WorldWideScience

Sample records for epithelial rpe cells

  1. The effects of platelet gel on cultured human retinal pigment epithelial (hRPE cells

    Directory of Open Access Journals (Sweden)

    Sahar Balagholi

    2017-11-01

    Full Text Available The positive role of platelet gel (PG in tissue regeneration is well known, however, other characteristics of PG still remain to be determined. We investigated cellular and molecular changes in cultured human retinal pigment epithelial (hRPE cells when treated with different concentrations of PG named PG1, PG2, and PG3. hRPE cells were isolated from donor eyes of two newborn children, within 24 hours after their death. The cells were treated with three concentrations of PG for 7 days: 3 × 104/ml (PG1, 6 × 104/ml (PG2, and 9 × 104/ml (PG3. Fetal bovine serum was used as a control. Immunocytochemistry was performed with anti-RPE65 (H-85, anti-Cytokeratin 8/18 (NCL-5D3, and anti-PAX6 antibody. We used MTT assay to determine cell viability. Gene expressions of PAX6, MMP2, RPE65, ACTA2, MKI67, MMP9, and KDR were analyzed using real-time PCR. A significant increase in viability was observed for PG3-treated cells compared to control (p = 0.044 and compared to PG1 group (p = 0.027, on day 7. Cellular elongation together with dendritiform extensions were observed in PG-treated cells on days 1 and 3, while epithelioid morphology was observed on day 7. All cells were immunoreactive for RPE65, cytokeratin 8/18, and PAX6. No significant change was observed in the expression of MKI67 and PAX6, but the expressions of MMP2, MMP9, ACTA2, and KDR were significantly higher in PG2-treated cells compared to controls (p < 0.05. Our results indicate that increased concentration of PG and extended exposure time have positive effects on viability of hRPE cells. PG may be useful for hRPE cell encapsulation in retinal cell replacement therapy.

  2. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE cells to study retinal diseases

    Directory of Open Access Journals (Sweden)

    Janosch Peter Heller

    2015-11-01

    Full Text Available Diseases such as age-related macular degeneration (AMD affect the retinal pigment epithelium (RPE and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 minutes yielded 4 x 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.

  3. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  4. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    Science.gov (United States)

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  5. Gremlin promotes retinal pigmentation epithelial (RPE) cell proliferation, migration and VEGF production via activating VEGFR2-Akt-mTORC2 signaling.

    Science.gov (United States)

    Liu, Yuan; Chen, Zhijun; Cheng, Haixia; Chen, Juan; Qian, Jing

    2017-01-03

    Retinopathy of prematurity (ROP) is characterized by late-phase pathologic retinal vasoproliferation. Gremlin is a novel vascular endothelial growth factors (VEGF) receptor 2 (VEGFR2) agonist and promotes angiogenic response. We demonstrated that gremlin expression was significantly increased in retinas of ROP model mice, which was correlated with VEGF upregulation. In retinal pigmentation epithelial (RPE) cells, gremlin activated VEGFR2-Akt-mTORC2 (mammalian target of rapamycin complex 2) signaling, and promoted cell proliferation, migration and VEGF production. VEGFR inhibition (by SU5416) or shRNA knockdown almost abolished gremlin-mediated pleiotropic functions in RPE cells. Further, pharmacological inhibition of Akt-mTOR, or shRNA knockdown of key mTORC2 component (Rictor or Sin1) also attenuated gremlin-exerted activities in RPE cells. We conclude that gremlin promotes RPE cell proliferation, migration and VEGF production possibly via activating VEGFR2-Akt-mTORC2 signaling. Gremlin could be a novel therapeutic target of ROP or other retinal vasoproliferation diseases.

  6. Cadherins in the retinal pigment epithelium (RPE revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo.

    Directory of Open Access Journals (Sweden)

    Xue Yang

    Full Text Available The retinal pigment epithelium (RPE supports the health and function of retinal photoreceptors and is essential for normal vision. RPE cells are post-mitotic, terminally differentiated, and polarized epithelial cells. In pathological conditions, however, they lose their epithelial integrity, become dysfunctional, even dedifferentiate, and ultimately die. The integrity of epithelial cells is maintained, in part, by adherens junctions, which are composed of cadherin homodimers and p120-, β-, and α-catenins linking to actin filaments. While E-cadherin is the major cadherin for forming the epithelial phenotype in most epithelial cell types, it has been reported that cadherin expression in RPE cells is different from other epithelial cells based on results with cultured RPE cells. In this study, we revisited the expression of cadherins in the RPE to clarify their relative contribution by measuring the absolute quantity of cDNAs produced from mRNAs of three classical cadherins (E-, N-, and P-cadherins in the RPE in vivo. We found that P-cadherin (CDH3 is highly dominant in both mouse and human RPE in situ. The degree of dominance of P-cadherin is surprisingly large, with mouse Cdh3 and human CDH3 accounting for 82-85% and 92-93% of the total of the three cadherin mRNAs, respectively. We confirmed the expression of P-cadherin protein at the cell-cell border of mouse RPE in situ by immunofluorescence. Furthermore, we found that oxidative stress induces dissociation of P-cadherin and β-catenin from the cell membrane and subsequent translocation of β-catenin into the nucleus, resulting in activation of the canonical Wnt/β-catenin pathway. This is the first report of absolute comparison of the expression of three cadherins in the RPE, and the results suggest that the physiological role of P-cadherin in the RPE needs to be reevaluated.

  7. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  8. Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina.

    Science.gov (United States)

    Promsote, Wanwisa; Makala, Levi; Li, Biaoru; Smith, Sylvia B; Singh, Nagendra; Ganapathy, Vadivel; Pace, Betty S; Martin, Pamela M

    2014-05-13

    Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  9. TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways.

    Directory of Open Access Journals (Sweden)

    Hiroto Terasaki

    Full Text Available Asymmetrical secretion of vascular endothelial growth factor (VEGF by retinal pigment epithelial (RPE cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD. We studied the effect of tumor necrosis factor-α (TNF-α on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.

  10. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  11. TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    International Nuclear Information System (INIS)

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-01-01

    Highlights: ► TNF-α induces MMP-9 expression and secretion to promote RPE cell migration. ► MAPK activation is not critical for TNF-α-induced MMP-9 expression. ► Akt and mTORC1 signaling mediate TNF-α-induced MMP-9 expression. ► SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-α. -- Abstract: Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  12. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  13. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  14. Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in in vivo studies in pigs

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Prause, Jan U; Prause, Michala

    2007-01-01

    PURPOSE: To study topographical differences in porcine retinal pigment epithelial (RPE) cell proliferation (1) in vivo, after experimental central surgical subretinal injury, and (2) in vitro. METHODS: Domestic pigs underwent either experimental RPE debridement (n = 5), subretinal amniotic membrane...... cells. This observation was true of both types of experimental surgery performed. In vitro, RPE isolates from the pre-equatorial region consistently yielded higher cell densities than did RPE cell isolates from more central parts of the epithelium. This was apparent through the three first passages...

  15. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  16. Overexpression of miR-183/-96/-182 triggers neuronal cell fate in Human Retinal Pigment Epithelial (hRPE) cells in culture.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Samiei, Shahram; Sharifi, Zohreh; Pirmardan, Ehsan Ranaei

    2017-01-29

    miR-183 cluster, composed of miR-183/-96/-182 genes, is highly expressed in the adult retina, particularly in photoreceptors. It involves in development, maturation and normal function of neuroretina. Ectopic overexpression of miR-183/-96/-182 genes was performed to assess reprogramming of hRPE cells. They were amplified from genomic DNA and cloned independently or in tandem configuration into pAAV.MCS vector. hRPE cells were then transfected with the recombinant constructs. Real-Time PCR was performed to measure the expression levels of miR-183/-96/-182 and that of several retina-specific neuronal genes such as OTX2, NRL, PDC and DCT. The transfected cells also were immunocytochemically examined for retina-specific neuronal markers, including Rhodopsin, red opsin, CRX, Thy1, CD73, recoverin and PKCα, to determine the cellular fate of the transfected hRPE cells. Data showed that upon miR-183/-96/-182 overexpression in hRPE cultures, the expression of neuronal genes including OTX2, NRL, PDC and DCT was also upregulated. Moreover, miR-183 cluster-treated hRPE cells were immunoreactive for neuronal markers such as Rhodopsin, red opsin, CRX and Thy1. Both transcriptional and translational upregulation of neuronal genes in miR-183 cluster-treated hRPE cells suggests that in vitro overexpression of miR-183 cluster could trigger reprogramming of hRPE cells to retinal neuron fate. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Odorant Receptor 51E2 Agonist β-ionone Regulates RPE Cell Migration and Proliferation

    Directory of Open Access Journals (Sweden)

    Nikolina Jovancevic

    2017-11-01

    Full Text Available The odorant receptor 51E2 (OR51E2, which is well-characterized in prostate cancer cells and epidermal pigment cells, was identified for the first time as the most highly expressed OR in human fetal and adult retinal pigment epithelial (RPE cells. Immunofluorescence staining and Western blot analysis revealed OR51E2 localization throughout the cytosol and in the plasma membrane. Additionally, immunohistochemical staining of diverse layers of the eye showed that the expression of OR51E2 is restricted to the pigment cells of the RPE and choroid. The results of Ca2+-imaging experiments demonstrate that activation of OR51E2 triggers a Ca2+ dependent signal pathway in RPE cells. Downstream signaling of OR51E2 involves the activation of adenylyl cyclase, ERK1/2 and AKT. The activity of these protein kinases likely accounts for the demonstrated increase in the migration and proliferation of RPE cells upon stimulation with the OR51E2 ligand β-ionone. These findings suggest that OR51E2 is involved in the regulation of RPE cell growth. Thus, OR51E2 represents a potential target for the treatment of proliferative disorders.

  18. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  19. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19...

  20. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  1. Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Khalooghi, Keynoush; Ahmadieh, Hamid; Kanavi, Mojgan Rezaie; Samiei, Shahram; Pakravesh, Jalil

    2011-06-01

    The retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina. Tissue engineering using amniotic membrane as a substrate to culture RPE cells may provide a promising new strategy to replace damaged RPE. We established a method of culturing RPE cells over the amniotic membrane as a support for their growth and transplantation. The transcription of specific genes involved in cellular function of native RPE, including RPE65, CRALBP, VEGF, CD68, and tyrosinase, were then measured using quantitative real-time PCR. Data showed a considerable increase in transcription of RPE65, CD68, and VEGF in RPE cells cultured on amniotic membrane. The amounts of CRALBP and tyrosinase transcripts were not affected. This may simply indicate that amniotic membrane restricted dedifferentiation of RPE cells in culture. The results suggest that amniotic membrane may be considered as an elective biological substrate for RPE cell culture.

  2. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  3. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells

    Science.gov (United States)

    Han, Meng; Blindewald-Wittich, Almut; Holz, Frank G.; Giese, Günter; Niemz, Markolf H.; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F.

    2006-01-01

    Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.

  4. Lack of FasL expression in cultured human retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Kaestel, C G; Madsen, H O; Prause, J U

    2001-01-01

    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... privilege of the eye, but due to contradictory published results, it is unclear whether RPE cells express this molecule. The purpose of this study was to investigate the expression of FasL in RPE cells in vitro and in vivo. Cultured human fetal and adult RPE cells were examined by flow cytometry, Western...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...

  5. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface.

    Directory of Open Access Journals (Sweden)

    Claudia S Priglinger

    Full Text Available Proliferative vitreoretinopathy (PVR is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers

  6. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    Science.gov (United States)

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  7. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  8. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization.

    Science.gov (United States)

    Hazim, Roni A; Karumbayaram, Saravanan; Jiang, Mei; Dimashkie, Anupama; Lopes, Vanda S; Li, Douran; Burgess, Barry L; Vijayaraj, Preethi; Alva-Ornelas, Jackelyn A; Zack, Jerome A; Kohn, Donald B; Gomperts, Brigitte N; Pyle, April D; Lowry, William E; Williams, David S

    2017-10-02

    Dysfunction of the retinal pigment epithelium (RPE) is implicated in numerous forms of retinal degeneration. The readily accessible environment of the eye makes it particularly suitable for the transplantation of RPE cells, which can now be derived from autologous induced pluripotent stem cells (iPSCs), to treat retinal degeneration. For RPE transplantation to become feasible in the clinic, patient-specific somatic cells should be reprogrammed to iPSCs without the introduction of reprogramming genes into the genome of the host cell, and then subsequently differentiated into RPE cells that are well characterized for safety and functionality prior to transplantation. We have reprogrammed human dermal fibroblasts to iPSCs using nonintegrating RNA, and differentiated the iPSCs toward an RPE fate (iPSC-RPE), under Good Manufacturing Practice (GMP)-compatible conditions. Using highly sensitive assays for cell polarity, structure, organelle trafficking, and function, we found that iPSC-RPE cells in culture exhibited key characteristics of native RPE. Importantly, we demonstrate for the first time with any stem cell-derived RPE cell that live cells are able to support dynamic organelle transport. This highly sensitive test is critical for RPE cells intended for transplantation, since defects in intracellular motility have been shown to promote RPE pathogenesis akin to that found in macular degeneration. To test their capabilities for in-vivo transplantation, we injected the iPSC-RPE cells into the subretinal space of a mouse model of retinal degeneration, and demonstrated that the transplanted cells are capable of rescuing lost RPE function. This report documents the successful generation, under GMP-compatible conditions, of human iPSC-RPE cells that possess specific characteristics of healthy RPE. The report adds to a growing literature on the utility of human iPSC-RPE cells for cell culture investigations on pathogenicity and for therapeutic transplantation, by

  9. The immune privilege of the eye: human retinal pigment epithelial cells selectively modulate T-cell activation in vitro

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Lovato, Paola; Ødum, Niels

    2005-01-01

    PURPOSE: To examine the effect of human retinal pigment epithelial (RPE) cells on phytohemagglutinin (PHA) activation of T cells. METHODS: Resting peripheral blood lymphocytes (PBLs) were stimulated with PHA with or without the presence of gamma-irradiated RPE cells. Proliferation and the cell...... in cell culture supernatant was measured by ELISA. RESULTS: Human RPE cells were found to suppress PHA-induced proliferation, cyclin A, IL-2R-alpha and -gamma, and CD71 expression and decrease the production of IL-2; but RPE cells do not inhibit the PHA-induced expression of early activation markers CD69......, MHC class I and II, and of cyclin D of the PBLs. CONCLUSIONS: These results are the first to indicate that RPE cells impede generation of activated T cells by interfering with the induction of high-affinity IL-2R-alphabetagamma, IL-2 production, and the expression of CD71 and cyclin A....

  10. In vivo imaging of the retinal pigment epithelial cells

    Science.gov (United States)

    Morgan, Jessica Ijams Wolfing

    The retinal pigment epithelial (RPE) cells form an important layer of the retina because they are responsible for providing metabolic support to the photoreceptors. Techniques to image the RPE layer include autofluorescence imaging with a scanning laser ophthalmoscope (SLO). However, previous studies were unable to resolve single RPE cells in vivo. This thesis describes the technique of combining autofluorescence, SLO, adaptive optics (AO), and dual-wavelength simultaneous imaging and registration to visualize the individual cells in the RPE mosaic in human and primate retina for the first time in vivo. After imaging the RPE mosaic non-invasively, the cell layer's structure and regularity were characterized using quantitative metrics of cell density, spacing, and nearest neighbor distances. The RPE mosaic was compared to the cone mosaic, and RPE imaging methods were confirmed using histology. The ability to image the RPE mosaic led to the discovery of a novel retinal change following light exposure; 568 nm exposures caused an immediate reduction in autofluorescence followed by either full recovery or permanent damage in the RPE layer. A safety study was conducted to determine the range of exposure irradiances that caused permanent damage or transient autofluorescence reductions. Additionally, the threshold exposure causing autofluorescence reduction was determined and reciprocity of radiant exposure was confirmed. Light exposures delivered by the AOSLO were not significantly different than those delivered by a uniform source. As all exposures tested were near or below the permissible light levels of safety standards, this thesis provides evidence that the current light safety standards need to be revised. Finally, with the retinal damage and autofluorescence reduction thresholds identified, the methods of RPE imaging were modified to allow successful imaging of the individual cells in the RPE mosaic while still ensuring retinal safety. This thesis has provided a

  11. Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo*

    Science.gov (United States)

    Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna; Marsili, Stefania; Tesar, Paul J.; Palczewski, Krzysztof; Takahashi, Masayo; Maeda, Akiko

    2013-01-01

    Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases. PMID:24129572

  12. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells.

    Science.gov (United States)

    Bagheri, Abouzar; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Sheibani, Nader; Astaneh, Shamila Darvishalipour; Kanavi, Mozhgan Rezaei; Mohammadian, Azam

    2015-01-01

    Retinal pigment epithelial (RPE) cells play key roles in the development of choroidal neovascularization and subsequent fibrosis. We investigated the impact of bevacizumab, antihuman vascular endothelial growth factor (VEGF) antibody, and anticonnective tissue growth factor (anti-CTGF) neutralizing antibody, individually or in combination, on proangiogenic and profibrotic properties of RPE cells. Primary cultures of human RPE cells were incubated with different concentrations of bevacizumab (0.25, 0.5, and 0.8 mg/ml) and/or anti-CTGF (10 μg/ml), and cell proliferation and apoptosis were determined. Expression and activity of proangiogenic and profibrotic genes including matrix metalloproteinases (MMP)-2 and 9, VEGFA, CTGF, vascular endothelial growth factor receptor-1 (VEGFR-1), cathepsin D, tissue inhibitor of metalloproteinases (TIMP) -1 and -2, and alpha smooth muscle actin (α-SMA) were assessed with slot blot, real-time RT-PCR, and zymography. Bevacizumab alone inhibited proliferation of RPE cells while anti-CTGF or bevacizumab and anti-CTGF combined had no inhibitory effect in this regard. Bevacizumab increased MMP-2, MMP-9, and cathepsin D but decreased VEGFA and VEGFR-1 expression. The CTGF level was increased by using 0.25 mg/ml bevacizumab but decreased at the 0.8 mg/ml concentration of bevacizumab. Treatment with anti-CTGF antibody decreased MMP-2 expression whereas combined treatment with bevacizumab and anti-CTGF resulted in decreased expression of MMP-2, TIMP-1, cathepsin D, VEGFA, CTGF, and α-SMA in the treated cultures. Treatment of RPE cells with the combination of bevacizumab and anti-CTGF could effectively suppress the proangiogenic and profibrotic activity of RPE cells.

  13. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells

    OpenAIRE

    Foltz, LP; Clegg, DO

    2017-01-01

    We describe a robust method to direct the differentiation of pluripotent stem cells into retinal pigment epithelial cells (RPE). The purpose of providing a detailed and thorough protocol is to clearly demonstrate each step and to make this readily available to researchers in the field. This protocol results in a homogenous layer of RPE with minimal or no manual dissection needed. The method presented here has been shown to be effective for induced pluripotent stem cells (iPSC) and human embry...

  14. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells.

    OpenAIRE

    Jiang, M; Pandey, S; Tran, V T; Fong, H K

    1991-01-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein alpha subunits (G alpha) including Gs alpha, Gi-1 alpha, Gi-2 alpha, Gi-3 alpha, and Gz alpha (or Gx alpha), where Gs and Gi are proteins that stimulate or inhibit adenylyl cyclase, respectively, and Gz is a protein that may mediate pertussis toxin-insensi...

  15. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  16. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    Directory of Open Access Journals (Sweden)

    Boris V. Stanzel

    2014-01-01

    Full Text Available Transplantation of the retinal pigment epithelium (RPE is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC and induced pluripotent stem cell (iPSC-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies.

  17. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-01-01

    Highlights: ► Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. ► Rac1 is activated in vitreous-transformed RPE cells. ► Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. ► Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. ► The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and

  19. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xionggao [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Department of Ophthalmology, Hainan Medical College, Haikou (China); Wei, Yantao; Ma, Haizhi [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Zhang, Shaochong, E-mail: zhshaochong@163.com [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  20. Effects of the Macular Carotenoid Lutein in Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Xiaoming Gong

    2017-12-01

    Full Text Available Retinal pigment epithelial (RPE cells are central to retinal health and homoeostasis. Oxidative stress-induced damage to the RPE occurs as part of the pathogenesis of age-related macular degeneration and neovascular retinopathies (e.g., retinopathy of prematurity, diabetic retinopathy. The xanthophyll carotenoids, lutein and zeaxanthin, are selectively taken up by the RPE, preferentially accumulated in the human macula, and transferred to photoreceptors. These macular xanthophylls protect the macula (and the broader retina via their antioxidant and photo-protective activities. This study was designed to investigate effects of various carotenoids (β-carotene, lycopene, and lutein on RPE cells subjected to either hypoxia or oxidative stress, in order to determine if there is effect specificity for macular pigment carotenoids. Using human RPE-derived ARPE-19 cells as an in vitro model, we exposed RPE cells to various concentrations of the specific carotenoids, followed by either graded hypoxia or oxidative stress using tert-butyl hydroperoxide (tBHP. The results indicate that lutein and lycopene, but not β-carotene, inhibit cell growth in undifferentiated ARPE-19 cells. Moreover, cell viability was decreased under hypoxic conditions. Pre-incubation of ARPE-19 cells with lutein or lycopene protected against tBHP-induced cell loss and cell co-exposure of lutein or lycopene with tBHP essentially neutralized tBHP-dependent cell death at tBHP concentrations up to 500 μM. Our findings indicate that lutein and lycopene inhibit the growth of human RPE cells and protect the RPE against oxidative stress-induced cell loss. These findings contribute to the understanding of the protective mechanisms attributable to retinal xanthophylls in eye health and retinopathies.

  1. Neonatal human retinal pigment epithelial cells secrete limited trophic factors in vitro and in vivo following striatal implantation in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2015-01-01

    Human retinal pigment epithelial (hRPE) cell implants into the striatum have been investigated as a potential cell-based treatment for Parkinson's disease in a Phase II clinical trial that recently failed. We hypothesize that the trophic factor potential of the hRPE cells could potentially influe...

  2. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis.

    Science.gov (United States)

    Chen, Mei; Rajapakse, Dinusha; Fraczek, Monika; Luo, Chang; Forrester, John V; Xu, Heping

    2016-06-01

    Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W. (Univ. of Southern California, Los Angeles (United States)); Pandey, S. (Doheny Eye Inst., Los Angeles, CA (United States))

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha} protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.

  4. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  5. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  6. Collectin-11 Is an Important Modulator of Retinal Pigment Epithelial Cell Phagocytosis and Cytokine Production.

    Science.gov (United States)

    Dong, Xia; Wu, Weiju; Ma, Liang; Liu, Chengfei; Bhuckory, Mohajeet B; Wang, Liping; Nandrot, Emeline F; Xu, Heping; Li, Ke; Liu, Yizhi; Zhou, Wuding

    2017-01-01

    In this paper, we report previously unknown roles for collectin-11 (CL-11, a soluble C-type lectin) in modulating the retinal pigment epithelial (RPE) cell functions of phagocytosis and cytokine production. We found that CL-11 and its carbohydrate ligand are expressed in both the murine and human neural retina; these resemble each other in terms of RPE and photoreceptor cells. Functional analysis of murine RPE cells showed that CL-11 facilitates the opsonophagocytosis of photoreceptor outer segments and apoptotic cells, and also upregulates IL-10 production. Mechanistic analysis revealed that calreticulin on the RPE cells is required for CL-11-mediated opsonophagocytosis whereas signal-regulatory protein α and mannosyl residues on the cells are involved in the CL-11-mediated upregulation of IL-10 production. This study is the first to demonstrate the role of CL-11 and the molecular mechanisms involved in modulating RPE cell phagocytosis and cytokine production. It provides a new insight into retinal health and disease and has implications for other phagocytic cells. © 2017 S. Karger AG, Basel.

  7. Calcium-independent phospholipase A₂, group VIA, is critical for RPE cell survival

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vohra, Rupali; Westlund, Barbro S.

    2014-01-01

    PURPOSE: To investigate the significance of calcium-independent phospholipase A₂, group VIA (iPLA2-VIA), in RPE cell survival following responses to sodium iodate (SI) in cell cultures. METHODS: The human retinal pigment epithelium (RPE) cell line (ARPE-19) cells and primary mouse-RPE cultures were...

  8. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    Science.gov (United States)

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  9. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  10. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis.

    Science.gov (United States)

    Klettner, Alexa; Tahmaz, Nihat; Dithmer, Michaela; Richert, Elisabeth; Roider, Johann

    2014-10-01

    Anti-VEGF treatment is the therapy of choice in age-related macular degeneration, and is also applied in diabetic macular oedema or retinal vein occlusion. Recently, the fusion protein, aflibercept, has been approved for therapeutic use. In this study, we investigate the effects of aflibercept on primary RPE cells. Primary RPE cells were prepared from freshly slaughtered pigs' eyes. The impact of aflibercept on cell viability was investigated with MTT and trypan blue exclusion assay. The influence of aflibercept on wound healing was assessed with a scratch assay. Intracellular uptake of aflibercept was investigated in immunohistochemistry and its influence on phagocytosis with a phagocytosis assay using opsonised latex beads. Aflibercept displays no cytotoxicity on RPE cells but impairs its wound healing ability. It is taken up into RPE cells and can be intracellularly detected for at least 7 days. Intracellular aflibercept impairs the phagocytic capacity of RPE cells. Aflibercept interferes with the physiology of RPE cells, as it is taken up into RPE cells, which is accompanied by a reduction of the phagocytic ability. Additionally, it impairs the wound healing capacity of RPE cells. These effects on the physiology of RPE cells may indicate possible side effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.

