids and iguanids, nevertheless published data about the mechanisms of capturing and swallowing the prey, and the morphological descriptions about the tongue epithelium, are scarce. Therefore, the aim of this present study was to analyse the morphology of the lingual epithelium in green iguanas by scanning electron microscopy. Three different areas were demonstrated on the tongue surface: the tongue tip, characterized by a smooth epithelium without papillae, a foretongue, completely covered by numerous closely packed cylindriform papillae, and a hindtongue with conical-like papillae. Some taste buds were recognized on the middle and the posterior parts of the tongue. Different functional roles could be hypothesized for the three tongue areas: the tongue tip could have a role related to the movements of the prey immediately after the capturing, while the middle papillae and the hindtongue could have an important role concerning the swallowing phase.

  7. Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets

    Directory of Open Access Journals (Sweden)

    Shen Xing

    2017-02-01

    Full Text Available Objective The study was to investigate the effects of alanyl-glutamine (Ala-Gln and glutamine (Gln supplementation on the intestinal mucosa barrier in piglets. Methods A total of 180 barrows with initial weight 10.01±0.03 kg were randomly allocated to three treatments, and each treatment consisted of three pens and twenty pigs per pen. The piglets of three groups were fed with control diet [0.62% alanine (Ala], Ala-Gln diet (0.5% Ala-Gln, Gln diet (0.34% Gln and 0.21% Ala, respectively. Results The results showed that in comparison with control diet, dietary Ala-Gln supplementation increased the height of villi in duodenum and jejunum (p<0.05, Gln supplementation increased the villi height of jejunum (p<0.05, Ala-Gln supplementation up-regulated the mRNA expressions of epidermal growth factor receptor and insulin-like growth factor 1 receptor in jejunal mucosa (p<0.05, raised the mRNA expressions of Claudin-1, Occludin, zonula occludens protein-1 (ZO-1 and the protein levels of Occludin, ZO-1 in jejunal mucosa (p<0.05, Ala-Gln supplementation enlarged the number of goblet cells in duodenal and ileal epithelium (p<0.05, Gln increased the number of goblet cells in duodenal epithelium (p<0.05 and Ala-Gln supplementation improved the concentrations of secretory immunoglobulin A and immunoglobulin G in the jejunal mucosa (p<0.05. Conclusion These results demonstrated that dietary Ala-Gln supplementation could maintain the integrity of small intestine and promote the functions of intestinal mucosa barriers in piglets.

  8. Structurally and functionally characterized in vitro model of rabbit vocal fold epithelium.

    Science.gov (United States)

    Mizuta, Masanobu; Kurita, Takashi; Kimball, Emily E; Rousseau, Bernard

    2017-06-01

    In this paper, we describe a method for primary culture of a well differentiated electrically tight rabbit vocal fold epithelial cell multilayer and the measurement of transepithelial electrical resistance (TEER) for the evaluation of epithelial barrier function in vitro. Rabbit larynges were harvested and enzymatically treated to isolate vocal fold epithelial cells and to establish primary culture. Vocal fold epithelial cells were co-cultured with mitomycin C-treated feeder cells on collagen-coated plates. After 10-14 days in primary culture, cells were passaged and cultured until they achieved 70-90% confluence on collagen-coated plates. Epithelial cells were then passaged onto collagen-coated cell culture inserts using 4.5cm 2 membrane filters (1.0μm pore size) with 10% fetal bovine serum or 30μg/mL bovine pituitary extract to investigate the effects of growth-promoting additives on TEER. Additional experiments were performed to investigate optimal seeding density (1.1, 2.2, 4.4, or 8.9×10 5 cells/cm 2 ), the effect of co-culture with feeder cells, and the effect of passage number on epithelial barrier function. Characterization of in vitro cultures was performed using hematoxylin and eosin staining and immunostaining for vocal fold epithelial cell markers and tight junctions. Results revealed higher TEER in cells supplemented with fetal bovine serum compared to bovine pituitary extract. TEER was highest in cells passaged at a seeding density of 2.2×10 4 cells/cm 2 , and TEER was higher in cells at passage two than passage three. Ultrastructural experiments revealed a well-differentiated epithelial cell multilayer, expressing the epithelial cell markers CK13, CK14 and the tight junction proteins occludin and ZO-1. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries.

    Science.gov (United States)

    Noor, Siti Salwa Md; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-11-16

    In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability.

  10. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  11. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Jungerstedt, J; Hellgren, Lars; Drachmann, Tue

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups...... and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically...

  12. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D.

    2013-01-01

    During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research. PMID:23169788

  13. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    Science.gov (United States)

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  14. File list: Unc.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Olfactory_epithelium.bed ...

  15. File list: Unc.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Olfactory_epithelium.bed ...

  16. File list: Unc.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Olfactory_epithelium.bed ...

  17. Genotoxic differences by sex in nasal epithelium and blood leukocytes in subjects residing in a highly polluted area

    International Nuclear Information System (INIS)

    Fortoul, T.I.; Valverde, M.; Lopez, M.C.; Avila-Costa, M.R.; Avila-Casado, M.C.; Mussali-Galante, P.; Gonzalez-Villalva, A.; Rojas, E.; Ostrosky-Shejet, P.

    2004-01-01

    We describe differences by sex in genotoxic damage found in a population of medical students exposed to a highly oxidative atmosphere, compared with a control group, measured by the single-cell gel electrophoresis assay and histological changes in nasal epithelium smears. Cells were obtained from the nasal epithelium and blood leukocytes. Higher DNA damage in nasal cells and leukocytes was found in males compared to females and control subjects. The percentage of squamous metaplastic changes in the nasal epithelium was also higher in males compared with females and controls. The commutation of normal nasal epithelium by squamous cells might modify its protective function in the nose, increasing the risk of damage to the lower respiratory tract. Although, as medical students, males and females were exposed to the same environment and activity patterns, male genotoxicity damage was higher in control and exposed subjects. More research should be done in order to identify direct or indirect sexual hormone intervention

  18. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    Science.gov (United States)

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  19. Histological, Topographical and Ultrastructural Organization of Different Cells Lining the Olfactory Epithelium of Red Piranha, Pygocentrus nattereri (Characiformes, Serrasalmidae

    Directory of Open Access Journals (Sweden)

    Ghosh S. K.

    2016-10-01

    Full Text Available The structural characterization of the olfactory epithelium in Pygocentrus nattereri Kner, 1858 was studied with the help of light as well as scanning and transmission electron microscope. The oval shaped olfactory rosette consisted of 26–28 primary lamellae radiated from midline raphe. The olfactory epithelium of each lamella was well distributed by sensory and non-sensory epithelium. The sensory epithelium contained morphologically distinct ciliated and microvillous receptor cells, supporting cells and basal cells. The non-sensory epithelium was made up of labyrinth cells, mucous cells and stratified epithelial cells. According to TEM investigation elongated rod emerging out from dendrite end of the receptor cells in the free space. The dendrite process of microvillous receptor cells contained microvilli. The supporting cells had lobular nucleus with clearly seen electron dense nucleolus. The apex of the ciliated non-sensory cells was broad and provided with plenty of kinocilia. Basal cells provided with oval nucleus and contained small number of secretory granules. The mucous cells were restricted to the non-sensory areas and the nuclei situated basally and filled with about two-third of the vesicles. The functional significance of various cells lining the olfactory epithelium was discussed with mode of life and living of fish concerned.

  20. File list: DNS.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Olfactory_epithelium.bed ...

  1. File list: DNS.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Olfactory_epithelium.bed ...

  2. File list: DNS.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.20.AllAg.Olfactory_epithelium.bed ...

  3. File list: Oth.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Olfactory_epithelium.bed ...

  4. File list: Oth.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Olfactory_epithelium.bed ...

  5. File list: Oth.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Olfactory_epithelium.bed ...

  6. File list: Oth.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.20.AllAg.Olfactory_epithelium.bed ...

  7. Effect of saline iontophoresis on skin barrier function and cutaneous irritation in four ethnic groups.

    Science.gov (United States)

    Singh, J; Gross, M; Sage, B; Davis, H T; Maibach, H I

    2000-08-01

    The effect of saline iontophoresis on skin barrier function and irritation was investigated in four ethnic groups (Caucasians, Hispanics, Blacks and Asians). Forty healthy human volunteers were recruited according to specific entry criteria. Ten subjects, five males and five females, were assigned to each ethnic group. Skin barrier function was examined after 4 hours of saline iontophoresis at a current density of 0.2 mA/cm(2) on a 6.5 cm(2) area in terms of the measured responses: transepidermal water loss (TEWL), skin capacitance, skin temperature and visual scores. There were significant differences in TEWL among the ethnic groups prior to patch application. TEWL at baseline in ethnic groups was in the rank order: Caucasian>Asian>Hispanic>Black. Iontophoresis was generally well tolerated, and skin barrier function was not irreversibly affected by iontophoresis in any group. There was no significant skin temperature change, compared to baseline, in any ethnic groups at any observation point. Edema was not observed. At patch removal, the erythema score was elevated in comparison to baseline in all ethnic groups; erythema resolved within 24 hours. Thus, saline iontophoresis produced reversible changes in skin barrier function and irritation in healthy human subjects.

  8. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  9. File list: Pol.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.20.AllAg.Olfactory_epithelium.bed ...

  10. File list: Pol.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Olfactory_epithelium.bed ...

  11. File list: Pol.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.10.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.10.AllAg.Olfactory_epithelium.bed ...

  12. File list: Pol.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX143827,SRX112963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Olfactory_epithelium.bed ...

  13. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype.

    Science.gov (United States)

    Huang, Chen; Zhang, Jing; Ao, Mingxin; Li, Ying; Zhang, Chun; Xu, Yonggen; Li, Xuemin; Wang, Wei

    2012-02-01

    Recent studies have suggested that bone marrow-derived mesenchymal stem cells (BMMSCs) are capable of retinal tissue-specific differentiation but not retinal pigment epithelium (RPE) cell-specific differentiation. Photoreceptor outer segments (POS) contribute to RPE development and maturation. However, there has been no standard culture system that fosters the differentiation of BMMSCs into mature RPE cells in vitro. In this study, we investigated if the soluble factors from RPE cells and POS could differentiate BMMSCs into cells having a phenotype characteristic of RPE cells. Rat BMMSCs were separately co-cultured with RPE cells, or they were exposed to either control medium, RPE cell-conditioned medium (RPECM), POS, or a combination of RPECM and POS (RPECM-POS). After 7 days, the cells were analyzed for morphology and the expression of RPE markers (cytokeratin 8, CRALBP, and RPE65) to assess the RPE differentiation. Significantly higher pigment accumulation and increased protein expression of the three markers were seen in cells cultured in RPECM-POS than in other treated cultures. Furthermore, the RPECM-POS-treated cultures displayed ultrastructural features typical of RPE cells, expressed RPE cell functional proteins, and had the capability to phagocytose POS. Together, theses results suggest the combination of RPECM and POS stimulate BMMSCs differentiation toward a functional RPE phenotype. Our results provide the foundation for a new route to RPE regenerative therapy involving BMMSCs. Future work isolating the active agent in RPECM and POS would be useful in therapies for RPE diseases or in developing appropriately pre-differentiated BMMSCs for tissue-engineered RPE reconstruction. Copyright © 2011 Wiley Periodicals, Inc.

  14. Histochemical localization of cholinesterase activity in the dental epithelium of guinea pig teeth.

    Science.gov (United States)

    Jayawardena, C K; Takano, Y

    2004-07-01

    Cholinesterase is known for its remarkable diversity in distribution and function. An association of this enzyme with proliferative and morpho-differentiating tissues has been reported in several species. Here we report on the first evidence of the presence of cholinesterase in the enamel organ of continuously erupting incisors and molars of the guinea pig. Frozen sections of the incisors and molars of the guinea pig were incubated for histochemical demonstration of cholinesterase activity by means of the thiocholine method as described by Karnovsky and Root. The cholinesterase activity was observed in several types of cells of the dental epithelium; cells forming the basal portion of the enamel organ, outer enamel epithelium and maturation stage ameloblasts of both the incisors and molars. In the crown analogue side, the outer enamel epithelial cells gained strong reactions for cholinesterase and maintained the reaction throughout the secretory and maturation stages of amelogenesis. In contrast, cholinesterase reactions were lacking in the inner enamel epithelium, pre-ameloblasts, and secretory ameloblasts. In the early stage of enamel maturation, ameloblasts began to show positive reactions for cholinesterase, which was upregulated in the incisal direction. Although both tooth types showed similar reactive patterns for cholinesterase at the growing ends, maturation ameloblasts depicted a different pattern of staining displaying the reactions only sporadically in molars. These data indicate the role of cholinesterase in the enamel organ in tooth morphogenesis and function of guinea pig teeth. Copyright 2004 Springer-Verlag

  15. Respiratory Epithelium Lined Cyst of the Maxilla: Differential Diagnosis

    Directory of Open Access Journals (Sweden)

    C. P. Martinelli-Kläy

    2017-01-01

    Full Text Available Maxillary cysts, including the cysts lined by respiratory epithelium, can present a diagnostic challenge. We report an unusual case of a maxillary cyst on an endodontically treated tooth #16, in which the cavity was totally lined by a respiratory epithelium. The patient, a 35-year-old male, presented with a generalized chronic periodontitis and complained of a pain in the tooth #16 region. A periodontal pocket extending to the root apices with pus coming out from the gingival was found. A combined endodontic periodontal was observed on a panoramic radiography. CBCT-scan revealed a well-circumscribed radiolucent lesion at the apices of the distobuccal root of the 16. A communication with the right maxillary sinus cavity and a maxillary and ethmoidal sinusitis were also observed. The lesion was removed and histological examination revealed a cyst lined exclusively by respiratory epithelium. Ciliated and rare mucous cells were also observed. The diagnosis could evoke a surgical ciliated cyst mimicking the radicular cyst but the patient has no previous history of trauma or surgery in the maxillofacial region. It could also be an unusual radicular cyst in which the stratified squamous epithelium was destroyed by inflammation and replaced by a respiratory epithelium of the maxillary sinus.

  16. Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Yu Lingzhu

    2009-12-01

    Full Text Available Abstract Background Proper patterning of the follicle cell epithelium over the egg chamber is essential for the Drosophila egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that lethal(2giant larvae (lgl, a Drosophila tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, scribble (scrib and discs large (dlg, in the epithelial patterning. Results We found that removal of scrib or dlg function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in scrib/dlg at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that scrib genetically interacts with dlg in regulating posterior patterning of the epithelium. Conclusion In this study we provide evidence that scrib and dlg function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that scrib and dlg act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of scrib/dlg in controlling epithelial polarity and cell proliferation during development.

  17. File list: ALL.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...536,SRX378534,SRX378544,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Olfactory_epithelium.bed ...

  18. File list: ALL.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...534,SRX378545,SRX378544,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.20.AllAg.Olfactory_epithelium.bed ...

  19. File list: ALL.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...533,SRX472910,SRX378534,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Olfactory_epithelium.bed ...

  20. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea.

    Science.gov (United States)

    Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing

    2018-02-01

    Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.

  1. File list: His.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX37...378533,SRX472910,SRX378534,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Olfactory_epithelium.bed ...

  2. File list: His.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX18...378531,SRX378536,SRX378534,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Olfactory_epithelium.bed ...

  3. File list: His.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX11...472910,SRX378534,SRX378533,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Olfactory_epithelium.bed ...

  4. File list: His.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX18...378533,SRX378536,SRX378534,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.AllAg.Olfactory_epithelium.bed ...

  5. War experiences, general functioning and barriers to care among former child soldiers in Northern Uganda: the WAYS study.

    Science.gov (United States)

    Amone-P'Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio

    2014-12-01

    Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    Science.gov (United States)

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  7. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent

    Directory of Open Access Journals (Sweden)

    Pascale Crissey L

    2011-07-01

    Full Text Available Abstract Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD. There is an accumulation of amyloid-beta peptides (Aβ in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB. With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1, P-glycoprotein (P-gp, LRP-2 (megalin and the receptor for advanced glycation end-products (RAGE at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.

  8. DHT deficiency perturbs the integrity of the rat seminiferous epithelium by disrupting tight and adherens junctions.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Wenda-Różewicka, Lidia; Wiszniewska, Barbara

    2011-01-01

    In rats with a DHT deficiency induced by finasteride, morphological changes in the seminiferous epithelium were observed. The structural alterations were manifested by the premature germ cells sloughing into the lumen of seminiferous tubules. The etiology of this disorder could be connected with intercellular junctions disintegration. We showed in the immunohistochemical study the changes in expression of some proteins building tight and adherens junctions. The depression of N-cadherin, β-catenin and occludin immunoexpressions could be the reason for the release of immature germ cells from the seminiferous epithelium. However, the observed increase of the immunohistochemical reaction intensity of vinculin, one of the cadherin/catenin complex regulators, could be insufficient to maintain the proper function of adherens junctions. The hormonal imbalance appears to influence the pattern of expression of junctional proteins in the seminiferous epithelium. It could lead to untimely germ cells sloughing, and ultimately could impair fertility.

  9. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    Science.gov (United States)

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  10. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration.

    Science.gov (United States)

    Rost-Roszkowska, M M; Kszuk-Jendrysik, M; Marchewka, A; Poprawa, I

    2018-01-01

    The midgut of millipedes is composed of a simple epithelium that rests on a basal lamina, which is surrounded by visceral muscles and hepatic cells. As the material for our studies, we chose Telodeinopus aoutii (Demange, 1971) (Kenyan millipede) (Diplopoda, Spirostreptida), which lives in the rain forests of Central Africa. This commonly reared species is easy to obtain from local breeders and easy to culture in the laboratory. During our studies, we used transmission and scanning electron microscopes and light and fluorescent microscopes. The midgut epithelium of the species examined here shares similarities to the structure of the millipedes analyzed to date. The midgut epithelium is composed of three types of cells-digestive, secretory, and regenerative cells. Evidence of three types of secretion have been observed in the midgut epithelium: merocrine, apocrine, and microapocrine secretion. The regenerative cells of the midgut epithelium in millipedes fulfill the role of midgut stem cells because of their main functions: self-renewal (the ability to divide mitotically and to maintain in an undifferentiated state) and potency (ability to differentiate into digestive cells). We also confirmed that spot desmosomes are common intercellular junctions between the regenerative and digestive cells in millipedes.

  11. Conditional inactivation of p53 in mouse ovarian surface epithelium does not alter MIS driven Smad2-dominant negative epithelium-lined inclusion cysts or teratomas.

    Directory of Open Access Journals (Sweden)

    Suzanne M Quartuccio

    Full Text Available Epithelial ovarian cancer is the most lethal gynecological malignancy among US women. The etiology of this disease, although poorly understood, may involve the ovarian surface epithelium or the epithelium of the fallopian tube fimbriae as the progenitor cell. Disruptions in the transforming growth factor beta (TGFβ pathway and p53 are frequently found in chemotherapy-resistant serous ovarian tumors. Transgenic mice expressing a dominant negative form of Smad2 (Smad2DN, a downstream transcription factor of the TGFβ signaling pathway, targeted to tissues of the reproductive tract were created on a FVB background. These mice developed epithelium-lined inclusion cysts, a potential precursor lesion to ovarian cancer, which morphologically resembled oviductal epithelium but exhibited protein expression more closely resembling the ovarian surface epithelium. An additional genetic "hit" of p53 deletion was predicted to result in ovarian tumors. Tissue specific deletion of p53 in the ovaries and oviducts alone was attempted through intrabursal or intraoviductal injection of Cre-recombinase expressing adenovirus (AdCreGFP into p53 (flox/flox mice. Ovarian bursal cysts were detected in some mice 6 months after intrabursal injection. No pathological abnormalities were detected in mice with intraoviductal injections, which may be related to decreased infectivity of the oviductal epithelium with adenovirus as compared to the ovarian surface epithelium. Bitransgenic mice, expressing both the Smad2DN transgene and p53 (flox/flox, were then exposed to AdCreGFP in the bursa and oviductal lumen. These mice did not develop any additional phenotypes. Exposure to AdCreGFP is not an effective methodology for conditional deletion of floxed genes in oviductal epithelium and tissue specific promoters should be employed in future mouse models of the disease. In addition, a novel phenotype was observed in mice with high expression of the Smad2DN transgene as validated

  12. Dynamics of Bovine Sperm Interaction with Epithelium Differ Between Oviductal Isthmus and Ampulla1

    Science.gov (United States)

    Ardon, Florencia; Markello, Ross D.; Hu, Lian; Deutsch, Zarah I.; Tung, Chih-Kuan; Wu, Mingming; Suarez, Susan S.

    2016-01-01

    In mammals, many sperm that reach the oviduct are held in a reservoir by binding to epithelium. To leave the reservoir, sperm detach from the epithelium; however, they may bind and detach again as they ascend into the ampulla toward oocytes. In order to elucidate the nature of binding interactions along the oviduct, we compared the effects of bursts of strong fluid flow (as would be caused by oviductal contractions), heparin, and hyperactivation on detachment of bovine sperm bound in vitro to epithelium on intact folds of isthmic and ampullar mucosa. Intact folds of oviductal mucosa were used to represent the strong attachments of epithelial cells to each other and to underlying connective tissue that exist in vivo. Effects of heparin on binding were tested because heparin binds to the Binder of SPerm (BSP) proteins that attach sperm to oviductal epithelium. Sperm bound by their heads to beating cilia on both isthmic and ampullar epithelia and could not be detached by strong bursts of fluid flow. Addition of heparin immediately detached sperm from isthmic epithelium but not ampullar epithelium. Addition of 4-aminopyridine immediately stimulated hyperactivation of sperm but did not detach them from isthmic or ampullar epithelium unless added with heparin. These observations indicate that the nature of binding of sperm to ampullar epithelium differs from that of binding to isthmic epithelium; specifically, sperm bound to isthmic epithelium can be detached by heparin alone, while sperm bound to ampullar epithelium requires both heparin and hyperactivation to detach from the epithelium. PMID:27605344

  13. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease.

