WorldWideScience

Sample records for epithelial type-1 cell

  1. Can thymic epithelial cells be infected by human T-lymphotropic virus type 1?

    Directory of Open Access Journals (Sweden)

    Klaysa Moreira-Ramos

    2011-09-01

    Full Text Available The human T-lymphotropic virus type-1 (HTLV-1 is the cause of adult T cell leukaemias/lymphoma. Because thymic epithelial cells (TEC express recently defined receptors for the virus, it seemed conceivable that these cells might be a target for HTLV-1 infection. We developed an in vitro co-culture system comprising HTLV-1+-infected T cells and human TECs. Infected T cells did adhere to TECs and, after 24 h, the viral proteins gp46 and p19 were observed in TECs. After incubating TECs with culture supernatants from HTLV-1+-infected T cells, we detected gp46 on TEC membranes and the HTLV-1 tax gene integrated in the TEC genome. In conclusion, the human thymic epithelium can be infected in vitro by HTLV-1, not only via cell-cell contact, but also via exposure to virus-containing medium.

  2. Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells.

    Science.gov (United States)

    Li, Ke; Zhou, Wuding; Hong, Yuzhi; Sacks, Steven H; Sheerin, Neil S

    2009-03-31

    Bacterial infection of the urinary tract is a common clinical problem with E. coli being the most common urinary pathogen. Bacterial uptake into epithelial cells is increasingly recognised as an important feature of infection. Bacterial virulence factors, especially fimbrial adhesins, have been conclusively shown to promote host cell invasion. Our recent study reported that C3 opsonisation markedly increases the ability of E. coli strain J96 to internalise into human proximal tubular epithelial cells via CD46, a complement regulatory protein expressed on host cell membrane. In this study, we further assessed whether C3-dependent internalisation by human tubular epithelial cells is a general feature of uropathogenic E. coli and investigated features of the bacterial phenotype that may account for any heterogeneity. In 31 clinical isolates of E. coli tested, C3-dependent internalisation was evident in 10 isolates. Type 1 fimbriae mediated-binding is essential for C3-dependent internalisation as shown by phenotypic association, type 1 fimbrial blockade with soluble ligand (mannose) and by assessment of a type 1 fimbrial mutant. we propose that efficient internalisation of uropathogenic E. coli by the human urinary tract depends on co-operation between type 1 fimbriae-mediated adhesion and C3 receptor -ligand interaction.

  3. Dual role for plasminogen activator inhibitor type 1 as soluble and as matricellular regulator of epithelial alveolar cell wound healing.

    Science.gov (United States)

    Maquerlot, François; Galiacy, Stephane; Malo, Michel; Guignabert, Christophe; Lawrence, Daniel A; d'Ortho, Maria-Pia; Barlovatz-Meimon, Georgia

    2006-11-01

    Epithelium repair, crucial for restoration of alveolo-capillary barrier integrity, is orchestrated by various cytokines and growth factors. Among them keratinocyte growth factor plays a pivotal role in both cell proliferation and migration. The urokinase plasminogen activator (uPA) system also influences cell migration through proteolysis during epithelial repair. In addition, the complex formed by uPAR-uPA and matrix-bound plasminogen activator inhibitor type-1 (PAI-1) exerts nonproteolytic roles in various cell types. Here we present new evidence about the dual role of PAI-1 under keratinocyte growth factor stimulation using an in vitro repair model of rat alveolar epithelial cells. Besides proteolytic involvement of the uPA system, the availability of matrix-bound-PAI-1 is also required for an efficient healing. An unexpected decrease of healing was shown when PAI-1 activity was blocked. However, the proteolytic action of uPA and plasmin were still required. Moreover, immediately after wounding, PAI-1 was dramatically increased in the newly deposited matrix at the leading edge of wounds. We thus propose a dual role for PAI-1 in epithelial cell wound healing, both as a soluble inhibitor of proteolysis and also as a matrix-bound regulator of cell migration. Matrix-bound PAI-1 could thus be considered as a new member of the matricellular protein family.

  4. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    Science.gov (United States)

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium.

    Science.gov (United States)

    Cai, Daniel; Zhu, Meifang; Petroll, W Matthew; Koppaka, Vindhya; Robertson, Danielle M

    2014-10-01

    Diabetic corneal neuropathy can result in chronic, sight-threatening corneal pathology. Although the exact etiology is unknown, it is believed that a reduction in corneal sensitivity and loss of neurotrophic support contributes to corneal disease. Information regarding the relationship between nerve loss and effects on the corneal epithelium is limited. We investigated changes in the corneal epithelium and nerve morphology using three-dimensional imaging in vivo and in situ in a streptozotocin-induced diabetic mouse model. Streptozotocin-treated mice showed increased levels of serum glucose and growth retardation consistent with a severe diabetic state. A reduction in the length of the subbasal nerve plexus was evident after 6 weeks of disease. Loss of the subbasal nerve plexus was associated with corneal epithelial thinning and a reduction in basal epithelial cell density. In contrast, loss of the terminal epithelial nerves was associated with animal age. Importantly, this is the first rodent model of type 1 diabetes that shows characteristics of corneal epithelial thinning and a reduction in basal epithelial cell density, both previously have been documented in humans with diabetic corneal neuropathy. These findings indicate that in type 1 diabetes, nerve fiber damage is evident in the subbasal nerve plexus before terminal epithelial nerve loss and that neurotrophic support from both the subbasal nerve plexus and terminal epithelial nerves is essential for the maintenance of corneal epithelial homeostasis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. The development and plasticity of alveolar type 1 cells

    Science.gov (United States)

    Yang, Jun; Hernandez, Belinda J.; Martinez Alanis, Denise; Narvaez del Pilar, Odemaris; Vila-Ellis, Lisandra; Akiyama, Haruhiko; Evans, Scott E.; Ostrin, Edwin J.; Chen, Jichao

    2016-01-01

    Alveolar type 1 (AT1) cells cover >95% of the gas exchange surface and are extremely thin to facilitate passive gas diffusion. The development of these highly specialized cells and its coordination with the formation of the honeycomb-like alveolar structure are poorly understood. Using new marker-based stereology and single-cell imaging methods, we show that AT1 cells in the mouse lung form expansive thin cellular extensions via a non-proliferative two-step process while retaining cellular plasticity. In the flattening step, AT1 cells undergo molecular specification and remodel cell junctions while remaining connected to their epithelial neighbors. In the folding step, AT1 cells increase in size by more than 10-fold and undergo cellular morphogenesis that matches capillary and secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. Furthermore, AT1 cells are an unexpected source of VEGFA and their normal development is required for alveolar angiogenesis. Notably, a majority of AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results provide evidence that AT1 cells have both structural and signaling roles in alveolar maturation and can exit their terminally differentiated non-proliferative state. Our findings suggest that AT1 cells might be a new target in the pathogenesis and treatment of lung diseases associated with premature birth. PMID:26586225

  7. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J. W.; Bekker, C. P.; Voorhout, W. F.; Horzinek, M. C.; van der Ende, A.; Strous, G. J.; Rottier, P. J.

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable

  8. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  9. Stem cell transplantation for type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Voltarelli Júlio C

    2009-09-01

    Full Text Available Abstract Background The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration. Conclusion High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence in most patients with early onset type 1 diabetes mellitus.

  10. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related......, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis....

  11. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  12. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Galván Morales

    2014-01-01

    Full Text Available Human parainfluenza virus type 1 (HPIV-1 is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated.

  13. Engineered T Regulatory Type 1 Cells for Clinical Application

    Directory of Open Access Journals (Sweden)

    Silvia Gregori

    2018-02-01

    Full Text Available T regulatory cells, a specialized subset of T cells, are key players in modulating antigen (Ag-specific immune responses in vivo. Inducible T regulatory type 1 (Tr1 cells are characterized by the co-expression of CD49b and lymphocyte-activation gene 3 (LAG-3 and the ability to secrete IL-10, TGF-β, and granzyme (Gz B, in the absence of IL-4 and IL-17. The chief mechanisms by which Tr1 cells control immune responses are secretion of IL-10 and TGF-β and killing of myeloid cells via GzB. Tr1 cells, first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplantation, have been proven to modulate inflammatory and effector T cell responses in several immune-mediated diseases. The possibility to generate and expand Tr1 cells in vitro in an Ag-specific manner has led to their clinical use as cell therapy in patients. Clinical grade protocols to generate or to enrich and expand Tr1 cell medicinal products have been established. Proof-of-concept clinical trials with Tr1 cell products have demonstrated the safety and the feasibility of this approach and indicated some clinical benefit. In the present review, we provide an overview on protocols established to induce/expand Tr1 cells in vitro for clinical application and on results obtained in Tr1 cell-based clinical trials. Moreover, we will discuss a recently developed protocol to efficient convert human CD4+ T cells into a homogeneous population of Tr1-like cells by lentiviral vector-mediated IL-10 gene transfer.

  14. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  15. Apoptosis of pancreatic β-cells in Type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Tatsuo Tomita

    2017-08-01

    Full Text Available Type 1 diabetes mellitus (T1DM results from autoimmune destruction of pancreatic β-cells after an asymptomatic period over years. Insulitis activates antigen presenting cells, which trigger activating CD4+ helper-T cells, releasing chemokines/cytokines. Cytokines activate CD8+ cytotoxic–T cells, which lead to β-cell destruction. Apoptosis pathway consists of extrinsic (receptor-mediated and intrinsic (mitochondria-driven pathway. Extrinsic pathway includes Fas pathway to CD4+-CD8+ interaction, whereas intrinsic pathway includes mitochondria-driven pathway at a balance between anti-apoptotic B-cell lymphoma (Bcl-2 and Bcl-xL and pro-apoptotic Bad, Bid, and Bik proteins. Activated cleaved caspse-3 is the converging point between extrinsic and intrinsic pathway. Apoptosis takes place only when pro-apoptotic proteins exceed anti-apoptotic proteins. Since the concordance rate of T1DM in identical twins is about 50%, environmental factors are involved in the development of T1DM, opening a door to find means to detect and prevent further development of autoimmune β-cell destruction for a therapeutic application.

  16. Congenital CMV with LAD type 1 and NK cell deficiency.

    Science.gov (United States)

    Rai, Narendra; Thakur, Neha

    2013-08-01

    We report a rare case of congenital cytomegalovirus (CMV) in a patient who was subsequently diagnosed as leukocyte adhesion defect type 1 with natural killer cell deficiency. The clinical course was complicated by severe CMV pneumonitis during the newborn period. Thereafter the infant suffered from recurrent skin infections without pus formation, otitis media, and bronchopneumonia since 3 months of age. The patient had congenital CMV infection as urine and blood plasma was positive for CMV from day 12 onward. Neutrophil chemotaxis studies showed a decrease in directed chemotaxis. Neutrophils were dyspoetic and nonfunctional lacking HLA DR, CD11c, and CD18. Lymphocytes were polyclonal but lacked CD56, CD16, and surface membrane immunoglobulin.

  17. T-helper Cell Type-1 Transcription Factor T-Bet Is Down-regulated in Type 1 Diabetes.

    Science.gov (United States)

    Vaseghi, Hajar; Sanati, Mohammad Hossein; Jadali, Zohreh

    2016-10-01

    T cells have been identified as key players in the pathogenesis of type 1 diabetes. However, the exact role of T-cell subpopulations in this pathway is presently unknown. The purpose of this study was to assess the expression pattern of two lineage-specifying transcription factors GATA-3 and T-bet, which are important in T helper type 1 (Th1) and Th2 cell development, respectively. Gene expression analysis of peripheral blood mononuclear cells (PBMCs) was performed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Plasma levels of IFN-γ and IL-4 were also determined by ELISA. T-bet and IFN-γ gene expression was significantly lower in patients group compared with healthy controls (p<0.05). The expression of GATA-3 was relatively similar in patients and controls; however, IL-4 mRNAs were significantly increased in the PBMCs from patients as compared with normal controls (p<0.05). In addition, a marked increase in plasma IL-4 levels were observed in patient group compared with controls (p<0.001). To the contrary, IFN-γ protein levels were decreased in patients in comparison with controls (p<0.001). These data suggest additional implications of the role of Th1/Th2 imbalance for the immunopathogenesis of type 1 diabetes.

  18. Short-term outcome of Boston Type 1 keratoprosthesis for bilateral limbal stem cell deficiency

    Directory of Open Access Journals (Sweden)

    Sayan Basu

    2012-01-01

    Full Text Available This study reports the short-term functional and anatomical outcome of Boston Type 1 keratoprosthesis (Boston Kpro implantation for bilateral limbal stem cell deficiency (LCSD. Retrospective analysis was done on eight eyes of eight patients who underwent Boston Kpro implantation between July 2009 and October 2009. The best corrected visual acuity (BCVA and slit-lamp biomicroscopy findings were assessed at 1, 3 and 6 months postoperatively. All eight eyes retained the prosthesis. BCVA of 20/40 or better was achieved in 8, 6, and 5 eyes at 1, 3, and 6 months, respectively, postoperatively. One patient each developed epithelial defect, sterile stromal melt and fungal keratitis in the late postoperative period associated with antecedent loss of the soft contact lens from the eye. Boston Kpro has good short-term visual and anatomical outcome in patients with bilateral LSCD, provided compliance with postoperative care can be ensured.

  19. Radiation biology of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Smith, H.S.; Yang, T.C.; Stampfer, M.R.; Hackett, A.J.

    1982-01-01

    Techniques have been developed for growing mass cultures of normal mammary epithelial cells (from reduction mammoplasties) and, most recently, for growing mammary epithelial cells in a highly efficient clonal assay. The availability of this clonal assay has enabled us to examine the dose-response curves for x rays

  20. Glycocalyx of lung epithelial cells.

    Science.gov (United States)

    Martins, Maria de Fátima; Bairos, Vasco A

    2002-01-01

    Due to their diversity and external location on cell membranes, glycans, as glycocalyx components, are key elements in eukaryotic cell, tissue, and organ homeostasis. Although information on the lung glycocalyx is scarce, this article aims to review, discuss, and summarize what is known about bronchoalveolar glycocalyx composition, mainly the sialic acids. It was deemed relevant, however, to make a brief introductory overview of the cell glycocalyx and its particular development in epithelial cells. After that, follows a summary of the evolution of the knowledge regarding the bronchoalveolar glycocalyx composition throughout the years, particularly its morphological features. Since sialic acids are located terminally on the bronchoalveolar lining cells' glycocalyx and play crucial roles, we focused mainly on the existing lung histochemical and biochemical data of these sugar residues, as well as their evolution throughout lung development. The functions of the lung glycocalyx sialic acids are discussed and interpretations of their roles analyzed, including those related to the negative overall superficial shield provided by these molecules. The increasing presence of these sugar residues throughout postnatal lung development should be regarded as pivotal in the development and maintenance of a dynamic bronchoalveolar architecture, supporting the normal histophysiology of the respiratory system. The case for a profound knowledge of lung glycocalyx--given its potential to provide answers to serious clinical problems--is made with particular reference to cystic fibrosis. Finally, concluding remarks and perspectives for future research in this field are put forth.

  1. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  2. TNF Lectin-Like Domain Restores Epithelial Sodium Channel Function in Frameshift Mutants Associated with Pseudohypoaldosteronism Type 1B

    Directory of Open Access Journals (Sweden)

    Anita Willam

    2017-05-01

    Full Text Available Previous in vitro studies have indicated that tumor necrosis factor (TNF activates amiloride-sensitive epithelial sodium channel (ENaC current through its lectin-like (TIP domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide, showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation. Accordingly, TNF enhanced ENaC current by increasing open probability of the glycosylated channel, position N511 in the α-ENaC subunit being identified as the most important glycosylation site. TNF significantly increased Na+ current through ENaC comprising only the pore forming subunits α or δ, was less active in ENaC comprising only β-subunits, and showed no effect on ENaC comprising γ-subunits. TNF did not increase the membrane abundance of ENaC subunits to the extent observed with solnatide. Since the α-subunit is believed to play a prominent role in the ENaC current activating effect of TNF and TIP, we investigated whether TNF and solnatide can enhance αβγ-ENaC current in α-ENaC loss-of-function frameshift mutants. The efficacy of solnatide has been already proven in pathological conditions involving ENaC in phase II clinical trials. The frameshift mutations αI68fs, αT169fs, αP197fs, αE272fs, αF435fs, αR438fs, αY447fs, αR448fs, αS452fs, and αT482fs have been reported to cause pseudohypoaldosteronism type 1B (PHA1B, a rare, life-threatening, salt-wasting disease, which hitherto has been treated only symptomatically. In a heterologous expression system, all frameshift mutants showed significantly reduced amiloride-sensitive whole-cell current compared to wild type αβγ-ENaC, whereas membrane

  3. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  4. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studie...... with focus on pancreatic islet cell inflammation and β-cell apoptosis....

  5. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

    Science.gov (United States)

    Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter

    2018-01-01

    β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.

  6. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    Science.gov (United States)

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Seroprevalence of human T-cell lymphotropic virus type 1 infection ...

    African Journals Online (AJOL)

    Human T-cell lymphotropic virus type-1 (HTLV1) is a lymphotropic virus which can contribute to carcinogenesis in adult T-cell leukemia, myleopathy and other disorders. 20 million people are affected by this virus in the world. The aim of this study was to determine the incidence of human T-cell lymph tropic virus type 1 ...

  8. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  9. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  10. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  11. Serum adipokines as biomarkers of beta-cell function in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Pham, Minh Nguyet; Kolb, Hubert; Mandrup-Poulsen, Thomas

    2013-01-01

    We investigated the adipokines adiponectin, leptin and resistin as serum biomarkers of beta-cell function in patients with type 1 diabetes.......We investigated the adipokines adiponectin, leptin and resistin as serum biomarkers of beta-cell function in patients with type 1 diabetes....

  12. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  13. Enteroviruses, pancreatic beta-cells, and dendritic cells: a dangerous triangle in type 1 diabetes etiology?

    NARCIS (Netherlands)

    Schulte, B.M.

    2010-01-01

    Type 1 diabetes mellitus (T1D, insulin-dependent diabetes mellitus) is an endocrine autoimmune disorder in which the insulin-producing beta-cells in the pancreas are gradually destroyed. Enterovirus infections (in particular coxsackievirus and echovirus) have been implicated in the development of

  14. Goblet cell carcinoid in a patient with neurofibromatosis type 1-a rare combination

    DEFF Research Database (Denmark)

    Gregersen, Tine; Holt, Nanna; Gronbaek, Henning

    2012-01-01

    Neuroendocrine tumors are rare tumors primarily located in the gastrointestinal tract. Goblet cell carcinoid is a rare subgroup of neuroendocrine tumors located in the appendix. Neurofibromatosis type 1 is an autosomal dominant disorder caused by a mutation in the NF1 gene. Patients with neurofib......Neuroendocrine tumors are rare tumors primarily located in the gastrointestinal tract. Goblet cell carcinoid is a rare subgroup of neuroendocrine tumors located in the appendix. Neurofibromatosis type 1 is an autosomal dominant disorder caused by a mutation in the NF1 gene. Patients...... with neurofibromatosis type 1 have an increased incidence of typical neuroendocrine tumors, but it is unknown if this is the case with goblet cell carcinoids. We describe a patient with both neurofibromatosis type 1 and goblet cell carcinoid, that according to literature would occur in 0.00017 per million per year....... This may suggest a previously unknown association between neurofibromatosis type 1 and goblet cell carcinoids....

  15. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  16. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tomoyo Yoshinaga

    Full Text Available Epithelial-mesenchymal transition (EMT of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1 and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1 and an agonist for the G protein-coupled receptor 55 (GRP55, the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  17. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  18. TLR4-dependent recognition of lipopolysaccharide by epithelial cells requires sCD14.

    Science.gov (United States)

    Bäckhed, Fredrik; Meijer, Lisa; Normark, Staffan; Richter-Dahlfors, Agneta

    2002-08-01

    Epithelial cells lining the urinary bladder mucosa are engaged in numerous functions that act in concert to prevent exposure of the sensitive upper urinary tract to bacteria. This protective effect was recently suggested to be achieved mainly by compartmentalized, organ-specific expression of the lipopolysaccharide (LPS) receptor Toll-like receptor (TLR) 4 within epithelial cells of the urogenital tract. Here, we show that bladder epithelial cells recognize similarly low amounts of LPS as macrophages. LPS responsiveness measured as secretion of the chemoattractant interleukin 8 demonstrates a dependency on TLR4 in epithelial cells, which is similar to the situation in macrophages. The TLR4-mediated LPS response in bladder epithelial cells also uses the co-receptor CD14 for efficient LPS signalling. However, bladder epithelial cells do not express endogenous CD14 and are therefore dependent on the soluble form of CD14 that is present in body fluids. Furthermore, we demonstrate that epithelial chemokine production is augmented by type 1-mediated attachment of uropathogenic Escherichia coli in the absence, but not in the presence, of CD14. Collectively, our findings strengthen the role for bladder epithelial cells as important players in the innate immune system within the urinary tract.

  19. The preventive role of type 2 NKT cells in the development of type 1 diabetes.

    Science.gov (United States)

    Sørensen, Jakob Ørskov; Buschard, Karsten; Brogren, Carl-Henrik

    2014-03-01

    In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  20. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna

    2013-01-01

    Type 1 diabetes is considered an autoimmune disease characterised by specific T cell-mediated destruction of the insulin-producing beta cells. Yet, except for insulin, no beta cell-specific antigens have been discovered. This may imply that the autoantigens in type 1 diabetes exist in modified...... forms capable of specifically triggering beta cell destruction. In other immune-mediated diseases, autoantigens targeted by the immune system have undergone post-translational modification (PTM), thereby creating tissue-specific neo-epitopes. In a similar manner, PTM of beta cell proteins might create...... beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...

  1. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  2. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Tae

    2008-12-01

    Full Text Available Abstract Background Acinetobacter baumannii is a nosocomial pathogen of increasing importance, but the pathogenic mechanism of this microorganism has not been fully explored. This study investigated the potential of A. baumannii to invade epithelial cells and determined the role of A. baumannii outer membrane protein A (AbOmpA in interactions with epithelial cells. Results A. baumannii invaded epithelial cells by a zipper-like mechanism, which is associated with microfilament- and microtubule-dependent uptake mechanisms. Internalized bacteria were located in the membrane-bound vacuoles. Pretreatment of recombinant AbOmpA significantly inhibited the adherence to and invasion of A. baumannii in epithelial cells. Cell invasion of isogenic AbOmpA- mutant significantly decreased as compared with wild-type bacteria. In a murine pneumonia model, wild-type bacteria exhibited a severe lung pathology and induced a high bacterial burden in blood, whereas AbOmpA- mutant was rarely detected in blood. Conclusion A. baumannii adheres to and invades epithelial cells. AbOmpA plays a major role in the interactions with epithelial cells. These findings contribute to the understanding of A. baumannii pathogenesis in the early stage of bacterial infection.

  3. Equine herpesvirus type 1 replication is delayed in CD172a+ monocytic cells and controlled by histone deacetylases.

    Science.gov (United States)

    Laval, Kathlyn; Favoreel, Herman W; Nauwynck, Hans J

    2015-01-01

    Equine herpesvirus type 1 (EHV-1) replicates in the epithelial cells of the upper respiratory tract and disseminates through the body via a cell-associated viraemia in monocytic cells, despite the presence of neutralizing antibodies. However, the mechanism by which EHV-1 hijacks immune cells and uses them as 'Trojan horses' in order to disseminate inside its host is still unclear. Here, we hypothesize that EHV-1 delays its replication in monocytic cells in order to avoid recognition by the immune system. We compared replication kinetics in vitro of EHV-1 in RK-13, a cell line fully susceptible to EHV-1 infection, and primary horse cells from the myeloid lineage (CD172a(+)). We found that EHV-1 replication was restricted to 4 % of CD172a(+) cells compared with 100 % in RK-13 cells. In susceptible CD172a(+) cells, the expression of immediate-early (IEP) and early (EICP22) proteins was delayed in the cell nuclei by 2-3 h post-infection (p.i.) compared with RK-13, and the formation of replicative compartments by 15 h p.i. Virus production in CD172a(+) cells was significantly lower (from 10(1.7) to 10(3.1) TCID50 per 10(5) inoculated cells) than in RK-13 (from 10(5) to 10(5.7) TCID50 per 10(5) inoculated cells). Less than 0.02 % of inoculated CD172a(+) cells produced and transmitted infectious virus to neighbouring cells. Pre-treatment of CD172a(+) cells with inhibitors of histone deacetylase activity increased and accelerated viral protein expression at very early times of infection and induced productive infection in CD172a(+) cells. Our results demonstrated that the restriction and delay of EHV-1 replication in CD172a(+) cells are part of an immune evasive strategy and involve silencing of EHV-1 gene expression associated with histone deacetylases. © 2015 The Authors.

  4. [Regulatory role of NKT cells in the prevention of type 1 diabetes].

    Science.gov (United States)

    Ghazarian, Liana; Simoni, Yannick; Pingris, Karine; Beaudoin, Lucie; Lehuen, Agnès

    2013-01-01

    Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic β cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes. © 2013 médecine/sciences – Inserm.

  5. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  6. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1.

    Science.gov (United States)

    Ramberger, Melanie; Högl, Birgit; Stefani, Ambra; Mitterling, Thomas; Reindl, Markus; Lutterotti, Andreas

    2017-03-01

    Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients. © Sleep Research Society 2016. Published by Oxford University Press [on behalf of the Sleep Research Society].

  7. Protection Against Type 1 Diabetes Upon Coxsackievirus B4 Infection and iNKT-Cell Stimulation

    OpenAIRE

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G.; Puri, Raj K.; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-01-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancre...

  8. T helper type 1 polarizing γδ T cells and Scavenger receptors contribute to the pathogenesis of Pemphigus vulgaris.

    Science.gov (United States)

    Das, Dayasagar; Anand, Vivek; Khandpur, Sujay; Sharma, Vinod K; Sharma, Alpana

    2018-01-01

    γδ T cells and Scavenger receptors are key parts of the innate immune machinery, playing significant roles in regulating immune homeostasis at the epithelial surface. The roles of these immune components are not yet characterized for the autoimmune skin disorder Pemphigus vulgaris (PV). Phenotyping and frequency of γδ T cells estimated by flow cytometry have shown increased frequency of γδ T cells (6·7% versus 4·4%) producing interferon- γ (IFN-γ; 35·2% versus 26·68%) in the circulation of patients compared with controls. Dual cytokine-secreting (IFN-γ and interleukin-4) γδ T cells indicate the plasticity of these cells. The γδ T cells of patients with PV have shown higher cytotoxic potential and the higher frequency of γδ T cells producing IFN-γ shows T helper type 1 polarization. The increased expression of Scavenger receptors expression (CD36 and CD163) could be contributing to the elevated inflammatory environment and immune imbalance in this disease. Targeting the inflammatory γδ T cells and Scavenger receptors may pave the way for novel therapeutics. © 2017 John Wiley & Sons Ltd.

  9. Development of Thymic Epithelial Cells

    DEFF Research Database (Denmark)

    Ulyanchenko, Svetlana; Vaidya, Harsh J.; O'Neill, Kathy E.

    2016-01-01

    The thymus is the primary lymphoid organ in which the T cell repertoire is generated. The complex cellularity of this organ is uniquely designed to facilitate T cell development: defects in thymus development or function can cause immunodeficiencies ranging from the absence of T cell-mediated imm......The thymus is the primary lymphoid organ in which the T cell repertoire is generated. The complex cellularity of this organ is uniquely designed to facilitate T cell development: defects in thymus development or function can cause immunodeficiencies ranging from the absence of T cell......-mediated immunity to broad-spectrum autoimmune disease. Peak thymus size and output occurs early in life, after which the thymus undergoes a natural process of involution. This results in the progressive loss of functional thymus tissue and correspondingly in decreased production of new naïve T cells with age...... - contributing to the diminished capacity of the aged immune system to adequately respond to new antigenic challenge. Age-related thymic involutions, together with the thymic involutions associated with cytotoxic therapies (e.g., radio- or chemotherapy), have raised interest in development of clinically useful...

  10. Accumulation of human immunodeficiency virus type 1 DNA in T cells: results of multiple infection events.

    OpenAIRE

    Robinson, H L; Zinkus, D M

    1990-01-01

    Human immunodeficiency virus type 1 DNA synthesis was followed in a CD4+ line of T cells (C8166) grown in the presence or absence of a monoclonal antibody to CD4 that blocks infection By 48 h after infection, cultures grown in the presence of the antibody contained approximately 4 copies of human immunodeficiency virus type 1 DNA per cell, whereas those grown in the absence of the antibody contained approximately 80 copies of viral DNA per cell. Most of the viral DNA in cultures grown in the ...

  11. Inflammatory response and barrier properties of a new alveolar type 1-like cell line (TT1).

    NARCIS (Netherlands)

    Bogaard, E.H.J. van den; Dailey, L.A.; Thorley, A.J.; Tetley, T.D.; Forbes, B.

    2009-01-01

    PURPOSE: To evaluate the inflammatory response and barrier formation of a new alveolar type 1-like (transformed type I; TT1) cell line to establish its suitability for toxicity and drug transport studies. METHODS: TT1 and A549 cells were challenged with lipopolysaccharide (LPS). Secretion of

  12. Strenuous exercise decreases the percentage of type 1 T cells in the circulation

    DEFF Research Database (Denmark)

    Steensberg, A; Toft, A D; Bruunsgaard, H

    2001-01-01

    Prolonged strenuous exercise is followed by a temporary functional immune impairment. Low numbers of CD4+ T helper (Th) and CD8+ T cytotoxic (Tc) cells are found in the circulation. These cells can be divided according to their cytokine profile into type 1 (Th1 and Tc1), which produce interferon...

  13. Cell-mediated immunity in recent-onset type 1 diabetic children

    African Journals Online (AJOL)

    EL-HAKIM

    Methods: This study was conducted on 20 children of recent onset type 1 diabetes (disease duration <6 months) who were ... percentage of CD8+ and CD8+ CD25+ T-cells in peripheral blood, a normal percentage of CD4+ and CD4+ CD25+ ..... engraftment of fully allogenic beta cells or block rejection of islet transplants.26.

  14. Development of Type 1 Diabetes: Monocytes and dendritic cells in the pancreas

    NARCIS (Netherlands)

    J.M.C. Welzen-Coppens (Jojanneke)

    2013-01-01

    textabstractThis thesis focuses on the presence of precursors for dendritic cells and the characterization of dendritic cell subsets in the normal pancreas in mice and humans as well as in the pancreas of the NOD mouse, a type 1 diabetes mouse model. Therefore, we give a short introduction to

  15. Traction forces exerted by epithelial cell sheets

    International Nuclear Information System (INIS)

    Saez, A; Anon, E; Ghibaudo, M; Di Meglio, J-M; Hersen, P; Ladoux, B; Du Roure, O; Silberzan, P; Buguin, A

    2010-01-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  16. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco

    2013-01-01

    induction of type 1 effector T cells. Standard matured clinical grade DCs “sDCs” were compared with DCs matured with either of two type 1 polarizing maturation cocktails; the alpha-type-1 DCs “αDC1s” (TNF-α, IL-1β, IFN-γ, IFN-α, Poly(I:C)) and “mDCs” (monophosphoryl lipid A (MPL), IFN-γ) or a mixed cocktail....... αDC1s and mDCs were functionally superior to sDCs as they polarized naïve CD4+ T cells most efficiently into T helper type 1 effector cells and primed more functional MART-1 specific CD8+ T cells although with variation between donors. αDC1s and mDCs were transiently less capable of CCL21-directed......DCs and strikingly had the highest expression of the inhibitory molecules PD-L1 and CD25. Thus, further studies with type 1 polarized DCs are warranted for use in immunotherapy, but when combined with PGE2 as in mpDCs, they seems to be less optimal for maturation of DCs....

  17. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells.

    OpenAIRE

    Westendorp, M O; Li-Weber, M; Frank, R W; Krammer, P H

    1994-01-01

    Dysregulation of cytokines secreted by T cells may play an important role in the pathogenesis of AIDS. To investigate the effects of human immunodeficiency virus type 1 (HIV-1) Tat on interleukin-2 (IL-2) expression, we used IL-2 promoter-chloramphenicol acetyltransferase constructs and IL-2-secreting Jurkat T cells as a model system. Transient expression of HIV-1 Tat induced a five- to eightfold increase in IL-2 promoter activity in Jurkat T cells stimulated with phytohemagglutinin and phorb...

  18. Herpes Simplex Virus Type 1 Renders Infected Cells Resistant to Cytotoxic T-Lymphocyte-Induced Apoptosis

    OpenAIRE

    Jerome, Keith R.; Tait, Jonathan F.; Koelle, David M.; Corey, Lawrence

    1998-01-01

    Many viruses interfere with apoptosis of infected cells, presumably preventing cellular apoptosis as a direct response to viral infection. Since cytotoxic T lymphocytes (CTL) induce apoptosis of infected cells as part of the “lethal hit,” inhibition of apoptosis could represent an effective immune evasion strategy. We report here herpes simplex virus type 1 (HSV-1) interference with CTL-induced apoptosis of infected cells and show that HSV-1 inhibits the nuclear manifestations of apoptosis bu...

  19. Relationship between regulatory and type 1 T cells in dogs with oral malignant melanoma.

    Science.gov (United States)

    Horiuchi, Yutaka; Tominaga, Makiko; Ichikawa, Mika; Yamashita, Masao; Okano, Kumiko; Jikumaru, Yuri; Nariai, Yoko; Nakajima, Yuko; Kuwabara, Masato; Yukawa, Masayoshi

    2010-03-01

    Recent data suggest a decreased prevalence of IFN-gamma-producing T lymphocytes (Type 1 T cells) in tumor-bearing hosts. Moreover, it has been reported that Treg have a strong impact on the activation and proliferation of CD4 (+) and CD8 (+) lymphocytes; however, no previous reports have described the relationship between Treg and the progression of tumor, or Type 1 T cell populations in dogs with malignant tumor. In this study, the percentage of Treg, Th1, and Tc1 in the peripheral blood of dogs with oral malignant melanoma and healthy dogs was measured and compared. Although the percentages of Th1 and Tc1 in dogs with oral malignant melanoma were less than those in healthy dogs (Th1: P dogs with oral malignant melanoma. In dogs, Treg appears to suppress Type 1 immunity, which may be responsible for anti-tumor responses.