    Science.gov (United States)

    Liu, Tao; Jung, HaeWon; Liu, Jianfei; Droettboom, Michael; Tam, Johnny

    2017-10-01

    The retinal pigment epithelial (RPE) cells contain intrinsic fluorophores that can be visualized using infrared autofluorescence (IRAF). Although IRAF is routinely utilized in the clinic for visualizing retinal health and disease, currently, it is not possible to discern cellular details using IRAF due to limits in resolution. We demonstrate that the combination of adaptive optics (AO) with IRAF (AO-IRAF) enables higher-resolution imaging of the IRAF signal, revealing the RPE mosaic in the living human eye. Quantitative analysis of visualized RPE cells in 10 healthy subjects across various eccentricities demonstrates the possibility for in vivo density measurements of RPE cells, which range from 6505 to 5388 cells/mm 2 for the areas measured (peaking at the fovea). We also identified cone photoreceptors in relation to underlying RPE cells, and found that RPE cells support on average up to 18.74 cone photoreceptors in the fovea down to an average of 1.03 cone photoreceptors per RPE cell at an eccentricity of 6 mm. Clinical application of AO-IRAF to a patient with retinitis pigmentosa illustrates the potential for AO-IRAF imaging to become a valuable complementary approach to the current landscape of high resolution imaging modalities.

  12. Culture of Iris Pigment Epithelial Cells on Expanded-Polytetrafluroethylene (ePTFE Substrates for the Treatment of Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    S Nian

    2011-05-01

    Full Text Available Introduction: Transplantation of an intact differentiated retinal pigment epithelial (RPE cell layer may provide a means to treat Age-Related Macular Degeneration (AMD. However, harvesting RPE cells can be a technically complicated procedure. Our current work aimed to prepare intact differentiated iris pigment epithelial (IPE cell layers, which are easy to obtain and have the same embryonic origin and similar properties as RPE cells, on ePTFE substrates for transplantation purposes to rescue deteriorated photoreceptors in AMD. Methods: IPE cells isolated from rat eyes were seeded on different substrates, including fibronectin n-heptylamine (HA ePTFE substrates, HA ePTFE substrates, ePTFE substrates and fibronectin tissue culture polystyrene (TCPS as control. Cell number and morphology were assessed at each time interval. The formation of tight junction was examined by immunostaining of junction proteins. Results: An obvious increasing trend of cell number was observed in IPE cells on fibronectin n-heptylamine (HA ePTFE substrate, exhibiting heavy pigmentation and epithelial morphology. At Day 28, tight junction formation was indicated by cell-cell junctional proteins along cell borders. Conclusion: Harvested IPE cells cultured on fibronectin HA-ePTFE substrates can differentiate and form a cell monolayer that may be suitable for transplantation.

  13. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available The epithelial-mesenchymal transition (EMT in retinal pigment epithelial (RPE cells plays a central role in the development of proliferative vitreoretinopathy (PVR. The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF-α (10 ng/ml and transforming growth factor (TGF-β2 (5 ng/ml. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01. Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5'-amino-5'-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.

  14. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation.

    Science.gov (United States)

    Vugler, Anthony; Carr, Amanda-Jayne; Lawrence, Jean; Chen, Li Li; Burrell, Kelly; Wright, Andrew; Lundh, Peter; Semo, Ma'ayan; Ahmado, Ahmad; Gias, Carlos; da Cruz, Lyndon; Moore, Harry; Andrews, Peter; Walsh, James; Coffey, Peter

    2008-12-01

    Healthy Retinal Pigment Epithelium (RPE) cells are required for proper visual function and the phenomenon of RPE derivation from Human Embryonic Stem Cells (HESC) holds great potential for the treatment of retinal diseases. However, little is known about formation, expansion and expression profile of RPE-like cells derived from HESC (HESC-RPE). By studying the genesis of pigmented foci we identified OTX1/2-positive cell types as potential HESC-RPE precursors. When pigmented foci were excised from culture, HESC-RPE expanded to form extensive monolayers, with pigmented cells at the leading edge assuming a precursor role: de-pigmenting, proliferating, expressing keratin 8 and subsequently re-differentiating. As they expanded and differentiated in vitro, HESC-RPE expressed markers of both developing and mature RPE cells which included OTX1/2, Pax6, PMEL17 and at low levels, RPE65. In vitro, without signals from a developing retinal environment, HESC-RPE could produce regular, polarised monolayers with developmentally important apical and basal features. Following transplantation of HESC-RPE into the degenerating retinal environment of Royal College of Surgeons (RCS) dystrophic rats, the cells survived in the subretinal space, where they maintained low levels of RPE65 expression and remained out of the cell cycle. The HESC-RPE cells responded to the in vivo environment by downregulating Pax6, while maintaining expression of other markers. The presence of rhodopsin-positive material within grafted HESC-RPE indicates that in the future, homogenous transplants of this cell type may be capable of supporting visual function following retinal dystrophy.

  15. Mechanism of RPE cell death in α-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH efflux.

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    Full Text Available Absence of α-crystallins (αA and αB in retinal pigment epithelial (RPE cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1 MRP1 mediates GSH and GSSG efflux in RPE cells; 2 MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3 the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.

  16. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

    Science.gov (United States)

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf

    2006-03-01

    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  17. Myo-inositol uptake by cultured calf retinal pigment epithelial cells: regulation by glucose

    International Nuclear Information System (INIS)

    Khatami, M.; Rockey, J.H.

    1986-01-01

    Confluent primary (P-1) or subcultured passage 2 or 3 (P-2, P-3) calf retinal pigment epithelial cells (RPE) were incubated with [ 3 H]-myo-inositol (MI, 100-200 μM) in balanced salt solution (BSS), for 5 to 60 min at 37 0 C. MI uptake into RPE (P-2, 5 days old) was saturable with K/sub m/ of 147 μM and V/sub max/ of 5.5 pmole/min/μg DNA. P-1 or P-2 incubated with 10 μM MI for 40 min accumulated MI against a concentration gradient ([MI]in/[MI]out > 20). Replacement of 150 mM NaCl in BSS by 150 mM choline-Cl reduced the uptake of MI by 87%. MI uptake was inhibited (39%) when cells were incubated in BSS in the absence of Ca Cl 2 . Transport of MI into RPE incubated in the presence of phloridzin, ouabain or 2,4-dinitrophenol (1 mM each) for 10 min was inhibited by 65, 37 and 21%, respectively. α-D-Glucose (20 mM) in the incubation media inhibited MI uptake into primary (or P-2) cultured RPE by 30 or 43% when cells were incubated for 10 or 60 min, respectively. The ability of RPE cells, grown in the presence of 50 mM glucose for 15-25 days, to concentrate MI (40 μM) was reduced up to 41%. Cultured RPE cells accumulated myo-inositol by an active transport system, sensitive to ouabain, DNP and phloridzin. High glucose in the incubation media or in the growth media inhibited the uptake of MI into calf RPE cells

  18. Methodologies for analysis of patterning in the mouse RPE sheet

    Science.gov (United States)

    Boatright, Jeffrey H.; Dalal, Nupur; Chrenek, Micah A.; Gardner, Christopher; Ziesel, Alison; Jiang, Yi; Grossniklaus, Hans E.

    2015-01-01

    -analyzed results were compared. Whether tallied manually or automatically with software, the resulting cell measurements were in close agreement. We compared normal with diseased RPE cells during aging with quantitative cell size and shape metrics. Subtle differences between the RPE sheet characteristics of young and old mice were identified. The IRBP−/− mouse RPE sheet did not differ from C57BL/6J (wild type, WT), suggesting that IRBP does not play a direct role in maintaining the health of the RPE cell, while the slow loss of photoreceptor (PhR) cells previously established in this knockout does support a role in the maintenance of PhR cells. Rd8 mice exhibited several measurable changes in patterns of RPE cells compared to WT, suggesting a slow degeneration of the RPE sheet that had not been previously noticed in rd8. Conclusions An optimized dissection method and a series of programs were used to establish a rapid and hands-off analysis. The software-aided, high-sampling-size approach performed as well as trained human scorers, but was considerably faster and easier. This method allows tens to hundreds of thousands of cells to be analyzed, each with 23 metrics. With this combination of dissection and image analysis of the RPE sheet, we can now analyze cell-to-cell interactions of immediate neighbors. In the future, we may be able to observe interactions of second, third, or higher ring neighbors and analyze tension in sheets, which might be expected to deviate from normal near large bumps in the RPE sheet caused by druse or when large frank holes in the RPE sheet are observed in geographic atrophy. This method and software can be readily applied to other aspects of vision science, neuroscience, and epithelial biology where patterns may exist in a sheet or surface of cells. PMID:25593512

  19. Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alice L Yu

    Full Text Available The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE induces cell loss, cellular senescence, and extracellular matrix (ECM synthesis in primary human retinal pigment epithelial (RPE cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J, connective tissue growth factor (CTGF, fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3-4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.

  20. The anterior lens capsule used as support material in RPE cell-transplantation

    DEFF Research Database (Denmark)

    Nicolini, J; Kiilgaard, Jens Folke; Wiencke, A K

    2000-01-01

    To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells.......To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells....

  1. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells.

    Science.gov (United States)

    Hytti, Maria; Szabó, Dora; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Petrovski, Goran; Kauppinen, Anu

    2017-04-01

    Plant-derived polyphenols are known to possess anti-inflammatory and antioxidant effects. In recent years, several studies have investigated their potential benefits for treating chronic diseases associated with prolonged inflammation and excessive oxidative stress, such as age-related macular degeneration (AMD). Previously, two polyphenols, fisetin and luteolin, have been reported to increase the survival of retinal pigment epithelial (RPE) cells suffering from oxidative stress as well as decreasing inflammation but the benefits of polyphenol therapy seem to depend on the model system used. Our aim was to analyze the effects of fisetin and luteolin on inflammation and cellular viability in a model of nonoxidative DNA damage-induced cell death in human RPE (hRPE) cells. Pretreatment of ARPE-19 or primary hRPE cells with the polyphenols augmented etoposide-induced cell death as measured by the lactate dehydrogenase and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. However, the treatment was able to reduce the release of two proinflammatory cytokines, IL-6 and IL-8, which were determined by enzyme-linked Immunosorbent assay. Analyses of caspase 3 activity, p53 acetylation and SIRT1 protein levels revealed the apoptotic nature of etoposide-evoked cell death and that fisetin and luteolin augmented the etoposide-induced acetylation of p53 and decreased SIRT1 levels. Taken together, our findings suggest that the cytoprotective effects of fisetin and luteolin depend on the stressor they need to combat, whereas their anti-inflammatory potential is sustained over a variety of model systems. Careful consideration of disease pathways will be necessary before fisetin or luteolin can be recommended as therapeutic agents for inflammatory diseases in general and specifically AMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.

    Science.gov (United States)

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H

    2012-07-15

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.

  3. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    Science.gov (United States)

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  4. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Min Sun

    2015-06-01

    Full Text Available Background: Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L. anthocyanin (PSPA, a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective: The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation of human retinal pigment epithelial (RPE cells, which perform essential functions for the visual process. Methods: The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results: PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions: We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.

  5. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells.

    Science.gov (United States)

    Goto, So; Onishi, Akishi; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-04-03

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1 -/- mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1 -/- mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1 -/- pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1 -/- mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1 -/- choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. © 2018, Goto et al.

  6. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-01-01

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition

  7. Cytoplasmic and nuclear anti-apoptotic roles of αB-crystallin in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Woo Jin Jeong

    Full Text Available In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO can alter the function of the basement membrane of retinal pigment epithelial (RPE cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.

  8. X-ray microprobe analysis of the retina and RPE in sheep with ovine ceroid-lipofuscinosis

    International Nuclear Information System (INIS)

    Samuelson, D.A.; Armstrong, D.; Jolly, R.

    1990-01-01

    Ovine ceroid-lipofuscinosis (OCL) is one animal model for the human condition, and because autofluorescent lipopigments are prominent in the brain and eye, it may also prove useful as a model for aging. For example, a progressive decline in electrical recording from brain and retina are observed in both aging and OCL. Samples of retinal and retinal pigment epithelial (RPE) tissues were obtained from a young control. 2 animals with OCL and a normal aged sheep. Specimens were cryo-fractured and examined by scanning electron microscopy/x-ray microanalysis. Measurements made of 6 individual cells in the ganglion layer of OCL specimens, the remainder of the retina, and RPE showed age-related changes in zinc, iron, and copper which were associated with lipopigment accumulation in the RPE. There was marked decrease in phosphate, sulfur, and manganese levels, as photoreceptor cells and their outer segments are lost in the disease process. This is the first report of metal analysis in the retina and RPE in a disease entity, and as a function of normal aging

  9. Differential behavioral outcomes following neonatal versus fetal human retinal pigment epithelial cell striatal implants in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2017-01-01

    Following the failure of a Phase II clinical study evaluating human retinal pigment epithelial (hRPE) cell implants as a potential treatment option for Parkinson's disease, speculation has centered on implant function and survival as possible contributors to the therapeutic outcomes. We recently ...

  10. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-01-01

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (β III ) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  11. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  12. Quantitative Fundus Autofluorescence in Best Vitelliform Macular Dystrophy: RPE Lipofuscin is not Increased in Non-Lesion Areas of Retina.

    Science.gov (United States)

    Sparrow, Janet R; Duncker, Tobias; Woods, Russell; Delori, François C

    2016-01-01

    Since the lipofuscin of retinal pigment epithelial (RPE) cells has been implicated in the pathogenesis of Best vitelliform macular dystrophy, we quantified fundus autofluorescence (quantitative fundus autofluorescence, qAF) as an indirect measure of RPE lipofuscin levels. Mean non-lesion qAF was found to be within normal limits for age. By spectral domain optical coherence tomography (SD-OCT) vitelliform lesions presented as fluid-filled subretinal detachments containing reflective material. We discuss photoreceptor outer segment debris as the source of the intense fluorescence of these lesions and loss of anion channel functioning as an explanation for the bullous photoreceptor-RPE detachment. Unexplained is the propensity of the disease for central retina.

  13. Adenovirus-Mediated Delivery of Catalase to Retinal Pigment Epithelial Cells Protects Neighboring Photoreceptors from Photo-Oxidative Stress

    OpenAIRE

    Rex, T.S.; Tsui, I.; Hahn, P.; Maguire, A.M.; Duan, D.; Bennett, J.; Dunaief, J.L.

    2004-01-01

    Oxidative stress is involved in the pathogenesis of many diseases. Overexpression of antioxidant enzymes by gene therapy may protect tissues from oxidative damage. Because the reactive oxygen species hydrogen peroxide can diffuse across cell membranes, we hypothesized that overexpression of the antioxidant catalase within certain cells might protect neighboring cells. To test this hypothesis, we transduced retinal pigment epithelial (RPE) cells in vitro and in vivo with adenovirus carrying th...

  14. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  15. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE.

    Directory of Open Access Journals (Sweden)

    Karen G Shadrach

    Full Text Available DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson's disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress.Retinal pigment epithelial (RPE cultures were treated with H2O2 for various times followed by biochemical and immunohistological analysis. Cells were transfected with adenoviruses carrying the full-length human DJ-1 cDNA and a mutant construct, which has the cysteine residues at amino acid 46, 53 and 106 mutated to serine (C to S prior to stress experiments. DJ-1 localization, levels of expression and reactive oxygen species (ROS generation were also analyzed in cells expressing exogenous DJ-1 under baseline and oxidative stress conditions. The presence of DJ-1 and oxidized DJ-1 was evaluated in human RPE total lysates. The distribution of DJ-1 was assessed in AMD and non-AMD cryosectionss and in isolated human Bruch's membrane (BM/choroid from AMD eyes.DJ-1 in RPE cells under baseline conditions, displays a diffuse cytoplasmic and nuclear staining. After oxidative challenge, more DJ-1 was associated with mitochondria. Increasing concentrations of H2O2 resulted in a dose-dependent increase in DJ-1. Overexpression of DJ-1 but not the C to S mutant prior to exposure to oxidative stress led to significant decrease in the generation of ROS. DJ-1 and oxDJ-1 intensity of immunoreactivity was significantly higher in the RPE lysates from AMD eyes. More DJ-1 was localized to RPE cells from AMD donors with geographic atrophy and DJ-1 was also present in isolated human BM/choroid from AMD eyes.DJ-1 regulates RPE responses to oxidative stress. Most importantly, increased DJ-1 expression prior to oxidative stress leads to decreased generation of ROS, which will be relevant for future studies of AMD since oxidative stress is a known factor affecting this disease.

  16. Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress

    DEFF Research Database (Denmark)

    Fanelli, Giorgia; Gonzalez-Cordero, Anai; Gardner, Peter J

    2017-01-01

    induced-pluripotent stem cell (iPSC)-derived RPE cells, particularly with regard to the complement pathway. We focused on collectin-11 (CL-11), a pattern recognition molecule that can trigger complement activation in renal epithelial tissue. We found evidence of constitutive and hypoxia-induced expression......, failed to activate complement. The presence of CL-11 in healthy murine and human retinal tissues confirmed the biological relevance of CL-11. Our data describe a new trigger mechanism of complement activation that could be important in disease pathogenesis and therapeutic interventions....

  17. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration.

    Science.gov (United States)

    Zhu, DanHong; Sreekumar, Parameswaran G; Hinton, David R; Kannan, Ram

    2010-03-31

    Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays, respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C(2) ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Over-expression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C(2) ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in

  18. Hyperglycaemia exacerbates choroidal neovascularisation in mice via the oxidative stress-induced activation of STAT3 signalling in RPE cells.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Choroidal neovascularisation (CNV that occurs as a result of age-related macular degeneration (AMD causes severe vision loss among elderly patients. The relationship between diabetes and CNV remains controversial. However, oxidative stress plays a critical role in the pathogenesis of both AMD and diabetes. In the present study, we investigated the influence of diabetes on experimentally induced CNV and on the underlying molecular mechanisms of CNV. CNV was induced via photocoagulation in the ocular fundi of mice with streptozotocin-induced diabetes. The effect of diabetes on the severity of CNV was measured. An immunofluorescence technique was used to determine the levels of oxidative DNA damage by anti-8-hydroxy-2-deoxyguanosine (8-OHdG antibody, the protein expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3 and vascular endothelial growth factor (VEGF, in mice with CNV. The production of reactive oxygen species (ROS in retinal pigment epithelial (RPE cells that had been cultured under high glucose was quantitated using the 2',7'-dichlorofluorescein diacetate (DCFH-DA method. p-STAT3 expression was examined using Western blot analysis. RT-PCR and ELISA processes were used to detect VEGF expression. Hyperglycaemia exacerbated the development of CNV in mice. Oxidative stress levels and the expression of p-STAT3 and VEGF were highly elevated both in mice and in cultured RPE cells. Treatment with the antioxidant compound N-acetyl-cysteine (NAC rescued the severity of CNV in diabetic mice. NAC also inhibited the overexpression of p-STAT3 and VEGF in CNV and in RPE cells. The JAK-2/STAT3 pathway inhibitor AG490 blocked VEGF expression but had no effect on the production of ROS in vitro. These results suggest that hyperglycaemia promotes the development of CNV by inducing oxidative stress, which in turn activates STAT3 signalling in RPE cells. Antioxidant supplementation helped attenuate the development of CNV

  19. Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.

    Science.gov (United States)

    Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François

    2016-09-06

    The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  1. A2E Suppresses Regulatory Function of RPE Cells in Th1 Cell Differentiation Via Production of IL-1β and Inhibition of PGE2.

    Science.gov (United States)

    Shi, Qian; Wang, Qiu; Li, Jing; Zhou, Xiaohui; Fan, Huimin; Wang, Fenghua; Liu, Haiyun; Sun, Xiangjun; Sun, Xiaodong

    2015-12-01

    Inflammatory status of RPE cells induced by A2E is essential in the development of AMD. Recent research indicated T-cell immunity was involved in the pathological progression of AMD. This study was designed to investigate how A2E suppresses immunoregulatory function of RPE cells in T-cell immunity in vitro. Mouse RPE cells or human ARPE19 cells were stimulated with A2E, and co-cultured with naïve T cells under Th1, Th2, Th17, and regulatory T cell (Treg) polarization conditions. The intracellular cytokines or transcript factors of the induced T-cells subset were detected with flow cytometer and qRT-PCR. The ROS levels were detected, and the factors and possible pathways involved in the A2E-laden RPE cells were analyzed through neutralization antibody of IL-1β and inhibitors of related pathways. The A2E reduced regulatory function of RPE cells in Treg differentiation. The A2E-laden RPE cells promoted polarization of Th1 cells in vitro, but not Th2 or Th17 differentiation. The A2E induced RPE cells to release inflammatory cytokines and ROS, but PGE2 production was inhibited. Through neutralization of IL-1β or inhibition of COX2-PGE2 pathways, A2E-laden RPE cells expressed reduced effect in inducing Th1 cells. The A2E inhibited regulatory function of RPE cells in suppressing Th1 cell immunity in vitro through production of IL-1β and inhibition of PGE2. Our data indicate that A2E could suppress immunoregulatory function of RPE cells and adaptive immunity might play a role in the immune pathogenesis of AMD.

  2. Erythropoietin protects the retinal pigment epithelial barrier against ...

    African Journals Online (AJOL)

    O2-induced hyperpermeability. H Zhang, Y Gong, X Wu, Y Shi, L Yin, Y Qiu. Abstract. Erythropoietin (EPO) is not limited to hematopoiesis; it may act as a protective cytokine. In this study, the retinal pigment epithelial (RPE) cell viability, cell ...

  3. Development of an automated chip culture system with integrated on-line monitoring for maturation culture of retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Mee-Hae Kim

    2017-10-01

    Full Text Available In cell manufacturing, the establishment of a fully automated, microfluidic, cell culture system that can be used for long-term cell cultures, as well as for process optimization is highly desirable. This study reports the development of a novel chip bioreactor system that can be used for automated long-term maturation cultures of retinal pigment epithelial (RPE cells. The system consists of an incubation unit, a medium supply unit, a culture observation unit, and a control unit. In the incubation unit, the chip contains a closed culture vessel (2.5 mm diameter, working volume 9.1 μL, which can be set to 37 °C and 5% CO2, and uses a gas-permeable resin (poly- dimethylsiloxane as the vessel wall. RPE cells were seeded at 5.0 × 104 cells/cm2 and the medium was changed every day by introducing fresh medium using the medium supply unit. Culture solutions were stored either in the refrigerator or the freezer, and fresh medium was prepared before any medium change by warming to 37 °C and mixing. Automated culture was allowed to continue for 30 days to allow maturation of the RPE cells. This chip culture system allows for the long-term, bubble-free, culture of RPE cells, while also being able to observe cells in order to elucidate their cell morphology or show the presence of tight junctions. This culture system, along with an integrated on-line monitoring system, can therefore be applied to long-term cultures of RPE cells, and should contribute to process control in RPE cell manufacturing.

  4. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    Science.gov (United States)

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  5. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ming [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Department of Ophthalmology, Cardinal Tien Hospital, Taipei Hsien, Taiwan, ROC (China); Fang, Jia-You [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan, ROC (China); Lin, Hsin-Huang [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Yang, Chi-Yea [Department of Biotechnology, Vanung University, Taoyuan, Taiwan, ROC (China); Hung, Chi-Feng, E-mail: 054317@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China)

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  6. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    International Nuclear Information System (INIS)

    Chan, Chi-Ming; Fang, Jia-You; Lin, Hsin-Huang; Yang, Chi-Yea; Hung, Chi-Feng

    2009-01-01

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  7. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    International Nuclear Information System (INIS)

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin; Yan, Biao

    2013-01-01

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy

  8. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin, E-mail: jqin710@vip.sina.com; Yan, Biao, E-mail: yanbiao1982@hotmail.com

    2013-09-06

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.

  9. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress.

    Science.gov (United States)

    Ghaderi, Shima; Ahmadian, Shahin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Kheitan, Samira; Pirmardan, Ehsan R

    2018-02-01

    Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases. © 2017 Wiley Periodicals, Inc.

  10. Construction of a cDNA library from human retinal pigment epithelial cells challenged with rod outer segments.

    Science.gov (United States)

    Cavaney, D M; Rakoczy, P E; Constable, I J

    1995-05-01

    To study genes expressed by retinal pigment epithelial (RPE) cells during phagocytosis and digestion of rod outer segments (ROS), a complementary (c)DNA library was produced using an in-vitro model. The cDNA library can be used to study molecular changes which contribute to the development of diseases due to a failure in outer segment phagocytosis and digestion by RPE cells. Here we demonstrate a way to study genes and their functions using a molecular biological approach and describing the first step involved in this process, the construction of a cDNA library. Human RPE cells obtained from the eyes of a seven-year-old donor were cultured and challenged with bovine ROS. The culture was harvested and total RNA was extracted. Complementary DNA was transcribed from the messenger (m)RNA and was directionally cloned into the LambdaGEM-4 bacteriophage vector successfully. Some clones were picked and the DNA extracted, to determine the size of the inserts as a measure of the quality of the library. Molecular biology and cell culture are important tools to be used in eye research, especially in areas where tissue is limiting and animal models are not available. We now have a ROS challenged RPE cDNA library which will be used to identify genes responsible for degrading phagocytosed debris within the retinal pigment epithelium.

  11. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells.

    Science.gov (United States)

    Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M; Mitchell, Claire H

    2014-01-01

    Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4(-/-) mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

  12. Efficient gene delivery to primary human retinal pigment epithelial cells: The innate and acquired properties of vectors.