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E

    2011-09-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    Science.gov (United States)

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  16. Nanotopography follows force in TGF-β1 stimulated epithelium

    International Nuclear Information System (INIS)

    Thoelking, Gerold; Oberleithner, Hans; Riethmuller, Christoph; Reiss, Bjoern; Wegener, Joachim; Pavenstaedt, Hermann

    2010-01-01

    Inflammation and cellular fibrosis often imply an involvement of the cytokine TGF-β1. TGF-β1 induces epithelial-to-mesenchymal transdifferentiation (EMT), a term describing the loss of epithelium-specific function. Indicative for this process are an elongated cell shape parallel to stress fibre formation. Many signalling pathways of TGF-β1 have been discovered, but mechanical aspects have not yet been investigated. In this study, atomic force microscopy (AFM) was used to analyse surface topography and mechanical properties of EMT in proximal kidney tubule epithelium (NRK52E). Elongated cells, an increase of stress fibre formation and a loss of microvillus compatible structures were observed as characteristic signs of EMT. Furthermore, AFM could identify an increase in stiffness by 71% after six days of stimulation with TGF-β1. As a novel topographical phenomenon, nodular protrusions emerged at the cell-cell junctions. They occurred preferentially at sites where stress fibres cross the border. Since these nodular protrusions were sensitive to inhibitors of force generation, they can indicate intracellular tension. The results demonstrate a manifest impact of elevated tension on the cellular topography.

  17. Histology, Immunohistochemistry and Ultrastructure of the Bovine Palatine Tonsil with Special Emphasis on Reticular Epithelium

    Science.gov (United States)

    The paired palatine tonsils are located at the junction of the nasopharynx and oropharynx; ideally positioned to sample antigens entering through either the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular and functional composi...

  18. File list: NoD.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.10.AllAg.Olfactory_epithelium.bed ...

  19. File list: NoD.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Olfactory_epithelium.bed ...

  20. File list: NoD.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.20.AllAg.Olfactory_epithelium.bed ...

  1. File list: NoD.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.50.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.50.AllAg.Olfactory_epithelium.bed ...

  2. Species variation in biology and physiology of the ciliary epithelium: similarities and differences.

    Science.gov (United States)

    Do, Chi Wai; Civan, Mortimer M

    2009-04-01

    Glaucoma is a leading cause of irreversible blindness worldwide. Lowering intraocular pressure (IOP) is the only strategy documented to delay the appearance and retard the progression of vision loss. One major approach for lowering IOP is to slow the rate of aqueous humor formation by the ciliary epithelium. As discussed in the present review, the transport basis for this secretion is largely understood. However, several substantive issues are yet to be resolved, including the integrated regulation of secretion, the functional topography of the ciliary epithelium, and the degree and significance of species variation in aqueous humor inflow. This review discusses species differences in net secretion, particularly of Cl(-) and HCO(3)(-) secretion. Identifying animal models most accurately mimicking aqueous humor formation in the human will facilitate development of future novel initiatives to lower IOP.

  3. Wnt target gene analysis in colorectal cancer and intestinal stem cells

    NARCIS (Netherlands)

    van der Flier, L.G.

    2009-01-01

    The intestinal epithelium is a specialized simple epithelium that lines the gut and performs primary functions of digestion, absorption and forms a barrier against luminal pathogens. It is organized in invaginations called crypts and finger-like protrusions called villi. The crypts harbor

  4. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F

    2005-01-01

    , the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium......, when symmetrically bathed with Ringer solution, develops a net Cl- current giving rise to a negative transepithelial potential at the basolateral side of the epithelium. The eel intestinal epithelium responded to a hypotonic challenge with a biphasic decrease in the transepithelial voltage (V......(te)) and the short circuit current (I(sc)). This electrophysiological response correlated with a regulatory volume decrease (RVD) response, recorded by morphometrical measurement of the epithelium height. Changes in the transepithelial resistance were also observed following the hypotonicity exposure...

  5. Kiwifruit, mucins, and the gut barrier.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M; Balan, Prabhu

    2013-01-01

    Kiwifruit has long been regarded in China, where it originated from, for its health properties and particularly in relation to digestion and general gut health. There are a number of physical and chemical properties of the fruit, including its dietary fiber content, the presence of raphides, its high water holding capacity and actinidin content, that suggest that kiwifruit may be effective in influencing gut mucin production and thus enhancing the integrity of the gut barrier. The mucous layer, which comprises mucins and other materials, overlying the mucosal epithelium, is an important component of the gut barrier. The gut barrier plays a crucial role in separating the host from the often noxious external environment. The mucous layer, which covers the entire gastrointestinal tract (GIT), is the front line of innate host defense. There have been few direct studies of the effect of kiwifruit ingestion on mucin production in the GIT, and findings that are available using animal models are somewhat inconsistent. Taking results for digesta mucin content, number of goblet cells, and mucin gene expression, together, it would seem that green kiwifruit and possibly gold kiwifruit do influence gut mucin production, and the kiwifruit as part of a balanced diet may help to maintain the mucous layer and gut barrier. More corroborative experimental evidence is needed, and studies need to be undertaken in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Clinical characteristics and epidermal barrier function of papulopustular rosacea: A comparison study with acne vulgaris.

    Science.gov (United States)

    Zhou, Maosong; Xie, Hongfu; Cheng, Lin; Li, Ji

    2016-01-01

    To evaluate the clinical characteristics and epidermal barrier function of papulopustular rosacea by comparing with acne vulgaris. Four hundred and sixty-three papulopustular rosacea patients and four hundred and twelve acne vulgaris patients were selected for the study in Xiangya Hospital of Central South University from March 2015 to May 2016. They were analyzed for major facial lesions, self-conscious symptoms and epidermal barrier function. Erythema, burning, dryness and itching presented in papulopustular rosacea patients were significantly higher than that in acne vulgaris patients ( P acne vulgaris patients ( P acne vulgaris patients ( P acne vulgaris patients in comparison with that of healthy subjects ( P >0.05, P acne vulgaris patients and healthy subjects ( P acne vulgaris patients than that of healthy subjects ( P acne vulgaris. The epidermal barrier function was damaged in papulopustular rosacea patients while not impaired in that of acne vulgaris patients.

  7. Development of the ovarian follicular epithelium.

    Science.gov (United States)

    Rodgers, R J; Lavranos, T C; van Wezel, I L; Irving-Rodgers, H F

    1999-05-25

    A lot is known about the endocrine control of the development of ovarian follicles, but a key question now facing researchers is which molecular and cellular processes take part in control of follicular growth and development. The growth and development of ovarian follicles occurs postnatally and throughout adult life. In this review, we focus on the follicular epithelium (membrana granulosa) and its basal lamina. We discuss a model of how granulosa cells arise from a population of stem cells and then enter different lineages before differentiation. The structure of the epithelium at the antral stage of development is presented, and the effects that follicle growth has on the behavior of the granulosa cells are discussed. Finally, we discuss the evidence that during follicle development the follicular basal lamina changes in composition. This would be expected if the behavior of the granulosa cells changes, or if the permeability of the basal lamina changes. It will be evident that the follicular epithelium has similarities to other epithelia in the body, but that it is more dynamic, as gross changes occur during the course of follicle development. This basic information will be important for the development of future reproductive technologies in both humans and animals, and possibly for understanding polycystic ovarian syndrome in women.

  8. Effects of industrial detergents on the barrier function of human skin

    DEFF Research Database (Denmark)

    Nielsen, G D; Nielsen, Jesper Bo; Andersen, Klaus Ejner

    2000-01-01

    Detergents are involved in the causation of contact dermatitis and in promoting percutaneous absorption of toxic chemicals, but limited information is available to allow an assessment of their relative effects on the skin barrier function. The effect of detergents on skin permeability to water...

  9. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  10. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    Directory of Open Access Journals (Sweden)

    Daniela Catanzaro

    Full Text Available Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD, however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA, were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study

  11. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  12. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner...... transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport....

  13. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  14. Functions of an engineered barrier system for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Coons, W.E.; Moore, E.L.; Smith, M.J.; Kaser, J.D.

    1980-01-01

    Defined in this document are the functions of components selected for an engineered barrier system for a nuclear waste repository in basalt. The definitions provide a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five-component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed in terms of effective operation throughout the course of repository history, recognizing that the emplacement environment changes with time. While components of the system are mutually supporting, redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The operating philosophy of the conceptual engineered barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed. A method for system validation and qualification is also included which considers performance criteria proposed by external agencies in conjunction with site-specific models and risk assessment to define acceptable levels of system performance

  15. Apple extract induces increased epithelial resistance and claudin 4 expression in Caco-2 cells

    NARCIS (Netherlands)

    Vreeburg, R.A.M.; Wezel, van E.E.; Ocana-Calahorro, F.; Mes, J.J.

    2012-01-01

    BACKGROUND: The small intestinal epithelium functions both to absorb nutrients, and to provide a barrier between the outside, luminal, world and the human body. One of the passageways across the intestinal epithelium is paracellular diffusion, which is controlled by the properties of tight junction

  16. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    Science.gov (United States)

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cultivated Oral Mucosa Epithelium in Ocular Surface Reconstruction in Aniridia Patients

    Directory of Open Access Journals (Sweden)

    Dariusz Dobrowolski

    2015-01-01

    Full Text Available Purpose. Efficacy of cultivated oral mucosa epithelial transplantation (COMET procedure in corneal epithelium restoration of aniridia patients. Methods. Study subjects were aniridia patients (13 patients; 17 eyes with irregular, vascular conjunctival pannus involving visual axis who underwent autologous transplantation of cultivated epithelium. For the procedure oral mucosa epithelial cells were obtained from buccal mucosa with further enzymatic treatment. Suspension of single cells was seeded on previously prepared denuded amniotic membrane. Cultures were carried on culture dishes inserts in the presence of the inactivated with Mitomycin C monolayer of 3T3 fibroblasts. Cultures were carried for seven days. Stratified oral mucosa epithelium with its amniotic membrane carrier was transplanted on the surgically denuded corneal surface of aniridia patients with total or subtotal limbal stem cell deficiency. Outcome Measures. Corneal surface, epithelial regularity, and visual acuity improvement were evaluated. Results. At the end of the observation period, 76.4% of the eyes had regular transparent epithelium and 23.5% had developed epithelial defects or central corneal haze; in 88.2% of cases visual acuity had increased. VA range was from HM 0.05 before the surgery to HM up to 0.1 after surgery. Conclusion. Application of cultivated oral mucosa epithelium restores regular epithelium on the corneal surface with moderate improvement in quality of vision.

  18. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors.

    Directory of Open Access Journals (Sweden)

    Kristin Mussar

    Full Text Available Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.

  19. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors.

    Science.gov (United States)

    Mussar, Kristin; Tucker, Andrew; McLennan, Linsey; Gearhart, Addie; Jimenez-Caliani, Antonio J; Cirulli, Vincenzo; Crisa, Laura

    2014-01-01

    Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.

  20. File list: InP.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX143806,SRX185883,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Olfactory_epithelium.bed ...

  1. File list: InP.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.50.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.50.AllAg.Olfactory_epithelium.bed ...

  2. File list: InP.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.20.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.20.AllAg.Olfactory_epithelium.bed ...

  3. File list: InP.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.10.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.10.AllAg.Olfactory_epithelium.bed ...

  4. Induction of Functional 3D Ciliary Epithelium-Like Structure From Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kinoshita, Hirofumi; Suzuma, Kiyoshi; Kaneko, Jun; Mandai, Michiko; Kitaoka, Takashi; Takahashi, Masayo

    2016-01-01

    To generate ciliary epithelium (CE) from mouse induced pluripotent stem (iPS) cells. Recently, a protocol for self-organizing optic cup morphogenesis in three-dimensional culture was reported, and it was suggested that ocular tissue derived from neural ectoderm could be differentiated. We demonstrated that a CE-like double-layered structure could be induced in simple culture by using a modified Eiraku differentiation protocol. Differentiation of a CE-like double-layered structure could be promoted by glycogen synthase kinase 3β (GSK-3β) inhibitor. Connexin43 and aquaporin1 were expressed in both thin layers, and induced CE-like cells expressed ciliary marker genes, such as cyclinD2, zic1, tgfb2, aldh1a3, wfdc1, otx1, BMP4, and BMP7. Increases in cytoplasmic and nuclear β-catenin in aggregates of the CE-like double-layered structure were confirmed by Western blot analysis. In addition, tankyrase inhibitor prevented the induction of the CE-like double-layered structure by GSK-3β inhibitor. Dye movement from pigmented cells to nonpigmented cells in the mouse iPS cell-derived CE-like structure was observed in a fluid movement experiment, consistent with the physiological function of CE in vivo. We could differentiate CE from mouse iPS cells in the present study. In the future, we hope that this CE-like complex will become useful as a graft for transplantation therapy in pathologic ocular hypotension due to CE dysfunction, and as a screening tool for the development of drugs for diseases associated with CE function.

  5. Regional variations of cell surface carbohydrates in human oral stratified epithelium

    DEFF Research Database (Denmark)

    Vedtofte, P; Dabelsteen, Erik; Hakomori, S

    1984-01-01

    The distribution of blood group carbohydrate chains with antigen A, B, H type 2 chain (A and B precursor), and N-acetyllactosamine (H type 2 precursor) specificity was studied in human oral epithelium from different anatomical regions. These represented various epithelial differentiation patterns...... epithelium from nine blood group A, two blood group B, and nine blood group O individuals. The blood group carbohydrate chains were examined in tissue sections by immunofluorescence microscopy. The A and B blood group antigens were detected by human blood group sera, and antigen H type 2 chains and N...... antigen H type 2 chains in metaplastically keratinized buccal epithelium was found to differ significantly from that seen in normal non-keratinized buccal epithelium. The regional variations demonstrated in cell surface carbohydrates are suggested to reflect differences in tissue differentiation....

  6. Dynamic 99mTc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    International Nuclear Information System (INIS)

    Maini, C.L.; Marchetti, L.; Bonetti, M.G.; Giordano, A.; Pistelli, R.; Antonelli Incalzi, R.

    1987-01-01

    Pulmonary clearance of small droplet 99m Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the 99m Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p 99m Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease

  7. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption.

    Science.gov (United States)

    Döge, Nadine; Avetisyan, Araks; Hadam, Sabrina; Pfannes, Eva Katharina Barbosa; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika

    2017-07-01

    Topical dermatotherapy is intended to be used on diseased skin. Novel drug delivery systems even address differences between intact and diseased skin underlining the need for pre-clinical assessment of different states of barrier disruption. Herein, we studied how short-term incubation in culture media compared to incubation in humidified chambers affects human skin barrier function and viability. On both models we assessed different types and intensities of physical and chemical barrier disruption methods with regard to structural integrity, biophysical parameters and cytokine levels. Tissue degeneration and proliferative activity limited the use of tissue cultures to 48h. Viability is better preserved in cultured tissue. Tape-stripping (50×TS) and 4h sodium lauryl sulfate (SLS) pre-treatment were identified as highly reproducible and effective procedures for barrier disruption. Transepidermal water loss (TEWL) values reproducibly increased with the intensity of disruption while sebum content and skin surface pH were of limited value. Interleukin (IL)-6/8 and various chemokines and proteases were increased in tape-stripped skin which was more pronounced in SLS-treated skin tissue extracts. Thus, albeit limited to 48h, cultured full-thickness skin maintained several barrier characteristics and responded to different intensities of barrier disruption. Potentially, these models can be used to assess pre-clinically the efficacy and penetration of anti-inflammatory compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Internal resistor of multi-functional tunnel barrier for selectivity and switching uniformity in resistive random access memory.

    Science.gov (United States)

    Lee, Sangheon; Woo, Jiyong; Lee, Daeseok; Cha, Euijun; Hwang, Hyunsang

    2014-01-01

    In this research, we analyzed the multi-functional role of a tunnel barrier that can be integrated in devices. This tunnel barrier, acting as an internal resistor, changes its resistance with applied bias. Therefore, the current flow in the devices can be controlled by a tunneling mechanism that modifies the tunnel barrier thickness for non-linearity and switching uniformity of devices. When a device is in a low-resistance state, the tunnel barrier controls the current behavior of the device because most of the bias is applied to the tunnel barrier owing to its higher resistance. Furthermore, the tunnel barrier induces uniform filament formation during set operation with the tunnel barrier controlling the current flow.

  9. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future

    Directory of Open Access Journals (Sweden)

    Mingyue Luo

    2018-01-01

    Full Text Available As a constituent of blood-retinal barrier and retinal outer segment (ROS scavenger, retinal pigmented epithelium (RPE is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  10. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    Science.gov (United States)

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  11. Lipids and skin barrier function - a clinical perspective

    DEFF Research Database (Denmark)

    Jungersted, J.M.; Hellgren, Lars; Jemec, G.B.E.

    2008-01-01

    The stratum corneum (SC) protects us from dehydration and external dangers. Much is known about the morphology of the SC and penetration of drugs through it, but the data are mainly derived from in vitro and animal experiments. In contrast, only a few studies have the human SC lipids as their focus...... and in particular, the role of barrier function in the pathogenesis of skin disease and its subsequent treatment protocols. The 3 major lipids in the SC of importance are ceramides, free fatty acids, and cholesterol. Human studies comparing levels of the major SC lipids in patients with atopic dermatitis...

  12. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  13. Lipopolysaccharide increases Na(+),K(+)-pump, but not ENaC, expression in guinea-pig airway epithelium.

    Science.gov (United States)

    Dodrill, Michael W; Beezhold, Donald H; Meighan, Terence; Kashon, Michael L; Fedan, Jeffrey S

    2011-01-25

    Earlier, we found in functional experiments that lipopolysaccharide (LPS; 4mg/kg; i.p.) hyperpolarized the epithelium by stimulating the transepithelial transport of Na(+) in guinea-pig tracheal epithelium. Epithelial sodium channel (ENaC) activity and Na(+),K(+)-pump activity were increased. In this study, we hypothesized that LPS increases the expression of ENaC and the Na(+),K(+)-pump in the epithelium and investigated the levels of transcription and protein abundance. Using qPCR, the effects of LPS on the transcription of αENaC, α(1) Na(+),K(+)-pump, COX-2, eNOS, iNOS, IL-1β, and TNF-α were measured at 3 and 18h. In the epithelium, LPS increased the transcription of COX-2, IL-1β, and, to a nonsignificant extent, TNF-α at 3h, but not at 18h. In alveolar macrophages, TNF-α, and, to a nonsignificant extent, COX-2 and IL-1β were up-regulated at 3h, but not at 18h. Even though LPS stimulated the transcription of some genes, αENaC and α(1) Na(+),K(+)-ATPase transcription were not affected. The expressions of α-, β-, and γ-ENaC and α(1) Na(+),K(+)-pump from the tracheal epithelium and kidney cortex/medulla were investigated by western blotting. All three ENaC subunits were detected as cleavage fragments, yet LPS had no effect on their expression. LPS increased the expression of the α(1) subunit and the α(1), α(2), and α(3) subunits, collectively, of the Na(+),K(+)-pump. Taken together, these data indicate that LPS increases Na(+) transport downstream of the genetic level, in part, by stimulating the expression of the Na(+),K(+)-pump. Published by Elsevier B.V.

  14. Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures

    International Nuclear Information System (INIS)

    Savio, Andrea; Poncet, Alain

    2011-01-01

    In this work, we compute the Wigner distribution function on one-dimensional devices from wave functions generated by solving the Schroedinger equation. Our goal is to investigate certain issues that we encountered in implementing Wigner transport equation solvers, such as the large discrepancies observed between the boundary conditions and the solution in the neighborhood of the boundaries. By evaluating the Wigner function without solving the Wigner transport equation, we intend to ensure that the actual boundary conditions are consistent with those commonly applied in literature. We study both single- and double-barrier unbiased structures. We use simple potential profiles, so that we can compute the wave functions analytically for better accuracy. We vary a number of structure geometry, material, meshing, and numerical parameters, among which are the contact length, the barrier height, the number of incident wave functions, and the numerical precision used for the computations, and we observe how the Wigner function at the device boundaries is affected. For the double-barrier structures, we look at the density matrix function and we study a model for the device transmission spectrum which helps explain the lobelike artifacts that we observe on the Wigner function.

  15. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Alfred, E-mail: Alfred.bernard@uclouvain.be; Nickmilder, Marc; Dumont, Xavier

    2015-07-15

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor of low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial

  16. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers

    International Nuclear Information System (INIS)

    Bernard, Alfred; Nickmilder, Marc; Dumont, Xavier

    2015-01-01

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor of low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial

  17. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    Science.gov (United States)

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  18. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    Science.gov (United States)

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  19. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    Science.gov (United States)

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  20. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Directory of Open Access Journals (Sweden)

    Finger Thomas E

    2008-12-01

    Full Text Available Abstract Background In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. Results We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. Conclusion We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.

  1. Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke

    Science.gov (United States)

    The emergence of air-liquid interface (ALI) culturing of mammalian airway epithelium is a recent innovation for experimental modeling of airway epithelial development, function, and pathogenic mechanisms associated with infectious agent and irritant exposure. This construct provi...

  2. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    Science.gov (United States)

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.

  3. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  4. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine.

    Science.gov (United States)

    Moeser, Adam J; Borst, Luke B; Overman, Beth L; Pittman, Jeremy S

    2012-10-01

    The objective of this study was to investigate intestinal function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Jejunum and distal ileum from control and pigs exhibiting PFTS was harvested at weaning, 4 and 11 days post-weaning (PW) for intestinal barrier function studies and histological analyses (n=6 pigs per group). Marked disturbances in intestinal barrier function was observed in PFTS pigs, compared with controls, indicated by lower (p<0.05) TER and increased (p<0.01) permeability to FITC dextran (4 kDa). Intestines from weaned pigs, subjected to a 4-day fast, exhibited minor disturbances in intestinal barrier function. Villus atrophy and crypt hyperplasia were observed in the PFTS intestine compared with control and fasted pigs. These data demonstrate that PFTS is associated with profound disturbances in intestinal epithelial barrier function and alterations in mucosal and epithelial morphology in which anorexia is not the sole factor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Cytogenetic damage and postradiation restoration of eye cornea epithelium of Rodentia characterizing by different radiosensitivity

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.