  20. Generation of Mouse Lung Epithelial Cells.

    Science.gov (United States)

    Kasinski, Andrea L; Slack, Frank J

    2013-08-05

    Although in vivo models are excellent for assessing various facets of whole organism physiology, pathology, and overall response to treatments, evaluating basic cellular functions, and molecular events in mammalian model systems is challenging. It is therefore advantageous to perform these studies in a refined and less costly setting. One approach involves utilizing cells derived from the model under evaluation. The approach to generate such cells varies based on the cell of origin and often the genetics of the cell. Here we describe the steps involved in generating epithelial cells from the lungs of Kras LSL-G12D/+ ; p53 LSL-R172/+ mice (Kasinski and Slack, 2012). These mice develop aggressive lung adenocarcinoma following cre-recombinase dependent removal of a stop cassette in the transgenes and subsequent expression of Kra -G12D and p53 R172 . While this protocol may be useful for the generation of epithelial lines from other genetic backgrounds, it should be noted that the Kras; p53 cell line generated here is capable of proliferating in culture without any additional genetic manipulation that is often needed for less aggressive backgrounds.

  1. Impact of Angiotensin Type 1A Receptors in Principal Cells of the Collecting Duct on Blood Pressure and Hypertension.

    Science.gov (United States)

    Chen, Daian; Stegbauer, Johannes; Sparks, Matthew A; Kohan, Donald; Griffiths, Robert; Herrera, Marcela; Gurley, Susan B; Coffman, Thomas M

    2016-06-01

    The main actions of the renin-angiotensin system to control blood pressure (BP) are mediated by the angiotensin type 1 receptors (AT1Rs). The major murine AT1R isoform, AT1AR, is expressed throughout the nephron, including the collecting duct in both principal and intercalated cells. Principal cells play the major role in sodium and water reabsorption. Although aldosterone is considered to be the dominant regulator of sodium reabsorption by principal cells, recent studies suggest a role for direct actions of AT1R. To specifically examine the contributions of AT1AR in principal cells to BP regulation and the development of hypertension in vivo, we generated inbred 129/SvEv mice with deletion of AT1AR from principal cells (PCKO). At baseline, we found that BPs measured by radiotelemetry were similar between PCKOs and controls. During 1-week of low-salt diet (hypertension, there was a modest but significant attenuation of hypertension in PCKOs (163±6 mm Hg) compared with controls (178±2 mm Hg; Phypertension and epithelial sodium channel activation. © 2016 American Heart Association, Inc.

  2. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  3. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  4. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    Science.gov (United States)

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  5. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  6. Stem cell therapy for type 1 diabetes mellitus: a review of recent clinical trials

    Directory of Open Access Journals (Sweden)

    Couri Carlos

    2009-10-01

    Full Text Available Abstract Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials. Herein we summarize recent data about beta cell regeneration, different ways of immune intervention and what is being employed in type 1 diabetic patients with regard to stem cell repertoire to promote regeneration and/or preservation of beta cell mass. The Diabetes Control and Complications Trial (DCCT was a 7-year longitudinal study that demonstrated the importance of the intensive insulin therapy when compared to conventional treatment in the development of chronic complications in patients with type 1 diabetes mellitus (T1DM. This study also demonstrated another important issue: there is a reverse relationship between C-peptide levels (endogenous indicator of insulin secretion chronic complications - that is, the higher the C-peptide levels, the lower the incidence of nephropathy, retinopathy and hypoglycemia. From such data, beta cell preservation has become an additional target in the management of T1DM 1.

  7. Beta-cell autoantibodies and their function in Taiwanese children with type 1 diabetes mellitus.

    Science.gov (United States)

    Tung, Yi-Ching; Chen, Mei-Huei; Lee, Cheng-Ting; Tsai, Wen-Yu

    2009-11-01

    To understand the importance of autoimmunity in the development of type 1 diabetes in Taiwanese children, we evaluated the presence of beta-cell autoantibodies and their correlation with residual beta-cell function. From 1989 to 2006, 157 Taiwanese children with newly diagnosed type 1 diabetes were enrolled in this study. We determined the presence of beta-cell autoantibodies, such as glutamic acid decarboxylase autoantibodies (GADAs), insulinoma antigen 2 autoantibodies (IA-2As), and insulin autoantibodies (IAAs). A 6-minute glucagon test was also performed at diagnosis. At diagnosis, 73% of children tested positive for GADAs, 76% for IA-2As and 21% for IAAs. Ninety-two percent of them had at least one of the beta-cell autoantibodies detected. Positivity for IAAs was more frequent in patients younger than 5 years than in those older than 5 years (45% vs. 13%). Using multiple regression analysis, the presence of GADAs or IAAs, or age of onset of these patients was an independent factor for residual beta-cell function. Younger patients and those with GADAs had less residual beta-cell function at disease onset, whereas those with IAAs had more insulin reserve. Autoimmunity plays an important role in the pathogenesis of type 1 diabetes in Taiwanese children, and the presence of IAAs tends to be more common in younger children.

  8. Electrical estimulation of retinal pigment epithelial cells.

    Science.gov (United States)

    Gamboa, Olga Lucia; Pu, Jin; Townend, John; Forrester, John V; Zhao, Min; McCaig, Colin; Lois, Noemi

    2010-08-01

    We investigated and characterized the effect of externally applied electric fields (EF) on retinal pigment epithelial (RPE) cells by exposing primary cultures of human RPE cells (hRPE) and those from the ARPE19 immortalized cell line to various strengths of EF (EF-treated cells) or to no EF (control cells) under different conditions including presence or absence of serum and gelatin and following wounding. We evaluated changes in RPE cell behavior in response to EF by using a computer based image capture and analysis system (Metamorph). We found that RPE cells responded to externally applied EFs by preferential orientation perpendicular to the EF vector, directed migration towards the anode, and faster translocation rate than control, untreated cells. These responses were voltage-dependent. Responses were observed even at low voltages, of 50-300 mV. Furthermore, the migration of hRPE cell sheets generated by wounding of confluent monolayers of cells at early and late confluence could be manipulated by the application of EF, with directed migration towards the anode observed at both sides of the wounded hRPE. In conclusion, RPE cell behaviour can be controlled by an externally applied EF. The potential for externally applied EF to be used as a therapeutic strategy in the management of selected retinal diseases warrants further investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Current perspectives in epithelial cell injury and repair: consequences for epithelial functions

    Directory of Open Access Journals (Sweden)

    R. Lutter

    2005-12-01

    Full Text Available Epithelial cells lining the airways and the respiratory compartment may, and certainly when exposed to an inflammatory milieu, display an altered functioning, which could contribute to pathophysiology of inflammatory lung/airway disease. In the present review paper, several issues that were discussed at an earlier European Respiratory Society Research Seminar on conditions that affect epithelial functioning have been recapitulated and updated. These and future studies should improve understanding of epithelial functioning and may aid recovery from disease.

  10. Novel Application of Artificial Dermis Plus Autologous Vital Epithelial Cells: Improved Wound Epithelialization

    Directory of Open Access Journals (Sweden)

    Li-Tzu Lee

    2010-02-01

    Full Text Available The purpose of this study was to evaluate artificial dermis with the simultaneous addition of autologous epithelial cells for oral lesion defect reconstruction. Surgical wounds reconstructed with artificial dermis plus scraped epithelial cells were evaluated in 5 patients with oral benign lesions or squamous cell carcinoma. Clinical follow-up indices included scar formation and tissue surface texture observation. The neomucosal layers were analyzed histologically to establish the degree of epithelialization. Clinical observation showed that the oral mucosal texture was smoother in artificial dermis with added epithelial cells at 4 weeks postoperation compared with artificial dermis alone. The wound contraction and scar formation processes were slow. Viable epithelial cells with flat rete ridges remained in the artificial dermis, and a neoepithelial layer was present in the histological findings. We showed that healthy granulation tissue and neoepithelial formation in artificial dermis with epithelial cells was beneficial for the repair of oral defects. Scraping oral epithelial cells and applying them to artificial dermis assisted in the early preparation of composite grafts and minimized requirement for donor sites. This technique may improve the treatment of patients with oral benign tumors and early-stage squamous cell carcinoma.

  11. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes.

    Science.gov (United States)

    Richardson, Sarah J; Rodriguez-Calvo, Teresa; Gerling, Ivan C; Mathews, Clayton E; Kaddis, John S; Russell, Mark A; Zeissler, Marie; Leete, Pia; Krogvold, Lars; Dahl-Jørgensen, Knut; von Herrath, Matthias; Pugliese, Alberto; Atkinson, Mark A; Morgan, Noel G

    2016-11-01

    Human pancreatic beta cells may be complicit in their own demise in type 1 diabetes, but how this occurs remains unclear. One potentially contributing factor is hyperexpression of HLA class I antigens. This was first described approximately 30 years ago, but has never been fully characterised and was recently challenged as artefactual. Therefore, we investigated HLA class I expression at the protein and RNA levels in pancreases from three cohorts of patients with type 1 diabetes. The principal aims were to consider whether HLA class I hyperexpression is artefactual and, if not, to determine the factors driving it. Pancreas samples from type 1 diabetes patients with residual insulin-containing islets (n = 26) from the Network for Pancreatic Organ donors with Diabetes (nPOD), Diabetes Virus Detection study (DiViD) and UK recent-onset type 1 diabetes collections were immunostained for HLA class I isoforms, signal transducer and activator of transcription 1 (STAT1), NLR family CARD domain containing 5 (NLRC5) and islet hormones. RNA was extracted from islets isolated by laser-capture microdissection from nPOD and DiViD samples and analysed using gene-expression arrays. Hyperexpression of HLA class I was observed in the insulin-containing islets of type 1 diabetes patients from all three tissue collections, and was confirmed at both the RNA and protein levels. The expression of β2-microglobulin (a second component required for the generation of functional HLA class I complexes) was also elevated. Both 'classical' HLA class I isoforms (i.e. HLA-ABC) as well as a 'non-classical' HLA molecule, HLA-F, were hyperexpressed in insulin-containing islets. This hyperexpression did not correlate with detectable upregulation of the transcriptional regulator NLRC5. However, it was strongly associated with increased STAT1 expression in all three cohorts. Islet hyperexpression of HLA class I molecules occurred in the insulin-containing islets of patients with recent-onset type 1

  12. Gene expressions changes in bronchial epithelial cells

    DEFF Research Database (Denmark)

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.

    2014-01-01

    For the classification of respiratory sensitizing chemicals, no validated in vivo nor in vitro tests are currently available. In this study, we evaluated whether respiratory sensitizers trigger specific signals in human bronchial epithelial (BEAS-2B) cells at the level of the transcriptome...... oligonucleotide arrays. A limited number of 11 transcripts could be identified as potential biomarkers to identify respiratory sensitizers. Three of these transcripts are associated to immune system processes (HSPA5, UPP1, and SEPRINEI). In addition, the transcriptome was screened for transcripts....... The cells were exposed during 6, 10, and 24 h to 4 respiratory sensitizers and 6 non-respiratory sensitizers (3 skin sensitizers and 3 respiratory irritants) at a concentration inducing 20% cell viability loss after 24 h. Changes in gene expression were evaluated using Agilent Whole Human Genome 4 x 44 K...

  13. MECHANISMS IN ENDOCRINOLOGY: Towards the clinical translation of stem cell therapy for type 1 diabetes.

    Science.gov (United States)

    Espes, Daniel; Lau, Joey; Carlsson, Per-Ola

    2017-10-01

    Insulin-producing cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) have for long been a promising, but elusive treatment far from clinical translation into type 1 diabetes therapy. However, the field is now on the verge of moving such insulin-producing cells into clinical trials. Although stem cell therapies provide great opportunities, there are also potential risks such as teratoma formation associated with the treatment. Many considerations are needed on how to proceed with clinical translation, including whether to use hESCs or iPSCs, and whether encapsulation of tissue will be needed. This review aims to give an overview of the current knowledge of stem cell therapy outcomes in animal models of type 1 diabetes and a proposed road map towards the clinical setting with special focus on the potential risks and hurdles which needs to be considered. From a clinical point of view, transplantation of insulin-producing cells derived from stem cells must be performed without immune suppression in order to be an attractive treatment option. Although costly and highly labour intensive, patient-derived iPSCs would be the only solution, if not clinically successful encapsulation or tolerance induction protocols are introduced. © 2017 European Society of Endocrinology.

  14. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    Science.gov (United States)

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  15. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  16. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  17. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  18. Th17 Cells in Type 1 Diabetes: Role in the Pathogenesis and Regulation by Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yangyang Li

    2015-01-01

    Full Text Available Type 1 diabetes (T1D is an autoimmune disease which is characterized by progressive destruction of insulin producing pancreatic islet β cells. The risk of developing T1D is determined by both genetic and environmental factors. A growing body of evidence supports an important role of T helper type 17 (Th17 cells along with impaired T regulatory (Treg cells in the development of T1D in animal models and humans. Alteration of gut microbiota has been implicated to be responsible for the imbalance between Th17 and Treg cells. However, there is controversy concerning a pathogenic versus protective role of Th17 cells in murine models of diabetes in the context of influence of gut microbiota. In this review we will summarize current knowledge about Th17 cells and gut microbiota involved in T1D and propose Th17 targeted therapy in children with islet autoimmunity to prevent progression to overt diabetes.

  19. Cellular Plasticity of Epithelial Cells-Cause of Metastasis

    National Research Council Canada - National Science Library

    Sukumar, Saraswati

    2005-01-01

    .... We present a novel concept that cancer epithelial cells, possibly of stem cell origin, have inherent cellular plasticity and can differentiate into endothelial cells and form microvessels that serve...

  20. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  1. Taurine Transporter Gene Expression in Mononuclear Blood Cells of Type 1 Diabetes Patients.

    Science.gov (United States)

    Napoli, Zaleida; Seghieri, Giuseppe; Bianchi, Loria; Anichini, Roberto; De Bellis, Alessandra; Campesi, Ilaria; Carru, Ciriaco; Occhioni, Stefano; Zinellu, Angelo; Franconi, Flavia

    2016-01-01

    Taurine transporter gene expression (RNA-TauT) has a role in retinal cell function and is modulated in vitro and in vivo by hyperglycemia and/or oxidative stress. This study was aimed at testing whether RNA-TauT gene expression is modified in blood mononuclear peripheral cells (MPCs) of type 1 diabetic patients, is related to plasma markers of oxidative stress or endothelial dysfunction, or, finally, is related to presence of retinopathy. RNA-TauT was measured in MPCs by real-time PCR-analysis in 35 type 1 diabetic patients and in 33 age- and sex-matched controls, additionally measuring plasma and cell taurine and markers of oxidative stress and endothelial dysfunction. RNA-TauT, expressed as 2(-ΔΔCt), was significantly higher in MPCs of type 1 diabetic patients than in controls [median (interquartile range): 1.32(0.31) versus 1.00(0.15); P = 0.01]. In diabetic patients RNA-TauT was related to HbA1c (r = 0.42; P = 0.01) and inversely to plasma homocysteine (r = -0.39; P = 0.02) being additionally significantly higher in MPCs of patients without retinopathy [(n = 22); 1.36(0.34)] compared to those with retinopathy [(n = 13); 1.16(0.20)], independently from HbA1c or diabetes duration. RNA-TauT gene expression is significantly upregulated in MPCs of type 1 diabetes patients and is related to HbA1c levels and inversely to plasma homocysteine. Finally, in diabetes patients, RNA-TauT upregulation seems to be blunted in patients with retinopathy independently of their metabolic control or longer diabetes duration.

  2. Pancreatic Nonhormone Expressing Endocrine Cells in Children With Type 1 Diabetes

    Science.gov (United States)

    Moin, Abu Saleh Md; Cory, Megan; Ong, Allison; Choi, Jennifer; Dhawan, Sangeeta

    2017-01-01

    It has been proposed that the deficit in β-cell mass in type 1 diabetes (T1D) may be due, in part, to β-cell degranulation to chromogranin-positive hormone-negative (CPHN) cells. The frequency and distribution of pancreatic CPHN cells were investigated in 19 children with T1D compared with 14 nondiabetic (ND) children. We further evaluated these cells for replication and expression of endocrine lineage markers Nkx6.1 and Nkx2.2, and compared these frequencies with those previously reported in CPHN cells in adults with T1D. In contrast to adults’ cells, pancreatic CPHN cells were comparably abundant (percentage of endocrine cells ± standard error of the mean, 1.4 ± 0.2 vs 1.0 ± 0.2 in patients with T1D vs ND subjects, respectively; P = not significant) and comparably distributed in children with T1D vs ND donors. Replication of CPHN cells was detected but unchanged in children with T1D vs ND children, as was the percentage of CPHN cells expressing Nkx6.1 or NKx2.2. In children with T1D, the frequency of pancreatic CPHN cells was not increased, and this differed from adults with T1D. PMID:28782056

  3. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes.

    Science.gov (United States)

    Dooley, James; Tian, Lei; Schonefeldt, Susann; Delghingaro-Augusto, Viviane; Garcia-Perez, Josselyn E; Pasciuto, Emanuela; Di Marino, Daniele; Carr, Edward J; Oskolkov, Nikolay; Lyssenko, Valeriya; Franckaert, Dean; Lagou, Vasiliki; Overbergh, Lut; Vandenbussche, Jonathan; Allemeersch, Joke; Chabot-Roy, Genevieve; Dahlstrom, Jane E; Laybutt, D Ross; Petrovsky, Nikolai; Socha, Luis; Gevaert, Kris; Jetten, Anton M; Lambrechts, Diether; Linterman, Michelle A; Goodnow, Chris C; Nolan, Christopher J; Lesage, Sylvie; Schlenner, Susan M; Liston, Adrian

    2016-05-01

    Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes.

  4. Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A.

    Science.gov (United States)

    Martinez-Orozco, Raul; Navarro-Tito, Napoleon; Soto-Guzman, Adriana; Castro-Sanchez, Luis; Perez Salazar, Eduardo

    2010-06-01

    Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of breast cancer. Cancer progression requires the development of metastasis, which is characterized by an increase in cell motility and invasion. Epithelial-to-mesenchymal transition (EMT) is a process, by which epithelial cells are transdifferentiated to a more mesenchymal state. A similar process takes place during tumor progression, when carcinoma cells stably or transiently lose epithelial polarities and acquire a mesenchymal phenotype. Arachidonic acid (AA) is a fatty acid that mediates cellular processes, such as cell survival, angiogenesis, chemotaxis, mitogenesis, migration and apoptosis. However, the role of AA on the EMT process in human mammary epithelial cells remains to be studied. We demonstrate here that AA promotes an increase in vimentin and N-cadherin expression, MMP-9 secretion, a decrease in E-cadherin junctional levels, and the activation of FAK, Src and NF-kappaB in MCF10A cells. Furthermore, AA also promotes cell migration in an Src kinase activity-dependent fashion. In conclusion, our results demonstrate, for the first time, that AA promotes an epithelial-to-mesenchymal-like transition in MCF10A human mammary non-tumorigenic epithelial cells. 2010 Elsevier GmbH. All rights reserved.

  5. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  6. Endothelial protein C receptor in renal tubular epithelial cells and ...

    African Journals Online (AJOL)

    This study aims to investigate EPCR expression in renal tubular epithelial cells and related influencing factors. EPCR expression was assessed by flow cytometry in renal tubular epithelial cells. The effects of some reagents (high glucose, tumor necrosis factor–α and interleukin-1β) were measured by RT-PCR. The results ...

  7. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus.

    Science.gov (United States)

    He, Binbin; Li, Xia; Yu, Haibo; Zhou, Zhiguang

    2015-11-01

    Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  8. Roles of TRIM32 in Corneal Epithelial Cells After Infection with Herpes Simplex Virus

    Directory of Open Access Journals (Sweden)

    Hao Cui

    2017-09-01

    Full Text Available Background: Epithelial cells play important roles as a critical barrier in protecting the cornea from microbial pathogens infection. Methods: In this study, we were aiming to investigate the role of E3 ubiquitin ligase tripartite motif protein 32 (TRIM32 in corneal epithelial cells in response to Herpes Simplex Virus type 1 (HSV-1 infection and to elucidate the underlying mechanisms. Results: We found the expression of TRIM32 was increased after infected with HSV-1 both in murine corneas and cultured human epithelial (HCE cells. Furthermore, knockdown of the expression of TRIM32 significantly aggravated HSV-1 induced herpetic stromal keratitis (HSK in mice and promoted the replication of HSV-1 in cultured HCE cells. We also observed that silencing of TRIM32 resulted in the decreased expression of IFN-β and suppressed activation of interferon regulatory factor 3 (IRF3 both in vivo and in vitro. Finally, we found TRIM32 positively regulate IFN-β production in corneal epithelial cells through promoting K63-linked polyubiquitination of stimulator of interferon genes (STING. Conclusion: In conclusion, our data suggested that TRIM32 as a crucial positive regulator of HSV-1 induced IFN-β production in corneal epithelial cells, and it played a predominant role in clearing HSV-1 from the cornea.

  9. Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis.

    OpenAIRE

    Cantin, A M; North, S L; Fells, G A; Hubbard, R C; Crystal, R G

    1987-01-01

    Lung inflammatory cells of patients with idiopathic pulmonary fibrosis (IPF) were evaluated for their ability to injure 51Cr-labeled AKD alveolar epithelial cells in the presence and absence of IPF alveolar epithelial lining fluid (ELF). The IPF cells were spontaneously releasing exaggerated amounts of superoxide (O.2) and hydrogen peroxide (H2O2) compared with normal (P less than 0.02). Cytotoxicity of the AKD cells was markedly increased when the IPF inflammatory cells were incubated with a...

  10. Multi-functionality and plasticity characterize epithelial cells in Hydra

    Science.gov (United States)

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  11. Cytomatrix synthesis in MDCK epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.J.; Low, R.B.; Woodcock-Mitchell, J.L. (Univ. of Vermont, Burlington (USA))

    1990-06-01

    Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak, was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with (14C)leucine over several days and then pulse-labeled for 4 hours with (3H)leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form.

  12. Pathogenic T helper type 17 cells contribute to type 1 diabetes independently of interleukin-22.

    Science.gov (United States)

    Bellemore, S M; Nikoopour, E; Krougly, O; Lee-Chan, E; Fouser, L A; Singh, B

    2016-03-01

    We have shown that pathogenic T helper type 17 (Th17) cells differentiated from naive CD4(+) T cells of BDC2·5 T cell receptor transgenic non-obese diabetic (NOD) mice by interleukin (IL)-23 plus IL-6 produce IL-17, IL-22 and induce type 1 diabetes (T1D). Neutralizing interferon (IFN)-γ during the polarization process leads to a significant increase in IL-22 production by these Th17 cells. We also isolated IL-22-producing Th17 cells from the pancreas of wild-type diabetic NOD mice. IL-27 also blocked IL-22 production from diabetogenic Th17 cells. To determine the functional role of IL-22 produced by pathogenic Th17 cells in T1D we neutralized IL-22 in vivo by using anti-IL-22 monoclonal antibody. We found that blocking IL-22 did not alter significantly adoptive transfer of disease by pathogenic Th17 cells. Therefore, IL-22 is not required for T1D pathogenesis. The IL-22Rα receptor for IL-22 however, increased in the pancreas of NOD mice during disease progression and based upon our and other studies we suggest that IL-22 may have a regenerative and protective role in the pancreatic islets. © 2015 British Society for Immunology.

  13. α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Marcela Brissova

    2018-03-01

    Full Text Available Many patients with type 1 diabetes (T1D have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and β cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-β cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.

  14. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-08

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein*

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V.; Sampey, Gavin C.; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. PMID:24939845

  16. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  17. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  18. Interleukin-35 administration counteracts established murine type 1 diabetes--possible involvement of regulatory T cells.

    Science.gov (United States)

    Singh, Kailash; Kadesjö, Erik; Lindroos, Julia; Hjort, Marcus; Lundberg, Marcus; Espes, Daniel; Carlsson, Per-Ola; Sandler, Stellan; Thorvaldson, Lina

    2015-07-30

    The anti-inflammatory cytokine IL-35 is produced by regulatory T (Treg) cells to suppress autoimmune and inflammatory responses. The role of IL-35 in type 1 diabetes (T1D) remains to be answered. To elucidate this, we investigated the kinetics of Treg cell response in the multiple low dose streptozotocin induced (MLDSTZ) T1D model and measured the levels of IL-35 in human T1D patients. We found that Treg cells were increased in MLDSTZ mice. However, the Treg cells showed a decreased production of anti-inflammatory (IL-10, IL-35, TGF-β) and increased pro-inflammatory (IFN-γ, IL-2, IL-17) cytokines, indicating a phenotypic shift of Treg cells under T1D condition. IL-35 administration effectively both prevented development of, and counteracted established MLDSTZ T1D, seemingly by induction of Eos expression and IL-35 production in Treg cells, thus reversing the phenotypic shift of the Treg cells. IL-35 administration reversed established hyperglycemia in NOD mouse model of T1D. Moreover, circulating IL-35 levels were decreased in human T1D patients compared to healthy controls. These findings suggest that insufficient IL-35 levels play a pivotal role in the development of T1D and that treatment with IL-35 should be investigated in treatment of T1D and other autoimmune diseases.

  19. Herpes Simplex Virus Type 1 Infection of Activated Cytotoxic T Cells

    Science.gov (United States)

    Raftery, Martin J.; Behrens, Christian K.; Müller, Anke; Krammer, Peter H.; Walczak, Henning; Schönrich, Günther

    1999-01-01

    Herpes simplex virus type 1 (HSV1), a large DNA-containing virus, is endemic in all human populations investigated. After infection of mucocutaneous surfaces, HSV1 establishes a latent infection in nerve cells. Recently, it was demonstrated that HSV1 can also infect activated T lymphocytes. However, the consequences of T cell infection for viral pathogenesis and immunity are unknown. We have observed that in contrast to the situation in human fibroblasts, in human T cell lines antigen presentation by major histocompatibility complex class I molecules is not blocked after HSV1 infection. Moreover, HSV1 infection of T cells results in rapid elimination of antiviral T cells by fratricide. To dissect the underlying molecular events, we used a transgenic mouse model of HSV1 infection to demonstrate that CD95 (Apo-1, Fas)-triggered apoptosis is essential for HSV1-induced fratricide, whereas tumor necrosis factor (TNF) also contributes to this phenomenon but to a lesser extent. By contrast, neither TRAIL (TNF-related apoptosis-inducing ligand) nor perforin were involved. Finally, we defined two mechanisms associated with HSV1-associated fratricide of antiviral T cells: (a) T cell receptor–mediated upregulation of CD95 ligand and (b) a viral “competence-to-die” signal that renders activated T lymphocytes susceptible to CD95 signaling. We propose that induction of fratricide is an important immune evasion mechanism of HSV1, helping the virus to persist in the host organism throughout its lifetime. PMID:10523608

  20. Streptococcus equi subsp zooepidemicus Invades and Survives in Epithelial Cells

    DEFF Research Database (Denmark)

    Skive, Bolette; Rohde, Manfred; Molinari, Gabriella

    2017-01-01

    showed three morphologically different types of invasion for both bacterial strains. The main port of entry was through large invaginations in the epithelial cell membrane. Pili-like bacterial appendages were observed when the S. zooepidemicus cells were in close proximity to the epithelial cells...... protection assays. Both S. zooepidemicus strains investigated were able to invade epithelial cells although at different magnitudes. The immunofluorescence data showed significantly higher adhesion and invasion rates for strain 1-4a when compared to strain S31A1. S. zooepidemicus was able to survive...

  1. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  2. Mesenchymal-­epithelial interactions during digestive tract development and epithelial stem cell regeneration

    Science.gov (United States)

    Le Guen, Ludovic; Marchal, Stéphane; Faure, Sandrine; De Santa Barbara, Pascal

    2015-01-01

    The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration. PMID:26126787

  3. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  4. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    Science.gov (United States)

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  6. Diffuse Large B-Cell Lymphoma in Human T-Lymphotropic Virus Type 1 Carriers

    Science.gov (United States)

    Beltran, Brady E.; Quiñones, Pilar; Morales, Domingo; Revilla, Jose C.; Alva, Jose C.; Castillo, Jorge J.

    2012-01-01

    We describe the clinical and pathological characteristics of seven patients who were human T-lymphotropic virus type 1 (HTLV-1) carriers and had a pathological diagnosis of de novo diffuse large B-cell lymphoma. Interestingly, three of our cases showed positive expression of Epstein-Barr-virus, (EBV-) encoded RNA within the tumor cells indicating a possible interaction between these two viruses. Furthermore, our three EBV-positive cases presented with similar clinical characteristics such as early clinical stage and low-risk indices. To the best of our knowledge, this is the first case series describing the characteristics of HTLV-1-positive DLBCL patients. The potential relationship between HTLV-1 and EBV should be further explored. PMID:23198156

  7. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    Science.gov (United States)

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  8. Regulated Mucin Secretion from Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Bruce Adler

    2013-09-01

    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  9. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  10. Enhanced replication of herpes simplex virus type 1 in human cells

    International Nuclear Information System (INIS)

    Miller, C.S.; Smith, K.O.

    1991-01-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate [MMS], methyl methanethiosulfonate [MMTS], ultraviolet light [UV], or gamma radiation [GR]) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes

  11. Contributions of CD8 T cells to the pathogenesis of mouse adenovirus type 1 respiratory infection.

    Science.gov (United States)

    Molloy, Caitlyn T; Andonian, Jennifer S; Seltzer, Harrison M; Procario, Megan C; Watson, Michael E; Weinberg, Jason B

    2017-07-01

    CD8 T cells are key components of the immune response to viruses, but their roles in the pathogenesis of adenovirus respiratory infection have not been characterized. We used mouse adenovirus type 1 (MAV-1) to define CD8 T cell contributions to the pathogenesis of adenovirus respiratory infection. CD8 T cell deficiency in β2m -/- mice had no effect on peak viral replication in lungs, but clearance of virus was delayed in β2m -/- mice. Virus-induced weight loss and increases in bronchoalveolar lavage fluid total protein, IFN-γ, TNF-α, IL-10, CCL2, and CCL5 concentrations were less in β2m -/- mice than in controls. CD8 T cell depletion had similar effects on virus clearance, weight loss, and inflammation. Deficiency of IFN-γ or perforin had no effect on viral replication or inflammation, but perforin-deficient mice were partially protected from weight loss. CD8 T cells promote MAV-1-induced pulmonary inflammation via a mechanism that is independent of direct antiviral effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gill epithelial cells as in vitro models in aquatic toxicology.

    Science.gov (United States)

    Sandbacka, M; Christianson, I; Isomaa, B

    2000-01-01

    Gill epithelial cells are less sensitive than fish for most test chemicals, but a high correlation and a slope of the regression line close to 1 support the use of gill epithelial cells for prediction of acute toxicity in fish. Cells in suspension perform as well as cultured cells in the toxicity tests. However, the use of cells in suspension results in a quicker and more cost-effective assay for toxicity screening, but the cells should be used within about 5 hours of isolation. If a longer incubation time is required, cultured cells should be used. Cultured cells re-establish their polarity and contacts with other cells, and retain detectable amounts of enzymes for xenobiotic metabolism for at least 12 days in culture. Epithelial cell layers grown on filters seem to be less suitable for toxicity screening. 2000 FRAME.

  13. Current advanced therapy cell-based medicinal products for type-1-diabetes treatment.

    Science.gov (United States)

    Cañibano-Hernández, Alberto; Del Burgo, Laura Sáenz; Espona-Noguera, Albert; Ciriza, Jesús; Pedraz, Jose Luis

    2018-03-27

    In the XXI century diabetes mellitus has become one of the main threats to human health with higher incidence in regions such as Europe and North America. Type 1 diabetes mellitus (T1DM) occurs as a consequence of the immune-mediated destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. The administration of exogenous insulin through daily injections is the most prominent treatment for T1DM but its administration is frequently associated to failure in glucose metabolism control, finally leading to hyperglycemia episodes. Other approaches have been developed in the past decades, such as whole pancreas and islet allotransplantation, but they are restricted to patients who exhibit frequent episodes of hypoglycemia or renal failure because the lack of donors and islet survival. Moreover, patients transplanted with either whole pancreas or islets require of immune suppression to avoid the rejection of the transplant. Currently, advanced therapy medicinal products (ATMP), such as implantable devices, have been developed in order to reduce immune rejection response while increasing cell survival. To overcome these issues, ATMPs must promote vascularization, guaranteeing the nutritional contribution, while providing O 2 until vasculature can surround the device. Moreover, it should help in the immune-protection to avoid acute and chronic rejection. The transplanted cells or islets should be embedded within biomaterials with tunable properties like injectability, stiffness and porosity mimicking natural ECM structural characteristics. And finally, an infinitive cell source that solves the donor scarcity should be found such as insulin producing cells derived from mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Several companies have registered their ATMPs and future studies envision new prototypes. In this review, we will discuss the mechanisms and etiology of

  14. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered...... expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  15. CD4+ CD25+ cells in type 1 diabetic patients with other autoimmune manifestations

    Directory of Open Access Journals (Sweden)

    Dalia S. Abd Elaziz

    2014-11-01

    Full Text Available The existence of multiple autoimmune disorders in diabetics may indicate underlying primary defects of immune regulation. The study aims at estimation of defects of CD4+ CD25+high cells among diabetic children with multiple autoimmune manifestations, and identification of disease characteristics in those children. Twenty-two cases with type 1 diabetes associated with other autoimmune diseases were recruited from the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU, Cairo University along with twenty-one normal subjects matched for age and sex as a control group. Their anthropometric measurements, diabetic profiles and glycemic control were recorded. Laboratory investigations included complete blood picture, glycosylated hemoglobin, antithyroid antibodies, celiac antibody panel and inflammatory bowel disease markers when indicated. Flow cytometric analysis of T-cell subpopulation was performed using anti-CD3, anti-CD4, anti-CD8, anti-CD25 monoclonal antibodies. Three cases revealed a proportion of CD4+ CD25+high below 0.1% and one case had zero counts. However, this observation did not mount to a significant statistical difference between the case and control groups neither in percentage nor absolute numbers. Significant statistical differences were observed between the case and the control groups regarding their height, weight centiles, as well as hemoglobin percentage, white cell counts and the absolute lymphocytic counts. We concluded that, derangements of CD4+ CD25+high cells may exist among diabetic children with multiple autoimmune manifestations indicating defects of immune controllers.

  16. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes.