    Science.gov (United States)

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Soheila; Atyabi, Fatemeh; Akbari Javar, Hamid; Abedin Dorkoosh, Farid

    2017-02-25

    The purpose of this study is designing non-viral gene delivery vectors for transfection of the primary human retinal pigment epithelial cells (RPE). In the design process of gene delivery vectors, considering physicochemical properties of vectors alone does not seem to be enough since they interact with constituents of the surrounding environment and hence gain new characteristics. Moreover, due to these interactions, their cargo can be released untimely or undergo degradation before reaching to the target cells. Further, the characteristics of cells itself can also influence the transfection efficacy. For example, the non-dividing property of RPE cells can impede the transfection efficiency which in most studies was ignored by using immortal cell lines. In this study, vectors with different characteristics differing in mixing orders of pDNA, PEI polymer, and PLGA/PEI or PLGA nanoparticles were prepared and characterized. Then, their characteristics and efficacy in gene delivery to RPE cells in the presence of vitreous or fetal bovine serum (FBS) were evaluated. All formulations showed no cytotoxicity and were able to protect pDNA from premature release and degradation in extracellular media. Also, the adsorption of vitreous or serum proteins onto the surface of vectors changed their properties and hence cellular uptake and transfection efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells

    Science.gov (United States)

    Tiwari, Vaibhav; Oh, Myung-Jin; Kovacs, Maria; Shukla, Shripaad Y.; Valyi-Nagy, Tibor; Shukla, Deepak

    2009-01-01

    Herpes simplex virus 1 (HSV-1) demonstrates a unique ability to infect a variety of host cell types. Retinal pigment epithelial (RPE) cells form the outermost layer of the retina and provide a potential target for viral invasion and permanent vision impairment. Here we examine the initial cellular and molecular mechanisms that facilitate HSV-1 invasion of human RPE cells. High-resolution confocal microscopy demonstrated initial interaction of green fluorescent protein (GFP)-tagged virions with filopodia-like structures present on cell surfaces. Unidirectional movement of the virions on filopodia to the cell body was detected by live cell imaging of RPE cells, which demonstrated susceptibility to pH-dependent HSV-1 entry and replication. Use of RT-PCR indicated expression of nectin-1, herpes virus entry mediator (HVEM) and 3-O-sulfotransferase-3 (as a surrogate marker for 3-O-sulfated heparan sulfate). HVEM and nectin-1 expression was subsequently verified by flow cytometry. Nectin-1 expression in murine retinal tissue was also demonstrated by immunohistochemistry. Antibodies against nectin-1, but not HVEM, were able to block HSV-1 infection. Similar blocking effects were seen with a small interfering RNA construct specifically directed against nectin-1, which also blocked RPE cell fusion with HSV-1 glycoprotein-expressing Chinese hamster ovary (CHO-K1) cells. Anti-nectin-1 antibodies and F-actin depolymerizers were also successful in blocking the cytoskeletal changes that occur upon HSV-1 entry into cells. Our findings shed new light on the cellular and molecular mechanisms that help the virus to enter the cells of the inner eye. PMID:18803666

  14. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  15. Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells.

    Science.gov (United States)

    Ko, Ji-Ae; Sotani, Yasuyuki; Ibrahim, Diah Gemala; Kiuchi, Yoshiaki

    2017-10-01

    Proliferative vitreoretinopathy (PVR) is the major cause of treatment failure in individuals who undergo surgery for retinal detachment. The epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE) cells contributes to the pathogenesis of PVR. Oxidative stress is thought to play a role in the progression of retinal diseases including PVR. We have now examined the effects of oxidative stress on the EMT and related processes in the human RPE cell line. We found that H 2 O 2 induced the contraction of RPE cells in a three-dimensional collagen gel. Analysis of a cytokine array revealed that H 2 O 2 specifically increased the release of macrophage migration inhibitory factor (MIF) from RPE cells. Reverse transcription-polymerase chain reaction and immunoblot analyses showed that H 2 O 2 increased the expression of MIF in RPE cells. Immunoblot and immunofluorescence analyses revealed that H 2 O 2 upregulated the expression of α-SMA and vimentin and downregulated that of ZO-1 and N-cadherin. Consistent with these observations, the transepithelial electrical resistance of cell was reduced by exposure to H 2 O 2 . The effects of oxidative stress on EMT-related and junctional protein expression as well as on transepithelial electrical resistance were inhibited by antibodies to MIF, but they were not mimicked by treatment with recombinant MIF. Finally, analysis with a profiling array for mitogen-activated protein kinase signalling revealed that H 2 O 2 specifically induced the phosphorylation of p38 mitogen-activated protein kinase. Our results thus suggest that MIF may play a role in induction of the EMT and related processes by oxidative stress in RPE cells and that it might thereby contribute to the pathogenesis of PVR. Proliferative vitreoretinopathy is a major complication of rhegmatogenous retinal detachment, and both oxidative stress and induction of the EMT in RPE cells are thought to contribute to the pathogenesis of this condition. We have now

  16. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress

    Directory of Open Access Journals (Sweden)

    Yun-Ching eChang

    2014-08-01

    Full Text Available Age-related macular degeneration (AMD is one retinal aging process that may lead to irreversible vision loss in the elderly. Its pathogenesis remains unclear, but oxidative stress inducing retinal pigment epithelial (RPE cells damage is perhaps responsible for the aging sequence of retina and may play an important role in macular degeneration. In this study, we have reprogrammed T cells from patients with dry type AMD into induced pluripotent stem cells (iPSCs via integration-free episomal vectors and differentiated them into RPE cells that were used as an expandable platform for investigating pathogenesis of the AMD and in-vitro drug screening. These patient-derived RPEs with the AMD-associated background (AMD-RPEs exhibited reduced antioxidant ability, compared with normal RPE cells. Among several screened candidate drugs, curcumin caused most significant reduction of ROS in AMD-RPEs. Pre-treatment of curcumin protected these AMD-RPEs from H2O2-induced cell death and also increased the cytoprotective effect against the oxidative stress of H2O2 through the reduction of ROS levels. In addition, curcumin with its versatile activities modulated the expression of many oxidative stress-regulating genes such as PDGF, VEGF, IGFBP-2, HO1, SOD2 and GPX1. Our findings indicated that the RPE cells derived from AMD patients have decreased antioxidative defense, making RPE cells more susceptible to oxidative damage and thereby leading to AMD formation. Curcumin represented an ideal drug that can effectively restore the neuronal functions in AMD patient-derived RPE cells, rendering this drug an effective option for macular degeneration therapy and an agent against aging-associated oxidative stress.

  18. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    Science.gov (United States)

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Ultraviolet (UV and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Jin Yao

    2013-05-01

    Full Text Available Ultraviolet (UV radiation and reactive oxygen species (ROS impair the physiological functions of retinal pigment epithelium (RPE cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD. The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER stress-AMP activated protein kinase (AMPK signaling axis in UV and hydrogen peroxide (H2O2-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal, ceramide production (fumonisin B1 and AMPK activation (compound C suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis.

  20. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA.

    Science.gov (United States)

    Nazemroaya, Fatemeh; Soheili, Zahra-Soheila; Samiei, Shahram; Deezagi, Abdolkhalegh; Ahmadieh, Hamid; Davari, Malihe; Heidari, Razeih; Bagheri, Abouzar; Darvishalipour-Astaneh, Shamila

    2017-10-01

    Retinal pigment epithelium (RPE) cells represent a great potential to rescue degenerated cells of the damaged retina. Activation of the virtually plastic properties of RPE cells may aid in recovery of retinal degenerative disorders without the need for entire RPE sheet transplantation. Poly (2-hydroxyethyl methacrylate)(PolyHEMA) is one of the most important hydrogels in the biomaterials world. This hydrophobic polymer does not normally support attachment of mammalian cells. In the current study we investigated the effect of PolyHEMA as a cell culture substrate on the growth, differentiation, and plasticity of hRPE cells. hRPE cells were isolated from neonatal human globes and cultured on PolyHEMA and polystyrene substrates (as controls) in 24-well culture plates. DMEM/F12 was supplemented with 10% fetal bovine serum (FBS) and/or 30% human amniotic fluid (HAF) for cultured cells on polystyrene and PolyHEMA coated vessels. Morphology, rate of cell proliferation and cell death, MTT assay, immunocytochemistry and Real-Time RT-PCR were performed to investigate the effects of PolyHEMA on the growth and differentiation of cultured hRPE cells. Proliferation rate of the cells that had been cultured on PolyHEMA was reduced; PolyHEMA did not induce cell death in the hRPE cultures. hRPE cells cultured on PolyHEMA formed many giant spheroid colonies. The giant colonies were re-cultured and the presence of retinal progenitor markers and markers of hRPE cells were detected in cell cultures on PolyHEMA. PolyHEMA seems to be promising for both maintenance and de-differentiation of hRPE cells and expansion of the retinal progenitor cells from the cultures that are originated from hRPE cells. J. Cell. Biochem. 118: 3080-3089, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    Science.gov (United States)

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  2. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    Directory of Open Access Journals (Sweden)

    Griffiths T Daniel

    2009-05-01

    Full Text Available Abstract Background The Retinal Pigmented Epithelium (RPE is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD, Retinitis Pigmentosa (RP, Fundus Flavimaculatus (FFM, Best's disease and Age-related Macular Degeneration (AMD. We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal

  3. Chemokine Expression in Retinal Pigment Epithelial ARPE-19 Cells in Response to Coculture with Activated T Cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Faber, Carsten; Udsen, Maja

    2012-01-01

    Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression of chemo......Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression...

  4. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  5. PlGF gene knockdown in human retinal pigment epithelial cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush

    2011-04-01

    To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.

  6. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    Science.gov (United States)

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Age-related changes in the retinal pigment epithelium (RPE.

    Directory of Open Access Journals (Sweden)

    Xiaorong Gu

    Full Text Available Age-related changes in the retina are often accompanied by visual impairment but their mechanistic details remain poorly understood.Proteomic studies were pursued toward a better molecular understanding of retinal pigment epithelium (RPE aging mechanisms. RPE cells were isolated from young adults (3-4 month-old and old (24-25 month-old F344BN rats, and separated into subcellular fractions containing apical microvilli (MV and RPE cell bodies (CB lacking their apical microvilli. Proteins were extracted in detergent, separated by SDS-PAGE, digested in situ with trypsin and analyzed by LC MS/MS. Select proteins detected in young and old rat RPE were further studied using immunofluorescence and Western blot analysis.A total of 356 proteins were identified in RPE MV from young and 378 in RPE MV from old rats, 48% of which were common to each age group. A total of 897 proteins were identified in RPE CB from young rats and 675 in old CB, 56% of which were common to each age group. Several of the identified proteins, including proteins involved in response to oxidative stress, displayed both quantitative and qualitative changes in overall abundance during RPE aging. Numerous proteins were identified for the first time in the RPE. One such protein, collectrin, was localized to the apical membrane of apical brush border of proximal tubules where it likely regulates several amino acid transporters. Elsewhere, collectrin is involved in pancreatic β cell proliferation and insulin secretion. In the RPE, collectrin expression was significantly modulated during RPE aging. Another age-regulated, newly described protein was DJ-1, a protein extensively studied in brain where oxidative stress-related functions have been described.The data presented here reveals specific changes in the RPE during aging, providing the first protein database of RPE aging, which will facilitate future studies of age-related retinal diseases.

  8. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    Science.gov (United States)

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with

  9. Retinal Pigment Epithelial Cell Culture and Cooperation of L-carnitine in Reducing Stress Induced Cellular Damage

    International Nuclear Information System (INIS)

    Shamsi, Farrukh A.; Al-Rajhi, Ali A.; Athmanathan, S.; Boulton, M.; Chaudhry, Imtiaz A.

    2006-01-01

    Purpose was to show that L-carnitine (LC) is capable of reducing non-oxidative stress in the retinal pigment epithelial cells (RPE) of the human eye. The RPE cells were cultured from donor eyes, obtained immediately after post-mortem. The interaction between bovine serum albumin (BSA) and non-oxidative (sodium hydroxide and methyl methane sulphonate) stress-inducers was observed by recording the change in the absorption profiles of the interacting molecules after incubation in light for 5 hours and after treatment with LC. The isolated and cultured RPE cells from the human eyes were treated with sodium hydroxide or methyl methane sulphonate and/or LC for 5 hours under light, and the qualitative effect on cell morphology after treatment was analyzed by staining cells with Giemsa and visualization by light microscopy. The cell morphology was also qualitatively analyzed by scanning electron microscopy (SEM). L-carnitine and stress-inducers interact with BSA and bring about changes in the spectral profile of the interacted molecules. Light microscopy as well as SEM show that the changes in the cellular morphology, induced by 100 uM concentrations of non-oxidative stress-inducers, are considerably reduced in the presence of 100 uM LC. However, L-carnitine alone does not cause any qualitative damage to the cell morphology during incubation under similar conditions. The results give a preliminary indication that LC has ability to reduce the changes brought about by the non-oxidative stress-inducers in the RPF cells in culture. (author)

  10. PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners

    Directory of Open Access Journals (Sweden)

    Dong-Il Kim

    2015-01-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is involved in the progression of diabetic retinopathy. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs has emerged as an important histone modification involved in diverse diseases. Sirtuin (SIRT1 is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H2O2-induced oxidative stress. H2O2 treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H2O2 treatment, PRMT1 or PRMT4 overexpression increased RPE cell damage. Moreover, the H2O2-induced RPE cell damage was attenuated by PRMT1 or PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4 in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased SIRT1 could be therapeutic approaches for diabetic retinopathy.

  11. The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Wennan Lu

    2018-04-01

    Full Text Available The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt’s disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

  12. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue

    Directory of Open Access Journals (Sweden)

    Richard J. Davis

    2017-07-01

    Full Text Available Age-related macular degeneration (AMD is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC-derived RPE cells (RPESC-RPE preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.

  13. Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells

    International Nuclear Information System (INIS)

    Choudhary, S.; Xiao, T.; Srivastava, S.; Zhang, W.; Chan, L.L.; Vergara, L.A.; Van Kuijk, F.J.G.M.; Ansari, N.H.

    2005-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the developed world and yet its pathogenesis remains poorly understood. Retina has high levels of polyunsaturated fatty acids (PUFAs) and functions under conditions of oxidative stress. To investigate whether peroxidative products of PUFAs induce apoptosis in retinal pigmented epithelial (RPE) cells and possibly contribute to ARMD, human retinal pigmented epithelial cells (ARPE-19) were exposed to micromolar concentrations of H 2 O 2 , 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE). A concentration- and time-dependent increase in H 2 O 2 -, HNE-, and HHE-induced apoptosis was observed when monitored by quantifying DNA fragmentation as determined by ELISA, flow cytometry, and Hoechst staining. The broad-spectrum inhibitor of apoptosis Z-VAD inhibited apoptosis. Treatment of RPE cells with a thionein peptide prior to exposure to H 2 O 2 or HNE reduced the formation of protein-HNE adducts as well as alteration in mitochondrial membrane potential and apoptosis. Using 3 H-HNE, various metabolic pathways to detoxify HNE by ARPE-19 cells were studied. The metabolites were separated by HPLC and characterized by ElectroSpray Ionization-Mass Spectrometry (ESI-MS) and gas chromatography-MS. Three main metabolic routes of HNE detoxification were detected: (1) conjugation with glutathione (GSH) to form GS-HNE, catalyzed by glutathione-S-transferase (GST) (2) reduction of GS-HNE catalyzed by aldose reductase, and (3) oxidation of HNE catalyzed by aldehyde dehydrogenase (ALDH). Preventing HNE formation by a combined strategy of antioxidants, scavenging HNE by thionein peptide, and inhibiting apoptosis by caspase inhibitors may offer a potential therapy to limit retinal degeneration in ARMD

  14. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin

    DEFF Research Database (Denmark)

    Liang, Y G; Jorgensen, A G; Kaestel, C G

    2000-01-01

    PURPOSE. The aim of this study was to determine the role of Bcl-2, Bcl-X L, Bax, and c-Fos in regulation of apoptosis, induced by ultraviolet-light A (UV-A) and daunorubicin (DNR), in retinal pigment epithelium (RPE) cells grown on bovine extracellular matrix (ECM)-coated or uncoated plastic dishes....... METHODS. Apoptosis in confluent RPE cells cultured on ECM-coated or uncoated dishes was induced by UV-A or DNR. Apoptosis was detected by 7-amino-actinomycin D labeling followed by flow cytometry and by terminal deoxy-transferase mediated X-dUTP nick end labeling (TUNEL). Cellular expression of Bcl-2, Bcl......-X L, Bax, and c-Fos was determined by the use of antibodies and flow cytometry, Western blot analysis, and immunocytochemical staining. RESULTS. Both UV-A and DNR induce apoptosis in human RPE cells in vitro. Human fetal RPE cells grown on ECM-coated dishes were significantly more resistant to UV...

  15. Analysis of the RPE sheet in the rd10 retinal degeneration model

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory

    2011-01-04

    The normal RPE sheet in the C57Bl/6J mouse is subclassified into two major tiling patterns: A regular generally hexagonal array covering most of the surface and a 'soft network' near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells. We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rdl0 compared to C57BL/6J mice. RPE sheet damage was extensive but occurred in rd10 later than expected, after most retinal degeneration. RPE sheet changes occur in zones with a bullseye pattern. In the posterior zone around the optic nerve RPE cells take on larger irregular and varied shapes to form an intact monolayer. In mid periphery, there is a higher than normal density of cells that progress into involuted layers of RPE under the retina. The periphery remains mostly normal until late stages of degeneration. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate long after the photoreceptors have degenerated. The RPE cells are bystanders to the rd10 degeneration within photo receptors, and the collateral damage to the RPE sheet resembles stimulation of migration or chemotaxis. Quantitative measures of the tiling patterns and histopathology detected here, scripted in a pipeline written in Perl and Cell Profiler (an open source Matlab plugin), are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.

  16. Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy.

    Science.gov (United States)

    Zhu, Ying; Zhao, Ke-Ke; Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang

    2016-05-31

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD(+)) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD(+) administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD(+) administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD(+) administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD(+) against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD(+) administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD(+) administration might be potential value for the treatment of AMD.

  17. Exogenous NAD+ decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy

    Science.gov (United States)

    Zhu, Ying; Zhao, Ke-ke; Tong, Yao; Zhou, Ya-li; Wang, Yi-xiao; Zhao, Pei-quan; Wang, Zhao-yang

    2016-01-01

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD+) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD+ administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD+ administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD+ administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD+ against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD+ administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD+ administration might be potential value for the treatment of AMD. PMID:27240523

  18. Influence of ultraviolet A radiation on osmolytes transport in human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Da-Yang Wu

    2014-04-01

    Full Text Available AIM: To demonstrate that ultraviolet A(UVAinduces osmolytes accumulation in retinal pigment epithelial(RPEcells.METHODS: Under different experimental conditions such as UVA exposure, hyperosmotic stress condition and hypoosmotic stress condition, RPE cells were cultured for different time periods. The betaine /γ-amino- n-butyric acid(GABAtransporter, the sodium-dependent myoinositol transporter and the taurine transporter(TAUTmRNA were measured by quantitative PCR. The radioactive labeled osmolytes were measured to evaluate the level of osmolytes transportation. RESULTS: This study demonstrated that RPE expressed mRNA specific for the betaine/GABA transporter, for the sodium-dependent myoinositol transporter and for the TAUT. In comparison to norm osmotic(300mosmol/Lcontrols, a 3-5-fold induction of mRNA expression for the betaine/GABA transporter, the sodium-dependent myoinositol transporter and the TAUT was observed within 6-24h after hyperosmotic exposure(400mosmol/L. Expression of osmolyte transporters was associated with an increased uptake of radioactive labeled osmolytes. Conversely, hypoosmotic(200mosmol/Lstimulation induced significant efflux of these osmolytes. UVA significantly stimulated osmolyte uptake. Increased osmolyte uptake was associated with upregulation of mRNA steady-state levels for osmolyte transporters in irradiated cells.CONCLUSION: UVA induces osmolyte uptake in RPE. It is similar reaction to hyperosmotic stress. This suggests that osmolyte uptake response by UVA may be important to maintain homeostasis.

  19. Protective effect of bone morphogenetic protein 6 on RPE cells injury caused by H2O2

    Directory of Open Access Journals (Sweden)

    Li Chen

    2016-01-01

    Full Text Available AIM:To investigate the effect of bone morphogenetic protein 6(BMP-6on cellular morphology, proliferation and apoptosis of retinal pigment epithelial cells(ARPE-19incubated in hydrogen peroxide(H2O2. METHODS:ARPE-19 cells were cultured conventionally and divided into four groups. One group was untreated as blank group, the other three groups were incubated in 75μm/L H2O2, 150ng/mLBMP-6 or75μm/L H2O2+150ng/mL BMP-6. All the groups were incubated for 3h, 6h, 9h and 12h. We tested the cell viabilitity by MTT. We used flow cytometry to test the cell cycle and cell apoptosis.RESULTS:H2O2 significantly decreased the cell activity in time-dependent manner. The activity of cells with BMP-6+H2O2 was higher H2O2 group, and the differences between the two groups at 3h and 6h were significant(P2O2, while the cells with BMP-6 were less cell detachment and apoptosis. CONCLUSION:BMP-6 has protective effects on RPE cells from oxidative stress in certain extent.

  20. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB.

    Science.gov (United States)

    Yu, Xiaoyi; Liu, Qiuhong; Wang, Xiaochuan; Liu, Hong; Wang, Yan

    2018-01-01

    In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy. Copyright © 2017. Published by Elsevier Inc.

  1. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a.

    Science.gov (United States)

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Sheila; Kabiri, Mahboubeh; Mahmoudi Saber, Mohaddeseh; Dorkoosh, Farid Abedin

    2017-12-01

    Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H 2 O 2 (200 μM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2 activation

    Directory of Open Access Journals (Sweden)

    Xiaobin Liu

    2016-08-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD. Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effects of RTA 408 on Nrf2 and its downstream target genes. Primary human RPE cells were pretreated with RTA 408 and then incubated in 200 μM H2O2 for 6 h. Cell viability was measured with the WST-8 assay. Apoptosis was quantitatively measured by annexin V/propidium iodide (PI double staining and Hoechst 33342 fluorescent staining. Reduced (GSH and oxidized glutathione (GSSG were measured using colorimetric assays. Nrf2 activation and its downstream effects on phase II enzymes were examined by Western blot. Treatment of RPE cells with nanomolar ranges (10 and 100 nM of RTA 408 markedly attenuated H2O2-induced viability loss and apoptosis. RTA 408 pretreatment significantly protected cells from oxidative stress-induced GSH loss, GSSG formation and decreased ROS production. RTA 408 activated Nrf2 and increased the expression of its downstream genes, such as HO-1, NQO1, SOD2, catalase, Grx1, and Trx1. Consequently, the enzyme activities of NQO1, Grx1, and Trx1 were fully protected by RTA 408 pretreatment under oxidative stress. Moreover, knockdown of Nrf2 by siRNA significantly reduced the cytoprotective effects of RTA 408. In conclusion, our data suggest that RTA 408 protect primary human RPE cells from oxidative stress-induced damage by activating Nrf2 and its downstream genes.

  3. Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells.

    Science.gov (United States)

    Park, Sang-Il; Lee, Eun Hye; Kim, So Ra; Jang, Young Pyo

    2017-03-01

    The purpose of the study was to investigate the protective effect of the Curcuma longa L. extract (CLE) and its curcuminoids against blue light-induced cytotoxicity in human retinal pigment epithelial (RPE) cells laded with A2E. A2E has been concerned in age-related macular degeneration (AMD). To perform this study, A2E-accumulated ARPE-19 cells were exposed to blue light to induce cytotoxicity. The cytotoxicity and apoptotic gene expression levels were evaluated using a lactate dehydrogenase (LDH) assay and real-time PCR analysis, respectively. Curcuma longa L. extract was found to exert a protective effect in a dose-dependent manner. At a concentration of 15 μm, curcumin, demethoxycurcumin and bisdemethoxycurcumin exerted significant protective effects against blue light-induced cytotoxicity. Treatment with CLE and curcuminoids meaningfully reduced the mRNA levels of c-Abl and p53, which was known to be augmented in apoptotic RPE cells. Demethoxycurcumin and bisdemethoxycurcumin were found to inhibit p38 expression, which is increased in blue light-irradiated A2E-accumulated RPE cells. Curcuma longa L. extract and its curcuminoids provided significant protection against photooxidative damage and apoptosis in the RPE cells. Our results suggest that curcuminoids may show potential in the treatment of AMD. © 2017 Royal Pharmaceutical Society.

  4. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells.

    Science.gov (United States)

    Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.

  5. SPECIFIC ROLE OF LYMPHATIC MARKER PODOPLANIN IN RETINAL PIGMENT EPITHELIAL CELLS

    Science.gov (United States)

    Grimaldo, S.; Garcia, M.; Zhang, H.; Chen, L.

    2015-01-01

    Podoplanin is a small transmembrane glycoprotein widely known to be a marker for lymphatic endothelial cells. In this study, we identify a novel localization of podoplanin in the retinal pigment epithelium (RPE), a cellular monolayer critically involved in the visual process. Using a small interfering RNA (siRNA)-mediated gene silencing approach, we have also demonstrated, for the first time, that podoplanin depletion in human RPE cells leads to a marked reduction of cell aggregates and tight junctions. Additionally, the podoplanin-depleted cells also exhibit a significantly lower rate of proliferation. These data together indicate that podoplanin plays a crucial role in RPE cell functions. Further investigation on this factor may reveal novel mechanisms and therapeutic strategies for RPE-related eye diseases, such as proliferative retinopathy and age-related macular degeneration. PMID:21226415

  6. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    -Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58......) in addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-beta and -gamma chain expression within 24 hr after removal from the coculture. It is concluded that the cultured human adult and foetal RPE cells inhibit the proliferation of activated T cells by a process that does not involve apoptosis. It depends on cell contact but the involved surface molecules were...

  7. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film.

    Science.gov (United States)

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle's-medium-and-Ham's-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.

  8. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice.

    Science.gov (United States)

    Schouwey, K; Aydin, I T; Radtke, F; Beermann, F

    2011-01-20

    The Notch signaling pathway is an ubiquitous cell-cell interaction mechanism, which is essential in controlling processes like cell proliferation, cell fate decision, differentiation or stem cell maintenance. Recent data have shown that Notch signaling is RBP-Jκ-dependent in melanocytes, being required for survival of these pigment cells that are responsible for coloration of the skin and hairs in mammals. In addition, Notch is believed to function as an oncogene in melanoma, whereas it is a tumor suppressor in mouse epidermis. In this study, we addressed the implication of the Notch signaling in the development of another population of pigment cells forming the retinal pigment epithelium (RPE) in mammalian eyes. The constitutive activity of Notch in Tyrp1::NotchIC/° transgenic mice enhanced RPE cell proliferation, and the resulting RPE-derived pigmented tumor severely affected the overall eye structure. This RPE cell proliferation is dependent on the presence of the transcription factor RBP-Jκ, as it is rescued in mice lacking RBP-Jκ in the RPE. In conclusion, Notch signaling in the RPE uses the canonical pathway, which is dependent on the transcription factor RBP-Jκ. In addition, it is of importance for RPE development, and constitutive Notch activity leads to hyperproliferation and benign tumors of these pigment cells.