    1983-01-01

    Intensity of beam damage and reparation of eye cornea epithelium of animals inhabiting under different conditions and differing by radiosensitivity has been studied. Mice differing by high radiosensitivity have the hardest cytogenetic damage. Cornea epithelium of bank voles is more radiostable than that of mice. The most negligible damages of cornea epithelium is observed in Mongolian sandwort despite the fact that their total radiation stability is lower than that of bank voles. High protective-restoring properties of eye cornea epithelium of Mongolian sandwort are explained by the structure of epithelium cells diffe-- ring by a large number of cytoplasm

  6. Regional differences in DNA replication in nasal epithelium following acute ozone or cigarette smoke exposure

    International Nuclear Information System (INIS)

    Johnson, N.F.; Hotchkiss, J.A.; Harkema, J.R.; Henderson, R.F.; Mauderly, J.L.; Cuddihy, R.G.

    1988-01-01

    The epithelium of the anterior nasal cavity is composed of four cell types, squamous, respiratory, cuboidal, and olfactory cells. We monitored proliferation In these tissues by bromodeoxy-uridine (BrdUrd) incorporation; the labeled cells were identified by using a monoclonal antibody that recognizes BrdUrd. The respiratory, cuboidal and olfactory epithelia had low cell turnover (1-labeled ceIl/mm basal lamina). Squamous epithelium contained 40-labeled cells per mm basal lamina. Following exposure to diluted mainstream cigarette smoke, a transient, but marked increase in DNA replication was seen in the cuboidal epithelium. In contrast, ozone exposure was associated with DNA replication in the olfactory and respiratory epithelium, as well as in the cuboidal epithelium. These studies show that the sensitivity of nasal epithelium to irritants can be assayed by measuring DNA replication. (author)

  7. Regional differences in DNA replication in nasal epithelium following acute ozone or cigarette smoke exposure

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N F; Hotchkiss, J A; Harkema, J R; Henderson, R F; Mauderly, J L; Cuddihy, R G

    1988-12-01

    The epithelium of the anterior nasal cavity is composed of four cell types, squamous, respiratory, cuboidal, and olfactory cells. We monitored proliferation In these tissues by bromodeoxy-uridine (BrdUrd) incorporation; the labeled cells were identified by using a monoclonal antibody that recognizes BrdUrd. The respiratory, cuboidal and olfactory epithelia had low cell turnover (1-labeled ceIl/mm basal lamina). Squamous epithelium contained 40-labeled cells per mm basal lamina. Following exposure to diluted mainstream cigarette smoke, a transient, but marked increase in DNA replication was seen in the cuboidal epithelium. In contrast, ozone exposure was associated with DNA replication in the olfactory and respiratory epithelium, as well as in the cuboidal epithelium. These studies show that the sensitivity of nasal epithelium to irritants can be assayed by measuring DNA replication. (author)

  8. Modelling of migration from multi-layers and functional barriers: Estimation of parameters

    NARCIS (Netherlands)

    Dole, P.; Voulzatis, Y.; Vitrac, O.; Reynier, A.; Hankemeier, T.; Aucejo, S.; Feigenbaum, A.

    2006-01-01

    Functional barriers form parts of multi-layer packaging materials, which are deemed to protect the food from migration of a broad range of contaminants, e.g. those associated with reused packaging. Often, neither the presence nor the identity of the contaminants is known, so that safety assessment

  9. [Structure of the epithelium of the parasitic turbellaria Notenera ivanovi (Turbellaria: Fecampiida)].

    Science.gov (United States)

    Kornakova, E E; Marchenkov, A V

    2000-01-01

    The ultrastructure of the epithelium in Notentera ivanovi (Turbellaria, Fecampiida) has been studied. Notentera ivanovi lacks the digestive system but has a pad of the epidermal cells on the dorsal side of the body, which seems to be similar to the digestive epidermis on LM. Both the ventral and dorsal epithelium are cellular, ciliated and not insunk (fig. 1, a). The ultrastructure of the ventral and dorsal epithelium is similar in essential features. The cells bear abundant microvilli, cilia and are very rich in mitochondria, but the cytoplasm does not contain lysosomes and shows no other indications of phago- or pinocytosis. The basal membrane of epithelial cells forms deep invaginations (fig. 1, [symbol: see text]), partly with dilations (fig. 1, a; 2, a) containing the lamellated material (3, [symbol: see text]). In the basal part of the cells the numerous Golgi apparatus and rare cysternae of the smooth endoplasmic reticulum were observed (fig. 2, a, [symbol: see text]). The epithelium consists of several types of cells, which differ in the structure of secretory granules. The most abundant type of cells contains the granules with the rough-fibrillated content (fig. 1, a; 2, [symbol: see text]; 3, a). The cells of this type cover most part of the body. In some cells the content of such granules becomes condensed and electron-dense granules appear (fig. 3, a, [symbol: see text]). Another type of cells contains the giant granules with the rough-fibrillated content (fig. 3, [symbol: see text]). Third type of the secret is the granules with the finely fibrillated content which is ejected by exocytosis. The cells of the second and third types form a separate areas of the epithelium of the dorsal side of the body but occasionally were observed in the ventral epithelium too. The epithelium of N. ivanovi differs from that in Kronborgia by the abundance and diversity of secretory contents. The role of the epithelium in the digestion remains conjectural. It seems to be

  10. Measurement of the thickness of the bronchial epithelium

    International Nuclear Information System (INIS)

    Bowden, D.H.; Baldwin, F.

    1989-02-01

    Cancer of the lung in uranium miners is thought to be related to the inhalation of gaseous radon daughters which become attached to molecules of water vapour or to dust particles. Since, the depth of tissue penetration by alpha particles is short, the thickness of the epithelium that lines the bronchial tree may be a critical factor in the development of cancers at specific sites in the lung. The objectives of the present study were: 1) to measure the thickness of human bronchial epithelium; 2) to determine the distribution and depth of the nuclei of basal cells in the bronchial epithelium; and 3) to compare these parameters in groups of smokers and non-smokers. Twenty-nine surgically removed specimens of the lung were examined (26 smokers, 3 non-smokers). The specimens were fixed and prepared for examination by light and electron microscopy. Blocks of tissue were oriented so that the maximum number of bronchi were cut in cross-section; measurements included bronchi of all sizes from bronchial generations (1≥ 9.01 mm) diameter to the smallest bronchioles, generations 7 - 16 (0.26 - 2.0 mm). Comparison of measurements in smokers and non-smokers show no significant differences, so that the 29 cases are considered to represent a homogeneous group. With progressive divisions of the bronchi, the epithelium decreases in thickness. Of more importance are the figures relating to the distance from the cell surface to the underlying nucleus. Here too, with the exception of goblet cells, the measurements are significantly smaller in generations 7 - 16 than in generation 1

  11. Histomorphology of the corneal epithelium of anastrozole treated rabbits

    International Nuclear Information System (INIS)

    Khalil, A.; Qamar, K.; Butt, S.A.

    2013-01-01

    Objective: To evaluate the effects of prolonged use of anastrozole as an endocrine treatment of breast cancer on the corneal epithelium in an animal model. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Anatomy, Army Medical College, Rawalpindi in collaboration with National Institute of Health, Islamabad, six months from Jun 2012 to Nov 2012. Material and Methods: Twenty adult female NewZealand white rabbits were taken. Ten rabbits were placed in control group taking normal diet and 10 were given anastrozole orally in the normal dose of 1 mg/day (0.02 mg/kg/day). After the completion of the study, corneas were removed and grossly examined. The specimen were fixed and slides prepared for histomorphological examination. The epithelium in each slide was examined for any deposits, edema or increase in stratification and the height of the epithelium was measured for each eye. The results were compared between the groups for statistical significance. Results: The epithelium had normal shape with no areas of any deposits, edema or ulceration. The mean epithelial height in the control group was 21.25 +- 4.29 mu m and 21.00 +- 4.28 mu m in the right corneas and left corneas, respectively. The mean epithelial height taken from the experimental group was 20.50 +- 4.97 mu m and 21.00 +- 4.28 mu m in right sided and left sided corneas, respectively. The p value was calculated to be 0.722 and 1.00 for the right and left corneas, respectively and no statistical significance was found in between the two groups. Conclusion: Long term administration of anastrozole has no effect on the histological morphology of the corneal epithelium. (author)

  12. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    Science.gov (United States)

    El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel

    2017-07-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  13. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    Directory of Open Access Journals (Sweden)

    Maha El Shahawy

    2017-07-01

    Full Text Available The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH and retinoic acid (RA signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  14. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions.

    Science.gov (United States)

    Oh, Myoung Jin; Nam, Jin Ju; Lee, Eun Ok; Kim, Jin Wook; Park, Chang Seo

    2016-10-01

    Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.

  15. Sieve plugs in fenestrae of glomerular capillaries--site of the filtration barrier?

    DEFF Research Database (Denmark)

    Rostgaard, Jørgen; Qvortrup, Klaus

    2002-01-01

    The exact location of the filtration barrier of the glomerular capillary wall, which consists of an endothelium, a basement membrane and a visceral epithelium, has not yet been determined. Apparent discrepancies between different investigators in the past could be explained if postmortem...... and a filamentous surface coat about 60 nm thick covered the interfenestral domains of the endothelial cell. Based on these purely morphological data, we dare to suggest that the fenestral plugs are the primary site of the glomerular filtration barrier - albeit highly speculative, nevertheless a logical location...... - and consequently that the glomerular filtration process is a 'tangential-flow' as opposed to a 'dead-end' filtration process. A tangential-flow filtration would minimize 'clogging' and 'concentration polarization' in the 'filter'....

  16. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Mutanu Jungersted, Jakob; Hellgren, Lars; Høgh, Julie Kaae

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups...... and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically...... significant differences were found between young and old skin for ceramide subgroups or ceramide/cholesterol ratios, and there was no statistically significant correlation between answers about dry skin and ceramide levels. Interestingly, a statistically significant higher ceramide/cholesterol ratio was found...

  17. Airway responses towards allergens - from the airway epithelium to T cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Hansen, Søren; Würtzen, Peter A

    2015-01-01

    -damaged, healthy epithelium lowers the DCs ability to induce inflammatory T cell responses towards allergens. The purpose of this review is to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2 cell responses...

  18. The blood-brain barrier and oncology : new insights into function and modulation

    NARCIS (Netherlands)

    Bart, J; Groen, HJM; Hendrikse, NH; van der Graaf, WTA; Vaalburg, W; de Vries, EGE

    2000-01-01

    The efficacy of chemotherapy for malignant primary or metastatic brain tumours is still poor. This is at least partly due to the presence of the blood-brain barrier (BBB). The functionality of the BBB can be explained by physicochemical features and efflux pump mechanisms. An overview of the

  19. Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium.

    Science.gov (United States)

    Alberto-Silva, Carlos; Gilio, Joyce M; Portaro, Fernanda C V; Querobino, Samyr M; Camargo, Antonio C M

    2015-01-01

    Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c (epithelium of male mice. The adult animals received either one of the synthetic peptides or captopril (120 nmol/dose per testis) via injection into the testicular parenchyma. After seven days, the mice were sacrificed, and the testes were collected for histopathological evaluation. BPP-10c and BPP-AP showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and high degree of seminiferous tubule degeneration, especially in BPP-AP-treated animals. In addition, both synthetic peptides led to a significant reduction in the number of spermatocytes and round spermatids in stages I, V and VII/VIII of the seminiferous cycle, thickness of the seminiferous epithelium and diameter of the seminiferous tubule lumen. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril or BPP-11e. The major finding of the present study was that the demonstrated effects of BPP-10c and BPP-AP on the seminiferous epithelium are dependent on their primary structure and cannot be extrapolated to other BPPs.

  20. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Nielsen, Robert

    1999-01-01

    Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+......Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+...

  1. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

  2. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1993-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers

  3. Metabolic activation of carbon tetrachloride by the cervico-vaginal epithelium in rodents

    International Nuclear Information System (INIS)

    Brittebo, E.B.; Brandt, I.

    1989-01-01

    The metabolism and binding of 14 C-labelled carbon tetrachloride (CCl 4 ) in the genital tract of female adult or juvenile NMRI-mice and Sprague-Dawly rats (mainly in the pro-oestrous/oestrous stage) and an adult New Zealand rabbit were studied. A marked irreversible binding of radioactivity in the squamous cervico-vaginal epithelium of mice given intravenous injections of 14 C-CCl 4 was revealed by autoradiography of solvent-extracted tissue. The localization of binding in the mouse genital tract incubated with 14 C-CCl 4 under air was similar to that observed in vivo. Bound radioactivity was also present in the cylindrical epithelium of the rabbit vagina incubated with 14 C-CCl 4 in vitro. For a comparison, no preferential binding of radiolabelled diethylstilbestrol or ethinylestradiol was observed in the mouse cervico-vaginal epithelium. The level of irreversible binding to PMSG-primed (pregnant mare's serum gonadotrophin) vaginal epithelial 100 x g supernatants of mice and rats incubated with 14 C-CCl 4 under air was low. Addition of the reducing agent dithionite to the incubations increased the binding in the vaginal epithelium 20-fold. In juvenile mice and rats injected with 14 C-CCl 4 , the levels of metabolites in the epithelium were low, whereas PMSG-primed juvenile rats contained a higher level of metabolites. The results show that the cervico-vaginal epithelium can metabolically activate CCl 4 to reactive metabolites and suggest that the metabolism is under endocrine control. (author)

  4. NORMAL GENE EXPRESSION IN MALE F344 RAT NASAL TRANSITIONAL/RESPIRATORY EPITHELIUM

    Science.gov (United States)

    Abstract The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Ce...

  5. Fulfillment of the long-term safety functions by the different barriers during the main time frames after repository closure

    International Nuclear Information System (INIS)

    Preter, P. de; Lalieux, Ph.

    2002-01-01

    In general terms the basis long-term safety functions of a disposal system (i.e. the engineered barrier system, including the waste forms and the host rock) are the functions that the system as a whole or its constituents must fulfill in order to assure an adequate level of long-term radiological safety. The long-term safety functions of a disposal system constitute a generic and methodological tool that can be used in a double sense. In the first place these functions provide an a priori instrument for designing the system: the implementer must ensure that these safety functions are fulfilled by a series of robust system barriers and components. These functions can also be used as an a posteriori means to describe and assess in general terms the functioning of the system. In this way they are an important qualitative element to help to support the safety case and to identify further R and D priorities. By providing a general description of system functioning they are also a communication tool to stakeholders who are less familiar with the details of a safety case. Instead of limiting the description to a multi-barrier system, the safety functions enable to better explain how the different barriers contribute to one or more safety functions and by which processes this is performed. By doing so the system description moves from multi-barrier to multi-function. The aim of this paper is to provide such a general description of the system functioning for the Belgian case of deep disposal of high-level waste (mainly spent fuel or vitrified waste from fuel reprocessing) in the Boom Clay, o poorly-indurated argillaceous formation. From the detailed safety and performance evaluations the main time frames after repository closure are identified. Each time frame relates to a period during which the successive safety functions play a key role. Also, in each time frame the radiological impact on the environment is distinctly different. (authors)

  6. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  7. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  8. Sleep Restriction Impairs Blood–Brain Barrier Function

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  9. Segment-specific responses of intestinal epithelium transcriptome to in-feed antibiotics in pigs.

    Science.gov (United States)

    Yu, Kaifan; Mu, Chunlong; Yang, Yuxiang; Su, Yong; Zhu, Weiyun

    2017-10-01

    Despite widespread use of antibiotics for treatment of human diseases and promotion of growth of agricultural animals, our understanding of their effects on the host is still very limited. We used a model in which pigs were fed with or without a cocktail of antibiotics and found, based on the denaturing gradient gel electrophoresis (DGGE) patterns, that the fecal bacteria from the treatment and control animals were distinct. Furthermore, the total bacterial population in the feces tended to be decreased by the antibiotic treatment ( P = 0.07), and the counts of Lactobacillus and Clostridium XIVa were significantly reduced ( P epithelium, we assessed gene expression profiles of the jejunum and ileum and their response to antibiotic administration. The results indicate that in-feed antibiotics increased expression of genes involved in immune functions in both the jejunum and ileum, some of which were clustered in the coexpression network. Gene ontology terms of metabolic processes were altered predominantly in the jejunum but not in the ileum. Notably, antibiotics diminished intestinal segment-specific transcriptional changes, especially for genes associated with metabolic functions. This study reveals segment-specific responses of host intestinal epithelium to in-feed antibiotics, which can be a valuable resource for deciphering antibiotic-microbiota-host interactions. Copyright © 2017 the American Physiological Society.

  10. The Effects of Anthrax Lethal Toxin on Host Barrier Function

    Directory of Open Access Journals (Sweden)

    David M. Frucht

    2011-06-01

    Full Text Available The pathological actions of anthrax toxin require the activities of its edema factor (EF and lethal factor (LF enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA. LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs, but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.

  11. The Ciona intestinalis immune-related galectin genes (CiLgals-a and CiLgals-b) are expressed by the gastric epithelium.

    Science.gov (United States)

    Parrinello, Daniela; Sanfratello, Maria Antonietta; Vizzini, Aiti; Testasecca, Lelia; Parrinello, Nicolò; Cammarata, Matteo

    2017-03-01

    The transcription of two Ciona intestinalis galectin genes (CiLgals-a and CiLgals-b) is uparegulated by LPS in the pharynxis (hemocytes, vessel epithelium, endostilar zones) which is retained the main organ of the immunity. In this ascidian, for the first time we show, by immunohistochemistry and in situ hybridization methods, that these two immune-related genes are expressed in the gastric epithelium of naïve ascidians, whereas the galectins appear to be only contained in the intestine columnar epithelium. In addition, according to previous results on the pharynx, the genes are also expressed and galectins produced by hemocytes scattered in the connective tissue surrounding the gut. The genes expression and galectin localization in several tissues, including the previous findings on the transcription upregulation, the constitutive expression of these genes by endostylar zones and by the gastric epithelium suggest a potential multifunctional role of these galectins. In this respect, it is of interest to define where the CiLgals are normally found as related to the tissue functions. Such an approach should be a starting point for further investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Solitary chemoreceptor cell proliferation in adult nasal epithelium.

    Science.gov (United States)

    Gulbransen, Brian D; Finger, Thomas E

    2005-03-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein alpha-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cbeta2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs.

  13. Growth of normal or irradiated vaginal epithelium in in vivo cultures

    International Nuclear Information System (INIS)

    Tileva, M.

    1975-01-01

    Growth of normal or irradiated vaginal epithelium was studied by the method of F.M.Lazarenko (1959). Pieces of vaginal mucosa from immature albino rats, normal or exposed to 1000 or 2000 R, were embedded in celloidin and implanted into the abdominal wall of female immature rats. Implants were recovered for histological examinations from day 1 to day 10 after surgery. At day 1 post implantation, vaginal epithelium was found to have dedifferentiated. Cells showed a high mitotic index (MI = 16.2%). Cell proliferation progressed further to attain a peak rate at 3 days (MI = 32.7%). At 5 days, newly formed structures began to differentiate, and concurrently manifested a gradual decrease in cell proliferative activity (at 10 days, MI = 15.6%). Following exposure to 1000 R, vaginal epithelium displayed a similar pattern of growth and differentiation, the only difference from non-irradiated epithelium being that there was a transient mitotic delay over the first 3 days; mitotic rates reached a peak at 5 days (MI = 47.0%), were still high at 7 days (MI = 31.3%), and fell to 19% at 10 days. With this longer proliferation period, newly formed structures appeared ''luxuriant''. After a dose of 2000 R, vaginal epithelium failed to show any signs of growth at all investigated time intervals. These data are in agreement with evidence obtained by K.M.Svetikova (1961) and L.I.Chekulaeva (1969, 1974) for a good restitutional ability of epithelia of epidermal origin following exposure to 1200 R X-rays. By Warren' rule (1944), i.e., that cells should be considered radiosensitive if severely damaged by less than 2500 R, vaginal epithelium cells may be designated as relatively susceptible to radiation. (author)

  14. Congenital simple hamartoma of the retinal pigment epithelium: a case report

    Directory of Open Access Journals (Sweden)

    Mariana Rossi Thorell

    2014-04-01

    Full Text Available We report the case of a 56-year-old woman who presented for a routine ophthalmological examination without visual symptoms and had a unilateral black retinal lesion that was detected by clinical examination. Fluorescein angiography and optical coherence tomography findings were compatible with a congenital simple hamartoma of the retinal pigment epithelium. It is very important to detect this tumor and differentiate it from other pigmented fundus lesions that can compromise visual function or result in systemic conditions such as those caused by malignant tumors.

  15. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    2009-10-01

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  16. Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5.

    Science.gov (United States)

    Tfayli, Ali; Jamal, Dima; Vyumvuhore, Raoul; Manfait, Michel; Baillet-Guffroy, Arlette

    2013-11-07

    The stratum corneum is the outermost layer of the skin; its barrier function is highly dependent on the composition and the structure as well as the organization of lipids in its extracellular matrix. Ceramides, free fatty acids and cholesterol represent the major lipid classes present in this matrix. They play an important role in maintaining the normal hydration levels required for the normal physiological function. Despite the advancement in the understanding of the structure, composition and the function of the stratum corneum (SC), the concern of "dry skin" remains important in dermatology and care research. Most studies focus on the quantification of water in the skin using different techniques including Raman spectroscopy, while the studies that investigate the effect of hydration on the quality of the barrier function of the skin are limited. Raman spectroscopy provides structural, conformational and organizational information that could help elucidate the effect of hydration on the barrier function of the skin. In order to assess the effect of relative humidity on the lipid barrier function; we used Raman spectroscopy to follow-up the evolution of the conformation and the organization of three synthetic ceramides (CER) differing from each other by the nature of their polar heads (sphingosine, phytosphingosine and α hydroxyl sphingosine), CER 2, III and 5 respectively. CER III and 5 showed a more compact and ordered organization with stronger polar interactions at intermediate relative humidity values, while CER 2 showed opposite tendencies to those observed with CER III and 5.