    Science.gov (United States)

    Creusot, Remi J; Battaglia, Manuela; Roncarolo, Maria-Grazia; Fathman, C Garrison

    2016-04-01

    The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease-specific or patient-oriented approaches such as antigen-specific and cell-based therapies, with a goal to provide efficacy, safety, and long-term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high-risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced ("omic"-based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug-based therapies for T1D, with a special emphasis on cell-based therapies, their status in the clinic and potential for treatment and/or prevention. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Complement Receptor Type 1 Suppresses Human B Cell Functions in SLE Patients

    Directory of Open Access Journals (Sweden)

    Mariann Kremlitzka

    2016-01-01

    Full Text Available Complement receptors (CRs play an integral role in innate immunity and also function to initiate and shape the adaptive immune response. Our earlier results showed that complement receptor type 1 (CR1, CD35 is a potent inhibitor of the B cell receptor- (BCR- induced functions of human B lymphocytes. Here we show that this inhibition occurs already at the initial steps of B cell activation since ligation of CR1 reduces the BCR-induced phosphorylation of key signaling molecules such as Syk and mitogen activated protein kinases (MAPKs. Furthermore, our data give evidence that although B lymphocytes of active systemic lupus erythematosus (SLE patients express lower level of CR1, the inhibitory capacity of this complement receptor is still maintained and its ligand-induced clustering results in significant inhibition of the main B cell functions, similar to that found in the case of healthy individuals. Since we have found that reduced CR1 expression of SLE patients does not affect the inhibitory capacity of the receptor, our results further support the therapeutical potential of CD35 targeting the decrease of B cell activation and autoantibody production in autoimmune patients.

  18. Complement Receptor Type 1 Suppresses Human B Cell Functions in SLE Patients.

    Science.gov (United States)

    Kremlitzka, Mariann; Mácsik-Valent, Bernadett; Polgár, Anna; Kiss, Emese; Poór, Gyula; Erdei, Anna

    2016-01-01

    Complement receptors (CRs) play an integral role in innate immunity and also function to initiate and shape the adaptive immune response. Our earlier results showed that complement receptor type 1 (CR1, CD35) is a potent inhibitor of the B cell receptor- (BCR-) induced functions of human B lymphocytes. Here we show that this inhibition occurs already at the initial steps of B cell activation since ligation of CR1 reduces the BCR-induced phosphorylation of key signaling molecules such as Syk and mitogen activated protein kinases (MAPKs). Furthermore, our data give evidence that although B lymphocytes of active systemic lupus erythematosus (SLE) patients express lower level of CR1, the inhibitory capacity of this complement receptor is still maintained and its ligand-induced clustering results in significant inhibition of the main B cell functions, similar to that found in the case of healthy individuals. Since we have found that reduced CR1 expression of SLE patients does not affect the inhibitory capacity of the receptor, our results further support the therapeutical potential of CD35 targeting the decrease of B cell activation and autoantibody production in autoimmune patients.

  19. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Rami Yossef

    Full Text Available Natural killer (NK cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D. Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  20. Etiopathogenesis of type 1 diabetes mellitus: prognostic factors for the evolution of residual β cell function

    Directory of Open Access Journals (Sweden)

    Dib Sergio A

    2009-12-01

    Full Text Available Abstract Type 1A diabetes mellitus (T1ADM is a progressive autoimmune disease mediated by T lymphocytes with destruction of beta cells. Up to now, we do not have precise methods to assess the beta cell mass, "in vivo" or "ex-vivo". The studies about its genetic susceptibility show strong association with class II antigens of the HLA system (particularly DQ. Others genetics associations are weaker and depend on the population studied. A combination of precipitating events may occur at the beginning of the disease. There is a silent loss of immune-mediated beta cells mass which velocity has an inverse relation with the age, but it is influenced by genetic and metabolic factors. We can predict the development of the disease primarily through the determination of four biochemically islet auto antibodies against antigens like insulin, GAD65, IA2 and Znt8. Beta cell destruction is chronically progressive but at clinical diagnosis of the disease a reserve of these cells still functioning. The goal of secondary disease prevention is halt the autoimmune attack on beta cells by redirecting or dampening the immune system. It is remains one of the foremost therapeutic goals in the T1ADM. Glycemic intensive control and immunotherapeutic agents may preserve beta-cell function in newly diagnosed patients with T1ADM. It may be assessed through C-peptide values, which are important for glycemic stability and for the prevention of chronic complications of this disease. This article will summarize the etiopathogenesis mechanisms of this disease and the factors can influence on residual C-peptide and the strategies to it preservation.

  1. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Science.gov (United States)

    Lenaerts, Liesbeth; van Dam, Wim; Persoons, Leentje; Naesens, Lieve

    2012-01-01

    Application of human adenovirus type 5 (Ad5) derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR), as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX) and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG) on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1) is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs) as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  2. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Liesbeth Lenaerts

    Full Text Available Application of human adenovirus type 5 (Ad5 derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR, as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1 is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  3. Increased angiotensin II type 1 receptor expression in temporal arteries from patients with giant cell arteritis

    DEFF Research Database (Denmark)

    Dimitrijevic, Ivan; Malmsjö, Malin; Andersson, Christina

    2009-01-01

    PURPOSE: Currently, giant cell arteritis (GCA) is primarily treated with corticosteroids or immunomodulating agents, but there is interest in identifying other noncorticosteroid alternatives. Similarities exist in the injury pathways between GCA and atherosclerosis. Angiotensin II is a vasoactive...... peptide involved in vessel inflammation during atherosclerosis, and angiotensin II receptor inhibitors are effective in preventing atherosclerosis. The present study was performed to elucidate the role of angiotensin type 1 (AT(1)) and type 2 (AT(2)) receptors in GCA. DESIGN: Experimental retrospective...... with antibodies for the AT(2) receptor was similar in the patients with GCA and in controls. CONCLUSIONS: These results suggest that AT(1) receptors play a role in the development of GCA. Inhibition of the angiotensin system may thus provide a noncorticosteroid alternative for the treatment of GCA. FINANCIAL...

  4. Residual ß-cell function and microvascular complications in type 1 diabetic patients

    Directory of Open Access Journals (Sweden)

    Gomes M.B.

    2000-01-01

    Full Text Available To determine the influence of residual ß-cell function on retinopathy and microalbuminuria we measured basal C-peptide in 50 type 1 diabetic outpatients aged 24.96 ± 7.14 years, with a duration of diabetes of 9.1 ± 6.2 years. Forty-three patients (86% with low C-peptide (<0.74 ng/ml had longer duration of diabetes than 7 patients (14% with high C-peptide (³0.74 ng/ml (9 (2-34 vs 3 (1-10 years, P = 0.01 and a tendency to high glycated hemoglobin (HBA1 (8.8 (6-17.9 vs 7.7 (6.9-8.7%, P = 0.08. Nine patients (18% had microalbuminuria (two out of three overnight urine samples with an albumin excretion rate (AER ³20 and <200 µg/min and 13 (26% had background retinopathy. No association was found between low C-peptide, microalbuminuria and retinopathy and no difference in basal C-peptide was observed between microalbuminuric and normoalbuminuric patients (0.4 ± 0.5 vs 0.19 ± 0.22 ng/ml, P = 0.61 and between patients with or without retinopathy (0.4 ± 0.6 vs 0.2 ± 0.3 ng/ml, P = 0.43. Multiple regression analysis showed that duration of diabetes (r = 0.30, r2 = 0.09, P = 0.031 followed by HBA1 (r = 0.41, r2 = 0.17, P = 0.01 influenced basal C-peptide, and this duration of diabetes was the only variable affecting AER (r = 0.40, r2 = 0.16, P = 0.004. In our sample of type 1 diabetic patients residual ß-cell function was not associated with microalbuminuria or retinopathy.

  5. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-10-01

    Full Text Available The human pathology Wilson disease (WD is characterized by toxic copper (Cu accumulation in brain and liver, resulting in, among other indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify novel compounds that can alleviate Cu-induced toxicity, we screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We identified 2 members of the drug class of Angiotensin II Type 1 receptor blockers (ARBs that could increase yeast tolerance to Cu, namely Candesartan and Losartan. Subsequently, we show that specific ARBs can increase yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp. The latter also induces mitochondrial dysfunction and apoptosis in mammalian cells. We further demonstrate that specific ARBs can prevent the prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which demonstrated most pronounced reduction of apoptosis-related markers. Next, we tested the sensitivity of a selection of yeast knockout mutants affected in detoxification of reactive oxygen species (ROS and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of major ROS-detoxifying proteins. Finally, we show that specific ARBs can increase mammalian cell tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic markers. All the above point to the potential of ARBs in preventing Cu-induced toxicity in yeast and mammalian cells.

  6. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  7. Investigating remission and relapse in type 1 diabetes. Immune correlates of clinical outcome in beta-cell replacement therapies

    NARCIS (Netherlands)

    Torren, van der C.R.

    2017-01-01

    Type 1 Diabetes is caused by destruction of insulin producing beta-cells by autoimmune T-cells. Replacement of beta-cells through transplantation can supply new beta-cells, however these are at renewed peril of destruction through auto- and alloreactive immune responses. In this thesis, immune

  8. Activation of lung epithelial cells by group 2 mite allergens

    OpenAIRE

    Österlund, Camilla

    2012-01-01

    Throughout many parts of the world house dust mites (HDM) are considered as a major source of indoor aeroallergens and they are powerful inducers of allergic diseases. Proteolytic HDM allergens are recognised as being able to directly activate respiratory epithelial cells and thereby actively participate in innate immune responses. Although several major HDM allergens lack proteolytic activity, their possible ability to similarly interact with epithelial cells is not known. The overall aim of...

  9. Renal disease, epidermal necrosis, and epithelial cell antibodies.

    OpenAIRE

    Deal, J E; Groves, R W; Harmer, A W; Welsh, K I; MacDonald, D M; Rigden, S P

    1991-01-01

    OBJECTIVE--To describe the association between epithelial cell IgM, which has previously been associated with an increased incidence of loss of renal graft in children, with a novel cutaneous eruption and unexplained native renal disease. DESIGN--Observational study on children with epithelial cell antibody presenting with unexplained renal or skin disease. SETTING--General paediatric department and regional paediatric nephrology unit. PATIENTS--Six children (five girls, one boy), who present...

  10. Herpes simplex viruses type 1 and 2 photoinactivated in the presence of methylene blue transform human and mouse cells in vitro.

    Science.gov (United States)

    Michútová, M; Mrázová, V; Kúdelová, M; Smolinská, M; Šupoliková, M; Vrbová, M; Golais, F

    Three strains of herpes simplex virus, K17syn- and HSZPsyn+ of type 1 (HSV-1) and USsyn- of type 2 (HSV-2), were photoinactivated in the presence of methylene blue and used to infect 3 cell lines, normal human lung tissue cells (MRC-5), mouse epithelial cells (NIH3T3), and human lung carcinoma cells (A549). The virus titer and phenotype of cells were evaluated to compare the characteristics of normal and carcinoma cells infected with non-syncytial (non-syn) and syncytial (syn) strains of herpes simplex viruses. We found that the cells of both normal cell lines infected with photoinactivated K17syn- and USsyn- but not HSZPsyn+ acquired transformed phenotype accompanied by the presence of virus. Surprisingly, the infection with photoinactivated viruses K17syn- and USsyn- but not HSZPsyn+ resulted in the suppression of the transformed phenotype of A549 cells. Using nested PCR, herpesviral DNA was identified in newly transformed cells and cells that lost the transformed phenotype. The effect of putative herpesvirus-related growth factors (HRGF) produced by cells infected with photoinactivated viruses was quantified and compared. Since methylene blue is currently used in phototherapy of herpetic lesions, these results raise the question of whether such therapy is risky to human health.

  11. CISH promoter polymorphism effects on T cell cytokine receptor signaling and type 1 diabetes susceptibility.

    Science.gov (United States)

    Seyfarth, Julia; Ahlert, Heinz; Rosenbauer, Joachim; Baechle, Christina; Roden, Michael; Holl, Reinhard W; Mayatepek, Ertan; Meissner, Thomas; Jacobsen, Marc

    2018-02-06

    Impaired regulatory T cell immunity plays a central role in the development of type 1 diabetes (T1D). Interleukin-2 receptor (IL-2R) signaling is essential for regulatory T cells (T REG ), and cytokine-inducible SH2-containing protein (CIS) regulates IL-2R signaling as a feedback inhibitor. Previous studies identified association of CISH promoter region single nucleotide polymorphisms (SNPs) with susceptibility to infectious diseases. Here we analyzed allele frequencies of three CISH SNPs (i.e., rs809451, rs414171, rs2239751) in a study of T1D patients (n = 260, onset age  10 years). Minor allele frequencies were compared to a control cohort of the 1000 Genomes Project. Assigned haplotypes were determined for effects on T1D manifestation and severity. Finally, the CISH haplotype influence on cytokine signaling and function was explored in T cells from healthy donors. We detected similar minor allele frequencies between T1D patients and the control cohort. T1D onset age, residual serum C-peptide level, and insulin requirement were comparable between different haplotypes. Only minor differences between the haplotypes were found for in vitro cytokine (i.e., IL-2, IL-7)-induced CIS mRNA expression. STAT5 phosphorylation was induced by IL-2 or IL-7, but no differences were found between the haplotypes. T REG purified from healthy donors with the two most common haplotypes showed similar capacity to inhibit heterologous effector T cells. This study provides no evidence for an association of CISH promoter SNPs with susceptibility to T1D or severity of disease. In contrast to previous studies, no influence of different haplotypes on CIS mRNA expression or T cell-mediated functions was found.

  12. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  13. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  14. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells

    Science.gov (United States)

    Maggio, Savannah; Takeda, Kazuyo; Stark, Felicity; Meierovics, Anda I.; Yabe, Idalia; Cowley, Siobhan C.

    2015-01-01

    The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates. PMID:26379269

  15. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Savannah Maggio

    Full Text Available The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells. Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates.

  16. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  17. Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing

    NARCIS (Netherlands)

    Heijink, I H; Brandenburg, S M; Noordhoek, J A; Postma, D S; Slebos, D-J; van Oosterhout, A J M

    Research on epithelial cell lines and primary epithelium is required to dissect the mechanisms underlying the structural abnormalities in airway epithelium observed for respiratory diseases, including asthma and chronic obstructive pulmonary disease. The novel electric cell-substrate impedance

  18. Islet autoantibodies and residual beta cell function in type 1 diabetes children followed for 3-6 years

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sand; Vaziri-Sani, Fariba; Maziarz, M

    2012-01-01

    To test if islet autoantibodies at diagnosis of type 1 diabetes (T1DM) and after 3-6 years with T1D predict residual beta-cell function (RBF) after 3-6 years with T1D.......To test if islet autoantibodies at diagnosis of type 1 diabetes (T1DM) and after 3-6 years with T1D predict residual beta-cell function (RBF) after 3-6 years with T1D....

  19. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  20. Sexual transmission of human T-cell lymphotropic virus type 1

    Directory of Open Access Journals (Sweden)

    Arthur Paiva

    2014-06-01

    Full Text Available Human T-cell lymphotropic virus type 1 (HTLV-1 is endemic in many parts of the world and is primarily transmitted through sexual intercourse or from mother to child. Sexual transmission occurs more efficiently from men to women than women to men and might be enhanced by sexually transmitted diseases that cause ulcers and result in mucosal ruptures, such as syphilis, herpes simplex type 2 (HSV-2, and chancroid. Other sexually transmitted diseases might result in the recruitment of inflammatory cells and could increase the risk of HTLV-1 acquisition and transmission. Additionally, factors that are associated with higher transmission risks include the presence of antibodies against the viral oncoprotein Tax (anti-Tax, a higher proviral load in peripheral blood lymphocytes, and increased cervicovaginal or seminal secretions. Seminal fluid has been reported to increase HTLV replication and transmission, whereas male circumcision and neutralizing antibodies might have a protective effect. Recently, free virions were discovered in plasma, which reveals a possible new mode of HTLV replication. It is unclear how this discovery might affect the routes of HTLV transmission, particularly sexual transmission, because HTLV transmission rates are significantly higher from men to women than women to men.

  1. Sexual transmission of human T-cell lymphotropic virus type 1.

    Science.gov (United States)

    Paiva, Arthur; Casseb, Jorge

    2014-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is endemic in many parts of the world and is primarily transmitted through sexual intercourse or from mother to child. Sexual transmission occurs more efficiently from men to women than women to men and might be enhanced by sexually transmitted diseases that cause ulcers and result in mucosal ruptures, such as syphilis, herpes simplex type 2 (HSV-2), and chancroid. Other sexually transmitted diseases might result in the recruitment of inflammatory cells and could increase the risk of HTLV-1 acquisition and transmission. Additionally, factors that are associated with higher transmission risks include the presence of antibodies against the viral oncoprotein Tax (anti-Tax), a higher proviral load in peripheral blood lymphocytes, and increased cervicovaginal or seminal secretions. Seminal fluid has been reported to increase HTLV replication and transmission, whereas male circumcision and neutralizing antibodies might have a protective effect. Recently, free virions were discovered in plasma, which reveals a possible new mode of HTLV replication. It is unclear how this discovery might affect the routes of HTLV transmission, particularly sexual transmission, because HTLV transmission rates are significantly higher from men to women than women to men.

  2. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  3. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  4. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  5. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  6. Human renal tubular epithelial cells suppress alloreactive T cell proliferation.

    Science.gov (United States)

    Demmers, M W H J; Korevaar, S S; Roemeling-van Rhijn, M; van den Bosch, T P P; Hoogduijn, M J; Betjes, M G H; Weimar, W; Baan, C C; Rowshani, A T

    2015-03-01

    Renal tubular epithelial cells (TECs) are one of the main targets of alloreactive T cells during acute rejection. We hypothesize that TECs modulate the outcome of alloimmunity by executing immunosuppressive effects in order to dampen the local inflammation. We studied whether TECs possess immunosuppressive capacities and if indoleamine 2,3-dioxygenase (IDO) might play a role in suppressing T cell alloreactivity. Next, we studied the role of programmed death ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1 with regard to TEC-related immunomodulatory effects. CD3/CD28 and alloactivated peripheral blood mononuclear cells were co-cultured with activated TECs. We analysed CD4(+) and CD8(+) T cell proliferation and apoptosis in the absence or presence of IDO inhibitor 1-methyl-L-tryptophan (1-L-MT), anti-PD-L1 and anti-ICAM-1. Further, we examined whether inhibition of T cell proliferation was cell-cell contact-dependent. We found that TECs dose-dependently inhibited CD4(+) and CD8(+) T cell proliferation (Pcell proliferation was only partially restored or failed to restore using 1-L-MT. Activated TECs increased early and late apoptosis of proliferating CD4(+) and CD8(+) T cells; only CD4(+) T cell apoptosis was statistically affected by 1-L-MT. Transwell experiments revealed that TEC-mediated immunosuppression is cell-cell contact-dependent. We found that anti-ICAM-1 affected only CD4(+) T cell apoptosis and not T cell proliferation. Our data show that TECs suppress both CD4(+) and CD8(+) T cell proliferation contact dependently. Interestingly, inhibition of proliferation and enhancement of apoptosis of T cell subsets is differentially regulated by indoleamine 2,3-dioxygenase and ICAM-1, with no evidence for the involvement of PD-L1 in our system. © 2014 British Society for Immunology.

  7. Circulating Endothelial Progenitor Cells in Type 1 Diabetic Patients: Relation with Patients’ Age and Disease Duration

    Directory of Open Access Journals (Sweden)

    Adolfo Arcangeli

    2017-10-01

    Full Text Available ObjectivesCirculating endothelial progenitor cells (cEPCs have been reported to be dysfunctional in diabetes mellitus (DM patients, accounting for the vascular damage and the ensuing high risk for cardiovascular disease (CVD characteristic of this disease. The aim of the present study was to evaluate the number of circulating cEPCs in type 1 DM (T1DM patients, without clinical vascular damage, of different ages and with different disease duration.MethodsAn observational, clinical-based prospective study was performed on T1DM patients enrolled in two clinical centers. cEPCs were determined by flow cytometry, determining the number of CD34/CD133/VEGFR2-positive cells within peripheral blood mononuclear cells (PBMCs.ResultsThe number of cEPCs was lower in adult T1DM patients, whilst higher in childhood/young patients, compared to controls of the same age range. When patients were grouped into two age groups (≥ or <20 years (and categorized on the basis of the duration of the disease, the number of cEPCs in young (<20 years patients was higher compared with older subjects, regardless of disease duration. A subset of patients with very high cEPCs was identified in the <20 years group.ConclusionThere is an association between the number of cEPCs and patients’ age: childhood/young T1DM patients have significantly higher levels of cEPCs, respect to adult T1DM patients. Such difference is maintained also when the disease lasts for more than 10 years. The very high levels of cEPCs, identified in a subset of childhood/young patients, might protect vessels against endothelial dysfunction and damage. Such protection would be less operative in older subjects, endowed with lower cEPC numbers, in which complications are known to develop more easily.

  8. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function

    Directory of Open Access Journals (Sweden)

    Ward Michael

    2009-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1 is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into

  9. Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells

    DEFF Research Database (Denmark)

    Kemp, Kåre; Bruunsgaard, Helle; Skinhøj, Peter

    2002-01-01

    , little is known regarding the T-cell response during in vivo infections in humans. The purpose of this study was to test the hypothesis that activated T cells producing type 1 cytokines were engaged in the host response to pneumococcal infections. The phenotype and function of T cells were studied in 22...

  10. Human lung epithelial cells A549 epithelial-mesenchymal transition induced by PVA/Collagen nanofiber.

    Science.gov (United States)

    Li, Xiuchun; Yan, Shanshan; Dai, Jing; Lu, Yi; Wang, Yiqun; Sun, Man; Gong, Jinkang; Yao, Yuan

    2018-02-01

    Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells lose their cell-cell contact to become mesenchymal stem cells, which is important on development and embryogenesis, wound healing, and cancer metastasis. This research aims to investigate the effect of topological cue as modulating factor on the EMT by tuning the diameter of electrospinning nanofiber. The cell-nanofiber interaction between human lung epithelial cell A549 and electrospinning nanofibers composed of polyvinyl alcohol (PVA) and type I collagen were investigated. The electrospinning of regenerated PVA/Collagen nanofibers were performed with water/acetic acid as a spinning solvent and glutaraldehyde as a chemical cross-linker. Parameterization on concentration, applied voltage and feeding rate was finalized to generate smooth nanofibers with good homogeneity. The scanning electron microscopy result demonstrated that A549 cell appropriately achieved extended morphology by the filopodia attaching to the surface of the nanofibrous mats. When the diameter changed from 90nm to 240nm, the A549 cell was correspondingly express varied EMT related genes. Gene expression analysis was conducted by qPCR using three typical markers for detecting EMT: N-cadherin (NCad), Vimentin (Vim), and Fibronectin (Fib). An increasing expression pattern was observed on cell culturing on 170nm sample with respect to cell cultured on 90nm and 240nm. This result indicated the 170nm PVA/Collagen nanofibers induce A549 cells to process epithelial-mesenchymal transition more seriously than those on 90nm or 240nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2015-01-01

    CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or Cu...

  12. Cholera toxin stimulation of human mammary epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  13. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  14. Extracellular cleavage of E-cadherin promotes epithelial cell extrusion

    NARCIS (Netherlands)

    Grieve, Adam G; Rabouille, Catherine

    2014-01-01

    Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent the accumulation of excess cells. By contrast, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main

  15. CD40 is functionally expressed on human thymic epithelial cells

    NARCIS (Netherlands)

    Galy, A. H.; Spits, H.

    1992-01-01

    CD40 is a prominent B cell Ag also found on certain epithelial cells and on carcinomas. In this report, we analyzed CD40 distribution in the human thymus. CD40 was not found on the majority of CD45-positive thymocytes, but was present in a CD45-negative stromal cell population. Immunohistology

  16. Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells.

    Science.gov (United States)

    Rochford, Kevin; Chen, Feng; Waguespack, Yan; Figliozzi, Robert W; Kharel, Madan K; Zhang, Qiaojuan; Martin-Caraballo, Miguel; Hsia, S Victor

    2016-01-01

    Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.

  17. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Rohatgi, Neha; Magnusdottir, Manuela; Choudhary, Kumari Sonal; Gudjonsson, Thorarinn; Knutsen, Erik; Barkovskaya, Anna; Hilmarsdottir, Bylgja; Perander, Maria; Mælandsmo, Gunhild M; Gudmundsson, Steinn; Rolfsson, Óttar

    2017-06-28

    Epithelial to mesenchymal transition (EMT) has implications in tumor progression and metastasis. Metabolic alterations have been described in cancer development but studies focused on the metabolic re-wiring that takes place during EMT are still limited. We performed metabolomics profiling of a breast epithelial cell line and its EMT derived mesenchymal phenotype to create genome-scale metabolic models descriptive of both cell lines. Glycolysis and OXPHOS were higher in the epithelial phenotype while amino acid anaplerosis and fatty acid oxidation fueled the mesenchymal phenotype. Through comparative bioinformatics analysis, PPAR-γ1, PPAR- γ2 and AP-1 were found to be the most influential transcription factors associated with metabolic re-wiring. In silico gene essentiality analysis predicts that the LAT1 neutral amino acid transporter is essential for mesenchymal cell survival. Our results define metabolic traits that distinguish an EMT derived mesenchymal cell line from its epithelial progenitor and may have implications in cancer progression and metastasis. Furthermore, the tools presented here can aid in identifying critical metabolic nodes that may serve as therapeutic targets aiming to prevent EMT and inhibit metastatic dissemination. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  19. Melatonin modulates microfilament phenotypes in epithelial cells, implications for adhesion and inhibition of cancer cell migration

    OpenAIRE

    Benítez-King, Gloria; Soto-Vega, Elena; Ramírez-Rodriguez, Gerardo

    2009-01-01

    Cell migration and adhesion are cytoskeleton- dependent functions that play a key role in epithelial physiology. Specialized epithelial cells in water transport have specific microfilament rearrangements that make these cells adopt a polyhedral shape, forming a sealed monolayer which functions as permeability barrier. Also, specific polarized microfilament phenotypes are formed at the front and the rear of migratory epithelial cells. In pathological processes such a...

  20. Aberrant methylation inactivates somatostatin and somatostatin receptor type 1 in head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Misawa

    Full Text Available The aim of this study was to define somatostatin (SST and somatostatin receptor type 1 (SSTR1 methylation profiles for head and neck squamous cell carcinoma (HNSCC tumors at diagnosis and follow up and to evaluate their prognostic significance and value as a biomarker.Gene expression was measured by quantitative RT-PCR. Promoter methylation status was determined by quantitative methylation-specific PCR (Q-MSP in HNSCC.Methylation was associated with transcription inhibition. SST methylation in 81% of HNSCC tumor specimens significantly correlated with tumor size (P = 0.043, stage (P = 0.008, galanin receptor type 2 (GALR2 methylation (P = 0.041, and tachykinin-1 (TAC1 (P = 0.040. SSTR1 hypermethylation in 64% of cases was correlated with tumor size (P = 0.037, stage (P = 0.037, SST methylation (P < 0.001, and expression of galanin (P = 0.03, GALR2 (P = 0.014, TAC1 (P = 0.023, and tachykinin receptor type 1 (TACR1 (P = 0.003. SST and SSTR1 promoter hypermethylation showed highly discriminating receiver operator characteristic curve profiles, which clearly distinguished HNSCC from adjacent normal mucosal tissues. Concurrent hypermethylation of galanin and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.0001. Among patients with oral cavity and oropharynx cancer, methylation of both SST and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.028. In multivariate logistic-regression analysis, concomitant methylation of galanin and SSTR1 was associated with an odds ratio for recurrence of 12.53 (95% CI, 2.62 to 59.8; P = 0.002.CpG hypermethylation is a likely mechanism of SST and SSTR1 gene inactivation, supporting the hypothesis that SST and SSTR1 play a role in the tumorigenesis of HNSCC and that this hypermethylation may serve as an important biomarker.

  1. Infection of differentiated airway epithelial cells from caprine lungs by viruses of the bovine respiratory disease complex.

    Science.gov (United States)

    Kirchhoff, Jana; Uhlenbruck, Sabine; Keil, Günther M; Schwegmann-Wessels, Christel; Ganter, Martin; Herrler, Georg

    2014-05-14

    Bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus type 3 (BPIV3) and bovine herpesvirus type 1 (BHV-1) are important pathogens associated with the bovine respiratory disease complex (BRDC). Non-bovine ruminants such as goats may also be infected and serve as a virus reservoir to be considered in the development of control strategies. To evaluate the susceptibility of caprine airway epithelial cells to infection by viruses of BRDC, we established a culture system for differentiated caprine epithelial cells. For this purpose, we generated precision-cut lung slices (PCLS), in which cells are retained in their original structural configuration and remain viable for more than a week. The three bovine viruses were found to preferentially infect different cell types. Ciliated epithelial cells were the major target cells of BPIV3, whereas BHV-1 preferred basal cells. Cells infected by BRSV were detected in submucosal cell layers. This spectrum of susceptible cells is the same as that reported recently for infected bovine PCLS. While infection of caprine cells by BRSV and BPIV3 was as efficient as that reported for bovine cells, infection of caprine cells by BHV-1 required a tenfold higher dose of infectious virus as compared to infection of bovine airway cells. These results support the notion that non-bovine ruminants may serve as a reservoir for viruses of BRDC and introduce a culture system to analyze virus infection of differentiated airway epithelial cells from the caprine lung. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Adam L. Burrack

    2017-12-01

    Full Text Available Type 1 diabetes (T1D results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.

  3. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  4. Fungal glycan interactions with epithelial cells in allergic airway disease.

    Science.gov (United States)

    Roy, René M; Klein, Bruce S

    2013-08-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    Diffusion gradients of morphogens have been inferred as a basis for the control of morphogenesis in hydra, and morphogenetic substances have been found which, on the basis of their molecular weight (MW), should be able to pass gap junctions. There have been several reports of the presence of gap...... junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  6. Urea selectively induces DNA synthesis in renal epithelial cells.

    Science.gov (United States)

    Cohen, D M; Gullans, S R

    1993-04-01

    Hyperosmotic stress with the functionally impermeant solute NaCl has been shown by us and others to inhibit cell growth and DNA synthesis. Several lines of evidence suggest that urea, the other principal renal medullary solute, may exert a growth-promoting effect on renal epithelial cells. Among these is the finding that urea upregulates expression at the mRNA level of two growth-associated immediate-early genes, Egr-1 and c-fos. In the present study, urea, in concentrations characteristic of the renal medulla, increased [3H]thymidine incorporation approximately threefold in confluent, growth-suppressed Madin-Darby canine kidney (MDCK) cells, whereas another readily membrane-permeant solute, glycerol, did not. Urea also overcame the inhibitory effect of hyperosmotic NaCl on DNA synthesis. The urea-induced increase in [3H]thymidine incorporation was also evident in the renal epithelial LLC-PK1 cell line, but not in renal nonepithelial and epithelial nonrenal cell types examined. In addition, it was associated with a 15% increase in total DNA content measured fluorometrically at 24 h of treatment. There was, however, no associated increase in cell proliferation as measured by cell number, total protein content, or cell cycle distribution. Urea also failed to induce polyploidy or aneuploidy. Therefore cells of renal epithelial origin may be uniquely capable of responding to hyperosmotic urea with increased DNA synthesis through an undefined and potentially novel mechanism.

  7. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  8. Imaging of insulitis and beta cell mass in type 1 diabetes mellitus

    NARCIS (Netherlands)

    Di Gialleonardo, Valentina

    2012-01-01

    Nieuwe tracervloeistof verbetert onderzoek en behandeling diabetes type 1 Met behulp van Positron Emissie Tomografie (PET) kan onderzoek en behandeling van diabetes mogelijk aanzienlijk verbeterd worden. Dat blijkt uit het promotieonderzoek van Valentina Di Gialleonardo. Ontsteking in de

  9. Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells

    DEFF Research Database (Denmark)

    Kemp, Kåre; Bruunsgaard, Helle; Skinhøj, Peter

    2002-01-01

    , little is known regarding the T-cell response during in vivo infections in humans. The purpose of this study was to test the hypothesis that activated T cells producing type 1 cytokines were engaged in the host response to pneumococcal infections. The phenotype and function of T cells were studied in 22...... tissues and/or apoptosis. In fact, increased activation-induced apoptosis in the remaining peripheral lymphocytes and elevated levels of soluble Fas ligand were detected at admission to the hospital. In conclusion, these data suggest that activated T lymphocytes with a type 1 cytokine profile are highly...

  10. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  11. Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes.

    Science.gov (United States)

    van der Torren, Cornelis R; Verrijn Stuart, Annemarie A; Lee, DaHae; Meerding, Jenny; van de Velde, Ursule; Pipeleers, Daniel; Gillard, Pieter; Keymeulen, Bart; de Jager, Wilco; Roep, Bart O

    2016-01-01

    Islet cell transplantation holds a potential cure for type 1 diabetes, but many islet recipients do not reach long-lasting insulin independence. In this exploratory study, we investigated whether serum cytokines, chemokines and adipokines are associated with the clinical outcome of islet transplantation. Thirteen islet transplant patients were selected on basis of good graft function (reaching insulin independence) or insufficient engraftment (insulin requiring) from our cohort receiving standardized grafts and immune suppressive therapy. Patients reaching insulin independence were divided in those with continued (>12 months) versus transient (cytokines and adipokines was measured in sera taken before and at one year after transplantation using a validated multiplex immunoassay platform. Ninety serum proteins were detectable in concentrations varying markedly among patients at either time point. Thirteen markers changed after transplantation, while another seven markers changed in a clinical subpopulation. All other markers remained unaffected after transplantation under generalized immunosuppression. Patterns of cytokines could distinguish good graft function from insufficient function including IFN-α, LIF, SCF and IL-1RII before and after transplantation, by IL-16, CCL3, BDNF and M-CSF only before and by IL-22, IL-33, KIM-1, S100A12 and sCD14 after transplantation. Three other proteins (Leptin, Cathepsin L and S100A12) associated with loss of temporary graft function before or after transplantation. Distinct cytokine signatures could be identified in serum that predict or associate with clinical outcome. These serum markers may help guiding patient selection and choice of immunotherapy, or act as novel drug targets in islet transplantation.

  12. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    Unknown

    < 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a.