  9. Loss of Hfe Leads to Progression of Tumor Phenotype in Primary Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Gnana-Prakasam, Jaya P.; Veeranan-Karmegam, Rajalakshmi; Coothankandaswamy, Veena; Reddy, Sushma K.; Martin, Pamela M.; Thangaraju, Muthusamy; Smith, Sylvia B.; Ganapathy, Vadivel

    2013-01-01

    Purpose. Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe−/− mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. Methods. Cellular senescence was monitored by β-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. Results. Hfe−/− RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe−/− cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe−/− RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe−/− cells. Conclusions. RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe−/− RPE cells as well as in Hjv−/− RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe−/− and Hjv−/− RPE cells. PMID:23169885

  10. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Directory of Open Access Journals (Sweden)

    Ming-Wai Poon

    Full Text Available A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs. Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2 reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%. Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs. This cell type may also have advantages in retinal pigmented epithelial differentiation.

  11. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Science.gov (United States)

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  12. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit.

    Science.gov (United States)

    Lobato-Álvarez, Jorge A; Roldán, María L; López-Murillo, Teresa Del Carmen; González-Ramírez, Ricardo; Bonilla-Delgado, José; Shoshani, Liora

    2016-01-01

    Na + , K + -ATPase, or the Na + pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β 1 subunit of Na + , K + -ATPase plays an important role in this mechanism because homotypic β 1 -β 1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE), the Na + pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β 2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na + , K + -ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS), ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na + pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β 2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β 2 subunit. qPCR results showed a time-dependent increase in the level of β 2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β 2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α 2 subunit in that domain. Our results demonstrate that the apical polarization of Na + , K + -ATPase in RPE cells depends on the expression of the β 2 subunit.

  13. Retinal pigment epithelial dystrophy in Briard dogs.

    Science.gov (United States)

    Lightfoot, R M; Cabral, L; Gooch, L; Bedford, P G; Boulton, M E

    1996-01-01

    The eyes of normal Briard dogs, Briards affected with inherited retinal pigment epithelial dystrophy (RPED) and a range of normal crossbred and beagle dogs were examined and the histopathology of RPED in the Briard was compared with the histopathological features of ageing in the normal canine retina. RPED was characterised by the accumulation of auto-fluorescent lipofuscin-like inclusions in the retinal pigment epithelium (RPE), which initially involved only non-pigmented RPE cells overlying the tapetum but subsequently spread to all pigmented RPE cells. Secondary neuro-retinal degeneration was characterised by a gradual loss of the outer nuclear layer and the subsequent atrophy and degeneration of the inner retina. The loss of primary photoreceptors in the peripheral retina was accompanied by the migration of photoreceptor nuclei and appeared to resemble severe changes due to ageing. Intra-vitreal radiolabelled leucine was used to examine the rate of turnover of the outer segments of the rods in some Briards, but no significant variations were found. The activity of acid phosphatase in RPE was assayed in vitro and showed comparable regional variations in Briard and crossbred dogs. The results suggest that RPED in the Briard is unlikely to be due either to an increased rate of turnover of rod outer segments (and thus an increased phagocytic load) or to a primary insufficiency of lysosomal enzyme.

  14. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  15. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  16. Novel Epigenetic Controlling of Hypoxia Pathway Related to Overexpression and Promoter Hypomethylation of TET1 and TET2 in RPE Cells.

    Science.gov (United States)

    Alivand, Mohammad Reza; Soheili, Zahra-Soheila; Pornour, Majid; Solali, Saeed; Sabouni, Farzaneh

    2017-10-01

    CpG methylation of DNA takes part in a specific epigenetic memory that plays crucial roles in the differentiation and abnormality of the cells. The methylation pattern aberration of genomes is affected in three ways, namely DNA methyltransferase (DNMT), ten-eleven translocation (TET), and methyl-binding domain (MBD) proteins. Of these, TET enzymes have recently been demonstrated to be master modifier enzymes in the DNA methylation process. Additionally, recent studies emphasize that not only epigenetic phenomena play a role in controlling hypoxia pathway, but the hypoxia condition also triggers hypomethylation of genomes that may help with the expression of hypoxia pathway genes. In this study, we suggested that TET1 and TET2 could play a role in the demethylation of genomes under chemical hypoxia conditions. Herein, the evaluating methylation status and mRNA expression of mentioned genes were utilized through real-time PCR and methylation-specific PCR (MSP), respectively. Our results showed that TET1 and TET2 genes were overexpressed (P < 0.05) under chemical hypoxia conditions in Retinal Pigment Epithelial (RPE) cells, whereas the promoter methylation status of them were hypomethylated in the same condition. Therefore, chemical hypoxia not only causes overexpression of TET1 and TET2 but also could gradually do promoter demethylation of same genes. This is the first study to show the relationship between epigenetics and the expression of mentioned genes related to hypoxia pathways. Furthermore, it seems that these associations in RPE cells are subjected to chemical hypoxia as a mechanism that could play a crucial role in methylation pattern changes of hypoxia-related diseases such as cancer and ischemia. J. Cell. Biochem. 118: 3193-3204, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    Full Text Available A goal in human embryonic stem cell (hESC research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.

  18. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kuroda

    Full Text Available Human induced pluripotent stem cells (hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs. These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay: soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR. Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×10⁴ RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research.

  19. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.

    Directory of Open Access Journals (Sweden)

    Dierk Wittig

    Full Text Available BACKGROUND: Tunneling nanotubes (TNTs may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. METHODOLOGY AND PRINCIPAL FINDINGS: Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca²⁺ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. CONCLUSIONS AND SIGNIFICANCE: Our observations indicate that

  20. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    Science.gov (United States)

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  1. RETINAL PIGMENT EPITHELIAL TEAR AND ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY IN EXUDATIVE AGE-RELATED MACULAR DEGENERATION: Clinical Course and Long-Term Prognosis.

    Science.gov (United States)

    Heimes, Britta; Farecki, Marie-Louise; Bartels, Sina; Barrelmann, Anna; Gutfleisch, Matthias; Spital, Georg; Lommatzsch, Albrecht; Pauleikhoff, Daniel

    2016-05-01

    , the development of hyperreflective tissue was seen on spectral domain optical coherence tomography in the RPE-free area. The major therapeutic difference between the 2 groups was a significantly larger number of injections especially during the first year in Group 1. The development of RPE tear after anti-vascular endothelial growth factor therapy for vascularized pigment epithelial detachment in exudative age-related macular degeneration does not necessarily result in large disciform scars and functional loss, but multiple injections seem to be beneficial especially in the first year. With this strategy, RPE tears seem to be covered by autofluorescent and hyperreflective tissue and a regrowth of the neovascular complex can be prohibited. As a result, photoreceptor cells regain their metabolic support with functional recovery.

  2. Repair mechanism of retinal pigment epithelial tears in age-related macular degeneration.

    Science.gov (United States)

    Mukai, Ryo; Sato, Taku; Kishi, Shoji

    2015-03-01

    To investigate repair mechanisms of retinal pigment epithelial (RPE) tears in age-related macular degeneration. The authors retrospectively studied 10 eyes with age-related macular degeneration that developed RPE tears during follow-up or after treatment with an anti-vascular endothelial growth factor drug or photodynamic therapy combined with ranibizumab. After development of the RPE tears, all follow-ups exceeded 13 months. Spectral domain or swept-source optical coherence tomography have been used to examine consecutive retinal changes where the RPE tears developed and attempted to determine the repair mechanisms. Retinal pigment epithelial tears developed during the natural course (n = 4) after ranibizumab treatment (n = 2) and after photodynamic therapy and ranibizumab (n = 4). Subretinal fluid persisted for more than 6 months after the RPE tears developed (n = 4), with the area where the RPE was lost found to be covered with thickened proliferative tissue. In 6 eyes where the subretinal fluid was absorbed within 2 months, optical coherence tomography showed the outer retina appeared to be directly attached to Bruch membrane, and there was attenuation of the normal hyperreflective band attributable to normal RPE during follow-up. Results suggest that two repair processes may be present in the area where RPE tears developed. Persistent subretinal fluid may lead to repair with thick proliferative tissue, while the outer retina appears to attach to Bruch membrane when there is early subretinal fluid resolution after RPE tear development.

  3. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Wielgus, Albert R.; Zhao, Baozhong; Chignell, Colin F.; Hu, Dan-Ning; Roberts, Joan E.

    2010-01-01

    The water-soluble nanoparticle hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have previously found that fullerol is both cytotoxic and phototoxic to human lens epithelial cells (HLE B-3) and that the endogenous antioxidant lutein blocked some of this phototoxicity. In the present study we have found that fullerol induces cytotoxic and phototoxic damage to human retinal pigment epithelial cells. Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm, and cell viability, cell metabolism and membrane permeability were estimated using trypan blue, MTS and LDH assays, respectively. Fullerol was cytotoxic toward hRPE cells maintained in the dark at concentrations higher than 10 μM. Exposure to an 8.5 J.cm -2 dose of visible light in the presence of > 5 μM fullerol induced TBARS formation and early apoptosis, indicating phototoxic damage in the form of lipid peroxidation. Pretreatment with 10 and 20 μM lutein offered some protection against fullerol photodamage. Using time resolved photophysical techniques, we have now confirmed that fullerol produces singlet oxygen with a quantum yield of Φ = 0.05 in D 2 O and with a range of 0.002-0.139 in various solvents. As our previous studies have shown that fullerol also produces superoxide in the presence of light, retinal phototoxic damage may occur through both type I (free radical) and type II (singlet oxygen) mechanisms. In conclusion, ocular exposure to fullerol, particularly in the presence of sunlight, may lead to retinal damage.

  4. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu......We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level...

  5. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  6. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells.

    Science.gov (United States)

    Silván, Jose Manuel; Reguero, Marina; de Pascual-Teresa, Sonia

    2016-02-01

    Increased exposure to solar ultraviolet B (UVB) radiation causes oxidative damage that may promote age related macular degeneration (AMD) and other ocular pathologies. This study is aimed to demonstrate the protective effects of some anthocyanins and xanthophylls against the UVB-induced oxidative damage to retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with 5 μM cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, lutein, zeaxanthin or a mixture of cyanidin-3-O-glucoside:zeaxanthin prior to UVB exposure (500 J m(-2)). Cell viability and mitogen-activated protein kinase (MAPK) phosphorylation were determined by MTT assay and western blot analysis, respectively. Oxidative damage was evaluated by measuring the intracellular reactive oxygen species (ROS). The data showed that UVB irradiation reduces the cell viability to 46% with increasing of intracellular ROS levels and phosphorylation of MAPKs. However, pre-treatment (60 min) with 5 μM cyanidin-3-O-glucoside, lutein or zeaxanthin significantly reduced cellular ROS levels and phosphorylation of MAPKs (JNK1/2 and p38) mediated by UVB irradiation and subsequently increased cell viability. Thus, results show that UVB irradiation is able to induce apoptosis in ARPE-19 cells through oxidative stress; however anthocyanins and xanthophylls pre-treatment can attenuate this damage. This suggests that cyanidin-3-O-glucoside, lutein and zeaxanthin are effective in preventing UVB-induced damage in RPE cells and may be suitable as chemoprotective factors for the prevention of ocular damage. The use of natural dietary antioxidants might reduce ocular oxidative damage caused by UVB radiation.

  7. Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration.

    Science.gov (United States)

    Golestaneh, Nady; Chu, Yi; Cheng, Shuk Kei; Cao, Hong; Poliakov, Eugenia; Berinstein, Daniel M

    2016-12-20

    Study of age related macular degeneration (AMD) has been hampered by lack of human models that represent the complexity of the disease. Here we have developed a human in vitro disease model of AMD to investigate the underlying AMD disease mechanisms. Generation of iPSCs from retinal pigment epithelium (RPE) of AMD donors, age-matched normal donors, skin fibroblasts of a dry AMD patient, and differentiation of iPSCs into RPE (AMD RPE-iPSC-RPE, normal RPE-iPSC-RPE and AMD Skin-iPSC-RPE, respectively). Immunostaining, cell viability assay and reactive oxygen species (ROS) production under oxidative stress conditions, electron microscopy (EM) imaging, ATP production and glycogen concentration assays, quantitative real time PCR, western blot, karyotyping. The AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE present functional impairment and exhibit distinct disease phenotypes compared to RPE-iPSC-RPE generated from normal donors (Normal RPE-iPSC-RPE). The AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE show increased susceptibility to oxidative stress and produced higher levels of reactive oxygen species (ROS) under stress in accordance with recent reports. The susceptibility to oxidative stress-induced cell death in AMD RPE-iPSC-RPE and Skin-iPSC-RPE was consistent with inability of the AMD RPE-iPSC-RPE and Skin-iPSC-RPE to increase SOD2 expression under oxidative stress. Phenotypic analysis revealed disintegrated mitochondria, accumulation of autophagosomes and lipid droplets in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE. Mitochondrial activity was significantly lower in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE compared to normal cells and glycogen concentration was significantly increased in the diseased cells. Furthermore, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a regulator of mitochondrial biogenesis and function was repressed, and lower expression levels of NAD-dependent deacetylase sirtuin1 (SIRT1) were found in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE

  8. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  9. Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration.

    Science.gov (United States)

    Wang, Shaomei; Lu, Bin; Girman, Sergej; Holmes, Toby; Bischoff, Nicolas; Lund, Raymond D

    2008-01-01

    It is well documented that grafting of cells in the subretinal space of Royal College of Surgeons (RCS) rats limits deterioration of vision and loss of photoreceptors if performed early in postnatal life. What is unclear is whether cells introduced later, when photoreceptor degeneration is already advanced, can still be effective. This possibility was examined in the present study, using the human retinal pigment epithelial cell line, ARPE-19. Dystrophic RCS rats (postnatal day [P] 60) received subretinal injection of ARPE-19 cells (2 x 10(5)/3 microL/eye). Spatial frequency was measured by recording optomotor responses at P100 and P150, and luminance threshold responses were recorded from the superior colliculus at P150. Retinas were stained with cresyl violet, retinal cell-specific markers, and a human nuclear marker. Control animals were injected with medium alone. Animals comparably treated with grafts at P21 were available for comparison. All animals were treated with immunosuppression. Later grafts preserved both spatial frequency and threshold responses over the control and delayed photoreceptor degeneration. There were two to three layers of rescued photoreceptors even at P150, compared with a scattered single layer in sham and untreated control retinas. Retinal cell marker staining showed an orderly array of the inner retinal lamination. The morphology of the second-order neurons was better preserved around the grafted area than in regions distant from graft. Sham injection had little effect in rescuing the photoreceptors. RPE cell line transplants delivered later in the course of degeneration can preserve not only the photoreceptors and inner retinal lamination but also visual function in RCS rats. However, early intervention can achieve better rescue.

  10. Study of Short-Pulsed Laser Retinal Injury Mechanisms By Time-Resolved Imaging of Photomechanical Transients in RPE

    National Research Council Canada - National Science Library

    Lin, Charles

    2000-01-01

    We studied RPE cell damage mechanism for laser duration from 100 femtosec to 5 microsec, and we have investigated the dependence of threshold fluence for cell damage on the laser spot size on the RPE...

  11. 17-AAG, a Hsp90 inhibitor, attenuates the hypoxia-induced expression of SDF-1alpha and ILK in mouse RPE cells.

    Science.gov (United States)

    Wang, Ye Qing; Zhang, Xiao Mei; Wang, Xiao Dan; Wang, Bin Jie; Wang, Wei

    2010-03-01

    The aim of this study was to investigate the changes of SDF-1alpha and ILK expression in mouse retinal pigment epithelium (RPE) cells in response to hypoxia, and the effect of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (Hsp90) inhibitor, on the hypoxia-induced expression of SDF-1alpha and ILK. RPE cells were cultured with 200 micromol/L cobalt chloride (CoCl(2)) for different times (1, 3, 6, 12, 24, 72 h) to imitate chemical hypoxia. Pretreatment of 17-AAG was 1 h prior to hypoxic insult. Cellular viability after 17-AAG treatment was assessed by MTT assay, and the changes of SDF-1alpha and ILK expression were examined by RT-PCR and Western blot. Up-regulation of SDF-1alpha and ILK expression in response to hypoxia was observed. One hour pretreatment of 17-AAG could remarkably decreased the hypoxia-induced SDF-1alpha and ILK expression in vitro. Our results indicated that SDF-1alpha and ILK involved in the hypoxic response of RPE cells, and 1 h pretreatment of 17-AAG had an inhibitive effect on the hypoxia-induced SDF-1alpha and ILK expression.

  12. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  13. Protective Effects of Resveratrol against UVA-Induced Damage in ARPE19 Cells

    Directory of Open Access Journals (Sweden)

    Chi-Ming Chan

    2015-03-01

    Full Text Available Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD. Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2 expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD.

  14. Protective Effects of Resveratrol against UVA-Induced Damage in ARPE19 Cells

    Science.gov (United States)

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-01-01

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD. PMID:25775159

  15. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  16. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  17. RETINAL PIGMENT EPITHELIAL TEAR AFTER INTRAVITREAL RANIBIZUMAB TREATMENT FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Cho, Han Joo; Kim, Hyoung Seok; Yoo, Seul Gi; Han, Jung Il; Lew, Young Ju; Cho, Sung Won; Lee, Tae Gon; Kim, Jong Woo

    2016-10-01

    To evaluate the risk factors for retinal pigment epithelium (RPE) tears after intravitreal ranibizumab injections in neovascular age-related macular degeneration (nAMD) and to determine the efficacy of continued ranibizumab treatment after RPE tears. A total of 407 treatment-naïve eyes (377 patients) with nAMD were retrospectively included. All patients were treated with an initial series of 3 monthly loading injections, followed by further injections as required. Baseline characteristics and pigment epithelial detachment (PED) lesion features were evaluated as potential risk factors for RPE tear. The visual and anatomical outcomes after treatment during 12 months were also evaluated. By 12 months, RPE tears developed in 32 eyes (7.9%). Pigment epithelial detachment height was associated with a higher risk of RPE tear (odds ratio [OR], 1.318; 95% confidence interval [CI], 1.217-2.031, P = 0.018). Fibrovascular PED compared with serous PED had a higher risk of developing tears (OR, 9.129; 95% CI, 6.228-32.124, P = 0.039), and typical nAMD (OR, 4.166; 95% CI, 2.030-14.913, P = 0.031) and retinal angiomatous proliferation (OR, 3.778; 95% CI, 2.185-9.277, P = 0.040) had a higher risk of developing tears compared with polypoidal choroidal vasculopathy. Mean best-corrected visual acuity (BCVA) of RPE tear patients showed no significant improvement after treatment at 12 months; however, patients with RPE tears without foveal involvement (19 eyes) showed significant BCVA improvement at 12 months (P = 0.034). PED type and nAMD subtype are associated with the development of RPE tears after intravitreal ranibizumab injections. Continued ranibizumab therapy after RPE tear development can maintain visual acuity when the fovea is not involved.

  18. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  19. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    Science.gov (United States)

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  20. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  1. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid.

    Science.gov (United States)

    Sanie-Jahromi, Fatemeh; Ahmadieh, Hamid; Soheili, Zahra-Soheila; Davari, Maliheh; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Deezagi, Abdolkhalegh; Pakravesh, Jalil; Bagheri, Abouzar

    2012-04-10

    Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  2. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  3. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  4. That Escalated Quickly—Planning to Ignore RPE Can Backfire

    Directory of Open Access Journals (Sweden)

    Maik Bieleke

    2017-09-01

    Full Text Available Ratings of perceived exertion (RPE are routinely assessed in exercise science and RPE is substantially associated with physiological criterion measures. According to the psychobiological model of endurance, RPE is a central limiting factor in performance. While RPE is known to be affected by psychological manipulations, it remains to be examined whether RPE can be self-regulated during static muscular endurance exercises to enhance performance. In this experiment, we investigate the effectiveness of the widely used and recommended self-regulation strategy of if-then planning (i.e., implementation intentions in down-regulating RPE and improving performance in a static muscular endurance task. 62 female students (age: M = 23.7 years, SD = 4.0 were randomly assigned to an implementation intention or a control condition and performed a static muscular endurance task. They held two intertwined rings as long as possible while avoiding contacts between the rings. In the implementation intention condition, participants had an if-then plan: “If the task becomes too strenuous for me, then I ignore the strain and tell myself: Keep going!” Every 25 ± 10 s participants reported their RPE along with their perceived pain. Endurance performance was measured as time to failure, along with contact errors as a measure of performance quality. No differences emerged between implementation intention and control participants regarding time to failure and performance quality. However, mixed-effects model analyses revealed a significant Time-to-Failure × Condition interaction for RPE. Compared to the control condition, participants in the implementation intention condition reported substantially greater increases in RPE during the second half of the task and reached higher total values of RPE before task termination. A similar but weaker pattern evinced for perceived pain. Our results demonstrate that RPE during an endurance task can be self-regulated with if

  5. Effects of mechanical stress and vitreous samples in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eri, E-mail: eritakahashi@fc.kuh.kumamoto-u.ac.jp; Fukushima, Ayako; Haga, Akira; Inomata, Yasuya; Ito, Yasuhiro; Fukushima, Mikiko; Tanihara, Hidenobu

    2016-02-12

    In rhegmatogenous retinal detachment (RRD), scattered RPE cells from the basement membrane into the vitreous cavity undergo an epithelial mesenchymal transition (EMT) and form the intraocular fibrous membrane in response to vitreous fluid. We investigated whether exposure to vitreous samples was associated with EMT-associated signals and mesenchymal characters. Human vitreous samples were collected from patients with RRD, epiretinal membrane (ERM), or macular hole (MH). We evaluated the effects of vitreous on ARPE-19 cells in suspension cultures using poly 2-hydroxyethyl methacrylate-coated dishes and three-dimensional (3D) Matrigel cultures. We found that exposure to vitreous samples did not induce morphological changes or accelerate wound closure in monolayers. Several samples showed increased phosphorylation of Smad2 and nuclear translocation of nuclear factor-κB. Mechanical stress triggered an elevation of phosphorylation levels in Smad2. In addition, exposure to vitreous fluid increased the phosphorylation of p38 mitogen-activated protein kinase in cell suspension cultures after mechanical stress. Moreover, ARPE-19 cells showed a stellate invasive phenotype in 3D Matrigel cultures with vitreous samples. In this study, we demonstrated that mechanical stress and vitreous were associated with EMT-associated signals and invasive phenotypes in 3D cultures but not in monolayers. These results have important implications for the role of vitreous humor in the induction of EMT and intraocular fibrosis.

  6. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  7. Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Deborah A. Ferrington

    2017-10-01

    Full Text Available Age-related macular degeneration (AMD is the leading cause of blindness among older adults. It has been suggested that mitochondrial defects in the retinal pigment epithelium (RPE underlies AMD pathology. To test this idea, we developed primary cultures of RPE to ask whether RPE from donors with AMD differ in their metabolic profile compared with healthy age-matched donors. Analysis of gene expression, protein content, and RPE function showed that these cultured cells replicated many of the cardinal features of RPE in vivo. Using the Seahorse Extracellular Flux Analyzer to measure bioenergetics, we observed RPE from donors with AMD exhibited reduced mitochondrial and glycolytic function compared with healthy donors. RPE from AMD donors were also more resistant to oxidative inactivation of these two energy-producing pathways and were less susceptible to oxidation-induced cell death compared with cells from healthy donors. Investigation of the potential mechanism responsible for differences in bioenergetics and resistance to oxidative stress showed RPE from AMD donors had increased PGC1α protein as well as differential expression of multiple genes in response to an oxidative challenge. Based on our data, we propose that cultured RPE from donors phenotyped for the presence or absence of AMD provides an excellent model system for studying “AMD in a dish”. Our results are consistent with the ideas that (i a bioenergetics crisis in the RPE contributes to AMD pathology, and (ii the diseased environment in vivo causes changes in the cellular profile that are retained in vitro.

  8. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    OpenAIRE

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell proper...

  9. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    Science.gov (United States)

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  11. Effects of melatonin and its receptor antagonist on retinal pigment epithelial cells against hydrogen peroxide damage

    Science.gov (United States)

    Rosen, Richard B.; Hu, Dan-Ning; Chen, Min; McCormick, Steven A.; Walsh, Joseph

    2012-01-01

    Purpose Recently, we reported finding that circulating melatonin levels in age-related macular degeneration patients were significantly lower than those in age-matched controls. The purpose of this study was to investigate the hypothesis that melatonin deficiency may play a role in the oxidative damage of the retinal pigment epithelium (RPE) by testing the protective effect of melatonin and its receptor antagonist on RPE cells exposed to H2O2 damage. Methods Cultured human RPE cells were subjected to oxidative stress induced by 0.5 mM H2O2. Cell viability was measured using the microculture tetrazoline test (MTT) assay. Cells were pretreated with or without melatonin for 24 h. Luzindole (50 μM), a melatonin membrane-receptor antagonist, was added to the culture 1 h before melatonin to distinguish direct antioxidant effects from indirect receptor-dependent effects. All tests were performed in triplicate. Results H2O2 at 0.5 mM decreased cell viability to 20% of control levels. Melatonin showed dose-dependent protective effects on RPE cells against H2O2. Cell viability of RPE cells pretreated with 10−10, 10−8, 10−6, and 10−4 M melatonin for 24 h was 130%, 160%, 187%, and 230% of cells treated with H2O2 alone (all p<0.05). Using cells cultured without H2O2 as the control, cell viability of cells treated with H2O2 after pretreatment with 10−10-10−4 M melatonin was still significantly lower than that of the controls, suggesting that melatonin significantly decreased but did not completely abolish the in vitro cytotoxic effects of H2O2. Luzindole completely blocked melatonin’s protective effects at low concentrations of melatonin (10−10-10−8 M) but not at high concentrations (10−6-10−4 M). Conclusions Melatonin has a partial protective effect on RPE cells against H2O2 damage across a wide range of concentrations (10−10-10−4 M). This protective effect occurs through the activation of melatonin membrane receptors at low concentrations (10−10

  12. Activation of the Small GTPase Rap1 Inhibits Choroidal Neovascularization by Regulating Cell Junctions and ROS Generation in Rats.