  17. DIFFERENTIAL HISTOMORPHOMETRIC CHANGES IN NORMAL AND INFLAMED GINGIVAL EPITHELIUM

    Directory of Open Access Journals (Sweden)

    Tanaskovic Stankovic Sanja

    2016-12-01

    Full Text Available Introduction and aim: In recent decades, many factors such as smoking, unhealthy diet as well as high alcohol intake were marked as risk factors that can lead to increased incidence of malignant alterations, gingivitis, periodontal disease and other oral epithelium pathological changes. Having in mind that in the group of non-malignant and non-dental oral pathology gingivitis and periodontal disease are the most common oral mucosa alterations aim of our research was to investigate histomorphometric characteristics of healthy and altered oral and gingival epithelium. Material and methods: Tissue samples of 24 oral and gingival mucosa specimens were collected. Samples were fixed in 10% buffered paraformaldehyde, routinely processed and embedded in paraffin blocks. From each block sections 5 micrometer thin were made and standard H/E staining as well as immunocytochemical detection of Ki-67 proliferation marker and CD79a lymphocyte marker were performed. Measurements and image analysis was performed with Image Pro Plus software (Media Cybernetics, USA and Axiovision (Ziess, USA. Results: We showed that inflamed gingival epithelium is increasing its thickness in proportion to the severity of adjacent inflammation. Furthermore, mitotic index is rising (up to 132% in the same manner as well as basal lamina length (up to 70% when normal and inflamed gingiva is compared. Architecture of epithelial ridges is changed from straightforward to mesh-like. Conclusion: Assessment of the free gingival epithelium thickness is directly related to the severity of the inflammation process i

  18. Kinetics of corneal epithelium turnover in vivo. Studies of lovastatin

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1990-01-01

    The authors developed a direct chemical approach for estimating the rate of turnover of the corneal epithelium in vivo. The method was used to examine the effects of lovastatin, a potent inhibitor of cholesterol biosynthesis, on proliferation and turnover of the epithelium. Corneal DNA was labeled by pulse injection (IP) of the rat with 3H-thymidine, and 3H-labeled DNA was recovered from peripheral and central corneas over the next 15 days. Only the epithelium became labeled, and the loss of label by cell desquamation began 3 days after injection. The loss of 3H-DNA from the cornea (peripheral plus central region) followed first-order kinetics. The half-life of the disappearance was about 3 days. The peripheral cornea became more highly labeled than the central cornea and began to lose 3H-DNA before the central cornea. These observations support the possibility of a higher mitotic rate in the peripheral region and the centripetal movement of a population of peripheral epithelial cells in the normal cornea. The half-lives of the disappearance of 3H-DNA from peripheral and central corneas measured between days 5 and 15 postinjection were identical, both at 3 days. Complete turnover of the corneal epithelium would, therefore, require about 2 weeks (4-5 half-lives). Treatment of the rat with lovastatin had no obvious effects upon the proliferation or turnover of the corneal epithelium. Although lovastatin inhibited corneal 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key regulatory enzyme of cholesterol synthesis, the cornea compensated by induction of this enzyme so that there was no net inhibition of cholesterol synthesis in the cornea

  19. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue

    Directory of Open Access Journals (Sweden)

    M. Kawashima

    2012-05-01

    Full Text Available Transient receptor potential vanilloid subfamily member 1 (TRPV1 is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP, a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRPexpressing terminals.

  20. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  1. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  2. Seminal epithelium in prostate biopsy can mimic malignant and premalignant prostatic lesions.

    Science.gov (United States)

    Arista-Nasr, J; Trolle-Silva, A; Aguilar-Ayala, E; Martínez-Benítez, B

    2016-01-01

    In most prostate biopsies, the seminal epithelium is easily recognised because it meets characteristic histological criteria. However, some biopsies can mimic malignant or premalignant prostatic lesions. The aims of this study were to analyse the histological appearance of the biopsies that mimic adenocarcinomas or preneoplastic prostatic lesions, discuss the differential diagnosis and determine the frequency of seminal epithelia in prostate biopsies. We consecutively reviewed 500 prostate puncture biopsies obtained using the sextant method and selected those cases in which we observed seminal vesicle or ejaculatory duct epithelium. In the biopsies in which the seminal epithelium resembled malignant or premalignant lesions, immunohistochemical studies were conducted that included prostate-specific antigen and MUC6. The most important clinical data were recorded. Thirty-six (7.2%) biopsies showed seminal epithelium, and 7 of them (1.4%) resembled various prostate lesions, including high-grade prostatic intraepithelial neoplasia, atypical acinar proliferations, adenocarcinomas with papillary patterns and poorly differentiated carcinoma. The seminal epithelium resembled prostate lesions when the lipofuscin deposit, the perinuclear vacuoles or the nuclear pseudoinclusions were inconspicuous or missing. Five of the 7 biopsies showed mild to moderate cellular atypia with small and hyperchromatic nuclei, and only 2 showed cellular pleomorphism. The patients were alive and asymptomatic after an average of 6 years of progression. The seminal epithelium resembles prostatic intraepithelial neoplasia, atypical acinar proliferations and various types of prostatic adenocarcinomas in approximately 1.4% of prostate biopsies. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.

    Science.gov (United States)

    Shahidullah, M; Mandal, A; Delamere, N A

    2015-11-01

    The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to

  4. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression.

    Directory of Open Access Journals (Sweden)

    Victor Chatterjee

    Full Text Available A disintegrin and metalloproteinase15 (ADAM15 has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS. An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3' UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.

  6. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different...... includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  7. Differential proteiomic analysis of mouse intestinal epithelium irradiated by γ-ray

    International Nuclear Information System (INIS)

    Zhang Bo; Su Yongping; Liu Xiaohong; Ai Guoping; Ran Xinze; Wei Yongjiang; Wang Junping; Cheng Tianmin

    2003-01-01

    Objective: For elucidating the molecular mechanism of reconstruction of intestinal epithelium damaged by ionizing radiation, the proteomes of murine intestinal epithelium from normal and irradiated mice were compared by 2-D electrophoresis. Methods: Histopathologic sections of whole small intestine made from BALB/c mice 3 h and 72 h after total-body irradiation were stained with hematoxylin-eosin. Intestinal epithelial cells were isolated from normal and irradiated mice. The total protein samples prepared by one-step method were used in 2-D electrophoresis, the protein maps were compared and the differential spots were detected with PDQuest analysis software. Twenty-eight different spots were cut off from the gels, digested in gel with trypsin, measured with MALDI-TOF-MS and searched in database. Results: Small intestinal epithelium was damaged as early as 3 h after irradiation, and reconstructed 72 h later. After Coomassie-staining, the 2-DE image analysis by PDQuest software detected 638 ± 39 protein spots in normal mice group, 566 ± 32 spots in 3 hours post irradiation group, and 591 ± 29 spots in 3 days post irradiation group. The 2-DE images showed that proteomes of intestinal epithelium were altered with γ-irradiation. The proteins identified by peptide mass fingerprinting involved in cellular events, including signal transduction, metabolism and oxidative stress responses. Conclusions: Gamma-irradiation can induce the protein expression of intestinal epithelium. The technique of 2-D electrophoresis is a useful tool in the study of molecular mechanism of radiation damage

  8. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    Science.gov (United States)

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular

  9. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    Directory of Open Access Journals (Sweden)

    Shimon Bershtein

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR, with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90% in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM, correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the

  10. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay.

    Science.gov (United States)

    Yilmaz, Ozlem

    2008-10-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues.

  11. Influence of sunflower seed oil or baby lotion on the skin barrier function of newborns: A pilot study.

    Science.gov (United States)

    Kanti, Varvara; Günther, Malise; Stroux, Andrea; Sawatzky, Sabine; Henrich, Wolfgang; Abou-Dakn, Michael; Blume-Peytavi, Ulrike; Garcia Bartels, Natalie

    2017-12-01

    Skin care influences skin barrier function during the first postnatal weeks. Although the use of natural oils in preterms has been investigated, there are currently no data comparing the effect of sunflower oil to an emollient on barrier development in healthy term newborns. In a prospective, randomized clinical study, 50 healthy full-term newborns aged ≤72 h were randomly assigned to two groups: group baby lotion (L, n=22) and sunflower seed oil (SSO, n=24). The skin barrier function was evaluated in three anatomical areas (front, abdomen, and thigh) by noninvasive assessment of transepidermal water loss (TEWL), stratum corneum hydration (SCH), sebum, and skin pH at inclusion and after five weeks. In both groups, skin pH decreased and SCH increased statistically significantly in all measured areas at W5 compared to baseline. TEWL decreased statistically significantly on the forearm in both groups, on the upper leg in group L, and on the abdomen in group SSO. Both skin care regimes did not harm skin barrier function adaptation in healthy term neonates during the first five weeks of life. © 2017 Wiley Periodicals, Inc.

  12. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms.

    Science.gov (United States)

    Kern, J S; Herz, C; Haan, E; Moore, D; Nottelmann, S; von Lilien, T; Greiner, P; Schmitt-Graeff, A; Opitz, O G; Bruckner-Tuderman, L; Has, C

    2007-12-01

    Kindlin-1 is an epithelium-specific phosphoprotein and focal adhesion adaptor component. Mutations in the corresponding gene (KIND1) cause Kindler syndrome (KS), which is manifested by skin blistering, poikiloderma, photosensitivity and carcinogenesis. Some patients also exhibit gastrointestinal symptoms, but it has remained unclear whether these represent a feature of Kindler syndrome or a coincidence. We examined kindlin-1 in human gastrointestinal epithelia and showed that it is involved in the aetiopathology of Kindler syndrome-associated colitis. Kindlin-1 expression was assessed by indirect immunofluorescence, western blot and RT-PCR. Kindlin-1 is expressed in oral mucosa, colon and rectum. Both the full-length 74 kDa kindlin-1 protein and a 43 kDa isoform were detected in CaCo2 cells, the latter resulting from alternative splicing. In the first months of life, patients (homozygous for null mutations) had severe intestinal involvement with haemorrhagic diarrhoea and showed morphological features of severe ulcerative colitis. Later in childhood, histopathology demonstrated focal detachment of the epithelium in all segments of the colon, chronic inflammation and mucosal atrophy. These findings define an intestinal phenotype for Kindler syndrome as a consequence of a primary epithelial barrier defect. The different clinical intestinal manifestations in Kindler syndrome patients may be explained by partial functional compensation of kindlin-1 deficiency by the intestinal isoform or by the presence of truncated mutant kindlin-1. (c) 2007 Pathological Society of Great Britain and Ireland

  13. Clearance of lead-212 ions from rabbit bronchial epithelium to blood

    International Nuclear Information System (INIS)

    James, A.C.; Greenhalgh, J.R.; Smith, H.

    1977-01-01

    The absorption of 212 Pb ions from bronchial epithelium to blood has been investigated in anaesthetized rabbits. The 212 Pb ions were introduced by intubation either into the trachea or into smaller, more distal bronchi. Removal from lung was followed by external γ-counting. Mucociliary clearance to the GI tract was blocked by tracheostomy. Two distinct phases of clearance from bronchial epithelium to blood were observed. Approximately 20% of deposited 212 Pb was rapidly absorbed with a half-time of about 4 min, the remainder with a biological half-time of about 9 h, irrespective of the site of instillation in the bronchial tree. Two hours after deposition, the 212 Pb remaining in lung was found to be partitioned between mucus and the bronchial epithelium, with a substantial but minor fraction in the epithelium. Uptake of 212 Pb in the skeleton was estimated to be about 20% of the 212 Pb entering the blood circulation. Removal by the kidneys, at 25%, was comparable with skeletal uptake. These results are compared with previously published work using rodents, dogs and man which demonstrated either rapid or slow absorption but not both phases occurring together. (author)

  14. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  15. Expression of semaphorin 3A in the rat corneal epithelium during wound healing

    International Nuclear Information System (INIS)

    Morishige, Naoyuki; Ko, Ji-Ae; Morita, Yukiko; Nishida, Teruo

    2010-01-01

    The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of

  16. Permeability and ultrastructure of human bladder epithelium

    DEFF Research Database (Denmark)

    Eldrup, J; Thorup, Jørgen Mogens; Nielsen, S L

    1983-01-01

    Leakage of tight junctions as observed with electron microscopy and demonstration of solute transport across bladder epithelium was investigated in 13 patients with different bladder diseases: urinary retention and infection, bladder tumours and interstitial cystitis. The latter group showed...

  17. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    Science.gov (United States)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  18. Epithelium-innate immune cell axis in mucosal responses to SIV.

    Science.gov (United States)

    Shang, L; Duan, L; Perkey, K E; Wietgrefe, S; Zupancic, M; Smith, A J; Southern, P J; Johnson, R P; Haase, A T

    2017-03-01

    In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.

  19. Phagocytosis of Giardia muris by macrophages in Peyer's patch epithelium in mice.

    Science.gov (United States)

    Owen, R L; Allen, C L; Stevens, D P

    1981-08-01

    No mechanism for the initiation of immunological clearance of Giardia from the mammalian intestinal tract has been identified. In normal and nude mice experimentally infected with G. muris, we examined antigen-sampling epithelium over Peyer's patch follicles by electron microscopy for evidence of interaction between G. muris and lymphoid cells. Invading G. muris were found in the epithelium near dying or desquamating columnar cells. Macrophages beneath the basal lamina extended pseudopods into the epithelium, trapping invading G. muris and enclosing them in phagolysosomes. In normal mice, which clear G. muris in 4 to 6 weeks, macrophages containing digested G. muris were surrounded by rosettes of lymphoblasts in the epithelium. In nude mice deficient in lymphocytes, there was apparent hyperplasia of macrophages, which filled the follicle domes, resulting in more frequent entrapment of G. muris but no contact between macrophages and lymphoblasts in the epithelium. In nude mice, which require 6 months to control G. muris infection, lymphoblast contact with macrophages containing distinctive microtubular remnants of G. muris was only identified in the follicle dome. This close physical association of lymphoblasts and macrophages containing G. muris remnants suggests that this macrophage activity represents intraepithelial antigen processing as well as a defense against the effects of the uncontrolled entrance of microorganisms and other antigenic particles into Peyer's patch lymphoid follicles.

  20. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    Science.gov (United States)

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice

    Science.gov (United States)

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-01-01

    AIM: To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. METHODS: Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. RESULTS: L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway. PMID:22912548

  2. Hyperopic correction: clinical validation with epithelium-on and epithelium-off protocols, using variable fluence and topographically customized collagen corneal crosslinking

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2014-12-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1LaserViison.gr Clinical and Research Eye Institute, Athens, Greece; 2Department of Ophthalmology, New York University Medical School, New York, NY, USAPurpose: To report novel application of topographically-customized collagen crosslinking aiming to achieve hyperopic refractive changes. Two approaches were evaluated, one based on epithelium-off and one based on epithelium-on (transepithelial. Methods: A peripheral annular-shaped topographically customizable design was employed for high-fluence ultraviolet (UV-A irradiation aiming to achieve hyperopic refractive changes. A total of ten eyes were involved in this study. In group-A (five eyes, a customizable ring pattern was employed to debride the epithelium by excimer laser ablation, while in group-B (also five eyes, the epithelium remained intact. In both groups, specially formulated riboflavin solutions were applied. Visual acuity, cornea clarity, keratometry, topography, and pachymetry with a multitude of modalities, as well as endothelial cell counts were evaluated. Results: One year postoperatively, the following changes have been noted: in group-A, average uncorrected distance visual acuity changed from 20/63 to 20/40. A mean hyperopic refractive increase of +0.75 D was achieved. There was some mild reduction in the epithelial thickness. In group-B, average uncorrected distance visual acuity changed from 20/70 to 20/50. A mean hyperopic refractive increase of +0.85 D was achieved. Epithelial thickness returned to slightly reduced levels (compared to baseline in group-A, whereas to slightly increased levels in group-B. Conclusion: We introduce herein the novel application of a topographically-customizable collagen crosslinking to achieve a hyperopic refractive effect. This novel technique may be applied either with epithelial removal, offering a more stable result or with a non-ablative and non-incisional approach, offering a minimally

  3. Stereodynamic tetrahydrobiisoindole “NU-BIPHEP(O”s: functionalization, rotational barriers and non-covalent interactions

    Directory of Open Access Journals (Sweden)

    Golo Storch

    2016-07-01

    Full Text Available Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC allowed for the determination of rotational barriers of ΔG‡298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(Os”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.

  4. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    Science.gov (United States)

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.

  5. Barrier mechanisms in the Drosophila blood-brain barrier.

    Science.gov (United States)

    Hindle, Samantha J; Bainton, Roland J

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  6. Functional Anatomy and Oncologic Barriers of the Larynx.

    Science.gov (United States)

    Mor, Niv; Blitzer, Andrew

    2015-08-01

    Laryngeal barriers to tumor spread are a product of laryngeal development, anatomic barriers, and enzymatic activity. Supraglottic and glottic/subglottic development is distinct and partially explains the metastatic behavior of laryngeal carcinoma. Dense connective tissues and elastic fibers provide anatomic barriers within the larynx. Laryngeal cartilage contains dense cartilage, enzyme inhibitors, and an intact perichondrium making it relatively resistant to tumor invasion; however, focal areas of vulnerability are created by ossified cartilage and natural interruptions in the perichondrium. Local inflammation and the enzymatic interplay between tumor and host are important factors in the spread of laryngeal tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Stimulation of Na{sup +} transport by stress protein and by its inhibitors by sheep maw epithelium; Stimulacia transportu Na{sup +} stresovym proteinom a jeho inhibitormi cez epitel bachora oviec

    Energy Technology Data Exchange (ETDEWEB)

    Dano, M; Galambos, M; Rosskopfova, O [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Stress proteins - 'Heat shock proteins' (Hsp) are formed during sublethal stress and other impulses, and can play an important role in protecting the functions of sheep maw epithelium, such as transport of minerals and development of the epithelium itself. The paper is aimed at assessing the protective mechanism of Hsp originated during returning to the original state from temporary acidosis of sheep maw epithelium. The aim was to determine the activity of the Na{sup +}/H{sup +} exchanger, which was affected by the expression of Hsp70 in ruminal acidosis by the method of radioactive indication. (authors)

  8. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  9. Ancestral amphibian v2rs are expressed in the main olfactory epithelium

    Science.gov (United States)

    Syed, Adnan S.; Sansone, Alfredo; Nadler, Walter; Manzini, Ivan; Korsching, Sigrun I.

    2013-01-01

    Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas “ancestral” v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates. PMID:23613591

  10. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  11. Novel Localization of Peripherin 2, the Photoreceptor-Specific Retinal Degeneration Slow Protein, in Retinal Pigment Epithelium

    Directory of Open Access Journals (Sweden)

    Patrizia B. Uhl

    2015-01-01

    Full Text Available Retinal pigment epithelium (RPE builds the outer blood-retinal barrier of the eye. Since one typical feature of the autoimmune disease, equine recurrent uveitis (ERU, is the breakdown of this barrier, we recently performed comparative analysis of healthy and uveitic RPE. We identified for the first time peripherin 2, which is responsible for visual perception and retina development, to be localized in RPE. The purpose of this study was therefore to validate our findings by characterizing the expression patterns of peripherin 2 in RPE and retina. We also investigated whether peripherin 2 expression changes in ERU and if it is expressed by the RPE itself. Via immunohistochemistry, significant downregulation of peripherin 2 in uveitic RPE compared to the control was detectable, but there was no difference in healthy and uveitic retina. A further interesting finding was the clear distinction between peripherin 2 and the phagocytosis marker, rhodopsin, in healthy RPE. In conclusion, changes in the expression pattern of peripherin 2 selectively affect RPE, but not retina, in ERU. Moreover, peripherin 2 is clearly detectable in healthy RPE due to both phagocytosis and the expression by the RPE cells themselves. Our novel findings are very promising for better understanding the molecular mechanisms taking place on RPE in uveitis.

  12. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Piña-Sanchez Patricia

    2005-09-01

    Full Text Available Abstract Background Serial Analysis of Gene Expression (SAGE is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE, useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV, where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC. Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma.

  13. Macrophages are required for dendritic cell uptake of respiratory syncytial virus from an infected epithelium.

    Science.gov (United States)

    Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L

    2014-01-01

    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.

  14. Thiolated silicone oils as adhesive skin protectants for improved barrier function.

    Science.gov (United States)

    Partenhauser, A; Zupančič, O; Rohrer, J; Bonengel, S; Bernkop-Schnürch, A

    2016-06-01

    The purpose of this study was the evaluation of thiolated silicone oil as novel skin protectant exhibiting prolonged residence time, enhanced barrier function and reinforced occlusivity. Two silicone conjugates were synthesized with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) as thiol ligands. Adhesion, protection against artificial urine and water vapour permeability with both a Payne cup set-up and transepidermal water loss (TEWL) measurements on porcine skin were assessed. Silicone thiomers showed pronounced substantivity on skin with 22.1 ± 6.3% and 39.2 ± 6.7% remaining silicone after 8 h for silicone-TGA and silicone-MPA, respectively, whereas unmodified silicone oil and dimethicone were no longer detectable. In particular, silicone-MPA provided a protective shield against artificial urine penetration with less than 25% leakage within 6 h. An up to 2.5-fold improved water vapour impermeability for silicone-MPA in comparison with unmodified control was discovered with the Payne cup model. In addition, for silicone-MPA a reduced TEWL by two-thirds corresponding to non-thiolated control was determined for up to 8 h. Thiolation of silicone oil leads to enhanced skin adhesiveness and barrier function, which is a major advantage compared to commonly used silicones and might thus be a promising treatment modality for various topical applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    Science.gov (United States)

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  16. Potential barrier classification by short-time measurement

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2006-01-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function

  17. Potential barrier classification by short-time measurement

    Science.gov (United States)

    Granot, Er'El; Marchewka, Avi

    2006-03-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.