  13. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  14. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    Science.gov (United States)

    2012-04-01

    cells. Proc Nat Acad Sci USA 108:3264-69. 2011 Chin, K, Ortiz de Solorzano , C, Knowles, D, Jones, A, Chou, W, Rodriguez, E, Kuo, W-L, Ljung, B-M...Transformation of human mammary epithelial cells by oncogenic retro- viruses. Cancer Res 1988;48:4689–94. 13. Chin K, de Solorzano CO, Knowles D, et al

  15. A murine and a porcine coronavirus are released from opposite surfaces of the same epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Strous, G J; Horzinek, M C; Dveksler, G S; Holmes, K V; Rottier, P J

    1996-01-01

    Epithelial cells are important target cells for coronavirus infection. Earlier we have shown that transmissible gastroenteritis coronavirus (TGEV) and mouse hepatitis coronavirus (MHV) are released from different sides of porcine and murine epithelial cells, respectively. To study the release of

  16. Ghrelin inhibits ovarian epithelial carcinoma cell proliferation in vitro.

    Science.gov (United States)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-11-01

    The only orexigenic peptide, ghrelin, which is primarily produced by the gastrointestinal tract, has been implicated in malignant cell proliferation and invasion. Ghrelin is a natural ligand of the growth hormone secretagogue receptor 1a (GHSR1a). However, the role of ghrelin in ovarian epithelial carcinoma remains unknown since the expression of GHSR1a in ovary is not confirmed. The aim of the present study was to assess expression of ghrelin and its receptor in human ovarian epithelial carcinoma and to examine the effect of ghrelin on carcinoma cell proliferation. Frozen sections of ovarian samples and the human ovarian epithelial carcinoma cell line, HO-8910, were used to characterize the expression of ghrelin/GHSR1a axis and the effect of ghrelin on proliferation. We found that ghrelin and GHSR1a are expressed in ovarian epithelial carcinoma in vivo and in vitro. Ghrelin inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, and this inhibition may be abolished by the ghrelin receptor antagonist D-Lys-3-GH-releasing peptide-6 and ghrelin neutralizing antibody. Ghrelin enhances HO-8910 cell apoptosis and autophagy. The activation of mammalian target of rapamycin (mTOR) signaling pathway blocks the effects of ghrelin-induced autophagy and apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation induced by ghrelin. In conclusion, the present study demonstrates that ghrelin inhibits the proliferation of human HO-8910 ovarian epithelial carcinoma cells by inducing apoptosis and autophagy via the mTOR signaling pathway. This study provides a novel regulatory signaling pathway of ghrelin-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy.

  17. Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells.

    Science.gov (United States)

    Laval, Kathlyn; Favoreel, Herman W; Poelaert, Katrien C K; Van Cleemput, Jolien; Nauwynck, Hans J

    2015-11-01

    Equine herpesvirus type 1 (EHV-1) is a main cause of respiratory disease, abortion, and encephalomyelopathy in horses. Monocytic cells (CD172a(+)) are the main carrier cells of EHV-1 during primary infection and are proposed to serve as a "Trojan horse" to facilitate the dissemination of EHV-1 to target organs. However, the mechanism by which EHV-1 is transferred from CD172a(+) cells to endothelial cells (EC) remains unclear. The aim of this study was to investigate EHV-1 transmission between these two cell types. We hypothesized that EHV-1 employs specific strategies to promote the adhesion of infected CD172a(+) cells to EC to facilitate EHV-1 spread. Here, we demonstrated that EHV-1 infection of CD172a(+) cells resulted in a 3- to 5-fold increase in adhesion to EC. Antibody blocking experiments indicated that α4β1, αLβ2, and αVβ3 integrins mediated adhesion of infected CD172a(+) cells to EC. We showed that integrin-mediated phosphatidylinositol 3-kinase (PI3K) and ERK/MAPK signaling pathways were involved in EHV-1-induced CD172a(+) cell adhesion at early times of infection. EHV-1 replication was enhanced in adherent CD172a(+) cells, which correlates with the production of tumor necrosis factor alpha (TNF-α). In the presence of neutralizing antibodies, approximately 20% of infected CD172a(+) cells transferred cytoplasmic material to uninfected EC and 0.01% of infected CD172a(+) cells transmitted infectious virus to neighboring cells. Our results demonstrated that EHV-1 infection induces adhesion of CD172a(+) cells to EC, which enhances viral replication, but that transfer of viral material from CD172a(+) cells to EC is a very specific and rare event. These findings give new insights into the complex pathogenesis of EHV-1. Equine herpesvirus type 1 (EHV-1) is a highly prevalent pathogen worldwide, causing frequent outbreaks of abortion and myeloencephalopathy, even in vaccinated horses. After primary replication in the respiratory tract, EHV-1 disseminates

  18. Serum-Free Cryopreservation of Human Amniotic Epithelial Cells

    OpenAIRE

    H. Niknejad; H. Peirovi; B. Jambar Noushin

    2013-01-01

    Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amni-otic fluid (AF), which is full of growth factors, as substitute for fetal bovine serum (FBS) in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells were isolated from placentas which were seronegative for microbial infections. The cells were preserved ...

  19. Cystatin A suppresses tumor cell growth through inhibiting epithelial to mesenchymal transition in human lung cancer.

    Science.gov (United States)

    Ma, Yunxia; Chen, Yuan; Li, Yong; Grün, Katja; Berndt, Alexander; Zhou, Zhongwei; Petersen, Iver

    2018-03-06

    Cystatin A ( CSTA ), belonging to type 1 cystatin super-family, is expressed primarily in epithelial and lymphoid tissues for protecting cells from proteolysis of cytoplasmic and cytoskeletal proteins by cathepsins B, H and L. CSTA acts as a tumor suppressor in esophageal cancer, however, its role in lung cancer has not yet been elucidated. Here we found that CSTA was down-regulated in all lung cancer cell lines compared to normal lung epithelial cells. CSTA was restored in most lung cancer cell lines after treatment with demethylation agent 5-aza-2-deoxycytidine and deacetylation agent Trichostatin. Bisulfite sequencing revealed that CSTA was partially methylated in the promoter and exon 1. In primary lung tumors, squamous cell carcinoma (SCC) significantly expressed more CSTA compared to adenocarcinoma (pgrade (ptransition (MET) and prevented the TGF-β1-induced epithelial to mesenchymal transition (EMT) through inhibiting the ERK/MAPK pathway. In conclusion, our date indicate 1) epigenetic regulation is associated with CSTA gene silencing; 2) CSTA exerts tumor suppressive function through inhibiting MAPK and AKT pathways; 3) Overexpression of CSTA leads to MET and prevents TGF-β1-induced EMT by modulating the MAPK pathway; 4) CSTA may be a potential biomarker for lung SCC and tumor differentiation.

  20. Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic β cells.

    Science.gov (United States)

    Manzar, Gohar S; Kim, Eun-Mi; Zavazava, Nicholas

    2017-08-25

    Type 1 diabetes (T1D) can be managed by transplanting either the whole pancreas or isolated pancreatic islets. However, cadaveric pancreas is scarcely available for clinical use, limiting this approach. As such, there is a great need to identify alternative sources of clinically usable pancreatic tissues. Here, we used induced pluripotent stem (iPS) cells derived from patients with T1D to generate glucose-responsive, insulin-producing cells (IPCs) via 3D culture. Initially, T1D iPS cells were resistant to differentiation, but transient demethylation treatment significantly enhanced IPC yield. The cells responded to high-glucose stimulation by secreting insulin in vitro The shape, size, and number of their granules, as observed by transmission electron microscopy, were identical to those found in cadaveric β cells. When the IPCs were transplanted into immunodeficient mice that had developed streptozotocin-induced diabetes, they promoted a dramatic decrease in hyperglycemia, causing the mice to become normoglycemic within 28 days. None of the mice died or developed teratomas. Because the cells are derived from "self," immunosuppression is not required, providing a much safer and reliable treatment option for T1D patients. Moreover, these cells can be used for drug screening, thereby accelerating drug discovery. In conclusion, our approach eliminates the need for cadaveric pancreatic tissue.

  1. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    Science.gov (United States)

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  2. Endothelial progenitor cells in long-standing asymptomatic type 1 diabetic patients with or without diabetic nephropathy

    DEFF Research Database (Denmark)

    Reinhard, Henrik; Jacobsen, Peter Karl; Lajer, Maria

    2011-01-01

    with or without DN and to study the effect of CVD and medication on EPC numbers. Methods: We examined EPC numbers in 37 type 1 diabetic patients with DN and 35 type 1 diabetic patients with long-standing normoalbuminuria. Patients were without symptoms of CVD and the prevalence of CVD was previously shown......A decrease in the number and dysfunction of endothelial progenitor cells (EPC) may increase the risk for progression of cardiovascular disease (CVD) in type 1 diabetic patients with diabetic nephropathy (DN). Our aim was to evaluate EPC numbers in asymptomatic CVD type 1 diabetic patients...... with CVD (p > 0.05). Conventional risk factors were significantly higher in patients with DN and they received more CVD-preventive treatment. All patients receiving simvastatin or calcium-channel blockers had higher numbers of EPC compared to patients not treated with these drugs. Conclusions: Asymptomatic...

  3. Intestinal Epithelial Cells Synthesize Glucocorticoids and Regulate T Cell Activation

    Science.gov (United States)

    Cima, Igor; Corazza, Nadia; Dick, Bernhard; Fuhrer, Andrea; Herren, Simon; Jakob, Sabine; Ayuni, Erick; Mueller, Christoph; Brunner, Thomas

    2004-01-01

    Glucocorticoids (GCs) are important steroid hormones with widespread activities in metabolism, development, and immune regulation. The adrenal glands are the major source of GCs and release these hormones in response to psychological and immunological stress. However, there is increasing evidence that GCs may also be synthesized by nonadrenal tissues. Here, we report that the intestinal mucosa expresses steroidogenic enzymes and releases the GC corticosterone in response to T cell activation. T cell activation causes an increase in the intestinal expression of the steroidogenic enzymes required for GC synthesis. In situ hybridization analysis revealed that these enzymes are confined to the crypt region of the intestinal epithelial layer. Surprisingly, in situ–produced GCs exhibit both an inhibitory and a costimulatory role on intestinal T cell activation. In the absence of intestinal GCs in vivo, activation by anti-CD3 injection resulted in reduced CD69 expression and interferon-γ production by intestinal T cells, whereas activation by viral infection led to increased T cell activation. We conclude that the intestinal mucosa is a potent source of immunoregulatory GCs. PMID:15596520

  4. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells

    NARCIS (Netherlands)

    Kistemaker, Loes E. M.; Hiemstra, Pieter S.; Bos, I. Sophie T.; Bouwman, Susanne; van den Berge, Maarten; Hylkema, Machteld N.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    BACKGROUND: It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct

  5. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  6. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  7. Apical trafficking in epithelial cells: signals, clusters and motors.

    Science.gov (United States)

    Weisz, Ora A; Rodriguez-Boulan, Enrique

    2009-12-01

    In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.

  8. Nicotine transport in lung and non-lung epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oral epithelial cell reaction after exposure to Invisalign plastic material.

    Science.gov (United States)

    Premaraj, Thyagaseely; Simet, Samantha; Beatty, Mark; Premaraj, Sundaralingam

    2014-01-01

    Invisalign plastic aligners (Align Technology, Santa Clara, Calif) are used to correct malocclusions. The aligners wrap around the teeth and are in contact with gingival epithelium during treatment. The purpose of this study was to evaluate the cellular responses of oral epithelium exposed to Invisalign plastic in vitro. Oral epithelial cells were exposed to eluate obtained by soaking Invisalign plastic in either saline solution or artificial saliva for 2, 4, and 8 weeks. Cells grown in media containing saline solution or saliva served as controls. Morphologic changes were assessed by light microscopy. The 3-[4, 5-dimethythiazol- 2-yl]-2, 5-diphenyl tetrazolium bromide assay and flow cytometry were used to determine cell viability and membrane integrity, respectively. Cellular adhesion and micromotion of epithelial cells were measured in real time by electrical cell-substrate impedance sensing. Cells exposed to saline-solution eluate appeared rounded, were lifted from the culture plates, and demonstrated significantly increased metabolic inactivity or cell death (P <0.05). Saliva eluates did not induce significant changes in cell viability compared with untreated cells. Flow cytometry and electric cell-substrate impedance sensing showed that cells treated with saline-solution eluate exhibited compromised membrane integrity, and reduced cell-to-cell contact and mobility when compared with saliva-eluate treatment. Exposure to Invisalign plastic caused changes in viability, membrane permeability, and adhesion of epithelial cells in a saline-solution environment. Microleakage and hapten formation secondary to compromised epithelial integrity might lead to isocyanate allergy, which could be systemic or localized to gingiva. However, these results suggest that saliva might offer protection. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  11. Prevotella intermedia ATCC 25611 targets host cell lamellipodia in epithelial cell adhesion and invasion.

    Science.gov (United States)

    Gursoy, U K; Könönen, E; Uitto, V-J

    2009-08-01

    The Prevotella intermedia group bacteria, namely P. intermedia, Prevotella nigrescens, and Prevotella pallens, are phylogenetically closely related and potentially connected with oral and gastrointestinal tract disease pathogenesis. The aim of the present study was to examine whether these species differ in their capabilities of adhesion to and invasion of epithelial cells. Adhesion and invasion were assayed by standard antibiotic/culture assays and fluorescent microscopy techniques. The effect of Prevotella strains on epithelial cell viability was measured using a commercial cell proliferation assay. The strains P. intermedia ATCC 25611 and P. nigrescens ATCC 33263 adhered to epithelial cells, the adhesion numbers of P. intermedia being twice as high as those of P. nigrescens. These strains invaded epithelial cells but invasion was weak. The adhesion of P. intermedia was specifically targeted to epithelial cell lamellipodia. The number of adhered P. intermedia cells increased or decreased when the formation of lamellipodia was stimulated or inhibited, respectively. None of the tested strains showed toxic effects on epithelial cells; a clinical P. intermedia strain even increased the number of viable cells by about 20%. The results suggest that among the P. intermedia group bacteria, P. intermedia and P. nigrescens type strains can adhere to and invade epithelial cells, the capability of P. intermedia ATCC 25611(T) being highest in this context. This strain proved to have a special affinity in binding to epithelial cell lamellipodia.

  12. Prevalência do herpes-vírus humano tipo 1 em neoplasias cutâneas epiteliais malignas Prevalence of human herpes virus type 1 in epithelial skin cancer

    Directory of Open Access Journals (Sweden)

    Sylvia Ypiranga

    2009-04-01

    Full Text Available FUNDAMENTOS - O DNA viral pode atuar como oncogene, favorecendo o desenvolvimento de neoplasias, como as linfoides e da pele. Entre esses vírus, encontram-se alguns herpes-vírus humanos. OBJETIVO - Identificar a presença de DNA do herpes-vírus humano tipo 1 em neoplasias epiteliais pré-malignas,malignas e pele normal de indivíduos controle, avaliando seu papel na carcinogênese. MÉTODOS - Identificação, por reação em cadeia da polimerase, do DNA viral do tumor e pele sã de 41 pacientes e comparação com grupo controle, sem neoplasia. Análise estatística: Testes de Fisher e de McNemar. RESULTADOS - O vírus foi identificado em 20 indivíduos sem e em 21 com neoplasia. Destes últimos, 11 o expessaram apenas nas células tumorais. A diferença, entretanto, não foi estatisticamente significante. CONCLUSÕES - Parece não haver relação direta entre o encontro do DNA viral na pele sã e na pele tumoral. Sua presença pode facilitar o desenvolvimento da neoplasia ou apenas coincidir de se localizar onde esta já ocorreu.BACKGROUND - Viral DNA may act as an oncogene, especially in skin and lymphoid organs. This group includes some human herpes virus. OBJECTIVE - To identify human herpes virus type 1 DNA in pre-malignant and malignant skin samples of epithelial tumors comparing to normal skin to determine its role in carcinogenesis. METHODS - Forty-one patients with epithelial tumors were submitted to biopsies from tumor and normal skin. The control group comprised 41 biopsies from patients with other dermatoses than cancer. After DNA extraction, polymerase chain reaction was performed to identify 199-bp band. The results were statistically evaluated by Fisher and McNemar tests. RESULTS - The virus was identified in 20 subjects without cancer and in 21 with skin cancer. From these, 11 expressed it only in tumor cells. This difference was not significant. CONCLUSION - There seem to be no direct relation between viral findings in normal

  13. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-05-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices. Failure of most biomaterials originates from the inability to predict and control the influence of their surface properties on biological phenomena, particularly protein adsorption, and cellular behaviour, which subsequently results in unfavourable host response. Here, we introduce a surface-proteomic screening approach using a label-free mass spectrometry technique to decipher the adsorption profile of extracellular matrix (ECM) proteins on different biomaterials, and correlate it with cellular behaviour. We demonstrated that the way a biomaterial selectively interacts with specific ECM proteins of a given tissue seems to determine the interactions between the cells of that tissue and biomaterials. Accordingly, this approach can

  14. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    block alloactivation, had no inhibitory effect on RPE-mediated T-cell apoptotic responses in MHC class II-specific CD4+ T-cell lines. CONCLUSIONS: Retinal pigment epithelial cells express FasL and induce TCR-independent apoptosis in activated human T cells through Fas-FasL interaction. Retinal pigment...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  15. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages.

    Science.gov (United States)

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G; Puri, Raj K; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-11-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2-deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes.

  16. Airway epithelial cell response to human metapneumovirus infection

    International Nuclear Information System (INIS)

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators

  17. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  18. Cytotoxic effects of air freshener biocides in lung epithelial cells.

    Science.gov (United States)

    Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.

  19. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients

    OpenAIRE

    Dotta, Francesco; Censini, Stefano; van Halteren, Astrid G. S.; Marselli, Lorella; Masini, Matilde; Dionisi, Sabrina; Mosca, Franco; Boggi, Ugo; Muda, Andrea Onetti; Prato, Stefano Del; Elliott, John F.; Covacci, Antonello; Rappuoli, Rino; Roep, Bart O.; Marchetti, Piero

    2007-01-01

    Type 1 diabetes is characterized by T cell-mediated autoimmune destruction of pancreatic β cells. Several studies have suggested an association between Coxsackie enterovirus seroconversion and onset of disease. However, a direct link between β cell viral infection and islet inflammation has not been established. We analyzed pancreatic tissue from six type 1 diabetic and 26 control organ donors. Immunohistochemical, electron microscopy, whole-genome ex vivo nucleotide sequencing, cell culture,...

  1. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  2. Alpha-type-1 polarized dendritic cells: A novel immunization tool with optimized CTL-inducing activity

    NARCIS (Netherlands)

    Mailliard, Robbie B.; Wankowicz-Kalinska, Anna; Cai, Quan; Wesa, Amy; Hilkens, Catharien M.; Kapsenberg, Martien L.; Kirkwood, John M.; Storkus, Walter J.; Kalinski, Pawel

    2004-01-01

    Using the principle of functional polarization of dendritic cells (DCs), we have developed a novel protocol to generate human DCs combining the three features critical for the induction of type-1 immunity: (a) fully mature status; (b) responsiveness to secondary lymphoid organ chemokines; and (c)

  3. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial

    DEFF Research Database (Denmark)

    Bingley, P J; Gale, E A M; Reimers, Jesper Irving

    2006-01-01

    AIMS/HYPOTHESIS: To examine the role of additional immune, genetic and metabolic risk markers in determining risk of diabetes in islet cell antibody (ICA)-positive individuals with a family history of type 1 diabetes recruited into the European Nicotinamide Diabetes Intervention Trial. METHODS...

  4. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging

    NARCIS (Netherlands)

    Ouyang, Mingxing; Lu, Shaoying; Li, Xiao-Yan; Xu, Jing; Seong, Jihye; Giepmans, Ben N. G.; Shyy, John Y. -J.; Weiss, Stephen J.; Wang, Yingxiao

    2008-01-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a critical role in cancer cell biology by proteolytically remodeling the extracellular matrix. Utilizing fluorescence resonance energy transfer ( FRET) imaging, we have developed a novel biosensor, with its sensing element anchoring at the

  5. The role of monocytes and monocyte-derived dendritic cells in type 1 diabetes mellitus and autoimmune thyroid disease

    NARCIS (Netherlands)

    W.K. Lam-Tse

    2003-01-01

    textabstractType 1 diabetes mellitus (DM1) and autoimmune thyroid disease (AITD) are organ specific autoimmune diseases in which the immune system is directed against the ß cells and the thyrocytes respectively. The etio-pathogenesis of organ-specific or endocrine autoimmune diseases is complex,

  6. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    Science.gov (United States)

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  7. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  8. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  9. Metabolic cooperativity between epithelial cells and adipocytes of mice

    International Nuclear Information System (INIS)

    Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

    1981-01-01

    We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from [ 14 C]glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations

  10. Preliminary findings on vaginal epithelial cells and body ...

    African Journals Online (AJOL)

    Dr Gatsing

    http://indexmedicus.afro.who.int. Preliminary findings on vaginal epithelial cells and body temperature changes during oestrous cycle in Bororo zebu cow. J. P. Kilekoung MINGOAS 1* and L. Lalaud NGAYAM 2. 1 School of Medicine and Veterinary Sciences, University of Ngaoundere, P.O. Box 454 Ngaoundere,. Cameroon ...

  11. Identification of Candidate Tolerogenic CD8+ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model

    Directory of Open Access Journals (Sweden)

    Cailin Yu

    2016-01-01

    Full Text Available Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet β cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8+ T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8+ T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158–166 and 282–290 and one in a non-β cell protein, dopamine β-hydroxylase (aa 233–241. Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DβH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DβH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.

  12. Nasal epithelial cells can act as a physiological surrogate for paediatric asthma studies.

    Directory of Open Access Journals (Sweden)

    Surendran Thavagnanam

    Full Text Available INTRODUCTION: Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures. METHODS: Paired nasal and bronchial epithelial cells from asthmatic children (n = 9 were differentiated for 28 days under unstimulated and IL-13-stimulated conditions. Morphological and physiological markers were analysed using immunocytochemistry, transepithelial-electrical-resistance, Quantitative Real-time-PCR, ELISA and multiplex cytokine/chemokine analysis. RESULTS: Physiologically, nasal epithelial cells from asthmatic children exhibit similar cytokine responses to stimulation with IL-13 compared with paired bronchial epithelial cells. Morphologically however, nasal epithelial cells differed significantly from bronchial epithelial cells from asthmatic patients under unstimulated and IL-13-stimulated conditions. Nasal epithelial cells exhibited lower proliferation/differentiation rates and lower percentages of goblet and ciliated cells when unstimulated, while exhibiting a diminished and varied response to IL-13. CONCLUSIONS: We conclude that morphologically, nasal epithelial cells would not be a suitable surrogate due to a significantly lower rate of proliferation and differentiation of goblet and ciliated cells. Physiologically, nasal epithelial cells respond similarly to exogenous stimulation with IL-13 in cytokine production and could be used as a physiological surrogate in the event that bronchial epithelial cells are not available.

  13. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  14. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  15. Kinetic analysis of human T-cell leukemia virus type 1 gene expression in cell culture and infected animals.

    Science.gov (United States)

    Li, Min; Kesic, Matthew; Yin, Han; Yu, Lianbo; Green, Patrick L

    2009-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) infection causes adult T-cell leukemia and is associated with a variety of lymphocyte-mediated disorders. It has been hypothesized that a highly regulated pattern of HTLV-1 gene expression is critical for virus survival and disease pathogenesis. In this study, real-time reverse transcriptase PCR was used to determine the kinetics of viral gene expression in cells transiently transfected with an HTLV-1 proviral plasmid, in newly infected human peripheral blood mononuclear cells (PBMCs), and in PBMCs from newly infected rabbits. The HTLV-1 gene expression profiles in transiently transfected and infected cells were similar; over time, all transcripts increased and then maintained stable levels. gag/pol, tax/rex, and env mRNA were detected first and at the highest levels, whereas the expression levels of the accessory genes, including the antisense Hbz, were significantly lower than the tax/rex levels (ranging from 1 to 4 logs depending on the specific mRNA). In infected rabbits, tax/rex and gag/pol mRNA levels peaked early after inoculation and progressively decreased, which correlated inversely with the proviral load and host antibody response against viral proteins. Interestingly, Hbz mRNA was detectable at 1 week postinfection and increased and stabilized. The expression levels of all other HTLV-1 genes in infected rabbit PBMCs were at or below our limit of detection. This analysis provides insight into viral gene expression under various in vitro and in vivo experimental conditions. Our in vivo data indicate that in infected rabbits, Hbz mRNA expression over time directly correlates with the proviral load, which provides the first evidence linking Hbz expression to proviral load and the survival of the virus-infected cell in the host.

  16. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  17. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-01-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  18. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  19. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    Science.gov (United States)

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  20. Regulation of programmed cell death by plasminogen activator inhibitor type 1 (PAI-1)

    DEFF Research Database (Denmark)

    Lademann, Ulrik Axel; Rømer, Maria Unni Koefoed

    2008-01-01

    numbers of reports suggest that PAI-1 also can regulate programmed cell death (PCD) in cancer cells and normal cells. A number of reports suggest that PAI-1 can inhibit PCD through its pro-adhesive/anti-proteolytic property whereas other reports suggest that PAI-1 induces PCD through its anti......-adhesive property.Furthermore,it has been suggested that PAI-1 can either induce or inhibit PCD though activation of cell signalling pathways.This review will focus on the regulation of programmed cell death by PAI-1 in both normal cells and cancer cells.......PA) observed in tumours; however, several lines of evidence suggest that PAI-1 may contribute directly to the pathology of the disease. PAI-1 has been reported to have an effect on most of the basic cellular processes including cell adhesion, cell migration, cell invasion, and cell proliferation and increasing...

  1. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K channel research with respect to the physiology of secretion...

  2. Smad2 overexpression enhances adhesion of gingival epithelial cells.

    Science.gov (United States)

    Hongo, Shoichi; Yamamoto, Tadashi; Yamashiro, Keisuke; Shimoe, Masayuki; Tomikawa, Kazuya; Ugawa, Yuki; Kochi, Shinsuke; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2016-11-01

    Gingival epithelial cells play an important role in preventing the initiation of periodontitis, by their hemidesmosomal adhesion to the tooth root surface. Adhesion requires integrin-extracellular matrix (ECM) interactions that are intricately regulated by transforming growth factor-β (TGF-β) signaling. However, the mechanisms underlying the interplay between adhesion molecules and TGF-β, especially the respective roles of Smad2 and Smad3, remain elusive. In this study, we examined the effects of Smad overexpression on gingival epithelial cell adhesion and expression profiles of integrin and ECM-related genes. Human gingival epithelial cells immortalized by the SV40 T-antigen were transfected with Smad2- and Smad3-overexpression vectors. A cell adhesion assay involving fluorescence detection of attached cells was performed using the ArrayScan imaging system. Real-time PCR was performed to examine the kinetics of integrin and ECM gene expression. In vitro and in vivo localization of adhesion molecules was examined by immunofluorescence analysis. By using SB431542, a specific inhibitor of the TGF-β type I receptor, Smad2/3 signaling was confirmed to be dominant in TGF-β1-induced cell adhesion. The Smad2-transfectant demonstrated higher potency for cell adhesion and integrin expression (α2, α5, β4, and β6) than the Smad3-transfectant, whereas little or no change in ECM expression was observed in either transfectant. Moreover, the gingival epithelium of transgenic mice that overexpressed Smad2 driven by the keratin 14 promoter showed increased integrin α2 expression. These findings indicate the crucial role of Smad2 in increased adhesion of gingival epithelial cells via upregulation of integrin α2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    Science.gov (United States)

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2017-11-15

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.Mucosal Immunology advance online publication, 15 November 2017; doi:10.1038/mi.2017.91.

  4. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  5. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  6. Invasion of Human Oral Epithelial Cells by Prevotella intermedia

    Science.gov (United States)

    Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann

    1998-01-01

    Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397

  7. Characterization of virus-primed CD8+ T cells with a type 1 cytokine profile

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Stenvang, J P; Marker, O

    1996-01-01

    Infection with lymphocytic choriomeningitis virus is associated with marked polyclonal activation of the CD8+ T cell subpopulation. In this report the cytokine production of virus-activated T cells is analyzed and the producing cell subset is characterized phenotypically. Coinciding with other....... Phenotypically, the main cytokine-producing cell subset is found to be CD8+ cells targeted for homing to inflammatory sites (VLA-4hiL-selectinlo) of which 30-40% were positive by intracellular staining for IFN-gamma. This subset also contains all T cells with a cytotoxic potential as measured by redirected...

  8. Differential effects of hypoxic stress in alveolar epithelial cells and microvascular endothelial cells

    NARCIS (Netherlands)

    Signorelli, Sara; Jennings, Paul; Leonard, Martin O; Pfaller, Walter

    2010-01-01

    Under hypoxic conditions eukaryotic cells and tissues undergo adaptive responses involving glycolysis, angiogenesis, vasoconstriction and inflammation. The underlying molecular mechanisms are not yet fully elucidated and are most likely cell and tissue specific. In the lung, alveolar epithelial

  9. Innovative Approaches to Treating Type 1 Diabetes Addressed in Beta-Cell Replacement Presentations

    Science.gov (United States)

    ... cells. "Analogous to the O-negative 'universal donor' blood type, udPSCs could be used for all cell-based transplantation therapies in all patients without immune rejection," he theorized. "Once created, the next step would ...

  10. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  11. Characterization of virus-primed CD8+ T cells with a type 1 cytokine profile

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Stenvang, J P; Marker, O

    1996-01-01

    . Phenotypically, the main cytokine-producing cell subset is found to be CD8+ cells targeted for homing to inflammatory sites (VLA-4hiL-selectinlo) of which 30-40% were positive by intracellular staining for IFN-gamma. This subset also contains all T cells with a cytotoxic potential as measured by redirected...... killing. An enhanced cytotoxic potential as well as an increased capacity to produce IFN-gamma is observed for at least 2 months after infection and cell sorting analysis revealed that this could be ascribed to a long-standing increase in the frequency of CD8+ Pgp-1hi cells. Therefore, these results...

  12. Increased angiotensin II type 1 receptor expression in temporal arteries from patients with giant cell arteritis

    DEFF Research Database (Denmark)

    Dimitrijevic, Ivan; Malmsjö, Malin; Andersson, Christina

    2009-01-01

    PURPOSE: Currently, giant cell arteritis (GCA) is primarily treated with corticosteroids or immunomodulating agents, but there is interest in identifying other noncorticosteroid alternatives. Similarities exist in the injury pathways between GCA and atherosclerosis. Angiotensin II is a vasoactive......, internal elastic lamina degeneration, and band-shaped infiltrates of inflammatory cells, including lymphocytes, histocytes, and multinucleated giant cells. AT(1) receptor staining was primarily observed in the medial layer of the temporal arteries and was higher in the patients with GCA than in the control...... patients. This was a result of increased AT(1) receptor immunostaining of both vascular smooth muscle cells and infiltrating inflammatory cells. Only faint immunostaining was seen for AT(2) receptors, primarily in the endothelial cells, and to a lesser extent on the smooth muscle cells. Immunostaining...

  13. Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity.

    Science.gov (United States)

    Bonifacio, Ezio; Mathieu, Chantal; Nepom, Gerald T; Ziegler, Anette-G; Anhalt, Henry; Haller, Michael J; Harrison, Leonard C; Hebrok, Matthias; Kushner, Jake A; Norris, Jill M; Peakman, Mark; Powers, Alvin C; Todd, John A; Atkinson, Mark A

    2017-01-01

    The asymptomatic phase of type 1 diabetes is recognised by the presence of beta cell autoantibodies in the absence of hyperglycaemia. We propose that an accurate description of this stage is provided by the name 'Autoimmune Beta Cell Disorder' (ABCD). Specifically, we suggest that this nomenclature and diagnosis will, in a proactive manner, shift the paradigm towards type 1 diabetes being first and foremost an immune-mediated disease and only later a metabolic disease, presaging more active therapeutic intervention in the asymptomatic stage of disease, before end-stage beta cell failure. Furthermore, we argue that accepting ABCD as a diagnosis will be critical in order to accelerate pharmaceutical, academic and public activities leading to clinical trials that could reverse beta cell autoimmunity and halt progression to symptomatic insulin-requiring type 1 diabetes. We recognize that there are both opportunities and challenges in the implementation of the ABCD concept but hope that the notion of 'asymptomatic autoimmune disease' as a disorder will be widely discussed and eventually accepted.

  14. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis.

    Science.gov (United States)

    Ferri, Silvia; Longhi, Maria Serena; De Molo, Chiara; Lalanne, Claudine; Muratori, Paolo; Granito, Alessandro; Hussain, Munther J; Ma, Yun; Lenzi, Marco; Mieli-Vergani, Giorgina; Bianchi, Francesco B; Vergani, Diego; Muratori, Luigi

    2010-09-01

    Immunotolerance is maintained by regulatory T cells (Tregs), including CD4(+)CD25(hi), CD8(+)CD28(-), gammadelta, and CD3(+)CD56(+) [natural killer T (NKT)] cells. CD4(+)CD25(hi) cells are impaired in children with autoimmune hepatitis (AIH). Little is known about Tregs in adults with AIH. The aim of this study was to investigate the frequency and function of Treg subsets in adult patients with AIH during periods of active disease and remission. Forty-seven AIH patients (16 with active disease and 31 in remission) and 28 healthy controls were studied. Flow cytometry was used to evaluate surface markers and function-related intracellular molecules in gammadelta, CD8(+)CD28(-), NKT, and CD4(+)CD25(hi) cells. CD4(+)CD25(hi) T cell function was determined by the ability to suppress proliferation and interferon gamma (IFN-gamma) production by CD4(+)CD25(-) target cells. Liver forkhead box P3-positive (FOXP3(+)) cells were sought by immunohistochemistry. In AIH patients, particularly during active disease, CD4(+)CD25(hi) T cells were fewer, expressed lower levels of FOXP3, and were less effective at inhibiting target cell proliferation versus healthy controls. Moreover, although the numbers of CD8(+)CD28(-) T cells were similar in AIH patients and healthy controls, NKT cells were numerically reduced, especially during active disease, and produced lower quantities of the immunoregulatory cytokine interleukin-4 versus controls. In contrast, gammadelta T cells in AIH patients were more numerous versus healthy controls and had an inverted Vdelta1/Vdelta2 ratio and higher IFN-gamma and granzyme B production; the latter was correlated to biochemical indices of liver damage. There were few FOXP3(+) cells within the portal tract inflammatory infiltrate. Our data show that the defect in immunoregulation in adult AIH is complex, and gammadelta T cells are likely to be effectors of liver damage.