    Science.gov (United States)

    Li, Jiajia; Zhang, Rong; Wang, Caixia; Wang, Xin; Xu, Man; Ma, Jingxue; Shang, Qingli

    2018-03-30

    Choroidal neovascularization (CNV) is a common vision-threatening complication associated with many  fundus diseases. The retinal pigment epithelial (RPE) cell junction barrier has critical functions in preventing CNV, and oxidative stress can cause compromise of barrier integrity and induce angiogenesis. Rap1, a small guanosine triphosphatase (GTPase), is involved in regulating endothelial and epithelial cell junctions. In this work, we explored the function and mechanism of Rap1 in CNV in vivo. A laser-induced rat CNV model was developed. Rap1 was activated through intravitreal injection of the Rap1 activator 8CPT-2'-O-Me-cAMP (8CPT). At 14 days after laser treatment, CNV size in RPE/choroid flat mounts was measured by fluorescein isothiocyanate-dextran staining. Expression of vascular endothelial growth factor (VEGF) and cell junction proteins in RPE/choroid tissues were analyzed by western blots and quantitative real-time PCR assays. Reactive oxygen species (ROS) in RPE cells were detectedbydichloro-dihydro-fluorescein diacetate assays. The antioxidant apocynin was intraperitoneally injected into rats. Activating Rap1 by 8CPT significantly reduced CNV size and VEGF expression in the rat CNV model. Rap1 activation enhanced protein and mRNA levels of ZO-1 and occludin, two tight junction proteins in the RPE barrier. In addition, reducing ROS generation by injection of apocynin, a NADPH oxidase inhibitor, inhibited CNV formation. Rap1 activation reduced ROS generation and expression of NADPH oxidase 4. Rap1 activation inhibits CNV through regulating barrier integrity and ROS generation of RPE in vivo, and selectively activating Rap1 may be a way to reduce vision loss from CNV.

  13. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  14. Generation of stratified squamous epithelial progenitor cells from mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Satoru Yoshida

    Full Text Available BACKGROUND: Application of induced pluripotent stem (iPS cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. METHODOLOGY/PRINCIPAL FINDINGS: We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. CONCLUSIONS/SIGNIFICANCE: These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.

  15. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    2009-11-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD.In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space.These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  16. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  17. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  18. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  19. Retinal pigment epithelial atrophy following indocyanine green dye-assisted surgery for serous macular detachment

    Directory of Open Access Journals (Sweden)

    Hussain Nazimul

    2008-01-01

    Full Text Available To report subretinal migration of indocyanine green dye (ICG and subsequent retinal pigment epithelial (RPE atrophy during macular surgery for serous macular detachment. A 65-year-old woman presented with residual epiretinal membrane and serous detachment of the macula following vitreoretinal surgery for epiretinal membrane. She underwent resurgery with ICG-assisted internal limiting membrane peeling and intraocular tamponade. Intraoperatively a large area of subretinal ICG was seen with subsequent RPE mottling and atrophy of the macula in the area involved during follow-up. This case demonstrates that subretinal migration of ICG is possible and can be toxic to RPE.

  20. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  1. Epithelial cells as alternative human biomatrices for comet assay.

    Science.gov (United States)

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  2. Molecular Characterization of Gastric Epithelial Cells Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    2018-04-01

    Full Text Available The ability to analyze individual epithelial cells in the gastric mucosa would provide important insight into gastric disease, including chronic gastritis and progression to gastric cancer. However, the successful isolation of viable gastric epithelial cells (parietal cells, neck cells, chief cells, and foveolar cells from gastric glands has been limited due to difficulties in tissue processing. Furthermore, analysis and interpretation of gastric epithelial cell flow cytometry data has been difficult due to the varying sizes and light scatter properties of the different epithelial cells, high levels of autofluorescence, and poor cell viability. These studies were designed to develop a reliable method for isolating viable single cells from the corpus of stomachs and to optimize analyses examining epithelial cells from healthy and diseased stomach tissue by flow cytometry. We performed a two stage enzymatic digestion in which collagenase released individual gastric glands from the stromal tissue of the corpus, followed by a Dispase II digestion that dispersed these glands into greater than 1 × 106 viable single cells per gastric corpus. Single cell suspensions were comprised of all major cell lineages found in the normal gastric glands. A method describing light scatter, size exclusion, doublet discrimination, viability staining, and fluorescently-conjugated antibodies and lectins was used to analyze individual epithelial cells and immune cells. This technique was capable of identifying parietal cells and revealed that gastric epithelial cells in the chronically inflamed mucosa significantly upregulated major histocompatibility complexes (MHC I and II but not CD80 or CD86, which are costimulatory molecules involved in T cell activation. These studies describe a method for isolating viable single cells and a detailed description of flow cytometric analysis of cells from healthy and diseased stomachs. These studies begin to identify effects of

  3. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  4. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  5. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    Science.gov (United States)

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  6. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM 1 81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  7. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  8. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    Science.gov (United States)

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2018-05-01

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.

  9. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  10. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts

    Institute of Scientific and Technical Information of China (English)

    Takashi Nakamura; Yuta Chiba; Masahiro Naruse; Kan Saito; Hidemitsu Harada; Satoshi Fukumoto

    2016-01-01

    Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.

  11. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  12. Loss of Extracellular Signal-Regulated Kinase 1/2 in the Retinal Pigment Epithelium Leads to RPE65 Decrease and Retinal Degeneration.

    Science.gov (United States)

    Pyakurel, Aswin; Balmer, Delphine; Saba-El-Leil, Marc K; Kizilyaprak, Caroline; Daraspe, Jean; Humbel, Bruno M; Voisin, Laure; Le, Yun Z; von Lintig, Johannes; Meloche, Sylvain; Roduit, Raphaël

    2017-12-15

    Recent work suggested that the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) is increased in the retinal pigment epithelium (RPE) of age-related macular degeneration (ARMD) patients and therefore could be an attractive therapeutic target. Notably, ERK1/2 pathway inhibitors are used in cancer therapy, with severe and noncharacterized ocular side effects. To decipher the role of ERK1/2 in RPE cells, we conditionally disrupted the Erk1 and Erk2 genes in mouse RPE. The loss of ERK1/2 activity resulted in a significant decrease in the level of RPE65 expression, a decrease in ocular retinoid levels concomitant with low visual function, and a rapid disorganization of RPE cells, ultimately leading to retinal degeneration. Our results identify the ERK1/2 pathway as a direct regulator of the visual cycle and a critical component of the viability of RPE and photoreceptor cells. Moreover, our results caution about the need for a very fine adjustment of kinase inhibition in cancer or ARMD treatment in order to avoid ocular side effects. Copyright © 2017 Pyakurel et al.

  13. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  14. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq

    Science.gov (United States)

    Whitmore, S. Scott; Wagner, Alex H.; DeLuca, Adam P.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Zeng, Shemin; Braun, Terry A.; Mullins, Robert F.; Scheetz, Todd E.

    2014-01-01

    Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell-types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with

  15. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq.

    Science.gov (United States)

    Whitmore, S Scott; Wagner, Alex H; DeLuca, Adam P; Drack, Arlene V; Stone, Edwin M; Tucker, Budd A; Zeng, Shemin; Braun, Terry A; Mullins, Robert F; Scheetz, Todd E

    2014-12-01

    Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with

  16. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  17. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  18. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  19. Does the Timing of Measurement Alter Session-RPE in Boxers?

    Science.gov (United States)

    Uchida, Marco C; Teixeira, Luis F M; Godoi, Vladmir J; Marchetti, Paulo H; Conte, Marcelo; Coutts, Aaron J; Bacurau, Reury F P

    2014-01-01

    The purpose of this study was to compare the influence of measuring the overall session rating of perceived exertion (session-RPE) at 10 vs. 30 minutes following exercise. Eight boxers completed three different standardized training sessions of different intensities (easy, moderate and hard) in a matchedpairs, randomized research design. Exercise intensity was assessed during each bout by measuring heart rate, blood lactate concentration and session-RPE. To assess the effect of measurement timing on session-RPE, RPE data were collected either 10 or 30 minutes post-exercise. There was no significant effect of measurement time on session-RPE values following easy (10 minutes: session-RPE = 1.3 ± 1.0 Arbitrary Unit (AU), %Heart Rate Reserve (HRR) = 49.5 ± 11.1, and ∆Blood lactate = -2.3 ± 16.3%; 30 minutes: session-RPE = 1.7 ± 1.0 AU, %HRR = 51.3 ± 10.8, and ∆Blood lactate = 0.7 ± 25.2%), moderate (10 minutes: session-RPE = 2.7 ± 1.6 AU, %HRR = 67.2 ± 10.8, and ∆Blood lactate = 2.2 ± 19%; 30 minutes: session-RPE = 2.5 ± 0.9 AU, %HRR = 67.2 ± 5.9, and ∆Blood lactate = 24.5 ± 17.1%) and hard (10 minutes: session-RPE = 5.7 ± 1.0 AU, %HRR = 88.1 ± 6.3, and ∆Blood lactate = 146.3 ± 87.9%; 30 minutes: session-RPE = 5.8 ± 1.9 AU, %HRR> = 83.3 ± 8.0, and ∆Blood lactate = 91.6 ± 39%) sessions. In conclusion, our findings suggest that session-RPE can be used in boxing training routines across a range of intensities and accurate measurements can be determined as early as 10 minutes after exercise. Key PointsIt is difficult to quantify and monitoring the external training load in martial arts (e.g. Aikido, Kung Fu, Judo) and physical combat sports (e.g. Boxing, Muay Thai), session RPE method appears to be a reliable method to quantifying training load in those sports.For many athletes it is impractical to wait 30 minutes after training session to provide a session-RPE. The present findings show that collecting ses-sion-RPE measures at 10 min

  20. The Role of Bloom Index of Gelatin on the Interaction with Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jui Yang Lai

    2009-08-01

    Full Text Available Biocompatible materials are of considerable interest in the development of cell/drug delivery carriers for therapeutic applications. This paper investigates the effects of the Bloom index of gelatin on its interaction with retinal pigment epithelial (RPE cells. Following two days of culture of ARPE-19 cells with gelatin samples G75-100, G175, and G300, the in vitro biocompatibility was determined by cell proliferation and viability assays, and glutamate uptake measurements, as well as cytokine expression analyses. The mitochondrial dehydrogenase activity in the G300 groups was significantly lower than that of G75-100 and G175 groups. The Live/Dead assays also showed that the gelatin samples G300 induced mild cytotoxicity. In comparison with the treatment of gelatins with low Bloom index, the exposure to high Bloom strength gelatins markedly reduced the glutamate uptake capacity of ARPE-19 cells. One possible explanation for these observations is that the presence of gelatin samples G300 with high viscosity in the medium may affect the nutrient availability to cultured cells. The analyses of pro-inflammatory cytokine IL-6 expression at both mRNA and protein levels showed that the gelatins with low Bloom index caused less cellular inflammatory reaction and had more acceptable biocompatibility than their high Bloom strength counterparts. These findings suggest that the Bloom index gives influence on cellular responses to gelatin materials.

  1. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.

    Science.gov (United States)

    Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J

    2001-10-01

    The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.

  2. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    Science.gov (United States)

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  3. Fundus albipunctatus associated with compound heterozygous mutations in RPE65

    DEFF Research Database (Denmark)

    Schatz, Patrik; Preising, Markus; Lorenz, Birgit

    2011-01-01

    To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations.......To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations....

  4. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    Science.gov (United States)

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  5. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism.

    Science.gov (United States)

    During, Alexandrine; Doraiswamy, Sundari; Harrison, Earl H

    2008-08-01

    The purpose of this study was to investigate the mechanisms by which carotenoids [xanthophylls vs. beta-carotene(beta-C)] are taken up by retinal pigment epithelial (RPE) cells. The human RPE cell line, ARPE-19, was used. When ARPE-19 cells were fully differentiated (7-9 weeks), the xanthophylls lutein (LUT) and zeaxanthin (ZEA) were taken up by cells to an extent 2-fold higher than beta-C (P xanthophylls versus the carotene by a process that appears to be entirely SR-BI-dependent for ZEA and partly so for beta-C. This mechanism may explain, in part, the preferential accumulation of xanthophylls in the macula of the retina.

  6. Choice of Cell Source in Cell-Based Therapies for Retinal Damage due to Age-Related Macular Degeneration: A Review

    Directory of Open Access Journals (Sweden)

    Sudhakar John

    2013-01-01

    Full Text Available Background. Age-related macular degeneration (AMD is a complex disorder that affects primarily the macula involving the retinal pigment epithelium (RPE but also to a certain extent the photoreceptor layer and the retinal neurons. Cell transplantation is a promising option for AMD and clinical trials are underway using different cell types. Methods. We hypothesize that instead of focusing on a particular cell source for concurrent regeneration of all the retinal layers and also to prevent exhaustive research on an array of cell sources for regeneration of each layer, the choice should depend on, precisely, which layer is damaged. Results. Thus, for a damage limited to the retinal pigment epithelial (RPE layer, the choice we suggest would be RPE cells. When the damage extends to rods and cones, the choice would be bone marrow stem cells and when retinal neurons are involved, relatively immature stem cell populations with an inherent capacity to yield neuronal lineage such as hematopoietic stem cells, embryonic stem cells, or induced pluripotent stem cells can be tried. Conclusion. This short review will prove to be a valuable guideline for those working on cell therapy for AMD to plan their future directions of research and therapy for this condition.

  7. Bioengineered Bruch's-like extracellular matrix promotes retinal pigment epithelial differentiation

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    2017-07-01

    Full Text Available In the eye, the retinal pigment epithelium (RPE adheres to a complex protein matrix known as Bruch's membrane (BrM. The aim of this study was to provide enriched conditions for RPE cell culture through the production of a BrM-like matrix. Our hypothesis was that a human RPE cell line would deposit an extracellular matrix (ECM resembling BrM. The composition and structure of ECM deposited by ARPE19 cells (ARPE19-ECM was characterized. To produce ARPE19-ECM, ARPE19 cells were cultured in the presence dextran sulphate. ARPE19-ECM was decellularized using deoxycholate and characterized by immunostaining and western blot analysis. Primary human RPE and induced pluripotent stem cells were seeded onto ARPE19-ECM or geltrex coated surfaces and examined by microscopy or RT-PCR. Culture of ARPE19 cells with dextran sulphate promoted nuclear localization of SOX2, formation of tight junctions and deposition of ECM. ARPE19 cells deposited ECM proteins found in the inner layers of BrM, including fibronectin, vitronectin, collagens IV and V as well as laminin-alpha-5, but not those found in the middle elastic layer (elastin or the outer layers (collagen VI. ARPE19-ECM promoted pigmentation in human RPE and pluripotent stem cell cultures. Expression of RPE65 was significantly increased on ARPE19-ECM compared with geltrex in differentiating pluripotent stem cell cultures. ARPE19 cells deposit ECM with a composition and structure similar to BrM in the retina. Molecular cues present in ARPE19-ECM promote the acquisition and maintenance of the RPE phenotype. Together, these results demonstrate a simple method for generating a BrM-like surface for enriched RPE cell cultures.

  8. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  9. Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration.

    Science.gov (United States)

    Schütze, Christopher; Wedl, Manuela; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2015-06-01

    To monitor retinal pigment epithelial (RPE) atrophy progression during antiangiogenic therapy of neovascular age-related macular degeneration (AMD) over 2 years using polarization-sensitive optical coherence tomography (OCT). Prospective interventional case series. setting: Clinical practice. Thirty patients (31 eyes) with treatment-naïve neovascular AMD. Standard intravitreal therapy (0.5 mg ranibizumab) was administered monthly during the first year and pro re nata (PRN; as-needed) during the second year. Spectral-domain (SD) OCT and polarization-sensitive OCT (selectively imaging the RPE) examinations were performed at baseline and at 1, 3, 6, 12, and 24 months using a standardized protocol. RPE-related changes were evaluated using a semi-automated polarization-sensitive OCT segmentation algorithm and correlated with SD OCT and fundus autofluorescence (FAF) findings. RPE response, geographic atrophy (GA) progression. Atrophic RPE changes included RPE thinning, RPE porosity, focal RPE atrophy, and development of GA. Early RPE loss (ie, RPE porosity, focal atrophy) increased progressively during initial monthly treatment and remained stable during subsequent PRN-based therapy. GA developed in 61% of eyes at month 24. Mean GA area increased from 0.77 mm(2) at 12 months to 1.10 mm(2) (standard deviation = 1.09 mm(2)) at 24 months. Reactive accumulation of RPE-related material at the lesion borders increased until month 3 and subsequently decreased. Progressive RPE atrophy and GA developed in the majority of eyes. RPE migration signifies certain RPE plasticity. Polarization-sensitive OCT specifically images RPE-related changes in neovascular AMD, contrary to conventional imaging methods. Polarization-sensitive OCT allows for precisely monitoring the sequence of RPE-related morphologic changes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. USING SESSION RPE TO MONITOR DIFFERENT METHODS OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Alison D. Egan

    2006-06-01

    Full Text Available The purpose of this study was to compare session rating of perceived exertion for different resistance training techniques in the squat exercise. These techniques included traditional resistance training, super slow, and maximal power training. Fourteen college-age women (Mean ± SD; age = 22 ± 3 years; height = 1.68 ± 0. 07 m completed three experimental trials in a randomized crossover design. The traditional resistance training protocol consisted of 6 sets of 6 repetitions of squats using 80% of 1-RM. The super slow protocol consisted of 6 sets of 6 repetitions using 55% of 1-RM. The maximal power protocol consisted of 6 sets of 6 repetitions using 30% of 1-RM. Rating of perceived exertion (RPE measures were obtained following each set using Borg's CR-10 scale. In addition, a session RPE value was obtained 30 minutes following each exercise session. When comparing average RPE and session RPE, no significant difference was found. However, power training had significantly lower (p < 0.05 average and session RPE (4.50 ± 1.9 and 4.5 ± 2.1 compared to both super slow training (7.81 ± 1.75 and 7.43 ± 1.73 and traditional training (7.33 ± 1.52 and 7.13 ± 1.73. The results indicate that session RPE values are not significantly different from the more traditional methods of measuring RPE during exercise bouts. It does appear that the resistance training mode that is used results in differences in perceived exertion that does not relate directly to the loading that is used. Using session RPE provides practitioners with the same information about perceived exertion as the traditional RPE measures. Taking a single measure following a training session would appear to be much easier than using multiple measures of RPE throughout a resistance training workout. However, practitioners should also be aware that the RPE does not directly relate to the relative intensity used and appears to be dependent on the mode of resistance exercise that is used

  11. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  12. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  14. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  15. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    Science.gov (United States)

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  16. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  17. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  18. Action spectrum for photochemical retinal pigment epithelium (RPE) disruption in an in vivo monkey model

    Science.gov (United States)

    Zhang, Jie; Sabarinathan, Ranjani; Bubel, Tracy; Williams, David R.; Hunter, Jennifer J.

    2016-03-01

    Observations of RPE disruption and autofluorescence (AF) photobleaching at light levels below the ANSI photochemical maximum permissible exposure (MPE) (Morgan et al., 2008) indicates a demand to modify future light safety standards to protect the retina from harm. To establish safe light exposures, we measured the visible light action spectrum for RPE disruption in an in vivo monkey model with fluorescence adaptive optics retinal imaging. Using this high resolution imaging modality can provide insight into the consequences of light on a cellular level and allow for longitudinal monitoring of retinal changes. The threshold retinal radiant exposures (RRE) for RPE disruption were determined for 4 wavelengths (460, 488, 544, and 594 nm). The anaesthetized macaque retina was exposed to a uniform 0.5° × 0.5° field of view (FOV). Imaging within a 2° × 2° FOV was performed before, immediately after and at 2 week intervals for 10 weeks. At each wavelength, multiple RREs were tested with 4 repetitions each to determine the threshold for RPE disruption. For qualitative analysis, RPE disruption is defined as any detectable change from the pre exposure condition in the cell mosaic in the exposed region relative to the corresponding mosaic in the immediately surrounding area. We have tested several metrics to evaluate the RPE images obtained before and after exposure. The measured action spectrum for photochemical RPE disruption has a shallower slope than the current ANSI photochemical MPE for the same conditions and suggests that longer wavelength light is more hazardous than other measurements would suggest.

  19. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  20. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  1. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    Science.gov (United States)

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  2. TRANSPORT OF THIOL-CONJUGATES OF INORGANIC MERCURY IN HUMAN RETINAL PIGMENT EPITHELIAL CELLS

    Science.gov (United States)

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-01-01

    Inorganic mercury (Hg2+) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg2+ exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg2+ to access photoreceptor cells, it must be first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg2+, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg2+ utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg2+, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg2+: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na+-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B0,+ and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B0,+ and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury. PMID:17467761

  3. Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-01-01

    Inorganic mercury (Hg 2+ ) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg 2+ exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg 2+ to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg 2+ , when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg 2+ utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg 2+ , was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg 2+ : Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na + -dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B 0,+ and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B 0,+ and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury

  4. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells.

    Science.gov (United States)

    Yang, Po-Min; Wu, Zhi-Zhen; Zhang, Yu-Qi; Wung, Being-Sun

    2016-06-15

    Age-related macular degeneration (AMD) is one of the most common diseases leading to blindness in elderly people. The progression of AMD may be prevented through anti-inflammation and antioxidation in retinal pigment epithelium (RPE) cells. Lycopene, a carotenoid, has been shown to possess both antioxidative and anti-inflammatory properties. This research was conducted to detail the mechanisms of these effects of lycopene-treated RPE cells. We exposed ARPE-19 cells to TNFα after pretreatment with lycopene, and measured monocyte adhesion, ICAM-1 expression, NF-κB nuclear translocation, and transcriptional activity. Cell viability was assayed with Alamar Blue. The cell redox state was tested by glutathione (GSH) and reactive oxygen species (ROS) levels. The importance of the Nrf2 pathway was tested in nuclear translocation, promoter reporter assay, and siRNA. Lycopene could reduce TNF-α-induced monocyte adhesion and H2O2- induced cell damage in RPE cells. Furthermore, lycopene inhibits ICAM-1 expression and abolishes NF-κB activation for up to 12h in TNFα-treated RPE cells. Lycopene upregulates Nrf2 levels in nuclear extracts and increases the transactivity of antioxidant response elements. The use of Nrf2 siRNA blocks the inhibitory effect of lycopene in TNF-α-induced ICAM-1 expression and NF-κB activation. Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the de novo synthesis of GSH. We found that lycopene increases intracellular GSH levels and GCL expression. Following lycopene treatment, TNF-α-induced ROS production was abolished. The Nrf2-regulated antioxidant property plays a pivotal role in the anti-inflammatory mechanism underlying the inhibition of NF-κB activation in lycopene-treated ARPE-19 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. 78 FR 24756 - Government-Owned Inventions; Availability for Licensing

    Science.gov (United States)

    2013-04-26

    ..., Ph.D. at [email protected] . Novel Methods for Generating Retinal Pigment Epithelium Cells From Induced Pluripotent Stem Cells Description of Technology: High efficiency methods for producing retinal pigment epithelial cells (RPE) from induced pluripotent stem cells (iPSCs) are disclosed. The RPE is a...

  6. Proteasome inhibitors activate autophagy involving inhibition of PI3K-Akt-mTOR pathway as an anti-oxidation defense in human RPE cells.

    Directory of Open Access Journals (Sweden)

    Bingrong Tang

    Full Text Available The two major intracellular protein degradation systems, the ubiquitin-proteasome system (UPS and autophagy, work collaboratively in many biological processes including development, apoptosis, aging, and countering oxidative injuries. We report here that, in human retinal pigment epithelial cells (RPE, ARPE-19 cells, proteasome inhibitors, clasto-lactacystinβ-lactone (LA or epoxomicin (Epo, at non-lethal doses, increased the protein levels of autophagy-specific genes Atg5 and Atg7 and enhanced the conversion of microtubule-associated protein light chain (LC3 from LC3-I to its lipidative form, LC3-II, which was enhanced by co-addition of the saturated concentration of Bafilomycin A1 (Baf. Detection of co-localization for LC3 staining and labeled-lysosome further confirmed autophagic flux induced by LA or Epo. LA or Epo reduced the phosphorylation of the protein kinase B (Akt, a downstream target of phosphatidylinositol-3-kinases (PI3K, and mammalian target of rapamycin (mTOR in ARPE-19 cells; by contrast, the induced changes of autophagy substrate, p62, showed biphasic pattern. The autophagy inhibitor, Baf, attenuated the reduction in oxidative injury conferred by treatment with low doses of LA and Epo in ARPE-19 cells exposed to menadione (VK3 or 4-hydroxynonenal (4-HNE. Knockdown of Atg7 with siRNA in ARPE-19 cells reduced the protective effects of LA or Epo against VK3. Overall, our results suggest that treatment with low levels of proteasome inhibitors confers resistance to oxidative injury by a pathway involving inhibition of the PI3K-Akt-mTOR pathway and activation of autophagy.

  7. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  8. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  9. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  10. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  11. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the

  12. Xanthophylls are preferentially taken up compared with β-carotene by retinal cells via a SRBI-dependent mechanism*1

    Science.gov (United States)

    During, Alexandrine; Doraiswamy, Sundari; Harrison, Earl H.

    2008-01-01

    The purpose of this study was to investigate the mechanisms by which carotenoids [xanthophylls vs. β-carotene(β-C)] are taken up by retinal pigment epithelial (RPE) cells. The human RPE cell line, ARPE-19, was used. When ARPE-19 cells were fully differentiated (7–9 weeks), the xanthophylls lutein (LUT) and zeaxanthin (ZEA) were taken up by cells to an extent 2-fold higher than β-C (P xanthophylls versus the carotene by a process that appears to be entirely SR-BI-dependent for ZEA and partly so for β-C. This mechanism may explain, in part, the preferential accumulation of xanthophylls in the macula of the retina. PMID:18424859

  13. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  14. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  15. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    Science.gov (United States)

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  16. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  17. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    Science.gov (United States)

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  18. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    Science.gov (United States)

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  19. Memory, reconsolidation and extinction in Lymnaea require the soma of RPeD1.