  18. [Selective retina therapy in central serous chorioretinopathy with detachment of the pigmentary epithelium].

    Science.gov (United States)

    Klatt, C; Elsner, H; Pörksen, E; Brinkmann, R; Bunse, A; Birngruber, R; Roider, J

    2006-10-01

    Selective Retina Therapy (SRT) is a new and innovative laser treatment modality that selectively treats the retinal pigmentary epithelium while sparing the photoreceptors. This therapeutic concept appears to be particularly suitable for treating patients with acute or chronic central serous chorioretinopathy (CSC). We present preliminary results obtained in five patients who had CSC associated with pigmentary epithelium detachment (PED) and serous subretinal fluid (SRF) and who were treated with SRT. This case series was made up of five male patients (mean age 47 years) with chronic CSC and SRF resulting from PED. Examinations performed before and at 1 month and 3 months after the treatment were: BCVA, FLA, OCT (Zeiss OCT III). For SRT, confluent treatment of the PED (area of leakage) was carried out using a pulsed frequency-doubled, Q-switched Nd-YLF prototype laser (lambda=527 nm, t= 1.7 s, 100 Hz, energy = 150-250 J). Best corrected visual acuity at baseline was 0.53, while after 4 weeks it was 0.56 and after 12 weeks, 0.5. At baseline leakage was seen at the PED on fluorescein angiography in all patients. After 4 weeks leakage activity was no longer noted on angiography in 4 of 5 patients. OCT at baseline showed SRF at the edge of the PED in all patients, but in 4 of the 5 patients this was no longer detectable after 4 weeks. SRT is a safe and effective treatment for patients with CSC in which PED has caused SRF. Not a single case of rip syndrome was observed in this study, even though the PED was treated confluently. Since SRT spares the photoreceptors it is particularly suitable for the treatment of CSC, especially when the origin of leakage is located close to the fovea. The results indicate that SRT leads to reconstruction of the outer blood-retina barrier.

  19. Barriers to Medical Compassion as a Function of Experience and Specialization: Psychiatry, Pediatrics, Internal Medicine, Surgery, and General Practice.

    Science.gov (United States)

    Fernando, Antonio T; Consedine, Nathan S

    2017-06-01

    Compassion is an expectation of patients, regulatory bodies, and physicians themselves. Most research has, however, studied compassion fatigue rather than compassion itself and has concentrated on the role of the physician. The Transactional Model of Physician Compassion suggests that physician, patient, external environment, and clinical factors are all relevant. Because these factors vary both across different specialities and among physicians with differing degrees of experience, barriers to compassion are also likely to vary. We describe barriers to physician compassion as a function of specialization (psychiatry, general practice, surgery, internal medicine, and pediatrics) and physician experience. We used a cross-sectional study using demographic data, specialization, practice parameters, and the Barriers to Physician Compassion Questionnaire. Nonrandom convenience sampling was used to recruit 580 doctors, of whom 444 belonged to the targeted speciality groups. The sample was characterized before conducting a factorial Multivariate Analysis of Covariance and further post hoc analyses. A 5 (speciality grouping) × 2 (more vs. less physician experience) Multivariate Analysis of Covariance showed that the barriers varied as a function of both speciality and experience. In general, psychiatrists reported lower barriers, whereas general practitioners and internal medicine specialists generally reported greater barriers. Barriers were generally greater among less experienced doctors. Documenting and investigating barriers to compassion in different speciality groups have the potential to broaden current foci beyond the physician and inform interventions aimed at enhancing medical compassion. In addition, certain aspects of the training or practice of psychiatry that enhance compassion may mitigate barriers to compassion in other specialities. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  20. Performance of Density Functional Theory Procedures for the Calculation of Proton-Exchange Barriers: Unusual Behavior of M06-Type Functionals.

    Science.gov (United States)

    Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo

    2014-09-09

    We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.

  1. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  2. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    Science.gov (United States)

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  3. Probabilistic migration modelling focused on functional barrier efficiency and low migration concepts in support of risk assessment.

    Science.gov (United States)

    Brandsch, Rainer

    2017-10-01

    Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.

  4. Effect of Glucagon-like Peptide 2 on Tight Junction in Jejunal Epithelium of Weaned Pigs though MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Changsong Yu

    2014-05-01

    Full Text Available The glucagon-like peptide 2 (GLP-2 that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets’ intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK signaling pathway in piglets’ intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco’s modified Eagle’s medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1, occludin and claudin-1 were increased (p<0.05. U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05. In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs’ jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.

  5. The cytological status of the nasal mucosa and the buccal epithelium in coal miners

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Bazeliuk; B.M. Salimbaeva

    2006-11-15

    Sixty-four persons were examined. The examination was undertaken to study the cytomophological parameters of the cells of the nasal mucosa and the buccal epithelium in coal miners. Group 1 consisted of 18 donors without contact with industrial dust; Group 2 comprised 24 apparently healthy miners; Group 3 included 22 workers (drift miners) with Stage 1 anthracosilicosis, grade 1 respiratory failure. The patients with Stage 1 anthracosilicosis had noticeably worse morphofunctional characteristics of the epithelium that displayed extensive fields with pronounced structural changes, such as destruction and desquamation of the integumentary epithelium of the nasal mucosa. Nasal mucosal atrophic changes were observed in 50% of the examined miners. Examination of the buccal epithelium in apparently healthy miners (code 0) and in workers with Stage I anthracosilicosis revealed the increased proportion of microfloral (Streptococcus) contamination by 79% and 3.7 times, respectively.

  6. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  7. Histopathological and ultrastructural changes experimentally induced by bee venom in seminiferous epithelium via structural-functional alteration of Sertoli cells.

    Science.gov (United States)

    Florea, Adrian; Puică, Constantin; Hamed, Sami; Tilinca, Mariana; Matei, Horea

    2017-11-01

    We tested here the ability of bee venom (BV) to interfere with spermatogenesis in rats in two experimental conditions. The histopathological changes were assessed with brightfield microscopy using a novel staining technique, based on methylene blue, orange G and ponceau xylidine. Transmission electron microscopy was also used to identify fine subcellular changes. BV injection for 30days in daily doses of 700μg BV/kg resulted in reducing testicular weight, along with significant larger diameters of seminiferous tubules and reduced number of Sertoli cells (SCs). SCs were vacuolated, detached from the basement membrane, many necrosed, leading to the basement membrane denudation. Germ cells layers were separated by empty spaces conferring a rarefied aspect to the tissue, and spermatids were detached into lumen. Thus, the seminiferous epithelium was significantly thinned. Many Leydig cells (LCs) were in a necrotic state, with disrupted plasma membrane and without smooth endoplasmic reticulum. The acute treatment with a single LD50 of 62mgBV/kg, was followed by focal disruptions of the basement membrane and localized areas of necrosis, mainly affecting the SCs. Most of the observed SCs as well as some spermatogonia were highly vacuoled, empty spaces being observed within the epithelium. The SCs count was significantly decreased. Spermatids had also the tendency of separation from the SCs, and the significant larger diameter of the tubules found was associated with a thicker epithelium. Many LCs were necrosed, with disrupted plasma membrane, swollen mitochondria, no endoplasmic reticulum and implicitly showing rarefied cytoplasm. We concluded that BV was a testicular toxicant affecting both the LCs and the seminiferous tubules. The SCs cells represented the primary target site of BV whose effects were next extended upon the germ cells. In all cells, BV triggered unspecific degenerative changes that could impaire spermatogenesis. The present study also proposes an

  8. Mechanism for radiation-induced damage via TLR3 on the intestinal epithelium

    International Nuclear Information System (INIS)

    Takemura, Naoki; Uematsu, Satoshi

    2014-01-01

    When the small-intestinal epithelium is injured due to high-dose radiation exposure, radiation-induced gastrointestinal syndrome (GIS) such as absorption inhibition and intestinal bacterial infection occurs, and lead to subacute death. The authors immunologically analyzed the disease onset mechanism of GIS. In the small-intestinal mucosal epithelium, the intestinal epithelial stem cells of crypt structure and their daughter cells are renewed through proliferation and differentiation in the cycle of 3 or 4 days. When DNA is damaged by radiation, although p53 gene stops cell cycle and repairs DNA, cell death is induced if the repair is impossible. When stem cells perish, cell supply stops resulting in epithelial breakdown and fatal GIS. The authors analyzed the involvement in GIS of toll-like receptor (TLR) with the function of natural immunity, based on lethal γ-ray irradiation on KO mice and other methods. The authors found the mechanism, in which RNA that was leaked due to cell death caused by p53 gene elicits inflammation by activating TLR3, and leads to GIS through a wide range of cell death induction and stem cell extinction. The administration of a TLR3/RNA binding inhibitor before the irradiation of mice decreased crypt cell death and greatly improved survival rate. The administration one hour after the irradiation also showed improvement. The administration of the TLR3 specific inhibitor within a fixed time after the exposure is hopeful for the prevention of GIS, without affecting the DNA repair function of p53 gene. (A.O.)

  9. Effects of radiotherapy on olfactory function

    International Nuclear Information System (INIS)

    Hoelscher, Tobias; Seibt, Annedore; Appold, Steffen; Doerr, Wolfgang; Herrmann, Thomas; Huettenbrink, Karl-Bernd; Hummel, Thomas

    2005-01-01

    Background and Purpose: Changes in olfactory function have been reported in patients receiving significant doses of radiation to the olfactory epithelium. Aim of this study was to investigate severity and time course of changes in olfactory function in patients irradiated for tumours of the head and neck region. Material and Methods: Forty-four patients receiving radiotherapy (RT) for tumours in the area of the head and neck participated (16 women, 28 men; age 11-81 y; mean 55 y). Olfactory function was measured before and bi-weekly during RT for 6 weeks. A subgroup (25 patients) was followed for 12 months. Patients were divided into two groups according to the dose to the olfactory epithelium. Twenty-two patients ('OLF group') had radiation doses to the olfactory epithelium between 23.7 and 79.5 Gy (median 62.2 Gy). In the 22 patients of the 'non-OLF group' the dose applied to the olfactory epithelium was significantly lower (2.9-11.1 Gy, median 5.9 Gy). Total tumour dose (30-76.8 Gy), age, sex distribution, and baseline chemosensory function were not significantly different between groups. Testing was performed for odour identification, odour discrimination, and olfactory thresholds. Results: Odour discrimination, but not odour identification or odour threshold, was significantly decreased 2-6 weeks after begin of therapy in the OLF group. In addition, a significant effect of the radiation dose was observed for odour discrimination. More than 6 months after therapy, OLF group patients had significantly lower odour identification scores compared to the non-OLF group. Conclusion: As indicated through the non-significant change of olfactory thresholds, the olfactory epithelium is relatively resistant against effects of radiation. It is hypothesized that RT has additional effects on the olfactory bulb/orbitofrontal cortex responsible for the observed changes of suprathreshold olfactory function

  10. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells.

    Science.gov (United States)

    Xu, Cong; Wang, Li; Yu, Yue; Yin, Fangchao; Zhang, Xiaoqing; Jiang, Lei; Qin, Jianhua

    2017-08-22

    Organized cardiomyocyte alignment is critical to maintain the mechanical properties of the heart. In this study, we present a new and simple strategy to fabricate a biomimetic microchip designed with an onion epithelium-like structure and investigate the guided behavior of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) on the substrate. The hiPSC-CMs were observed to be confined by the three dimensional surficial features morphologically, analogous to the in vivo microenvironment, and exhibited an organized anisotropic alignment on the onion epithelium-like structure with good beating function. The calcium imaging of hiPSC-CMs demonstrated a more mature Ca 2+ spark pattern as well. Furthermore, the expression of sarcomere genes (TNNI3, MYH6 and MYH7), potassium channel genes (KCNE1 and KCNH2), and calcium channel genes (RYR2) was significantly up-regulated on the substrate with an onion epithelium-like structure instead of the surface without the structure, indicating a more matured status of cardiomyocytes induced by this structure. It appears that the biomimetic micropatterned structure, analogous to in vivo cellular organization, is an important factor that might promote the maturation of hiPSC-CMs, providing new biological insights to guide hiPSC-CM maturation by biophysical factors. The established approach may offer an effective in vitro model for investigating cardiomyocyte differentiation, maturation and tissue engineering applications.

  11. A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium

    OpenAIRE

    Mabbott, Neil A.

    2015-01-01

    In the intestine, a single layer of epithelial cells sealed together at their apical surfaces by tight junctions helps to prevent the luminal commensal and pathogenic micro-organisms and their toxins from entering host tissues. The intestinal epithelium also helps to maintain homoeostasis in the mucosal immune system by expressing anti-inflammatory cytokines in the steady state and inflammatory cytokines in response to pathogens. Although the function of the mucosal immune system is impaired ...

  12. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2017-09-01

    Full Text Available The organ of Corti in the cochlea is a two-cell layered epithelium: one cell layer of mechanosensory hair cells that align into one row of inner and three rows of outer hair cells interdigitated with one cell layer of underlying supporting cells along the entire length of the cochlear spiral. These two types of epithelial cells are derived from common precursors in the four- to five-cell layered primordium and acquire functionally important shapes during terminal differentiation through the thinning process and convergent extension. Here, we have examined the role of Six1 in the establishment of the auditory sensory epithelium. Our data show that prior to terminal differentiation of the precursor cells, deletion of Six1 leads to formation of only a few hair cells and defective patterning of the sensory epithelium. Previous studies have suggested that downregulation of Sox2 expression in differentiating hair cells must occur after Atoh1 mRNA activation in order to allow Atoh1 protein accumulation due to antagonistic effects between Atoh1 and Sox2. Our analysis indicates that downregulation of Sox2 in the differentiating hair cells depends on Six1 activity. Furthermore, we found that Six1 is required for the maintenance of Fgf8 expression and dynamic distribution of N-cadherin and E-cadherin in the organ of Corti during differentiation. Together, our analyses uncover essential roles of Six1 in hair cell differentiation and formation of the organ of Corti in the mammalian cochlea.

  14. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning.

    NARCIS (Netherlands)

    Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W.A.

    2001-01-01

    Compromising alterations in gastrointestinal architecture are common during the weaning transition of pigs. The relation between villous atrophy and epithelial barrier function at weaning is not well understood. This study evaluated in vitro transepithelial transport by Ussing metabolic chambers,

  15. The effects of hypoxia on active ionic transport processes in the gill epithelium of hyperregulating crab, Carcinus maneas.

    Science.gov (United States)

    Lucu, Čedomil; Ziegler, Andreas

    2017-09-01

    Effects of hypoxia on the osmorespiratory functions of the posterior gills of the shore crab Carcinus maenas acclimated to 12ppt seawater (DSW) were studied. Short-circuit current (Isc) across the hemilamella (one epithelium layer supported by cuticle) was substantially reduced under exposure to 1.6, 2.0, or 2.5mg O 2 /L hypoxic saline (both sides of epithelium) and fully recovered after reoxygenation. Isc was reduced equally in the epithelium exposed to 1.6mg O 2 /L on both sides and when the apical side was oxygenated and the basolateral side solely exposed to hypoxia. Under 1.6mg O 2 /L, at the level of maximum inhibition of Isc, conductance was decreased from 40.0mScm -2 to 34.7mScm -2 and fully recovered after reoxygenation. Isc inhibition under hypoxia and reduced 86 Rb + (K + ) fluxes across apically located K + channels were caused preferentially by reversible inhibition of basolaterally located and ouabain sensitive Na + ,K + -ATPase mediated electrogenic transport. Reversible inhibition of Isc is discussed as decline in active transport energy supply down regulating metabolic processes and saving energy during oxygen deprivation. In response to a 4day exposure of Carcinus to 2.0mg O 2 /L, hemolymph Na + and Cl - concentration decreased, i.e. hyperosmoregulation was weakened. Variations of the oxygen concentration level and exposure time to hypoxia lead to an increase of the surface of mitochondria per epithelium area and might in part compensate for the decrease in oxygen availability under hypoxic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function

    DEFF Research Database (Denmark)

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis

    2013-01-01

    antagonists likely oppose mast cell-derived histamines. In four immunologically diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis) or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic...... of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r...... dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased...

  17. Effect of irradiation on olfactory function

    International Nuclear Information System (INIS)

    Aiba, Tsunemasa; Sugimoto, Midori; Matsuda, Yasuaki; Sugiura, Yoshikazu; Nakai, Yoshiaki; Nakajima, Toshifumi

    1990-01-01

    The effects of therapeutic irradiation on olfactory function were investigated in 20 patients who received radiation therapy because of a malignant tumor of the nose or paranasal sinuses. The standard olfaction test with a T and T olfactometer and an intravenous olfaction test were given before the radiation therapy, during the period of radiation therapy and 1, 3, 6 and 12 months or more later. Five patients whose olfactory epithelium was outside the radiation field showed no damage to olfactory function. The olfactory function of the other 15 patients whose olfactory epithelium had been exposed to radiation was not obviously changed or damaged at the time of radiation therapy. However, 6 months after irradiation, some patients showed a decline in olfactory function, and after 12 months, 4 of 7 patients showed severe damage to olfactory function. These results suggest that a therapeutic dose of irradiation will not cause severe damage to the olfactory function during the period of radiation therapy, but could cause delayed olfactory disorders in some patients after a few years. These olfactory disorders might be caused by damage to or degeneration of the olfactory epithelium or olfactory nerve. (author)

  18. Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers.

    Science.gov (United States)

    Notman, Rebecca; Anwar, Jamshed; Briels, W J; Noro, Massimo G; den Otter, Wouter K

    2008-11-15

    Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.

  19. Functional Food Market Development in Serbia: Motivations and Barriers

    Directory of Open Access Journals (Sweden)

    Žaklina Stojanović

    2013-11-01

    Full Text Available The aim of this paper is to present main findings obtained from the empirical analysis of the functional food market in Serbia. The analysis is based on the in-depth interviews with relevant processors and retailers present on the market. The following set of topics are considered: (1 motivations (driving forces and barriers to offer products with nutrition and health (N&H claim and (2 perception of consumer demand toward N&H claimed products. Differences between Serbia and other Western Balkan Countries (WBC are explored by using nonparametric techniques based on the independent samples. Results support overall conclusion that this market segment in Serbia is underdeveloped and rather producer than consumer driven compared to more developed WBC markets.

  20. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia

    Directory of Open Access Journals (Sweden)

    Nicholas A. Eisele

    2011-01-01

    Full Text Available Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.

  1. Comparative quantitative studies on the radiosensitivity of the oral cavity epithelium

    International Nuclear Information System (INIS)

    Lyubenov, T.

    1986-01-01

    A series of 146 patients with miscellaneous localizations of malignant tumors in the head and neck area, in whom different portions of the oral cavity epithelium came within the field subject to irradiation were included in the study. Using the Kirk's formula for cumulative radiation effect, quantitative relationships in the manifestation of radioepithelitis were searched for. With increasing the intervals of the cumulative radiation effect, the number of patients and the number of interruptions in treatment with different localizations of the tumor depended on epithelium radiosensitivity

  2. Dynamic /sup 99m/Tc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    Energy Technology Data Exchange (ETDEWEB)

    Maini, C L; Marchetti, L; Bonetti, M G; Giordano, A; Pistelli, R; Antonelli Incalzi, R

    1987-01-01

    Pulmonary clearance of small droplet /sup 99m/Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the /sup 99m/Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p<0.05) or a highly significant (p<0.01) increase in permeability when compared to group N. No correlation was found between permeability and bronchial obstraction tests. The following conclusions were drawn: 1) /sup 99m/Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease. 35 refs.

  3. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  4. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  5. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  6. Phagocytosis of Giardia muris by macrophages in Peyer's patch epithelium in mice.

    OpenAIRE

    Owen, R L; Allen, C L; Stevens, D P

    1981-01-01

    No mechanism for the initiation of immunological clearance of Giardia from the mammalian intestinal tract has been identified. In normal and nude mice experimentally infected with G. muris, we examined antigen-sampling epithelium over Peyer's patch follicles by electron microscopy for evidence of interaction between G. muris and lymphoid cells. Invading G. muris were found in the epithelium near dying or desquamating columnar cells. Macrophages beneath the basal lamina extended pseudopods int...

  7. Adhesion of Porphyromonas gingivalis serotypes to pocket epithelium

    NARCIS (Netherlands)

    Dierickx, K; Pauwels, M; Laine, ML; Van Eldere, J; Cassiman, JJ; van Winkelhoff, AJ; van Steenberghe, D; Quirynen, M

    Background: Porphyromonas gingivalis, a key pathogen in periodontitis, is able to adhere to and invade the pocket epithelium. Different capsular antigens of P gingivalis have been identified (K-serotyping). These P gingivalis capsular types show differences in adhesion capacity to human cell lines

  8. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  9. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  10. Binding of the aliphatic halides 1,2-dibromoethane and chloroform in the rodent vaginal epithelium

    International Nuclear Information System (INIS)

    Brittebo, E.B.; Brandt, I.; Kowalski, B.

    1987-01-01

    Whole-body and light microscopic autoradiography were used to study the binding of 1,2-dibromo( 14 C)ethane ( 14 C-DBE) and 14 C-chloroform ( 14 C-CF) in the mouse and rat vaginal epithelium in vitro and in vivo. In pregnant mice, mice pretreated with pregnant mare's serum gonadotropin (PMSG) or ovariectomized mice primed with medroxyprogesterone, a high level of bound 14 C-DBE metabolites were present in the epithelium, while in ovariectomized oestradiol-primed mice or intact oestradiol-primed mice, the binding was low. Similar results were obtained with 14 C-CF, although the level of binding generally was lower than that observed after 14 C-DBE-exposure. No binding of 14 C-DBE-metabolites was observed in the juvenile rat vaginal epithelium, whereas a high binding was present in the PMSG-primed adult rat vaginal epithelium. Collectively, these data show that 14 C-DBE and 14 C-CF are transformed in situ to metabolites that are irreversibly bound to the vaginal epithelium. The results also suggest that the activating enzyme is under endocrine control and has a low activity in the juvenile and oestradiol-primed adult animal. (author)

  11. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.

    Science.gov (United States)

    Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj

    2015-09-01

    A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene.

    Science.gov (United States)

    Cho, Jaehyun; Jeon, Ikseong; Kim, Seong Yun; Lim, Soonho; Jho, Jae Young

    2017-08-23

    A series of polyketone (PK) nanocomposite films with varying content of noncovalently functionalized graphene nanoplatelet with 1-aminopyrene (GNP/APy) is prepared by solution blending with a solvent of hexafluoro-2-propanol. GNP/APy, prepared by a facile method, can effectively induce specific interaction such as hydrogen bonding between the amine functional group of GNP/APy and the carbonyl functional group of the PK matrix. With comparison of GNP and GNP/Py as reference materials, intensive investigation on filler-matrix interaction is achieved. In addition, the dispersion state of the functionalized GNP (f-GNPs; GNP/Py and GNP/APy) in the PK matrix is analyzed by three-dimensional nondestructive X-ray microcomputed tomography, and the increased dispersion state of those fillers results in significant improvement in the water vapor transmission rate (WVTR). The enhancement in WVTR of the PK/GNP/APy nanocomposite film at 1 wt % loading of filler leads to a barrier performance approximately 2 times larger compared to that of PK/GNP nanocomposite film and an approximately 92% reduction in WVTR compared to the case of pristine PK film. We expect that this facile method of graphene functionalization to enhance graphene dispersibility as well as interfacial interaction with the polymer matrix will be widely utilized to expand the potential of graphene materials to barrier film applications.

  13. Digital histologic analysis reveals morphometric patterns of age-related involution in breast epithelium and stroma.

    Science.gov (United States)

    Sandhu, Rupninder; Chollet-Hinton, Lynn; Kirk, Erin L; Midkiff, Bentley; Troester, Melissa A

    2016-02-01

    Complete age-related regression of mammary epithelium, often termed postmenopausal involution, is associated with decreased breast cancer risk. However, most studies have qualitatively assessed involution. We quantitatively analyzed epithelium, stroma, and adipose tissue from histologically normal breast tissue of 454 patients in the Normal Breast Study. High-resolution digital images of normal breast hematoxylin and eosin-stained slides were partitioned into epithelium, adipose tissue, and nonfatty stroma. Percentage area and nuclei per unit area (nuclear density) were calculated for each component. Quantitative data were evaluated in association with age using linear regression and cubic spline models. Stromal area decreased (P = 0.0002), and adipose tissue area increased (P epithelium. Epithelial nuclear density is a quantitative measure of age-related breast involution that begins to decline in the early premenopausal period. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Zinc uptake in vitro by human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Newsome, D.A.; Rothman, R.J.

    1987-01-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied 65 Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM 65 Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM 65 Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of 65 Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to 65 Zn retained approximately 70% of accumulated 65 Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of 65 Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc

  15. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp.

    Directory of Open Access Journals (Sweden)

    Kaisa Hiippala

    2016-10-01

    Full Text Available Sutterella species have been frequently associated with human diseases, such as autism, Down syndrome and inflammatory bowel disease (IBD, but the impact of these bacteria on health still remains unclear. Especially the interactions of Sutterella spp. with the host are largely unknown, despite of the species being highly prevalent. In this study, we addressed the interaction of three known species of Sutterella with the intestinal epithelium and examined their adhesion properties, the effect on intestinal barrier function and the pro-inflammatory capacity in vitro. We also studied the relative abundance and prevalence of the genus Sutterella and S. wadsworthensis in intestinal biopsies of healthy individuals and patients with celiac disease (CeD or IBD. Our results show that Sutterella spp. are abundant in the duodenum of healthy adults with a decreasing gradient towards the colon. No difference was detected in the prevalence of Sutterella between the pediatric IBD or CeD patients and the healthy controls. Sutterella parvirubra adhered better than the two other Sutterella spp. to differentiated Caco-2 cells and was capable of decreasing the adherence of S. wadsworthensis, which preferably bound to mucus and human extracellular matrix (ECM proteins. Furthermore, only S. wadsworthensis induced an interleukin-8 (IL-8 production in enterocytes, which could be due to different lipopolysaccharide (LPS structures between the species. However, its pro-inflammatory activity was modest as compared to non-pathogenic Escherichia coli. Sutterella spp. had no effect on the enterocyte monolayer integrity in vitro. Our findings indicate that the members of genus Sutterella are widely prevalent commensals with mild pro-inflammatory capacity in the human gastrointestinal tract and do not contribute significantly to the disrupted epithelial homeostasis associated with microbiota dysbiosis and increase of Proteobacteria. The ability of Sutterella spp. to adhere to

  16. Palatal shelf epithelium: a morphologic and histochemical study in X-irradiated and normal mice

    International Nuclear Information System (INIS)

    Gartner, L.P.; Hiatt, J.L.; Provenza, D.V.

    1978-01-01

    The palatal shelf epithelium of normal and irradiated mice was examined morphologically and histochemically, utilizing the periodic acid-Schiff (PAS) technique for the demonstration of the basement membrane and the Nitro BT method for succinate dehydrogenase activity in order to demonstrate the metabolic competence of its cells. The 'programmed cell death theory' was not supported by the present investigation, since the cells of the medial ridge epithelium retained their structural and metabolic integrity even subsequent to the formation of cell nests. Additionally, the medial ridge epithelium of mice with radiation-induced cleft palates demonstrated normal structural and metabolic integrity long past the prospective time of fusion. (author)

  17. How hormones influence composition and physiological function of the brain-blood barrier.

    Science.gov (United States)

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  18. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    Science.gov (United States)

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  19. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  20. Evidence for the functional involvement of members of the TRP channel family in the uptake of Na(+) and NH4 (+) by the ruminal epithelium.

    Science.gov (United States)

    Rosendahl, Julia; Braun, Hannah S; Schrapers, Katharina T; Martens, Holger; Stumpff, Friederike

    2016-08-01

    Large quantities of protein are degraded in the fermentative parts of the gut to ammonia, which is absorbed, detoxified to urea, and excreted, leading to formation of nitrogenous compounds such as N2O that are associated with global warming. In ruminants, channel-mediated uptake of NH4 (+) from the rumen predominates. The molecular identity of these channels remains to be clarified. Ruminal cells and epithelia from cows and sheep were investigated using patch clamp, Ussing chamber, microelectrode techniques, and qPCR. In patch clamp experiments, bovine ruminal epithelial cells expressed a conductance for NH4 (+) that could be blocked in a voltage-dependent manner by divalent cations. In the native epithelium, NH4 (+) depolarized the apical potential, acidified the cytosol and induced a rise in short-circuit current (I sc) that persisted after the removal of Na(+), was blocked by verapamil, enhanced by the removal of divalent cations, and was sensitive to certain transient receptor potential (TRP) channel modulators. Menthol or thymol stimulated the I sc in Na(+) or NH4 (+) containing solutions in a dose-dependent manner and modulated transepithelial Ca(2+) fluxes. On the level of messenger RNA (mRNA), ovine and bovine ruminal epithelium expressed TRPA1, TRPV3, TRPV4, TRPM6, and TRPM7, with any expression of TRPV6 marginal. No bands were detected for TRPV1, TRPV5, or TRPM8. Functional and molecular biological data suggest that the transport of NH4 (+), Na(+), and Ca(2+) across the rumen involves TRP channels, with TRPV3 and TRPA1 emerging as prime candidate genes. TRP channels may also contribute to the transport of NH4 (+) across other epithelia.

  1. Radiobiology of intestinal epithelium stem cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.

    1988-01-01

    After a single or three-fold whole body irradiation of mice with a dose of 4 Gy and the time interval for the proliferation to be restored (5 days or 3 weeks) the survival curve for stem cells of small intestine epithelium with regard to radiation dose was the same as that for non-preirradiated mice. This indicated that the proliferative potential of stem cells in these experimental conditions was not reduced

  2. Garlic ameliorates histological changes in the uterine epithelium of lead induced mice

    International Nuclear Information System (INIS)

    Waseem, N.; Butt, S.A.; Hamid, S.

    2015-01-01

    To evaluate the protective role of garlic extract on the histology of the uterine epithelium exposed to lead acetate in an animal model. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Anatomy, Army Medical College in collaboration with National Institute of health from April to June 2013. Material and Methods: Thirty female BALBc mice were selected. Ten animals were placed in each group. Group A being the control was given normal diet. Group B was given lead acetate at a dose of 30 mg/kg/day. Group C was given lead acetate 30 mg/kg/day and garlic extract 500 mg/kg/day through oral gavage tube for 60 days. Animals were sacrificed and dissected at the end of 60 days. Right uterine horn was processed, embedded and stained for histological study. Height of epithelium was measured. It was taken from apical to basal end of the cells. Results: There was increase in height of the lining epithelium of uterus in group B, mean value 19.70 ± 4.81 meu m when compared to Group A, with mean value 13.25 ± 2.37 meu m. The height of the epithelium was relatively reduced in group C, with mean value 14.50 ± 2.30 meu m when compared with group B. In group C results were same as Group A. The p values were 0.001 when group A was compared to group B, 0.688 when group A was compared to group C and 0.005 when group B was compared to group C. Conclusion: The height of epithelium was markedly increased in lead acetate treated group which returned to normal when co treated with garlic extract. Hence garlic ameliorated the changes induced by lead. (author)

  3. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  4. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10

    Science.gov (United States)

    Wells, Kirsty L.; Gaete, Marcia; Matalova, Eva; Deutsch, Danny; Rice, David; Tucker, Abigail S.

    2013-01-01

    Summary Salivary glands provide an excellent model for the study of epithelial–mesenchymal interactions. We have looked at the interactions involved in the early initiation and development of murine salivary glands using classic recombination experiments and knockout mice. We show that salivary gland epithelium, at thickening and initial bud stages, is able to direct salivary gland development in non-gland pharyngeal arch mesenchyme at early stages. The early salivary gland epithelium is therefore able to induce gland development in non-gland tissue. This ability later shifts to the mesenchyme, with non-gland epithelium, such as from the limb bud, able to form a branching gland when combined with pseudoglandular stage gland mesenchyme. This shift appears to involve Fgf signalling, with signals from the epithelium inducing Fgf10 in the mesenchyme. Fgf10 then signals back to the epithelium to direct gland down-growth and bud development. These experiments highlight the importance of epithelial–mesenchymal signalling in gland initiation, controlling where, when and how many salivary glands form. PMID:24167707

  5. Different alpha crystallin expression in human age-related and congenital cataract lens epithelium.

    Science.gov (United States)

    Yang, Jing; Zhou, Sheng; Guo, Minfei; Li, Yuting; Gu, Jianjun

    2016-05-28

    The purpose of this study was to investigate the different expressions of αA-crystallin and αB-crystallin in human lens epithelium of age-related and congenital cataracts. The central part of the human anterior lens capsule approximately 5 mm in diameter together with the adhering epithelial cells, were harvested and processed within 6 hours after cataract surgery from age-related and congenital cataract patients or from normal eyes of fresh cadavers. The mRNA and soluble protein levels of αA-crystallin and αB-crystallin in the human lens epithelium were detected by real-time PCR and western blots, respectively. The mRNA and soluble protein expressions of αA-crystallin and αB-crystallin in the lens epithelium were both reduced in age-related and congenital cataract groups when compared with the normal control group. However, the degree of α-crystallin loss in the lens epithelium was highly correlated with different cataract types. The α-crystallin expression of the lens epithelium was greatly reduced in the congenital cataract group but only moderately decreased in the age-related cataract group. The reduction of αA-crystallin soluble protein levels in the congenital cataract group was approximately 2.4 fold decrease compared with that of the age-related cataract group, while an mRNA fold change of 1.67 decrease was observed for the age-related cataract group. Similarly, the reduction of soluble protein levels of αB-crystallin in the congenital cataract group was approximately a 1.57 fold change compared with that of the age-related cataract group. A 1.75 fold change for mRNA levels compared with that of the age-related cataract group was observed. The results suggest that the differential loss of α-crystallin in the human lens epithelium could be associated with the different mechanisms of cataractogenesis in age-related versus congenital cataracts, subsequently resulting in different clinical presentations.

  6. Improvement of hydration and epidermal barrier function in human skin by a novel compound isosorbide dicaprylate.

    Science.gov (United States)

    Chaudhuri, R K; Bojanowski, K

    2017-10-01

    The study involved the synthesis of a novel derivative of caprylic acid - isosorbide dicaprylate (IDC) - and the evaluation of its potential in improving water homoeostasis and epidermal barrier function in human skin. The effect of IDC on gene expression was assayed in skin organotypic cultures by DNA microarrays. The results were then confirmed for a few key genes by quantitative PCR, immuno- and cytochemistry. Final validation of skin hydration properties was obtained by four separate clinical studies. Level of hydration was measured by corneometer either by using 2% IDC lotion alone vs placebo or in combination with 2% glycerol lotion vs 2% glycerol only. A direct comparison in skin hydration between 2% IDC and 2% glycerol lotions was also carried out. The epidermal barrier function improvement was assessed by determining changes in transepidermal water loss (TEWL) on the arms before and after treatment with 2% IDC lotion versus placebo. IDC was found to upregulate the expression of AQP3, CD44 and proteins involved in keratinocyte differentiation as well as the formation and function of stratum corneum. A direct comparison between 2% IDC versus 2% glycerol lotions revealed a three-fold advantage of IDC in providing skin hydration. Severely dry skin treated with 2% IDC in combination with 2% glycerol showed 133% improvement, whereas 35% improvement was observed with moderately dry human skin. Topical isosorbide dicaprylate favourably modulates genes involved in the maintenance of skin structure and function, resulting in superior clinical outcomes. By improving skin hydration and epidermal permeability barrier, it offers therapeutic applications in skin ageing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  8. Choline transport in the isolated rabbit corneal epithelium

    International Nuclear Information System (INIS)

    Faust, R.L.

    1988-01-01

    In the present study, isolated epithelial sheets were obtained by performing two sequential anterior keratectomies, three weeks apart, on rabbit corneas. Light microscopy of the isolated sheets revealed a multilayered epithelium with an intact basal cell layer without contamination from other cell types. The accumulation of [ 3 H]choline into the epithelial sheets was studied at substrate concentrations varying from 1 to 100 μMoles with and without the addition of specific metabolic and stereochemical inhibitors. Accumulation of [ 3 H]choline into these sheets was saturable. Kinetic analysis, performed by estimation from double-reciprocal plots, revealed a single component system with a K m of 24.9 μM. The metabolic inhibitors potassium cyanide and ouabain showed no effect on the uptake of [ 3 H]choline; however, the stereochemical inhibitor hemicholinium-3 significantly reduced the accumulation of radiolabel at both high and low substrate concentrations. The results suggest a non-energy dependent yet a highly specific transport system for the accumulation of choline into the rabbit epithelium

  9. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    Science.gov (United States)

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  10. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    Science.gov (United States)

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  11. Effect of syngeneic thymocytes on proliferation of the small intestinal epithelium in mice

    International Nuclear Information System (INIS)

    Shmakov, A.N.; Aparovich, G.G.; Trufakin, V.A.

    1986-01-01

    This paper describes the study of the action of syngeneic thymocytes on proliferation of the epithelium of the mouse small intestine. The mice were injected with 3 H-thymidine in the experiments. Under the experimental conditions presented here, syngeneic thymocytes can reduce the number of DNA-synthesizing cells in the intestinal epithelium, causing narrowing of the zone of proliferation and enlargement of the zone of differentiation of the enterocytes

  12. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  13. Effect of coffee drinking on cell proliferation in rat urinary bladder epithelium.

    Science.gov (United States)

    Lina, B A; Rutten, A A; Woutersen, R A

    1993-12-01

    A possible effect of freshly brewed drip coffee on urinary bladder carcinogenesis was investigated in male Wistar rats using cell proliferation in urinary bladder epithelium as the indicator of tumour promotion. Male rats were given either undiluted coffee brew (100% coffee), coffee diluted 10 times (10% coffee) or tap water (controls), as their only source of drinking fluid for 2 or 6 wk. Uracil, known to induce cell proliferation in urinary bladder epithelium, was included in the study as a positive control. In rats receiving 100% coffee, body weights, liquid intake and urinary volume were decreased. Neither histopathological examination of urinary bladder tissue nor the bromodeoxyuridine labelling index revealed biologically significant differences between rats receiving coffee and the tap water controls. Uracil increased the labelling index and induced hyperplasia of the urinary bladder epithelium, as expected. It was concluded that these results produced no evidence that drinking coffee predisposes to tumour development in the urinary bladder.

  14. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  15. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  16. [Ultrastructure of epithelium and ciliary receptors in the parasitic turbellarian Urastoma cyprinae (Turbellaria, "Prolecithophora") and position of the species within Platyhelminthes].

    Science.gov (United States)

    Kornakova, E E

    2002-01-01

    be the preadaptation to the endoparasitic mode of life in Fecampiida. The differencies in ultrastructure of epithelium in U. cyprinae from the White Sea and from Mediterranean Sea (Noury-Sraïri e. a., 1990) may be explained by the differences in the method of fixation or by the parasitizing the another host--the mollusk Mytilus galloprovincialis. The ciliary receptors of five types were revealed in U. cyprinae (fig. 3, e, [symbol: see text]; 4; 5; 6). They differ in the shape and length of the ciliary rootlets and in the content of the nerve processes. All receptors lack of the real collars typical for the receptors of Neodermata. Urastoma is most close to the Neodermata amond parasitic turbellarians studied thus far, and the absence of collars in receptors of this species testifies that the collars are the veritable synapomorphy of the Neodermata. The diversity in the ultrastructure and possible functions of receptors correspond to the complicated adaptations of this species. The modern molecular data as well as the ultrastructural evidence attest that parasitic turbellarians of the genera Urastoma, Genostoma and Ichthyophaga are relatives and cannot be included in any turbellarian order known. Therefore Urastoma, Genostoma and Ichthyophaga have been erected in the separate order Urastomida ord. nov. The diagnosis of the new order is given.

  17. Recovery of the spermatogenetic epithelium in the mouse after irradiation with 1-MeV fission neutrons

    International Nuclear Information System (INIS)

    Aardweg, G.J.M.J. van den.

    1983-01-01

    In this thesis the recovery of the spermatogenetic epithelium in the mouse is studied after damage with 1-MeV fission neutrons. A severe depletion of A-spermatogonia and radiosensitive stem cells occurs after neutron irradiation. Recovery of the epithelium is initiated by surviving radioresistant stem cells giving rise to colonies, which grow into the empty seminiferous tubules. After discussing properties of normal and irradiated spermatogenetic epithelium, the growth and the differentiation of spermatogenetic colonies in the mouse testis after irradiation, as well as response and kinetics of colony-forming spermatogonial stem cells in CBA mice up to 30 weeks after a first neutron dose and recovery of the epithelium after a second irradiation are investigated. These four subjects are dealt with in separate papers. Finally, a discussion and a summary of these studies is presented. (Auth.)

  18. Effects of the Loss of Conjunctival Muc16 on Corneal Epithelium and Stroma in Mice

    Science.gov (United States)

    Shirai, Kumi; Okada, Yuka; Cheon, Dong-Joo; Miyajima, Masayasu; Behringer, Richard R.; Yamanaka, Osamu; Saika, Shizuya

    2014-01-01

    Purpose. To examine the role of conjunctival Muc16 in the homeostasis of the ocular surface epithelium and stroma using Muc16-null knockout (KO) mice. Methods. We used KO mice (n = 58) and C57/BL6 (WT) mice (n = 58). Histology and immunohistochemistry were employed to analyze the phenotypes in the ocular surface epithelium. The expression of phospho-Stat3, AP-1 components, interleukin 6 (IL-6), and tumor necrosis factor-α (TNFα) in the cornea and conjunctiva was examined. The shape of the nuclei of corneal epithelial cells was examined to evaluate intraepithelial cell differentiation. Epithelial cell proliferation was studied using bromo-deoxyuridine labeling. Finally, the wound healing of a round defect (2-mm diameter) in the corneal epithelium was measured. The keratocyte phenotype and macrophage invasion in the stroma were evaluated after epithelial repair. Results. The loss of Muc16 activated Stat3 signal, affected JunB signal, and upregulated the expression of IL-6 in the conjunctiva. Basal-like cells were observed in the suprabasal layer of the corneal epithelium with an increase in proliferation. The loss of Muc16 accelerated the wound healing of the corneal epithelium. The incidence of myofibroblast appearance and macrophage invasion were more marked in KO stroma than in WT stroma after epithelial repair. Conclusions. The loss of Muc16 in the conjunctiva affected the homeostasis of the corneal epithelium and stroma. The mechanism might include the upregulation of the inflammatory signaling cascade (i.e., Stat3 signal, and IL-6 expression in the KO conjunctiva). Current data provides insight into the research of the pathophysiology of dry eye syndrome. PMID:24812549

  19. [Alterations in the metabolism of cornmeal epithelium during medium-term storage (author's transl)].

    Science.gov (United States)

    Schmidt-Martens, F W; Hennighausen, U; Wirz, K; Teping, C

    1977-08-08

    Freshly prepared bovine corneas were stored in medium TC 199 with penicillin and fetal calf serum at +4 degrees C over a storage period of 168h. Every 24h, the levels of glucose, lactate, and pyruvate in the corneal epithelium were estimated. Also the glucose levels in the corneal epithelium and stroma were compared at the same time intervals. Furthermore, alterations in the enzyme pattern of the epithelial cells during storage were observed.

  20. Substrate metabolism in isolated rat jejunal epithelium. Analysis using 14C-radioisotopes

    International Nuclear Information System (INIS)

    Mallet, R.T.

    1986-01-01

    The jejunal epithelium absorbs nutrients from the intestinal lumen and is therefore the initial site for metabolism of these compounds. The purpose of this investigation is to analyze substrate metabolism in a preparation of jejunal epithelium relatively free of other tissues. Novel radioisotopic labelling techniques allow quantitation of substrate metabolism in the TCA cycle, Embden-Meyerhof (glycolytic) pathway, and hexose monophosphate shunt. For example, ratios of 14 CO 2 production from pairs of 14 C-pyruvate, and 14 C-succinate radioisotopes (CO 2 ratios) indicate the probability of TCA cycle intermediate efflux to generate compounds other than CO 2 . With (2,3- 14 C)succinate as tracer, the ratio of 14 C in carbon 4 + 5 versus carbon 2 + 3 of citrate, the citrate labelling ratio, equals the probability of TCA intermediate flux to the acetyl CoA-derived portion of citrate versus flux to the oxaloacetate-derived portion. The principal metabolic substrates for the jejunal epithelium are glucose and glutamine. CO 2 ratios indicate that glutamine uptake and metabolism is partially Na + -independent, and is saturable, with a half-maximal rate at physiological plasma glutamine concentrations. Glucose metabolism in the jejunal epithelium proceeds almost entirely via the Embden-Meyerhof pathway. Conversion of substrates to multi-carbon products in this tissue allows partial conservation of reduced carbon for further utilization in other tissues. In summary, metabolic modeling based on 14 C labelling ratios is a potentially valuable technique for analysis of metabolic flux patterns in cell preparations

  1. Efficacy of iontophoresis-assisted epithelium-on corneal cross-linking for keratoconus

    Directory of Open Access Journals (Sweden)

    Hong-Zhen Jia

    2018-04-01

    Full Text Available Corneal cross-linking (CXL is a noninvasive therapeutic procedure for keratoconus that is aimed at improving corneal biomechanical properties by induction of covalent cross-links between stromal proteins. It is accomplished by ultraviolet A (UVA radiation of the cornea, which is first saturated with photosensitizing riboflavin. It has been shown that standard epithelium-off CXL (S-CXL is efficacious, and it has been recommended as the standard of care procedure for keratoconus. However, epithelial removal leads to pain, transient vision loss, and a higher risk of corneal infection. To avoid these disadvantages, transepithelial CXL was developed. Recently, iontophoresis has been adopted to increase riboflavin penetration through the epithelium. Several clinical observations have demonstrated the safety and efficacy of iontophoresis-assisted epithelium-on CXL (I-CXL for keratoconus. This review aimed to provide a comprehensive summary of the published studies regarding I-CXL and a comparison between I-CXL and S-CXL. All articles used in this review were mainly retrieved from the PubMed database. Original articles and reviews were selected if they were related to the I-CXL technique or related to the comparison between I-CXL and S-CXL.

  2. Evaluation of different toxicity assays applied to proliferating cells and to stratified epithelium in relation to permeability enhancement with glycocholate

    DEFF Research Database (Denmark)

    Eirheim, Heidi Ugelstad; Bundgaard, Christoffer; Nielsen, Hanne Mørck

    2004-01-01

    The purpose of the present study was to evaluate different toxicity assays for use on proliferating buccal TR146 cells and on stratified TR146 epithelium and to compare these results to the permeability enhancing effect of glycocholate (GC). Both the proliferating cells and the epithelium were...... across the epithelium concurrent with a decrease in the transepithelial electrical resistance (TEER) was also determined. The robustness of the epithelium was significantly higher than that of the proliferating cells (P...

  3. Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier

    International Nuclear Information System (INIS)

    Zlokovic, B.V.; Segal, M.B.; Davson, H.; Jankov, R.M.

    1988-01-01

    Unidirectional flux of 125 I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of 125 I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternal perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides

  4. Measuring solvent barrier properties of paper

    International Nuclear Information System (INIS)

    Bollström, Roger; Saarinen, Jarkko J; Toivakka, Martti; Räty, Jukka

    2012-01-01

    New methods for measuring barrier properties against solvents, acids and bases on dispersion coated paper were developed and investigated. Usability, reliability and repeatability were compared both between the new methods and with the standardized method for measuring barrier properties against water vapor. Barrier properties could be measured with all methods and the results obtained by the different methods were in correlation with each other. A qualitative method based on a trace color provided an indicative result, whereas further developed methods also took into account the durability. The effective barrier lifetime could be measured by measuring the conductivity through the substrate as a function of time, or by utilizing a glass prism where the change in refractive index caused by penetrated liquid was monitored, also as a function of time. Barrier properties against water and humidity were also measured and were found not to be predictors for barrier properties against either solvents, or acids or bases, which supports the need to develop new methods

  5. Regeneration of stem-cells in intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Hendry, J.H.

    1979-01-01

    Stem-cells can be defined as pluripotent progenitor cells, capable of both self-renewal and differentitation into all the functional end-cells typical of that cell family. Intestinal crypts contain population of cells which is capable of a) self-renewal following the severe depletion after radiation injury, b) replacing all other cypt cell types, and c) regeneration following repeated depletion (in colon). These are the properties of stem cells. Most measurements of the rate of regeneration of these cells following the severe depletion by radiation have been made by employing large test dose at increasing times. Such measurements have produced widely differing rates of increase in the survival under the test dose, from 4 hours (macrocolonies in jejunum) to 43 hours (microcolonies in stomach). In other tissues, large single test doses have been used to derive the time of doubling survival ratio e.g. for epidermal clones. Although cryptogenic cell number per crypt can be virtually restored by day 4 after a single dose and probably after many such doses, the status quo cannot be reached until the number of crypts is restored to normal. Stem cell numbers form a necessary part of the integrity of epitheliums. The quality of the stem cell function of survivors as expressed in the differentiated progeny, and the maintenance of function of the supportive environment are equally important for late radiation damage. (Yamashita, S.)

  6. Radiosensitivity of spermatogenous epithelium stem cells of mice of different strains and age

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.; Konoplyannikov, A.G.

    1988-01-01

    In experiments on CBA and BALB/c male mices (3 months of age) and F 1 (CBAxC57BL/6) hybrides (at the age of 3, 12, and 24 months) a difference was noted in the radiosensitivity of spermatogenous epithelium stem cells displayed by the changes in their colony-forming ability to testicular tubules 42 days following local 60 Co-γ-irradiation. The older the hybrid mice the smaller was the number of spermatogenous epithelium stem cells

  7. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    Science.gov (United States)

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  8. Corneal epithelium expresses a variant of P2X(7 receptor in health and disease.

    Directory of Open Access Journals (Sweden)

    Courtney Mankus

    Full Text Available Improper wound repair of the corneal epithelium can alter refraction of light resulting in impaired vision. We have shown that ATP is released after injury, activates purinergic receptor signaling pathways and plays a major role in wound closure. In many cells or tissues, ATP activates P2X(7 receptors leading to cation fluxes and cytotoxicity. The corneal epithelium is an excellent model to study the expression of both the full-length P2X(7 form (defined as the canonical receptor and its truncated forms. When Ca(2+ mobilization is induced by BzATP, a P2X(7 agonist, it is attenuated in the presence of extracellular Mg(2+ or Zn(2+, negligible in the absence of extracellular Ca(2+, and inhibited by the competitive P2X7 receptor inhibitor, A438079. BzATP enhanced phosphorylation of ERK. Together these responses indicate the presence of a canonical or full-length P2X(7 receptor. In addition BzATP enhanced epithelial cell migration, and transfection with siRNA to the P2X(7 receptor reduced cell migration. Furthermore, sustained activation did not induce dye uptake indicating the presence of truncated or variant forms that lack the ability to form large pores. Reverse transcription-polymerase chain reaction and Northern blot analysis revealed a P2X(7 splice variant. Western blots identified a full-length and truncated form, and the expression pattern changed as cultures progressed from monolayer to stratified. Cross-linking gels demonstrated the presence of homo- and heterotrimers. We examined epithelium from age matched diabetic and non-diabetic corneas patients and detected a 4-fold increase in P2X(7 mRNA from diabetic corneal epithelium compared to non-diabetic controls and an increased trend in expression of P2X(7variant mRNA. Taken together, these data indicate that corneal epithelial cells express full-length and truncated forms of P2X(7, which ultimately allows P2X(7 to function as a multifaceted receptor that can mediate cell proliferation and

  9. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Cristian Aguilar

    Full Text Available The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability.

  10. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  11. Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies

    Directory of Open Access Journals (Sweden)

    Singh Varinderjit

    2015-01-01

    Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.

  12. A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury

    Directory of Open Access Journals (Sweden)

    Samal Zhussupbekova

    2016-07-01

    Full Text Available A validated animal model would assist with research on the immunological consequences of the chronic expression of stress keratins KRT6, KRT16, and KRT17, as observed in human pre-malignant hyperproliferative epithelium. Here we examine keratin gene expression profile in skin from mice expressing the E7 oncoprotein of HPV16 (K14E7 demonstrating persistently hyperproliferative epithelium, in nontransgenic mouse skin, and in hyperproliferative actinic keratosis lesions from human skin. We demonstrate that K14E7 mouse skin overexpresses stress keratins in a similar manner to human actinic keratoses, that overexpression is a consequence of epithelial hyperproliferation induced by E7, and that overexpression further increases in response to injury. As stress keratins modify local immunity and epithelial cell function and differentiation, the K14E7 mouse model should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local innate and adaptive immunity.

  13. Emotional functioning, barriers, and medication adherence in pediatric transplant recipients.

    Science.gov (United States)

    McCormick King, Megan L; Mee, Laura L; Gutiérrez-Colina, Ana M; Eaton, Cyd K; Lee, Jennifer L; Blount, Ronald L

    2014-04-01

    This study assessed relationships among internalizing symptoms, barriers to medication adherence, and medication adherence in adolescents with solid organ transplants. The sample included 72 adolescents who had received solid organ transplants. Multiple mediator models were tested via bootstrapping methods. Bivariate correlations revealed significant relationships between barriers and internalizing symptoms of depression, anxiety, and posttraumatic stress, as well as between internalizing symptoms and medication adherence. Barriers indicative of adaptation to the medication regimen (e.g., forgetting, lack of organization) were related to medication adherence and mediated the relationship between internalizing symptoms and medication adherence. These findings indicate that barriers may serve as a more specific factor in the relationship between more general, pervasive internalizing symptoms and medication adherence. Results may help guide areas for clinical assessment, and the focus of interventions for adolescent transplant recipients who are experiencing internalizing symptoms and/or who are nonadherent to their medication regimen.

  14. Importance of Absent Neoplastic Epithelium in Patients Treated With Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy.

    Science.gov (United States)

    Enblad, Malin; Birgisson, Helgi; Wanders, Alkwin; Sköldberg, Filip; Ghanipour, Lana; Graf, Wilhelm

    2016-04-01

    The importance of absent neoplastic epithelium in specimens from cytoreductive surgery (CRS) is unknown. This study aimed to investigate the prevalence and prognostic value of histopathology without neoplastic epithelium in patients treated with CRS and hyperthermic intraperitoneal chemotherapy (HIPEC). Data were extracted from medical records and histopathology reports for patients treated with initial CRS and HIPEC at Uppsala University Hospital, Sweden, between 2004 and 2012. Patients with inoperable disease and patients undergoing palliative non-CRS surgery were excluded from the study. Patients lacking neoplastic epithelium in surgical specimens from CRS, with or without mucin, were classified as "neoplastic epithelium absent" (NEA), and patients with neoplastic epithelium were classified as "neoplastic epithelium present" (NEP). The study observed NEA in 78 of 353 patients (22 %). Mucin was found in 28 of the patients with NEA. For low-grade appendiceal mucinous neoplasms and adenomas, the 5-year overall survival rate was 100 % for NEA and 84 % for NEP, and the 5-year recurrence-free survival rate was 100 % for NEA and 59 % for NEP. For appendiceal/colorectal adenocarcinomas (including tumors of the small intestine), the 5-year overall survival rate was 61 % for NEA and 38 % for NEP, and the 5-year recurrence-free survival rate was 60 % for NEA and 14 % for NEP. Carcinoembryonic antigen level, peritoneal cancer index, and completeness of the cytoreduction score were lower in patients with NEA. A substantial proportion of patients undergoing CRS and HIPEC have NEA. These patients have a favorable prognosis and a decreased risk of recurrence. Differences in patient selection can affect the proportion of NEA and hence explain differences in survival rates between reported series.

  15. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    OpenAIRE

    Alicia M. Barnett; Nicole C. Roy; Warren C. McNabb; Adrian L. Cookson

    2016-01-01

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial ce...

  16. Oestrus synchronization treatment induces histomorphological changes on the uterine tube epithelium of the gilt.

    Science.gov (United States)

    Juárez-Mosqueda, M L; Anzaldúa Arce, S R; Palma Lara, I; García Dalmán, C; Cornejo Cortés, M A; Córdova Izquierdo, A; Villaseñor Gaona, H; Trujillo Ortega, M E

    2015-12-01

    The aim of this study was to determine the histomorphological changes that occurred in response to two treatments for oestrus synchronization in three different regions of the gilt's uterine tubes epithelium: the ampulla (AMP), ampulla-isthmic junction (AIJ) and isthmus (IST). Nine prepuberal gilts were divided into three groups (n = 3): (1) eCG 400 IU and hCG 200 IU (eCG/hCG), (2) progesterone agonist (P4) and (3) control group. The number of secretory cells (stained with periodic acid-Schiff reaction or PAS-positive cells) decreased in the AMP in the P4 treated group when compared to the control group, whereas, no difference was observed in the number of PAS-negative cells in the AMP of the three groups. A significant decrease in the number of PAS-positive cells was observed in the AIJ and IST of the P4 treated group when compared to the eCG/hCG and control groups. An increase in the number of PAS-negative cells was observed in the AIJ and IST in the P4 treated group. The epithelium height in the AMP and AIJ was increased in the eCG/hCG group when compared to the control and P4 groups. In this last group, we observed a reduced height compared with the other two groups for the AIJ. In the IST, there were no significant changes in the epithelium height of the control or the other two groups (eCG/hCG and P4). The epithelial cells of the P4 treated group had the least amount of cytoplasmic granules and the lowest intensity of PAS staining in the AMP, AIJ and IST. Animals treated with eCG/hCG showed an intermediate number of cytoplasmic granules and intensity in all regions evaluated. These data show that P4 treatment for synchronization induces a significant (P epithelium. Moreover, eCG/hCG treatment increased the height of the epithelium in the AMP and AIJ, while in this last region, the P4 treatment decreased the epithelium height. These results show that synchronization treatments with P4 and in a smaller proportion with eCG/hCG can modify the amount of PAS

  17. Alteration of intestinal barrier function during activity-based anorexia in mice.

    Science.gov (United States)

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Activation of cellular apoptosis in the caecal epithelium is associated with increased oxidative reactions in lactating goats after feeding a high-concentrate diet.

    Science.gov (United States)

    Tao, Shiyu; Tian, Jing; Cong, Rihua; Sun, Lili; Duanmu, Yongqian; Dong, Haibo; Ni, Yingdong; Zhao, Ruqian

    2015-03-01

    What is the central question of this study? What are the ultrastructural changes of the caecal mucosa and the status of epithelial cellular apoptosis and oxidative reactions in lactating goats after prolonged feeding with a high-concentrate diet? What is the main finding and its importance? High-concentrate diet results in ultrastructural damage to the caprine caecal epithelium. Increased oxidative and decreased antioxidative reactions are involved in the process of activating epithelial apoptosis in the caecal epithelium of goats fed a high-concentrate diet. Our results provide new insight into the relationship between abnormal fermentation in the hindgut and damage to the intestinal mucosal barrier. The effect of feeding a high-concentrate diet (HC) to lactating ruminants on their hindgut epithelial structure remains unknown. In this study, 12 lactating goats were randomly assigned to either HC (65% of dry matter as concentrate; n = 6) or a low-concentrate diet (LC; 35% of dry matter as concentrate; n = 6). After 10 weeks, the epithelial ultrastructure and cell apoptotic status in the caecal mucosa were determined by transmission electron microscopy and TUNEL, respectively. The results showed that the level of free lipopolysaccharide (P epithelium, as evidenced by more TUNEL-positive apoptotic cells. Western blot analysis showed that there was no significant difference in activated caspase-3, Bax protein expression in caecal epithelial mucosa between HC- and LC-fed goats (P > 0.05). However, the level of malondialdehyde content in the caecal epithelium from HC-fed goats was markedly higher than that in LC-fed goats (P < 0.05), whereas the level of glutathione peroxidase and the superoxide dismutase activity were significantly decreased. Gene expressions of cytokines, including interleukin-1β, interleukin-6, interleukin-10, tumour necrosis factor-α and interferon-γ, as well as myeloperoxidase activity in the caecal mucosa did not show any significant

  19. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4...... three transporters. Results provide evidence for sequential establishment of brain exchange interfaces and spatial and temporal timetable for three main ABC transporters in early human brain....

  20. DNA damage in lens epithelium of cataract patients in vivo and ex vivo.

    Science.gov (United States)

    Øsnes-Ringen, Oyvind; Azqueta, Amaia O; Moe, Morten C; Zetterström, Charlotta; Røger, Magnus; Nicolaissen, Bjørn; Collins, Andrew R

    2013-11-01

    DNA damage has been described in the human cataractous lens epithelium, and oxidative stress generated by UV radiation and endogenous metabolic processes has been suggested to play a significant role in the pathogenesis of cataract. In this study, the aim was to explore the quality and relative quantity of DNA damage in lens epithelium of cataract patients in vivo and after incubation in a cell culture system. Capsulotomy specimens were analysed, before and after 1 week of ex vivo cultivation, using the comet assay to measure DNA strand breaks, oxidized purine and pyrimidine bases and UV-induced cyclobutane pyrimidine dimers. DNA strand breaks were barely detectable, oxidized pyrimidines and pyrimidine dimers were present at low levels, whereas there was a relatively high level of oxidized purines, which further increased after cultivation. The observed levels of oxidized purines in cataractous lens epithelium may support a theory consistent with light damage and oxidative stress as mediators of molecular damage to the human lens epithelium. Damage commonly associated with UV-B irradiation was relatively low. The levels of oxidized purines increased further in a commonly used culture system. This is of interest considering the importance and versatility of ex vivo systems in studies exploring the pathogenesis of cataract. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  1. [Microscopic structure of the epithelium of the oviducts in cows during the estrus cycle].

    Science.gov (United States)

    Uhrín, V

    1983-03-01

    The mucous membrane of a cow is covered with ciliary and secretory cells. The so-called basal cells occur at the basal membrane. The counts of ciliary cells vary during the sexual cycle: they reach the maximum (up to 68%) during oestrus. About 13% of cells lose cilia during metoestrus and at the beginning of dioestrus. Reciliation occurs during pro-oestrus. Light and dark ciliary cells can be discerned by the staining of cytoplasm and by the density of nuclei. A higher variability was found in the secretory cells. There are light and dark cells, cells with a wedge shape and rod-shaped cells. Their frequency and function are discussed. Mitoses of epithelium were found in rare cases. The relative volume of epithelium and the mucous membrane of connective tissues change during the sexual cycle. The volume of secretory cells increases during metoestrus and dioestrus and the volume of ciliary cells increases during pro-oestrus and heat. The volume of nuclei decreases in metoestrus and mainly in dioestrus. PAS positive granules occur in the cytoplasm of secretory cells, mainly during metoestrus, in the apical regions. Ptyalin-resistant polysaccharides, besides glycogen, were detected in the cells. The occurrence rate of lipids varies just slightly during the oestrous cycle.

  2. The blood-brain barrier in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, L; Tfelt-Hansen, P

    2008-01-01

    Salient aspects of the anatomy and function of the blood-barrier barrier (BBB) are reviewed in relation to migraine pathophysiology and treatment. The main function of the BBB is to limit the access of circulating substances to the neuropile. Smaller lipophilic substances have some access...

  3. Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct

    Directory of Open Access Journals (Sweden)

    Ran Wei

    2018-05-01

    Full Text Available To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT, which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.

  4. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs

    Directory of Open Access Journals (Sweden)

    Philipp eHohenbrink

    2014-09-01

    Full Text Available The vomeronasal organ (VNO is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR genes comprise two families of chemosensory genes (V1R and V2R that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the grey mouse lemur (Microcebus murinus, the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83% – 97% of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29% to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information.

  5. Buccal Epithelium, Cigarette Smoking, and Lung Cancer: Review of the Literature.

    Science.gov (United States)

    Saba, Raya; Halytskyy, Oleksandr; Saleem, Nasir; Oliff, Ira A

    2017-01-01

    Lung cancer is currently the leading cause of cancer-related mortality among men and women in the United States, and optimal screening methods are still lacking. The field effect is a well-supported phenomenon wherein a noxious stimulus triggers genetic, epigenetic and molecular changes that are widespread throughout the entire exposed organ system. The buccal epithelium is an easily accessible part of the respiratory tree that has good potential of yielding a surrogate marker for the field effect in cigarette smokers, and thus, a noninvasive, reliable lung cancer screening method. Herein, we review the literature on the relationship between the buccal epithelium, cigarette smoking, and lung cancer. © 2017 S. Karger AG, Basel.

  6. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    International Nuclear Information System (INIS)

    Clewell, H.J.; Efremenko, A.; Campbell, J.L.; Dodd, D.E.; Thomas, R.S.

    2014-01-01

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm

  7. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    Energy Technology Data Exchange (ETDEWEB)

    Clewell, H.J., E-mail: hclewell@thehamner.org; Efremenko, A.; Campbell, J.L.; Dodd, D.E.; Thomas, R.S.

    2014-10-01

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm

  8. Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.

    Science.gov (United States)

    Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee

    2017-08-01

    Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The ultrastructure of the midgut epithelium in millipedes (Myriapoda, Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Sosinka, A.; Rost-Roszkowska, M.M.; Vilímová, J.; Tajovský, Karel; Kszuk-Jendrysik, M.; Chajec, Ł.; Sonakowska, L.; Kamińska, K.; Hyra, M.; Poprawa, I.

    2014-01-01

    Roč. 43, č. 5 (2014), s. 477-492 ISSN 1467-8039 Institutional support: RVO:60077344 Keywords : digestive cells * midgut epithelium * millipedes * regenerative cells * secretory cells * ultrastructure Subject RIV: EG - Zoology Impact factor: 1.650, year: 2014

  10. Treatment of barrier evolution: the SKB perspective

    International Nuclear Information System (INIS)

    Hedin, A.

    2002-01-01

    This paper serves as a point of departure for the discussions to be held within the Working Group of Technical Topic entitled 'Barriers and System Performances within a safety case: Their functioning and Evolution with Time'. The paper gives the SKB perspective of the issues to be discussed within the Working Group for this Topic. The following issues to be discussed by the Working Group are: What is the role of each barrier as a function of time or in the different time frames? What is its contribution to the overall system performance or safety as a function of time? Which are the main uncertainties on the performance of barriers in the timescales? To what extent should we enhance the robustness of barriers because of the uncertainties of some component behaviour with time? What is the requested or required performance versus the expected or realistic or conservative behaviour with time? How are these safety margins used as arguments in a safety case? What is the issue associated with the geosphere stability for different geological systems? How is barriers and system performances as a function of time evaluated (and presented and communicated) in a safety case? What kind of measures are used for siting, designing and optimising robust barriers corresponding to situations that can vary with time? Are human actions considered to be relevant? (authors)

  11. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay

    OpenAIRE

    Yilmaz, Özlem

    2008-01-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the oute...

  12. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Investigations of the tracheobronchial epithelium of rat after X-ray irradiation and inhalation of 212Pb aerosol

    International Nuclear Information System (INIS)

    Petri, P.

    1981-01-01

    Early reactions of the tracheobronchial epithelium of rats. Be up to 96 h after irradiation have been investigated. Detection of autoradiographically labelled DNA in the basal cells is a measure of the regenerative function of the epithelium. The labelling index is determined on the basis of histological preparations of trachea and bronchi. Each group of animals was exposed to partial irradiation of the thorax of 500 R, 1000 R and 1500 R. A dose-dependent reduction of the labelling index is found with a minimum after 24 h. A further group of animals inhaled 212 Pb aerosol while the control group was given inactive aerosol. The calculations of Hofmann (1969) yield a value of about 170 rad for the trachea and 480 rad for the upper part of the lungs. The labelling index after 12 h is lower than in the animals exposed to 500 R. It is significantly higher in the lobar bronchi. At the time of sacrificing, the labelling index is higher in all regions than the labelling index of 500 R animals. This labelling method enables quantitative determination of DNA synthesis and labelling index after radiation exposure. The study did not indicate the stage of development in which the so-called ''replacement cells'' of the bronchial epithelium are influenced by radiation exposure. Radionuclide inhalation does not affect the bronchial DNA synthesis index as strongly as assumed on the basis of dose estimates. Ater 12 h, the trachea shows a stronger reaction than the bronchi. Explanations are offered. (orig./MG) [de

  14. The world of epithelial sheets.

    Science.gov (United States)

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  15. Collaborative learning to unlock investments for functional ecological infrastructure: Bridging barriers in social-ecological systems in South Africa

    CSIR Research Space (South Africa)

    Angelstam, P

    2017-05-01

    Full Text Available . Based on expert knowledge at three scales, we analysed South Africa's opportunity to active adaptive management and to unlock investments that enhance functional ecological infrastructure. Barriers included lack of trust among actors, limited...

  16. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients.

    Science.gov (United States)

    van Smeden, Jeroen; Bouwstra, Joke A

    2016-01-01

    Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to

  17. Composite of microgels and lipids as biofilm to restore skin barrier function

    NARCIS (Netherlands)

    Oudshoorn, M.H.M.

    2008-01-01

    The mature epidermis is an effective barrier which prevents the body from dehydration and protects it against various environmental influences. If the natural barrier is immature or damaged, the skin barrier is impaired and desiccation occurs. Hence, the regeneration of impaired skin is an essential

  18. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers.

    Science.gov (United States)

    Mitragotri, Samir

    2013-01-01

    Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented. Copyright © 2012. Published by Elsevier B.V.

  19. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements.

    Science.gov (United States)

    Stolwijk, Judith A; Matrougui, Khalid; Renken, Christian W; Trebak, Mohamed

    2015-10-01

    The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.

  20. Transactivation of involucrin, a marker of differentiation in keratinocytes, by lens epithelium-derived growth factor (LEDGF).

    Science.gov (United States)

    Kubo, E; Fatma, N; Sharma, P; Shinohara, T; Chylack, L T; Akagi, Y; Singh, D P

    2002-07-26

    Human involucrin (hINV), first appears in the cytosol of keratinocytes and ultimately cross-linked to membrane proteins via transglutaminase and forms a protective barrier as an insoluble envelope beneath the plasma membrane. Although the function and evolution of involucrin is known, the regulation of its gene expression is not well understood. An analysis of the hINV gene sequence, upstream of the transcription start site (-534 to +1 nt) revealed the presence of potential sites for binding of lens epithelium-derived growth factor (LEDGF); stress response element (STRE; A/TGGGGA/T) and heat shock element (HSE; nGAAn). We reported earlier that LEDGF activates stress-associated genes by binding to these elements and elevates cellular resistance to various stresses. Here, gel-shift and super-shift assays confirm the binding of LEDGF to the DNA fragments containing HSEs and STREs that are present in the involucrin gene promoter. Furthermore, hINV promoter linked to CAT reporter gene, cotransfected in human corneal simian virus 40-transformed keratinocytes (HCK), was transactivated by LEDGF significantly. In contrast, the activity of hINV promoter bearing mutations at the WT1 (containing HSE and STRE), WT2 (containing STRE) and WT3 (containing STRE) binding sites was diminished. In addition, in HCK cell over-expressing LEDGF, the levels of hINV mRNA and hINV protein are increased by four to five-fold. LEDGF is inducible to oxidants. Cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate production of H(2)O(2), showed higher levels of LEDGF mRNA. Furthermore, our immunohistochemical studies revealed that hINV protein is found in the cytoplasm of HCK cells over-expressing LEDGF, but not detectable in the normal HCK cells or HCK cells transfected with vector. This regulation appears to be physiologically important, as over-expression of HCK with LEDGF increases the expression of the endogenous hINV gene and may provide new insight to understand

  1. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.

    Science.gov (United States)

    Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T

    2012-01-01

    Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.

  2. Degeneration and recovery of rat olfactory epithelium following inhalation of dibasic esters.

    Science.gov (United States)

    Keenan, C M; Kelly, D P; Bogdanffy, M S

    1990-08-01

    Dibasic esters (DBE) are solvent mixtures used in the paint and coating industry. To evaluate the potential subchronic toxicity of DBE, groups of male and female rats were exposed for periods of up to 13 weeks to DBE concentrations of 0, 20, 76, or 390 mg/m3. After approximately 7 and 13 weeks of exposure, 10 rats per sex per group were subjected to clinical chemical, hematological, and urine analyses. Following 7 or 13 weeks of exposure, 10 or 20 rats per sex per group, respectively, were euthanized. An additional 10 rats were euthanized following a 6-week recovery period. A standard profile of tissues, including four levels of nasal cavity, was evaluated histopathologically. After 7 weeks of exposure, slight degeneration of the olfactory epithelium was observed in both male and female rats at 76 and 390 mg/m3. After 13 weeks, degeneration of the olfactory epithelium was present at all DBE concentrations in female rats, but only at the mid and high concentrations in male rats. The severity and incidence of the lesions were concentration related for both sexes with female rats being more sensitive than males. Following the recovery period, histological changes compatible with repair in the olfactory mucosa included an absence of degeneration, focal disorganization of the olfactory epithelium, and respiratory metaplasia. All other tissues were macroscopically normal. No other signs of toxicity were indicated by the other parameters evaluated. Inhalation studies of other esters demonstrate similar pathology in the olfactory epithelium. Since olfactory mucosa is rich in carboxylesterase activity, acids may be the toxic metabolites of these compounds. This hypothetical mechanism may explain the sensitivity of olfactory tissue to the effects of DBE.

  3. Epithelium-Derived Wnt Ligands Are Essential for Maintenance of Underlying Digit Bone.

    Science.gov (United States)

    Takeo, Makoto; Hale, Christopher S; Ito, Mayumi

    2016-07-01

    Clinically, many nail disorders accompany bone deformities, but whether the two defects are causally related is under debate. To investigate the potential interactions between the two tissue types, we analyzed epithelial-specific β-catenin-deficient mice, in which nail differentiation is abrogated. These mice showed regression of not only the nail plate but also of the underlying digit bone. Characterization of these bone defects revealed active bone resorption, which is suppressed by Wnt activation in osteoblast and osteoclast precursors. Furthermore, we found that Wntless expression, essential for Wnt ligand secretion, was lacking in the β-catenin-deficient nail epithelium and that genetic deletion of Wntless (Wls) in the nail epithelium led to the lack of Wnt activation in osteoblast and osteoclast precursors and subsequently led to defective regression of the underlying digit bone. Together, these data show that epithelial Wnt ligands can ultimately regulate Wnt signaling in osteoblast and osteoclast precursors, known to regulate bone homeostasis. These results reveal a critical role for the nail epithelium on the digit bone during homeostatic regeneration and show that Wnt/β-catenin signaling is critical for this interaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesions through effects on the epithelium

    Directory of Open Access Journals (Sweden)

    Sule Caglayan Sozmen

    2016-03-01

    Full Text Available Background. Resveratrol is a natural polyphenol that exhibits anti-inflammatory effects. The aim of this study was to investigate the effects of resveratrol treatment on epithelium-derived cytokines and epithelial apoptosis in a murine model of atopic dermatitis-like lesions. Material and Methods. Atopic dermatitis-like lesions were induced in BALB/c mice by repeated application of 2,4-dinitrofluorobenzene to shaved dorsal skin. Twenty-one BALB/c mice were divided into three groups: group I (control, group II (vehicle control, and group III (resveratrol. Systemic resveratrol (30 mg/kg/day was administered repeatedly during the 6th week of the experiment. After the mice had been sacrificed, skin tissues were examined histologically for epithelial thickness. Epithelial apoptosis (caspase-3 and epithelium-derived cytokines [interleukin (IL-25, IL-33, and thymic stromal lymphopoietin (TSLP] were evaluated immunohistochemically. Results. Epithelial thickness and the numbers of IL-25, IL-33, TSLP and caspase-3-positive cells were significantly higher in group II compared to group I mice. There was significant improvement in epithelial thickness in group III compared with group II mice (p < 0.05. The numbers of IL-25, IL-33, and TSLP-positive cells in the epithelium were lower in group III than in group II mice (p < 0.05. The number of caspase-3-positive cells, as an indicator of apoptosis, in the epithelium was significantly lower in group III than in group II mice (p < 0.05. Conclusion. Treatment with resveratrol was effective at ameliorating histological changes and inflammation by acting on epithelium-derived cytokines and epithelial apoptosis.

  5. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  6. Information barriers

    International Nuclear Information System (INIS)

    Fuller, J.L.; Wolford, J.

    2001-01-01

    Full text: An information barrier (IB) consists of procedures and technology that prevent the release of sensitive information during a joint inspection of a sensitive nuclear item, and provides confidence that the measurement system into which it has been integrated functions exactly as designed and constructed. Work in the U.S. on radiation detection system information barriers dates back at least to 1990, even though the terminology is more recent. In January 1999 the Joint DoD-DOE Information Barrier Working Group was formed in the United States to help coordinate technical efforts related to information barrier R and D. This paper presents an overview of the efforts of this group, by its Chairs, as well as recommendations for further information barrier R and D. Progress on the demonstration of monitoring systems containing IBs is also provided. From the U.S. perspective, the basic, top-level functional requirements for the information barrier portion of an integrated radiation signature-information barrier inspection system are twofold: The host must be assured that his classified information is protected from disclosure to the inspecting party; and The inspecting party must be confident that the integrated inspection system measures, processes, and presents the radiation-signature-based measurement conclusion in an accurate and reproducible manner. It is the position of the United States that in the absence of any agreement to share classified nuclear weapons design information in the conduct of an inspection regime, the requirement to protect host country classified warhead design information is paramount and admits no tradeoff versus the confidence provided to the inspecting party in the accuracy and reproducibility of the measurements. The U.S. has reached an internal consensus on several critical design elements that define a general standard for radiation signature information barrier design. These criteria have stood the test of time under intense

  7. Ethanol impedes embryo transport and impairs oviduct epithelium

    International Nuclear Information System (INIS)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-01-01

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50 ± 6 mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy.

  8. Embryo-epithelium interactions during implantation at a glance.

    Science.gov (United States)

    Aplin, John D; Ruane, Peter T

    2017-01-01

    At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur. © 2017. Published by The Company of Biologists Ltd.

  9. Ethanol impedes embryo transport and impairs oviduct epithelium.

    Science.gov (United States)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Barrier Systems

    NARCIS (Netherlands)

    Heteren, S. van

    2015-01-01

    Barrier-system dynamics are a function of antecedent topography and substrate lithology, Relative sea-level (RSL) changes, sediment availability and type, climate, vegetation type and cover, and various aero- and hydrodynamic processes during fair-weather conditions and extreme events. Global change

  11. Evidence for a Na+/Ca2+ exchange mechanism in frog skin epithelium

    DEFF Research Database (Denmark)

    Madsen, K H; Brodin, Birger; Nielsen, R

    1999-01-01

    In the present study we investigated the possible existence of a Na+/Ca2+ exchange mechanism in the basolateral membrane of the frog skin epithelium and whether such a mechanism plays a role in the regulation of transepithelial Na+ transport. Cytosolic calcium ([Ca2+]i) was measured with the probe...... in serosal Na+ were followed by stepwise changes in [Ca2+]i. These observations indicate the existence of a Na+/Ca2+ exchange mechanism in the basolateral membrane of the frog skin epithelium. The transepithelial Na+ transport decreased from 13.2+/-1.8 to 9.2+/-1.5 microA cm-2 (n=8, P=0.049) when Na...

  12. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    Science.gov (United States)

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-12-01

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic

  13. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium

    NARCIS (Netherlands)

    Pretzer, G.; Meulen, van der J.; Snel, J.; Meer, van der R.; Kleerebezem, M.; Niewold, Th.; Hulst, M.M.; Smits, M.A.

    2008-01-01

    Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using

  14. Elucidation of the Synthetic Mechanism of Acylceramide, an Essential Lipid for Skin Barrier Function.

    Science.gov (United States)

    Ohno, Yusuke

    2017-01-01

    The primary function of the skin is to act as a permeability barrier that prevents water loss from inside the body and external invasion such as by pathogens, harmful substances, and allergens. Lipids play a critical role in skin barrier formation by forming multi-lamellar structures in the stratum corneum, the outermost cell layer of the epidermis. Ceramide, the backbone of sphingolipids, accounts for more than 50% of the stratum corneum lipids. Acylceramides are epidermis-specific ceramide species essential for skin barrier formation. Decreases in acylceramide levels and changes in ceramide composition and chain-length are associated with such cutaneous disorders as ichthyosis, atopic dermatitis, and psoriasis. Acylceramide consists of a long-chain base and an amide-linked ultra-long-chain fatty acid (ULCFA, 28-36 carbon chain), which is ω-hydroxylated and esterified with linoleic acid. Although the molecular mechanism by which acylceramide is generated has not been fully understood for decades, we recently identified two genes, CYP4F22 and PNPLA1, involved in acylceramide synthesis and elucidated the entire biosynthetic pathway of acylceramide: the synthesis of ULCFA by ELOVL1 and ELOVL4, ω-hydroxylation of the ULCFA by CYP4F22, amide-bond formation with a long-chain base by CERS3, and transacylation of linoleic acid from triacylglycerol to ω-hydroxyceramide by PNPLA1 to generate acylceramide. CYP4F22 and PNPLA1 are the causative genes of ichthyosis. We demonstrated that mutations of CYP4F22 or PNPLA1 markedly reduced acylceramide production. Our recent findings provide important insights into the molecular mechanisms of skin barrier formation and of ichthyosis pathogenesis.

  15. Lipopolysaccharide hyperpolarizes guinea pig airway epithelium by increasing the activities of the epithelial Na(+) channel and the Na(+)-K(+) pump.

    Science.gov (United States)

    Dodrill, Michael W; Fedan, Jeffrey S

    2010-10-01

    Earlier, we found that systemic administration of lipopolysaccharide (LPS; 4 mg/kg) hyperpolarized the transepithelial potential difference (V(t)) of tracheal epithelium in the isolated, perfused trachea (IPT) of the guinea pig 18 h after injection. As well, LPS increased the hyperpolarization component of the response to basolateral methacholine, and potentiated the epithelium-derived relaxing factor-mediated relaxation responses to hyperosmolar solutions applied to the apical membrane. We hypothesized that LPS stimulates the transepithelial movement of Na(+) via the epithelial sodium channel (ENaC)/Na(+)-K(+) pump axis, leading to hyperpolarization of V(t). LPS increased the V(t)-depolarizing response to amiloride (10 μM), i.e., offset the effect of LPS, indicating that Na(+) transport activity was increased. The functional activity of ENaC was measured in the IPT after short-circuiting the Na(+)-K(+) pump with basolateral amphotericin B (7.5 μM). LPS had no effect on the hyperpolarization response to apical trypsin (100 U/ml) in the Ussing chamber, indicating that channel-activating proteases are not involved in the LPS-induced activation of ENaC. To assess Na(+)-K(+) pump activity in the IPT, ENaC was short-circuited with apical amphotericin B. The greater V(t) in the presence of amphotericin B in tracheas from LPS-treated animals compared with controls revealed that LPS increased Na(+)-K(+) pump activity. This finding was confirmed in the Ussing chamber by inhibiting the Na(+)-K(+) pump via extracellular K(+) removal, loading the epithelium with Na(+), and observing a greater hyperpolarization response to K(+) restoration. Together, the findings of this study reveal that LPS hyperpolarizes the airway epithelium by increasing the activities of ENaC and the Na(+)-K(+) pump.

  16. Protection of the Peyer's patch-associated crypt and villus epithelium against methotrexate-induced damage is based on its distinct regulation of proliferation

    NARCIS (Netherlands)

    Renes, Ingrid B.; Verburg, Melissa; Bulsing, Nathalie P.; Ferdinandusse, Sacha; Büller, Hans A.; Dekker, Jan; Einerhand, Alexandra W. C.

    2002-01-01

    The crypt and villus epithelium associated with Peyer's patches (PPs) is largely spared from methotrexate (MTX)-induced damage, compared with the non-patch (NP) epithelium. To assess the mechanism(s) preventing damage to the PP epithelium after MTX treatment, epithelial proliferation, apoptosis, and

  17. Structure and development of the saccular sensory epithelium in ...

    African Journals Online (AJOL)

    Structure and development of the saccular sensory epithelium in relation to otolith growth in the perch Perca fluviatilis (Telostei) ... Electron microscopy indicated: 1) The apical surface of each hair cell is covered with a ciliary bundle which varies in length in different epithelial regions. Each bundle is formed from a long ...

  18. Electrophysiological response of chicken's jejunal epithelium to increasing levels of T-2 toxin.

    Science.gov (United States)

    Yunus, Agha Waqar; Kröger, Susan; Tichy, Alexander; Zentek, Jürgen; Böhm, Josef

    2013-02-01

    The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (I(sc)), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive I(sc) was negatively affected (P = 0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive I(sc) in a cubic (P = 0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.

  19. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis.

    Science.gov (United States)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    2017-08-01

    Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on T1D development in nonobese diabetic mice. Female nonobese diabetic mice were weaned to long- and short-chain ITFs [ITF(l) and ITF(s), 5%] supplemented diet up to 24 weeks. T1D incidence, pancreatic-gut immune responses, gut barrier function, and microbiota composition were analyzed. ITF(l) but not ITF(s) supplementation dampened the incidence of T1D. ITF(l) promoted modulatory T-cell responses, as evidenced by increased CD25 + Foxp3 + CD4 + regulatory T cells, decreased IL17A + CD4 + Th17 cells, and modulated cytokine production profile in the pancreas, spleen, and colon. Furthermore, ITF(l) suppressed NOD like receptor protein 3 caspase-1-p20-IL-1β inflammasome in the colon. Expression of barrier reinforcing tight junction proteins occludin and claudin-2, antimicrobial peptides β-defensin-1, and cathelicidin-related antimicrobial peptide as well as short-chain fatty acid production were enhanced by ITF(l). Next-generation sequencing analysis revealed that ITF(l) enhanced Firmicutes/Bacteroidetes ratio to an antidiabetogenic balance and enriched modulatory Ruminococcaceae and Lactobacilli. Our data demonstrate that ITF(l) but not ITF(s) delays the development of T1D via modulation of gut-pancreatic immunity, barrier function, and microbiota homeostasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Examination of the reticular epithelium of the bovine pharyngeal tonsil

    Science.gov (United States)

    The nasopharyngeal tonsil (adenoid), located at the posterior of the nasopharynx is ideally positioned to sample antigens entering through the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular composition of this important epithe...