  15. Stiffness nanotomography of human epithelial cancer cells

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

    2012-02-01

    The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

  16. Neoplastic transformation of human thyroid epithelial cells by ionizing radiation

    Science.gov (United States)

    Herceg, Zdenko

    Neoplastic transformation of human thyroid epithelial cells has been investigated following exposure to ionizing radiation in vitro. The effects of radiation type, irradiation regime, and postirradiation passaging were examined using a human thyroid epithelial cell line, designated HToriS, which was previously immortalized with SV40 genome. Exponentially growing HToriS cells were irradiated with graded doses of 137 Cs gamma- and 238pu alpha-irradiation. Cells were irradiated with either a single or multiple doses of 0.5, 1, 2, 3, or 4 Gy gamma-radiation, or single doses of 0.125, 0.25, 0.5, 1, or 1.5 Gy gamma-radiation. Following passaging, the cells were transplanted into the athymic nude mice, and the animals were screened for tumour formation. Statistically significant increases in tumour incidence were obtained with both gamma- and alpha-irradiation and with both single and multiple irradiation regimes as compared with the un-irradiated group. Regardless of radiation type and or radiation regime there appears to be a trend, with increasing doses of radiation, in which tumour incidence increases and reaches a maximum, after which the tumour incidence decreases. Tumours were characterized by histopathological examination as undifferentiated carcinomas. Investigation of expression time following irradiation demonstrated that post-irradiation passaging, generally regarded as a critical step for expression of radiation-induced DNA damage, was not a prerequisite for the neoplastic conversion of irradiated cells with this system. Cell lines were established from the tumours and their identification and characterization carried out. All cell lines established were determined to be derived from the parent HTori3 cells by DNA fingerprinting, karyotype analysis, cytokeratin staining, and SV40 large T-antigen staining. Tumorigenicity of the cell lines was confirmed by retransplantation. Comparison of the morphology in vitro showed that the tumour cell lines retained the

  17. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    Science.gov (United States)

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  18. Osmoregulation of chloride channels in epithelial cells

    NARCIS (Netherlands)

    C.H. Lim (Christina)

    2008-01-01

    markdownabstract__Abstract__ The plasma membrane of mammalian cells is formed by two layers of lipids (lipid bilayer), primarily phospholipids, glycolipids and cholesterol, in which many different proteins are embedded. Phospholipid consists of a glycerol backbone esterified to fatty acids

  19. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Directory of Open Access Journals (Sweden)

    Ivana Viktorinová

    2017-11-01

    Full Text Available Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  20. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  1. Autoantigen-specific regulatory T cells induced in patients with Type 1 Diabetes Mellitus by Insulin B-chain immunotherapy

    OpenAIRE

    Orban, Tihamer; Farkas, Klara; Jalahej, Heyam; Kis, Janos; Treszl, Andras; Falk, Ben; Reijonen, Helena; Wolfsdorf, Joseph; Ricker, Alyne; Matthews, Jeffrey B.; Tchao, Nadio; Sayre, Peter; Bianchine, Pete

    2010-01-01

    There is a growing body of evidence to suggest that the autoimmunity observed in type 1 diabetes mellitus (T1DM) is the result of an imbalance between autoaggressive and regulatory cell subsets. Therapeutics that supplement or enhance the existing regulatory subset are therefore a much sought after goal in this indication. Here, we report the results of a double blind, placebo controlled, phase I clinical trial of a novel antigen-specific therapeutic in 12 subjects with recently diagnosed T1D...

  2. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  3. Protective Effects of Trehalose on the Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Pasquale Aragona

    2014-01-01

    Full Text Available Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE and trehalose-treated eyes (TTE, the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  4. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...

  5. Role of human leukocyte antigen-G in the induction of adaptive type 1 regulatory T cells.

    Science.gov (United States)

    Gregori, Silvia; Magnani, Chiara Francesca; Roncarolo, Maria-Grazia

    2009-12-01

    Adaptive type 1 regulatory T (Tr1) cells are suppressor cells characterized by the production of interleukin (IL)-10 in the absence of IL-4. IL-10 is essential not only for suppression of effector cells by Tr1 cells, but also for their differentiation in vitro and in vivo. However, little is known on the molecular mechanisms underneath the IL-10-mediated induction of Tr1 cells. Human Leukocyte Antigen (HLA)-G, a non-classical HLA class I molecule, has both direct inhibitory effects on natural killer cells, dendritic cells (DC), and T cells and long-term tolerogenic indirect effects by inducing regulatory T (Tr) cells. In the present review, we discuss current findings on Tr-cell induction by the different isoforms of HLA-G, focusing on the relationship among HLA-G, its ligands, and IL-10. We recently described a subset of human DC, termed DC-10, that express high levels of HLA-G and ILT4, secrete high amounts of IL-10, and induce allospecific Tr1 cells in vitro via an IL-10-dependent ILT4/HLA-G pathway. IL-10, HLA-G, and ILT4 may also be involved in Tr1-cell induction in vivo. Overall, these data demonstrate that cross-regulation between IL-10 and HLA-G may be instrumental for Tr1-cell induction and tolerance.

  6. Erythropoietin Induces an Epithelial to Mesenchymal Transition-Like Process in Mammary Epithelial Cells MCF10A.

    Science.gov (United States)

    Ordoñez-Moreno, Alejandra; Rodriguez-Monterrosas, Cecilia; Cortes-Reynosa, Pedro; Perez-Carreon, Julio Isael; Perez Salazar, Eduardo

    2017-09-01

    Anemia is associated with chemotherapy treatment in cancer patients. Erythropoietin (EPO) has been used to treat anemia of cancer patients, because it stimulates erythropoiesis. However, treatment of breast cancer patients with EPO has been associated with poor prognosis and decrease of survival. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state. It has been implicated in tumor progression, because epithelial cells acquire the capacity to execute the multiple steps of invasion/metastasis process. However, the role of EPO on EMT process in human mammary epithelial cells has not been studied. In the present study, we demonstrate that EPO promotes a decrease of E-cadherin expression, an increase of N-cadherin, vimentin, and Snail2 expression, activation of FAK and Src kinases and an increase of MMP-2 and MMP-9 secretions. Moreover, EPO induces an increase of NFκB DNA binding activity, an increase of binding of p50 and p65 NFκB subunits to Snail1 promoter, migration, and invasion in mammary non-tumorigenic epithelial cells MCF10A. In summary, these findings demonstrate, for the first time, that EPO induces an EMT-like process in mammary non-tumorigenic epithelial cells. J. Cell. Biochem. 118: 2983-2992, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. [Adhesion of clinical Candida albicans isolate to buccal epithelial cells].

    Science.gov (United States)

    Wellmer, A

    1999-01-01

    Mucosal adherence and germ tube formation are considered to be important virulence factors of C. albicans. Adherence is a precondition for colonisation and invasion. We investigated 11 clinical isolates (among them 5 cases recovered from oesophageal thrush) for quantification of the two characteristics and correlated the results with clinical data. Adherence was measured on buccal epithelial cells and the continuous flow culture was used for quantification of germ tube formation. Adherence of strains recovered from clinically, culturally and serologically confirmed oesophageal thrush adhered stronger to buccal epithelial cells than isolates from patients with heavy colonisation without signs of candidosis. Strains with stronger adherence showed a significantly faster and an increased germ tube formation in the continuous flow culture. Strains from oesophageal thrush therefore show a more marked expression of the investigated virulence factors. Therefore a good adherence is a necessity for infection of the oesophagus by C. albicans. The preferential isolation of C. albicans from oesophageal thrush (> 90%) supports this assumption.

  8. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  9. Identification of conserved subdominant HIV Type 1 CD8(+) T Cell epitopes restricted within common HLA Supertypes for therapeutic HIV Type 1 vaccines

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Kløverpris, Henrik; Jensen, Kristoffer Jarlov

    2012-01-01

    of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted......-specific, HLA-restricted T cell specificities using peptide-MHC class I tetramer labeling of CD8(+) T cells from HIV-1-infected individuals. The selected vaccine epitopes are infrequently targeted in HIV-1-infected individuals from both locations. Moreover, we HLA-typed HIV-1-infected individuals......The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design...

  10. The Cannabinoid Receptor Type 1 Is Essential for Mesenchymal Stem Cell Survival and Differentiation: Implications for Bone Health

    Directory of Open Access Journals (Sweden)

    Aoife Gowran

    2013-01-01

    Full Text Available Significant loss of bone due to trauma, underlying metabolic disease, or lack of repair due to old age surpasses the body’s endogenous bone repair mechanisms. Mesenchymal stem cells (MSCs are adult stem cells which may represent an ideal cell type for use in cell-based tissue engineered bone regeneration strategies. The body’s endocannabinoid system has been identified as a central regulator of bone metabolism. The aim of the study was to elucidate the role of the cannabinoid receptor type 1 in the differentiation and survival of MSCs. We show that the cannabinoid receptor type 1 has a prosurvival function during acute cell stress. Additionally, we show that the phytocannabinoid, Δ9-Tetrahydrocannabinol, has a negative impact on MSC survival and osteogenesis. Overall, these results show the potential for the modulation of the cannabinoid system in cell-based tissue engineered bone regeneration strategies whilst highlighting cannabis use as a potential cause for concern in the management of orthopaedic patients.

  11. MAST CELLS AND ANGIOGENESIS IN ORAL EPITHELIAL DYSPLASTIC LESIONS AND ORAL SQUAMOUS CELL CARCINOMA

    OpenAIRE

    Veda, Marla Vinay

    2015-01-01

    Background: The progression of oral epithelial dysplastic lesions into oral squamous cell carcinoma is characterized by an ‘angiogenic switch’ which is characterized by an increase in neo-vascularization in the sub-epithelial lamina propria which can be considered an indicator of malignant transformation. Mast cells are a rich source of various angiogenic factors. Moreover mast cells secrete various proteolytic enzymes which degrade the extracellular matrix and create space for the developing...

  12. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    OpenAIRE

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; De Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing with the epithelial lineage. However, the functional relevance of these observations is unknown. In the present study we employ a model system in which we cannot only detect cell fusion but also exam...

  13. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob

    2003-01-01

    Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers...... of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium....

  14. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  15. Attachment of Giardia lamblia to rat intestinal epithelial cells.

    OpenAIRE

    Inge, P M; Edson, C M; Farthing, M J

    1988-01-01

    The human enteric protozoan, Giardia lamblia, has surface membrane lectin activity which mediates parasite adherence to erythrocytes. To determine whether an intestinal binding site exists for this lectin we have studied the interaction in vitro between axenically cultured Giardia trophozoites and isolated rat intestinal epithelial cells. Scanning electron microscopy showed that Giardia attached to the apical microvillus membrane and basolateral membrane of rat enterocytes. Any location on th...

  16. Serum-Free Cryopreservation of Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    H. Niknejad

    2013-04-01

    Full Text Available Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amni-otic fluid (AF, which is full of growth factors, as substitute for fetal bovine serum (FBS in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells were isolated from placentas which were seronegative for microbial infections. The cells were preserved in 24 different patterns for 12 months in -196 ?C (liquid nitrogen and viability of cells were determined before and after cryopreservation by trypan blue and MTT assay. Moreover, Oct-4 expression was studied to determine pluripotency before and after cryopreservation with immunocytochemistry. Results were compared between groups with ANOVA (Tukey Post-Test. P.value under 0.01 and 0.05 was considered statistically significant. Results: The presence of DMEM, FBS or AF is necessary for amniotic cell cryopreservation. Trypan-blue, MTT and immunocytochemistry showed that there isn’t significant difference between using AF and FBS in viability and pluripotency of cells. Moreover, results showed that DMSO is a better cryoprotectant compared to glycerol. Conclusion : Results showed that amniotic fluid can be a proper substitute for FBS in amniotic epithelial cells cryopreservation. (Sci J Hamadan Univ Med Sci 2013; 20 (1:15-24

  17. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  18. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul [Univ. of Rochester, NY (United States)

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  19. Cutaneous T-cell lymphoma in a patient infected with human immunodeficiency virus type 1. Use of radiation therapy

    International Nuclear Information System (INIS)

    Goldstein, J.; Becker, N.; DelRowe, J.; Davis, L.

    1990-01-01

    A patient with cutaneous T-cell lymphoma (CTCL) and acquired immune deficiency syndrome (AIDS) is presented. The patient had a localized lesion on his scalp. Evaluation for systemic lymphoma was negative. A biopsy specimen showed superficial and deep dermal infiltrates of pleomorphic lymphocytes. Immunohistochemistry was consistent with T-cell lymphoma. The patient was treated successfully with local irradiation. He remained free of further systemic and cutaneous recurrences of the lymphoma until he died 8 months after treatment of pneumonia. This case is the first to our knowledge to describe a localized CTCL in a patient infected with human immunodeficiency virus type 1 (HIV-1)

  20. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    Directory of Open Access Journals (Sweden)

    Asma Yaghi

    2016-11-01

    Full Text Available Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.

  1. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  2. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  3. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed

  4. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity.

    Science.gov (United States)

    Zaccard, Colleen R; Watkins, Simon C; Kalinski, Pawel; Fecek, Ronald J; Yates, Aarika L; Salter, Russell D; Ayyavoo, Velpandi; Rinaldo, Charles R; Mailliard, Robbie B

    2015-02-01

    The ability of dendritic cells (DC) to mediate CD4(+) T cell help for cellular immunity is guided by instructive signals received during DC maturation, as well as the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. In this study we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type 1 immunity are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or rCD40L. This immunologic process of DC reticulation facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by type 1 polarized DC, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Activation of the NLRP3 Inflammasome Pathway by Uropathogenic Escherichia coli Is Virulence Factor-Dependent and Influences Colonization of Bladder Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Isak Demirel

    2018-03-01

    Full Text Available The NLRP3 inflammasome and IL-1β release have recently been suggested to be important for the progression of urinary tract infection (UTI. However, much is still unknown regarding the interaction of UPEC and the NLRP3 inflammasome. The purpose of this study was to elucidate what virulence factors uropathogenic Escherichia coli (UPEC use to modulate NLRP3 inflammasome activation and subsequent IL-1β release and the role of NLRP3 for UPEC colonization of bladder epithelial cells. The bladder epithelial cell line 5637, CRISPR/Cas9 generated NLRP3, caspase-1 and mesotrypsin deficient cell lines and transformed primary bladder epithelial cells (HBLAK were stimulated with UPEC isolates and the non-pathogenic MG1655 strain. We found that the UPEC strain CFT073, but not MG1655, induced an increased caspase-1 activity and IL-1β release from bladder epithelial cells. The increase was shown to be mediated by α-hemolysin activation of the NLRP3 inflammasome in an NF-κB-independent manner. The effect of α-hemolysin on IL-1β release was biphasic, initially suppressive, later inductive. Furthermore, the phase-locked type-1-fimbrial ON variant of CFT073 inhibited caspase-1 activation and IL-1β release. In addition, the ability of CFT073 to adhere to and invade NLRP3 deficient cells was significantly reduced compare to wild-type cells. The reduced colonization of NLRP3-deficient cells was type-1 fimbriae dependent. In conclusion, we found that the NLRP3 inflammasome was important for type-1 fimbriae-dependent colonization of bladder epithelial cells and that both type-1 fimbriae and α-hemolysin can modulate the activity of the NLRP3 inflammasome.

  6. Transcriptional profiling of putative human epithelial stem cells.

    Science.gov (United States)

    Koçer, Salih S; Djurić, Petar M; Bugallo, Mónica F; Simon, Sanford R; Matic, Maja

    2008-07-30

    comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.

  7. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.

  8. Adherence of oral streptococci to keratinized and nonkeratinized human oral epithelial cells.

    OpenAIRE

    Sklavounou, A; Germaine, G R

    1980-01-01

    The ability of Streptococcus mutans, Streptococcus sanguis, Streptococcus mitis, and Streptococcus salivarius to adhere to keratinized versus nonkeratinized human oral epithelial cells was compared. S. mitis and S. salivarius exhibited significantly greater adherence to keratinized cells than to nonkeratinized cells. S. mutans and S. sanguis adhered equally well to either epithelial cell type. It is concluded that keratinization of epithelial cells may be a significant factor in the adherence...

  9. Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition

    OpenAIRE

    Morel, Anne-Pierre; Lièvre, Marjory; Thomas, Clémence; Hinkal, George; Ansieau, Stéphane; Puisieux, Alain

    2008-01-01

    Recently, two novel concepts have emerged in cancer biology: the role of so-called "cancer stem cells" in tumor initiation, and the involvement of an epithelial-mesenchymal transition (EMT) in the metastatic dissemination of epithelial cancer cells. Using a mammary tumor progression model, we show that cells possessing both stem and tumorigenic characteristics of "cancer stem cells" can be derived from human mammary epithelial cells following the activation of the Ras-MAPK pathway. The acquis...

  10. Prion infection of epithelial Rov cells is a polarized event.

    Science.gov (United States)

    Paquet, Sophie; Sabuncu, Elifsu; Delaunay, Jean-Louis; Laude, Hubert; Vilette, Didier

    2004-07-01

    During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.

  11. Cooperation between epithelial cells demonstrated by potassium transfer

    International Nuclear Information System (INIS)

    Ledbetter, M.L.; Young, G.J.; Wright, E.R.

    1986-01-01

    Junction-mediated communication can be measured in fibroblast cultures by determining the ability of mixed cultures of cells sensitive and resistant to ouabain to concentrate K+ in the presence of ouabain. We now report the extension of this assay procedure to cultured epithelial cells. Hamster kidney (HaK) cells maintain their ability to concentrate K+ in ouabain at levels inhibitory to dog kidney (MDCK) cells. When HaK and MDCK cells were cultured together in ouabain-containing medium, the K+ (measured as 86Rb+) in the mixed population was greater than expected if the cells were not interacting. The degree of enhancement, expressed as index of cooperation, depended on the numbers of cells in the cultures, their opportunity for cell-to-cell contact, and (above a certain permissive level) the concentration of ouabain. As with other cell types, protein synthesis in MDCK cells depends on maintenance of cell K+. Autoradiography of cells incubated with [3H]leucine demonstrated that MDCK cells in ouabain-treated mixed cultures were able to synthesize proteins only when physically adjacent to HaK cells. The transmission of labeled nucleosides among the cells provides independent evidence of the phenomenon of cooperation, probably mediated by gap junctions. This system offers promise for investigation of stimuli modulating junctional communication

  12. Long non-coding RNAs as novel players in β cell function and type 1 diabetes

    DEFF Research Database (Denmark)

    Mirza, Aashiq H; Kaur, Simranjeet; Pociot, Flemming

    2017-01-01

    of the challenges and opportunities in understanding the pathogenesis of T1D and its complications. Conclusion We accentuate that the lncRNAs within T1D-loci regions in consort with regulatory variants and enhancer clusters orchestrate the chromatin remodeling in β cells and thereby act as cis...

  13. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1.

    Science.gov (United States)

    Keele, Brandon F; Tazi, Loubna; Gartner, Suzanne; Liu, Yiling; Burgon, Trever B; Estes, Jacob D; Thacker, Tyler C; Crandall, Keith A; McArthur, Justin C; Burton, Gregory F

    2008-06-01

    Throughout the natural course of human immunodeficiency virus (HIV) infection, follicular dendritic cells (FDCs) trap and retain large quantities of particle-associated HIV RNA in the follicles of secondary lymphoid tissue. We have previously found that murine FDCs in vivo could maintain trapped virus particles in an infectious state for at least 9 months. Here we sought to determine whether human FDCs serve as an HIV reservoir, based on the criteria that virus therein must be replication competent, genetically diverse, and archival in nature. We tested our hypothesis using postmortem cells and tissues obtained from three HIV-infected subjects and antemortem blood samples obtained from one of these subjects. Replication competence was determined using coculture, while genetic diversity and the archival nature of virus were established using phylogenetic and population genetics methods. We found that FDC-trapped virus was replication competent and demonstrated greater genetic diversity than that of virus found in most other tissues and cells. Antiretrovirus-resistant variants that were not present elsewhere were also detected on FDCs. Furthermore, genetic similarity was observed between FDC-trapped HIV and viral species recovered from peripheral blood mononuclear cells obtained 21 and 22 months antemortem, but was not present in samples obtained 4 and 18 months prior to the patient's death, indicating that FDCs can archive HIV. These data indicate that FDCs represent a significant reservoir of infectious and diverse HIV, thereby providing a mechanism for viral persistence for months to years.

  14. CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients

    DEFF Research Database (Denmark)

    Fløyel, Tina; Brorsson, Caroline; Nielsen, Lotte B

    2014-01-01

    of CTSH protected insulin-secreting cells against cytokine-induced apoptosis. Mechanistic studies indicated that CTSH exerts its antiapoptotic effects through decreased JNK and p38 signaling and reduced expression of the proapoptotic factors Bim, DP5, and c-Myc. CTSH overexpression also up-regulated Ins2...

  15. Mammary Epithelial Cell Hierarchy in the Dairy Cow Throughout Lactation.

    Science.gov (United States)

    Perruchot, Marie-Hélène; Arévalo-Turrubiarte, Magdalena; Dufreneix, Florence; Finot, Laurence; Lollivier, Vanessa; Chanat, Eric; Mayeur, Frédérique; Dessauge, Frédéric

    2016-10-01

    The plasticity of the mammary gland relies on adult mammary stem cells (MaSCs) and their progenitors, which give rise to various populations of mammary epithelial cells (MECs). To face global challenges, an in-depth characterization of milk-producing animal mammary gland plasticity is required, to select more sustainable and robust dairy cows. The identification and characterization of MaSC and their progenitors will also provide innovative tools in veterinary/human medicine regarding mammary tissue damage (carcinogenesis, bacterial infections). This study aimed to determine the dynamics of mammary cell populations throughout a lactation cycle. Using mammary biopsies from primiparous lactating dairy cows at 30, 90, 150, and 250 days of lactation, we phenotyped cell populations by flow cytometry. To investigate cell lineages, we used specific cell-surface markers, including CD49f, CD24, EpCAM (epithelial cell adhesion molecule), and CD10. Two cell populations linked to milk production were identified: CD49f(+)/EpCAM(-) (y = 0.88x + 4.42, R(2) = 0.36, P < 0.05) and CD49f(-)/EpCAM(-) (y = -1.15x + 92.44, R(2) = 0.51, P < 0.05) cells. Combining immunostaining analysis, flow cytometry, daily milk production data, and statistical approaches, we defined a stem cell population (CD24(+)/CD49f(+)) and four progenitor cell populations that include bipotent luminal progenitors (CD24(-)/CD49f(+)), lumino-alveolar progenitors (CD24(-)/EpCAM(+)), myoepithelial progenitors (CD24(+)/CD10(-)), and lumino-ductal progenitors (CD49f(-)/EpCAM(+)). Interestingly, we found that the bipotent luminal progenitors (CD24(-)/CD49f(+)) decreased significantly (P < 0.05) during lactation. This study provides the first results of mammary cell lineage, allowing insight into mammary cell plasticity during lactation.

  16. Streptococcus equi subsp. zooepidemicus Invades and Survives in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Bolette Skive

    2017-11-01

    Full Text Available Streptococcus equi subsp. zooepidemicus (S. zooepidemicus is an opportunistic pathogen of several species including humans. S. zooepidemicus is found on mucus membranes of healthy horses, but can cause acute and chronic endometritis. Recently S. zooepidemicus was found able to reside in the endometrium for prolonged periods of time. Thus, we hypothesized that an intracellular phase may be part of the S. zooepidemicus pathogenesis and investigated if S. zooepidemicus was able to invade and survive inside epithelial cells. HEp-2 and HeLa cell lines were co-cultured with two S. zooepidemicus strains (1-4a and S31A1 both originating from the uterus of mares suffering from endometritis. Cells were fixed at different time points during the 23 h infection assay and field emission scanning electron microscopy (FESEM was used to characterize adhesion and invasion mechanisms. The FESEM images showed three morphologically different types of invasion for both bacterial strains. The main port of entry was through large invaginations in the epithelial cell membrane. Pili-like bacterial appendages were observed when the S. zooepidemicus cells were in close proximity to the epithelial cells indicating that attachment and invasion were active processes. Adherent and intracellular S. zooepidemicus, and bacteria in association with lysosomes was determined by immunofluorescence staining techniques and fluorescence microscopy. Quantification of intracellular bacteria was determined in penicillin protection assays. Both S. zooepidemicus strains investigated were able to invade epithelial cells although at different magnitudes. The immunofluorescence data showed significantly higher adhesion and invasion rates for strain 1-4a when compared to strain S31A1. S. zooepidemicus was able to survive intracellularly, but the survival rate decreased over time in the cell culture system. Phagosome-like compartments containing S. zooepidemicus at some stages fused with

  17. Streptococcus equi subsp. zooepidemicus Invades and Survives in Epithelial Cells.

    Science.gov (United States)

    Skive, Bolette; Rohde, Manfred; Molinari, Gabriella; Braunstein, Thomas Hartig; Bojesen, Anders M

    2017-01-01

    Streptococcus equi subsp. zooepidemicus ( S. zooepidemicus ) is an opportunistic pathogen of several species including humans. S. zooepidemicus is found on mucus membranes of healthy horses, but can cause acute and chronic endometritis. Recently S. zooepidemicus was found able to reside in the endometrium for prolonged periods of time. Thus, we hypothesized that an intracellular phase may be part of the S. zooepidemicus pathogenesis and investigated if S. zooepidemicus was able to invade and survive inside epithelial cells. HEp-2 and HeLa cell lines were co-cultured with two S. zooepidemicus strains (1-4a and S31A1) both originating from the uterus of mares suffering from endometritis. Cells were fixed at different time points during the 23 h infection assay and field emission scanning electron microscopy (FESEM) was used to characterize adhesion and invasion mechanisms. The FESEM images showed three morphologically different types of invasion for both bacterial strains. The main port of entry was through large invaginations in the epithelial cell membrane. Pili-like bacterial appendages were observed when the S. zooepidemicus cells were in close proximity to the epithelial cells indicating that attachment and invasion were active processes. Adherent and intracellular S. zooepidemicus , and bacteria in association with lysosomes was determined by immunofluorescence staining techniques and fluorescence microscopy. Quantification of intracellular bacteria was determined in penicillin protection assays. Both S. zooepidemicus strains investigated were able to invade epithelial cells although at different magnitudes. The immunofluorescence data showed significantly higher adhesion and invasion rates for strain 1-4a when compared to strain S31A1. S. zooepidemicus was able to survive intracellularly, but the survival rate decreased over time in the cell culture system. Phagosome-like compartments containing S. zooepidemicus at some stages fused with lysosomes to form a

  18. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes.

    Science.gov (United States)

    Cito, Monia; Pellegrini, Silvia; Piemonti, Lorenzo; Sordi, Valeria

    2018-03-01

    The experience in the field of islet transplantation shows that it is possible to replace β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite sources of β cells are strongly required. In this review, we make an overview of the most promising and advanced β cell production strategies. Particular hope is placed in pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells (iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells are ongoing in the United States and Canada, but a successful strategy for the use of PSC in patients with diabetes has still to overcome several important hurdles. Another promising strategy of generation of new β cells is the transdifferentiation of adult cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, in particular liver cells. Finally, new advances in gene editing technologies have given impetus to research on the production of human organs in chimeric animals and on in situ reprogramming of adult cells through in vivo target gene activation. © 2018 The authors.

  19. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission.

    Science.gov (United States)

    Van Prooyen, Nancy; Gold, Heather; Andresen, Vibeke; Schwartz, Owen; Jones, Kathryn; Ruscetti, Frank; Lockett, Stephen; Gudla, Prabhakar; Venzon, David; Franchini, Genoveffa

    2010-11-30

    The human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia/lymphoma as well as tropical spastic paraparesis/HTLV-1-associated myelopathy. HTLV-1 is transmitted to T cells through the virological synapse and by extracellular viral assemblies. Here, we uncovered an additional mechanism of virus transmission that is regulated by the HTLV-1-encoded p8 protein. We found that the p8 protein, known to anergize T cells, is also able to increase T-cell contact through lymphocyte function-associated antigen-1 clustering. In addition, p8 augments the number and length of cellular conduits among T cells and is transferred to neighboring T cells through these conduits. p8, by establishing a T-cell network, enhances the envelope-dependent transmission of HTLV-1. Thus, the ability of p8 to simultaneously anergize and cluster T cells, together with its induction of cellular conduits, secures virus propagation while avoiding the host's immune surveillance. This work identifies p8 as a viral target for the development of therapeutic strategies that may limit the expansion of infected cells in HTLV-1 carriers and decrease HTLV-1-associated morbidity.

  20. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  1. Human immunodeficiency virus type 1 quantitative cell microculture as a measure of antiviral efficacy in a multicenter clinical trial.

    Science.gov (United States)

    Fiscus, S A; DeGruttola, V; Gupta, P; Katzenstein, D A; Meyer, W A; LoFaro, M L; Katzman, M; Ragni, M V; Reichelderfer, P S; Coombs, R W

    1995-02-01

    A quantitative cell microculture assay (QMC) was used to measure the human immunodeficiency virus type 1 (HIV-1) peripheral blood mononuclear cell (PBMC)-associated titer in 109 subjects rolled in an open-label phase I/II study of didanosine monotherapy or combination therapy with zidovudine. The titer was inversely correlated with CD4+ cell count at baseline (r = .37, P = .001). After 12 weeks of therapy, subjects showed a significant decreases in virus titer and those with the highest baseline virus titers had the greatest increase in CD4+ cell number (r = .430, P = .002). The QMC assay was more sensitive (98%) for assessing the antiretroviral effect of therapy than was immune complex-dissociated HIV p24 antigen (32%) or plasma culture (3.4%). Estimated sample sizes for phase I/II clinical trials were derived using the within-subject QMC SD of .72 log10 infectious units per 10(6) PMBC.

  2. Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Masanobu Kano

    2017-04-01

    Full Text Available The cerebellum is a brain structure involved in coordination, control, and learning of movements, as well as certain aspects of cognitive function. Purkinje cells are the sole output neurons from the cerebellar cortex and therefore play crucial roles in the overall function of the cerebellum. The type-1 metabotropic glutamate receptor (mGluR1 is a key “hub” molecule that is critically involved in the regulation of synaptic wiring, excitability, synaptic response, and synaptic plasticity of Purkinje cells. In this review, we aim to highlight how mGluR1 controls these events in Purkinje cells. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunctions in several clinically relevant mouse models of human ataxias.

  3. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  4. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles.

    Directory of Open Access Journals (Sweden)

    Giulia Chiabotto

    Full Text Available Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs produced by human renal proximal tubular epithelial cells (RPTECs may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs. To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs.

  5. Proteomic profiling of acrolein adducts in human lung epithelial cells

    Science.gov (United States)

    Spiess, Page C.; Deng, Bin; Hondal, Robert J.; Matthews, Dwight E.; van der Vliet, Albert

    2011-01-01

    Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology. PMID:21704744

  6. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  7. Native type IV collagen induces an epithelial to mesenchymal transition-like process in mammary epithelial cells MCF10A.

    Science.gov (United States)

    Espinosa Neira, Roberto; Salazar, Eduardo Perez

    2012-12-01

    Basement membrane (BM) is a complex network of interacting proteins, including type IV collagen (Col IV) that acts as a scaffold that stabilizes the physical structures of tissues and regulates cellular processes. In the mammary gland, BM is a continuous deposit that separates epithelial cells from stroma, and its degradation is related with an increased potential for invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to one mesenchymal state, and is a normal process during embryonic development, tissue remodeling and wound healing, as well as it has been implicated during cancer progression. In breast cancer cells, native Col IV induces migration and gelatinases secretion. However, the role of native Col IV on the EMT process in human mammary epithelial cells remains to be investigated. In the present study, we demonstrate that native Col IV induces down-regulation of E-cadherin expression, accompanied with an increase of Snail1, Snail2 and Sip1 transcripts. Native Col IV also induces an increase in N-cadherin and vimentin expression, an increase of MMP-2 secretion, the activation of FAK and NFκB, cell migration and invasion in MCF10A cells. In summary, these findings demonstrate, for the first time, that native Col IV induces an EMT-like process in MCF10A human mammary non-tumorigenic epithelial cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. ATP7B detoxifies silver in ciliated airway epithelial cells

    International Nuclear Information System (INIS)

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-01-01

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B -/- mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag + /Cu + transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  9. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    Science.gov (United States)

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  10. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model.

    Directory of Open Access Journals (Sweden)

    Xi Fu

    Full Text Available Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH and the accumulation of glutaric (GA and 3-hydroxyglutaric acid (3-OHGA are considered to be the most striking features of glutaric aciduria type I (GA1. In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC, fumarase (FH, and citrate synthase (CS expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.

  11. Sensitive Cell-Based Assay for Determination of Human Immunodeficiency Virus Type 1 Coreceptor Tropism

    Science.gov (United States)

    Weber, Jan; Vazquez, Ana C.; Winner, Dane; Gibson, Richard M.; Rhea, Ariel M.; Rose, Justine D.; Wylie, Doug; Henry, Kenneth; Wright, Alison; King, Kevin; Archer, John; Poveda, Eva; Soriano, Vicente; Robertson, David L.; Olivo, Paul D.; Arts, Eric J.

    2013-01-01

    CCR5 antagonists are a powerful new class of antiretroviral drugs that require a companion assay to evaluate the presence of CXCR4-tropic (non-R5) viruses prior to use in human immunodeficiency virus (HIV)-infected individuals. In this study, we have developed, characterized, verified, and prevalidated a novel phenotypic test to determine HIV-1 coreceptor tropism (VERITROP) based on a sensitive cell-to-cell fusion assay. A proprietary vector was constructed containing a near-full-length HIV-1 genome with the yeast uracil biosynthesis (URA3) gene replacing the HIV-1 env coding sequence. Patient-derived HIV-1 PCR products were introduced by homologous recombination using an innovative yeast-based cloning strategy. The env-expressing vectors were then used in a cell-to-cell fusion assay to determine the presence of R5 and/or non-R5 HIV-1 variants within the viral population. Results were compared with (i) the original version of Trofile (Monogram Biosciences, San Francisco, CA), (ii) population sequencing, and (iii) 454 pyrosequencing, with the genotypic data analyzed using several bioinformatics tools, i.e., the 11/24/25 rule, Geno2Pheno (2% to 5.75%, 3.5%, or 10% false-positive rate [FPR]), and webPSSM. VERITROP consistently detected minority non-R5 variants from clinical specimens, with an analytical sensitivity of 0.3%, with viral loads of ≥1,000 copies/ml, and from B and non-B subtypes. In a pilot study, a 73.7% (56/76) concordance was observed with the original Trofile assay, with 19 of the 20 discordant results corresponding to non-R5 variants detected using VERITROP and not by the original Trofile assay. The degree of concordance of VERITROP and Trofile with population and deep sequencing results depended on the algorithm used to determine HIV-1 coreceptor tropism. Overall, VERITROP showed better concordance with deep sequencing/Geno2Pheno at a 0.3% detection threshold (67%), whereas Trofile matched better with population sequencing (79%). However, 454

  12. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry...... diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24aß type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24aß NKT cells...... exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24aß NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred...