    Science.gov (United States)

    Sangha, Susan; Varshney, Nishi; Fras, Mary; Smyth, Kim; Rosenegger, David; Parvez, Kashif; Sadamoto, Hisayo; Lukowiak, Ken

    2004-01-01

    The central pattern generator (CPG) that drives aerial respiratory behaviour in Lymnaea consists of 3 neurons. One of these, RPeD1--the cell that initiates activity in the circuit, plays an absolutely necessary role as a site for memory formation, memory reconsolidation, and extinction. Using an operant conditioning training procedure that results in a long-term non-declarative memory (LTM), we decrease the occurrence of aerial respiratory behaviour. Since snails can still breathe cutaneously learning this procedure is not harmful. Concomitant with behavioural memory are changes in the spiking activity of RPeD1. Going beyond neural correlates of memory we directly show that RPeD1 is a necessary site for LTM formation. Expanding on this finding we show that this neuron is also a necessary site for memory reconsolidation and 'Pavlovian' extinction. As far as we can determine, this is the first time a single neuron has been shown to be a necessary site for these different aspects memory. RPeD1 is thus a key neuron mediating different hierarchical aspects of memory. We are now in a position to determine the necessary neuronal, molecular and proteomic events in this neuron that are causal to memory formation, reconsolidation and extinction.

  20. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  1. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul [Univ. of Rochester, NY (United States)

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  2. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  3. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    Science.gov (United States)

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  4. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  5. Pluripotent stem cells: A therapeutic source for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sowmya Parameswaran

    2017-01-01

    Full Text Available Age-related macular degeneration (AMD leads to progressive loss of central vision in the elderly. At a cellular level, there is aging of the retinal pigment epithelial (RPE cells, and accumulation of lipofuscin that interferes with the proper functioning of RPE which eventually leads to apoptosis. Treatment depends on the stage of the disease. Wet AMD which has neovascularization is managed by local therapies such as laser photocoagulation and photodynamic therapy and is managed with injections of antivascular endothelial growth factor-based therapy. Unlike the wet AMD, an effective therapy does not exist for dry AMD and geographic atrophy. Cell replacement therapy has shown promise. This review discusses the opportunities in the various types of cell-based therapy, their limitations, and what is possible for India.

  6. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  7. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  8. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  9. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins.

    Science.gov (United States)

    Thomas, Sara E; Harrison, Earl H

    2016-10-01

    The xanthophylls, lutein and zeaxanthin, are dietary carotenoids that selectively accumulate in the macula of the eye providing protection against age-related macular degeneration. To reach the macula, carotenoids cross the retinal pigment epithelium (RPE). Xanthophylls and β-carotene mostly associate with HDL and LDL, respectively. HDL binds to cells via a scavenger receptor class B1 (SR-B1)-dependent mechanism, while LDL binds via the LDL receptor. Using an in-vitro, human RPE cell model (ARPE-19), we studied the mechanisms of carotenoid uptake into the RPE by evaluating kinetics of cell uptake when delivered in serum or isolated LDL or HDL. For lutein and β-carotene, LDL delivery resulted in the highest rates and extents of uptake. In contrast, HDL was more effective in delivering zeaxanthin and meso-zeaxanthin leading to the highest rates and extents of uptake of all four carotenoids. Inhibitors of SR-B1 suppressed zeaxanthin delivery via HDL. Results show a selective HDL-mediated uptake of zeaxanthin and meso-zeaxanthin via SR-B1 and a LDL-mediated uptake of lutein. This demonstrates a plausible mechanism for the selective accumulation of zeaxanthin greater than lutein and xanthophylls over β-carotene in the retina. We found no evidence of xanthophyll metabolism to apocarotenoids or lutein conversion to meso-zeaxanthin. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Retinal Pigment Epithelial Tears in the Era of Intravitreal Pharmacotherapy: Risk Factors, Pathogenesis, Prognosis and Treatment (An American Ophthalmological Society Thesis)

    Science.gov (United States)

    Sarraf, David; Joseph, Anthony; Rahimy, Ehsan

    2014-01-01

    Purpose: To describe the risk factors, pathogenesis, and prognosis of retinal pigment epithelial (RPE) tears and to demonstrate our hypothesis that continued anti–vascular endothelial growth factor (VEGF) therapy after an RPE tear has occurred correlates with improved long-term visual and anatomical outcomes. Methods: We searched a database of 10,089 patients and retrospectively identified a large case series of 56 eyes with neovascular age-related macular degeneration (AMD) complicated by an RPE tear over an 8-year period. Baseline visual acuity (VA) was tabulated and analysis of the RPE tear was performed with multimodal imaging. Follow-up VA, progression of the tear, and severity of fibrosis were evaluated, and each was correlated with number of anti-VEGF injections. Results: Average follow-up for the 56 eyes was 42 months, and mean logMAR VA at baseline was 0.88 (Snellen VA 20/150) with minimal decline over 3 years. LogMAR VA plotted against number of anti-VEGF injections demonstrated that more frequent and cumulative injections correlated with better VA (Ptear, reduced fibrosis, and lower risk of a large, end-stage exudative disciform scar. Conclusions: Fifteen to 20% of vascularized pigment epithelial detachments (PEDs) may develop RPE tears after anti-VEGF therapy due to progressive contraction of the type 1 choroidal neovascular membrane in a PED at risk. Continued monitoring of RPE tears for exudative changes warranting anti-VEGF therapy may stabilize VA, improve anatomical outcomes, reduce fibrosis, and decrease the risk of developing a large blinding end-stage exudative disciform scar. PMID:25646033

  11. Spontaneous or secondary to intravitreal injections of anti-angiogenic agents retinal pigment epithelial tears in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Pia E. Leon

    2014-08-01

    Full Text Available AIM:To evaluate the visual function evolution of retinal pigment epithelial (RPE tears in patients with age-related macular degeneration (AMD according to type of occurrence [spontaneous or secondary to anti-vascular endothelial growth factor (anti-VEGF injection] and the topographic location of the tear after a two-year follow-up period.METHODS:A total of 15 eyes of 14 patients with RPE tears in exudative AMD were analyzed retrospectively at the University Eye Clinic of Trieste. Inclusion criteria were:patient age of 50 or older with AMD and RPE tears both spontaneous occurring or post anti-VEGF treatment. Screening included:careful medical history, complete ophthalmological examination, fluorescein angiography (FA, indocyanine green angiography (ICG, autofluorescence and infrared imaging and optical coherence tomography (OCT. Patients were evaluated every month for visual acuity (VA, fundus examination and OCT. Other data reported were:presence of PED, number of injections before the tear, location of the lesion.RESULTS: Mean follow-up was 24wk (SD±4wk. A total of 15 eyes were studied for RPE tear. In 6 cases (40%, the RPE tears occurred within two years of anti-VEGF injections the others occurred spontaneously. In 13 cases (86.6%, the RPE tear was associated with pigment epithelial detachment (PED. In 7 cases (46.6%, the RPE tear occurred in the central area of the retina and involved the fovea. Two lesions were found in the parafoveal region, six in the extra-macular area. In all cases visual acuity decreased at the end of the follow-up period (P<0.01 independently of the type or the topographical location of the lesion.CONCLUSION:RPE tear occurs in exudative AMD as a spontaneous complication or in relation to anti-VEGF injections. Visual acuity decreased significantly and gradually in the follow-up period in all cases. No correlation was found between visual loss and the type of onset or the topographic location of the tears.

  12. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    Science.gov (United States)

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  13. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells.

    Science.gov (United States)

    Alivand, Mohammad Reza; Sabouni, Farzaneh; Soheili, Zahra-Soheila

    2016-09-01

    To survey the changes of promoter CpG methylation status and mRNA expression of IL17RC (interleukin 17 receptor C) gene in retinal pigment epithelium (RPE) cells under chemical hypoxia condition for choroidal neovascularization (CNV) modeling in vitro. RPE cells were cultured in both untreated as a control group and treated by cobalt chloride media as a hypoxia group for various concentrations (100-150μM) and times (24-36 hrs.) To confirm chemical hypoxia condition, mRNA expression of HIF (Hypoxia Inducible Factor) -1α, -2α, and Vascular Endothelial Growth Factor (VEGF) was compared between two groups by Real-time PCR. Also, in normoxia and hypoxia conditions, IL17RC expression changes and promoter CpG methylation status were evaluated by Real-time PCR and methylation-specific PCR (MSP) techniques, respectively. Overexpression of HIF-1α, HIF-2α, and VEGF was significant in hypoxia versus normoxia conditions. Our data showed overexpression of IL17RC (2.1- to 6.3-fold) and decreasing of its promoter methylation in comparison with hypoxia and normoxia conditions. It was found that there are significant association between promoter methylation status and expression of IL17RC in chemical hypoxia condition. Therefore, methylation of IL17RC could play as a marker in CNV and degeneration of RPE cells in vitro. Additionally, HIF-α and methylation phenomena may be considered as critical targets for blocking in angiogenesis of age-related degeneration in future studies.

  14. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  15. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  16. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  17. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  18. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  20. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    Science.gov (United States)

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  1. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  2. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases

    Science.gov (United States)

    Jones, Melissa K.; Lu, Bin; Girman, Sergey; Wang, Shaomei

    2017-01-01

    Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments. PMID:28111323

  3. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  4. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  5. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    International Nuclear Information System (INIS)

    Wu Liguo; Hutt-Fletcher, Lindsey M.

    2007-01-01

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL

  6. Nicotine transport in lung and non-lung epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  8. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    Science.gov (United States)

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  10. Evidence for RPE65-independent vision in the cone-dominated zebrafish retina.

    Science.gov (United States)

    Schonthaler, Helia B; Lampert, Johanna M; Isken, Andrea; Rinner, Oliver; Mader, Andreas; Gesemann, Matthias; Oberhauser, Vitus; Golczak, Marcin; Biehlmaier, Oliver; Palczewski, Krzysztof; Neuhauss, Stephan C F; von Lintig, Johannes

    2007-10-01

    An enzyme-based cyclic pathway for trans to cis isomerization of the chromophore of visual pigments (11-cis-retinal) is intrinsic to vertebrate cone and rod vision. This process, called the visual cycle, is mostly characterized in rod-dominated retinas and essentially depends on RPE65, an all-trans to 11-cis-retinoid isomerase. Here we analysed the role of RPE65 in zebrafish, a species with a cone-dominated retina. We cloned zebrafish RPE65 and showed that its expression coincided with photoreceptor development. Targeted gene knockdown of RPE65 resulted in morphologically altered rod outer segments and overall reduced 11-cis-retinal levels. Cone vision of RPE65-deficient larvae remained functional as demonstrated by behavioural tests and by metabolite profiling for retinoids. Furthermore, all-trans retinylamine, a potent inhibitor of the rod visual cycle, reduced 11-cis-retinal levels of control larvae to a similar extent but showed no additive effects in RPE65-deficient larvae. Thus, our study of zebrafish provides in vivo evidence for the existence of an RPE65-independent pathway for the regeneration of 11-cis-retinal for cone vision.

  11. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  12. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    Science.gov (United States)

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  14. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  15. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    Science.gov (United States)

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  16. High Concentration of Zinc in Sub-retinal Pigment Epithelial Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lengyel,I.; Flinn, J.; Peto, T.; Linkous, D.; Cano, K.; Bird, A.; Lanzirotti, A.; Frederickson, C.; van Kuijk, F.

    2007-01-01

    One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD.

  17. High Concentration of Zinc in Sub-retinal Pigment Epithelial Deposits

    International Nuclear Information System (INIS)

    Lengyel, I.; Flinn, J.; Peto, T.; Linkous, D.; Cano, K.; Bird, A.; Lanzirotti, A.; Frederickson, C.; van Kuijk, F.

    2007-01-01

    One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD

  18. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture

    International Nuclear Information System (INIS)

    Sadlonova, Andrea; Novak, Zdenek; Johnson, Martin R; Bowe, Damon B; Gault, Sandra R; Page, Grier P; Thottassery, Jaideep V; Welch, Danny R; Frost, Andra R

    2005-01-01

    Stromal fibroblasts associated with in situ and invasive breast carcinoma differ phenotypically from fibroblasts associated with normal breast epithelium, and these alterations in carcinoma-associated fibroblasts (CAF) may promote breast carcinogenesis and cancer progression. A better understanding of the changes that occur in fibroblasts during carcinogenesis and their influence on epithelial cell growth and behavior could lead to novel strategies for the prevention and treatment of breast cancer. To this end, the effect of CAF and normal breast-associated fibroblasts (NAF) on the growth of epithelial cells representative of pre-neoplastic breast disease was assessed. NAF and CAF were grown with the nontumorigenic MCF10A epithelial cells and their more transformed, tumorigenic derivative, MCF10AT cells, in direct three-dimensional co-cultures on basement membrane material. The proliferation and apoptosis of MCF10A cells and MCF10AT cells were assessed by 5-bromo-2'-deoxyuridine labeling and TUNEL assay, respectively. Additionally, NAF and CAF were compared for expression of insulin-like growth factor II as a potential mediator of their effects on epithelial cell growth, by ELISA and by quantitative, real-time PCR. In relatively low numbers, both NAF and CAF suppressed proliferation of MCF10A cells. However, only NAF and not CAF significantly inhibited proliferation of the more transformed MCF10AT cells. The degree of growth inhibition varied among NAF or CAF from different individuals. In greater numbers, NAF and CAF have less inhibitory effect on epithelial cell growth. The rate of epithelial cell apoptosis was not affected by NAF or CAF. Mean insulin-like growth factor II levels were not significantly different in NAF versus CAF and did not correlate with the fibroblast effect on epithelial cell proliferation. Both NAF and CAF have the ability to inhibit the growth of pre-cancerous breast epithelial cells. NAF have greater inhibitory capacity than CAF

  19. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  20. Cellular Plasticity of Epithelial Cells-Cause of Metastasis

    National Research Council Canada - National Science Library

    Sukumar, Saraswati

    2005-01-01

    .... We present a novel concept that cancer epithelial cells, possibly of stem cell origin, have inherent cellular plasticity and can differentiate into endothelial cells and form microvessels that serve...

  1. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  2. Erythropoietin protects the retinal pigment epithelial barrier against ...

    African Journals Online (AJOL)

    zhanghongmei

    2011-05-09

    May 9, 2011 ... Results showed that, EPO increased the viability of H2O2-treated RPE cells, the disruption of .... in RPE damage that occurs in AMD and other retinal diseases of aging ..... However, preventing the cellular effects of ROIs in the.

  3. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype.

    Science.gov (United States)

    Huang, Chen; Zhang, Jing; Ao, Mingxin; Li, Ying; Zhang, Chun; Xu, Yonggen; Li, Xuemin; Wang, Wei

    2012-02-01

    Recent studies have suggested that bone marrow-derived mesenchymal stem cells (BMMSCs) are capable of retinal tissue-specific differentiation but not retinal pigment epithelium (RPE) cell-specific differentiation. Photoreceptor outer segments (POS) contribute to RPE development and maturation. However, there has been no standard culture system that fosters the differentiation of BMMSCs into mature RPE cells in vitro. In this study, we investigated if the soluble factors from RPE cells and POS could differentiate BMMSCs into cells having a phenotype characteristic of RPE cells. Rat BMMSCs were separately co-cultured with RPE cells, or they were exposed to either control medium, RPE cell-conditioned medium (RPECM), POS, or a combination of RPECM and POS (RPECM-POS). After 7 days, the cells were analyzed for morphology and the expression of RPE markers (cytokeratin 8, CRALBP, and RPE65) to assess the RPE differentiation. Significantly higher pigment accumulation and increased protein expression of the three markers were seen in cells cultured in RPECM-POS than in other treated cultures. Furthermore, the RPECM-POS-treated cultures displayed ultrastructural features typical of RPE cells, expressed RPE cell functional proteins, and had the capability to phagocytose POS. Together, theses results suggest the combination of RPECM and POS stimulate BMMSCs differentiation toward a functional RPE phenotype. Our results provide the foundation for a new route to RPE regenerative therapy involving BMMSCs. Future work isolating the active agent in RPECM and POS would be useful in therapies for RPE diseases or in developing appropriately pre-differentiated BMMSCs for tissue-engineered RPE reconstruction. Copyright © 2011 Wiley Periodicals, Inc.

  4. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  5. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  6. Epithelial cells as active player in fibrosis: findings from an in vitro model.

    Directory of Open Access Journals (Sweden)

    Solange Moll

    Full Text Available Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI to chronic kidney disease (CKD challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches.

  7. Traction forces exerted by epithelial cell sheets

    International Nuclear Information System (INIS)

    Saez, A; Anon, E; Ghibaudo, M; Di Meglio, J-M; Hersen, P; Ladoux, B; Du Roure, O; Silberzan, P; Buguin, A

    2010-01-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  8. The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Dasari Bhanu

    2010-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD and age-related macular degeneration (AMD share several pathological features including β-amyloid (Aβ peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD. Methods ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER stress markers, Ca2+ homeostasis, glutathione depletion, reactive oxygen species (ROS generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays. Results 27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP, reduced mitochondrial membrane potential, triggered Ca2+ dyshomeostasis, increased levels of the nuclear factor κB (NFκB and heme-oxygenase 1 (HO-1, two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death. Conclusions The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for

  9. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    Science.gov (United States)

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Science.gov (United States)

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  11. Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues.

    Science.gov (United States)

    Sasaki, Ayana; Nagatake, Takahiro; Egami, Riku; Gu, Guoqiang; Takigawa, Ichigaku; Ikeda, Wataru; Nakatani, Tomoya; Kunisawa, Jun; Fujita, Yasuyuki

    2018-04-24

    Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelial tissues via cell competition with the surrounding normal epithelial cells. This cancer preventive phenomenon is termed epithelial defense against cancer (EDAC). However, it remains largely unknown whether and how EDAC is diminished during carcinogenesis. In this study, using a cell competition mouse model, we show that high-fat diet (HFD) feeding substantially attenuates the frequency of apical elimination of RasV12-transformed cells from intestinal and pancreatic epithelia. This process involves both lipid metabolism and chronic inflammation. Furthermore, aspirin treatment significantly facilitates eradication of transformed cells from the epithelial tissues in HFD-fed mice. Thus, our work demonstrates that obesity can profoundly influence competitive interaction between normal and transformed cells, providing insights into cell competition and cancer preventive medicine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  13. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    International Nuclear Information System (INIS)

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-01-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  14. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Rundi; Chen, Ruilin; Cao, Yu [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Wang, Yuan [Department of Pulmonary Function, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Song, Kang [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Zhang, Ya [Zhejiang Chinese Medicine University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310006 (China); Yang, Junchao, E-mail: yangjunchaozj@zcmu.edu.cn [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China)

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  15. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-01-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results. (paper)

  16. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  17. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  18. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  19. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  20. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Niss, Kristoffer; Kotarsky, Knut

    2018-01-01

    Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis. In the abse......Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis...

  1. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  2. Metabolic cooperativity between epithelial cells and adipocytes of mice

    International Nuclear Information System (INIS)

    Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

    1981-01-01

    We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from [ 14 C]glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations

  3. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Monoem Haddad

    2017-11-01

    Full Text Available Purpose: The aim of this review is to (1 retrieve all data validating the Session-rating of perceived exertion (RPE-method using various criteria, (2 highlight the rationale of this method and its ecological usefulness, and (3 describe factors that can alter RPE and users of this method should take into consideration.Method: Search engines such as SPORTDiscus, PubMed, and Google Scholar databases in the English language between 2001 and 2016 were consulted for the validity and usefulness of the session-RPE method. Studies were considered for further analysis when they used the session-RPE method proposed by Foster et al. in 2001. Participants were athletes of any gender, age, or level of competition. Studies using languages other than English were excluded in the analysis of the validity and reliability of the session-RPE method. Other studies were examined to explain the rationale of the session-RPE method and the origin of RPE.Results: A total of 950 studies cited the Foster et al. study that proposed the session RPE-method. 36 studies have examined the validity and reliability of this proposed method using the modified CR-10.Conclusion: These studies confirmed the validity and good reliability and internal consistency of session-RPE method in several sports and physical activities with men and women of different age categories (children, adolescents, and adults among various expertise levels. This method could be used as “standing alone” method for training load (TL monitoring purposes though some recommend to combine it with other physiological parameters as heart rate.

  4. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  5. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  6. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis.

    Science.gov (United States)

    Dayang, Wu; Dongbo, Pang

    2017-10-01

    The massive uptake of compatible osmolytes is a self-protective response shared by lens exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet B-induced cytotoxicity in the lens epithelial cells. Real-time PCR was used to measure osmolytes transport. Radioimmunoassay was used to measure osmolytes uptake. Cell counting kit-8 assays were used to measure cellular viability. Flow cytometry analysis was used to measure apoptosis level. Compared with normotonic stress, hypertonic stress-induced osmolytes uptake into the lens epithelial cells such as betaine, myoinositol and taurine. UVB exposure increased osmolytes transporter mRNA expression together with osmolytes uptake. Moreover, taurine suppressed UVB-induced cell apoptosis in the lens epithelial cells significantly. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  7. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia.

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A; Zabinski, Mary C; Yuen, Constance K; Lung, Wing Yi; Gower, Adam C; Belkina, Anna C; Ramirez, Maria I; Deng, Jane C; Quinton, Lee J; Jones, Matthew R; Mizgerd, Joseph P

    2016-09-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.

  8. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  9. Invasion of Human Oral Epithelial Cells by Prevotella intermedia

    Science.gov (United States)

    Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann

    1998-01-01

    Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397

  10. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  11. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  12. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.; Hirai, Yohei

    2014-01-01

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  13. Quantitative analysis of epithelial cells in urine from men with and without urethritis: implications for studying epithelial: pathogen interactions in vivo

    Directory of Open Access Journals (Sweden)

    Whittington Kate

    2009-07-01

    Full Text Available Abstract Background Epithelial cells in first catch urine (FCU specimens from 87 men with and without urethritis were quantified. Epithelial cells were broadly categorised into transitional and squamous populations using morphological characteristics and immunostaining with anti-pan leukocyte and anti-cytokeratin monoclonal antibodies. Findings The majority (77/87 = 89% of samples contained both transitional (76/87 = 87%; range 1 × 104 – 6 × 105, median 6 × 104 and squamous (57/87 = 66%; range 1 × 104 – 8 × 105, median 2 × 104 epithelial cells. The number of transitional cells correlated with the number of squamous cells (Spearman's rho = 0.697 p Conclusion Further studies are required to explore the complexity of epithelial cell populations in urine. These would provide novel opportunities for studying cellular interactions of C. trachomatis in male urethral infections, about which little is currently known.

  14. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  15. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  16. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    Science.gov (United States)

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2018-06-01

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  17. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Winnie Y. Zou

    2018-01-01

    Full Text Available Intestinal stem cells (ISCs maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.

  18. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  19. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  20. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  1. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  2. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  3. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  4. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4.

    Science.gov (United States)

    Todaro, M; Lombardo, Y; Francipane, M G; Alea, M Perez; Cammareri, P; Iovino, F; Di Stefano, A B; Di Bernardo, C; Agrusa, A; Condorelli, G; Walczak, H; Stassi, G

    2008-04-01

    We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.

  5. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...... homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...

  6. Cytotoxic effects of air freshener biocides in lung epithelial cells.

    Science.gov (United States)

    Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.

  7. The status of intercellular junctions in established lens epithelial cell lines.

    Science.gov (United States)

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that

  8. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  9. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  10. Cytological analysis of the epithelial cells in patients with oral candidiasis.

    Science.gov (United States)

    Loss, Rafael; Sandrin, Rodrigo; França, Beatriz Helena Sottile; de Azevedo-Alanis, Luciana Reis; Grégio, Ana Maria Trindade; Machado, Maria Ângela Naval; de Lima, Antonio Adilson Soares

    2011-07-01

    The aim of this study was to evaluate oral epithelial cells of the oral mucosa infected by Candida albicans using exfoliative cytology. Oral smears were collected from clinically normal-appearing mucosa by liquid-based exfoliative cytology of 60 individuals (30 patients with oral candidiasis and 30 healthy controls matched for age and gender) and analysed for morphologic and cytomorphometric technique. Morphologically, candida-infected epithelial cells exhibited nuclear enlargement, perinuclear rings, discrete orangeophilia, and cytoplasmic vacuoles. The cytomorphometric analysis demonstrated that the cytoplasmic area (CA) of the epithelial cells was diminished in patients undergoing candidiasis as compared to the non-infected controls. In addition, there was an augmentation in nuclear area (NA) and NA/CA area ratio. This study revealed that oral mucosa of patients undergoing candidal infection exhibited significant changes in the size and shape of the oral epithelial cells. © 2010 Blackwell Verlag GmbH.

  11. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  12. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  13. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Science.gov (United States)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  14. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    Science.gov (United States)

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  15. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  17. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    Science.gov (United States)

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  18. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    International Nuclear Information System (INIS)

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-01-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of ≅ 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor

  19. Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice.

    Directory of Open Access Journals (Sweden)

    Masashi Fujihara

    2008-09-01

    Full Text Available The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD. Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85+/-3.7% of RPE cells counted compared to 9.5+/-3.9% in controls (p<0.00001. Bruch membrane was thicker in mice exposed to smoke (1086+/-332 nm than those raised in air (543+/-132 nm; p = 0.0069. The two most pronounced ultrastructural changes (severity grading scale from 0-3 seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001, and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001. Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001, increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002, and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001. TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0+/-1.1% than room air (average 0+/-0%; p = 0.043. Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the

  20. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    Science.gov (United States)

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  1. Oral epithelial cell reaction after exposure to Invisalign plastic material.

    Science.gov (United States)

    Premaraj, Thyagaseely; Simet, Samantha; Beatty, Mark; Premaraj, Sundaralingam

    2014-01-01

    Invisalign plastic aligners (Align Technology, Santa Clara, Calif) are used to correct malocclusions. The aligners wrap around the teeth and are in contact with gingival epithelium during treatment. The purpose of this study was to evaluate the cellular responses of oral epithelium exposed to Invisalign plastic in vitro. Oral epithelial cells were exposed to eluate obtained by soaking Invisalign plastic in either saline solution or artificial saliva for 2, 4, and 8 weeks. Cells grown in media containing saline solution or saliva served as controls. Morphologic changes were assessed by light microscopy. The 3-[4, 5-dimethythiazol- 2-yl]-2, 5-diphenyl tetrazolium bromide assay and flow cytometry were used to determine cell viability and membrane integrity, respectively. Cellular adhesion and micromotion of epithelial cells were measured in real time by electrical cell-substrate impedance sensing. Cells exposed to saline-solution eluate appeared rounded, were lifted from the culture plates, and demonstrated significantly increased metabolic inactivity or cell death (P <0.05). Saliva eluates did not induce significant changes in cell viability compared with untreated cells. Flow cytometry and electric cell-substrate impedance sensing showed that cells treated with saline-solution eluate exhibited compromised membrane integrity, and reduced cell-to-cell contact and mobility when compared with saliva-eluate treatment. Exposure to Invisalign plastic caused changes in viability, membrane permeability, and adhesion of epithelial cells in a saline-solution environment. Microleakage and hapten formation secondary to compromised epithelial integrity might lead to isocyanate allergy, which could be systemic or localized to gingiva. However, these results suggest that saliva might offer protection. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  2. Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death

    DEFF Research Database (Denmark)

    Juel, Helene B; Faber, Carsten; Svendsen, Signe Goul

    2013-01-01

    -mediated induction of the anti-oxidative stress response, upregulating protective anti-oxidant pathway(s). These findings suggest caution for the clinical use of anti-inflammatory agents in the management of immune-associated eye diseases such as age-related macular degeneration....... protected from cell death by the addition of PCM. This protection was conferred, at least in part, by IFNγ and TNFα. Cell death induced by H2O2 or NaIO3 was preceded by mitochondrial dysfunction and by p62 upregulation, both of which were attenuated by PCM and/or by IFNγ+TNFα. RPE cells co...

  3. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I

    2014-10-15

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Production of arachidonic and linoleic acid metabolites by guinea pig tracheal epithelial cells

    International Nuclear Information System (INIS)

    Oosthuizen, M.J.; Engels, F.; Van Esch, B.; Henricks, P.A.; Nijkamp, F.P.

    1990-01-01

    Pulmonary epithelial cells may be responsible for regulating airway smooth muscle function, in part by release of fatty acid-derived mediators. Incubation of isolated guinea pig tracheal epithelial cells with radiolabeled arachidonic acid (AA) leads to the production of 5- and 15-hydroxyeicosatetraenoic acid (5- and 15-HETE) and smaller amounts of leukotriene (LT) B4 and C4 and 12-hydroxyheptadecatrienoic acid (HHT). Epithelial cells also are able to release linoleic acid (LA) metabolites. Incubation with radiolabeled linoleic acid leads to the formation of 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE). The biological significance of these mediators produced by epithelial cells is discussed

  5. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  6. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jennifer S. Liu

    2012-11-01

    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  7. The fate of epithelial cells in the human large intestine.

    Science.gov (United States)

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  8. Epithelial cells in nipple aspirate fluid and subsequent breast cancer risk: A historic prospective study

    International Nuclear Information System (INIS)

    Baltzell, Kimberly A; Moghadassi, Michelle; Rice, Terri; Sison, Jennette D; Wrensch, Margaret

    2008-01-01

    Past studies have shown that women with abnormal cytology or epithelial cells in nipple aspirate fluid (NAF) have an increased relative risk (RR) of breast cancer when compared to women from whom NAF was attempted but not obtained (non-yielders). This study analyzed NAF results from a group of women seen in a breast clinic between 1970–1991 (N = 2480). Our analysis presented here is an aggregate of two sub-groups: women with questionnaire data (n = 712) and those with NAF visits beginning in 1988 (n = 238), the year in which cancer case information was uniformly collected in California. Cytological classification was determined for a group of 946 women using the most abnormal epithelial cytology observed in fluid specimens. Breast cancer incidence and mortality status was determined through June 2006 using data from the California Cancer Registry, California Vital Statistics and self-report. We estimated odd ratios (ORs) for breast cancer using logistic regression analysis, adjusting for age. We analyzed breast cancer risk related to abnormality of NAF cytology using non-yielders as the referent group and breast cancer risk related to the presence or absence of epithelial cells in NAF, using non-yielders/fluid without epithelial cells as the referent group. Overall, 10% (93) of the 946 women developed breast cancer during the follow-up period. Age-adjusted ORs and 95% confidence intervals (C.I.) compared to non-yielders were 1.4 (0.3 to 6.4), 1.7 (0.9 to 3.5), and 2.0 (1.1 to 3.6) for women with fluid without epithelial cells, normal epithelial cells and hyperplasia/atypia, respectively. Comparing the presence or absence of epithelial cells in NAF, women with epithelial cells present in NAF were more likely to develop breast cancer than non-yielders or women with fluid without epithelial cells (RR = 1.9, 1.2 to 3.1). These results support previous findings that 1) women with abnormal epithelial cells in NAF have an increased risk of breast cancer when compared to

  9. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  10. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  11. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-01-01

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  12. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    Science.gov (United States)

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  13. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  14. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    Science.gov (United States)

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture

  15. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  16. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Directory of Open Access Journals (Sweden)

    Shigenobu Yonemura

    Full Text Available Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D culture systems rather than in two-dimensional (2-D culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules, EpH4 cells (mouse mammary gland, and R2/7 cells (human colon expressing wild-type α-catenin (R2/7 α-Cate cells. These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  17. Active Vertex Model for cell-resolution description of epithelial tissue mechanics.

    Science.gov (United States)

    Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko

    2017-06-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

  18. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract.

    Science.gov (United States)

    Li, W C; Spector, A

    1996-01-01

    Epidemiological and experimental studies have revealed that exposure to UV can induce cataractogenesis. To investigate the mechanism of this induction, viability of the lens epithelial cells from UVB-treated rat lenses were examined. Irradiation of the cultured rat lenses with 8 J/s/m2 UVB for 60 min triggers lens epithelial cell apoptosis as determined by terminal deoxyribonucleotide transferase (TdT) labeling and DNA fragmentation assays. The apoptotic lens epithelial cells were initially found in the equatorial region and then quickly appeared in both equatorial and central regions. The percentage of apoptotic cells continuously increased during the postirradiation incubation. After a 5-h post-UVB incubation, more than 50% of the lens epithelial cells were apoptotic. By 24 h, all of the lens epithelial cells in the irradiated lenses were dead through apoptosis. Associated with this apoptotic process is a large upregulation of the proto-oncogene, c-fos. Opacification appears to follow the death of lens epithelial cells occurring first in the equatorial region and then in the central area. This is also true of classical cataract parameters such as non-protein thiol and wet weight, which are significantly modified only after appreciable epithelial cell apoptosis. Together, these results suggest that the rapid apoptotic death of the lens epithelial cells induced by UVB initiates cataract development.

  19. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  20. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    Science.gov (United States)

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells

    International Nuclear Information System (INIS)

    Gutierrez-Barrera, Angelica M.; Menter, David G.; Abbruzzese, James L.; Reddy, Shrikanth A.G.

    2007-01-01

    Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells

  3. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  4. The genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    Invasion of epithelial cells was demonstrated to be triggered by invasion plasmid antigens B, C, and D ( IpaB, IpaC and IpaD ) which is accomplished by intracellular spread gene icsA. The invasion of epithelial cells by some individual species of bacteria were also reviewed.Yersinia enterocolitica invasiveness was shown ...

  5. File list: Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. File list: Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  8. File list: Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  9. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    Science.gov (United States)

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  10. A method for isolating identifying and culturing of rat trachea-bronchia epithelial cells

    International Nuclear Information System (INIS)

    Cui Fengmei; Su Shibiao; Nie Jihua; Li Bingyan; Tong Jian

    2005-01-01

    Objective: To explore a method for isolating identifying and culturing the rat trachea-bronchia epithelial cells. Methods: The rat trachea-bronchia epithelial cells were isolated by digestion with pronase and brushing with cell brush, identified using confocul and cultured in entire F12 media with no serum. Results: With this method, cells in high purity and high viability could be obtained, and about 10 6 cells per rat. The cells grow well in entire F12 media with no serum. Conclusion: The method is useful for isolating rate trachea-bronchia epithelial cells and the entire F12 media with no serum is effective for culturing. (authors)

  11. In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow.

    Directory of Open Access Journals (Sweden)

    Han Hu

    Full Text Available BACKGROUND: The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro. METHODOLOGY: Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture. PRINCIPAL FINDINGS: The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n=60. Furthermore, they were capable of synthesizing beta-casein (CSN2, acetyl-CoA carboxylase-alpha (ACACA and butyrophilin (BTN1A1. An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line. CONCLUSIONS: The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs.

  12. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  13. RPE and RPO in the revised Swiss radiation protection legislation; RPE und RPO in der revidierten schweizerischen Strahlenschutzgesetzgebung

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, S.G. [Eidgenoessisches Nuklearsicherheitsinspektorat (ENSI), Brugg (Switzerland); Stritt, N.; Bogni, S. [Bundesamt fuer Gesundheit (BAG), Bern (Switzerland); Hammans, M. [Schweizerische Unfallversicherungsanstalt (SUVA), Luzern (Switzerland); Duerst, B. [Departement fuer Verteidigung, Bevoelkerungsschutz und Sport (VBS), Bern (Switzerland); Kuehne, G. [Paul-Scherrer-Institut (PSI), Wuerenlingen (Switzerland); Besancon, A. [Institut de Radiophysique (IRA), Lausanne (Switzerland)

    2013-07-01

    Currently the Swiss 'Ordinance on Radiation Protection' and the 'Ordinance about Education and Training in RP' are undergoing a revision process. Concerning responsibilities and obligations as well as the capabilities and skills in RP the new ordinances are supposed to take account on the new EU Basic Safety Standard on the one hand and on the other hand to resume the approved approaches on RP in Switzerland. An overview of the planned content of the revised ordinances will be given in this report. In the Swiss system the education, training and retraining of RPO has a higher priority. Particularly it will be described which groups of persons assume the roles of RPE and therefore the definition of RPE in the new Swiss legislation is needless. (orig.)

  14. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  15. Enhanced Detection of Sub-Retinal Pigment Epithelial Cell Layer Deposits in Human and Murine Tissue: Imaging Zinc as a Biomarker for Age-Related Macular Degeneration (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    van Kuijk, Frederik J G M; McPherson, Scott W; Roehrich, Heidi

    2017-08-01

    Understanding the apparent paradoxical role of zinc in the pathogenesis and prevention of age-related macular degeneration (AMD) has been limited by the lack of animal models for its detection in sub-retinal epithelial deposits (drusen), a definitive early hallmark of AMD. In-vitro studies using Zinpyr-1 showed drusen contained high levels of zinc, but the probe was not suitable for in-vivo studies. This study compares Zinpyr-1 to ZPP1, a new fluorescein-based probe for zinc, to assess the potential of ZPP1 for in-vivo detection of zinc in drusen. Flat mounts of human sub-RPE tissue using the probes were analyzed by fluorescence and confocal microscopy. Flat mounts of sub-RPE tissue from mice deficient in superoxide dismutase isoform-1 (CuZn-SOD-KO) or isoform-2 (Mn-SOD-RPE-KO) were analyzed with sub-RPE deposits confirmed by histology. Drusen are detected in greater numbers and intensity with ZPP1 compared to Zinpyr-1. Using ZPP1, drusen was detected in a sample from a 46-year old human donor without ocular history, suggesting that ZPP1 might be sensitive enough to detect drusen at an early stage. With CuZn-SOD KO mice, ZPP1 detected sub-RPE deposits at 10 months of age, whereas Zinpyr-1 required 14 months. Detection of sub-RPE deposits by ZPP1 was greatly enhanced compared to Zinpyr-1. This enhanced sensitivity will allow for more insightful analysis of zinc in AMD using human specimens and mouse models. This could result in the development of a sensitive in-vivo probe to enhance research on the role zinc in drusen formation and the early clinical diagnosis of AMD.

  16. File list: Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  17. File list: Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  18. File list: Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  19. File list: Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. File list: Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. File list: DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  8. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  9. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  10. Sphingolipid trafficking and protein sorting in epithelial cells

    NARCIS (Netherlands)

    Slimane, TA; Hoekstra, D

    2002-01-01

    Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an

  11. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  12. Alveolar type II epithelial cell dysfunction in rat experimental hepatopulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available The hepatopulmonary syndrome (HPS develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2 play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D which also facilitate alveolar repair following injury. However, no studies have evaluated the alveolar epithelial compartment in experimental HPS. In this study, we evaluated the alveolar epithelial compartment and particularly AT2 cells in experimental HPS induced by common bile duct ligation (CBDL. We found a significant reduction in pulmonary SP production associated with increased apoptosis in AT2 cells after CBDL relative to controls. Lung morphology showed decreased mean alveolar chord length and lung volumes in CBDL animals that were not seen in control models supporting a selective reduction of alveolar airspace. Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064 induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.

  13. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2001-12-01

    Full Text Available Abstract Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS or murine small intestinal epithelial cells (IEC-18 were exposed to oxidants – DPPH (3 μM, H2O2 (50 μM, peroxynitrite (300 μM – followed by incubation for 24 hours, with antioxidants (10 μg/ml administered as a 1 hour pretreatment. Cell number (MTT assay and death via apoptosis or necrosis (ELISA, LDH release was determined. The direct interactions between antioxidants and DPPH (100 μM or H2O2 (50 μM were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS from apoptosis induced by DPPH, peroxynitrite and H2O2 (P 2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P 2O2, and was attenuated both by cat's claw and green tea (P Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death.

  14. Differentiation of Pluripotent Stem Cells to Retinal Pigment Epithelial Cells: An Approach Toward Retinal Degenerative Diseases Treatment

    Directory of Open Access Journals (Sweden)

    Maryam Parvini

    2013-10-01

    Full Text Available Pluripotent stem cells as the cells with a capacity for self-renewal and differentiation into various specificcell types have been highly regarded in regenerative medicine studies. To repair the eye disease damages, thedifferentiation into retinal pigment epithelial cells of pluripotent stem cells has gained great importance inrecent decades because the inappropriate function of these cells is the main cause of degenerative diseases suchas the age-related macular degeneration. Millions of people in the world suffer this disease.To restore the damaged cells and, finally, to improve the vision, numerous studies have been conducted on usingpluripotent stem cells, their differentiation into retinal pigment epithelial cells, and finally, their applicationin cell therapy. Based on this, many researchers have attempted to produce highly efficient retinal pigmentepithelial cells, such that they show a proper function after transplant, along with the host cells. In this reviewarticle, the importance and the role of pigment epithelial cells, as well as, the studies on the in vitro productionof these cells were examined

  15. Cigarette smoke alters the secretome of lung epithelial cells.

    Science.gov (United States)

    Mossina, Alessandra; Lukas, Christina; Merl-Pham, Juliane; Uhl, Franziska E; Mutze, Kathrin; Schamberger, Andrea; Staab-Weijnitz, Claudia; Jia, Jie; Yildirim, Ali Ö; Königshoff, Melanie; Hauck, Stefanie M; Eickelberg, Oliver; Meiners, Silke

    2017-01-01

    Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    International Nuclear Information System (INIS)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-01-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO 2 NPs (size range 4–33 nm), two preparations of CeO 2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm 2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm 2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm 2 , in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO 2 and CeO 2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  17. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  18. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements

    International Nuclear Information System (INIS)

    Berdyyeva, Tamara K; Woodworth, Craig D; Sokolov, Igor

    2005-01-01

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously attributed to increased crosslinking of extracellular matrix proteins. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that the Young's modulus of viable cells was consistently increased two- to four-fold in older versus younger cells. Direct visualization of the cytoskeleton using a novel method involving the AFM suggested that increased rigidity of ageing cells was due to a higher density of cytoskeletal fibres. Our results identify a unique mechanism that might contribute to the age-related loss of elasticity in epithelial tissues

  19. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  20. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death

    International Nuclear Information System (INIS)

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries. (author)

  1. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    OpenAIRE

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequ...

  2. Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF-β1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  3. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  4. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    Science.gov (United States)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mechanism research of miR-181 regulating human lens epithelial cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yu Qin

    2015-05-01

    Full Text Available AIM: To investigate the expression of miR-181 in the lens tissue of cataract and the regulating mechanism of miR-181 on apoptosis of human lens epithelial cell.METHODS:Real time q-PCR was used to measure the expression of miR-181 in the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model. miR-181 mimic and inhibitor were transfected using Lipofectamine 2 000 to regulate the expression of miR-181, and then Real time q-PCR was used to verify transfection efficiency. Flow cytometry was used to detect the change of cell apoptosis rate. RESULTS: Compared with control group, the expression of miR-181 was significantly higher in both the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model; the relative expression of miR-181 in lens epithelial cells transfected with miR-181 mimic was increased, whereas decreased in cells transfected with miR-181 inhibitor; the apoptosis rate of cells transfected with miR-181 mimic was increased, while reduced in miR-181 inhibitor group. Each result was statistically significant(PCONCLUSION: High expression of miR-181 is detected in anterior lens capsule of age-related cataract. miR-181 might play a certain role in the pathogenesis of cataract via promoting human lens epithelial cell apoptosis. miR-181 probably becomes a new approach for the nonoperative treatment of cataract, but the concrete mechanism still needs to be further studied.

  6. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    Science.gov (United States)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  7. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-01-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  8. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  9. Interactions of pharmacologically active snake venom sPLA2 with different cell lines

    Science.gov (United States)

    Doumanov, Jordan; Mladenova, Kirilka; Aleksandrov, Radoslav; Danovski, Georgi; Petrova, Svetla

    2014-01-01

    Secreted Phospholipases A2 (sPLA2s) represent a large family of structurally related enzymes, which target different tissues and organs and induce numerous pharmacological effects based on their catalytic specificity – hydrolysis of the sn-2 ester bond of glycerophospholipids. The neurotoxin vipoxin, isolated from the venom of Vipera ammodytes meriodionalis, is a heterodimeric postsynaptic ionic complex composed of two protein subunits – a basic and toxic His48 sPLA2 enzyme and an acidic, enzymatically inactive and non-toxic component. In this paper, for the first time, we demonstrate that vipoxin sPLA2 enzyme affects cell integrity and viability of four cell types and causes different cell responses. The most dramatic local tissue effects were observed with RPE-1 (retinal pigment epithelial) cells followed by A549 (adenocarcinomic human alveolar epithelial) cells and MDCK (Madin-Darby Canine Kidney epithelial) cells. Products of the enzymatic reaction, lysophospholipids and unsaturated free fatty acids, act as lipid mediators that can induce membrane damaging or can stimulate cell proliferation. Our preliminary results on the cytotoxic effect of vipoxin sPLA2 on A549 cells are promising in searching of its eventual anticancer potential. PMID:26019578

  10. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  11. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease.

    Science.gov (United States)

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-05-01

    Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Three patients, 53-60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction.

  12. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  13. Vitreous Humor Changes Expression of Iron-Handling Proteins in Lens Epithelial Cells

    Science.gov (United States)

    Goralska, Malgorzata; Fleisher, Lloyd N.; McGahan, M. Christine

    2017-01-01

    Purpose In humans, vitrectomy is associated with development of nuclear cataracts. Iron catalyzes free radical formation causing oxidative damage, which is implicated in cataract formation. This study was designed to determine if vitreous humor, which can initiate differentiation of lens epithelial cells, would have an effect on iron-handling proteins. Methods Cultured canine lens epithelial cells were treated with collected canine vitreous humor. Lysates of treated and control cells were separated by SDS-PAGE. Ferritin H- and L-chains, transferrin receptor 1, and aquaporin 0 were immunodetected and quantitated with specific antibodies. Morphologic changes in treated cells were assessed. Results Treatment of lens epithelial cells with a 33% (vol/vol) solution of vitreous humor changed the morphology of lens cells and induced expression of aquaporin 0, a marker of fiber cell differentiation that was undetectable in control cells. Treatment did not modify the size of iron-handling proteins but significantly increased content of ferritin from 2.9- to 8.8-fold over control and decreased levels of transferrin receptor by 37% to 59%. Conclusions Vitreous humor may significantly limit iron uptake by transferrin/transferrin receptor pathway, and by increasing ferritin levels could profoundly increase the iron-storage capacity of ferritin in lens cells. Vitreous humor may play a significant protective role against iron-catalyzed oxidative damage of lens epithelial cells and therefore in the formation of cataracts. PMID:28245299

  14. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  15. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  16. Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer.

    Science.gov (United States)

    Yamamoto, Mizuki; Sakane, Kota; Tominaga, Kana; Gotoh, Noriko; Niwa, Takayoshi; Kikuchi, Yasuko; Tada, Keiichiro; Goshima, Naoki; Semba, Kentaro; Inoue, Jun-Ichiro

    2017-06-01

    Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition MET, are crucial in several stages of cancer metastasis. Epithelial-mesenchymal transition allows cancer cells to move to proximal blood vessels for intravasation. However, because EMT and MET processes are dynamic, mesenchymal cancer cells are likely to undergo MET transiently and subsequently re-undergo EMT to restart the metastatic process. Therefore, spatiotemporally coordinated mutual regulation between EMT and MET could occur during metastasis. To elucidate such regulation, we chose HCC38, a human triple-negative breast cancer cell line, because HCC38 is composed of epithelial and mesenchymal populations at a fixed ratio even though mesenchymal cells proliferate significantly more slowly than epithelial cells. We purified epithelial and mesenchymal cells from Venus-labeled and unlabeled HCC38 cells and mixed them at various ratios to follow EMT and MET. Using this system, we found that the efficiency of EMT is approximately an order of magnitude higher than that of MET and that the two populations significantly enhance the transition of cells from the other population to their own. In addition, knockdown of Zinc finger E-box-binding homeobox 1 (ZEB1) or Zinc finger protein SNAI2 (SLUG) significantly suppressed EMT but promoted partial MET, indicating that ZEB1 and SLUG are crucial to EMT and MET. We also show that primary breast cancer cells underwent EMT that correlated with changes in expression profiles of genes determining EMT status and breast cancer subtype. These changes were very similar to those observed in EMT in HCC38 cells. Consequently, we propose HCC38 as a suitable model to analyze EMT-MET dynamics that could affect the development of triple-negative breast cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Yoon, Kyong-Ah; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-01-01

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  18. Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells.

    Science.gov (United States)

    Schwab, Renate H M; Amin, Nancy; Flanagan, Dustin J; Johanson, Timothy M; Phesse, Toby J; Vincan, Elizabeth

    2018-03-01

    Metastasis underlies most colorectal cancer mortality. Cancer cells spread through the body as single cells or small clusters of cells that have an invasive, mesenchymal, nonproliferative phenotype. At the secondary site, they revert to a proliferative "tumor constructing" epithelial phenotype to rebuild a tumor. We previously developed a unique in vitro three-dimensional model, called LIM1863-Mph, which faithfully recapitulates these reversible transitions that underpin colorectal cancer metastasis. Wnt signaling plays a key role in these transitions and is initiated by the coupling of extracellular Wnt to Frizzled (FZD). Using the LIM1863-Mph model system we demonstrated that the Wnt receptor FZD7 is necessary for mesenchymal to epithelial transition (MET). Here we investigate the role of Wnt in MET. Wnt secretion is dependent on palmitoylation by Porcupine (PORC). A PORC inhibitor (IWP2) that prevents Wnt secretion, blocked the epithelial transition of mesenchymal LIM1863-Mph cells. Wnt gene array analysis identified several Wnts that are upregulated in epithelial compared with mesenchymal LIM1863-Mph cells, suggesting these ligands in MET. Wnt2B was the most abundant differentially expressed Wnt gene. Indeed, recombinant Wnt2B could overcome the IWP2-mediated block in epithelial transition of mesenchymal LIM1863-Mph cells. Wnt2B co-operates with Frizzled7 to mediate MET in colorectal cancer. Developmental Dynamics 247:521-530, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  20. File list: NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  5. Session-RPE for quantifying load of different youth taekwondo training sessions.

    Science.gov (United States)

    Lupo, Corrado; Capranica, Laura; Cortis, Cristina; Guidotti, Flavia; Bianco, Antonino; Tessitore, Antonio

    2017-03-01

    The session rating of perceived exertion (session-RPE) proved to be a valuable method to quantify the internal training load (ITL) in taekwondo. However, no study validated this method in youth taekwondo athletes performing different training sessions. Thus this study aimed at evaluating the reliability of the session-RPE to monitor the ITL of prepubescent taekwondo athletes during pre-competitive (PC) and competitive (C) training sessions. Five female (age: 12.0±0.7 y; height: 1.54±0.08 m; body mass: 48.8±7.3 kg) and four male (age: 12.0±0.8 yrs; height: 1.55±0.07 m; body mass: 47.3±5.3 kg) taekwondo athletes were monitored during 100 individual sessions (PC: N.=33; C: N.=67). The Edwards' HR method was used as reference measure of ITL; the CR-10 RPE scale was administered at 1- and 30-minutes from the end of each session. No difference for gender emerged. The ITLs of C (Edwards: 228±40 arbitrary units, AU) resulted higher than that of PC (192±26 AU; P=0.04). Although all training typologies and data collections achieved significant correlations between Edwards' and session-RPE methods, a large relationship (r =0.71, Psessions evaluated at 30 minutes of the recovery phases. Findings support coaches of prepubescent taekwondo athletes to successfully use session-RPE to monitor the ITL of different training typologies. However, PC training evaluated at 30 minutes of the recovery phase represents the best condition for a highly reliable ITL perception.

  6. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  7. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548

  8. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  9. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  10. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    Science.gov (United States)

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  12. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  13. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  14. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    International Nuclear Information System (INIS)

    William Petersen, Ole; Lind Nielsen, Helga; Gudjonsson, Thorarinn; Villadsen, René; Rønnov-Jessen, Lone; Bissell, Mina J

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression

  15. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, Ren& #233; ; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  16. S-carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells.

    Science.gov (United States)

    Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2012-01-01

    Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.