  13. Regulation of Cathepsin G Reduces the Activation of Proinsulin-Reactive T Cells from Type 1 Diabetes Patients

    Science.gov (United States)

    Zou, Fang; Schäfer, Nadja; Palesch, David; Brücken, Ruth; Beck, Alexander; Sienczyk, Marcin; Kalbacher, Hubert; Sun, ZiLin; Boehm, Bernhard O.; Burster, Timo

    2011-01-01

    Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells. PMID:21850236

  14. Regulation of cathepsin G reduces the activation of proinsulin-reactive T cells from type 1 diabetes patients.

    Directory of Open Access Journals (Sweden)

    Fang Zou

    Full Text Available Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D. Self-proteins can be processed by cathepsins (Cats within endocytic compartments and loaded to major histocompatibility complex (MHC class II molecules for CD4(+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells.

  15. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells.

    Directory of Open Access Journals (Sweden)

    Jody Ye

    Full Text Available Maternal microchimeric cells (MMc transfer across the placenta during pregnancy. Increased levels of MMc have been observed in several autoimmune diseases including type 1 diabetes but their role is unknown. It has been suggested that MMc are 1 effector cells of the immune response, 2 targets of the autoimmune response or 3 play a role in tissue repair. The aim of this study was to define the cellular phenotype of MMc in control (n = 14 and type 1 diabetes pancreas (n = 8.Using sex chromosome-based fluorescence in-situ hybridization, MMc were identified in male pancreas and their phenotype determined by concomitant immunofluorescence.In normal pancreas, MMc positive for endocrine, exocrine, duct and acinar markers were identified suggesting that these cells are derived from maternal progenitors. Increased frequencies of MMc were observed in type 1 diabetes pancreas (p = 0.03 with particular enrichment in the insulin positive fraction (p = 0.01. MMc did not contribute to infiltrating immune cells or Ki67+ islet cell populations in type 1 diabetes.These studies provide support for the hypothesis that MMc in human pancreas are derived from pancreatic precursors. Increased frequencies of MMc beta cells may contribute to the initiation of autoimmunity or to tissue repair but do not infiltrate islets in type 1 diabetes.

  16. Characterization of biomaterial-free cell sheets cultured from human oral mucosal epithelial cells.

    Science.gov (United States)

    Hyun, Dong Won; Kim, Yun Hee; Koh, Ah Young; Lee, Hyun Ju; Wee, Won Ryang; Jeon, Saewha; Kim, Mee Kum

    2017-03-01

    The purpose of this study was to report the characteristics of biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support, in vitro and after transplantation to limbal-deficient models. Human oral mucosal epithelial cells and limbal epithelial cells were cultured for 2 weeks, and the colony-forming efficiency (CFE) rates were compared. Markers of stem cells (p63), cell proliferation (Ki-67) and epithelial differentiation (cytokeratin; K1, K3, K4, K13) were observed in colonies and in biomaterial-free sheets. Biomaterial-free sheets which had been detached with 1% dispase or biomaterial-free sheets generated by fibrin support were transplanted to 12 limbal-deficient rabbit models. In vitro cell viability, in vivo stability and cytokeratin characteristics of biomaterial-free sheets were compared with those of sheets formed by fibrin-coated culture 1 week after transplantation. Mean CFE rate was significantly higher in human oral mucosal epithelial cells (44.8%) than in human limbal epithelial cells(17.7%). K3 and K4 were well expressed in both colonies and sheets. Biomaterial-free sheets had two to six layers of stratified cells and showed an average of 79.8% viable cells in the sheets after detachment. Cytokeratin expressions of biomaterial-free sheets were comparable to those of sheets cultured by fibrin support, in limbal-deficient models. Both p63 and Ki-67 were well expressed in colonies, isolated sheets and sheets transplanted to limbal-deficient models. Our results suggest that biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support can be an alternative option for cell therapy in use for the treatment of limbal-deficient diseases. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Membrane-Type 1 Matrix Metalloproteinase Downregulates Fibroblast Growth Factor-2 Binding to the Cell Surface and Intracellular Signaling.

    Science.gov (United States)

    Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo

    2015-02-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular, and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1- MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell's biological response to FGF-2. © 2014 Wiley Periodicals, Inc.

  18. Complementation of human immunodeficiency virus type 1 vif mutants in some CD4+ T-cell lines.

    Science.gov (United States)

    Hevey, M; Donehower, L A

    1994-09-01

    The viral infectivity factor gene, vif of human immunodeficiency virus type 1 (HIV-1), is required for full infectivity in most T-cell lines. The replication kinetics exhibited by these mutants has been shown to be cell type-dependent. In H9 cells as well as primary lymphocytes, vif mutants are incapable of establishing infection. This has led to classification of these cell types as non-permissive for vif mutant replication. The T-cell lines Sup T1 and C8166 are able to replicate the vif mutant virus, leading to their classification as permissive for vif mutant replication. In this study, four cell lines (Sup T1, C8166, Molt 4 Clone 8, and A3.01) were tested for their ability to replicate vif mutant virus derived from two different strains of HIV-1 (HXB2 and NL4-3) that had been passaged on various cell lines. Although the kinetics of initial infection was delayed in all cells, by the second passage of vif mutant virus on Sup T1 or Molt 4 cells the kinetics of replication were identical to wild type virus. In contrast, mutant virus displayed delayed replication kinetics in C8166 and A3.01 cells in both initial and subsequent passages. In addition, the levels of viral DNA in infected Sup T1 cells were similar for delta vif and wild type virus, but in C8166 cells delta vif virus DNA levels were reduced compared to wild type virus. These results argue that in Sup T1 and Molt 4 cells there is a factor present that is able to complement the defect in vif mutant viruses which is absent or inefficient in its activity in C8166 and A3.01 cells.

  19. Inhibition of EV71 by curcumin in intestinal epithelial cells

    Science.gov (United States)

    Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections. PMID:29370243

  20. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  1. The keratin-binding protein Albatross regulates polarization of epithelial cells

    OpenAIRE

    Sugimoto, Masahiko; Inoko, Akihito; Shiromizu, Takashi; Nakayama, Masanori; Zou, Peng; Yonemura, Shigenobu; Hayashi, Yuko; Izawa, Ichiro; Sasoh, Mikio; Uji, Yukitaka; Kaibuchi, Kozo; Kiyono, Tohru; Inagaki, Masaki

    2008-01-01

    The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown o...

  2. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  3. The Regulated Secretory Pathway in CD4+ T cells Contributes to Human Immunodeficiency Virus Type-1 Cell-to-Cell Spread at the Virological Synapse

    Science.gov (United States)

    Jolly, Clare; Welsch, Sonja; Michor, Stefanie; Sattentau, Quentin J.

    2011-01-01

    Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1) at the virological synapse (VS) is an efficient mode of dissemination between CD4+ T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4+ T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS). Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC) and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL) and we show that the HIV-1 envelope glycoprotein (Env) localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4+ T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4+ T cells to enhance its dissemination. PMID:21909273

  4. The regulated secretory pathway in CD4(+ T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse.

    Directory of Open Access Journals (Sweden)

    Clare Jolly

    2011-09-01

    Full Text Available Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1 at the virological synapse (VS is an efficient mode of dissemination between CD4(+ T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4(+ T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS. Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL and we show that the HIV-1 envelope glycoprotein (Env localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4(+ T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4(+ T cells to enhance its dissemination.

  5. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...... neutralization of T-cell line-adapted HIV-1 is incremental rather than all or none and that each MAb binding an Env oligomer reduces the likelihood of infection....

  6. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... are coexpressed. By the coexpression of Env glycoproteins that either can or cannot bind a neutralizing MAb in an env transcomplementation assay, virions were generated in which the proportion of MAb binding sites could be regulated. As the proportion of MAb binding sites in Env chimeric virus increased, MAb...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...

  7. Identification of B-Cell Epitope of Dengue Virus Type 1 and Its Application in Diagnosis of Patients

    OpenAIRE

    Wu, Han-Chung; Huang, Yue-Ling; Chao, Ting-Ting; Jan, Jia-Tsrong; Huang, Jau-Ling; Chiang, Hsien-Yuan; King, Chwan-Chuen; Shaio, Men-Fang

    2001-01-01

    Using a serotype-specific monoclonal antibody (MAb) of dengue virus type 1 (DEN-1), 15F3-1, we identified the B-cell epitope of DEN-1 from a random peptide library displayed on phage. Fourteen immunopositive phage clones that bound specifically to MAb 15F3-1 were selected. These phage-borne peptides had a consensus motif of HxYaWb (a = S/T, b = K/H/R) that mimicked the sequence HKYSWK, which corresponded to amino acid residues 111 to 116 of the nonstructural protein 1 (NS1) of DEN-1. Among th...

  8. Immunoregulation by airway epithelial cells (AECs against respiratory virus infection

    Directory of Open Access Journals (Sweden)

    Yan YAN

    2017-11-01

    Full Text Available The respiratory tract is primary contact site of the body and environment, and it is ventilated by 10-20 thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbes, which contain the disease-causing pathogens. Airway epithelial cells (AECs are known to have innate sensor functions, which are similar to the "professional" immune cells, such as alveolar macrophage and sub- or intra-epithelial dendritic cells (DCs. Thus AECs are able to detect invading microbial danger including different types of respiratory viruses, and mount a potent host response, for example, activating type Ⅰ interferon signaling pathway genes. To avoid chronic inflammation and maintain the immunological homeostasis, the pulmonary system has developed intrinsic mechanisms to control local immune responses. Most recently, the role of AECs in control of local immunity has gained much attention, as 1 AECs express the pattern recognition receptors (PRRs, such as Toll-like receptors, retinoic acid inducible gene Ⅰ (RIG-I-like receptor, and so on, thus AECs are equipped to participate in innate detection of microbial encounter; 2 To keep immunological homeostasis in the respiratory tract, AECs behave not only as innate immune sensors but also as immune modulators in parallel, through modulating the sensitivity of innate immune sensing of both AECs per se and sub- or intra-epithelial immune cells; 3 Loss of modularity capacity of AECs might be involved in the development of chronic airway diseases. In present review, how the AECs act will be intensively discussed in response to respiratory viruses and modulate the local immunity through cis- and trans-factors (direct and indirect factors, as well as the consequence of impairment of this control of local immunity, in the development and exacerbation of airway diseases, such as acute and chronic rhinosinusitis. DOI: 10.11855/j.issn.0577-7402.2017.10.02

  9. Investigating the role of T-cell avidity and killing efficacy in relation to type 1 diabetes prediction.

    Directory of Open Access Journals (Sweden)

    Anmar Khadra

    2011-05-01

    Full Text Available During the progression of the clinical onset of Type 1 Diabetes (T1D, high-risk individuals exhibit multiple islet autoantibodies and high-avidity T cells which progressively destroy beta cells causing overt T1D. In particular, novel autoantibodies, such as those against IA-2 epitopes (aa1-577, had a predictive rate of 100% in a 10-year follow up (rapid progressors, unlike conventional autoantibodies that required 15 years of follow up for a 74% predictive rate (slow progressors. The discrepancy between these two groups is thought to be associated with T-cell avidity, including CD8 and/or CD4 T cells. For this purpose, we build a series of mathematical models incorporating first one clone then multiple clones of islet-specific and pathogenic CD8 and/or CD4 T cells, together with B lymphocytes, to investigate the interaction of T-cell avidity with autoantibodies in predicting disease onset. These models are instrumental in examining several experimental observations associated with T-cell avidity, including the phenomenon of avidity maturation (increased average T-cell avidity over time, based on intra- and cross-clonal competition between T cells in high-risk human subjects. The model shows that the level and persistence of autoantibodies depends not only on the avidity of T cells, but also on the killing efficacy of these cells. Quantification and modeling of autoreactive T-cell avidities can thus determine the level of risk associated with each type of autoantibodies and the timing of T1D disease onset in individuals that have been tested positive for these autoantibodies. Such studies may lead to early diagnosis of the disease in high-risk individuals and thus potentially serve as a means of staging patients for clinical trials of preventive or interventional therapies far before disease onset.

  10. Epitopes recognized by CBV4 responding T cells: effect of type 1 diabetes and associated HLA-DR-DQ haplotypes

    International Nuclear Information System (INIS)

    Marttila, Jane; Hyoety, Heikki; Naentoe-Salonen, Kirsti; Simell, Olli; Ilonen, Jorma

    2004-01-01

    The present study aimed at characterizing the epitopes recognized by coxsackievirus B4 (CBV4)-specific T-cell lines established from 23 children with type 1 diabetes (T1D) and 29 healthy children with T1D risk-associated HLA genotypes. Responsiveness to VP1 region was dependent on the specific infection history as 55% of the T-cell lines from donors with neutralizing antibodies to CBV serotypes responded to VP1 peptides compared to none of the T-cell lines from other donors (P = 0.01). The pattern of recognized peptides was dependent of the HLA genotype. Forty-two percent of the T-cell lines from donors carrying the HLA-(DR4)-DQB1*0302 haplotype responded to VP1 peptides 71-80 compared to none of the T-cell lines from donors without this haplotype (P = 0.02). No evidence for the existence of diabetes-specific epitopes was found. Only few epitopes were exclusive recognized by T cells from diabetic children, and in each case only one or two T-cell lines were responding

  11. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Bettina Schaible

    Full Text Available Pseudomonas aeruginosa (P. aeruginosa is an opportunistic pathogen commonly associated with lung and wound infections. Hypoxia is a frequent feature of the microenvironment of infected tissues which induces the expression of genes associated with innate immunity and inflammation in host cells primarily through the activation of the hypoxia-inducible factor (HIF and Nuclear factor kappaB (NF-κB pathways which are regulated by oxygen-dependent prolyl-hydroxylases. Hypoxia also affects virulence and antibiotic resistance in bacterial pathogens. However, less is known about the impact of hypoxia on host-pathogen interactions such as bacterial adhesion and infection. In the current study, we demonstrate that hypoxia decreases the internalization of P. aeruginosa into cultured epithelial cells resulting in decreased host cell death. This response can also be elicited by the hydroxylase inhibitor Dimethyloxallyl Glycine (DMOG. Reducing HIF-2α expression or Rho kinase activity diminished the effects of hypoxia on P. aeruginosa infection. Furthermore, in an in vivo pneumonia infection model, application of DMOG 48 h before infection with P. aeruginosa significantly reduced mortality. Thus, hypoxia reduces P. aeruginosa internalization into epithelial cells and pharmacologic manipulation of the host pathways involved may represent new therapeutic targets in the treatment of P. aeruginosa infection.

  12. Aquaporin 2 promotes cell migration and epithelial morphogenesis.

    Science.gov (United States)

    Chen, Ying; Rice, William; Gu, Zhizhan; Li, Jian; Huang, Jianmin; Brenner, Michael B; Van Hoek, Alfred; Xiong, Jianping; Gundersen, Gregg G; Norman, Jim C; Hsu, Victor W; Fenton, Robert A; Brown, Dennis; Lu, Hua A Jenny

    2012-09-01

    The aquaporin 2 (AQP2) water channel, expressed in kidney collecting ducts, contributes critically to water homeostasis in mammals. Animals lacking or having significantly reduced levels of AQP2, however, have not only urinary concentrating abnormalities but also renal tubular defects that lead to neonatal mortality from renal failure. Here, we show that AQP2 is not only a water channel but also an integrin-binding membrane protein that promotes cell migration and epithelial morphogenesis. AQP2 expression modulates the trafficking and internalization of integrin β1, facilitating its turnover at focal adhesions. In vitro, disturbing the interaction between AQP2 and integrin β1 by mutating the RGD motif led to reduced endocytosis, retention of integrin β1 at the cell surface, and defective cell migration and tubulogenesis. Similarly, in vivo, AQP2-null mice exhibited significant retention of integrin β1 at the basolateral membrane and had tubular abnormalities. In summary, these data suggest that the water channel AQP2 interacts with integrins to promote renal epithelial cell migration, contributing to the structural and functional integrity of the mammalian kidney.

  13. Beta-cell, thyroid, gastric, adrenal and coeliac autoimmunity and HLA-DQ types in type 1 diabetes

    Science.gov (United States)

    De block, C E M; De leeuw, I H; Vertommen, J J F; Rooman, R P A; Du Caju, M V L; Van Campenhout, C M; Weyler, J J; Winnock, F; Van Autreve, J; Gorus, F K

    2001-01-01

    The autoimmune attack in type 1 diabetes is not only targeted to β cells. We assessed the prevalence of thyroid peroxidase (aTPO), parietal cell (PCA), antiadrenal (AAA) and endomysial antibodies (EmA-IgA), and of overt autoimmune disease in type 1 diabetes, in relation to gender, age, duration of disease, age at onset, β-cell antibody status (ICA, GADA, IA2A) and HLA-DQ type. Sera from 399 type 1 diabetic patients (M/F: 188/211; mean age: 26 ± 16 years; duration: 9 ± 8 years) were tested for ICA, PCA, AAA and EmA-IgA by indirect immunofluorescence, and for IA2A (tyrosine phosphatase antibodies), GADA (glutamic acid decarboxylase-65 antibodies) and aTPO by radiobinding assays. The prevalence rates were: GADA 70%; IA2A, 44%; ICA, 39%; aTPO, 22%; PCA, 18%; EmA-IgA, 2%; and AAA, 1%. aTPO status was determined by female gender (β = − 1·15, P = 0·002), age (β = 0·02, P = 0·01) and GADA + (β = 1·06, P = 0·02), but not by HLA-DQ type or IA2A status. Dysthyroidism (P < 0·0001) was more frequent in aTPO + subjects. PCA status was determined by age (β = 0·03, P = 0·002). We also observed an association between PCA + and GADA + (OR = 1·9, P = 0·049), aTPO + (OR = 1·9, P = 0·04) and HLA DQA1*0501-DQB1*0301 status (OR = 2·4, P = 0·045). Iron deficiency anaemia (OR = 3·0, P = 0·003) and pernicious anaemia (OR = 40, P < 0·0001) were more frequent in PCA + subjects. EmA-IgA + was linked to HLA DQA1*0501-DQB1*0201 + (OR = 7·5, P = 0·039), and coeliac disease was found in three patients. No patient had Addison's disease. In conclusion, GADA but not IA2A indicate the presence of thyrogastric autoimmunity in type 1 diabetes. aTPO have a female preponderance, PCA are weakly associated with HLA DQA1*0501-DQB1*0301 and EmA-IgA + with HLA DQA1*0501-DQB1*0201. PMID:11703366

  14. Renal response assayed by survival of tubule epithelial cells

    International Nuclear Information System (INIS)

    Withers, H.R.; Mason, K.A.

    1985-01-01

    The epithelium of the renal tubules is essentially non-proliferative and hence is slow to be depleted after irradiation. Ultimately, however, depletion occurs. If cells survive within a tubule they regenerate the epithelial lining. After higher doses, e.g. greater than 12 Gy, some tubules are completely depopulated of epithelium giving rise to a histological picture of empty tubules interspersed with regenerated tubules. It is assumed that nephrons are all essentially the same size, that cell survival is a random probability and that, therefore, when a proportion of tubules are completely devoid of epithelium, those that aren't have regenerated from one or a few cells, the distribution of numbers of survivors per tubule following Poisson statistics. Based on these assumptions it is possible to determine a dose-survival relationship for renal tubule cells

  15. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob

    2003-01-01

    on monolayers of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium. MATERIALS AND METHODS: Colonic biopsies from four UC patients and four controls were examined by cryoimmuno......-electron microscopy using ICAM-1-antibodies. In four other controls, the epithelium was isolated from colonic biopsies, embedded in collagen, and evaluated similarly. Isolated crypts and cultured cancer cells were stimulated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha). RESULTS: ICAM-1......, both colonocytes and HT29 cells were capable of expressing ICAM-1 on their apical membranes in response to supraphysiologic cytokine concentrations. These observations question the justification of extrapolating observations from colon cancer cell lines to in vivo inflammatory conditions....

  16. Circulating type-1 anti-tumor CD4+ T cells are preferentially pro-apoptotic in cancer patients

    Directory of Open Access Journals (Sweden)

    Amy K. Wesa

    2014-09-01

    Full Text Available Melanoma patients frequently exhibit a deficiency in Type-1 (but not Type-2 or regulatory CD4+ T cell responses against tumor-associated antigens (TAA, which may limit protection against cancer progression or responsiveness to immunotherapy in these individuals. Since such deficiency was acutely evident in patients with active disease, where chronic stimulation of anti-tumor CD4+ T cells would be expected and activation-induced cell death may be prevalent, we employed MHC Class II-peptide tetramers to characterize the frequency and apoptotic status of TAA- vs. influenza (FluM1 virus-specific CD4+ T cells in the peripheral blood of HLA-DR*0401+ patients with melanoma or renal cell carcinoma (RCC. We observed that Flu-specific CD4+ T cells ranged from 0.17 to 3.89%, while up to approximately 1% of CD4+ T cells reacted against individual TAA epitopes derived from the EphA2 or MAGE-6 proteins. The frequencies of EphA2 and MAGE-6-specific CD4+ T cells in patients were significantly correlated with active disease and patient gender (i.e. females > males, while frequencies of Flu-specific CD4+ T cells were distributed within a normal range in all patients. Notably, patient CD4+ T cells reactive with MHC class II-TAA (but not MHC class II-Flu tetramers were significantly enriched for a pro-apoptotic (Annexin-V+ phenotype, particularly amongst the Th1 (T-bet+ subset. These results suggest that the preferential sensitivity of TAA (but not viral-specific CD4+ Th1 cells to apoptosis in melanoma patients with active disease will need to be overcome for optimal clinical benefit of immunotherapeutic approaches to be realized.

  17. MAST CELLS AND ANGIOGENESIS IN ORAL EPITHELIAL DYSPLASTIC LESIONS AND ORAL SQUAMOUS CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Veda, Marla Vinay

    2015-01-01

    Full Text Available Background: The progression of oral epithelial dysplastic lesions into oral squamous cell carcinoma is characterized by an ‘angiogenic switch’ which is characterized by an increase in neo-vascularization in the sub-epithelial lamina propria which can be considered an indicator of malignant transformation. Mast cells are a rich source of various angiogenic factors. Moreover mast cells secrete various proteolytic enzymes which degrade the extracellular matrix and create space for the developing blood vessels. Aims: This study was undertaken to determine the relationship between mast cell density and microvessel density in normal oral mucosa, oral epithelial dysplasia and oral squamous cell carcinoma and to find out whether any correlation exists between these two parameters. Material and Methods: This retrospective study was performed using formalin fixed, paraffin embedded tissues of previously diagnosed cases of oral epithelial dysplasia and oral squamous cell carcinoma. Mast cells were stained using toluidine blue, whereas in the capillaries, immunohistochemical staining technique was performed using mouse monoclonal antibody against CD34. Results: Mast cell density and microvessel density were higher in oral epithelial dysplasia and in oral squamous cell carcinoma compared to the normal mucosa. However, statistically significant positive correlation was noted only in oral epithelial dysplasia Conclusion: The above results probably indicate a role of mast cells in ‘angiogenic switch’. These angiogenic factors secreted by mast cells promote angiogenesis either directly by stimulating the migration and/or proliferation of mast cells or indirectly through degradation of extracellular matrix. Targeting the mast cells may contribute in preventing the progression of the lesion.

  18. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    International Nuclear Information System (INIS)

    Roberts, Joan E.; Wielgus, Albert R.; Boyes, William K.; Andley, Usha; Chignell, Colin F.

    2008-01-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 μM. Exposure to either UVA or visible light in the presence of > 5 μM fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 μM lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein α-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C 60 (OH) 22-26 is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo

  19. Aspects of cell proliferation in oral epithelial dysplastic lesions.

    Science.gov (United States)

    Oliver, R J; MacDonald, D G; Felix, D H

    2000-02-01

    There is a need for objective methods of assessment of oral epithelial precancerous lesions and reliable markers for the prediction of malignant change in these lesions. Cell proliferation was examined in 20 dysplastic lesions from the tongue and floor of mouth using bromodeoxyuridine (BrdU) and Ki-67, and a histological compartment analysis was performed. Half of a fresh biopsy from each case was incubated in BrdU for 15 min, the other half was routinely processed and used for Ki-67 analysis. Sections from each block were immunohisto chemically stained with antibodies against BrdU and Ki-67. Dysplasia was graded according to the method of Smith & Pindborg. The BrdU labelling index (LI) and the growth fraction (GF), assessed by the use of Ki-67, was quantified and expressed as units per millimetre basement membrane length (BL) and per 100 total nucleated cells (TNC). The mean LI/TNC was 10.87 (SD 3.65) and the mean LI/BL was 51.55 (SD 20.75). The mean GF/TNC was 26.66 (SD 17.78) and GF/BL was 157.07 (SD 125.84). The mean epithelial thickness was 229.09 microm (SD 104.73). The LI/BL correlated with the atypia score and with the GF/BL. The progenitor compartment sizes also correlated with the atypia scores. The BrdU labelling index provides a further objective measurement of oral epithelial dysplasia and the progenitor compartments were large, implying that basal cell hyperplasia is a significant component of the dysplasia.

  20. Epithelial to mesenchymal transition in human endocrine islet cells.

    Directory of Open Access Journals (Sweden)

    José Luis Moreno-Amador

    Full Text Available β-cells undergo an epithelial to mesenchymal transition (EMT when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells.To investigate whether EMT takes place in the endocrine non-β cells of human islets.Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer.Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1 and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4. The endocrine non-β-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2. The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01, and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05. Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers.In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a β-cell phenotype.

  1. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  2. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target.

    Science.gov (United States)

    Etxabe, A; Lara-Castillo, M C; Cornet-Masana, J M; Banús-Mulet, A; Nomdedeu, M; Torrente, M A; Pratcorona, M; Díaz-Beyá, M; Esteve, J; Risueño, R M

    2017-11-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous neoplasia with poor outcome, organized as a hierarchy initiated and maintained by a sub-population with differentiation and self-renewal capacities called leukemia stem cells (LSCs). Although currently used chemotherapy is capable of initially reducing the tumor burden producing a complete remission, most patients will ultimately relapse and will succumb to their disease. As such, new therapeutic strategies are needed. AML cells differentially expressed serotonin receptor type 1 (HTR1) compared with healthy blood cells and the most primitive hematopoietic fraction; in fact, HTR1B expression on AML patient samples correlated with clinical outcome. Inhibition of HTR1s activated the apoptosis program, induced differentiation and reduced the clonogenic capacity, while minimal effect was observed on healthy blood cells. In vivo regeneration capacity of primary AML samples was disrupted upon inhibition of HTR1. The self-renewal capacity remaining in AML cells upon in vivo treatment was severely reduced as demonstrated by serial transplantation. Thus, treatment with HTR1 antagonists showed antileukemia effect, especially anti-LSC activity while sparing healthy blood cells. Our results highlight the importance of HTR1 in leukemogenesis and LSC survival and identify this receptor family as a new target for therapy in AML with prognostic value.

  3. Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue.

    Science.gov (United States)

    Blume, E D; Taylor, C T; Lennon, P F; Stahl, G L; Colgan, S P

    1998-09-15

    Endothelial cells play a central role in the coordination of the inflammatory response. In mucosal tissue, such as the lung and intestine, endothelia are anatomically positioned in close proximity to epithelia, providing the potential for cell-cell crosstalk. Thus, in this study endothelial-epithelial biochemical crosstalk pathways were studied using a human intestinal crypt cell line (T84) grown in noncontact coculture with human umbilical vein endothelia. Exposure of such cocultures to endothelial-specific agonists (LPS) resulted in activation of epithelial electrogenic Cl- secretion and vectorial fluid transport. Subsequent experiments revealed that in response to diverse stimuli (LPS, IL-1alpha, TNF-alpha, hypoxia), endothelia produce and secrete a small, stable epithelial secretagogue into conditioned media supernatants. Further experiments identified this secretagogue as 6-keto-PGF1alpha, a stable hydrolysis product of prostacyclin (PGI2). Results obtained with synthetic prostanoids indicated that 6-keto-PGF1alpha (EC50 = 80 nM) and PGI2 stable analogues (EC50 = 280 nM) activate the same basolaterally polarized, Ca2+-coupled epithelial receptor. In summary, these findings reveal a previously unappreciated 6-keto-PGF1alpha receptor on intestinal epithelia, the ligation of which results in activation of electrogenic Cl- secretion. In addition, these data reveal a novel action for the prostacyclin hydrolysis product 6-keto-PGF1alpha and provide a potential endothelial- epithelial crosstalk pathway in mucosal tissue.

  4. Ouabain Increases Gap Junctional Communication in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Arturo Ponce

    2014-11-01

    Full Text Available Background/Aims: The finding that endogenous ouabain acts as a hormone prompted efforts to elucidate its physiological function. In previous studies, we have shown that 10 nM ouabain (i.e., a concentration within the physiological range modulates cell-cell contacts such as tight junctions and apical/basolateral polarity. In this study, we examined whether 10 nM ouabain affects another important cell-cell feature: gap junction communication (GJC. Methods: We employed two different approaches: 1 analysis of the cell-to-cell diffusion of neurobiotin injected into a particular MDCK cell (epithelial cells from dog kidneys in a confluent monolayer by counting the number of neighboring cells reached by the probe and 2 measurement of the electrical capacitance. Results: We found that 10 nM ouabain increase GJC by 475% within 1 hour. The Na+-K+-ATPase acts as a receptor of ouabain. In previous works we have shown that ouabain activates c-Src and ERK1/2 in 1 hour; in the present study we show that the inhibition of these proteins block the effect of ouabain on GJC. This increase in GJC does not require synthesis of new protein components, because the inhibitors cycloheximide and actinomycin D did not affect this phenomenon. Using silencing assays we also demonstrate that this ouabain-induced enhancement of GJC involves connexins 32 and 43. Conclusion: Ouabain 10 nM increases GJC in MDCK cells.

  5. The Receptor for Advanced Glycation Endproducts (RAGE) drives T cell survival and inflammation in Type 1 diabetes mellitus

    Science.gov (United States)

    Durning, Sean P.; Preston-Hurlburt, Paula; Clark, Paul R.; Xu, Ding; Herold, Kevan C.

    2016-01-01

    The ways in which environmental factors participate in the progression of autoimmune diseases are not known. After initiation, it takes years before patients at risk for type 1 diabetes (T1D) develop hyperglycemia. The receptor for advanced glycated endproducts (RAGE) is a scavenger receptor of the immunoglobulin family that binds damage associated molecular patterns (DAMPs) and advanced glycated endproducts (AGEs) and can trigger cell activation. We previously found constitutive intracellular RAGE expression in lymphocytes from patients with T1D. Herein, we show that there is increased RAGE expression in T cells from at-risk euglycemic relatives who progress to T1D compared to healthy control subjects, and in the CD8+ T cells in the at-risk relatives who do vs those who do not progress to T1D. Detectable levels of the RAGE ligand HMGB1 were present in serum from at-risk subjects and patients with T1D. Transcriptome analysis of RAGE+ vs RAGE- T cells from patients with T1D showed differences in signaling pathways associated with increased cell activation and survival‥ Additional markers for effector memory cells and inflammatory function were elevated in the RAGE+ CD8+ cells of T1D patients and at-risk relatives of patients prior to disease onset. These studies suggest that expression of RAGE in T cells of subjects progressing to disease predates dysglycemia. These findings imply that RAGE expression enhances the inflammatory function of T cells and its increased levels observed in T1D patients may account for the chronic autoimmune response when DAMPs are released following cell injury and killing. PMID:27655844

  6. Phosphatidylserine-Liposomes Promote Tolerogenic Features on Dendritic Cells in Human Type 1 Diabetes by Apoptotic Mimicry

    Directory of Open Access Journals (Sweden)

    Silvia Rodriguez-Fernandez

    2018-02-01

    Full Text Available Type 1 diabetes (T1D is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC generation. These liposomes contained phosphatidylserine (PS—the main signal of the apoptotic cell membrane—and β-cell autoantigens. To move toward a clinical application, PS-liposomes with optimum size and composition for phagocytosis were loaded with human insulin peptides and tested on DCs from patients with T1D and control age-related subjects. PS accelerated phagocytosis of liposomes with a dynamic typical of apoptotic cell clearance, preserving DCs viability. After PS-liposomes phagocytosis, the expression pattern of molecules involved in efferocytosis, antigen presentation, immunoregulation, and activation in DCs concurred with a tolerogenic functionality, both in patients and control subjects. Furthermore, DCs exposed to PS-liposomes displayed decreased ability to stimulate autologous T cell proliferation. Moreover, transcriptional changes in DCs from patients with T1D after PS-liposomes phagocytosis pointed to an immunoregulatory prolife. Bioinformatics analysis showed 233 differentially expressed genes. Genes involved in antigen presentation were downregulated, whereas genes pertaining to tolerogenic/anti-inflammatory pathways were mostly upregulated. In conclusion, PS-liposomes phagocytosis mimics efferocytosis and leads to phenotypic and functional changes in human DCs, which are accountable for tolerance induction. The herein reported results reinforce the potential of this novel immunotherapy to re-establish immunological

  7. Circulating Differentially Methylated Amylin DNA as a Biomarker of β-Cell Loss in Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    John A Olsen

    Full Text Available In type 1 diabetes (T1D, β-cell loss is silent during disease progression. Methylation-sensitive quantitative real-time PCR (qPCR of β-cell-derived DNA in the blood can serve as a biomarker of β-cell death in T1D. Amylin is highly expressed by β-cells in the islet. Here we examined whether demethylated circulating free amylin DNA (cfDNA may serve as a biomarker of β-cell death in T1D. β cells showed unique methylation patterns within the amylin coding region that were not observed with other tissues. The design and use of methylation-specific primers yielded a strong signal for demethylated amylin in purified DNA from murine islets when compared with other tissues. Similarly, methylation-specific primers detected high levels of demethylated amylin DNA in human islets and enriched human β-cells. In vivo testing of the primers revealed an increase in demethylated amylin cfDNA in sera of non-obese diabetic (NOD mice during T1D progression and following the development of hyperglycemia. This increase in amylin cfDNA did not mirror the increase in insulin cfDNA, suggesting that amylin cfDNA may detect β-cell loss in serum samples where insulin cfDNA is undetected. Finally, purified cfDNA from recent onset T1D patients yielded a high signal for demethylated amylin cfDNA when compared with matched healthy controls. These findings support the use of demethylated amylin cfDNA for detection of β-cell-derived DNA. When utilized in conjunction with insulin, this latest assay provides a comprehensive multi-gene approach for the detection of β-cell loss.

  8. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  9. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  10. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia.

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A; Zabinski, Mary C; Yuen, Constance K; Lung, Wing Yi; Gower, Adam C; Belkina, Anna C; Ramirez, Maria I; Deng, Jane C; Quinton, Lee J; Jones, Matthew R; Mizgerd, Joseph P

    2016-09-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.