  17. Membrane associated ion transport enzymes in normal and transformed fibroblasts and epithelial cells

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    In an effort to evaluate membrane changes associated with neoplastic transformation of fibroblasts and epithelial cells by radiation and chemicals, alterations in membrane-associated (Na + + K + )-ATPase and 5'-nucleotidase activities were investigated. Cell cultures consisted of normal and radiation transformed hamster embryo fibroblasts (HE) and mouse C3H 10T 1/2 fibroblasts, normal and chemically transformed adult rat liver epithelial cells (ARL), as well as hepatocarcinoma cells induced by the liver transformants. Transformed fibroblasts demonstrated a 1-2 fold increase in (Na + + K + )-ATPase activity over the normal, while the transformed liver epithelial cells and carcinoma cells showed a 60% and 40% decrease in activity compared to the normal values, respectively. The 5'-nucleotidase activity was 2 to 3 times higher in the transformed fibroblasts

  18. Wnt-10b promotes differentiation of skin epithelial cells in vitro

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC

  19. Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy.

    Science.gov (United States)

    Son, Eun Suk; Kim, Se-Hee; Ryter, Stefan W; Yeo, Eui-Ju; Kyung, Sun Young; Kim, Yu Jin; Jeong, Sung Hwan; Lee, Chang Soo; Park, Jeong-Woong

    2018-04-01

    Recent studies demonstrate that the autophagy-dependent turnover of mitochondria (mitophagy) mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure, and contributes to emphysema development in vivo during chronic cigarette smoke (CS)-exposure, although the underlying mechanisms remain unclear. Here, we investigated the role of mitophagy in regulating apoptosis in CSE-exposed human lung bronchial epithelial cells. Furthermore, we investigated the potential of the polymethoxylated flavone antioxidant quercetogetin (QUE) to inhibit CSE-induced mitophagy-dependent apoptosis. Our results demonstrate that CSE induces mitophagy in epithelial cells via mitochondrial dysfunction, and causes increased expression levels of the mitophagy-regulator protein PTEN-induced putative kinase-1 (PINK1) and the mitochondrial fission protein dynamin-1-like protein (DRP-1). CSE induced epithelial cell death and increased the expression of the apoptosis-related proteins cleaved caspase-3, -8 and -9. Caspase-3 activity was significantly increased in Beas-2B cells exposed to CSE, and decreased by siRNA-dependent knockdown of DRP-1. Treatment of epithelial cells with QUE inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting phospho (p)-DRP-1 and PINK1 expression. QUE suppressed mitophagy-dependent apoptosis by inhibiting the expression of cleaved caspase-3, -8 and -9 and downregulating caspase activity in human bronchial epithelial cells. These findings suggest that QUE may serve as a potential therapeutic in CS-induced pulmonary diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    Castleman, W.L.; Dungworth, D.L.; Schwartz, L.W.; Tyler, W.S.

    1980-01-01

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  1. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis.

    Science.gov (United States)

    Mulder, Daniel J; Pooni, Aman; Mak, Nanette; Hurlbut, David J; Basta, Sameh; Justinich, Christopher J

    2011-02-01

    Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    Science.gov (United States)

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  3. Session-RPE for quantifying the load of different youth basketball training sessions.

    Science.gov (United States)

    Lupo, C; Tessitore, A; Gasperi, L; Gomez, Mar

    2017-03-01

    The aim of the study was to evaluate youth basketball training, verifying the reliability of the session-RPE method in relation to session duration (session) categories. Six male youth basketball players (age, 16.5±0.5 years; height, 195.5±6.75 cm; body mass, 93.9±10.9 kg; and body mass index, 23.6±2.8 kg.m -2 ) were monitored (HR, type and duration of workouts) during 15 (66 individual) training sessions (80±26 minutes). Edwards' HR method was used as a reference measure of internal training load (ITL); the CR-10 RPE scale was administered 30 minutes after the end of each session. The results obtained showed that all comparisons between different session durations and workout portions revealed effects in term of Edwards' ITLs except for warm-up portions. Moderate to strong relationships between Edwards' and session- RPE methods emerged for all sessions (r = .85, P sessions (r range = .79 - .95, P session durations (session-RPE to monitor the ITL, regardless of session durations and workout portions.

  4. Nerve Invasion by Epithelial Cells in Benign Breast Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Jan Chan

    2009-03-01

    Full Text Available Nerve invasion by glandular epithelial cells in a lesion is usually regarded as invasive carcinoma. However, some benign conditions in the pancreas, prostate, breast and other organs may show involvement of nerve bundles by benign epithelial cells. We report an 18-year-old female with nerve invasion in benign breast disease. The lesion in her right breast revealed fibrocystic changes with ductal hyperplasia and stromal sclerosis. Perineural and intraneural involvement by bland-looking small ducts lined by 2 layers of cells including an outer layer of myoepithelial cells were found, suggestive of benign nerve invasion. There was no evidence of malignant cells in any of the sections. The patient remains well after 31 months of follow-up. About 44 cases of nerve invasion in benign breast diseases have been reported in the literature. It is necessary to carefully evaluate nerve involvement in breast lesions to avoid over-diagnosis and inappropriate operation.

  5. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE......, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET)....

  6. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  7. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  8. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells

    Czech Academy of Sciences Publication Activity Database

    Popelka, Štěpán; Studenovská, Hana; Abelová, Lucie; Ardan, Taras; Studený, P.; Straňák, Z.; Klíma, Jiří; Dvořánková, B.; Kotek, Jiří; Hodan, Jiří; Rypáček, František

    2015-01-01

    Roč. 10, č. 4 (2015), 045022_1-045022_15 ISSN 1748-6041 R&D Projects: GA ČR GAP108/12/1629; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:61389013 ; RVO:67985904 Keywords : RPE transplantation * RPE carrier * porcine RPE Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UZFG-Y) Impact factor: 3.361, year: 2015

  9. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration.

    Science.gov (United States)

    Lee, C A; Silva, M; Siber, A M; Kelly, A J; Galyov, E; McCormick, B A

    2000-10-24

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal epithelial cells, bacterial internalization is not required for the signaling mechanisms that induce PMN movement. Here, we sought to determine which S. typhimurium factors and intestinal epithelial signaling pathways elicit the production of PMN chemoattractants by enterocytes. Our results suggest that S. typhimurium activates a protein kinase C-dependent signal transduction pathway that orchestrates transepithelial PMN movement. We show that the type III effector protein, SipA, is not only necessary but is sufficient to induce this proinflammatory response in epithelial cells. Our results force us to reconsider the long-held view that Salmonella effector proteins must be directly delivered into host cells from bacterial cells.

  10. Expression of cathepsins B, L, S, and D by gastric epithelial cells implicates them as antigen presenting cells in local immune responses.

    Science.gov (United States)

    Barrera, C; Ye, G; Espejo, R; Gunasena, S; Almanza, R; Leary, J; Crowe, S; Ernst, P; Reyes, V E

    2001-10-01

    Helicobacter pylori infection is linked to chronic gastritis, peptic ulcer and gastric carcinoma. During H. pylori infection, class II MHC expression by the gastric epithelium increases, as does the number of local CD4(+) T cells, which appear to be important in the associated pathogenesis. These observations suggested that the epithelium might present antigens to T cells. Thus, we sought to determine whether gastric epithelial cells process antigens to establish their function as local antigen presenting cells (APC). We examined a panel of gastric epithelial cell lines for expression of the antigen processing cathepsins B (CB), L (CL), S (CS), and D (CD). The mRNA for these enzymes were detected by RT-PCR and the enzymes in the gastric epithelial cells were identified by various independent methods. We corroborated the expression of CB and CD on gastric epithelial cells from human biopsy samples. The functions of these proteases were confirmed by assessing their ability to digest ovalbumin, a conventional dietary antigen, and proteins from H. pylori. In summary, multiple lines of evidence suggest gastric epithelial cells process antigens for presentation to CD4(+) T cells. To our knowledge, these are the first studies to document the antigen processing capacity of human gastric epithelial cells.

  11. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  12. Aquaporin 2 promotes cell migration and epithelial morphogenesis.

    Science.gov (United States)

    Chen, Ying; Rice, William; Gu, Zhizhan; Li, Jian; Huang, Jianmin; Brenner, Michael B; Van Hoek, Alfred; Xiong, Jianping; Gundersen, Gregg G; Norman, Jim C; Hsu, Victor W; Fenton, Robert A; Brown, Dennis; Lu, Hua A Jenny

    2012-09-01

    The aquaporin 2 (AQP2) water channel, expressed in kidney collecting ducts, contributes critically to water homeostasis in mammals. Animals lacking or having significantly reduced levels of AQP2, however, have not only urinary concentrating abnormalities but also renal tubular defects that lead to neonatal mortality from renal failure. Here, we show that AQP2 is not only a water channel but also an integrin-binding membrane protein that promotes cell migration and epithelial morphogenesis. AQP2 expression modulates the trafficking and internalization of integrin β1, facilitating its turnover at focal adhesions. In vitro, disturbing the interaction between AQP2 and integrin β1 by mutating the RGD motif led to reduced endocytosis, retention of integrin β1 at the cell surface, and defective cell migration and tubulogenesis. Similarly, in vivo, AQP2-null mice exhibited significant retention of integrin β1 at the basolateral membrane and had tubular abnormalities. In summary, these data suggest that the water channel AQP2 interacts with integrins to promote renal epithelial cell migration, contributing to the structural and functional integrity of the mammalian kidney.

  13. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  14. Performance measurement of a new concept reciprocating piston expander (RPE using a newly developed small-scale dynamometer unit

    Directory of Open Access Journals (Sweden)

    Mohamad MNA

    2017-01-01

    Full Text Available This paper presents the progress of a small-scale dynamometer prototype development for performance measurement of a reciprocating piston expander (RPE. Since the available dynamometer systems in the market are limited to specific applications that require for the customization, their price normally very expensive. Since the current study on the RPE required a dynamometer unit, therefore, a new and cheaper dynamometer prototype that was suitable for RPE application has been developed. Using air as RPE working fluid, a case study has been carried out to measure its performance at different inlet fluid conditions, i.e., within 20°C–140°C and 3–5 bars. The results observed that the performance of RPE was proportionally increased to the increased of inlet fluid pressure and temperature. The maximum brake power produced was 27 Watt when the RPE operated at 140°C, 5 bars and the speed of 820 rpm. It also revealed that the changes in the pressure of inlet fluid can give significant change on the performance of the RPE due to its direct relation to the RPE actual rotating force. Although the RPE and dynamometer seem good being adapted to each other, both of them require some improvements to ensure both systems well operated and reliable.

  15. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung

    Science.gov (United States)

    Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.

    2015-01-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985

  16. Proliferation of epithelial cell rests, formation of apical cysts, and regression of apical cysts after periapical wound healing.

    Science.gov (United States)

    Lin, Louis M; Huang, George T-J; Rosenberg, Paul A

    2007-08-01

    There is continuing controversy regarding the potential for inflammatory apical cysts to heal after nonsurgical endodontic therapy. Molecular cell biology may provide answers to a series of related questions. How are the epithelial cell rests of Malassez stimulated to proliferate? How are the apical cysts formed? How does the lining epithelium of apical cysts regress after endodontic therapy? Epithelial cell rests are induced to divide and proliferate by inflammatory mediators, proinflammatory cytokines, and growth factors released from host cells during periradicular inflammation. Quiescent epithelial cell rests can behave like restricted-potential stem cells if stimulated to proliferate. Formation of apical cysts is most likely caused by the merging of proliferating epithelial strands from all directions to form a three-dimensional ball mass. After endodontic therapy, epithelial cells in epithelial strands of periapical granulomas and the lining epithelium of apical cysts may stop proliferating because of a reduction in inflammatory mediators, proinflammatory cytokines, and growth factors. Epithelial cells will also regress because of activation of apoptosis or programmed cell death through deprivation of survival factors or by receiving death signals during periapical wound healing.

  17. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  18. Identification and Characterization of Mesenchymal-Epithelial Progenitor-Like Cells in Normal and Injured Rat Liver

    Science.gov (United States)

    Liu, Daqing; Yovchev, Mladen I.; Zhang, Jinghang; Alfieri, Alan A.; Tchaikovskaya, Tatyana; Laconi, Ezio; Dabeva, Mariana D.

    2016-01-01

    In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1+ cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1+ cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1+ cells. Thy1+ cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity. PMID:25447047

  19. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Khazaei

    2016-09-01

    Full Text Available Objective(s: Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods:In this in vitro study, endometrial biopsies from endometriosis patients (n=9 were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml. Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0, 10, 25, 50 and 100 micromole/liter (µM concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO–Ethidium Bromide (EB double staining and Terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P

  20. α-Crystallin localizes to the leading edges of migrating lens epithelial cells

    International Nuclear Information System (INIS)

    Maddala, Rupalatha; Vasantha Rao, P.

    2005-01-01

    α-crystallin (αA and αB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of αA and αB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of αB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While αB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of αB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. αA-crystallin, which has 60% sequence identity to αB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of αB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of αB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated αB-crystallin in SB202190-treated migrating lens epithelial cells. αB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, αB-crystallin exhibited a clear co-localization with the actin meshwork, β-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE

  1. Immune Privilege and Eye-Derived T-Regulatory Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Keino

    2018-01-01

    Full Text Available Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs, which are generated by the anterior chamber-associated immune deviation (ACAID, and ocular resident cells including corneal endothelial (CE cells, ocular pigment epithelial (PE cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β, cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α, and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  2. Immune Privilege and Eye-Derived T-Regulatory Cells.

    Science.gov (United States)

    Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao

    2018-01-01

    Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  3. Protective effects of trehalose on the corneal epithelial cells.

    Science.gov (United States)

    Aragona, Pasquale; Colosi, Pietro; Rania, Laura; Colosi, Francesca; Pisani, Antonina; Puzzolo, Domenico; Micali, Antonio

    2014-01-01

    Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Twelve patients undergoing laser subepithelial keratomileusis (LASEK) were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. In both trehalose-untreated eyes (TUE) and trehalose-treated eyes (TTE), the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  4. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  5. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  6. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  7. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  8. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Directory of Open Access Journals (Sweden)

    Fiona L Cousins

    Full Text Available BACKGROUND: In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. METHODOLOGY: A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4 withdrawal; mice received a single injection of bromodeoxyuridine (BrdU 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. PRINCIPAL FINDINGS: Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. CONCLUSIONS/SIGNIFICANCE: These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and

  9. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Science.gov (United States)

    Cousins, Fiona L; Murray, Alison; Esnal, Arantza; Gibson, Douglas A; Critchley, Hilary O D; Saunders, Philippa T K

    2014-01-01

    In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These

  10. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Smart, Simon; Franzyk, Henrik

    2015-01-01

    intracellularly in Calu-3 epithelial cells and in THP-1 cells, whereas A549 cells did not show significant uptake of nanoparticles. Overall, encapsulation of plectasin into PLGA-based nanoparticles appears to be a viable strategy to improve the efficacy of plectasin against infections in epithelial tissues....... epithelial cells might thus be a promising approach to combat such infections. In this work, plectasin, which is a cationic AMP of the defensin class, was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles using the double emulsion solvent evaporation method. The nanoparticles displayed...... high plectasin encapsulation efficiency (71-90%) and mediated release of the peptide over 24h. The antimicrobial efficacy of the peptide-loaded nanoparticles was investigated using bronchiolar epithelial Calu-3 cell monolayers infected with S. aureus. The plectasin-loaded nanoparticles displayed...

  11. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.

    Science.gov (United States)

    Fujita, Tsuyoshi; Yoshimoto, Tetsuya; Kajiya, Mikihito; Ouhara, Kazuhisa; Matsuda, Shinji; Takemura, Tasuku; Akutagawa, Keiichi; Takeda, Katsuhiro; Mizuno, Noriyoshi; Kurihara, Hidemi

    2018-05-01

    Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro , in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.

  12. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  13. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells.

    Science.gov (United States)

    Lee, Yeo Song; Lee, Do Yeon; Yu, Da Yeon; Kim, Shin; Lee, Yong Chan

    2014-12-01

    Chronic infection with Helicobacter pylori (H. pylori) is causally linked with gastric carcinogenesis. Virulent H. pylori strains deliver bacterial CagA into gastric epithelial cells. Induction of high motility and an elongated phenotype is considered to be CagA-dependent process. Casein kinase 2 plays a critical role in carcinogenesis through signaling pathways related to the epithelial mesenchymal transition. This study was aimed to investigate the effect of H. pylori infection on the casein kinase 2-mediated migration and invasion in gastric epithelial cells. AGS or MKN28 cells as human gastric epithelial cells and H. pylori strains Hp60190 (ATCC 49503, CagA(+)) and Hp8822 (CagA(-)) were used. Cells were infected with H. pylori at multiplicity of infection of 100 : 1 for various times. We measured in vitro kinase assay to examine casein kinase 2 activity and performed immunofluorescent staining to observe E-cadherin complex. We also examined β-catenin transactivation through promoter assay and MMP7 expression by real-time PCR and ELISA. H. pylori upregulates casein kinase 2 activity and inhibition of casein kinase 2 in H. pylori-infected cells profoundly suppressed cell invasiveness and motility. We confirmed that casein kinase 2 mediates membranous α-catenin depletion through dissociation of the α-/β-catenin complex in H. pylori-infected cells. We also found that H. pylori induces β-catenin nuclear translocation and increases MMP7 expressions mediated through casein kinase 2. We show for the first time that CagA(+) H. pylori upregulates cellular invasiveness and motility through casein kinase 2. The demonstration of a mechanistic interplay between H. pylori and casein kinase 2 provides important insights into the role of CagA(+) H. pylori in the gastric cancer invasion and metastasis. © 2014 John Wiley & Sons Ltd.

  14. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  15. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  16. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  17. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  18. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    International Nuclear Information System (INIS)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  19. Renal epithelial cell growth can occur in absence of Na+-H+ exchanger activity

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    An electroneutral Na+-H+ exchange system has been described in a variety of tissues and cell types, including those of renal origin, and has been proposed to play a role in the activation of growth. We have recently characterized the presence of this ubiquitous transporter in the apical domain of confluent epithelial LLC-PK1 cells. Because most apical membrane proteins appear late in cell growth, accompanying epithelial cell polarization, we determined whether the Na+-H+ exchanger is required for the growth of LLC-PK1 cells. The studies reported here show that there is no obligatory requirement for increased H+ efflux or Na+ entry via the Na+-H+ exchanger for the initiation of cell growth in this epithelial cell line. We used 22 Na+ influx, acid extrusion, and intracellular pH determinations to show that onset of cell growth, as measured by DNA content, precedes the activity of the Na+-H+ exchanger in exponentially growing cells, whereas confluent monolayers express Na+-H+ exchanger activity. When confluent cells are replated at low density, Na+-H+ exchanger activity disappears within 8 h in contrast to high-density replated cells. The fact that Na+-H+ exchanger activity is only present in confluent monolayers suggests that the development of tight junctions and polar differentiation play a role in the expression of the Na+-H+ exchanger and that this exchanger is more important to the polar epithelial cell for transepithelial transport than for the maintenance of intracellular pH

  20. The Long and Complicated Relationship between Epstein-Barr Virus and Epithelial Cells.

    Science.gov (United States)

    Hutt-Fletcher, Lindsey M

    2017-01-01

    The roles of epithelial cells in infection and persistence of the Epstein-Barr virus (EBV) have long been difficult to resolve. However, recent developments have reinforced the conclusion that these cells are a major site of virus replication and raised the possibility that, like papillomaviruses, EBV has evolved to take advantage of epithelial differentiation to ensure survival, persistence, and spread. Copyright © 2016 American Society for Microbiology.

  1. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  2. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ying [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Lu, Qingxian [Tumor Immunobiology Group, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Li, Qiutang, E-mail: q.li@louisville.edu [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States)

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  3. 14-3-3σ controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    International Nuclear Information System (INIS)

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-01-01

    14-3-3σ (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3σ mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3σ activity in corneal epithelial cells by overexpressing dominative negative 14-3-3σ led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3σ mutant-expressing corneal epithelial cells. We conclude that 14-3-3σ is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  4. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    Science.gov (United States)

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID

  5. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  6. Role of Bone Morphogenetic Protein 7 (BMP7 in the Modulation of Corneal Stromal and Epithelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-05-01

    Full Text Available In the cornea, healing of the wounded avascular surface is an intricate process comprising the involvement of epithelial, stromal and neuronal cell interactions. These interactions result to the release of various growth factors that play prominent roles during corneal wound healing response. Bone morphogenetic proteins (BMPs are unique multi-functional potent growth factors of the transforming growth factor-beta (TGF-β superfamily. Treatment of corneal epithelial cells with substance P and nerve growth factor resulted to an increase in the expression of BMP7 mRNA. Since BMP7 is known to modulate the process of corneal wound healing, in this present study, we investigated the influence of exogenous rhBMP7 on human corneal epithelial cell and stromal cell (SFs function. To obtain a high-fidelity expression profiling of activated biomarkers and pathways, transcriptome-wide gene-level expression profiling of epithelial cells in the presence of BMP7 was performed. Gene ontology analysis shows BMP7 stimulation activated TGF-β signaling and cell cycle pathways, whereas biological processes related to cell cycle, microtubule and intermediate filament cytoskeleton organization were significantly impacted in corneal epithelial cells. Scratch wound healing assay showed increased motility and migration of BMP7 treated epithelial cells. BMP7 stimulation studies show activation of MAPK cascade proteins in epithelial cells and SFs. Similarly, a difference in the expression of claudin, Zink finger E-box-binding homeobox 1 was observed along with phosphorylation levels of cofilin in epithelial cells. Stimulation of SFs with BMP7 activated them with increased expression of α-smooth muscle actin. In addition, an elevated phosphorylation of epidermal growth factor receptor following BMP7 stimulation was also observed both in corneal epithelial cells and SFs. Based on our transcriptome analysis data on epithelial cells and the results obtained in SFs, we

  7. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ya C Wu

    Full Text Available Hydrogen sulfide (H(2S is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC and a panel of colon cancer cell lines (HT-29, SW1116, HCT116 were exposed to H(2S at concentrations similar to those found in the human colon. H(2S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2S was accompanied by G(1-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip. Moreover, exposure to H(2S led to features characteristic of autophagy, including increased formation of LC3B(+ autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2S. Further mechanistic investigation revealed that H(2S stimulated the phosphorylation of AMP-activated protein kinase (AMPK and inhibited the phosphorylation of mammalian target of rapamycin (mTOR and S6 kinase. Inhibition of AMPK significantly reversed H(2S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  8. Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils.

    Science.gov (United States)

    Dent, Gordon; Loweth, Sam C; Hasan, Anwar Matar; Leslie, Fiona M

    2014-10-01

    The presence of eosinophils in the lumen and mucosa of the intestine is characteristic of both ulcerative colitis (UC) and Crohn's disease (CD). There is evidence of eosinophil activation in the intestine during acute inflammatory episodes of these diseases; these episodes are also characterized by an influx of neutrophils, which have the potential to cause extensive tissue damage. We undertook a study to determine whether eosinophils in contact with colonic epithelial cells produce factors that may attract neutrophils in response to immunological stimulation. Neutrophil chemotactic activity (NCA) and concentrations of three neutrophil-attracting CXC chemokines - CXCL1 (Groα), CXCL5 (Ena78) and CXCL8 (IL8) - were measured in supernatants of T84 colonic epithelial cells and blood eosinophils or eosinophil-like myeloid leukaemia cells (AML14.3D10), alone or in combination. Cells were stimulated with serum-opsonized zymosan (OZ) particles. NCA (Peosinophil co-cultures were significantly higher than in the supernatants of either cell type alone. Release of CXCL1 (Peosinophils but not higher than from OZ-stimulated epithelial cells. Eosinophils and colonic epithelial cells exhibit synergy in production of neutrophil chemoattractants in response to immunological stimulation. This may represent a mechanism for exaggerated recruitment of neutrophils to the intestine in response to acute infection in conditions that are characterized by the presence of eosinophils in the bowel. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  10. Stem cell treatment of degenerative eye disease

    Directory of Open Access Journals (Sweden)

    Ben Mead

    2015-05-01

    Full Text Available Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs has so far been reliant on mesenchymal stem cells (MSC. Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs, MSC derived from bone marrow (BMSC, adipose tissues (ADSC and dental pulp (DPSC, together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.

  11. Stem cell treatment of degenerative eye disease.

    Science.gov (United States)

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  12. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  13. Campylobacter jejuni cocultured with epithelial cells reduces surface capsular polysaccharide expression.

    LENUS (Irish Health Repository)

    Corcionivoschi, N

    2012-02-01

    The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide (CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting the existence of a cross talk mechanism that modulates CPS expression during infection.

  14. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    International Nuclear Information System (INIS)

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-01-01

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ERα signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ERα was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ERα-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ERα-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  15. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    International Nuclear Information System (INIS)

    Katano, Takahito; Ootani, Akifumi; Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi; Toda, Shuji; Joh, Takashi

    2013-01-01

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment

  16. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Takahito [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Ootani, Akifumi [Department of Gastroenterology and GI Endoscopy Center, Shin-Kokura Hospital, Federation of National Public Service Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-0816 (Japan); Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Mizoshita, Tsutomu, E-mail: tmizoshi@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.

  17. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  18. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  19. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  20. Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide.

    Directory of Open Access Journals (Sweden)

    Yeo Jin Jeon

    Full Text Available Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A, which results in the deposition of globotriaosylceramide (Gb3 in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3, a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced Fabry disease patients. Therefore, we evaluated the association of Gb3 and lyso-Gb3 accumulation and the epithelial-mesenchymal transition (EMT on tubular epithelial cells of the kidney. In HK2 cells, exogenous treatments of Gb3 and lyso-Gb3 increased the expression of TGF-β, EMT markers (N-cadherin and α-SMA, and phosphorylation of PI3K/AKT, and decreased the expression of E-cadherin. Lyso-Gb3, rather than Gb3, strongly induced EMT in HK2 cells. In the mouse renal mesangial cell line, SV40 MES 13 cells, Gb3 strongly induced phenotype changes. The EMT induced by Gb3 was inhibited by enzyme α-gal A treatment, but EMT induced by lyso-Gb3 was not abrogated by enzyme treatment. However, TGF-β receptor inhibitor (TRI, SB525334 inhibited the activation of TGF-β and EMT markers in HK2 cells with Gb3 and lyso-Gb3 treatments. This study suggested that increased plasma lyso-Gb3 has a crucial role in the development of renal fibrosis through the cell-specific induction of the EMT in Fabry disease, and that TRI treatment, alongside enzyme replacement therapy, could be a potential therapeutic option for patients with Fabry disease.