  11. The Four-Way Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer Cells in Type 1 Diabetes Progression

    Directory of Open Access Journals (Sweden)

    Michele L. Semeraro

    2017-09-01

    Full Text Available Natural killer (NK cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO, and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO, related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which

  12. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  13. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    Science.gov (United States)

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  14. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity

    Science.gov (United States)

    Fölsch, Heike

    2015-01-01

    Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B. PMID:27057418

  16. Analyses of herpes simplex virus type 1 latency and reactivation at the single cell level using fluorescent reporter mice

    Science.gov (United States)

    Nelson, D.; Nicoll, M. P.; Connor, V.

    2016-01-01

    Herpes simplex virus type 1 (HSV-1) establishes a latent infection in sensory neurons from which the virus can periodically reactivate. Whilst latency establishment is thought to result from a failure to express immediate-early genes, we have previously shown that subpopulations of the latent neuronal reservoir have undergone lytic promoter activation prior to latency establishment. In the present study, we have investigated the biological properties of such latently infected neuronal subpopulations using Ai6 fluorescent reporter mice. Using this system we have determined that prior ICP0 or TK promoter activation does not correlate with increased latent virus DNA loads within individual cells and that neurons with evidence of historical lytic cycle promoter activity exhibit a comparable frequency of reactivation to that of the general latent cell population. Comparison of viral DNA content within cells harbouring latent HSV-1 genomes and those undergoing the earliest stages of reactivation has revealed that reactivation can initiate from cells harbouring a wide range of HSV-1 genome copies, but that exiting latency is biased towards cells bearing higher latent virus DNA loads. PMID:26694770

  17. Contribution of MS-based proteomics to the understanding of Herpes Simplex Virus type 1 interaction with host cells

    Directory of Open Access Journals (Sweden)

    Enrique eSantamaría

    2012-03-01

    Full Text Available Like other DNA viruses, Herpes Simplex Virus type 1 (HSV-1 replicates and proliferates in host cells continuously modulating the host molecular environment. Following a sophisticated temporal expression pattern, HSV-1 encodes at least 89 multifunctional proteins that interplay with and modify the host cell proteome. During the last decade, advances in mass spectrometry applications coupled to the development of proteomic separation methods have allowed to partially monitor the impact of HSV-1 infection in human cells. In this review, we discuss the current use of different proteome fractionation strategies to define HSV-1 targets on two major application areas: i viral protein interactomics to decipher viral protein interactions in host cells and ii differential quantitative proteomics to analyse the virally induced changes in the cellular proteome. Moreover, we will also discuss the potential application of high throughput proteomic approaches to study global proteome dynamics and also post-translational modifications in HSV-1-infected cells, what will greatly improved our molecular knowledge of HSV-1 infection.

  18. DNA damage in Human Limbal Epithelial Cells expanded ex vivo.

    Directory of Open Access Journals (Sweden)

    Yolanda Lorenzo Corrales

    2015-04-01

    Full Text Available Limbal stem cell deficiency, secondary to insults and diseases, may be treated by transplantation of ex vivo engineered epithelial grafts. We here present preliminary data on levels of cellular DNA damage in grafts produced in two different types of culture medium. Cultures were initiated using corneo-limbal donor tissue after removal of the central area for transplant purposes. Explants (approx. 2x2 mm were positioned epithelial side down on tissue culture treated polyester membranes and expanded for four weeks in Dulbecco’s Modified Eagle Medium F12 Nutrient Mixture (Ham [DMEM/F12 (1:1] with either (1 H. medium; 10% human serum or (2 COM; 5% fetal bovine serum (FBS, Epidermal Growth Factor (EGF, insulin-transferrin-sodiumselenzine (ITS , cholera toxin-A, dimethyl sulfoxide (DMSO and hydrocortisone. Cells were dissociated using Trypsin-EDTA (0.05% for 30 min., the enzyme activity was inhibited by medium and serum. The cell suspension was transferred to tubes on ice and processed using the Comet Assay. Duplicate samples from each culture were analyzed in each assay by visual scoring. Using a fluorescence microscope, 100 comets (50 from each gel were classified into five categories, 0-4, representing increasing relative tail intensities. Summing the scores (0-4 of 100 comets therefore gives an overall score of between 0 and 400 arbitrary units. Preliminary data show some levels of DNA damage in cells dissociated from the grafts regardless of the type of culture medium used. Anyway more experiments with other donors have to be done to have some conclusions. Recent studies have shown that medium with human serum equally support production of grafts containing differentiated as well as undifferentiated cells suitable for clinical transplantation. Preliminary data from our experiments indicate that levels of molecular damage to the DNA do not increase in cells cultured in H. medium despite its lacks of complexity.

  19. Increased Levels of Type 1 Interferon in a Type 1 Diabetic Mouse Model Induce the Elimination of B Cells from the Periphery by Apoptosis and Increase their Retention in the Spleen

    Directory of Open Access Journals (Sweden)

    Badr Mohamed Badr

    2015-01-01

    Full Text Available Background: The autoimmune disease type 1 diabetes mellitus (T1D is associated with a defect in the immune response, which increases susceptibility to infection. We recently demonstrated that prolonged elevated levels of type 1 interferon (IFN induce lymphocyte exhaustion during T1D. Aims: In the present study, we further investigated the effect of blocking the type I IFN receptor signaling pathway on diabetic dyslipidemia, in which an abnormal lipid profile leads to the exhaustion of B cells and alteration of their distribution and functions. Methods: T1D was induced in a mouse model by an intraperitoneal injection of a single dose (60 mg/kg of streptozotocin (STZ. Three groups of mice were examined: a non-diabetic control group, a diabetic group and a diabetic group treated with an anti-IFN (alpha, beta and omega receptor 1 (IFNAR1 blocking antibody to block type I IFN signaling. Results: We observed that induction of T1D was accompanied by a marked destruction of β cells and a reduction in the insulin levels in the diabetic group. Diabetic mice exhibited many changes, including alterations in their lipid profiles, expansion of splenic B cells, increased caspase-3, -8 and -9 activity, and apoptosis in peripheral B cells. Blocking type 1 IFN signaling in diabetic mice significantly returned the insulin and lipid profiles to normal levels, subsequently restored the B cell distribution, and rescued the peripheral B cells from apoptosis. Conclusion: Our data suggest the potential role of type I IFN in mediating diabetic dyslipidemia and an exhausted state of B cells during T1D.

  20. Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J. W.; Bekker, C. P.; Voorhout, W. F.; Strous, G. J.; van der Ende, A.; Rottier, P. J.

    1994-01-01

    The transmissible gastroenteritis coronavirus (TGEV) infects the epithelial cells of the intestinal tract of pigs, resulting in a high mortality rate in piglets. This study shows the interaction of TGEV with a porcine epithelial cell line. To determine the site of viral entry, LLC-PK1 cells were

  1. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth ...

  2. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    NARCIS (Netherlands)

    Fatima, H.; Moeller, M.J.; Smeets, B.; Yang, H.C.; D'Agati, V.D.; Alpers, C.E.; Fogo, A.B.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This

  3. EGFR-Dependent Regulation of Matrix-Independent Epithelial Cell Survival. Addendum

    Science.gov (United States)

    2007-04-01

    cervical dysplasia, oral leukoplakia and lobular carcinoma of the breast may contain numerous clones of initiated or dysplastic cells, yet have an...Independent Epithelial Cell Survival PRINCIPAL INVESTIGATOR: Ulrich Rodeck, M.D. CONTRACTING ORGANIZATION: Thomas...2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EGFR-Dependent Regulation of Matrix-Independent Epithelial Cell Survival 5b. GRANT NUMBER

  4. Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells

    DEFF Research Database (Denmark)

    Ballard, S A; Williamson, M; Adler, B

    1986-01-01

    copenhageni did not adhere to epithelial cells at all within the experimental period of 24 h. The saprophytic Leptospira biflexa serovar patoc became attached non-specifically to inert glass surfaces as well as to the cells. The adhesion of leptospires to epithelial cells was not inhibited by homologous...

  5. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  6. Activation of type 1 cannabinoid receptor (CB1R promotes neurogenesis in murine subventricular zone cell cultures.

    Directory of Open Access Journals (Sweden)

    Sara Xapelli

    Full Text Available The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive, neurons and astrocytes. Stimulation of the CB1R by (R-(+-Methanandamide (R-m-AEA increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation, at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca(2+]i in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.

  7. Ionizing radiation response of primary normal human lens epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Hamada

    Full Text Available Whilst the cataractogenic potential of ionizing radiation has been known for over the past 120 years, little is known about radiation responses of lens cells. Our previous work was the first to evaluate the radiosensitivity of lens cells with the clonogenic assay, documenting that the survival of HLEC1 human lens epithelial cells is comparable to that of WI-38 human lung fibroblasts. Moreover, HLEC1 cells were found to contain subsets where irradiation stimulates proliferation or facilitates formation of abortive colonies with fewer cells than human fibroblasts. This study aims to gain insights into these mechanisms. Irradiation of HLEC1 cells with 10% survival dose caused a growth delay but did not reduce viability. HLEC1 cells at high cumulative population doubling level were more susceptible to radiogenic premature senescence than WI-38 cells. Concerning p53 binding protein 1 (53BP1 foci, HLEC1 cells harbored less spontaneous foci but more radiogenic foci than in WI-38 cells, and the focus number returned to spontaneous levels within 48 h postirradiation both in HLEC1 and WI-38. The chemical inhibition of DNA repair kinases ataxia telangiectasia mutated, DNA-dependent protein kinase or both delayed and attenuated the appearance and disappearance of radiogenic 53BP1 foci, increased radiogenic premature senescence and enhanced clonogenic inactivation. The DNA microarray analysis suggested both radiogenic stimulation and inhibition of cell proliferation. Treatment with conditioned medium from irradiated cells did not change growth and the plating efficiency of nonirradiated cells. These results partially explain mechanisms of our previous observations, such that unrepaired or incompletely repaired DNA damage causes a growth delay in a subset of HLEC1 cells without changing viability through induction of premature senescence, thereby leading to clonogenic inactivation, but that growth is stimulated in another subset via as yet unidentified

  8. Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Shen Gao

    Full Text Available The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77 as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44's location in the cell.

  9. The time has come to test the beta cell preserving effects of exercise in patients with new onset type 1 diabetes

    DEFF Research Database (Denmark)

    Narendran, Parth; Solomon, Thomas; Kennedy, Amy

    2015-01-01

    Type 1 diabetes is characterised by immune-mediated destruction of insulin-producing beta cells. Significant beta cell function is usually present at the time of diagnosis with type 1 diabetes, and preservation of this function has important clinical benefits. The last 30 years have seen a number...... for physical exercise as a therapy for the preservation of beta cell function in patients with newly diagnosed type 1 diabetes. We highlight possible mechanisms by which exercise could preserve beta cell function and then present evidence from other models of diabetes that demonstrate that exercise preserves...... beta cell function. We conclude by proposing that there is now a need for studies to explore whether exercise can preserve beta cell in patients newly diagnosed with type 1 diabetes....

  10. Sample size requirements for studies of treatment effects on beta-cell function in newly diagnosed type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    John M Lachin

    Full Text Available Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet, repeated 2-hour Mixed Meal Tolerance Tests (MMTT were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC of the C-peptide values. The natural log(x, log(x+1 and square-root (√x transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years and adults (18+ years. The sample size needed to detect a given relative (percentage difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1 and √x transformed values in terms of the original units of measurement (pmol/ml. Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab versus masked placebo. These results provide the information needed to

  11. Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients

    Science.gov (United States)

    Dotta, Francesco; Censini, Stefano; van Halteren, Astrid G. S.; Marselli, Lorella; Masini, Matilde; Dionisi, Sabrina; Mosca, Franco; Boggi, Ugo; Muda, Andrea Onetti; Prato, Stefano Del; Elliott, John F.; Covacci, Antonello; Rappuoli, Rino; Roep, Bart O.; Marchetti, Piero

    2007-01-01

    Type 1 diabetes is characterized by T cell-mediated autoimmune destruction of pancreatic β cells. Several studies have suggested an association between Coxsackie enterovirus seroconversion and onset of disease. However, a direct link between β cell viral infection and islet inflammation has not been established. We analyzed pancreatic tissue from six type 1 diabetic and 26 control organ donors. Immunohistochemical, electron microscopy, whole-genome ex vivo nucleotide sequencing, cell culture, and immunological studies demonstrated Coxsackie B4 enterovirus in specimens from three of the six diabetic patients. Infection was specific of β cells, which showed nondestructive islet inflammation mediated mainly by natural killer cells. Islets from enterovirus-positive samples displayed reduced insulin secretion in response to glucose and other secretagogues. In addition, virus extracted from positive islets was able to infect β cells from human islets of nondiabetic donors, causing viral inclusions and signs of pyknosis. None of the control organ donors showed signs of viral infection. These studies provide direct evidence that enterovirus can infect β cells in patients with type 1 diabetes and that infection is associated with inflammation and functional impairment. PMID:17360338

  12. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients.

    Science.gov (United States)

    Dotta, Francesco; Censini, Stefano; van Halteren, Astrid G S; Marselli, Lorella; Masini, Matilde; Dionisi, Sabrina; Mosca, Franco; Boggi, Ugo; Muda, Andrea Onetti; Del Prato, Stefano; Elliott, John F; Covacci, Antonello; Rappuoli, Rino; Roep, Bart O; Marchetti, Piero

    2007-03-20

    Type 1 diabetes is characterized by T cell-mediated autoimmune destruction of pancreatic beta cells. Several studies have suggested an association between Coxsackie enterovirus seroconversion and onset of disease. However, a direct link between beta cell viral infection and islet inflammation has not been established. We analyzed pancreatic tissue from six type 1 diabetic and 26 control organ donors. Immunohistochemical, electron microscopy, whole-genome ex vivo nucleotide sequencing, cell culture, and immunological studies demonstrated Coxsackie B4 enterovirus in specimens from three of the six diabetic patients. Infection was specific of beta cells, which showed nondestructive islet inflammation mediated mainly by natural killer cells. Islets from enterovirus-positive samples displayed reduced insulin secretion in response to glucose and other secretagogues. In addition, virus extracted from positive islets was able to infect beta cells from human islets of nondiabetic donors, causing viral inclusions and signs of pyknosis. None of the control organ donors showed signs of viral infection. These studies provide direct evidence that enterovirus can infect beta cells in patients with type 1 diabetes and that infection is associated with inflammation and functional impairment.

  13. Specific forms of BAFF favor BAFF receptor-mediated epithelial cell survival.

    Science.gov (United States)

    Lahiri, Ayan; Varin, Marie-Michèle; Le Pottier, Laëtitia; Pochard, Pierre; Bendaoud, Boutahar; Youinou, Pierre; Pers, Jacques-Olivier

    2014-06-01

    Although B cell activating factor (BAFF) and its receptor BR3 are produced and expressed by many cells, their role has been restricted to the lymphocyte lineage. Using various techniques (RT-PCR, indirect immunofluorescence, flow cytometry analysis), we observed the expression of BR3 and the production of BAFF by the human salivary gland cell line, by epithelial cells from biopsies of Sjögren's syndrome patients and their controls, but also by salivary gland epithelial cells in culture. To decipher the role of BAFF and BR3 on epithelial cells, BAFF and BR3 were neutralized by blocking antibodies or RNA specific inhibitor (siBR3) and epithelial cell survival was analyzed. Blocking BR3 promotes epithelial cell apoptosis in vitro. This apoptosis resulted in the nuclear translocation of PKCδ. BAFF neutralization by various anti-BAFF antibodies leads to different effects depending on the antibody used suggesting that only some forms of BAFF are required for epithelial cell survival. Our study demonstrates that BR3 is involved in the survival of cultured epithelial cells due to an autocrine effect of BAFF. It also suggests that epithelial cells produce different forms of BAFF and that only some of them are responsible for this effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation.

    Science.gov (United States)

    Adler, K B; Fischer, B M; Wright, D T; Cohn, L A; Becker, S

    1994-05-28

    Epithelial cells lining respiratory airways can participate in inflammation in a number of ways. They can act as target cells, responding to exposure to a variety of inflammatory mediators and cytokines by altering one or several of their functions, such as mucin secretion, ion transport, or ciliary beating. Aberrations in any of these functions can affect local inflammatory responses and compromise pulmonary defense. For example, oxidant stress can increase secretion of mucin and depress ciliary beating efficiency, thereby affecting the ability of the mucociliary system to clear potentially pathogenic microbial agents. Recent studies have indicated that airway epithelial cells also can act as "effector" cells, synthesizing and releasing cytokines, lipid mediators, and reactive oxygen species in response to a number of pathologically relevant stimuli, thereby contributing to inflammation. Many of these epithelial-derived substances can act locally, affecting both neighboring cells and tissues, or, via autocrine or paracrine mechanisms, affect structure and function of the epithelial cells themselves. Studies in our laboratories utilized cell cultures of both human and guinea pig tracheobronchial and nasal epithelial cells, and isolated human nasal epithelial cells, to investigate activity of respiratory epithelial cells in vitro as sources of cytokines and inflammatory mediators. Primary cultures of guinea pig and human tracheobronchial and nasal epithelial cells synthesize and secrete low levels of IL-6 and IL-8 constitutively. Production and release of these cytokines increases substantially after exposure to specific inflammatory stimuli, such as TNF or IL-1, and after viral infection.

  15. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  16. Reconstitution of Mammary Epithelial Morphogenesis by Murine Embryonic Stem Cells Undergoing Hematopoietic Stem Cell Differentiation

    OpenAIRE

    Jiang, Shuxian; Lee, Byeong-Chel; Fu, Yigong; Avraham, Shalom; Lim, Bing; Avraham, Hava Karsenty

    2010-01-01

    Background: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mam...

  17. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    OpenAIRE

    Rodr?guez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Ang?lica

    2011-01-01

    Abstract Background The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin los...

  18. Characterization and detection of Vero cells infected with Herpes Simplex Virus type 1 using Raman spectroscopy and advanced statistical methods.

    Science.gov (United States)

    Salman, A; Shufan, E; Zeiri, L; Huleihel, M

    2014-07-01

    Herpes viruses are involved in a variety of human disorders. Herpes Simplex Virus type 1 (HSV-1) is the most common among the herpes viruses and is primarily involved in human cutaneous disorders. Although the symptoms of infection by this virus are usually minimal, in some cases HSV-1 might cause serious infections in the eyes and the brain leading to blindness and even death. A drug, acyclovir, is available to counter this virus. The drug is most effective when used during the early stages of the infection, which makes early detection and identification of these viral infections highly important for successful treatment. In the present study we evaluated the potential of Raman spectroscopy as a sensitive, rapid, and reliable method for the detection and identification of HSV-1 viral infections in cell cultures. Using Raman spectroscopy followed by advanced statistical methods enabled us, with sensitivity approaching 100%, to differentiate between a control group of Vero cells and another group of Vero cells that had been infected with HSV-1. Cell sites that were "rich in membrane" gave the best results in the differentiation between the two categories. The major changes were observed in the 1195-1726 cm(-1) range of the Raman spectrum. The features in this range are attributed mainly to proteins, lipids, and nucleic acids. Copyright © 2014. Published by Elsevier Inc.

  19. Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon

    Directory of Open Access Journals (Sweden)

    Reinhard Christian

    2011-06-01

    Full Text Available Abstract Background Vpx is a virion-associated protein encoded by SIVSM, a lentivirus endemic to the West African sooty mangabey (Cercocebus atys. HIV-2 and SIVMAC, zoonoses resulting from SIVSM transmission to humans or Asian rhesus macaques (Macaca mulatta, also encode Vpx. In myeloid cells, Vpx promotes reverse transcription and transduction by these viruses. This activity correlates with Vpx binding to DCAF1 (VPRBP and association with the DDB1/RBX1/CUL4A E3 ubiquitin ligase complex. When delivered experimentally to myeloid cells using VSV G-pseudotyped virus-like particles (VLPs, Vpx promotes reverse transcription of retroviruses that do not normally encode Vpx. Results Here we show that Vpx has the extraordinary ability to completely rescue HIV-1 transduction of human monocyte-derived dendritic cells (MDDCs from the potent antiviral state established by prior treatment with exogenous type 1 interferon (IFN. The magnitude of rescue was up to 1,000-fold, depending on the blood donor, and was also observed after induction of endogenous IFN and IFN-stimulated genes (ISGs by LPS, poly(I:C, or poly(dA:dT. The effect was relatively specific in that Vpx-associated suppression of soluble IFN-β production, of mRNA levels for ISGs, or of cell surface markers for MDDC differentiation, was not detected. Vpx did not rescue HIV-2 or SIVMAC transduction from the antiviral state, even in the presence of SIVMAC or HIV-2 VLPs bearing additional Vpx, or in the presence of HIV-1 VLPs bearing all accessory genes. In contrast to the effect of Vpx on transduction of untreated MDDCs, HIV-1 rescue from the antiviral state was not dependent upon Vpx interaction with DCAF1 or on the presence of DCAF1 within the MDDC target cells. Additionally, although Vpx increased the level of HIV-1 reverse transcripts in MDDCs to the same extent whether or not MDDCs were treated with IFN or LPS, Vpx rescued a block specific to the antiviral state that occurred after HIV-1 c

  20. Role of cell-matrix contacts in cell migration and epithelial-mesenchymal transformation.

    Science.gov (United States)

    Hay, E D

    1990-12-02

    Epithelial cells make contact with extracellular matrix via receptors on the basal surface that interact with the basal actin cortex. In 3D matrix, the mesenchymal cell makes contact with matrix all around its circumference via similar receptors. When moving, the fibroblasts is constantly constructing a new front end. We postulate in a 'fixed cortex' theory of cell motility that the circumferential actin cortex is firmly attached to matrix and that the myosin-rich endoplasm slides past it into the continually forming new front end. During epithelial-mesenchymal transformation, the presumptive mesenchymal cell seems to turn on the new front end mechanism as a way of emigrating from the epithelium into the underlying matrix with which it makes 'fixed' contacts. Master genes may exist that regulate the expression of epithelial genes on the one hand, and mesenchymal genes on the other.

  1. A method for isolating identifying and culturing of rat trachea-bronchia epithelial cells

    International Nuclear Information System (INIS)

    Cui Fengmei; Su Shibiao; Nie Jihua; Li Bingyan; Tong Jian

    2005-01-01

    Objective: To explore a method for isolating identifying and culturing the rat trachea-bronchia epithelial cells. Methods: The rat trachea-bronchia epithelial cells were isolated by digestion with pronase and brushing with cell brush, identified using confocul and cultured in entire F12 media with no serum. Results: With this method, cells in high purity and high viability could be obtained, and about 10 6 cells per rat. The cells grow well in entire F12 media with no serum. Conclusion: The method is useful for isolating rate trachea-bronchia epithelial cells and the entire F12 media with no serum is effective for culturing. (authors)

  2. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells

    Science.gov (United States)

    Bauckman, Kyle A.; Mysorekar, Indira U.

    2016-01-01

    ABSTRACT Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs. PMID:27002654

  3. Effect of Formaldehyde on Human Middle Ear Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shin Hye Kim

    2018-01-01

    Full Text Available Formaldehyde (FA is a familiar indoor air pollutant found in everything from cosmetics to clothing, but its impact on the middle ear is unknown. This study investigated whether FA causes cytotoxicity, inflammation, or induction of apoptosis in human middle ear epithelial cells (HMEECs. Cell viability was investigated using the trypan blue assay and a cell counting kit (CCK-8 in HMEECs treated with FA for 4 or 24 h. The expression of genes encoding the inflammatory cytokine tumor necrosis factor alpha (TNF-α and mucin (MUC5AC was analyzed using RT-PCR. Activation of the apoptosis pathway was determined by measuring mitochondrial membrane potential (MMP, cytochrome oxidase, caspase-9/Mch6/Apaf 3, and Caspase-Glo® 3/7 activities. The CCK-8 assay and trypan blue assay results showed a reduction in cell viability in FA-treated HMEECs. FA also increased the cellular expression of TNF-α and MUC5AC and reduced the activities of MMP and cytochrome oxidase. Caspase-9 activity increased in cells stimulated for 4 h, as well as caspase-3/7 activity in cells stimulated for 24 h. The decreased cell viability, the induction of inflammation and mucin gene expression, and the activation of the apoptosis pathway together indicate a link between environmental FA exposure and the development of otitis media.

  4. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  5. Centriole movements in mammalian epithelial cells during cytokinesis

    Directory of Open Access Journals (Sweden)

    Tanke Hans J

    2010-05-01

    Full Text Available Abstract Background In cytokinesis, when the cleavage furrow has been formed, the two centrioles in each daughter cell separate. It has been suggested that the centrioles facilitate and regulate cytokinesis to some extent. It has been postulated that termination of cytokinesis (abscission depends on the migration of a centriole to the intercellular bridge and then back to the cell center. To investigate the involvement of centrioles in cytokinesis, we monitored the movements of centrioles in three mammalian epithelial cell lines, HeLa, MCF 10A, and the p53-deficient mouse mammary tumor cell line KP-7.7, by time-lapse imaging. Centrin1-EGFP and α-Tubulin-mCherry were co-expressed in the cells to visualize respectively the centrioles and microtubules. Results Here we report that separated centrioles that migrate from the cell pole are very mobile during cytokinesis and their movements can be characterized as 1 along the nuclear envelope, 2 irregular, and 3 along microtubules forming the spindle axis. Centriole movement towards the intercellular bridge was only seen occasionally and was highly cell-line dependent. Conclusions These findings show that centrioles are highly mobile during cytokinesis and suggest that the repositioning of a centriole to the intercellular bridge is not essential for controlling abscission. We suggest that centriole movements are microtubule dependent and that abscission is more dependent on other mechanisms than positioning of centrioles.

  6. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    International Nuclear Information System (INIS)

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho

  7. The regenerative potential of epithelial stem cells in tissue repair.

    Science.gov (United States)

    Arandjelovic, Philip; Kaur, Pritinder

    2014-11-01

    Acute and chronic wounds encompass devastating injuries with significant physical, emotional and economic costs at both the individual and societal level. The pathogenesis of chronic wounds is as varied as the potential causes; however, contributing factors include repetitive ischaemia/reperfusion injury coupled with bacterial infection, inflammation and matrix degradation at the wound site. Similarly, the acute physical damage of burns may leave patients vulnerable to dehydration and infection, and in certain cases this may be followed by a body-wide systemic response with debilitating consequences. Epithelial stem cells provide a promising avenue for the treatment of burns and chronic wounds. This is exemplified by recent achievements such as the restoration of corneal epithelium using limbal stem cells, and the treatment of epidermolysis bullosa via a gene therapy approach. Nevertheless, many technical and regulatory challenges remain to be addressed. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Dietary manipulation of beta cell autoimmunity in infants at increased risk of type 1 diabetes: a pilot study.

    Science.gov (United States)

    Akerblom, H K; Virtanen, S M; Ilonen, J; Savilahti, E; Vaarala, O; Reunanen, A; Teramo, K; Hämäläinen, A-M; Paronen, J; Riikjärv, M-A; Ormisson, A; Ludvigsson, J; Dosch, H-M; Hakulinen, T; Knip, M

    2005-05-01

    We aimed to assess the feasibility of a dietary intervention trial with weaning to hydrolysed formula in infants at increased risk of type 1 diabetes and to study the effect of the intervention on the emergence of diabetes-associated autoantibodies in early childhood. We studied 242 newborn infants who had a first-degree relative with type 1 diabetes and carried risk-associated HLA-DQB1 alleles. After exclusive breastfeeding, the infants underwent a double-blind, randomised pilot trial of either casein hydrolysate (Nutramigen; Mead Johnson) or conventional cow's milk-based formula until the age of 6-8 months. During a mean observation period of 4.7 years, autoantibodies to insulin, anti-glutamic acid decarboxylase and insulinoma-associated antigen-2 were measured by radiobinding assays, and islet cell antibodies (ICA) by immunofluorescence. The feasibility of screening and identifying a cohort of first-degree relatives with HLA-conferred disease susceptibility, enrolling them in a dietary intervention trial and following them for seroconversion to autoantibody positivity is established. The cumulative incidence of autoantibodies was somewhat smaller in the casein hydrolysate vs control formula group, suggesting the need for a larger well-powered study. After adjustment for duration of study formula feeding, life-table analysis showed a significant protection by the intervention from positivity for ICA (p=0.02) and at least one autoantibody (p=0.03). The present study provides the first evidence ever in man, despite its limited power, that it may be possible to manipulate spontaneous beta cell autoimmunity by dietary intervention in infancy.

  9. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    Science.gov (United States)

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  10. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing

    OpenAIRE

    Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne

    2015-01-01

    eLife digest The individual cells in a developing animal embryo organize themselves into tissues with specific and reproducible shapes, which requires the cells to communicate with one another. Cells in tissues exert forces on their neighbors, and respond to being pushed and pulled by the cells around them. In the fruit fly Drosophila melanogaster, each wing consists mainly of a framework of proteins and other molecules that is built by epithelial cells. These epithelial cells divide and grow...

  12. Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release.

    Directory of Open Access Journals (Sweden)

    Majid Jaberi-Douraki

    Full Text Available Defining the role of T-cell avidity and killing efficacy in forming immunological response(s, leading to relapse-remission and autoantibody release in autoimmune type 1 diabetes (T1D, remains incompletely understood. Using competition-based population models of T- and B-cells, we provide a predictive tool to determine how these two parametric quantities, namely, avidity and killing efficacy, affect disease outcomes. We show that, in the presence of T-cell competition, successive waves along with cyclic fluctuations in the number of T-cells are exhibited by the model, with the former induced by transient bistability and the latter by transient periodic orbits. We hypothesize that these two immunological processes are responsible for making T1D a relapsing-remitting disease within prolonged but limited durations. The period and the number of peaks of these two processes differ, making them potential candidates to determine how plausible waves and cyclic fluctuations are in producing such effects. By assuming that T-cell and B-cell avidities are correlated, we demonstrate that autoantibodies associated with the higher avidity T-cell clones are first to be detected, and they reach their detectability level faster than those associated with the low avidity clones, independent of what T-cell killing efficacies are. Such outcomes are consistent with experimental observations in humans and they provide a rationale for observing rapid and slow progressors of T1D in high risk subjects. Our analysis of the models also reveals that it is possible to improve disease outcomes by unexpectedly increasing the avidity of certain subclones of T-cells. The decline in the number of β-cells in these cases still occurs, but it terminates early, leaving sufficient number of functioning β-cells in operation and the affected individual asymptomatic. These results indicate that the models presented here are of clinical relevance because of their potential use in

  13. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  14. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles.

    Science.gov (United States)

    Bimbo, Luis M; Mäkilä, Ermei; Laaksonen, Timo; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2011-04-01

    Mesoporous silicon particles hold great potential in improving the solubility of otherwise poorly soluble drugs. To effectively translate this feature into the clinic, especially via oral or parenteral administration, a thorough understanding of the interactions of the micro- and nanosized material with the physiological environment during the delivery process is required. In the present study, the behaviour of thermally oxidized porous silicon particles of different sizes interacting with Caco-2 cells (both non-differentiated and polarized monolayers) was investigated in order to establish their fate in a model of intestinal epithelial cell barrier. Particle interactions and TNF-α were measured in RAW 264.7 macrophages, while cell viabilities, reactive oxygen species and nitric oxide levels, together with transmission electron microscope images of the polarized monolayers, were assessed with both the Caco-2 cells and RAW 264.7 macrophages. The results showed a concentration and size dependent influence on cell viability and ROS-, NO- and TNF-α levels. There was no evidence of the porous nanoparticles crossing the Caco-2 cell monolayers, yet increased permeation of the loaded poorly soluble drug, griseofulvin, was shown. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Science.gov (United States)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  16. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  17. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  18. Obesity, islet cell autoimmunity, and cardiovascular risk factors in youth at onset of type 1 autoimmune diabetes.

    Science.gov (United States)

    Cedillo, Maribel; Libman, Ingrid M; Arena, Vincent C; Zhou, Lei; Trucco, Massimo; Ize-Ludlow, Diego; Pietropaolo, Massimo; Becker, Dorothy J

    2015-01-01

    The current increase in childhood type 1 diabetes (T1D) and obesity has led to two conflicting hypotheses and conflicting reports regarding the effects of overweight on initiation and spreading of islet cell autoimmunity vs earlier clinical manifestation of preexisting autoimmune β-cell damage driven by excess weight. The objective of the study was to address the question of whether the degree of β-cell autoimmunity and age are related to overweight at diabetes onset in a large cohort of T1D youth. This was a prospective cross-sectional study of youth with autoimmune T1D consecutively recruited at diabetes onset. The study was conducted at a regional academic pediatric diabetes center. Two hundred sixty-three consecutive children younger than 19 years at onset of T1D participated in the study. Relationships between body mass index and central obesity (waist circumference and waist to height ratio) and antigen spreading (islet cell autoantibody number), age, and cardiovascular (CVD) risk factors examined at onset and/or 3 months after the diagnosis were measured. There were no significant associations between number of autoantibodies with measures of adiposity. Age relationships revealed that a greater proportion of those with central obesity (21%) were in the youngest age group (0-4 y) compared with those without central obesity (6%) (P = .001). PATIENTS with central obesity had increased CVD risk factors and higher onset C-peptide levels (P obesity accelerates progression of autoantibody spreading once autoimmunity, marked by standard islet cell autoantibody assays, is present. Central obesity was present in almost one-third of the subjects and was associated with early CVD risk markers already at onset.

  19. [Effect of extracted ZG from gardenia on Hep-2 cell membrane post infected with parainfluenza virus type 1 (PIV-1)].

    Science.gov (United States)

    Guo, Shan-Shan; Huang, Yang; Zhao, Ye; Gao, Ying-Jie; Gong, Wen-Feng; Cui, Xiao-Lan

    2007-09-01

    In order to study the anti-viral mechanism of extracted ZG from Gardenia, the effect of extracted ZG on Hep-2 cell membrane potential, Na -K+-ATPase activity and membrane fluidity post infected with parainfluenza virus type 1 (PIV-1) was observed. Acetylcholine which was fluorescent labeled with DiBAC4 (3) was taken as positive control to observe the changes of membrane potential and was measured by flow cytometer. The phosphorus determination method and spectrophotometer were used to measure the Na+-K+-ATPase activity of Hep-2 cell membrane post PIV-1 infection. Hep-2 cell membrane phospholipids was labeled with fluorescent NBD-C6-HPC and membrane fluidity was measured by confocal laser scanning microscope. The results demonstated that after PIV-1 infection the Hep-2 cell membrane potential decreased significantly and the membrane was in the state of hyperpolarization, Na+-K+-ATPase activity increased and membrane fluidity decreased significantly. There was no apparent interferring effect of extracted ZG on the changes of membrane potential and Na+-K+-ATPase activity post PIV-1 infection, while membrane fluidity was improved significantly. Acetylcholine improved the state of hyperpolarization. The changes of membrane potential, Na -K+-ATPase activity and membrane fluidity might be the biomechanism of PIV-1 infectoin. The extracted ZG improved membrane fluidity to prevent from PIV-1 infection by protecting the cell membrane, which was probably the mechanism of anti-PIV-1 activity of the extracted ZG, but ZG probably had nothing to do with membrane potential and Na+-K+-ATPase activity.

  20. Nucleoside transport in primary cultured rabbit tracheal epithelial cells.

    Science.gov (United States)

    Mathias, Neil R; Wu, Sharon K; Kim, Kwang-Jin; Lee, Vincent H L

    2005-01-01

    The present study aimed at elucidating the mechanisms of nucleoside transport in primary cultured rabbit tracheal epithelial cells (RTEC) grown on a permeable filter support. Uptake of (3)H-uridine, the model nucleoside substrate, from the apical fluid of primary cultured RTEC was examined with respect to its dependence on Na(+), substrate concentration, temperature and its sensitivity to inhibitors, other nucleosides and antiviral nucleoside analogs. Apical (3)H-uridine uptake in primary cultured RTEC was strongly dependent on an inward Na(+) gradient and temperature. Ten micromolar nitro-benzyl-mercapto-purine-ribose (NBMPR) (an inhibitor of es-type nucleoside transport in the nanomolar range) did not further inhibit this process. (3)H-uridine uptake from apical fluid was inhibited by basolateral ouabain (10 microM) and apical phloridzin (100 microM), indicating that uptake may involve a secondary active transport process. Uridine uptake was saturable with a K(m) of 3.4 +/- 1.8 microM and the V(max) of 24.3 +/- 5.2 pmoles/mg protein/30 s. Inhibition studies indicated that nucleoside analogs that have a substitution on the nucleobase competed with uridine uptake from apical fluid, but those with modifications on the ribose sugar including acyclic analogs were ineffective. The pattern of inhibition of apical (3)H-uridine, (3)H-inosine and (3)H-thymidine uptake into RTEC cells by physiological nucleosides was consistent with multiple systems: A pyrimidine-selective transport system (CNT1); a broad nucleoside substrate transport system that excludes inosine (CNT4) and an equilibrative NBMPR-insensitive nucleoside transport system (ei type). These results indicate that the presence of apically located nucleoside transporters in the epithelial cells lining the upper respiratory tract can lead to a high accumulation of nucleosides in the trachea. At least one Na(+)-dependent, secondary, active transport process may mediate the apical absorption of nucleosides or

  1. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  2. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Povarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (Povarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  3. Synergy between TLR-2 and TLR-3 signaling in primary human nasal epithelial cells

    NARCIS (Netherlands)

    van Tongeren, Joost; Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J.; Fokkens, Wytske J.; van Drunen, Cornelis M.

    2015-01-01

    Although we have a detailed understanding of how single microbial derived triggers activate specialized Toll-like receptors (TLR) on airway epithelial cells, we know little of how these receptors react in a more complex environment. In everyday life, nasal epithelial cells are exposed to multiple

  4. The effect of calprotectin on TSLP and IL-25 production from airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Tomohisa Kato

    2017-04-01

    Conclusions: These results indicate that calprotectin enhances the allergen-induced Th2-type inflammatory responses in airway epithelial cells via the secretion of TSLP and IL-25, and that calprotectin secreted by the epithelial cells may be involved in the pathogenesis of ECRS.

  5. The genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    Invasion of epithelial cells was demonstrated to be triggered by invasion plasmid antigens B, C, and D ( IpaB, IpaC and IpaD ) which is accomplished by intracellular spread gene icsA. The invasion of epithelial cells by some individual species of bacteria were also reviewed.Yersinia enterocolitica invasiveness was shown ...

  6. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica

    2008-01-01

    A bovine mammary epithelial cell line (BME-UV1) and three-dimensional collagen primary bovine organoids were used to evaluate the effects of cadaverine, putrescine, spermine, spermicline and beta-phenylethylamine on mammary epithelial cells. Each biogenic amine was diluted in several concentratio...

  7. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    The purpose of this study was to characterize the effects of human retinal pigment epithelial (RPE) cells on activated T cells. Activated T cells were cocultured with adult and foetal human RPE cells whereafter apoptosis and proliferation were determined by flow cytometry and (3)H......-Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58...

  8. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  9. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  10. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  11. Expression of epithelial markers by human umbilical cord stem cells. A topographical analysis.

    Science.gov (United States)

    Garzón, I; Alfonso-Rodríguez, C A; Martínez-Gómez, C; Carriel, V; Martin-Piedra, M A; Fernández-Valadés, R; Sánchez-Quevedo, M C; Alaminos, M

    2014-12-01

    Human umbilical cord stem cells have inherent differentiation capabilities and potential usefulness in regenerative medicine. However, the epithelial differentiation capability and the heterogeneity of these cells have not been fully explored to the date. We analyzed the expression of several undifferentiation and epithelial markers in cells located in situ in different zones of the umbilical cord -in situ analysis- and in primary ex vivo cell cultures of Wharton's jelly stem cells by microarray and immunofluorescence. Our results demonstrated that umbilical cord cells were heterogeneous and had intrinsic capability to express in situ stem cell markers, CD90 and CD105 and the epithelial markers cytokeratins 3, 4, 7, 8, 12, 13, 19, desmoplakin and zonula occludens 1 as determined by microarray and immunofluorescence, and most of these markers remained expressed after transferring the cells from the in situ to the ex vivo cell culture conditions. However, important differences were detected among some cell types in the umbilical cord, with subvascular zone cells showing less expression of stem cell markers and cells in Wharton's jelly and the amnioblastic zones showing the highest expression of stem cells and epithelial markers. These results suggest that umbilical cord mesenchymal cells have intrinsic potential to express relevant epithelial markers, and support the idea that they could be used as alternative cell sources for epithelial tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High levels of γ-H2AX foci and cell membrane oxidation in adolescents with type 1 diabetes

    International Nuclear Information System (INIS)

    Giovannini, Caterina; Piaggi, Simona; Federico, Giovanni; Scarpato, Roberto

    2014-01-01

    Highlights: • We aimed to detect signs of very early damage in peripheral cells of T1DM adolescents. • T1DM patients had high levels of oxidized cells and reduced expression of iNOS and NO. • Highly mutagenic lesions were markedly increased in the diabetic group, mainly in females. • The observed damage might increase the risk of cancer in the patients later in life. - Abstract: Oxidative stress caused by an excess of free radicals is implicated in the pathogenesis and development of type 1 diabetes mellitus (T1DM) and, in turn, it can lead to genome damage, especially in the form of DNA double-strand break (DSB). The DNA DSB is a potentially carcinogenic lesion for human cells. Thus, we aimed to evaluate whether the level of oxidative stress was increased in peripheral blood lymphocytes of a group of affected adolescents. In 35 T1DM adolescents and 19 healthy controls we assessed: (1) spontaneous and H 2 O 2 -induced oxidation of cell membrane using a fluorescence lipid probe; (2) spontaneous and LPS-induced expression of iNOS protein and indirect NO determination via cytofluorimetric analysis of O 2 − ; (3) immunofluorescent detection of the basal level of histone H2AX phosphorylation (γ-H2AX foci), a well-validated marker of DNA DSB. In T1DM, the frequencies of oxidized cells, both spontaneous and H 2 O 2 -induced (47.13 ± 0.02) were significantly higher than in controls (35.90 ± 0.03). Patients showed, in general, both a reduced iNOS expression and production of NO. Furthermore, the level of spontaneous nuclear damage, quantified as γ-H2AX foci, was markedly increased in T1DM adolescents (6.15 ± 1.08% of γ-H2AX + cells; 8.72 ± 2.14 γ-H2AXF/n; 9.26 ± 2.37 γ-H2AXF/np), especially in females. In the present study, we confirmed the role that oxidative stress plays in the disease damaging lipids of cell membrane and, most importantly, causing genomic damage in circulating white blood cells of affected adolescents. This also indicates that

  13. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  14. The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    Czech Academy of Sciences Publication Activity Database

    Gupta, S.; Gach, J. S.; Becerra, J. C.; Phan, T.; Pudney, J.; Moldoveanu, Z.; Joseph, S. B.; Landucci, G.; Supnet, M. D.; Ping, L.-H.; Corti, D.; Moldt, B.; Hel, Z.; Lanzavecchia, A.; Ruprecht, R. M.; Burton, D. R.; Městecký, Jiří; Anderson, D.; Forthal, D. N.

    2013-01-01

    Roč. 9, č. 11 (2013) E-ISSN 1553-7374 Institutional support: RVO:61388971 Keywords : ANTIBODY-DEPENDENT ENHANCEMENT * FEMALE GENITAL-TRACT * MONOCLONAL-ANTIBODIES Subject RIV: EE - Microbiology, Virology Impact factor: 8.057, year: 2013

  15. Angiotensin II Regulates Th1 T Cell Differentiation Through Angiotensin II Type 1 Receptor-PKA-Mediated Activation of Proteasome.

    Science.gov (United States)

    Qin, Xian-Yun; Zhang, Yun-Long; Chi, Ya-Fei; Yan, Bo; Zeng, Xiang-Jun; Li, Hui-Hua; Liu, Ying

    2018-01-01

    Naive CD4+ T cells differentiate into T helper cells (Th1 and Th2) that play an essential role in the cardiovascular diseases. However, the molecular mechanism by which angiotensin II (Ang II) promotes Th1 differentiation remains unclear. The aim of this study was to determine whether the Ang II-induced Th1 differentiation regulated by ubiquitin-proteasome system (UPS). Jurkat cells were treated with Ang II (100 nM) in the presence or absence of different inhibitors. The gene mRNA levels were detected by real-time quantitative PCR analysis. The protein levels were measured by ELISA assay or Western blot analysis, respectively. Ang II treatment significantly induced a shift from Th0 to Th1 cell differentiation, which was markedly blocked by angiotensin II type 1 receptor (AT1R) inhibitor Losartan (LST). Moreover, Ang II significantly increased the activities and the expression of proteasome catalytic subunits (β1, β1i, β2i and β5i) in a dose- and time-dependent manner. However, Ang II-induced proteasome activities were remarkably abrogated by LST and PKA inhibitor H-89. Mechanistically, Ang II-induced Th1 differentiation was at least in part through proteasome-mediated degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB. This study for the first time demonstrates that Ang II activates AT1R-PKA-proteasome pathway, which promotes degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB thereby leading to Th1 differentiation. Thus, inhibition of proteasome activation might be a potential therapeutic target for Th1-mediated diseases. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases.

    Science.gov (United States)

    Fukada, S Y; Silva, T A; Garlet, G P; Rosa, A L; da Silva, J S; Cunha, F Q

    2009-02-01

    Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CKbeta8/CCL23, and osteoprotegerin, which were significantly higher than in control. Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.

  17. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  18. [Construction of retroviral vector carrying Twist gene and its induction of epithelial-mesenchymal transition in human mammary epithelial cells].

    Science.gov (United States)

    Yang, Jiajia; Hu, Ping; Zhou, Mingli; Huang, Jietao; Liu, Manran

    2013-09-01

    To construct a retroviral vector carrying Twist gene and investigate its effect on human mammary MCF10A epithelial cells. Myc-Twist was digested from pcDNA3/myc-Twist and subcloned into the retroviral vector pBABE-puro to construct a recombinant plasmid (pBABE-myc-Twist). The inserted Twist gene was confirmed by restriction enzyme digestion and DNA sequencing. The plasmid pBABE-myc-Twist and the packaging plasmid pAmpho were co-transfected into HEK293T cells for packaging of retrovirus. Meanwhile, the control plasmid pBABE-puro and the packaging plasmid were co-transfected into the other HEK293T cells as a control group. Human mammary MCF10A epithelial cells were infected with the retroviruses carrying Twist gene or the controls, and selected by puromycin. The expression of Twist in the MCF10A-Twist and MCF10A-Vector cells was determined by RT-PCR and Western blotting. The expressions of epithelial-mesenchymal transition (EMT) marker proteins induced by Twist in MCF10A cells were detected using immunofluorescence cytochemistry and Western blotting. Cell migration and invasion abilities were analyzed by Transwell(R); assay. The myc-tagged Twist gene was correctly inserted into the retroviral expression vector as a recombinant plasmid (pBABE-myc-Twist) as identified by restriction analysis and DNA sequencing. The Twist gene was efficiently delivered into human mammary MCF10A epithelial cells by the retrovirus, resulting in the stable expression of Twist mRNA and myc-tagged Twist protein as shown by RT-PCR and Western blotting, respectively. The expression of the epithelial biomarker E-cadherin was downregulated whereas, the mesenchymal marker vimentin upregulated in MCF10A-Twist cells as shown by immunofluorescence cytochemistry and Western blotting. Cell migration and invasion abilities were enhanced notably in MCF10A-Twist cells as compared with MCF10A-Vector control cells (PMCF10A cells and plays an important role in the promotion of cell migration and invasion.

  19. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  20. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    Science.gov (United States)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  1. The physiological expression of scavenger receptor SR-B1 in canine endometrial and placental epithelial cells and its potential involvement in pathogenesis of pyometra.

    Science.gov (United States)

    Gabriel, C; Becher-Deichsel, A; Hlavaty, J; Mair, G; Walter, I

    2016-06-01

    Pyometra, the purulent inflammation of the uterus, is a common uterine disease of bitches that has potentially life-threatening consequences. The opportunistic bacterial infection of the uterus often progresses into the serious systemic inflammatory response syndrome. In a previous study, we characterized epithelial foam cells in the canine endometrial surface occurring in metestrus, and we regularly observed pronounced epithelial foam-cell formations in pyometra-affected uteri. Therefore, it was assumed that the mechanism behind lipid droplet accumulation in surface epithelial cells might even increase bacterial binding capacity and promote pyometra development. Lipid droplet accumulation in epithelial cells is accomplished via specialized lipid receptors called scavenger receptors (SR). Scavenger receptor class B type 1 (SR-B1) is an important receptor for lipid accumulation in diverse cell types, but it is also a strong binding partner for bacteria, and thereby enhances bacterial adhesion and clinical signs of systemic inflammatory response syndrome. In the present study, after the isolation of metestrous surface epithelial cells from canine uteri by laser capture microdissection, SR-B1 was identified at the messenger RNA (mRNA) level by quantitative real time polymerase chain reaction and also at the protein level by means of immunohistochemistry. In pyometra-affected uteri, SR-B1 mRNA expression was higher than that in the healthy control samples, and SR-B1 protein was expressed in the surface and crypt epithelial cells. Furthermore, to understand the physiological role of SR-B1 expression in the metestrus surface epithelial cells, we investigated its expression in the epithelial cells of the glandular chambers of canine placenta in different stages of gestation because these cells are also characterized by lipid droplet accumulation. SR-B1 was present in the placental epithelial cells of the glandular chambers from 25 to 30 and 45 to 50 days of gestation

  2. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  3. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob

    2003-01-01

    Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers ...... of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium.......Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers...

  4. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  5. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  6. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis.

    Directory of Open Access Journals (Sweden)

    Arnold S Kirshenbaum

    Full Text Available Hermansky-Pudlak Syndrome type-1 (HPS-1 is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients' serum, in addition to IL-8, fibronectin-1 (FN-1 and galectin-3 (LGALS3. Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator

  7. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    Science.gov (United States)

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2017-11-20

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  8. File list: ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  9. File list: ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  10. File list: ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  11. Histamine downregulates aquaporin 5 in human nasal epithelial cells.

    Science.gov (United States)

    Wang, Weiwei; Wang, Xiaolian; Ma, Lan; Zhang, Ruitao

    2015-01-01

    Aquaporin 5 (AQP5) is a water-specific channel protein. It is thought to be a key participant in fluid secretion and a rate-limiting barrier to the secretion seen during allergic inflammation. We sought to determine the effect of histamine on AQP5 expression in human nasal epithelial cells (HNEpC). HNEpC cells were cultured with four concentrations of histamine in vitro. The phosphorylation of cyclic adenosine monophosphate-responsive element binding protein (CREB) at serine 133 and the AQP5 protein were measured by using immunocytochemistry and Western blotting. Real-time polymerase chain reaction was used to detect AQP5 messenger ribonucleic acid (mRNA). Concentration-dependent histamine induced-inhibition of CREB phosphorylation at serine 133 in HNEpC cells was observed, and AQP5 mRNA and protein were also downregulated in a concentration-dependent fashion. Histamine downregulates AQP5 production in HNEpC cells by inhibiting CREB phosphorylation at serine 133.

  12. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  13. Epithelial cells as active player in fibrosis: findings from an in vitro model.

    Directory of Open Access Journals (Sweden)

    Solange Moll

    Full Text Available Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI to chronic kidney disease (CKD challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches.

  14. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    International Nuclear Information System (INIS)

    Mannioui, Abdelkrim; Schiffer, Cecile; Felix, Nathalie

    2004-01-01

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression

  15. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  16. Imaging dynamics of CD11c+ cells and Foxp3+ cells in progressive autoimmune insulitis in the NOD mouse model of type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt-Christensen, Anja; Hansen, Lisbeth; Ilegems, Erwin

    2013-01-01

    Aims/hypothesis The aim of this study was to visualise the dynamics and interactions of the cells involved in autoimmune-driven inflammation in type 1 diabetes. Methods We adopted the anterior chamber of the eye (ACE) transplantation model to perform non-invasive imaging of leucocytes infiltrating......, in spite of the immune privileged status of the eye, the ACE-transplanted islets develop infiltration and beta cell destruction, recapitulating the autoimmune insulitis of the pancreas, and exemplify this by analysing reporter cell populations expressing green fluorescent protein under the Cd11c or Foxp3...

  17. The effect of hydroxybenzoate calcium compounds in inducing cell death in epithelial breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nada M Merghani

    2015-12-01

    Full Text Available Hydroxybenzoate (HB compounds have shown their significance in inducing apoptosis in primary chronic lymphocytic leukemia (CLL and cancer cell lines, including HT-1080. The current study focuses on assessing the effects of 2-, 3- and 4-hydroxybenzoate calcium (HBCa compounds on MCF-10A, MDA-MB231 and MCF-7 epithelial breast cell lines. The HBCa-treated cells were examined using annexin V, to measure apoptosis in the three epithelial breast cell lines, after 48 h of treatment. The results indicated that 0.5 and 2.5 mmol/L of HBCa induced cell death in a dose-dependent manner. The induction of cell death in normal MCF-10A cells was found to be significantly less (p = 0.0003–0.0068, in comparison to the malignant cell lines (MDA-MB231 and MCF-7. HBCa compounds were also found to cause cell cycle arrest in the epithelial breast cells at G1/G0. Furthermore, HBCa compounds induced the upregulation of apoptotic proteins (p53, p21, Bax and caspase-3, as well as the downregulation of the anti-apoptotic protein Bcl-2, which may suggest that apoptosis is induced via the intrinsic pathway.

  18. Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation.

    Science.gov (United States)

    McCarthy, Mary K; Procario, Megan C; Wilke, Carol A; Moore, Bethany B; Weinberg, Jason B

    2015-01-01

    Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs.

  19. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Science.gov (United States)

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  20. Epithelial cell kinetics of the gastric mucosa during Helicobacter pylori infection

    DEFF Research Database (Denmark)

    Norn, Svend

    2007-01-01

    Helicobacter pylori is an important pathogen in major gastroduodenal diseases, including inflammation with ulceration and gastric malignancies. Alterations in H. pylori associated cell turnover in gastric epithelial cells are examined in relation to inflammatory activity, bacteria load and cytoki...

  1. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

    OpenAIRE

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N.

    2013-01-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epi...

  2. Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro.

    Directory of Open Access Journals (Sweden)

    Mahesh Khatri

    Full Text Available The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4 and stage-specific embryonic antigen-1 (SSEA-1, the alveolar stem cell marker Clara cell secretory protein (Ccsp, and the epithelial cell markers pan-cytokeratin (Pan-K, cytokeratin-18 (K-18, and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases.

  3. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  4. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-01-01

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  5. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  6. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi.

    Science.gov (United States)

    Val, Stéphanie; Burgett, Katelyn; Brown, Kristy J; Preciado, Diego

    2016-01-01

    Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours- 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p valuefunctions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.

  7. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    DEFF Research Database (Denmark)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn

    2001-01-01

    . It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells......The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated......, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer...

  8. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    Science.gov (United States)

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  9. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  11. Regulation of CEACAM1 transcription in human breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Nguyen Tung

    2010-11-01

    Full Text Available Abstract Background Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1 is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and de novo expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7 to moderate (MDA-MB-468 to high (MCF10A, comparable to normal breast. Results Using in vivo footprinting and chromatin immunoprecipitation experiments we show that the CEACAM1 proximal promoter in breast cells is bound in its active state by SP1, USF1/USF2, and IRF1/2. When down-regulated the CEACAM1 promoter remains accessible to USF2 and partially accessible to USF1. Interferon-γ up-regulates CEACAM1 mRNA by a mechanism involving further induction of IRF-1 and USF1 binding at the promoter. As predicted by this analysis, silencing of IRF1 and USF1 but not USF2 by RNAi resulted in a significant decrease in CEACAM1 protein expression in MDA-MB-468 cells. The inactive CEACAM1 promoter in MCF7 cells exhibits decreased histone acetylation at the promoter region, with no evidence of H3K9 or H3K27 trimethylation, histone modifications often linked to condensed chromatin structure. Conclusions Our data suggest that transcription activators USF1 and IRF1 interact to modulate CEACAM1 expression and that the chromatin structure of the promoter is likely maintained in a poised state that can promote rapid induction under appropriate conditions.

  12. Radiosensitizing effect of epothilone B on human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, T.; Kriesen, S.; Hildebrandt, G.; Manda, K. [Univ. of Rostock (Germany). Dept. of Radiotherapy and Radiation Oncology; Klautke, G.; Fietkau, R. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany). Dept. of Radiation Oncology; Kuznetsov, S.A.; Weiss, D.G. [Univ. of Rostock (Germany). Inst. of Biological Sciences, Cell Biology, and Biosystems Technology

    2012-02-15

    A combined modality treatment employing radiation and chemotherapy plays a central role in the management of solid tumors. In our study, we examined the cytotoxic and radiosensitive effect of the microtubule stabilizer epothilone B on two human epithelial tumor cell lines in vitro and its influence on the microtubule assembly. Cancer cells were treated with epothilone B in proliferation assays and in combination with radiation in colony-forming assays. For the analysis of ionizing radiation-induced DNA damage and the influence of the drug on its repair a {gamma}H2AX foci assay was used. To determine the effect of epothilone B on the microtubule assembly in cells and on purified tubulin, immunofluorescence staining and tubulin polymerization assay, respectively, were conducted. Epothilone B induced a concentration- and application-dependent antiproliferative effect on the cells, with IC{sub 50} values in the low nanomolar range. Colony forming assays showed a synergistic radiosensitive effect on both cell lines which was dependent on incubation time and applied concentration of epothilone B. The {gamma}H2AX assays demonstrated that ionizing radiation combined with the drug resulted in a concentration-dependent increase in the number of double-strand breaks and suggested a reduction in DNA repair capacity. Epothilone B produced enhanced microtubule bundling and abnormal spindle formation as revealed by immunofluorescence microscopy and caused microtubule formation from purified tubulin. The results of this study showed that epothilone B displays cytotoxic antitumor activity at low nanomolar concentrations and also enhances the radiation response in the tumor cells tested; this may be induced by a reduced DNA repair capacity triggered by epothilone B. It was also demonstrated that epothilone B in fact targets microtubules in a more effective manner than paclitaxel. (orig.)

  13. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  14. Binding of cholera toxin B subunit to intestinal epithelial cells.

    Science.gov (United States)

    Navolotskaya, Elena V; Sadovnikov, Vladimir B; Lipkin, Valery M; Zav'yalov, Vladimir P

    2018-03-01

    We have prepared 125 I-labeled cholera toxin B subunit ( 125 I-labeled CT-B, a specific activity of 98Ci/mmol) and found that it binds to rat IEC-6 and human Caco-2 intestinal epithelial cells with high affinity (K d 3.6 and 3.7nM, respectively). The binding of labeled protein was completely inhibited by unlabeled thymosin-α 1 (TM-α 1 ), interferon-α 2 (IFN-α 2 ), and the synthetic peptide LKEKK that corresponds to residues 16-20 in TM-α 1 and 131-135 in IFN-α 2 , but was not inhibited by the synthetic peptide KKEKL with inverted amino acid sequence (K i >10μM). Thus, TM-α 1 , IFN-α 2 , and the peptide: LKEKK bind with high affinity and specificity to the cholera toxin receptor on IEC-6 and Caco-2 cells. It was found that CT-B and the peptide: LKEKK at concentrations of 10-1000nM increased in a dose-dependent manner the nitric oxide production and the soluble guanylate cyclase activity in IEC-6 and Caco-2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cloned kids derived from caprine mammary gland epithelial cells.

    Science.gov (United States)

    Yuan, Y-G; Cheng, Y; Guo, L; Ding, G-L; Bai, Y-J; Miao, M-X; An, L-Y; Zhao, J-H; Cao, Y-J

    2009-09-01

    The use of nucleus transfer techniques to generate transgenic dairy goats capable of producing recombinant therapeutic proteins in milk could have a major impact on the pharmaceutical industry. However, transfection or gene targeting of nucleus transfer donor cells requires a long in vitro culture period and the selection of marker genes. In the current study, we evaluated the potential for using caprine mammary gland epithelial cells (CMGECs), isolated from udders of lactating F1 hybrid goats (Capra hircus) and cryopreserved at Passages 24 to 26, for nucleus transfer into enucleated in vivo-matured oocytes. Pronuclear-stage reconstructed embryos were transferred into the oviducts of 31 recipient goats. Twenty-three (74%), 21 (72%), and 14 (48%) recipients were confirmed pregnant by ultrasonography on Days 30, 60, and 90, respectively. Four recipients aborted between 35 and 137 d of gestation. Five recipients carried the pregnancies to term and delivered one goat kid each, one of which subsequently died due to respiratory difficulties. The remaining four goat kids were healthy and well. Single-strand conformation polymorphism analysis confirmed that all kids were clones of the donor cells. In conclusion, the CMGECs remained totipotent for nucleus transfer.

  16. Feature Importance for Human Epithelial (HEp-2 Cell Image Classification

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    2018-02-01

    Full Text Available Indirect Immuno-Fluorescence (IIF microscopy imaging of human epithelial (HEp-2 cells is a popular method for diagnosing autoimmune diseases. Considering large data volumes, computer-aided diagnosis (CAD systems, based on image-based classification, can help in terms of time, effort, and reliability of diagnosis. Such approaches are based on extracting some representative features from the images. This work explores the selection of the most distinctive features for HEp-2 cell images using various feature selection (FS methods. Considering that there is no single universally optimal feature selection technique, we also propose hybridization of one class of FS methods (filter methods. Furthermore, the notion of variable importance for ranking features, provided by another type of approaches (embedded methods such as Random forest, Random uniform forest is exploited to select a good subset of features from a large set, such that addition of new features does not increase classification accuracy. In this work, we have also, with great consideration, designed class-specific features to capture morphological visual traits of the cell patterns. We perform various experiments and discussions to demonstrate the effectiveness of FS methods along with proposed and a standard feature set. We achieve state-of-the-art performance even with small number of features, obtained after the feature selection.

  17. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  18. Pseudoangiomatous stromal hyperplasia with multinucleated stromal giant cells is neither exceptional in gynecomastia nor characteristic of neurofibromatosis type 1.

    Science.gov (United States)

    Pižem, Jože; Velikonja, Mojca; Matjašič, Alenka; Jerše, Maja; Glavač, Damjan

    2015-04-01

    Six cases of gynecomastia with pseudoangiomatous stromal hyperplasia (PASH) and multinucleated stromal giant cells (MSGC) associated with neurofibromatosis type 1 (NF1) have been reported, and finding MSGC within PASH in gynecomastia has been suggested as being a characteristic of NF1. The frequency of PASH with MSGC in gynecomastia and its specificity for NF1 have not, however, been systematically studied. A total of 337 gynecomastia specimens from 215 patients, aged from 8 to 78 years (median, 22 years) were reevaluated for the presence of PASH with MSGC. Breast tissue samples of 25 patients were analyzed for the presence of an NF1 gene mutation using next generation sequencing. Rare MSGC, usually in the background of PASH, were noted at least unilaterally in 27 (13 %) patients; and prominent MSGC, always in the background of PASH, were noted in 8 (4 %) patients. The NF1 gene was mutated in only 1 (an 8-year-old boy with known NF1 and prominent MSGC) of the 25 tested patients, including 6 patients with prominent MSGC and 19 patients with rare MSGC. MSGC, usually in the background of PASH, are not characteristic of NF1.

  19. File list: Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. File list: DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. File list: NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. File list: NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  8. File list: Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  9. File list: Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  10. File list: DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  11. File list: Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  12. File list: Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  13. File list: Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  14. File list: Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  15. File list: NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  16. File list: DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  17. File list: NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  18. Effect of neuronal PC12 cells on the functional properties of intestinal epithelial Caco-2 cells.

    Science.gov (United States)

    Satsu, Hideo; Yokoyama, Tatsuya; Ogawa, Nobumasa; Fujiwara-Hatano, Yoko; Shimizu, Makoto

    2003-06-01

    The effect of neuronal cells on the functional properties of intestinal epithelial cells was examined by using an in vitro coculture system. Two cell lines, Caco-2 and PC12, were respectively used as intestinal epithelial and enteric neuronal cell models. Coculture of differentiated Caco-2 cells with PC12 caused a significant decrease in the transepithelial electrical resistance (TER) value of the Caco-2 monolayer. The permeability to lucifer yellow (LY) was also significantly increased, suggesting that the tight junction (TJ) of the Caco-2 monolayers was modulated by coculturing with PC12. To identify the TJ-modulating factor presumably secreted from PC12, the effects of the major neurotransmitters on the TER value and LY transport were examined, but no influence was apparent. The TJ-modulating effect of PC12 was prevented by exposing PC12 to cycloheximide, suggesting that new protein synthesis in PC12 was necessary for this regulation.

  19. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  20. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    International Nuclear Information System (INIS)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline; Donner, Catherine; Perez-Morga, David; De Vos, Rita; Snoeck, Robert; Marchant, Arnaud

    2014-01-01

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ

  1. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  2. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  3. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B.; Mandel, U.

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate......-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both...... epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells....

  4. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Ty...

  5. Paracytosis of Haemophilus influenzae through cell layers of NCI-H292 lung epithelial cells

    NARCIS (Netherlands)

    van Schilfgaarde, M.; van Alphen, L.; Eijk, P.; Everts, V.; Dankert, J.

    1995-01-01

    Haemophilus influenzae penetrates the respiratory epithelium during carriage and invasive disease, including respiratory tract infections. We developed an in vitro model system consisting of lung epithelial NCI-H292 cells on permeable supports to study the passage of H. influenzae through lung

  6. Quantitative Analysis of Differential Proteome Expression in Epithelial-to-Mesenchymal Transition of Bladder Epithelial Cells Using SILAC Method

    Directory of Open Access Journals (Sweden)

    Ganglong Yang

    2016-01-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT is an essential biological process involved in embryonic development, cancer progression, and metastatic diseases. EMT has often been used as a model for elucidating the mechanisms that underlie bladder cancer progression. However, no study to date has addressed the quantitative global variation of proteins in EMT using normal and non-malignant bladder cells. We treated normal bladder epithelial HCV29 cells and low grade nonmuscle invasive bladder cancer KK47 cells with transforming growth factor-beta (TGF-β to establish an EMT model, and studied non-treated and treated HCV29 and KK47 cells by the stable isotope labeling amino acids in cell culture (SILAC method. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography/LTQ Orbitrap mass spectrometry. Among a total of 2994 unique identified and annotated proteins in HCV29 and KK47 cells undergoing EMT, 48 and 56 proteins, respectively, were significantly upregulated, and 106 and 24 proteins were significantly downregulated. Gene ontology (GO term analysis and pathways analysis indicated that the differentially regulated proteins were involved mainly in enhancement of DNA maintenance and inhibition of cell-cell adhesion. Proteomes were compared for bladder cell EMT vs. bladder cancer cells, revealing 16 proteins that displayed similar changes in the two situations. Studies are in progress to further characterize these 16 proteins and their biological functions in EMT.

  7. Epithelial cells in nipple aspirate fluid and subsequent breast cancer risk: A historic prospective study

    International Nuclear Information System (INIS)

    Baltzell, Kimberly A; Moghadassi, Michelle; Rice, Terri; Sison, Jennette D; Wrensch, Margaret

    2008-01-01

    Past studies have shown that women with abnormal cytology or epithelial cells in nipple aspirate fluid (NAF) have an increased relative risk (RR) of breast cancer when compared to women from whom NAF was attempted but not obtained (non-yielders). This study analyzed NAF results from a group of women seen in a breast clinic between 1970–1991 (N = 2480). Our analysis presented here is an aggregate of two sub-groups: women with questionnaire data (n = 712) and those with NAF visits beginning in 1988 (n = 238), the year in which cancer case information was uniformly collected in California. Cytological classification was determined for a group of 946 women using the most abnormal epithelial cytology observed in fluid specimens. Breast cancer incidence and mortality status was determined through June 2006 using data from the California Cancer Registry, California Vital Statistics and self-report. We estimated odd ratios (ORs) for breast cancer using logistic regression analysis, adjusting for age. We analyzed breast cancer risk related to abnormality of NAF cytology using non-yielders as the referent group and breast cancer risk related to the presence or absence of epithelial cells in NAF, using non-yielders/fluid without epithelial cells as the referent group. Overall, 10% (93) of the 946 women developed breast cancer during the follow-up period. Age-adjusted ORs and 95% confidence intervals (C.I.) compared to non-yielders were 1.4 (0.3 to 6.4), 1.7 (0.9 to 3.5), and 2.0 (1.1 to 3.6) for women with fluid without epithelial cells, normal epithelial cells and hyperplasia/atypia, respectively. Comparing the presence or absence of epithelial cells in NAF, women with epithelial cells present in NAF were more likely to develop breast cancer than non-yielders or women with fluid without epithelial cells (RR = 1.9, 1.2 to 3.1). These results support previous findings that 1) women with abnormal epithelial cells in NAF have an increased risk of breast cancer when compared to

  8. Type 1 diabetes

    Science.gov (United States)

    Insulin-dependent diabetes; Juvenile onset diabetes; Diabetes - type 1; High blood sugar - type 1 diabetes ... Type 1 diabetes can occur at any age. It is most often diagnosed in children, adolescents, or young adults. Insulin is ...

  9. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jennifer S. Liu

    2012-11-01

    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  10. Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu