WorldWideScience

Sample records for epitaxially grown mn-doped

  1. Bromine doping of CdTe and CdMnTe epitaxial layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Scholl, S. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Schierstedt, K. von (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Hommel, D. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1993-03-01

    We report on the n-type doping of CdTe and CdMnTe with bormine as a novel dopant material. /the thin films were grown by molecular beam epitaxy. ZnBr[sub 2] was used as a source material for the n-type doping. Free carrier concentrations at room temperature of up to 2.8x10[sup 18] cm[sup -3] could be readily obtained for both CdTe as well as CdMnTe thin films with Mn concentrations below 10%. This is to our knowledge the highest value ever obtained for the dilute magnetic semiconductor CdMnTe. For ZnBr[sub 2] source temperatures up to 60 C - corresponding to a free carrier concentration of (2-3)x10[sup 18] cm[sup -3] - the free carrier concentration of the epitaxial film increases with ZnBr[sub 2] source temperature. For higher ZnBr[sub 2] source temperatures compensation becomes dominant, which is indicated by a steep decrease of the free carrier concentration with increasing ZnBr[sub 2] source temperature. In addition the carrier mobility decreases drastically for such high dopant fluxes. A model of bromine incorporation is proposed. (orig.)

  2. Mn doping effect on structure and magnetism of epitaxial (FePt)1-xMnx films

    International Nuclear Information System (INIS)

    Huang, J.C.A.; Chang, Y.C.; Yu, C.C.; Yao, Y.D.; Hu, Y.M.; Fu, C.M.

    2003-01-01

    We study the structure and perpendicular magnetism of molecular beam epitaxy grown (FePt) 1-x Mn x films with doping concentration x=0, 1%, 2%, 3%, 4%, and 5%. The (FePt) 1-x Mn x films were made by multilayers growth of [Fe/Pt/Mn]xN at 100 deg. C and annealed at 600 deg. C. X-ray diffraction scans indicate that relatively better L1 0 ordered structure for low Mn doping (x 3%. The perpendicular magnetic anisotropy effect of the (FePt) 1-x Mn x films tends to decrease with the increase of Mn doping for x>1%. However, the x=1% doped films possess slightly better perpendicular magnetic anisotropy effect than the zero doped film. The perpendicular magnetic anisotropy constant are of about 1.3x10 7 and 1.6x10 7 erg/cm 3 for x=0% and x=1%, respectively

  3. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  4. Spectroscopic and magnetic properties of Mn doped GaN epitaxial films grown by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vidyasagar, R.; Lin, Y.-T.; Tu, L.-W.

    2012-01-01

    Graphical abstract: We report here that micro-Raman scattering spectrum for Mn doped GaN thin film has displayed a new peak manifested at 578 cm −1 , by which it is attributed to interior LVM originated by the incorporation of Mn ions in place of Ga sites. Mn doped GaN thin film also showed the typical negative magnetoresistance up to ∼50 K, revealing that the film showed magnetic ordering of spins below 50 K. Display Omitted Highlights: ► GaN and Mn doped GaN single phase wurtzite structures grown by PAMBE. ► The phase purity of the epilayers investigated by HRXRD, HRSEM and EDX. ► The red shift in near band edge emission has been observed using micro-PL. ► A new peak related LVM at 578 cm −1 in micro-Raman scattering measurements confirmed Mn doped into GaN. ► Negative-magnetoresistance investigations have showed that the film has T c −1 , which is attributed to the vacancy-related local vibrational mode of Mn occupying the Ga site. Temperature dependent negative magnetoresistance measurements provide a direct evidence of magnetic ordering below 50 K for the Mn doped GaN thin film.

  5. Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles

    International Nuclear Information System (INIS)

    Limaye, Mukta V.; Singh, Shashi B.; Date, Sadgopal K.; Gholap, R.S.; Kulkarni, Sulabha K.

    2009-01-01

    Zinc oxide in the bulk as well as in the nanocrystalline form is thermodynamically stable in the wurtzite structure. However, zinc oxide in the zinc-blende structure is more useful than that in the wurtzite structure due to its superior electronic properties as well as possibility of efficient doping. Therefore, zinc oxide shell is grown epitaxially on zinc sulphide core nanoparticles having zinc-blende structure. It is shown that doping of manganese could be achieved in zinc oxide nanoshell with zinc-blende structure

  6. Effect of post-growth annealing on secondary phase formation in low-temperature-grown Mn-doped GaAs

    DEFF Research Database (Denmark)

    Kovács, A.; Sadowski, J.; Kasama, Takeshi

    2013-01-01

    The microstructures of annealed GaAs layers containing 0.1%, 0.5% and 2% Mn are studied using aberration-corrected transmission electron microscopy (TEM). The layers were grown by molecular beam epitaxy at 270 °C. After heat treatment at 400, 560 and 630 °C, they are found to contain precipitate...... in annealed GaMnAs layers doped with low Mn concentrations is proposed....

  7. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  8. Defect mediated reversible ferromagnetism in Co and Mn doped zinc oxide epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Mal, Siddhartha; Nori, Sudhakar; Narayan, J. [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Mula, Suhrit [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769008 (India); Prater, J. T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States)

    2012-12-01

    We have introduced defects in ZnO (undoped and doped with Co and Mn) epitaxial thin films using laser irradiation from nanosecond laser pulses and thermal annealing in oxygen ambient. In contrast to the as grown samples, the laser irradiated films show a significant increase in conductivity, enhancement in UV emission, while maintaining the same wurtzite crystal structure. Room-temperature ferromagnetism (RTFM) is observed in laser-irradiated samples, which increased with the number of laser pulses up to a certain value where magnetic moment saturates. The induced ferromagnetism as well as the enhanced electrical conductivity can be reversed with thermal annealing in oxygen ambient. The magnetization in Co and Mn doped films was found to be strong function of growth conditions and defect concentration. X-ray diffraction and optical absorption experiments suggested a 2+ valance state and tetrahedral coordination for both Co and Mn ions. There is a simultaneous increase in n-type electrical conductivity with the number of laser pulses and continue to exhibit semiconducting behavior in both undoped and doped films. The saturation magnetization was found to be 0.08 {mu}{sub B}/Co and 0.05 {mu}{sub B}/Mn, much lower than 3.0 {mu}{sub B}/Co and 5.0 {mu}{sub B}/Mn, indicating the prominent role of intrinsic defects in RTFM with some contribution from Co{sup 2+}-oxygen vacancy complexes. We propose a unified mechanism based upon introduction of intrinsic defects to explain RTFM and n-type conductivity enhancements during pulsed laser and thermal annealing.

  9. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films

    Directory of Open Access Journals (Sweden)

    L. J. Collins-McIntyre

    2014-12-01

    Full Text Available We report the growth of Mn-doped Bi2Se3 thin films by molecular beam epitaxy (MBE, investigated by x-ray diffraction (XRD, atomic force microscopy (AFM, SQUID magnetometry and x-ray magnetic circular dichroism (XMCD. Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS, and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 μB/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μB/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L2,3 edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  10. Alloying, co-doping, and annealing effects on the magnetic and optical properties of MOCVD-grown Ga1-xMn xN

    International Nuclear Information System (INIS)

    Kane, Matthew H.; Strassburg, Martin; Asghar, Ali; Fenwick, William E.; Senawiratne, Jayantha; Song, Qing; Summers, Christopher J.; Zhang, Z. John; Dietz, Nikolaus; Ferguson, Ian T.

    2006-01-01

    Recent theoretical work for Ga 1-x Mn x N predicts ferromagnetism in this materials system with Curie temperatures above room temperature. Ferromagnetic behavior observed in Ga 1-x Mn x N is still controversial, as there are conflicting experimental reports owing to the disparity in crystalline quality and phase purity of Ga 1-x Mn x N produced by different methods. In this work, metal-organic chemical vapor deposition (MOCVD) has been used to grow high-quality epitaxial films of Ga 1-x Mn x N of varying thickness and manganese doping levels using Cp 2 Mn as the Mn source. Crystalline quality and phase purity were determined by high-resolution X-ray diffraction, indicating that no macroscopic second phases are formed. Atomic force microscopy revealed MOCVD-like step flow growth patterns and a mean surface roughness of 0.378 nm in optimally grown films, which is close to that from the as-grown template layer of 0.330 nm. No change in the growth mechanism and morphology with Mn incorporation is observed. A uniform Mn concentration in the epitaxial layers is confirmed by secondary ion mass spectroscopy. SQUID measurements showed an apparent room temperature ferromagnetic hysteresis with saturation magnetizations of over 2 μ B /Mn at x = 0.008, which decreases with increasing Mn incorporation. Upon high-temperature annealing, numerous changes are observed in these properties, including an increase in surface roughness due to surface decomposition and a large decrease in the magnetic signature. A similar decrease in the magnetic signature is observed upon co-doping with the shallow donor silicon during the growth process. These results demonstrate the critical importance of controlling the Fermi level relative to the Mn 2+/3+ acceptor level in Ga 1-x Mn x N in order to achieve strong ferromagnetism

  11. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    International Nuclear Information System (INIS)

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W.; Huang, H. C.; Ho, N. J.

    2014-01-01

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis

  12. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David, E-mail: david.lederman@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Marcus, Matthew A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tarafder, Kartick [Department of Physics, BITS-Pilani Hyderabad Campus, Secunderabad, Andhra Pradesh 500078 (India)

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  13. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  14. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  15. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  16. Rare-earth-ion doped KY(WO4)2 optical waveguides grown by liquid-phase epitaxy

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Apostolopoulos, V.; Utke, U.; Pollnau, Markus

    High-quality KY(WO4)2 thin layers doped with rare-earth-ions were grown using liquid-phase epitaxy. A low-temperature mixture of chlorides was used as the flux and undoped KY(WO4)2 crystals as substrates. The crystalline layers possessed thicknesses up to 10 µm. Passive and active planar waveguiding

  17. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A. Y. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Smirnov, N. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Rare Metals, B. Tolmachevsky, 5, Moscow 119017 (Russian Federation); Yakimov, E. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Science, 6, Academician Ossipyan str., Chernogolovka, Moscow Region 142432 (Russian Federation); Lee, In-Hwan, E-mail: ihlee@jbnu.ac.kr [School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Pearton, S. J. [University of Florida, Gainesville, Florida 32611 (United States)

    2016-01-07

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 10{sup 6 }cm{sup −2}, while in the seed region it was 10{sup 8 }cm{sup −2}. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 10{sup 15 }cm{sup −3} range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  18. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.; Hsu, W.; James, J.; Onyegam, E. U.; Guchhait, S.; Banerjee, S. K.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm

  19. Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M.; Feeser, C. E.; Parashar, N. D.; Wessels, B. W.

    2015-01-01

    We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ∼10 20  cm −3 obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants, disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed

  20. Inhomogeneous Si-doping of gold-seeded InAs nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, Chloe; Coinon, Christophe; Wallart, Xavier; Leturcq, Renaud [Institute of Electronics Microelectronics and Nanotechnology, UMR CNRS 8520, ISEN Department, Avenue Poincare, CS60069, 59652 Villeneuve d' Ascq Cedex (France); Caroff, Philippe [Institute of Electronics Microelectronics and Nanotechnology, UMR CNRS 8520, ISEN Department, Avenue Poincare, CS60069, 59652 Villeneuve d' Ascq Cedex (France); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-06-03

    We have investigated in situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore, the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.

  1. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    Science.gov (United States)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  2. Reduction of buffer layer conduction near plasma-assisted molecular-beam epitaxy grown GaN/AlN interfaces by beryllium doping

    International Nuclear Information System (INIS)

    Storm, D.F.; Katzer, D.S.; Binari, S.C.; Glaser, E.R.; Shanabrook, B.V.; Roussos, J.A.

    2002-01-01

    Beryllium doping of epitaxial GaN layers is used to reduce leakage currents through interfacial or buffer conducting layers grown by plasma-assisted molecular-beam epitaxy on SiC. Capacitance-voltage measurements of Schottky barrier test structures and dc pinch-off characteristics of unintentionally doped GaN high-electron-mobility transistors indicate that these leakage currents are localized near the GaN/AlN interface of our AlGaN/GaN/AlN device structures. Insertion of a 2000 Aa Be:GaN layer at the interface reduces these currents by three orders of magnitude

  3. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions

    International Nuclear Information System (INIS)

    Zhang Meng; Bhattacharya, Pallab; Guo Wei; Banerjee, Animesh

    2010-01-01

    Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 deg. C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1x10 18 cm -3 . The corresponding doping efficiency and hole mobility are ∼4.9% and 3.7 cm 2 /V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (λ peak =529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 Ω.

  4. Efficient n-type doping of CdTe epitaxial layers grown by photo-assisted molecular beam epitaxy with the use of chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, D.; Scholl, S.; Kuhn, T.A.; Ossau, W.; Waag, A.; Landwehr, G. (Univ. Wuerzburg, Physikalisches Inst. (Germany)); Bilger, G. (Univ. Stuttgart, Inst. fuer Physikalische Elektronik (Germany))

    1993-01-30

    Chlorine has been used successfully for the first time for n-type doping of CdTe epitaxial layers (epilayers) grown by photo-assisted molecular beam epitaxy. Similar to n-type doping of ZnSe layers, ZnCl[sub 2] has been used as source material. The free-carrier concentration can be varied over more than three orders of magnitude by changing the ZnCl[sub 2] oven temperature. Peak mobilities are 4700 cm[sup 2] V[sup -1] s[sup -1] for an electron concentration of 2x10[sup 16] cm[sup -3] and 525 cm[sup 2] V[sup -1] s[sup -1] for 2x10[sup 18] cm[sup -3]. The electrical transport data obtained by Van der Pauw configuration and Hall structure measurements are consistent with each other, indicating a good uniformity of the epilayers. In photoluminescence the donor-bound-exciton emission dominates for all chlorine concentrations. This contasts significantly with results obtained for indium doping, commonly used for obtaining n-type CdTe epilayers. The superiority of chlorine over indium doping and the influence of growth parameters on the behaviour of CdTe:Cl layers will be discussed on the basis of transport, luminescence, secondary ion mass spectroscopy and X-ray photoelectron spectroscopy data. (orig.).

  5. Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hickey, M. C.; Holmes, S. N.

    2009-01-01

    The interfacial, electrical, and magnetic properties of the Heusler alloy Co2MnGa grown epitaxially on GaAs(100) are presented with an emphasis on the use of this metal-semiconductor combination for a device that operates on the principles of spin-injection between the two materials. Through...... was monitored in situ by reflection high energy electron diffraction and the bulk composition was measured ex situ with inductively coupled plasma optical emission spectroscopy. The Co2MnGa L21 cubic structure is strained below a thickness of 20 nm on GaAs(100) but relaxed in films thicker than 20 nm...

  6. In situ photoelectron spectroscopy of LaMnO3 and La0.6Sr0.4MnO3 thin films grown by laser molecular beam expitaxy

    International Nuclear Information System (INIS)

    Oshima, M.; Kobayashi, D.; Horiba, K.; Ohguchi, H.; Kumigashira, H.; Ono, K.; Nakagawa, N.; Lippmaa, M.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    We have constructed a high-resolution photoelectron spectroscopy system combined with a laser molecular beam epitaxy (laser-MBE) chamber and have characterized composition-controlled La 1-x Sr x MnO 3 (LSMO) thin films. The importance of atomically flat surfaces by in situ photoelectron spectroscopy for revealing the intrinsic electronic structures has been demonstrated by comparing O1s, O2s and valence band spectra from the laser-MBE-grown LaMnO 3 and LSMO films with those from the scraped samples. Even for the laser-MBE-grown LSMO films, core levels and band structure exhibit strong dependence on surface morphology. For atomically flat LSMO films, we have also elucidated the hole-doping features into Mn3d e g band by substituting La with Sr by resonant photoelectron spectra

  7. Far-infrared phonon spectroscopy of Pb1-xMn xTe layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Romcevic, N.; Nadolny, A.J.; Romcevic, M.; Story, T.; Taliashvili, B.; Milutinovic, A.; Trajic, J.; Lusakowska, E.; Vasiljevic-Radovic, D.; Domukhovski, V.; Osinniy, V.; Hadzic, B.; Dziawa, P.

    2007-01-01

    In this paper we used far-infrared spectroscopy, reflection high energy electron diffraction (RHEED), X-ray diffraction and atomic force microscopy (AFM) to investigate structural and optical properties of Pb 1-x Mn x Te layers grown by molecular beam epitaxy (MBE). A numerical model for calculating the reflectivity coefficient for complex systems which include films, buffer layer and substrate has been applied. The infrared reflectivity spectra consist of Pb 1-x Mn x Te phonons, which exhibit intermediate one-two mode behavior, and MnTe phonons. A good agreement between calculated and experimental spectra is achieved. We registered the local distribution of Mn impurities depending on substrate type. For films growth on BaF 2 substrate we registered the orthorhombic local structure of MnTe clusters, while in the case of KCl substrate this structure is cubic. The Pb 1-x Mn x Te long wavelength optical phonons were described by the modified Genzel's model

  8. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Directory of Open Access Journals (Sweden)

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  9. An epitaxial transparent conducting perovskite oxide: double-doped SrTiO3

    NARCIS (Netherlands)

    Ravichandran, Jayakanth; Siemons, W.; Heijmerikx, Herman; Huijben, Mark; Majumdar, Arun; Ramesh, Ramamoorthy

    2010-01-01

    Epitaxial thin films of strontium titanate doped with different concentrations of lanthanum and oxygen vacancies were grown on LSAT substrates by pulsed laser deposition technique. Films grown with 5−15% La doping and a critical growth pressure of 1−10 mTorr showed high transparency (>70−95%) in the

  10. Mechanical responses of Zn{sub 1-x}Mn{sub x}O epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Teng-Ruey [Department of Industrial Engineering and Management, Nan Kai University of Techonology, Nantou 54243, Taiwan (China); Tsai, Chien-Huang, E-mail: chtsai12@gmail.com [Department of Automation Engineering, Nan Kai University of Techonology, Nantou 54243, Taiwan (China)

    2011-10-15

    In this study, we used nanoindentation to investigate the effect of the doping of Mn into ZnO buffer layers on the epitaxial growth of ZnO through plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. We characterized the variation of the mechanical properties of Zn{sub 1-x}Mn{sub x}O alloys as a function of the Mn content in the range (x) from 0 to 0.16, as well as analyzing their microstructures using high-resolution transmission electron microscopy. The presence of the Mn-doped ZnO buffer layer enhanced the nanomechanical properties of the ZnO epilayers significantly. From their Berkovich indenter responses, plots of the Young's modulus (E) and hardness (H) of these films revealed that the value of E increased relatively steadily upon increasing the Mn composition, whereas the value of H reached its maximum when x was equal to 0.16. This discrepancy suggests that Zn{sub 1-x}Mn{sub x}O epilayers of higher Mn contents had higher shear resistances.

  11. Optical and structural properties of Mn-doped ZnO nanorods grown by aqueous chemical growth for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Strelchuk, V.V. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Nikolenko, A.S., E-mail: nikolenko_mail@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Kolomys, O.F.; Rarata, S.V.; Avramenko, K.A.; Lytvyn, P.M. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Tronc, P. [Centre National de la Recherche Scientifique, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, 75005 Paris (France); Chey, Chan Oeurn; Nur, Omer; Willander, Magnus [Department of Science and Technology, Linköping University, 601 74 Norrköping (Sweden)

    2016-02-29

    The effect of Mn-doping on the structural, morphological, optical and magnetic properties of the ZnO:Mn nanorods (NRs) synthesized by aqueous chemical process is reported. Grown ZnO:Mn NRs are shown to have hexagonal end facets and the diameters increasing with nominal Mn content. Optical absorption measurements show a decrease in optical band gap with increase of Mn concentration. Raman spectroscopy revealed significant modification of the lattice vibrational properties of the ZnO matrix upon Mn doping. The additional Mn-related vibrational mode, intensity of which increases with amount of Mn can be regarded as an evidence of Mn incorporation into the host lattice of the ZnO. At high Mn concentrations, coexistence of hexagonal Zn{sub 1−x}Mn{sub x}O phase along with the secondary phases of ZnMn{sub 2}O{sub 4} cubic spinel is revealed. Magnetic properties of ZnO:Mn NRs are studied by combinatorial atomic force microscopy and magnetic force microscopy imaging, and obtained clear magnetic contrast at room temperature provides a strong evidence of ferromagnetic behavior. - Highlights: • Synthesis of Mn-doped ZnO nanorods by hydrothermal method is demonstrated. • Doping with Mn significantly changes the morphology of ZnO nanorods. • Additional Mn-induced Raman modes evidence incorporation of Mn into ZnO matrix. • Formation of secondary ZnMn{sub 2}O{sub 4} spinel phase is found at high Mn concentrations. • Contrast MFM images of ZnO:Mn nanorods indicate ferromagnetism at room temperature.

  12. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  13. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  14. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  15. Static and dynamic magnetic properties of B2 ordered Co2MnAl film epitaxially grown on GaAs

    International Nuclear Information System (INIS)

    Liu, Jihong; Qiao, Shuang

    2015-01-01

    Co 2 MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. However, on the premise of high polarization, the optimization of the magnetic damping constant is directly determined the critical current density for spin torque transfer switching and also the stability of spin polarization for spin injection transfer, thus research on damping constant is also very important. In this paper, we have systematically investigated the magnetic damping constant in Co 2 MnAl film epitaxially grown on GaAs(100) substrate by FMR and TR-MOKE measurements, and found that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. While, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may provide important information for Co 2 MnAl/GaAs heterostructure and its potential application in spintronics. - Graphical abstract: Co 2 MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. In this paper, we have successfully grown the B2-ordered Co 2 MnAl film on GaAs (100) substrate and systematically investigated the magnetic damping constant in Co 2 MnAl film epitaxially grown on GaAs(100) substrate by employing both FMR and TR-MOKE measurements. Our results show that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. However, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may be more useful for Co 2 MnAl/GaAs heterostructure and its possible application in spintronics. - Highlights: • B2 ordered Co 2 MnAl was successfully prepared and studied by LMOKE and ROT-MOKE. • Static magnetic measurements show clear cubic anisotropy with K C of 5.0 × 10 4

  16. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-01-01

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10 16 cm −3 to 6 × 10 17 cm −3 . Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10 17 cm −3 is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission

  17. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    Science.gov (United States)

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  18. Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan

    2006-01-01

    A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low

  19. Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

    Science.gov (United States)

    Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan

    2006-12-01

    A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low

  20. Magnetism in V-/Mn-doped ZnO layers fabricated on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; El-Shaer, A.; Schlenker, E.; Bakin, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Reuss, F.; Kling, R.; Schoch, W.; Limmer, W. [University Ulm, Department of Semiconductor Physics, Ulm (Germany); Ahlers, H.; Siegner, U.; Sievers, S.; Albrecht, M. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Eisenmenger, J.; Mueller, T.; Ziemann, P. [University Ulm, Department of Solid State Physics, Ulm (Germany); Huebel, A.; Denninger, G. [Universitaet Stuttgart, 2. Physkalisches Institut, Stuttgart (Germany)

    2007-07-15

    Doping ZnO with transition metals (TM) is an obvious approach to produce diluted magnetic semiconductors for magnetoelectronic and spintronic applications. We have carried out experimental studies on the fabrication and characterisation of Mn-doped ZnO layers and V-doped ZnO layers and nanorods, the results of which are reviewed in this paper. From SQUID measurements, both epitaxial and implanted ZnMnO layers show paramagnetic behaviour. Epitaxial ZnVO layers show ferromagnetic SQUID signals, but the presence of any secondary phases in the ZnVO layers may not be ruled out. We also show that the used Al{sub 2}O{sub 3} substrates produce a ferromagnetic SQUID signal, that complicates the analysis of magnetisation data and hence the confirmation of ferromagnetism only from SQUID results. (orig.)

  1. Direct observation of doping incorporation pathways in self-catalytic GaMnAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, T., E-mail: tk@cen.dtu.dk; Yazdi, S. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Thuvander, M. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Siusys, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, PL-02-668 Warszawa (Poland); Gontard, L. C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), C/Américo Vespucio 49, 41092 Seville (Spain); Kovács, A.; Duchamp, M.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Gustafsson, A. [Solid State Physics and the Nanometer Structure Consortium, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Sadowski, J. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, PL-02-668 Warszawa (Poland); MAX-IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden)

    2015-08-07

    Doping mechanisms of Mn in GaAs nanowires (NWs) that have been grown self-catalytically at 600 °C by molecular beam epitaxy (MBE) are investigated using advanced electron microscopy techniques and atom probe tomography. Mn is found to be incorporated primarily in the form of non-magnetic tetragonal Ga{sub 0.82}Mn{sub 0.18} nanocrystals in Ga catalyst droplets at the ends of the NWs, while trace amounts of Mn (22 ± 4 at. ppm) are also distributed randomly in the NW bodies without forming clusters or precipitates. The nanocrystals are likely to form after switching off the reaction in the MBE chamber, since they are partially embedded in neck regions of the NWs. The Ga{sub 0.82}Mn{sub 0.18} nanocrystals and the low Mn concentration in the NW bodies are insufficient to induce a ferromagnetic phase transition, suggesting that it is difficult to have high Mn contents in GaAs even in 1-D NW growth via the vapor-liquid-solid process.

  2. Photoacoustic study of the effect of doping concentration on the transport properties of GaAs epitaxial layers

    NARCIS (Netherlands)

    George, S.D.; Dilna, S.; Prasanth, R.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2003-01-01

    We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho's theory of the PA effect. The

  3. Characterization of GaN/AlGaN epitaxial layers grown by ...

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical ... reported by introducing annealing of the GaN layer in nitrogen [5], Fe doping [6], .... [2] Y F Wu, S M Wood, R P Smith, S Sheppard, S T Allen, P Parikh and J Milligan,.

  4. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  5. SIMS studies of CI- doped Zn Se epilayers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gard, F.S.; Riley, J.D.; Lekey, R.; Usher, B.F.; Prine, K.

    2004-01-01

    Chlorine is one of the most used species to produce n-type zinc selenium epilayers. In this paper, we present secondary ion mass spectrometry profiles of a series of chlorine-doped zinc selenium samples, which were grown in a molecular beam epitaxy chamber. These profiles have been used to examine the limitation of secondary ion mass spectrometry analysis of narrow chlorine-delta layers. In order to covert secondary ion mass spectrometry raw data to quantified data, the depth profile from a chlorine-implanted standard sample has been used to estimate the u seful ion yield o f chlorine and thus the instrument sensitivity for chlorine in a zinc selenium matrix. The u seful ion yield a nd detection limit of chlorine in the zinc selenium host matrix were calculated to be 4.7 X 10 -17 atoms/ cm 3 , respectively

  6. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    Science.gov (United States)

    Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.

    2017-07-01

    We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  7. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Y. J. Ma

    2017-07-01

    Full Text Available We report structural properties as well as electrical and optical behaviors of beryllium (Be-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm−3, and for Be densities below 9.5×1017 cm−3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm−3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  8. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Yuan, Chi-Tsu; Shen, Ji-Lin

    2014-01-01

    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400

  9. Structural, magnetic and electrical transport properties in electron-doped La{sub 0.85}Hf{sub 0.15}MnO{sub 3} epitaxial film

    Energy Technology Data Exchange (ETDEWEB)

    Han, Li-an; Zhu, Hua-ze; Zhang, Tao [Xi' an University of Science and Technology, Department of Applied Physics, Xi' an (China); Ma, Zi-wei [Yuncheng University, Department of Physics and Electronic Engineering, Yuncheng (China); Chen, Chang-le [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-03-15

    Using a pulsed laser deposition method, the electron-doped La{sub 0.85}Hf{sub 0.15}MnO{sub 3} (LHMO) film with the thickness of 90 nm was epitaxially grown on LaAlO{sub 3} (001) single crystal substrate. The structural, magnetic and electrical transport properties of the film have been studied comprehensively. The X-ray diffraction patterns confirm that LHMO film is of single phase, good quality and c axis orientation. The film undergoes a ferromagnetic-like ordering to paramagnetic states at T{sub C} =280 K. Moreover, a spin glass behavior observed in the film may be attributed to the strain effects. Using the percolation theory, we have analyzed the resistivity data ρ (T) of the film and given an excellent fit in the whole temperature range. Particularly, large temperature coefficient of resistance of 11.27% K{sup -} {sup 1} has been discovered near sub-room-temperature, indicating that LHMO film could be useful for bolometric applications. (orig.)

  10. Improvement of electrical property of Si-doped GaN grown on r-plane sapphire by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, K.; Furuzuki, T.; Ohkawa, K.

    2006-01-01

    Electrical property of Si-doped GaN layers grown on r-plane sapphire substrates by atmospheric metalorganic vapor-phase epitaxy was investigated. The electron mobility was drastically improved when GaN was grown by means of optimized combinations of growth temperature and low-temperature GaN buffer thickness. The highest room-temperature mobility of 220cm 2 /Vs was recorded at the carrier density of 1.1x10 18 cm -3 . Temperature dependence of electrical property revealed that the peak mobility of 234cm 2 /Vs was obtained at 249K. From the slope of carrier density as a function of inverse temperature, the activation energy of Si-donors was evaluated to be 11meV

  11. Transport and magnetic properties of Pr1-x Ca x MnO3 epitaxial films grown on LaAlO3 substrates

    International Nuclear Information System (INIS)

    Maniwa, A.; Okano, K.; Ohkubo, I.; Kumigashira, H.; Oshima, M.; Lippmaa, M.; Kawasaki, M.; Koinuma, H.

    2007-01-01

    We have measured physical properties of Pr 1- x Ca x MnO 3 (PCMO) epitaxial thin films with different hole concentrations (x=0.2, 0.3, 0.4, and 0.5) grown on LaAlO 3 (1 0 0) substrates by laser molecular beam epitaxy technique. The temperature dependence of the resistivity shows insulating behavior in all temperature regions and the resistivity itself monotonously decreases as x increases. This insulating nature of PCMO films is similar to that of bulk PCMO crystals. However, we did not find any indication of the resistivity anomaly associated with the onset of charge ordering irrespective of x. These results suggest that the compressive strain strongly suppresses charge-ordered states in PCMO

  12. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Del Río-De Santiago, A.; Méndez-García, V.H. [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico); Martínez-Velis, I.; Casallas-Moreno, Y.L. [Physics Department, CINVESTAV-IPN, Apdo. Postal 14470 D. F. México, México (Mexico); López-Luna, E. [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico); Yu Gorbatchev, A. [IICO-UASLP, Av. Karakorum 1470, Lomas 4a. Sección, San Luis Potosí, S.L.P. 78210, México (Mexico); López-López, M. [Physics Department, CINVESTAV-IPN, Apdo. Postal 14470 D. F. México, México (Mexico); Cruz-Hernández, E., E-mail: esteban.cruz@uaslp.mx [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico)

    2015-04-01

    Highlights: • The formation of different kind of nanostructures in GaMnAs layers depending on Mn concentration at relative HT-MBE is reported. In this Mn% range, it is found the formation of nanogrooves, nanoleaves, and nanowires. • It is shown the progressive photoluminescence transitions from purely GaAsMn zinc blende (for Mn% = 0.01) to a mixture of zinc blende and wurtzite GaAsMn (for Mn% = 0.2). • A critical thickness for the Mn catalyst effect was determined by RHEED. - Abstract: In the present work, we report on molecular beam epitaxy growth of Mn-doped GaAs films at the relatively high temperature (HT) of 530 °C. We found that by increasing the Mn atomic percent, Mn%, from 0.01 to 0.2, the surface morphology of the samples is strongly influenced and changes from planar to corrugated for Mn% values from 0.01 to 0.05, corresponding to nanostructures on the surface with dimensions of 200–300 nm and with the shape of leave, to nanowire-like structures for Mn% values above 0.05. From reflection high-energy electron diffraction patterns, we observed the growth mode transition from two- to three-dimensional occurring at a Mn% exceeding 0.05. The optical and electrical properties were obtained from photoluminescence (PL) and Hall effect measurements, respectively. For the higher Mn concentration, besides the Mn related transitions at approximately 1.41 eV, PL spectra sharp peaks are present between 1.43 and 1.49 eV, which we related to the coexistence of zinc blende and wurtzite phases in the nanowire-like structures of this sample. At Mn% of 0.04, an increase of the carrier mobility up to a value of 1.1 × 10{sup 3} cm{sup 2}/Vs at 77 K was found, then decreases as Mn% is further increased due to the strengthening of the ionized impurity scattering.

  13. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  14. Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers

    International Nuclear Information System (INIS)

    Syvorotka, I.I.; Sugak, D.; Wierzbicka, A.; Wittlin, A.; Przybylińska, H.; Barzowska, J.; Barcz, A.; Berkowski, M.; Domagała, J.; Mahlik, S.; Grinberg, M.; Ma, Chong-Geng

    2015-01-01

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce 3+ related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce 3+ multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce 3+ by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG

  15. Influence of Si-doping on heteroepitaxially grown a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Bastek, Barbara; Noltemeyer, Martin; Hempel, Thomas; Rohrbeck, Antje; Witte, Hartmut; Veit, Peter; Blaesing, Juergen; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-Universitaet Magdeburg, FNW/IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2011-07-01

    Si-doped a-plane GaN samples with nominal doping levels up to 10{sup 20} cm{sup -3} were grown on r-plane sapphire by metal organic vapor phase epitaxy. Silane flow rates higher than 59 nmol/min lead to three dimensional grown crystallites as revealed by scanning electron microscopy. High resolution X-ray diffraction, photoluminescence and cathodoluminescence suggest considerably reduced defect densities in the large micrometer-sized GaN crystallites. Especially, transmission electron microscopy images verify a very low density of basal plane stacking faults less than 10{sup 4} cm{sup -1} in these crystallites consisting of heteroepitaxially grown a-plane GaN. In our presentation the influence of the Si doping on the basal plane stacking faults will be discussed.

  16. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Administrator

    The B-doped MnTe semiconductor was grown on ZnO using two stages of the ... nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately ..... Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P.

  17. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn4N epitaxial thin film

    International Nuclear Information System (INIS)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira; Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-01-01

    We report the electrical transport properties of ferrimagnetic Mn 4 N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn 4 N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m 3 , which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  18. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    Science.gov (United States)

    Ganz, P. R.; Schaadt, D. M.

    2011-12-01

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  19. Growth and in-plane magnetic anisotropy of inverse spinel Co{sub 2}MnO{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Taeyeong; Kim, Jaeyeong [Pohang University of Science and Technology, Pohang (Korea, Republic of); Song, Jonghyun [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    Epitaxial Co{sub 2}MnO{sub 4} thin films were grown on Nb(0.1wt.)-doped SrTiO{sub 3} single-crystal substrates with (100) and (110) crystal orientations by using pulsed laser deposition. Their crystal structures and magnetic properties were investigated. Both samples exhibited ferrimagnetic transitions with enhanced transition temperatures. Isotropic M-H loops were observed on the in-plane surface of Co{sub 2}MnO{sub 4}(00l) grown on Nb(0.1wt)-doped SrTiO{sub 3}(100). Strong magnetic anisotropy was observed on the in-plane surface for Co{sub 2}MnO{sub 4} (ll0) grown on Nb(0.1wt)-doped SrTiO{sub 3}(110). A magnetic easy axis existed along the elongated tetragonal direction. This was attributed to the strong interplay between the spin and lattice degrees of freedom in the Co{sub 2}MnO{sub 4} thin film.

  20. Characteristic of doping and diffusion of heavily doped n and p type InP and InGaAs epitaxial layers grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pinzone, C.J.; Dupuis, R.D.; Ha, N.T.; Luftman, H.S.; Gerrard, N.D.

    1990-01-01

    Electronic and photonic device applications of the InGaAs/InP materials system often require the growth of epitaxial material doped to or near the solubility limit of the impurity in the host material. These requirements present an extreme challenge for the crystal grower. To produce devices with abrupt dopant profiles, preserve the junction during subsequent growth, and retain a high degree of crystalline perfection, it is necessary to understand the limits of dopant incorporation and the behavior of the impurity in the material. In this study, N-type doping above 10 19 cm -3 has been achieved in InP and InGaAs using Sn as a dopant. P-type Zn doping at these levels has also been achieved in these materials but p type activation above ∼3 x 10 18 cm -3 in InP has not been seen. All materials were grown by the metalorganic chemical vapor deposition (MOCVD) crystal growth technique. Effective diffusion coefficients have been measured for Zn and Sn in both materials from analysis of secondary ion mass spectra (SIMS) of specially grown and annealed samples

  1. Transport and magnetic properties of Ce-doped LaMnO3 thin films

    International Nuclear Information System (INIS)

    Yanagida, Takeshi; Kanki, Teruo; Vilquin, Bertrand; Tanaka, Hidekazu; Kawai, Tomoji

    2005-01-01

    Ce-doped LaMnO 3 epitaxial thin films were fabricated by a pulsed laser deposition method in consideration of thermodynamics. Oxygen- or argon-atmosphere post-annealed films showed a metal-insulator transition and ferromagnetic property, and the transition temperature T c was found to be significantly influenced by the post-annealing conditions at the T c ranging from 200 to 300 K. Moreover, the majority carriers within Ce-doped LaMnO 3 films were identified to be holes from Hall effect measurements

  2. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  3. Accompanying growth and room-temperature ferromagnetism of η-Mn3N2 thin films by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yu, Fengmei; Liu, Yajing; Yang, Mei; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2013-01-01

    η-phase manganese nitride films have been grown on LaAlO 3 (100) and LaSrAlO 4 (001) substrates by using plasma-assisted molecular beam epitaxy. On the basis of reflective high energy electron diffraction, X-ray diffraction, and X-ray photoemission spectroscopy, it is confirmed that two types of η-Mn 3 N 2 with different lattice constants coexist in the films due to the lattice mismatches between the Mn 3 N 2 films and the substrates. Magnetic properties of the films were characterized by a superconducting quantum interference device magnetometer at room temperature. The Mn 3 N 2 films on LaAlO 3 substrate were found to have room-temperature ferromagnetism. Two potential interaction mechanisms are proposed regarding the origin of the observed ferromagnetism. - Highlights: ► The films of two types of η-Mn 3 N 2 have been grown by molecular beam epitaxy. ► Mn 3 N 2 A and Mn 3 N 2 B coexisted in the films on LaAlO 3 and LaSrAlO 4 . ► The room-temperature ferromagnetism of the Mn 3 N 2 films on LaAlO 3 was obtained

  4. Research Update: Strain and composition effects on ferromagnetism of Mn0.05Ge0.95 quantum dots

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2016-04-01

    Full Text Available Mn0.05Ge0.95 quantum dots (QDs samples were grown by molecular beam epitaxy on Si substrates and 15-nm-thick fully strained Si0.8Ge0.2 virtual substrates, respectively. The QDs samples grown on the Si0.8Ge0.2 virtual substrates show a significant ferromagnetism with a Curie temperature of 227 K, while the QDs samples grown on the Si substrates are non-ferromagnetic. Microstructures of the QDs samples were characterized by high resolution transmission electron microscopy and synchrotron radiation X-ray diffraction. Interdependence between microstructure and ferromagnetism of Mn-doped Ge QDs was investigated. For the QDs sample grown on the strained Si0.8Ge0.2 virtual substrate, although the ferromagnetic phase Mn5Ge3 clusters were found to be formed in small dome-shaped dots, the significant ferromagnetism observed in that sample is attributed to ferromagnetic phase Mn-doped large dome-shaped Ge QDs, rather than to the ferromagnetic phase Mn5Ge3 clusters. The fully strained Si0.8Ge0.2 virtual substrates would result in a residual strain into the QDs and an increase in Ge composition in the QDs. Both consequences favor the formations of ferromagnetic phase Mn-doped Ge QDs from points of view of quantum confinement effect as well as Mn doping at substitutional sites.

  5. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xi; Shigematsu, Kei [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Fukumura, Tomoteru [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  6. Trap suppression by isoelectronic In or Sb doping in Si-doped n-GaAs grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Li, A.Z.; Kim, H.K.; Jeong, J.C.; Wong, D.; Schlesinger, T.E.; Milnes, A.G.

    1988-01-01

    The effects of isoelectronic doping of GaAs by In or Sb on the electron deep levels in n-GaAs grown by molecular-beam epitaxy have been investigated in the growth temperature range 500--600 0 C for Si doping levels of 4--7 x 10 16 cm -3 and As-stabilized conditions. The two dominant traps M3 and M6 are drastically reduced in concentration by up to three orders of magnitude for M3 (from 10 15 cm -3 down to 12 cm -3 ) and two and a half orders of magnitude for M6 by introducing 0.2--1 at.% In or Sb and increasing growth temperatures from 500 to 550 0 C. The trap concentrations of M3 and M6 were also significantly reduced by increasing the growth temperature to 600 0 C without In or Sb doping and by decreasing the growth rate from 1.0 to 0.3 μm/h. The incorporation coefficients of In and Sb have been measured and are found to decrease with increasing growth temperature. The growths with high M3 and M6 trap densities are shown to have short minority-carrier diffusion lengths. Indium isoelectronic doping, which is presumed to take place on a gallium sublattice site, and Sb doping, which is expected to take place on an arsenic sublattice site, appear to have rather similar effects in suppressing the concentration of the M3 and M6 electron traps. This suggest that both of these traps are in some way related to (V/sub As/V/sub Ga/) complexes or (V/sub As/XV/sub Ga/) complexes where X is different for M3 and M6 and might be interstitial or impurity related

  7. Effects of swift heavy ion irradiation on La0.5Pr0.2Sr0.3MnO3 epitaxial thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Markna, J.H.; Parmar, R.N.; Rana, D.S.; Ravi Kumar; Misra, P.; Kukreja, L.M.; Kuberkar, D.G.; Malik, S.K.

    2007-01-01

    We report the observation of room temperature insulator to metal transition and magnetoresistance characteristics of Swift Heavy Ions (SHIs) irradiated La 0.5 Pr 0.2 Sr 0.3 MnO 3 (LPSMO) epitaxial thin films grown on single crystal (1 0 0) SrTiO 3 substrates using Pulsed Laser Deposition. The epitaxial nature and crystallanity of the films was confirmed from the structural and magnetoresistance characteristics. Irradiation with the 200 MeV Ag 15+ ions at a fluence of about 5 x 10 11 ions/cm 2 showed suppression in the resistivity by ∼68% and 31% for the films with 50 nm and 100 nm thickness respectively. The possible reasons for this suppression could be either release of strain in the films in the dead layer at the interface of film-substrate or Swift Heavy Ions induced annealing which in turn affects the Mn-O-Mn bond angle thereby favoring the Zener double exchange. Field Coefficient of Resistance (FCR) values for both films, determined from R-H data and magnetoresistance data, showed a marginal enhancement after irradiation

  8. Laboratory Instrumentation Design Research for Scalable Next Generation Epitaxy: Non-Equilibrium Wide Application Epitaxial Patterning by Intelligent Control (NEW-EPIC). Volume 1. 3D Composition/Doping Control via Micromiror Patterned Deep UV Photodesorption: Revolutionary in situ Characterization/Control

    Science.gov (United States)

    2009-02-19

    34 (to be submitted to APL) " Positron Annihilation Spectroscopy of Annealed and As-grown Be-doped GaN" (to be submitted to APL - delayed by the...WIDE APPLICATION EPITAXIAL PATTERNING BY INTELLIGENT CONTROL (NEW-EPIC) 6. AUTHOR(S) DRS DOOLITTILE, FRAZIER, BURNHAM, PRITCHETT, BILLINGSLEY...NEXT GENERATION EPITAXY: NON-EQUILIBRIUM WIDE APPLICATION EPITAXIAL PATTERNING BY INTELLIGENT CONTROL (NEW-EPIC) VOLUME I 3D COMPOSITION/DOPING

  9. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    Science.gov (United States)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  10. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Science.gov (United States)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03Mn-doped GaN samples consisted of different epilayers grown by molecular beam epitaxy on [0001] SiC substrates. The low mismatch between GaN and SiC allows for a good quality and homogeneity of the material. The measurements were performed in fluorescence mode around both the Ga and Mn K edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  11. Spin wave and percolation studies in epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ettayfi, A. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Colis, S.; Lenertz, M.; Dinia, A. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 UDS-CNRS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco)

    2016-07-01

    We investigate the magnetic and transport properties of high quality La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition. X-ray diffraction shows that the deposited films are epitaxial with the expected pseudo-cubic structure. Using the spin wave theory, the temperature dependence of magnetization was satisfactory modeled at low temperature, in which several fundamental magnetic parameters were obtained (spin wave stiffness, exchange constants, Fermi wave-vector, Mn–Mn interatomic distance). The transport properties were studied via the temperature dependence of electrical resistivity [ρ(T)], which shows a peak at Curie temperature due to metal to insulator transition. The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases. Reasonable agreement with the experimental data is reported. - Highlights: • The magnetic and transport properties of epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films are investigated. • The M(T) curve was modeled at low temperature, and several magnetic parameters were obtained using spin wave theory. • The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases.

  12. Epitaxial stabilization of ultra thin films of electron doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Middey, S., E-mail: smiddey@uark.edu; Kareev, M.; Meyers, D.; Liu, X.; Cao, Y.; Tripathi, S.; Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Yazici, D.; Maple, M. B. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Ryan, P. J.; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-05-19

    Ultra-thin films of the electron doped manganite La{sub 0.8}Ce{sub 0.2}MnO{sub 3} were grown in a layer-by-layer growth mode on SrTiO{sub 3} (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce{sup 4+} and Mn{sup 2+} ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-T{sub c} cuprates.

  13. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-01

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  14. Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Tous, Jan; Blazek, Karel; Kucera, Miroslav; Nikl, Martin; Mares, Jiri A.

    2012-01-01

    Very thin scintillator imaging plates have recently become of great interest. In high resolution X-ray radiography, very thin scintillator layers of about 5–20 μm are used to achieve 2D-spatial resolutions below 1 μm. Thin screens can be prepared by mechanical polishing from single crystals or by epitaxial growth on single-crystal substrates using the Liquid Phase Epitaxy technique (LPE). Other types of screens (e.g. deposited powder) do no reach required spatial resolutions. This work compares LPE-grown YAG and LuAG scintillator films doped with different rare earth ions (Cerium, Terbium and Europium). Two different fluxes were used in the LPE growth procedure. These LPE films are compared to YAG:Ce and LuAG:Ce screens made from bulk single crystals. Relative light yield was detected by a highly sensitive CCD camera. Scintillator screens were excited by a micro-focus X-ray source and the generated light was gathered by the CCD camera’s optical system. Scintillator 2D-homogeneity is examined in an X-ray imaging setup also using the CCD camera.

  15. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A [Materials Science Institute, University of Valencia, PO Box 22085, E46071 Valencia (Spain); Martinez-Criado, G; Salome, M; Susini, J [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble (France); Olguin, D [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D F (Mexico); Dhar, S [Experimentalphysik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany)

    2009-07-22

    By means of x-ray absorption near-edge structure (XANES) several Ga{sub 1-x}Mn{sub x}N (0.03Mn-doped GaN samples consisted of different epilayers grown by molecular beam epitaxy on [0001] SiC substrates. The low mismatch between GaN and SiC allows for a good quality and homogeneity of the material. The measurements were performed in fluorescence mode around both the Ga and Mn K edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding t{sub 2}arrow up band localized in the gap region, and the corresponding anti-bonding state t{sub 2}arrow down, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  16. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  17. Order parameters and magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga epitaxial films grown on MgO (001) and SrTiO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Mitani, Seiji; Hono, Kazuhiro [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-07-21

    We study the relationship between long range order parameters and the magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga (MnGa) epitaxial films grown on MgO (001) and SrTiO{sub 3} (STO) (001) single crystalline substrates. MnGa films deposited on MgO (001) show rather large irregular variation in magnetization with increasing substrate temperature in spite of the improved long range order of total atomic sites. The specific site long range order of Mn-I site characterized in the [101] orientation revealed the fluctuation of the occupation fraction of two Mn atomic sites with elevated substrate temperature, which appears more relevant to the observed magnetization change than the long range order of the total atomic sites. In case of MnGa films grown on the lattice-matched STO (001), high long range order of the total atomic sites in spite of the existence of secondary phase represents that the lattice mismatch plays a crucial role in determining the atomic arrangement of Mn and Ga atoms in the off-stoichiometric compositional case of MnGa.

  18. Microstructural characterisation of zinc-blende Ga1-xMnxN grown by MBE as a function of Mn flux

    International Nuclear Information System (INIS)

    Han, Y; Fay, M W; Novikov, S V; Edmonds, K W; Gallagher, B L; Campion, R P; Staddon, C R; Foxon, C T; Brown, P D

    2006-01-01

    Zinc-blende Ga 1-x Mn x N epilayers grown by plasma assisted molecular beam epitaxy as a function of Mn flux have been assessed using a variety of structural characterisation techniques. Increasing Mn flux is associated with the build up of a Mn surfactant layer during the early states of growth and a transition from zinc-blende single phase growth to zincblende/ wurtzite mixed phase growth

  19. Magnetoresistance and Curie temperature of GaAs semiconductor doped with Mn ions

    International Nuclear Information System (INIS)

    Yalishev, V.Sh.

    2006-02-01

    Key words: diluted magnetic semiconductors, magnetoresistance, ferromagnetism, ionic implantation, molecular-beam epitaxy, magnetic clusters, Curie temperature. Subjects of the inquiry: Diluted magnetic semiconductor GaAs:Mn. Aim of the inquiry: determination of the possibility of the increase of Curie temperature in diluted magnetic semiconductors based on GaAs doped with Mn magnetic impurity. Method of inquiry: superconducting quantum interference device (SQUID), Hall effect, magnetoresistance, atomic and magnetic force microscopes. The results achieved and their novelty: 1. The effect of the additional doping of Ga 0,965 Mn 0,035 As magnetic epitaxial layers by nonmagnetic impurity of Be on on the Curie temperature was revealed. 2. The exchange interaction energy in the investigated Ga 0,965 Mn 0,035 As materials was determined by the means of the magnetic impurity dispersion model from the temperature dependence of the resistivity measurements. 3. The effect of magnetic clusters dimensions and illumination on the magnetoresistance of GaAs materials containing nano-dimensional magnetic clusters was studied for the first time. Practical value: Calculated energy of the exchange interaction between local electrons of magnetic ions and free holes in Ga 1-x Mn x As magnetic semiconductors permitted to evaluate the theoretical meaning of Curie temperature depending on concentration of free holes and to compare it with experimental data. Sphere of usage: micro- and nano-electronics, solid state physics, physics of semiconductors, magnetic materials physics, spin-polarized current sources. (author)

  20. Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Motaung, DE

    2014-08-01

    Full Text Available Surface Science Vol. 311, pp 14-26 Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis D.E. Motaunga,∗, I. Kortidise, D. Papadakie, S.S. Nkosib,∗∗, G.H. Mhlongoa,J. Wesley-Smitha, G.F. Malgasc, B....W. Mwakikungaa, E. Coetseed, H.C. Swartd,G. Kiriakidise,f, S.S. Raya aDST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395,Pretoria 0001, South Africa b...

  1. Microstructural properties of over-doped GaN-based diluted magnetic semiconductors grown by MOCVD

    International Nuclear Information System (INIS)

    Tao Zhikuo; Zhang Rong; Xiu Xiangqian; Cui Xugao; Li Xin; Xie Zili; Zheng Youdou; Li Li; Zheng Rongkun; Ringer, Simon P

    2012-01-01

    We have grown transition metal (Fe, Mn) doped GaN thin films on c-oriented sapphire by metal-organic chemical vapor deposition. By varying the flow of the metal precursor, a series of samples with different ion concentrations are synthesized. Microstructural properties are characterized by using a high-resolution transmission electron microscope. For Fe over-doped GaN samples, hexagonal Fe 3 N clusters are observed with Fe 3 N(0002) parallel to GaN (0002) while for Mn over-doped GaN, hexagonal Mn 6 N 2.58 phases are observed with Mn 6 N 2.58 (0002) parallel to GaN(0002). In addition, with higher concentration ions doping into the lattice matrix, the partial lattice orientation is distorted, leading to the tilt of GaN(0002) planes. The magnetization of the Fe over-doped GaN sample is increased, which is ascribed to the participation of ferromagnetic iron and Fe 3 N. The Mn over-doped sample displays very weak ferromagnetic behavior, which probably originates from the Mn 6 N 2.58 . (semiconductor materials)

  2. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    Science.gov (United States)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  3. Halogen doping of II-VI semiconductors during molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A.; Litz, Th.; Fischer, F.; Heinke, H.; Scholl, S.; Hommel, D.; Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1994-04-14

    Results on the halogen doping of CdTe, (CdMn)Te as well as (CdMg)Te thin films and quantum well structures are reported. The structures were grown by molecular beam epitaxy. The samples have been investigated by Van der Pauw, photoconductivity, X-ray diffraction, XPS and SIMS measurements. ZnCl[sub 2] and ZnBr[sub 2] have been used as dopant sources. Free carrier concentrations at room temperature above 10[sup 18] cm[sup -3] can easily be achieved for CdTe for a wide range of Cd/Te flux ratios and substrate temperatures. In the ternary alloys, the free carrier concentration decreases drastically with increasing x-values, despite a constant incorporation of the dopant species. In addition, persistent photoconductivity has been observed in n-type doped ternary thin films at low temperatures. The decrease of the free carrier concentration with x-value is common to other wide-gap ternary alloys, and the reason for it is discussed in the frame of DX-like deep donor impurities in ternary II-VI compounds. In first experiments on planar halogen doping of CdTe, a doping level of 5x10[sup 18] cm[sup -3] could be reached in the doped regions, the highest value ever reported for CdTe. A clear influence of dopant incorporation on the structural quality of CdTe thin films has been seen even for dopant concentrations of as low as 10[sup 18] cm[sup -3]. The FWHM of the rocking curves decreased by a factor of 2 with increasing dopant incorporation. SIMS as well as XPS measurements demonstrate that the Cl/Zn and Br/Zn ratio in the doped films is 2/1, but no chemical shift corresponding to Zn-Cl or Zn-Br bonds could be detected. A model for the incorporation of the halogens is proposed on the basis of these results

  4. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  5. Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co{sub 2}MnAl film

    Energy Technology Data Exchange (ETDEWEB)

    Meng, K.K., E-mail: kkmeng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, J.; Xu, X.G. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, J.H. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Jiang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-04-04

    We have investigated the thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect (AHE) in single-crystalline full-Heusler alloy Co{sub 2}MnAl (CMA) grown by molecular-beam epitaxy on GaAs(001). The magnetic anisotropy is the interplay of uniaxial and the fourfold anisotropy, and the corresponding anisotropy constants have been deduced. Considering the thickness of CMA is small, we ascribe it to the influence from interface stress. The AHE in CMA is found to be well described by a proper scaling. The intrinsic anomalous conductivity is found to be smaller than the calculated one and is thickness dependent, which is ascribed to the influence of chemical ordering by affecting the band structure and Fermi surface. - Highlights: • Single-crystalline full-Heusler alloy Co{sub 2}MnAl grown by molecular-beam epitaxy. • Uniaxial and the fourfold magnetic anisotropies in Heusler alloys. • Anomalous Hall effect in Heusler alloys. • The intrinsic contributions modified by chemical ordering.

  6. Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    Hanjong Paik

    2017-11-01

    Full Text Available Epitaxial La-doped BaSnO3 films were grown in an adsorption-controlled regime by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A film grown on a (001 DyScO3 substrate exhibited a mobility of 183 cm2 V−1 s−1 at room temperature and 400 cm2 V−1 s−1 at 10 K despite the high concentration (1.2 × 1011 cm−2 of threading dislocations present. In comparison to other reports, we observe a much lower concentration of (BaO2 Ruddlesden-Popper crystallographic shear faults. This suggests that in addition to threading dislocations, other defects—possibly (BaO2 crystallographic shear defects or point defects—significantly reduce the electron mobility.

  7. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    International Nuclear Information System (INIS)

    Sima, M.; Mihut, L.; Vasile, E.; Sima, Ma.; Logofatu, C.

    2015-01-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn 2+ ions into the Zn 2+ site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn 2+ ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A 1 (LO) vibrational modes, from 482 and 567 cm −1 to 532 and 580 cm −1 , respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm −1 spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm −1 confirms the insertion of Mn 2+ ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn 2+ ions into Zn 2+ site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm −1 at high Mn concentration • Compensation of the oxygen vacancy at higher Mn concentration in ZnO lattice

  8. Magnetorefractive effect in the La{sub 1−x}K{sub x}MnO{sub 3} thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukov, Yu.P., E-mail: suhorukov@imp.uran.ru [Institute of Metal Physics, Ural Division of RAS, 620990 Ekaterinburg (Russian Federation); Telegin, A.V. [Institute of Metal Physics, Ural Division of RAS, 620990 Ekaterinburg (Russian Federation); Bessonov, V.D. [Institute of Metal Physics, Ural Division of RAS, 620990 Ekaterinburg (Russian Federation); University of Bialystok, 15-424 Bialystok (Poland); Gan’shina, E.A.; Kaul’, A.R.; Korsakov, I.E.; Perov, N.S.; Fetisov, L.Yu. [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Yurasov, A.N. [Moscow State Technical University of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation)

    2014-10-01

    Thin epitaxial La{sub 1−x}K{sub x}MnO{sub 3} films were grown using two-stage procedure. Influence of substitution of La{sup 3+} ions with K{sup +} ions on the optical and electrical properties of La{sub 1−x}K{sub x}MnO{sub 3} films (x=0.05, 0.10, 0.15 i 0.18) has been studied in detail. A noticeable magnetorefractive effect in the films under study was detected in the infrared range. Magnetorefractive effect as well as transverse magneto-optical Kerr effect and magnetoresistance have the maximum in optimally doped sample with x=0.18 corresponding to the highest Curie temperature. The experimental data for compositions close to optimally doped films are in good agreement with the data calculated in the framework of a theory developed for manganites. The resonance-like contribution to magnetoreflection spectra of manganite films has been observed in the vicinity of the phonon bands. It is shown that magnetic and charge inhomogeneities strongly influence on the magneto-optical effects in films. Thin films of La{sub 1−x}K{sub x}MnO{sub 3} with the large values of Kerr and magnetorefractive effect are promising magneto-optical material in the infrared range. - Highlights: • Giant magnetorefractive effect was obtained in La{sub 1−x}K{sub x}MnO{sub 3} films in the infrared. • Inhomogeneity as well as doping level strongly influences the value of magnetorefractive effect. • Resonance-like bands have been observed in the magnetoreflection spectra of the films. • The obtained experimental data can be explained in the framework of the MRE theory.

  9. Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges.

    Science.gov (United States)

    Cheng, Ji; Jiang, Shengxiang; Zhang, Yan; Yang, Zhijian; Wang, Cunda; Yu, Tongjun; Zhang, Guoyi

    2017-05-02

    The problem of weak magnetism has hindered the application of magnetic semiconductors since their invention, and on the other hand, the magnetic mechanism of GaN-based magnetic semiconductors has been the focus of long-standing debate. In this work, nanoscale GaN:Mn wires were grown on the top of GaN ridges by metalorganic chemical vapor deposition (MOCVD), and the superconducting quantum interference device (SQUID) magnetometer shows that its ferromagnetism is greatly enhanced. Secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) reveal an obvious increase of Mn composition in the nanowire part, and transmission electron microscopy (TEM) and EDS mapping results further indicate the correlation between the abundant stacking faults (SFs) and high Mn doping. When further combined with the micro-Raman results, the magnetism in GaN:Mn might be related not only to Mn concentration, but also to some kinds of built-in defects introduced together with the Mn doping or the SFs.

  10. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Hung, Sung-Po [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2014-02-15

    Highlights: ► Sb-doped nonpolar a-plane ZnO layers were epitaxially grown on sapphire substrates. ► Crystallinity and electrical properties were studied upon growth condition and doping concentration. ► The out-of-plane lattice spacing of ZnO films reduces monotonically with increasing Sb doping level. ► The p-type conductivity of ZnO:Sb film is closely correlated with annealing condition and Sb doping level. -- Abstract: In this study, the epitaxial growth of Sb-doped nonpolar a-plane (112{sup ¯}0) ZnO thin films on r-plane (11{sup ¯}02) sapphire substrates was performed by radio-frequency magnetron sputtering. The influence of the sputter deposition conditions and Sb doping concentration on the microstructural and electrical properties of Sb-doped ZnO epitaxial films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Hall-effect measurement. The measurement of the XRD phi-scan indicated that the epitaxial relationship between the ZnO:Sb layer and sapphire substrate was (112{sup ¯}0){sub ZnO}//(11{sup ¯}02){sub Al{sub 2O{sub 3}}} and [11{sup ¯}00]{sub ZnO}//[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. The out-of-plane a-axis lattice parameter of ZnO films was reduced monotonically with the increasing Sb doping level. The cross-sectional transmission electron microscopy (XTEM) observation confirmed the absence of any significant antimony oxide phase segregation across the thickness of the Sb-doped ZnO epitaxial film. However, the epitaxial quality of the films deteriorated as the level of Sb dopant increased. The electrical properties of ZnO:Sb film are closely correlated with post-annealing conditions and Sb doping concentrations.

  11. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sima, M., E-mail: msima@infim.ro [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Mihut, L. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Vasile, E. [University “Politehnica”of Bucharest, Faculty of Applied Chemistry and Material Science, Department of Oxide Materials and Nanomaterials, No. 1-7 Gh. Polizu Street, 011061 Bucharest (Romania); Sima, Ma.; Logofatu, C. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania)

    2015-09-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn{sup 2+} ions into the Zn{sup 2+} site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn{sup 2+} ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A{sub 1} (LO) vibrational modes, from 482 and 567 cm{sup −1} to 532 and 580 cm{sup −1}, respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm{sup −1} spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm{sup −1} confirms the insertion of Mn{sup 2+} ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn{sup 2+} ions into Zn{sup 2+} site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm{sup −1} at high Mn concentration • Compensation of the oxygen vacancy at higher

  12. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  13. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  14. Characterization of GaN/AlGaN epitaxial layers grown

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers ...

  15. Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm0.5Ca0.5MnO3 films

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Sun, J.R.; Zhao, J.L.

    2009-01-01

    We investigated the structure and magnetotransport properties of Sm0.5Ca0.5MnO3 (SCMO) films epitaxially grown on (011)-oriented SrTiO3 substrates, which exhibited clear charge/orbital ordering transition. A significant anisotropy of ~1000 in the colossal magnetoresistance (CMR) effect was observ...

  16. P-N junction solar cell grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hazrati Fard, M.

    2001-01-01

    Growth of GaAs epilayers by Molecular Beam Epitaxy was accomplished for the first time in Iran. The layers were grown on GaAs (001) substrates (p+ wafer) with Si impurity for p n junction solar cell fabrication at a rate of nearly one micron per hour and 0.25 micron per quarter. Crystalline quality of grown layers had been monitored during growth by Reflection High Energy Electron Diffraction system. Doping profile and layer thickness was assessed by electrochemical C-V profiling method. Then Hall measurements were conducted on small samples both in room temperature and liquid nitrogen temperature so giving average carrier concentration and compensation ratio. The results as like: V oc , I sc , F F, η were comparable with other laboratory reports. information for obtaining good and repeatable growths was collected. Therefore, the conditions of repeatable quality growth p n junction solar cells onto GaAs (001) substrates were determined

  17. Effect of Structural Stress on the Laser Quality of Highly Doped Yb:KY(WO4)2/KY(WO4)2 and Yb:KLu(WO4)2/KLu(WO4)2 Epitaxial Structures

    International Nuclear Information System (INIS)

    Carvajal, J.; Raghothamachar, B.; Silvestre, O.; Chen, H.; Pujol, M.; Petrov, V.; Dudley, M.; Aguilo, M.; Diaz, F.

    2009-01-01

    In this communication we demonstrate how the difference in laser performance of two highly doped (20 at %) epitaxial layers of Yb-doped KY(WO4)2 (KYW) grown on a KYW substrate and Yb-doped KLu(WO4)2 (KLuW) grown on a KLuW substrate, respectively, is related to the presence of structural stress in the epilayers, investigated by synchrotron white beam X-ray topography. From the results obtained, it is clear that the samples that show a larger amount of structural stress, Yb:KYW/KYW epitaxies, lead to lower efficiency in laser operation, giving a direct correlation between the existence and magnitude of such structural stress and the loss in efficiency of laser performance in such epitaxial layers which, from a spectroscopical point of view, are otherwise equivalent.

  18. Electrical characteristics of thermal CVD B-doped Si films on highly strained Si epitaxially grown on Ge(100) by plasma CVD without substrate heating

    International Nuclear Information System (INIS)

    Sugawara, Katsutoshi; Sakuraba, Masao; Murota, Junichi

    2010-01-01

    Using an 84% relaxed Ge(100) buffer layer formed on Si(100) by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (CVD), influence of strain upon electrical characteristics of B-doped Si film epitaxially grown on the Ge buffer have been investigated. For the thinner B-doped Si film, surface strain amount is larger than that of the thicker film, for example, strain amount reaches 2.0% for the thickness of 2.2 nm. It is found that the hole mobility is enhanced by the introduction of strain to Si, and the maximum enhancement of about 3 is obtained. This value is higher than that of the usually reported mobility enhancement by strain using Si 1 -x Ge x buffer. Therefore, introduction of strain using relaxed Ge film formed by ECR plasma enhanced CVD is useful to improve future Si-based device performance.

  19. Dielectric, piezoelectric properties of MnO2-doped (K0.5Na0.5)NbO3–0.05LiNbO3 crystal grown by flux-Bridgman method

    International Nuclear Information System (INIS)

    Liu, Ying; Xu, Guisheng; Liu, Jinfeng; Yang, Danfeng; Chen, Xiaxia

    2014-01-01

    Highlights: • KNN–0.05LN based single crystals were grown by flux-Bridgman method. • Dielectric, piezoelecrc and ferroelectric properties were studied. • The effect of MnO 2 doping on the crystals' properties. • Dielectric and other properties were improved due to MnO 2 doping. - Abstract: Lead-free potassium sodium niobate piezoelectric single crystals substituted with lithium and then doped with MnO 2 (K 0.5 Na 0.5 )NbO 3 –0.05LiNbO 3 –yMnO 2 (y = 0%, 1.0% and 1.5%) (abbreviated as KNN–0.05LN–yMnO 2 ) have been grown by flux-Bridgman method using KCl–K 2 CO 3 eutectic composition as the flux. Their actual composition as well as the dielectric and piezoelectric properties were studied. Their actual composition deviated from the ratio of the raw materials due to different segregation coefficients of K and Na. The orthorhombic–tetragonal (T o–t ) and tetragonal–cubic phase transition temperature (the Curie temperature T c ) of the single crystal appears at 186 °C and 441 °C, respectively, for KNN–0.05LN–1.0%MnO 2 , shift to higher temperatures compared with that of pure KNN–0.05LN crystals, according to the dielectric permittivity versus temperature loops. The KNN–0.05LN–1.0%MnO 2 (001) plate shows higher piezoelectric coefficient d 33 and dielectric permittivity ε r when compared with pure KNN–0.05LN crystal, being on the order of 226 pC/N and 799 (161 pC/N and 530 for KNN–0.05LN), respectively. These excellent properties show that MnO 2 dopant is effective in improving KNN–0.05LN based piezoelectric crystals

  20. Continuous growth of low-temperature Si epitaxial layer with heavy phosphorous and boron doping using photoepitaxy

    International Nuclear Information System (INIS)

    Yamazaki, T.; Minakata, H.; Ito, T.

    1990-01-01

    The authors grew p + -n + silicon epitaxial layers, heavily doped with phosphorus and boron, continuously at 650 degrees C using low-temperature photoepitaxy. Then N + photoepitaxial layer with a phosphorus concentration above 10 17 cm -3 grown on p - substrate shows high-density surface pits, and as a result, poor crystal quality. However, when this n + photoepitaxial layer is grown continuously on a heavily boron-doped p + photoepitaxial layer, these surface pits are drastically decreased, disappearing completely above a hole concentration of 10 19 cm -3 in the p + photoepitaxial layer. The phosphorus activation ratio and electron Hall mobility in the heavily phosphorus-doped n + photoexpitaxial layer were also greatly improved. The authors investigated the cause of the surface pitting using a scanning transmission electron microscope, secondary ion mass spectroscopy, and energy-dispersive x-ray spectroscopy. They characterized the precipitation of phosphorus atoms on the crystal surface at the initial stage of the heavily phosphorus-doped n + photoexpitaxial layer growth

  1. Electrical transport in n-type ZnMgSSe grown by molecular beam epitaxy on GaAs

    International Nuclear Information System (INIS)

    Marshall, T.; Petruzzello, J.A.; Herko, S.P.

    1994-01-01

    Significant progress in improving the Performance of blue-green II-VI semiconductor injection lasers has come about from advances in the epitaxial growth and doping of ZnMgSSe on GaAs substrates. This paper investigates electrical transport and its relation to structural quality in n-type Zn 1-y Mg y S x Se 1-x epilayers doped with Cl, grown by molecular beam epitaxy. The composition parameters x and y vary from about 0.12-0.18 and 0.08-0.15, respectively. The quaternary epilayers studied are lattice-matched (or nearly so) to the GaAs substrate. Temperature-dependent Hall-effect measurements are performed on seven n-type ZnMgSSe:Cl epilayers, and a technique is presented whereby the resulting mobility-vs-temperature data is compared with data for ZnSe to obtain a structural figure of merit that is useful in characterizing the quaternary epilayer. 29 refs., 4 figs

  2. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    Science.gov (United States)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  3. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  4. Growth and holographic data storage properties of near-stoichiometric LiTaO{sub 3} crystals doped with Mn

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao [College of Science, Harbin Engineering University, Harbin 150001 (China)], E-mail: tzhang_hit02@yahoo.com; Dong Yantang; Geng Tao; Dai Qiang [College of Science, Harbin Engineering University, Harbin 150001 (China); Xu Yuheng [School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China)

    2009-03-15

    A series of Mn-doped near-stoichiometric LiTaO{sub 3} crystals were grown from a Li-rich (Li/Nb = 1.38, atomic ratio) and varying level of Mn-doping melt using a Cz furnace equipped with a radio frequency generator. The etching experiment reveals that as-grown polarized Mn:SLN has single ferroelectric domain structures under optical microscope. By two-beam coupling experiment, we measured and systematically analyzed the photorefractive properties such as the dynamic range, the sensitivity and the loss of signal-to-noise-ratio coefficient. Based on Mn (0.05 wt%):SLN crystal, a big capacity storage of 100 holograms in a coherent volume of 0.085 cm{sup 3} have been fulfilled successfully and the storage density arrived 0.93 Gbits cm{sup -3}.

  5. Structural characterization of zincblende Ga1-xMnxN epilayers grown by molecular beam epitaxy on (001) GaAs substrates

    International Nuclear Information System (INIS)

    Fay, M.W.; Han, Y.; Brown, P.D.; Novikov, S.V.; Edmonds, K.W.; Campion, R.P.; Gallagher, B.L.; Foxon, C.T.

    2005-01-01

    Zincblende p-type Ga 1-x Mn x N epilayers, grown with and without AlN/GaN buffer layers using plasma-assisted molecular beam epitaxy on (001) oriented GaAs substrates, have been investigated using a variety of complementary transmission electron microscopy techniques. The epilayers were found to contain a high anisotropic density of stacking faults and microtwins. MnAs inclusions were identified at the Ga 1-x Mn x N/(001)GaAs interface extending into the substrate. The use of AlN/GaN buffer layers was found to inhibit the formation of these inclusions

  6. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    Science.gov (United States)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  7. Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration

    Science.gov (United States)

    Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.

    2009-05-01

    We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.

  8. Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (1 1 0) substrates

    International Nuclear Information System (INIS)

    Tang, Y.L.; Zhu, Y.L.; Meng, H.; Zhang, Y.Q.; Ma, X.L.

    2012-01-01

    Nd 0.45 Sr 0.55 MnO 3 is an A-type antiferromagnetic manganite showing obvious angular-dependent magnetoresistance, which can be tuned by misfit strain. The misfit strain relaxation of Nd 0.45 Sr 0.55 MnO 3 thin films is of both fundamental and technical importance. In this paper, microstructures of epitaxial Nd 0.45 Sr 0.55 MnO 3 thin films grown on SrTiO 3 (1 1 0) substrates by pulsed laser deposition were investigated by means of (scanning) transmission electron microscopy. The Nd 0.45 Sr 0.55 MnO 3 thin films exhibit a two-layered structure: a continuous perovskite layer epitaxial grown on the substrate followed by epitaxially grown columnar nanostructures. An approximately periodic array of misfit dislocations is found along the interface with line directions of both 〈1 1 1〉 and [0 0 1]. High-resolution (scanning) transmission electron microscopy reveals that all the misfit dislocations possess a〈1 1 0〉-type Burgers vectors. A formation mechanism based on gliding or climbing of the dislocations is proposed to elucidate this novel misfit dislocation configuration. These misfit dislocations have complex effects on the strain relaxation and microstructure of the films, and thus their influence needs further consideration for heteroepitaxial perovskite thin film systems, especially for films grown on substrates with low-symmetry surfaces such as SrTiO 3 (1 1 0) and (1 1 1), which are attracting attention for their potentially new functions.

  9. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  10. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  11. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa.

    1994-01-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author)

  12. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa

    1994-11-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author).

  13. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    Science.gov (United States)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  14. Remarkable strain-induced magnetic anisotropy in epitaxial Co2MnGa (0 0 1) films

    International Nuclear Information System (INIS)

    Pechan, Michael J.; Yu, Chengtao; Carr, David; Palmstroem, Chris J.

    2005-01-01

    Remarkably large, strain-induced anisotropy is observed in the thin-film Heusler alloy Co 2 MnGa. 30 nm Co 2 MnGa (0 0 1) films have been epitaxially grown on different interlayers/substrates with varied strain, and investigated with ferromagnetic resonance. The film grown on ErAs/InGaAs/InP experiences tension strain, resulting in an out-of-plane strain-induced anisotropy (∼1.1x10 6 erg/cm 3 ) adding to the effects of shape anisotropy. In contrast, the film grown on ScErAs/GaAs, experiences a compression strain, resulting in an out-of-plane strain-induced anisotropy (∼3.3x10 6 erg/cm 3 ) which almost totally cancels the effects of shape anisotropy, thus rendering the film virtually isotropic. This results in the formation of stripe domains in remanence. In addition, small, but well-defined 2-fold and 4-fold in-plane anisotropy coexist in each sample with weak, but interesting strain dependence. Transport measurement shows small (<1%) magnetoresistance effects in the compression film, but negligible magnetoresistance in the relaxed and tension strained samples

  15. Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, R. [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Junaid Bushiri, M., E-mail: junaidbushiri@gmail.com [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Achary, Sreekumar Rajappan; Muñoz-Sanjosé, Vicente [Departamento de FisicaAplicada y Electromagnetismo, Universitat de Valencia, c/Dr. Moliner 50, Burjassot, Valencia 46100 (Spain)

    2015-01-15

    Highlights: • Single crystalline ZnO:Mn nanorods. • Reduced optical active defects. • Quenching and blue shift of UV emission. - Abstract: ZnO:Mn alloyed nanorods (Mn nominal concentration – 3–5 wt%) were synthesized by using hydrothermal process at an optimized growth temperature of 200 °C and a growth time of 3 h. The XRD, SEM and Raman, FTIR investigations reveal that ZnO:Mn (Mn – 3–5 wt%) retained hexagonal wurtzite crystal structure with nanorod morphology. The HRTEM and SAED analysis confirm the single crystalline nature of hydrothermally grown ZnO and ZnO:Mn (5 wt%) nanorods. The ZnO:Mn nanorods (Mn – 0–5 wt%) displayed optical band gap in the range 3.23–3.28 eV. The blue shift of UV emission peak (PL) from 393 (ZnO) to 386 nm and quenching of photoluminescence emission in ZnO:Mn is due to the Mn incorporation in ZnO lattice. Relative increase in intensity of Raman band at 660 cm{sup −1} with nominal doping of Mn 3–5 wt% in ZnO indicate that defects are introduced in ZnO:Mn system as a result of doping that leads to the quenching of photoluminescence emission at 393 nm.

  16. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  17. Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Utke, I.; Ehrentraut, D.; Apostolopoulos, V.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, B.

    2004-01-01

    Crystalline $KY(WO_{4})_{2}$ thin layers doped with different rare-earth ions were grown on b-oriented, undoped $KY(WO_{4})_{2}$ substrates by liquid-phase epitaxy employing a low-temperature flux. The ternary chloride mixture of NaCl, KCl, and CsCl with a melting point of 480°C was used as a

  18. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-01-01

    We report the highest mobility values above 2000 cm 2 /Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  19. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency

    International Nuclear Information System (INIS)

    Ilyas, Usman; Rawat, R.S.; Roshan, G.; Tan, T.L.; Lee, P.; Springham, S.V.; Zhang, Sam; Fengji Li; Chen, R.; Sun, H.D.

    2011-01-01

    The structural and photoluminescence analyses were performed on un-doped and Mn doped ZnO thin films grown on Si (1 0 0) substrate by pulsed laser deposition (PLD) and annealed at different post-deposition temperatures (500-800 deg. C). X-ray diffraction (XRD), employed to study the structural properties, showed an improved crystallinity at elevated temperatures with a consistent decrease in the lattice parameter 'c'. The peak broadening in XRD spectra and the presence of Mn 2p3/2 peak at ∼640 eV in X-ray Photoelectron Spectroscopic (XPS) spectra of the doped thin films confirmed the successful incorporation of Mn in ZnO host matrix. Extended near band edge emission (NBE) spectra indicated the reduction in the concentration of the intrinsic surface traps in comparison to the doped ones resulting in improved optical transparency. Reduced deep level emission (DLE) spectra in doped thin films with declined PL ratio validated the quenching of the intrinsic surface traps thereby improving the optical transparency and the band gap, essential for optoelectronic and spintronic applications. Furthermore, the formation and uniform distribution of nano-sized grains with improved surface features of Mn-doped ZnO thin films were observed in Field Emission Scanning Electron Microscopy (FESEM) images.

  20. Oxygen incorporation effects in annealed epitaxial La(1-x)SrxMnO3 thin films

    International Nuclear Information System (INIS)

    Petrisor, T.; Gabor, M. S.; Tiusan, C.; Boulle, A.; Bellouard, C.; Pana, O.; Petrisor, T.

    2011-01-01

    This paper presents our results regarding oxygen incorporation effects in epitaxial La (1-x) Sr x MnO 3 thin films, deposited on SrTiO 3 (001) single crystal substrates, by annealing in different gas mixtures of argon and oxygen. A particular emphasis is placed on the correlation of structural properties with the magnetic properties of the films, Curie temperature, and coercive field. In this sense, we demonstrate that the evolution of the diffuse part of the ω-scans performed on the films are due to oxygen excess in the film lattice, which creates cationic vacancies within the films. Also, we show that two regimes of oxygen incorporation in the films exist, one in which the films evolve toward a single phase and oxygen stoichiometry is recovered, and a second one dominated by oxygen over-doping effects. In order to support our study, XPS measurements were performed, from which we have evaluated the Mn 3+ /Mn 4+ ionic ratio.

  1. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Samar, E-mail: samarlayek@gmail.com; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni{sub 1−x}Mn{sub x}O (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  2. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    International Nuclear Information System (INIS)

    Layek, Samar; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni_1_−_xMn_xO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  3. Resistivity Effects of Cation Ordering in Highly-Doped La2-xSrxCu4 Epitaxial Thin Films

    Science.gov (United States)

    Burquest, Franklin; Marmol, Rodrigo; Cox, Nicholas; Nelson-Cheeseman, Brittany

    Highly-doped La2-xSrxCuO4 (LSCO) films (0.5 causes internal polar electrostatic forces, which have been shown to cause stretching of the apical oxygen bond in analogous epitaxial nickelate films. Thin film samples are grown concurrently to minimize extraneous effects on film structure and properties. Atomic force microscopy and x-ray reflectivity demonstrate that the films are single crystalline, epitaxial, and smooth. X-ray diffraction is used to measure the c-axis of the films as a function of doping and dopant cation ordering. Electrical transport data of the ordered samples is compared with transport data of conventional disordered cation samples. Preliminary data indicates significant differences in resistivity at both 300K and 10K between the cation-ordered and cation-disordered samples. This work indicates that dopant cation ordering within the layered cuprates could significantly modify the conduction mechanisms at play in these materials.

  4. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K., E-mail: tarun@rrcat.gov.in [Semiconductor Physics and Devices Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  5. X-ray characterization Si-doped InAs nanowires grown on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Muhammad; Biermanns, Andreas; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Grap, Thomas; Lepsa, Mihail [Forschungszentrum Juelich, Institut fuer Bio- und Nanosysteme (Germany)

    2011-07-01

    Semiconductor nanowires (NW) are of particular interest due to the ability to synthesize single-crystalline 1D epitaxial structures and heterostructures in the nanometer range. However, many details of the growth mechanism are not well understood. In particular, understanding and control of doping mechanisms during NW growth are important issues for technological applications. In this contribution we present a x-ray diffraction study of the influence of Si-doping in InAs NWs grown on GaAs(111) substrates using In-assisted MBE growth. With the help of coplanar and asymmetric x-ray diffraction, we monitor the evolution of the lattice constants and structure of the InAs NWs as function of doping concentration. We observe that increasing the nominal doping concentration leads to the appearance of additional diffraction maxima corresponding to material whose vertical lattice parameter is 1% smaller than that of the undoped nanowires. Those lattice parameters can be attributed with alloy formation in the form of island like crystallites.

  6. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Liu, J.L.; Beyermann, W. P.

    2006-01-01

    Phosphorus-doped p-type ZnO films were grown on r-plane sapphire substrates using molecular-beam epitaxy with a solid-source GaP effusion cell. X-ray diffraction spectra and reflection high-energy electron diffraction patterns indicate that high-quality single crystalline (1120) ZnO films were obtained. Hall and resistivity measurements show that the phosphorus-doped ZnO films have high hole concentrations and low resistivities at room temperature. Photoluminescence (PL) measurements at 8 K reveal a dominant acceptor-bound exciton emission with an energy of 3.317 eV. The acceptor energy level of the phosphorus dopant is estimated to be 0.18 eV above the valence band from PL spectra, which is also consistent with the temperature dependence of PL measurements

  7. The influence of Fe doping on the surface topography of GaN epitaxial material

    International Nuclear Information System (INIS)

    Cui Lei; Yin Haibo; Jiang Lijuan; Wang Quan; Feng Chun; Xiao Hongling; Wang Cuimei; Wang Xiaoliang; Gong Jiamin; Zhang Bo; Li Baiquan; Wang Zhanguo

    2015-01-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 10 19 cm −3 . High resistivity GaN epitaxial material which is 1 × 10 9 Ω·cm is achieved. (paper)

  8. Capacitance–voltage and current–voltage characteristics for the study of high background doping and conduction mechanisms in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-01-01

    Highlights: ► The cause of high background doping was confirmed and characterized. ► The current–voltage characteristics deviate from the thermionic emission. ► The recombination current is attributed to a hole trap (E V + 0.52 eV). ► The hole trap (E V + 0.52 eV) was confirmed by DLTS measurements. -- Abstract: The temperature dependence of capacitance–voltage (C–V) and current voltage (I–V) characteristics were used to study the cause of high background doping and the underlying current transport mechanisms in GaAsN Schottky diode grown by chemical beam epitaxy (CBE). In one hand, a nitrogen-related sigmoid increase of junction capacitance and ionized acceptor concentration was observed in the temperature range 70–100 K and was attributed to the thermal ionization of a nitrogen–hydrogen-related deep acceptor-state, with thermal activation energy of approximately 0.11 eV above the valence band maximum (VBM) of GaAsN. This acceptor state is mainly responsible for the high background doping in unintentionally doped GaAsN grown by CBE. On the other hand, the I–V characteristics at different temperatures were found to deviate from the well known pure thermionic-emission mechanism. Based on their fitting at each temperature, the recombination current in the space charge region of GaAsN Schottky diode was mainly attributed to a hole trap, localized at 0.51 eV above the VBM. Given the accuracy of measurements, this result was confirmed by deep level transient spectroscopy measurements. Nevertheless, considering the Shockley–Read–Hall model of generation-recombination, the recombination activity of this defect was quantified and qualified to be weak compared with the markedly degradation of minority carrier lifetime in GaAsN material

  9. Effect of annealing on metastable shallow acceptors in Mg-doped GaN layers grown on GaN substrates

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Paskov, Plamen P.; Bergman, Peder; Monemar, Bo; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.

    2008-01-01

    Mg-doped GaN layers grown by metal-organic vapor phase epitaxy on GaN substrates produced by the halide vapor phase technique demonstrate metastability of the near-band-gap photoluminescence (PL). The acceptor bound exciton (ABE) line possibly related to the C acceptor vanishes in as-grown samples within a few minutes under UV laser illumination. Annealing activates the more stable Mg acceptors and passivates C acceptors. Consequently, only the ABE line related to Mg is dominant in PL spectra...

  10. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  11. Magnetic behavior of Co–Mn co-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Li, Hengda; Liu, Xinzhong; Zheng, Zhigong

    2014-01-01

    Here, we report on systematic studies of the magnetic properties of Co and Mn co-doped ZnO nanoparticles prepared by a sol–gel technique. The effect of the concentration of the doping ions on the magnetic properties of Co and Mn co-doped ZnO nanoparticles is presented. X-ray diffraction characterizations (XRD) of co-doped ZnO nanoparticles are all wurtzite structure. The Zn 0.96 Co 0.02 Mn 0.02 O nanoparticles and Zn 0.94 Co 0.02 Mn 0.04 O nanoparticles display ferromagnetic behavior at room temperature. Superconducting quantum interference device (SQUID) magnetometer figures show that with the concentration of the Mn ions increased, the saturation magnetic moment (M s ) increased, and the magnetic is probably due to the co-doping of the Mn ions. Our results demonstrate that the Mn ions doping concentration play an important role in the ferromagnetic properties of Co–Mn co-doped ZnO nanoparticles at room temperature. - Highlights: • The effect of the doping ions on the magnetic properties is presented. • The magnetic is probably due to the co-doping of the Mn ions. • The Mn ions concentration play an important role in the ferromagnetic properties

  12. Hydrostatic pressure study of MBE CdMnTe doped bromine

    International Nuclear Information System (INIS)

    Szczytko, J.; Wasek, D.; Przybytek, J.; Baj, M.; Waag, A.

    1995-01-01

    We present Hall effect and resistivity measurements as a function of pressure performed on MBE-grown Cd 1-x Mn x Te (with x=0.14) layer doped with bromine. The experimental data were analysed using positive and negative U model of Br centers. We found that both models could reproduce the experimental points, but in the case of positive U modes - only under assumption that the sample was completely uncompensated. (author)

  13. The Mn site in Mn-doped GaAs nanowires: an EXAFS study

    International Nuclear Information System (INIS)

    D’Acapito, F; Rovezzi, M; Boscherini, F; Jabeen, F; Bais, G; Piccin, M; Rubini, S; Martelli, F

    2012-01-01

    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched MnAs coordination, we have found the presence of Mn in a MnAu intermetallic compound. (paper)

  14. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  15. GaN:Co epitaxial layers grown by MOVPE

    Czech Academy of Sciences Publication Activity Database

    Šimek, P.; Sedmidubský, D.; Klímová, K.; Mikulics, M.; Maryško, Miroslav; Veselý, M.; Jurek, Karel; Sofer, Z.

    2015-01-01

    Roč. 44, Mar (2015), 62-68 ISSN 0022-0248 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : doping * metalorganic vapor phase epitaxy * cobalt * gallium compounds * nitrides * magnetic materials spintronics Subject RIV: CA - Inorganic Chemistry Impact factor: 1.462, year: 2015

  16. Microstructure of (Ga,Mn)As/GaAs digital ferromagnetic heterostructures

    International Nuclear Information System (INIS)

    Kong, X.; Trampert, A.; Guo, X.X.; Kolovos-Vellianitis, D.; Daeweritz, L.; Ploog, K.H.

    2005-01-01

    We report on the microstructure of (Ga,Mn)As digital ferromagnetic heterostructures grown on GaAs (001) substrates by low-temperature molecular-beam epitaxy. The Mn concentration and the As 4 /Ga beam equivalent pressure (BEP) ratio are varied in the samples containing periods of Mn sheets separated by thin GaAs spacer layers. Transmission electron microscopy studies reveal that decreasing the Mn doping concentration and reducing the BEP ratio lead to smaller composition fluctuations of Mn and more homogeneous (Ga,Mn)As layers with abrupt interfaces. Planar defects are found as the dominant defect in these heterostructures and their density is related to the magnitude of the composition fluctuation. These defects show a noticeable anisotropy in the morphologic distribution parallel to the orthogonal [110] and [110] direction. Along the [110] direction, they are stacking faults, which are preferentially formed in V-shaped pairs and nucleate at the interfaces between (Ga,Mn)As and GaAs layers. Along the [110] direction, the planar defects are isolated thin twin lamellae. The character of the planar defects and their configuration are analyzed in detail

  17. Optical orientation of Mn{sup 2+} ions in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Lukas; Bayer, Manfred [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Akimov, Ilya A.; Yakovlev, Dmitri R. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Dzhioev, Roslan I.; Korenev, Vladimir L.; Kusrayev, Yuri G.; Sapega, Victor F. [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2011-07-01

    We report on optical orientation of Mn{sup 2+} ions in bulk GaAs under application of weak longitudinal magnetic fields (B {<=}150 mT). The studied samples were grown by liquid phase epitaxy and Czochralski method and were doped with a low Mn acceptor concentration of 8 x 10{sup 18} cm{sup -3}. Time resolved measurements of circular polarization for donor-acceptor photoluminescence in Faraday geometry reveal nontrivial spin dynamics of donor localized electrons. Initially the degree of polarization of the electron spins is 40%. It then decays within some tens of ns to reach a plateau. The plateau is absent at B=0 T and saturates at B=150 mT reaching the value of 35%. It's sign changes with the helicity of incident light. It follows that the s-d exchange interaction with optically oriented electrons induces a steady state non-equilibrium polarization of the Mn{sup 2+} ions. The latter maintain their spin and return part of the polarization back to the electron spin system, resulting in the plateau. This provides a long-lived electron spin memory in GaAs doped with Mn. The dynamical polarization of ionized Mn acceptors was also directly monitored using spin flip Raman scattering spectroscopy, in agreement with time-resolved data.

  18. Epitaxial growth of Er, Ti doped LiNbO3 films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Yoshiga, Tsuyoshi; Kajitani, Naofumi; Takeda, Yuki; Sato, Shoji; Wakita, Koichi; Ohnishi, Naoyuki; Hotta, Kazutoshi; Kurachi, Masato

    2006-01-01

    Erbium (Er 3+ ) doped lithium niobate (LiNbO 3 ) thick films were deposited on z-cut congruent LiNbO 3 (LN) substrate by the sol-gel method from the 0.20 mol/dm 3 precursor solution containing various Er 3+ concentration and 0.10 mol/dm 3 poly(vinyl alcohol) (PVA), and their crystal characteristics were evaluated. The Er 3+ concentration in the LN film was controlled by the Er 3+ concentration in the starting solution. The orientation relationships between Er doped LN films and substrates were determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy, and (006) oriented Er doped LN epitaxial layers with parallel epitaxial relationships could be grown on the z-cut LN wafer. Moreover, it was made clear from the electron beam diffraction measurements that the film came to be polycrystalline, when the Er concentration was over 3 mol%. The refractive index of Er-doped LN films decreased with increasing Er concentration. 1.5 mol% Ti: 1.0 mol% Er LN films, which acted as a waveguide, were prepared by our so-gel method. It showed the 1530 nm emission by 980 nm excitation, which was considered to be due to the Er 3+ corresponding to the 4 I 13/2 → 4 I 15/2 transition. (author)

  19. Physical properties of Fe doped Mn3O4 thin films synthesized by SILAR method and their antibacterial performance against E. coli

    Directory of Open Access Journals (Sweden)

    M.R. Belkhedkar

    2016-09-01

    Full Text Available Nanocrystalline Fe doped Mn3O4 thin films were deposited by successive ionic layer adsorption and reaction method onto glass substrates. The X-ray diffraction study revealed that Fe doped Mn3O4 films are nanocrystalline in nature. The morphological investigations were carried out by using field emission scanning electron and atomic force microscopy studies. The optical absorption measurements showed that Mn3O4 films exhibit direct band gap energy of the order of 2.78 eV and it increased to 2.89 eV as the percentage of Fe doping in it increases from 0 to 8 wt.%. The room temperature electrical resistivity of Mn3O4 increases from 1.84 × 103 to 2.64 × 104 Ω cm as Fe doping increases from 0 to 8 wt.%. The SILAR grown Mn3O4 showed antibacterial performance against Escherichia coli bacteria which improved remarkably with doping.

  20. Alkaline-doped manganese perovskite thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Bibes, M.; Gorbenko, O.; Martinez, B.; Kaul, A.; Fontcuberta, J.

    2000-01-01

    We report on the preparation and characterization of La 1-x Na x MnO 3 thin films grown by MOCVD on various single-crystalline substrates. Under appropriate conditions epitaxial thin films have been obtained. The Curie temperatures of the films, which are very similar to those of bulk samples of similar composition, reflect the residual strain caused by the substrate. The anisotropic magnetoresistance AMR of the films has been analyzed in some detail, and it has been found that it has a two-fold symmetry at any temperature. Its temperature dependence mimics that of the electrical resistivity and magnetoresistance measured at similar fields, thus suggesting that the real structure of the material contributes to the measured AMR besides the intrinsic component

  1. Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.

    2016-02-01

    The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.

  2. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Sasmal, I.; Nath, T. K., E-mail: tnath@phy.iitkgp.ernet.in, E-mail: tapnath@gmail.com [Department of Physics, Indian Institute Technology Kharagpur, West Bengal, 721302 (India)

    2016-03-15

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn{sup 2+} state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  3. Hydrostatic pressure study of MBE CdMnTe doped bromine

    Energy Technology Data Exchange (ETDEWEB)

    Szczytko, J.; Wasek, D.; Przybytek, J.; Baj, M. [Institute of Experimental Physics, Warsaw University, Warsaw (Poland); Waag, A. [Physikalisches Institut, Universitaet Wuerzburg, Wuerzburg (Germany)

    1995-12-31

    We present Hall effect and resistivity measurements as a function of pressure performed on MBE-grown Cd{sub 1-x}Mn{sub x}Te (with x=0.14) layer doped with bromine. The experimental data were analysed using positive and negative U model of Br centers. We found that both models could reproduce the experimental points, but in the case of positive U modes - only under assumption that the sample was completely uncompensated. (author). 6 refs, 3 figs.

  4. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  5. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  6. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    International Nuclear Information System (INIS)

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  7. Some properties of Ga-As-Alsub(x)Gasub(1-x)As heterojunction grown by low temperature liquid phase epitaxy

    International Nuclear Information System (INIS)

    Yu Lisheng; Liu Hongxun; Zhang Bei; Wang Shumin

    1986-03-01

    GaAs-Alsub(x)Gasub(1-x)As heterojunction was grown by liquid phase epitaxy at low growth temperature 650-700 deg. C. The series resistance of heterojunction with DH laser structure was measured. Doping properties of Mg in GaAs and Alsub(x)Gasub(1-x)As were investigated. It is found that impurity concentration of Mg as high as 10 18 cm -3 can be doped easily. The Shubnikov-de-Haas oscillation was observed in GaAs-N Alsub(0.35)Gasub(0.65)As heterointerface. It is demonstrated that in these heterointerfaces there exists 2DEG with some contribution from 3D electron of N-AlGaAs layer. (author)

  8. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Science.gov (United States)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  9. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.; Alves, E.; Roqan, Iman S.; O’ Donnell, K. P.; Nishikawa, A.; Fujiwara, Y.; Boćkowski, M.

    2010-01-01

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  10. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.

    2010-09-16

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  11. Monodispersed MnO nanoparticles with epitaxial Mn{sub 3}O{sub 4} shells

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A E; Rodriguez, G F [Department of Physics, University of California, San Diego La Jolla, CA 92093 (United States); Hong, J I; Fullerton, E E [Center for Magnetic Recording Research, University of California-San Diego La Jolla, CA 92093 (United States); An, K; Hyeon, T [National Creative Research Initiative Center for Oxide Nanocrystalline Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Agarwal, N; Smith, D J [School of Materials and Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2008-07-07

    We report the microstructural and magnetic properties of monodispersed nanoparticles (NPs) of antiferromagnetic MnO (T{sub N} = 118 K), with epitaxial ferrimagnetic Mn{sub 3}O{sub 4} (T{sub C} = 43 K) shells. Above T{sub C}, an unusually large magnetization is present, produced by the uncompensated spins (UCSs) on the surface of the MnO particles. These spins impart a net anisotropy to the MnO particles that is approximately three orders of magnitude larger than the bulk value. As a result, an anomalously high blocking temperature is exhibited by the MnO particles, and finite coercivity and exchange bias are present above T{sub C}. When field cooled below T{sub C}, a strong exchange bias was established in the Mn{sub 3}O{sub 4} shells as a result of high net anisotropy of the MnO particles. A large coercivity was also observed. Models of several aspects of the behaviour of this unusual system emphasized the essential role of the UCSs on the surfaces of the MnO NPs.

  12. Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Sung-Yong; Jin, Niu; Rice, Anthony T.; Berger, Paul R.; Yu, Ronghua; Fang, Z-Q.; Thompson, Phillip E.

    2003-01-01

    Deep-level transient spectroscopy measurements were performed in order to investigate the effects of substrate growth temperature and dopant species on deep levels in Si layers during low-temperature molecular beam epitaxial growth. The structures studied were n + -p junctions using B doping for the p layer and p + -n junctions using P doping for the n layer. While the density of hole traps H1 (0.38-0.41 eV) in the B-doped p layers showed a clear increase with decreasing growth temperature from 600 to 370 degree sign C, the electron trap density was relatively constant. Interestingly, the minority carrier electron traps E1 (0.42-0.45 eV) and E2 (0.257 eV), found in the B-doped p layers, are similar to the majority carrier electron traps E11 (0.48 eV) and E22 (0.269 eV) observed in P-doped n layers grown at 600 degree sign C. It is hypothesized that these dominating electron traps are associated with pure divacancy defects and are independent of the dopant species

  13. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Turski, H.; Muziol, G.; Wolny, P.; Cywiński, G.; Grzanka, S.; Sawicka, M.; Perlin, P.; Skierbiszewski, C.

    2014-01-01

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ N ) during quantum wells (QWs) growth. We found that high Φ N improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold current density are discussed

  14. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    Science.gov (United States)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  15. Ferromagnetic properties of Mn-doped AlN

    International Nuclear Information System (INIS)

    Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X.

    2008-01-01

    Mn-doped AlN polycrystalline powders with a wurtzite structure were synthesized by solid-state reactions. A red-orange band at 600 nm, due to Mn 3+ incorporated into the AlN lattice, is observed in the photoluminescence (PL) spectrum at room temperature (RT). Magnetic measurements show the samples possess hysteresis loops up to 300 K, indicating that the obtained powders are ferromagnetic at around RT. The Mn concentration-induced RT ferromagnetism is less than 1 at%. Our results confirm that the RT ferromagnetism can be realized in Mn-doped AlN

  16. Influence of film thickness and Fe doping on LPG sensing properties of Mn3O4 thin film grown by SILAR method

    Science.gov (United States)

    Belkhedkar, M. R.; Ubale, A. U.

    2018-05-01

    Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.

  17. Synthesis and characterization of single-phase Mn-doped ZnO

    Science.gov (United States)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  18. Synthesis and characterization of single-phase Mn-doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-01-01

    Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

  19. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru; Antonov, A. V.; Drozdov, M. N.; Schmagin, V. B.; Novikov, A. V. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Spirin, K. E. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation)

    2015-10-14

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n{sup +}-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers.

  20. Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-09-15

    Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.

  1. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  2. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  3. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  4. Growth and giant coercive field of spinel-structured Co3- x Mn x O4 thin films

    Science.gov (United States)

    Kwak, Yongsu; Song, Jonghyun; Koo, Taeyeong

    2016-08-01

    We grew epitaxial thin films of CoMn2O4 and Co2MnO4 on Nb-doped SrTiO3(011) and SrTiO3(001) single crystal substrates using pulsed laser deposition. The magnetic Curie temperature ( T c ) of the Co2MnO4 thin films was ~176 K, which is higher than that of the bulk whereas CoMn2O4 thin films exhibited a value of T c (~151 K) lower than that of the bulk. For the Co2MnO4 thin films, the M - H loop showed a coercive field of ~0.7 T at 10 K, similar to the value for the bulk. However, the M -H loop of the CoMn2O4(0 ll) thin film grown on a Nb-doped SrTiO3(011) substrate exhibited a coercive field of ~4.5 T at 30 K, which is significantly higher than those of the Co2MnO4 thin film and bulk. This giant coercive field, only observed for the CoMn2O4(0 ll) thin film, can be attributed to the shape anisotropy and strong spin-orbit coupling.

  5. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping.

    Science.gov (United States)

    Dalapati, Goutam Kumar; Shun Wong, Terence Kin; Li, Yang; Chia, Ching Kean; Das, Anindita; Mahata, Chandreswar; Gao, Han; Chattopadhyay, Sanatan; Kumar, Manippady Krishna; Seng, Hwee Leng; Maiti, Chinmay Kumar; Chi, Dong Zhi

    2012-02-02

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

  6. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Chung, S J; Lee, Y S; Suh, E-K; Senthil Kumar, M; An, M H

    2010-01-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  7. RBS characterization of Al2O3 films doped with Ce and Mn

    International Nuclear Information System (INIS)

    Martinez-Martinez, R.; Rickards, J.; Garcia-Hipolito, M.; Trejo-Luna, R.; Martinez-Sanchez, E.; Alvarez-Fregoso, O.; Ramos-Brito, F.; Falcony, C.

    2005-01-01

    Rutherford backscattering (RBS) with 4 He energies from 2 to 6 MeV has been used to study the properties of thin amorphous photoluminescent Al 2 O 3 :Ce,Mn films grown by spray pyrolysis on Corning 7059 glass substrates. The source solutions were AlCl 3 , CeCl 3 and MnCl 2 dissolved in deionized water. Different molar concentrations (Ce 10%; Mn 1%, 3%, 5%, 7% and 10%) were investigated under the same deposition conditions at a substrate temperature of 300 deg. C. The RBS spectra show a homogeneous depth profile of both Ce and Mn within the films, and the measured quantities are consistent with the original solution concentrations. An important amount of Cl, which plays a significant role in luminescent properties, was detected, in both the doped and undoped samples

  8. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.

    2018-01-01

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  9. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  10. Mg doping of GaN by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lieten, R R; Buchowicz, G; Dubon, O; Motsnyi, V; Zhang, L; Cheng, K; Leys, M; Degroote, S; Borghs, G

    2011-01-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% 17 cm -3 and a mobility of 15 cm 2 V -1 s -1 . Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 x 10 17 cm -3 . The corresponding Mg concentration is 5 x 10 19 cm -3 , indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 deg. or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 deg. C.

  11. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application

    International Nuclear Information System (INIS)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing

    2014-01-01

    A double-layered TiO 2 film which three dimensional (3D) flowers grown on highly ordered self-assembled one dimensional (1D) TiO 2 nanorods was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The 3D TiO 2 flowers with the increased surface areas can adsorb more QDs, which increased the absorption of light; meanwhile 1D TiO 2 nanorods beneath the flowers offered a direct electrical pathway for photogenerated electrons, accelerating the electron transfer rate. A typical type II band alignment which can effectively separate photogenerated excitons and reduce recombination of electrons and holes was constructed by Mn-doped CdS QDs and TiO 2 flower-rod. The incident photon-to-current conversion efficiency (IPCE) of the Mn-doped CdS/TiO 2 flower-rod solar cell reached to 40% with the polysulfide electrolyte filled in the solar cell. The power conversion efficiency (PCE) of 1.09% was obtained with the Mn-doped CdS/TiO 2 flower-rod solar cell under one sun illumination (AM 1.5G, 100 mW/cm 2 ), which is 105.7% higher than that of the CdS/TiO 2 nanorod solar cell (0.53%).

  12. Low temperature photoluminescence and photoacoustic characterization of Zn-doped InxGa1-xAsySb1-y epitaxial layers for photovoltaic applications

    International Nuclear Information System (INIS)

    Gomez-Herrera, M.L.; Herrera-Perez, J.L.; Rodriguez-Fragoso, P.; Riech, I.; Mendoza-Alvarez, J.G.

    2008-01-01

    In this paper we present results on the characterization of Zn-doped InGaAsSb epitaxial layers to be used in the development of stacked solar cells. Using the liquid phase epitaxy technique we have grown p-type InGaAsSb layers, using Zn as the dopant, and n-type Te-doped GaSb wafers as substrates. A series of Zn-doped InGaAsSb samples were prepared by changing the amount of Zn in the melt in the range: 0.1-0.9 mg to obtain different p-type doping levels, and consequently, different p-n region characteristics. Low temperature photoluminescence spectra (PL) were measured at 15 K using at various excitation powers in the range 80-160 mW. PL spectra show the presence of an exciton-related band emission around 0.642 eV and a band at 0.633 eV which we have related to radiative emission involving Zn-acceptors. Using the photoacoustic technique we measured the interface recombination velocities related to the interface crystalline quality, showing that the layer-substrate interface quality degrades as the Zn concentration in the layers increases

  13. Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Arun, E-mail: aruncusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Kumar, Mukesh; Chandra, Ramesh [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247 667, Uttarakhand (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Defect induced Raman active modes in Mn doped ZnO thin films. Black-Right-Pointing-Pointer Room temperature ferromagnetism. Black-Right-Pointing-Pointer Morphological variations of ZnO thin films with Mn doping. Black-Right-Pointing-Pointer Variation of refractive index of ZnO thin films with Mn doping. - Abstract: Zn{sub 1-x}Mn{sub x}O thin films were grown by pulsed laser deposition. The phase purity and the structure were confirmed by X-ray diffraction studies. The films have a transmittance more than 80% in the visible region. The refractive index of Zn{sub 0.90}Mn{sub 0.10}O films is found to be 1.77 at 550 nm. The presence of non-polar E{sub 2}{sup high} and E{sub 2}{sup low} Raman modes in thin films indicates that 'Mn' doping does not change the wurtzite structure of ZnO. Apart from the normal modes of ZnO the Zn{sub 1-x}Mn{sub x}O ceramic targets show two additional modes at 332 cm{sup -1} (I{sub 1}) and 524 cm{sup -1} (I{sub 2}). The broad Raman peaks (340-600 cm{sup -1}) observed Zn{sub 0.90}Mn{sub 0.10}O thin films can be deconvoluted into five peaks, denoted as P{sub 1}-P{sub 5}. The possible origins of Raman peaks in Zn{sub 1-x}Mn{sub x}O films are the structural disorder and morphological change caused by the Mn dopant. The B{sub 1}{sup low}, {sup 2}B{sub 1}{sup low}, B{sub 1}{sup high} and A{sub 1}{sup LO} modes as well as the surface phonon mode have been observed in heavily Mn-doped ZnO films. Zn{sub 0.98}Mn{sub 0.02}O thin film shows room temperature ferromagnetism. The saturation magnetic moment of the Zn{sub 0.98}Mn{sub 0.02}O thin film is 0.42{mu}{sub B}/Mn atom. The undoped ZnO film prepared under the same condition shows diamagnetic nature. At higher doping concentrations the formation of Mn clusters suppress the room temperature ferromagnetism in Zn{sub 1-x}Mn{sub x}O thin films and shows paramagnetism. XPS confirms the incorporation of Mn{sup 2+} into the ZnO lattice.

  14. Synthesis and characterization of Mn-doped ZnO column arrays

    International Nuclear Information System (INIS)

    Yang Mei; Guo Zhixing; Qiu Kehui; Long Jianping; Yin Guangfu; Guan Denggao; Liu Sutian; Zhou Shijie

    2010-01-01

    Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ∼395 nm and ∼413 nm, compared to pure ZnO column arrays.

  15. Effect of manganese doping on remnant polarization and leakage current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 epitaxial thin films on SrTiO3

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.

  16. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  17. Anisotropic magnetotransport in epitaxial La2/3Ca1/3MnO3 thin films grown by dc-sputtering

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Prieto, P.; Baca, E.

    2005-01-01

    We have conducted a comprehensive study of the in-plane/out-of-plane magnetic and magnetotransport properties on (001)-oriented La 2/3 Ca 1/3 MnO 3 films epitaxially grown on single crystal (001)-SrTiO 3 substrates by dc-sputtering at high oxygen pressure. The films grew under tensile strain imposed by the lattice mismatch with the substrate. SQUID magnetometry indicated the presence of magnetocrystalline anisotropy at temperatures below the ferromagnetic Curie temperature T C with the easy plane being the film plane. Resistance measurements in magnetic field strengths of up to 6 T, applied both normal and parallel to the film plane, evidenced a distinctive dependence of the resistivity below T C on the angle of the applied field with respect to the plane of the film. During these measurements, transport current and applied magnetic field was all along maintained perpendicular to each other. Neither low-field magnetoresistance (LFMR) nor large magnetoresistance hysteresis were observed on these samples, suggesting that the tensile strain in the first monolayers has been partially released. Additionally, by rotating the sample 360 around an axis parallel to film plane, in magnetic fields ≥2 T, a quadratic sinusoidal dependence of the magnetoresistance (MR) on the polar angle θ was observed. These results can be consistently interpreted in frame of a generalized version of the theory of anisotropic magnetoresistance in transition-metal ferromagnets. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  19. 45○ sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    Science.gov (United States)

    Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias

    2017-11-20

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.

  20. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Drera, G.; Mozzati, M.C.; Colombi, P.; Salvinelli, G.; Pagliara, S.; Visentin, D.; Sangaletti, L.

    2015-01-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al 2 O 3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al 2 O 3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  1. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  2. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  3. Impact of substrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Armstrong, A.; Poblenz, C.; Green, D.S.; Mishra, U.K.; Speck, J.S.; Ringel, S.A.

    2006-01-01

    The electrical conductivity and deep level spectrum of GaN grown by molecular beam epitaxy and codoped with carbon and silicon were investigated for substrate temperatures T s of 650 and 720 deg. C as a function relative carbon and silicon doping levels. With sufficiently high carbon doping, semi-insulating behavior was observed for films grown at both temperatures, and growth at T s =720 deg. C enhanced the carbon compensation ratio. Similar carbon-related band gap states were observed via deep level optical spectroscopy for films grown at both substrate temperatures. Due to the semi-insulating nature of the films, a lighted capacitance-voltage technique was required to determine individual deep level concentrations. Carbon-related band gap states underwent substantial redistribution between deep level and shallow acceptor configurations with change in T s . In light of a T s dependence for the preferential site of carbon incorporation, a model of semi-insulating behavior in terms of carbon impurity state incorporation mediated by substrate temperature is proposed

  4. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.

    2013-01-01

    TiO 2 nanoparticles are doped with three different concentrations of Mn, 2%, 4% and 6% respectively. Absorption edge of TiO 2 is shifted from UV to visible region on amplification of Mn content. Room temperature photoluminescence spectra, excited at 320 nm, exhibit band edge and visible emission peaks associated with self trapped excitons, oxygen defects, etc. Doping of Mn increases the width and decreases the intensity of the UV emission peak. Potential fluctuations of impurities increase the width and auger type non-radiative recombination decreases the intensity of the UV emission peak. The intensity ratio of the UV to defect emission band decreases on doping, indicating degradation of structural quality. Excitation of pure and doped nanoparticles at 390 nm results in Mn 2+ emission peaks at 525 nm and 585 nm respectively. Photoluminescence excitation spectra also indicate the presence of Mn 2+ in the crystalline environment of TiO 2 . The oxygen defects and Mn related impurities act as efficient trap centers and increases the lifetime of the charge carriers. -- Highlights: ► Doping of Mn increases the d-spacing of TiO 2 nanoparticles. ► Characteristic d–d electronic transition of Mn 2+ is observed in the absorption spectra. ► Doping of Mn quenches the UV and visible emission peaks of TiO 2 . ► Photoexcitation at 390 nm generates emission peaks of Mn 2+

  5. Optical properties of tellurium-doped InxGa1-xAsySb1-y epitaxial layers studied by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Diaz-Reyes, J; Cardona-Bedoya, J A; Gomez-Herrera, M L; Herrera-Perez, J L; Riech, I; Mendoza-Alvarez, J G

    2003-01-01

    Controlled doping of quaternary alloys of In x Ga 1-x As y Sb 1-y with tellurium is fundamental to obtain the n-type layers needed for the development of optoelectronic devices based on p-n heterojunctions. InGaAsSb epitaxial layers were grown by liquid phase epitaxy and Te doping was obtained by incorporating small Sb 3 Te 2 pellets in the growth melt. The tellurium doping levels were in the range 10 16 -10 17 cm -3 . We have used low-temperature photoluminescence (PL) spectroscopy to study the influence of the Te donor levels on the radiative transitions shown in the PL spectra. The PL measurements were done by exciting the samples with the 448 nm line of an Ar ion laser with varying excitation powers in the range from 10 to 200 mW. For the low-doped sample the PL spectrum showed a narrow exciton-related peak centred at around 610 meV with a full width at half maximum (FWHM) of about 7 meV which is evidence of the good crystalline quality of the layers. For higher Te doping, the PL spectra show the presence of band-to-band and donor-to-acceptor transitions which overlap as the Te concentration increases. The peak of the PL band shifts to higher energies as Te doping increases due to a band-filling effect as the Fermi level enters into the conduction band. From the peak energy of the PL spectra, and using a model that includes the band-filling and band-shrinkage effects due to the carriers, we have estimated the effective carrier concentration due to doping with Te in the epilayers

  6. Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals

    International Nuclear Information System (INIS)

    Kobor, Diouma; Guiffard, Benoit; Lebrun, Laurent; Hajjaji, Abdelowahed; Guyomar, Daniel

    2007-01-01

    AC-impedance spectroscopic studies in the temperature range 550-700 deg. C are carried out on undoped and Mn doped PZN-PT single crystals grown by the flux method. The variation of dielectric permittivity with temperature at different frequencies shows normal ferroelectric and relaxor-like dependence for the doped and undoped crystals, respectively. Temperature-dependent spectroscopic modulus plots reveal a much broader peak for PZN-4.5PT + 1%Mn compared with that for PZN-4.5PT, which is different from the dielectric behaviour of the doped one. Complex modulus imaginary part (Z-prime) versus real part (Z') plots fit well with one semicircle thus indicating only bulk contribution. The relaxation observed in the spectroscopic plots was assigned to mobile relaxor species such as oxygen vacancies and ions. No such relaxation could be observed for PZN-4.5PT + 1%Mn in the dielectric measurements. For both undoped and Mn doped crystals, the conduction behaviour was modelled by the universal dynamic response equation and by the NTC (negative temperature coefficient) materials resistance-temperature behaviour. A large difference in behaviour was found between the two single crystals such as the thermistor coefficients and the activation energy values, which could explain the increase in the thermal stability observed in the Mn doped PZN-PT single crystals by many studies

  7. Structure and properties of the Mn doped CeO{sub 2} thin film grown on LaAlO{sub 3} (0 0 1) via a modified sol–gel spin-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Al-Agel, F.A. [Hail University, College of Science, Department of Physics, Hail (Saudi Arabia); Al-Arfaj, E. [Umm Alqura University, Department of Physics, Makkah (Saudi Arabia); Qaseem University, Physics Department, Qaseem (Saudi Arabia); Shokr, F.S. [King Abdulaziz University, Faculty of Science & Arts, Department of Physics, Rabigh (Saudi Arabia); Al-Gahtany, S.A. [King Abdulaziz University, Faculty of Science for Girls, Department of Physics, Jeddah (Saudi Arabia); Alshahrie, Ahmed [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Hafez, M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Bronstein, L.M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Indiana University, Department of Chemistry, Bloomington, IN 47405 (United States); Beall, Gary W. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2015-08-15

    Highlights: • Mn doped CeO{sub 2} was grown on LaAlO{sub 3} (0 0 1) via sol–gel technique. • The concentration of the Mn ions was varied from 1 to 13 at.%. • The incorporation of 7 at.% of Mn ions was found to provide formation of exceptionally smooth films. • This amount demonstrated the highest saturation magnetization of 1.75 μ{sub B}/Mn and coercive field of 487 Gauss. - Abstract: Here we report Mn doped cerium oxide films prepared on the LaAlO{sub 3} (0 0 1) substrate via an ethylene glycol modified sol–gel spin coating technique and evaluation of their properties as diluted magnetic semiconductors. Cerium oxide was selected because of its high dielectric constant and fluorite cubic structure, matching the silicon and lanthanum aluminate based electronic devices. The concentration of the Mn ions was varied from 1 to 13 at.% and the influence of this concentration on the structure, surface morphology, optical and magnetic properties of these films was studied using scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy, ellipsometric spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and magnetic measurements. The incorporation of 7 at.% of Mn ions was found to provide formation of exceptionally smooth films, demonstrating the highest saturation magnetization of 1.75 μ{sub B}/Mn and the coercive field of 487 Gauss. These properties are assigned to the conversion of Ce{sup 4+} to Ce{sup 3+} upon incorporation of Mn ions into the CeO{sub 2} structure and the oxidation of Mn{sup 2+} to Mn{sup 4+}, creating two oxygen vacancies to preserve the cubic structure of cerium oxide and promoting ferromagnetism.

  8. Spin properties of charged Mn-doped quantum dota)

    Science.gov (United States)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  9. Growth and magnetotransport properties of epitaxial films of the layered perovskite La2-2xSr1+2xMn2O7

    International Nuclear Information System (INIS)

    Philipp, J.B.; Alff, L.; Gross, R.; Klein, J.; Recher, C.

    2002-01-01

    Epitaxial thin films of the bilayered perovskite La 2-2x Sr 1+2x Mn 2 O 7 (x=0.3, 0.4) have been grown by laser molecular beam epitaxy on NdGaO 3 substrates. Magnetotransport measurements with the current in the ab-plane and along the c-axis direction showed an intrinsic c-axis tunneling magnetoresistance effect associated with nonlinear current-voltage-characteristics for the x=0.3 compound. Besides the colossal magnetoresistance effect around the Curie temperature T C , at temperatures below about 40 K an additional high-field magnetoresistance was found most likely due to a strain and disorder induced re-entrant spin glass state in both the x=0.3 and 0.4 compounds. Our experiments show that the substrate induced coherency strain in the high quality epitaxial films results in magnetotransport properties that show markedly different behavior from those of single crystals. (orig.)

  10. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    International Nuclear Information System (INIS)

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  11. Effect of doping concentration on the structural, morphological, optical and electrical properties of Mn-doped CdO thin films

    Directory of Open Access Journals (Sweden)

    Manjula N.

    2015-12-01

    Full Text Available Thin films of manganese-doped cadmium oxide (CdO:Mn with different Mn-doping levels (0, 1, 2, 3 and 4 at.% were deposited on glass substrates by employing an inexpensive, simplified spray technique using a perfume atomizer at 375 °C. The influence of Mn incorporation on the structural, morphological, optical and electrical properties of CdO films has been studied. All the films exhibit cubic crystal structure with a (1 1 1 preferential orientation. Mn-doping causes a slight shift of the (1 1 1 diffraction peak towards higher angle. The crystallite size of the films is found to decrease from 34.63 nm to 17.68 nm with an increase in Mn doping concentration. The CdO:Mn film coated with 1 at.% Mn exhibit a high transparency of nearly 90 % which decreases for higher doping concentration. The optical band gap decreases with an increase in Mn doping concentration. All the films have electrical resistivity of the order of 10−4 Ω·cm.

  12. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  13. XRD analysis of strained Ge-SiGe heterostructures on relaxed SiGe graded buffers grown by hybrid epitaxy on Si(0 0 1) substrates

    International Nuclear Information System (INIS)

    Franco, N.; Barradas, N.P.; Alves, E.; Vallera, A.M.; Morris, R.J.H.; Mironov, O.A.; Parker, E.H.C.

    2005-01-01

    Ge/Si 1-x Ge x inverted modulation doped heterostructures with Ge channel thickness of 16 and 20 nm were grown by a method of hybrid epitaxy followed by ex situ annealing at 650 deg. C for p-HMOS application. The thicker layers of the virtual substrate (6000 nm graded SiGe up to x = 0.6 and 1000 nm uniform composition with x = 0.6) were produced by ultrahigh vacuum chemical vapor deposition (UHV-CVD) while the thinner, Si(2 nm)-SiGe(20 nm)-Ge-SiGe(15 nm + 5 nm B-doped + 20 nm) active layers were grown by low temperature solid-source (LT-SS) MBE at T = 350 deg. C. As-grown and annealed samples were measured by X-ray diffraction (XRD). Reciprocal space maps (RSMs) allowed us to determine non-destructively the precise composition (∼1%) and strain of the Ge channel, along with similar information regarding the other layers that made up the whole structure. Layer thickness was determined with complementary high-resolution Rutherford backscattering (RBS) experiments

  14. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    Science.gov (United States)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  15. Mn-doped ZnO nanocrystals synthesized by sonochemical method: Structural, photoluminescence, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.A., E-mail: aaelho@yahoo.com [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt); Osman, M.A. [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt); Ibrahim, E.M.M. [Sohag University, Faculty of Science, Department of Physics, Sohag 82524 (Egypt); Ali, Manar A.; Abd-Elrahim, A.G. [Assiut University, Faculty of Science, Department of Physics, Assiut 71516 (Egypt)

    2017-05-15

    Highlights: • Mn-doped ZnO nanostructures were synthesized by the sonochemical method. • Structural, morphological, optical, photoluminescence and magnetic properties were investigated. • Mn-doped ZnO nanostructures reveal a blue shift of the optical band gap. • Photoluminescence spectra of Mn-doped ZnO nanostructures show quenching in the emission intensity. • Mn-doped ZnO nanostructures exhibit ferromagnetic ordering at room temperature. - Abstract: This work reports the synthesis of Mn-doped ZnO nanostructures using ice-bath assisted sonochemical technique. The impact of Mn-doping on structural, morphological, optical, and magnetic properties of ZnO nanostructures is studied. The morphological study shows that the lower doped samples possess mixtures of nanosheets and nanorods while the increase in Mn content leads to improvement of an anisotropic growth in a preferable orientation to form well-defined edge rods at Mn content of 0.04. UV–vis absorption spectra show that the exciton peak in the UV region is blue shifted due to Mn incorporation into the ZnO lattice. Doping ZnO with Mn ions leads to a reduction in the PL intensity due to a creation of more non-radiative recombination centers. The magnetic measurements show that the Mn-doped ZnO nanostructures exhibit ferromagnetic ordering at room temperature, as well as variation of the Mn content can significantly affect the ferromagnetic behavior of the samples.

  16. Investigation of aluminium ohmic contacts to n-type GaN grown by molecular beam epitaxy

    Science.gov (United States)

    Kribes, Y.; Harrison, I.; Tuck, B.; Kim, K. S.; Cheng, T. S.; Foxon, C. T.

    1997-11-01

    Using epi-layers of different doping concentrations, we have investigated aluminium contacts on n-type gallium nitride grown by plasma source molecular beam epitaxy. To achieve repeatable and reliable results it was found that the semiconductor needed to be etched in aqua-regia before the deposition of the contact metallization. Scanning electron micrographs of the semiconductor surface show a deterioration of the semiconductor surface on etching. The specific contact resistivity of the etched samples were, however, superior. Annealing the contacts at 0268-1242/12/11/030/img9 produced contacts with the lowest specific contact resistance of 0268-1242/12/11/030/img10. The long-term aging of these contacts was also investigated. The contacts and the sheet resistance were both found to deteriorate over a three-month period.

  17. Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Dongmei Han

    2010-01-01

    Full Text Available Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

  18. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  19. Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape

    International Nuclear Information System (INIS)

    Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W

    2006-01-01

    We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape

  20. Reentrant metal-insulator transition in the Cu-doped manganites La1-x Pbx MnO3 (x˜0.14) single crystals

    Science.gov (United States)

    Zhao, B. C.; Song, W. H.; Ma, Y. Q.; Ang, R.; Zhang, S. B.; Sun, Y. P.

    2005-10-01

    Single crystals of La1-x Pbx Mn1-y-z Cuy O3 ( x˜0.14 ; y=0 ,0.01,0.02,0.04,0.06; z=0.02 ,0.08,0.11,0.17,0.20) are grown by the flux growth technique. The effect of Cu doping at the Mn-site on magnetic and transport properties is studied. All studied samples undergo a paramagnetic-ferromagnetic transition. The Curie temperature TC decreases and the transition becomes broader with increasing Cu-doping level. The high-temperature insulator-metal (I-M) transition moves to lower temperature with increasing Cu-doping level. A reentrant M-I transition at the low temperature T* is observed for samples with y⩾0.02 . In addition, T* increases with increasing Cu-doping level and is not affected by applied magnetic fields. Accompanying the appearance of T* , there exists a large, almost constant magnetoresistance (MR) below T* except for a large MR peak near TC . This reentrant M-I transition is ascribed to charge carrier localization due to lattice distortion caused by the Cu doping at Mn sites.

  1. Mn-doped Ge self-assembled quantum dots via dewetting of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aouassa, Mansour, E-mail: mansour.aouassa@yahoo.fr [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Jadli, Imen [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Bandyopadhyay, Anup [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Kim, Sung Kyu [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Lee, Jeong Yong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-03-01

    Highlights: • We report the new fabrication approach for producing a self- assembled Mn dpoed Ge quantum dots (QDs) on SiO{sub 2} thin film with a Curie temperature above room temperature. These magnetic QDs are crystalline, monodisperse and have a well-defined shape and a controlled size. The investigation opens new routes for elaboration of self-assembled magnetic nanocrystals - Abstract: In this study, we demonstrate an original elaboration route for producing a Mn-doped Ge self-assembled quantum dots on SiO{sub 2} thin layer for MOS structure. These magnetic quantum dots are elaborated using dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing at high temperature of an amorphous Ge:Mn (Mn: 40%) nanolayer deposed at very low temperature by high-precision Solid Source Molecular Beam Epitaxy on SiO{sub 2} thin film. The size of quantum dots is controlled with nanometer scale precision by varying the nominal thickness of amorphous film initially deposed. The magnetic properties of the quantum-dots layer have been investigated by superconducting quantum interference device (SQUID) magnetometry. Atomic force microscopy (AFM), x-ray energy dispersive spectroscopy (XEDS) and transmission electron microscopy (TEM) were used to examine the nanostructure of these materials. Obtained results indicate that GeMn QDs are crystalline, monodisperse and exhibit a ferromagnetic behavior with a Curie temperature (TC) above room temperature. They could be integrated into spintronic technology.

  2. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  3. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    Science.gov (United States)

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  4. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  5. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  6. Epitaxial Sb-doped SnO_2 and Sn-doped In_2O_3 transparent conducting oxide contacts on GaN-based light emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Min-Ying; Bierwagen, Oliver; Speck, James S.

    2016-01-01

    We demonstrate the growth of epitaxial (100)-oriented, rutile Sb-doped SnO_2 (ATO) and (111)-oriented, cubic Sn-doped In_2O_3 (ITO) transparent conducting oxide (TCO) contacts on top of an InGaN/GaN(0001) light emitting diode (LED) by plasma-assisted molecular beam epitaxy (PAMBE). Both oxides form rotational domains. The in-plane epitaxial alignment of the two ITO(111) rotational domains to the GaN(0001) was: GaN [21-10]|| ITO_D_o_m_a_i_n_1[‐ 211]|| ITO_D_o_m_a_i_n_2[‐ 1‐12]. A growth temperature as low as 600 °C was necessary to realize a low contact resistance between ATO and the top p-GaN layer of the LED but resulted in non-optimal resistivity (3.4 × 10"− "3 Ω cm) of the ATO. The current–voltage characteristics of a processed LED, however, were comparable to that of a reference LED with a standard electron-beam evaporated ITO top contact. At short wavelengths, the optical absorption of ATO was lower than that of ITO, which is beneficial even for blue LEDs. Higher PAMBE growth temperatures resulted in lower resistive ATO but higher contact resistance to the GaN, likely by the formation of an insulating Ga_2O_3 interface layer. The ITO contact grown by PAMBE at 600 °C showed extremely low resistivity (10"−"4 Ω cm) and high crystalline and morphological quality. These proof-of-principle results may lead to the development of epitaxial TCO contacts with low resistivity, well-defined interfaces to the p-GaN to help minimize contact losses, and enable further epitaxy on top of the TCO. - Highlights: • Plasma-assisted molecular beam epitaxy of SnO_2:Sb (ATO) and In_2O_3:Sn (ITO) contacts • Working light emitting diodes processed with the ATO contact on the top p-GaN layer • Low growth temperature ensures low contact resistance (limiting interface reaction). • ITO showed significantly better structural and transport properties than ATO. • ATO showed higher optical transmission at short wavelengths than ITO.

  7. Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO3 Epitaxial Thin Film System

    DEFF Research Database (Denmark)

    Niu, Wei; Liu, Wenqing; Gu, Min

    2018-01-01

    that play a decisive role in the emergence of ferromagnetism in the otherwise antiferromagnetic LaMnO3 thin films are found. Combining spatially resolved electron energy‐loss spectroscopy, X‐ray absorption spectroscopy, and X‐ray magnetic circular dichroism techniques, it is determined unambiguously...... provide a hitherto‐unexplored multivalence state of Mn on the emergent magnetism in undoped manganite epitaxial thin films, such as LaMnO3 and BiMnO3, and shed new light on all‐oxide spintronic devices....

  8. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    Science.gov (United States)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  9. Surface Plasmons on Highly Doped InP

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Ottaviano, Luisa; Semenova, Elizaveta

    2016-01-01

    Silicon doped InP is grown by metal-organic vapor phase epitaxy (MOVPE) using optimized growth parameters to achieve high free carrier concentration. Reflectance of the grown sample in mid-IR range is measured using FTIR and the result is used to retrieve the parameters of the dielectric function...

  10. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    Science.gov (United States)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  11. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Science.gov (United States)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  12. Effects of Mn doping on the ferroelectric properties of PZT thin films

    International Nuclear Information System (INIS)

    Zhang Qi

    2004-01-01

    The effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on Pt/Ti/SiO 2 /Si substrates have been investigated. The composition of the PZT and Mn doping level are Pb(Zr 0.3 Ti 0.7 ) 1-x Mn x O 3 (x = 0,0.2,0.5,1,2,4 mol%). The PZT thin films doped with a small amount of Mn 2+ (x ≤ 1) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. However, excessive additions of manganese made the fatigue behaviour worse. We propose that the addition of small amounts of Mn is able to reduce the oxygen vacancy concentration due to the combination of Mn 2+ and oxygen vacancies in PZT films, forming Mn 4+ ions. The interfacial layer between the Pt electrode and PZT films and Mn-doped PZT (x = 4) was detected by measuring the dielectric constant of thin films of different thickness. However, this interfacial layer was not detected in Mn-doped PZT (x = 1). These observations support the concept of the preferential electromigration of oxygen vacancies into sites in planes parallel to the electrodes, which is probably responsible for the hysteretic fatigue

  13. Effects of hydrogen on Mn-doped GaN: A first principles calculation

    International Nuclear Information System (INIS)

    Wu, M.S.; Xu, B.; Liu, G.; Lei, X.L.; Ouyang, C.Y.

    2013-01-01

    First-principles calculations based on spin density functional theory are performed to study the effects of H on the structural, electronic and magnetic properties of the Mn-doped GaN dilute magnetic semiconductors. Our results show that the interstitial H atom prefers to bond with N atom rather than Mn atom, which means that H favors to form the N–H complex rather than Mn–H complex in the Mn-doped GaN. After introducing one H atom in the system, the total magnetic moment of the Mn-doped GaN increases by 25%, from 4.0μ B to 5.0μ B . The physics mechanism of the increase of magnetic moment after hydrogenation in Mn-doped GaN is discussed

  14. Magnetic and electrical transport properties of delta-doped amorphous Ge:Mn magnetic semiconductors

    International Nuclear Information System (INIS)

    Li, H.L.; Lin, H.T.; Wu, Y.H.; Liu, T.; Zhao, Z.L.; Han, G.C.; Chong, T.C.

    2006-01-01

    We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature

  15. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  16. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    Science.gov (United States)

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  17. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Science.gov (United States)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  18. Structural properties of In0.53Ga0.47As epitaxial films grown on Si (111) substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gao, Fangliang; Wen, Lei; Zhang, Xiaona; Guan, Yunfang; Li, Jingling; Zhang, Shuguang; Li, Guoqiang

    2015-01-01

    In 0.53 Ga 0.47 As epitaxial films are grown on 2-inch diameter Si (111) substrates by growing a low-temperature In 0.4 Ga 0.6 As buffer layer using molecular beam epitaxy. The effect of the buffer layer thickness on the as-grown In 0.53 Ga 0.47 As films is characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy (TEM). It is revealed that the crystalline quality and surface morphology of as-grown In 0.53 Ga 0.47 As epilayer are strongly affected by the thickness of the In 0.4 Ga 0.6 As buffer layer. From TEM investigation, we understand that the type and the distribution of dislocations of the buffer layer and the as-grown In 0.53 Ga 0.47 As film are different. We have demonstrated that the In 0.4 Ga 0.6 As buffer layer with a thickness of 12 nm can advantageously release the lattice mismatch stress between the In 0.53 Ga 0.47 As and Si substrate, ultimately leading to a high-quality In 0.53 Ga 0.47 As epitaxial film with low surface roughness. - Highlights: • We provide a simple approach to achieve high-quality In 0.53 Ga 0.47 As films on Si. • An appropriate thickness of In 0.4 Ga 0.6 As buffer layer can release mismatch strain. • High-quality In 0.53 Ga 0.47 As film is grown on Si using 12-nm-thick buffer layer. • Smooth surface In 0.53 Ga 0.47 As film is grown on Si using 12-nm-thick buffer layer

  19. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu Xuechao; Zhang Huawei; Zhang Tao; Chen Boyuan; Chen Zhizhan; Song Lixin; Shi Erwei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn 2+ for Zn 2+ without additional acceptor doping. The substitution of N for O (N O −) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn 2+ and Mn 3+ via N O − . The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration

  20. Luminescent properties of Mn2+ doped apatite nanophosphors

    Science.gov (United States)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    2016-05-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn2+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn2+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn2+ doped CLHA nanophosphors.

  1. Luminescent properties of Mn"2"+ doped apatite nanophosphors

    International Nuclear Information System (INIS)

    Ravindranadh, K.; Rao, M. C.; Ravikumar, R. V. S. S. N.

    2016-01-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn"2"+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn"2"+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn"2"+ doped CLHA nanophosphors.

  2. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  3. Optical and magnetic resonance studies of Mg-doped GaN homoepitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Glaser, E.R.; Murthy, M.; Freitas, J.A.; Storm, D.F.; Zhou, L.; Smith, D.J.

    2007-01-01

    Low-temperature photoluminescence (PL) and optically detected magnetic resonance (ODMR) at 24 GHz have been performed on a series of MBE-grown Mg-doped (10 17 -10 20 cm -3 ) GaN homoepitaxial layers. High-resolution PL at 5 K revealed intense bandedge emission with narrow linewidths (0.2-0.4 meV) attributed to annihilation of excitons bound to shallow Mg acceptors. In contrast to many previous reports for GaN heteroepitaxial layers doped with [Mg]>3x10 18 cm -3 , the only visible PL observed was strong shallow donor-shallow acceptor recombination with zero phonon line at 3.27 eV. Most notably, ODMR on this emission from a sample doped with [Mg] of 1x10 17 cm -3 revealed the first evidence for the highly anisotropic g-tensor (g parallel ∼2.19, g perpendicular ∼0) expected for Mg shallow acceptors in wurtzite GaN. This result is attributed to the much reduced dislocation densities (≤5x10 6 cm -3 ) and Mg impurity concentrations compared to those characteristic of the more conventional investigated Mg-doped GaN heteroepitaxial layers

  4. Tunable band gap in epitaxial ferroelectric Ho(Mn,Ga)O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daesu; Noh, Tae Won, E-mail: twnoh@snu.ac.kr [Center for Correlated Electron Systems, Institute for Basic Science, Seoul 151-742 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Woo Seok [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-05-09

    Ferroelectrics have recently attracted attention as a new class of materials for use in optical and photovoltaic devices. We studied the electronic properties in epitaxially stabilized ferroelectric hexagonal Ho(Mn{sub 1−x}Ga{sub x})O{sub 3} (x = 0, 0.33, 0.67, and 1) thin films. Our films exhibited systematic changes in electronic structures, such as bandgap and optical transitions, according to the Ga concentration. In particular, the bandgap increased systematically from 1.4 to 3.2 eV, including the visible light region, with increasing Ga concentration from x = 0 to 1. These systematic changes, attributed to lattice parameter variations in epitaxial Ho(Mn{sub 1−x}Ga{sub x})O{sub 3} films, should prove useful for the design of optoelectronic devices based on ferroelectrics.

  5. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  6. Onset of magnetic interface exchange interactions in epitaxially grown Mn-Co(001)

    NARCIS (Netherlands)

    Kohlhepp, J.T.; Wieldraaijer, H.; Jonge, de W.J.M.

    2007-01-01

    Manganese (Mn) grows in a metastable expanded (c/a > 1) face-centered-tetragonal (fct) phase on thin fct-Co(001) template films. A layer-by-layer growth mode is obsd. for small Mn thicknesses. Antiferromagnetism (AFM) of fct-Mn is evidenced by the observation of shifted magnetization loops

  7. Structural and magnetic properties of La0.7Sr0.3MnO3 ferromagnetic thin film grown on PMN-PT by sol–gel method

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-08-01

    Full Text Available We report the preparation of epitaxial La0.7Sr0.3MnO3 thin films grown on (001-oriented 0.72Pb(Mg1∕3Nb2∕3O3-0.28PbTiO3 substrates by the sol–gel technique. The phase structure, magnetic properties and magnetoresistance of the samples are investigated by using high solution X-ray diffraction, atomic force microscopy, physical property measurement system, respectively. The La0.7Sr0.3MnO3 thin films display a well-defined hysteresis loop and typical ferromagnetism behavior at lower temperature. High magnetoresistance at 5T of 42% appears at 227K for La0.7Sr0.3MnO3 thin film.

  8. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  9. Structural, morphological and optical properties of spray deposited Mn-doped CeO2 thin films

    International Nuclear Information System (INIS)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G.

    2014-01-01

    Highlights: • Spray deposited undoped and Mn-doped CeO 2 thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO 2 thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO 2 films were studied. It was found that both the undoped and doped CeO 2 films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO 2 film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported

  10. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    J. Wu

    2015-06-01

    Full Text Available Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  11. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Mehdizadeh Dehkordi, Arash; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  12. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    International Nuclear Information System (INIS)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-01-01

    In this work we have studied the structural and magnetic properties of Ni 13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H 2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni 12 Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni 12 MnH 2 . Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H 2 absorption in the doped Ni 13−m Mn m alloy clusters. This has been reported earlier for smaller Ni n clusters [1

  13. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  14. The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate

    Science.gov (United States)

    Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya; Tomita, Kazuyoshi; Kachi, Tetsu

    2018-04-01

    We investigated traps in lightly Mg-doped (2 × 1017 cm-3) p-GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on a freestanding GaN substrate and the subsequent post-growth annealing, using deep level transient spectroscopy. We identified four hole traps with energy levels of EV + 0.46, 0.88, 1.0, and 1.3 eV and one electron trap at EC - 0.57 eV in a p-type GaN layer uniformly doped with magnesium (Mg). The Arrhenius plot of hole traps with the highest concentration (˜3 × 1016 cm-3) located at EV + 0.88 eV corresponded to those of hole traps ascribed to carbon on nitrogen sites in n-type GaN samples grown by MOVPE. In fact, the range of the hole trap concentrations at EV + 0.88 eV was close to the carbon concentration detected by secondary ion mass spectroscopy. Moreover, the electron trap at EC - 0.57 eV was also identical to the dominant electron traps commonly observed in n-type GaN. Together, these results suggest that the trap states in the lightly Mg-doped GaN grown by MOVPE show a strong similarity to those in n-type GaN, which can be explained by the Fermi level close to the conduction band minimum in pristine MOVPE grown samples due to existing residual donors and Mg-hydrogen complexes.

  15. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  16. Electrochemical sensing property of Mn doped V2O5 nanoparticles

    International Nuclear Information System (INIS)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2012-01-01

    In this study, pure V 2 O 5 and Mn doped V 2 O 5 nanoparticles were synthesized by thermal decomposition method. The FT-IR spectrum of Mn doped V 2 O 5 shows the bands at 822 and 1027 cm -1 which essentiaIIy of crystalline V 2 O 5 . Further, the bands observed in Mn doped V 2 O 5 are all shifted to lower wave number than the V 2 O 5 . The optical property of the nanocomposite was studied using UV-Visible absorption spectroscopy. The XRD data also revealed that the Mn doped V 2 O 5 obtained had an orthorhombic structure. The diffraction peaks in Mn doped V 2 O 5 nanoparticles are similar to that of V 2 O 5 . There was no indication of any other impurities in the sample. However, all the peaks of V 2 O 5 are slightly shifted to tower 2θ values. The FE-SEM image of V 2 O 5 shows that the particles adopt ellipse-like particles with different sizes due to aggregation. The synthesized nanoparticles were used to modify glassy carbon electrode (GCE) and the modified electrode was used to detect uric acid (UA) by voltammetric techniques. The effects of Mn on the optical, morphological and electrochemical detecting property of V 2 O 5 have also been studied. (author)

  17. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Narayanan, N. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 place Jussieu, 75005 Paris (France)

    2011-10-17

    Highlights: {yields} Al, Mg and Cu doped MnO{sub 2} as cathode in Li-ion batteries. {yields} Pure phase MnO{sub 2} for virgin and doped MnO{sub 2} were obtained. {yields} Doping elements improve the electrical conductivity of MnO{sub 2}. {yields} Electrochemical behaviour of MnO{sub 2} improved after doping by Al, Mg and Cu. - Abstract: Pure and doped manganese dioxides were prepared by wet-chemical method using fumaric acid and potassium permanganate as raw materials. X-ray diffraction patterns show that pure and Al, Cu and Mg doped manganese dioxides (d-MnO{sub 2}) crystallized in the cryptomelane-MnO{sub 2} structure. Thermal analysis show that, with the assistance of potassium ions inside the 2 x 2 tunnel, the presence of Al, Cu and Mg doping elements increases the thermal stability of d-MnO{sub 2}. The electrical conductivity of d-MnO{sub 2} increases in comparison with pure MnO{sub 2}, while Al-doped MnO{sub 2} exhibits the lower resistivity. As shown in the magnetic measurements, the value of the experimental effective magnetic moment of Mn ions decreases with introduction of dopants, which is attributed to the presence of a mixed valency of high-spin state Mn{sup 4+}/Mn{sup 3+}. Doped MnO{sub 2} materials show good capacity retention in comparison with virgin MnO{sub 2}. Al-doped MnO{sub 2} shows the best electrochemical results in terms of capacity retention and recharge efficiency.

  18. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    Science.gov (United States)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  19. Characterization of Mn doped ZnO nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Eva; Bakin, Andrey; Al-Suleiman, Mohamed; Wehmann, Hergo-Heinrich; Waag, Andreas [Institute of Semiconductor Technology, TU Braunschweig (Germany); Schmid, Herbert; Mader, Werner [Institute for Inorganic Chemistry, University Bonn (Germany); Bremers, Heiko; Hangleiter, Andreas [Institute of Applied Physics, TU Braunschweig (Germany)

    2008-07-01

    In the quest of materials for spintronic applications, diluted magnetic semiconductors recently attracted much attention. The main challenge is finding a ferromagnetic material with Curie temperature T{sub c}>300 K whose magnetic properties can be controlled electrically. The interest was particularly focused on Zn(TM)O since theoretical calculations predict that ZnO containing Mn could exhibit ferromagnetism with T{sub c} above room temperature. In the present study, the structural and magnetic properties of Mn doped ZnO nanopowder are investigated and compared to undoped ZnO crystals. Doping of ZnO with Mn results in increased lattice constants as revealed by XRD. However, an inhomogeneous distribution of the Mn dopants within the nanopowder was revealed by energy-dispersive X-ray and electron energy-loss spectroscopy. Magnetic properties are investigated by means of SQUID measurements on aggregates of powder particles as well as by MFM to study the behavior of single grains. The MFM image differs significantly from the topography as imaged by AFM and suggests the existence of long-ranging magnetic signals emerging from the sample.

  20. Mn doping of GaN layers grown by MOVPE

    Czech Academy of Sciences Publication Activity Database

    Šimek, P.; Šofer, Z.; Sedmidubský, D.; Jankovský, O.; Hejtmánek, Jiří; Maryško, Miroslav; Václavů, M.; Mikulics, M.

    2012-01-01

    Roč. 56, č. 2 (2012), s. 122-126 ISSN 0862-5468 R&D Projects: GA ČR GA104/09/0621 Institutional research plan: CEZ:AV0Z10100521 Keywords : metalorganic vapor phase epitaxy * nitrides * magnetic materials * semiconducting III-V materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.418, year: 2012

  1. Epitaxial Sb-doped SnO{sub 2} and Sn-doped In{sub 2}O{sub 3} transparent conducting oxide contacts on GaN-based light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Min-Ying [Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 (United States); Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Paul-Drude-Insitut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Speck, James S. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2016-04-30

    We demonstrate the growth of epitaxial (100)-oriented, rutile Sb-doped SnO{sub 2} (ATO) and (111)-oriented, cubic Sn-doped In{sub 2}O{sub 3} (ITO) transparent conducting oxide (TCO) contacts on top of an InGaN/GaN(0001) light emitting diode (LED) by plasma-assisted molecular beam epitaxy (PAMBE). Both oxides form rotational domains. The in-plane epitaxial alignment of the two ITO(111) rotational domains to the GaN(0001) was: GaN [21-10]|| ITO{sub Domain1}[‐ 211]|| ITO{sub Domain2}[‐ 1‐12]. A growth temperature as low as 600 °C was necessary to realize a low contact resistance between ATO and the top p-GaN layer of the LED but resulted in non-optimal resistivity (3.4 × 10{sup −} {sup 3} Ω cm) of the ATO. The current–voltage characteristics of a processed LED, however, were comparable to that of a reference LED with a standard electron-beam evaporated ITO top contact. At short wavelengths, the optical absorption of ATO was lower than that of ITO, which is beneficial even for blue LEDs. Higher PAMBE growth temperatures resulted in lower resistive ATO but higher contact resistance to the GaN, likely by the formation of an insulating Ga{sub 2}O{sub 3} interface layer. The ITO contact grown by PAMBE at 600 °C showed extremely low resistivity (10{sup −4} Ω cm) and high crystalline and morphological quality. These proof-of-principle results may lead to the development of epitaxial TCO contacts with low resistivity, well-defined interfaces to the p-GaN to help minimize contact losses, and enable further epitaxy on top of the TCO. - Highlights: • Plasma-assisted molecular beam epitaxy of SnO{sub 2}:Sb (ATO) and In{sub 2}O{sub 3}:Sn (ITO) contacts • Working light emitting diodes processed with the ATO contact on the top p-GaN layer • Low growth temperature ensures low contact resistance (limiting interface reaction). • ITO showed significantly better structural and transport properties than ATO. • ATO showed higher optical transmission at short

  2. Strain in epitaxial high-index Bi{sub 2}Se{sub 3}(221) films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Chen, Weiguang [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Guo, Xin; Ho, Wingkin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Jia, Jinfeng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, Department of Physics and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Xie, Maohai, E-mail: mhxie@hku.hk [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-02-28

    Highlights: • High-index, off c-axis, Bi{sub 2}Se{sub 3} has been grown by molecular beam epitaxy on In{sub 2}Se{sub 3}. • A retarded strain relaxation process in such high-index Bi{sub 2}Se{sub 3} is observed, enabling experimentally probe strain effect on topological insulators. • It has been shown by calculation that the Dirac electrons participate in chemical bonding at the heterointerface. - Abstract: High-index Bi{sub 2}Se{sub 3}(221) film has been grown on In{sub 2}Se{sub 3}-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi{sub 2}Se{sub 3}(221) can be attributed to the layered structure of Bi{sub 2}Se{sub 3} crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi{sub 2}Se{sub 3} and In{sub 2}Se{sub 3} by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  3. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles

    International Nuclear Information System (INIS)

    Azzaza, S.; El-Hilo, M.; Narayanan, S.; Judith Vijaya, J.; Mamouni, N.; Benyoussef, A.; El Kenz, A.; Bououdina, M.

    2014-01-01

    Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism. - Graphical abstract: The measured room temperature magnetization curve for the Mn doped MgO with 5 at.%, 10 at.% and 20 at.%. - Highlights: • Combination of experimental and calculation methods. • Decrease of both the gap and the Curie temperature with increasing Mn content. • Ferromagnetism in MgO originate from interactions between defects

  4. Oriented Mn-doped CuO nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-01-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO_3)_2 · 4H_2O and Cu(NO_3)_2 · 3H_2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future. (paper)

  5. Photovoltaic X-ray detectors based on epitaxial GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Artemov, V.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninski pr., Moscow B-333, 117333 (Russian Federation); Dvoryankin, V.F. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation)]. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Dikaev, Yu.M. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakov, M.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakova, O.N. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Chmil, V.B. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Holodenko, A.G. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Kudryashov, A.A.; Krikunov, A.I.; Petrov, A.G.; Telegin, A.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Vorobiev, A.P. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation)

    2005-12-01

    A new type of the photovoltaic X-ray detector based on epitaxial p{sup +}-n-n'-n{sup +} GaAs structures which provides a high efficiency of charge collection in the non-bias operation mode at room temperature is proposed. The GaAs epitaxial structures were grown by vapor-phase epitaxy on heavily doped n{sup +}-GaAs(1 0 0) substrates. The absorption efficiency of GaAs X-ray detector is discussed. I-V and C-V characteristics of the photovoltaic X-ray detectors are analyzed. The built-in electric field profiles in the depletion region of epitaxial structures are measured by the EBIC method. Charge collection efficiency to {alpha}-particles and {gamma}-radiation are measured. The application of X-ray detectors is discussed.

  6. Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates.

    Science.gov (United States)

    Burrows, Christopher W; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P A; Wilkins, Stuart B; Walker, Marc; Mudd, James J; Maskery, Ian; Lees, Martin R; McConville, Christopher F; Leadley, David R; Bell, Gavin R

    2013-11-06

    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

  7. Growth and characterization of La2CoMnO6 crystals doped with Pb

    International Nuclear Information System (INIS)

    Milenov, T.I.; Rafailov, P.M.; Abrashev, M.V.; Nikolova, R.P.; Nakatsuka, A.; Avdeev, G.V.; Veleva, M.N.; Dobreva, S.; Yankova, L.; Gospodinov, M.M.

    2010-01-01

    Crystals of La 2 CoMnO 6 doped with Pb were grown by the high temperature solution growth method. Several crystals were examined by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), X-ray single-crystal diffractometry and polarized Raman spectroscopy. Some variations in the composition of different crystals are observed, however, within the volume of each distinct crystal the composition is found to be fairly constant. Crystals with lateral dimensions larger than 2 mm and thicker than 1 mm contain structural defects as twin lamellae and surface roughness. The results from the characterization of the grown crystals with X-ray diffraction and Raman spectroscopy are consistent with an assumption for a coexistence of an ordered monoclinic and a disordered orthorhombic phase.

  8. Synthesis, characterization and photovoltaic properties of Mn-doped Sb2S3 thin film

    Directory of Open Access Journals (Sweden)

    Horoz Sabit

    2018-03-01

    Full Text Available Synthesis and characterization of Mn-doped Sb2S3 thin films (TFs prepared by chemical bath deposition (CBD at room temperature have been documented and their structural, optical, morphological, magnetic and photovoltaic properties have been examined for the first time. Their structural properties reveal that the Mn-doped Sb2S3 TF has an orthorhombic phase structure of Sb2S3, and that the grain size of the Mn-doped Sb2S3 TF (72.9 nm becomes larger than that of undoped Sb2S3 TF (69.3 nm. It has been observed that Mn content causes the Sb2S3 TF band gap to decrease. This situation clearly correlates with band tailing due to the impurities that are involved. The morphological properties have revealed that the shape of the Mn-doped Sb2S3 TF is more uniform than the shape of its undoped counterpart. The study on its magnetic properties has demonstrated that the Mn-doped Sb2S3 TF exhibits paramagnetic behavior. Its paramagnetic Curie-Weiss temperature was found to be -4.1 K. This result suggests that there is an anti-ferromagnetic interaction between Mn moments in the Mn-doped Sb2S3 TF. Incident photon to electron conversion efficiency (IPCE and J-V measurements were also carried out for the Mn-doped Sb2S3 TF for the first time. The results have indicated that the Mn-doped Sb2S3 TF can be utilized as a sensitizer to improve the performance of solar cells. Another important observation on the photovoltaic properties of Mn-doped Sb2S3 TF is that the spectral response range is wider than that of undoped Sb2S3 TF. Our study suggests that the introduction of dopant could serve as an effective means of improving the device performance of solar cells.

  9. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    Science.gov (United States)

    Rashad, M. M.; Rayan, D. A.; El-Barawy, K.

    2010-01-01

    Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.

  10. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Rashad, M M; Rayan, D A; El-Barawy, K

    2010-01-01

    Nanocrystallite Mn doped Zn 1-X S (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn 2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200 o C for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn 2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn 2+ ions up to 0.2.

  11. Mn doped GaN nanoparticles synthesized by rapid thermal treatment in ammonia

    International Nuclear Information System (INIS)

    Šimek, P.; Sedmidubský, D.; Huber, Š.; Klímová, K.; Maryško, M.; Mikulics, M.; Sofer, Z.

    2015-01-01

    We present a novel route for the synthesis of manganese doped GaN nanoparticles. Nanoparticles in the form of hexagonal discs were synthesized by rapid thermal treatment of manganese doped ammonium hexafluorogallate in ammonium atmosphere. The morphology of GaN:Mn nanoparticles was investigated using scanning electron microscopy. A concentration over 0.7 wt.% of Mn was observed by X-ray fluorescence and electron microprobe. Structural and electronic properties were investigated using X-ray diffraction, Raman spectroscopy and micro-photoluminescence with excitation wavelength of 325 nm and 532 nm. The magnetic properties between 4.5 K and 300 K were investigated by a superconducting quantum interference device (SQUID) magnetometer. GaN:Mn nanoparticles show a purely paramagnetic behavior which can be interpreted in terms of Mn 2+ ions exhibiting an antiferromagnetic interaction. - Highlights: • A new method for the synthesis of Mn doped GaN nanoparticles. • GaN:Mn nanoparticles form hexagonal discs. • None ferromagnetic ordering observed in GaN:Mn nanoparticles. • The concentration of Mn in GaN:Mn nanoparticles reach up to 0.8 wt.%

  12. Luminescent properties of Mn{sup 2+} doped apatite nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranadh, K.; Rao, M. C., E-mail: raomc72@gmail.com [Department of Physics, Andhra Loyola College, Vijayawada-520 008 (India); Ravikumar, R. V. S. S. N. [Department of Physics, Acharya Nagarjuna University, Guntur-522 510 (India)

    2016-05-06

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn{sup 2+} doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn{sup 2+} doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn{sup 2+} doped CLHA nanophosphors.

  13. Silicon doped InP as an alternative plasmonic material for mid-infrared

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  14. Ln{sup 3+}:KLu(WO{sub 4}){sub 2}/KLu(WO{sub 4}){sub 2} epitaxial layers: Crystal growth and physical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, O.; Pujol, M.C.; Sole, R.; Bolanos, W.; Carvajal, J.J.; Massons, J.; Aguilo, M. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain); Diaz, F. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain)], E-mail: f.diaz@urv.cat

    2008-01-15

    Monoclinic epitaxial layers of single doped KLu{sub 1-x}Ln{sub x}(WO{sub 4}){sub 2} (Ln{sup 3+} = Yb{sup 3+} and Tm{sup 3+}) have been grown on optically passive KLuW substrates by liquid phase epitaxy (LPE) technique using K{sub 2}W{sub 2}O{sub 7} as solvent. The ytterbium content in the layer is in the range of 0.05 < x < 0.75 atomic substitution and the studied thulium concentrations are 0.05 < x < 0.10. The grown epitaxies are free of macroscopic defects and only in highly ytterbium-doped epilayers do some cracks or inclusions appear. The refractive indices of the epilayers were determined. The absorption and emission cross sections of ytterbium and thulium in KLuW are characterised and laser generation results are presented and discussed.

  15. Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites

    International Nuclear Information System (INIS)

    Ran, Rui; Wu, Xiaodong; Weng, Duan; Fan, Jun

    2013-01-01

    Graphical abstract: Dynamic OSC of (a) fresh and (b) aged LaMn 1−x Ni x O 3 perovskites (0.1 Hz). Aged condition: 1050 °C, 5 h, 7% steam in air. The LaMn 1−x Ni x O 3 perovskites exhibit considerable dynamic OSC in comparison to CeO 2 –ZrO 2 (CZ), even after 1050 °C hydrothermal ageing for 5 h. Highlights: •Ni-doped LaMnO 3 perovskites exhibit very large dynamic OSC and high oxygen storage rate. •Mn 4+ is favourable to the releasable oxygen. •Doping of Ni ions increase the Mn 4+ content and the oxygen vacancies. •Doping of Ni ions reduce the BO 6 distortion in the LaMnO 3 perovskites. -- Abstract: A series of Ni doped LaMnO 3 perovskites were prepared by a sol–gel method as oxygen storage materials. Powder X-ray diffraction (XRD), X-ray adsorption fine structure (XAFS), oxygen storage capacity (OSC) and H 2 -temperature program reduction (TPR) measurements were performed to investigate the OSC of the perovskites as well as the effects of Ni on the structural properties. The results showed that the Ni-doped LaMnO 3 perovskite exhibited very large dynamic OSC and high oxygen release rate, which provided a possibility to serve as an oxygen storage material candidate in three-way catalysts. The available oxygen species below 500 °C primarily originated from the redox reaction between Mn 4+ and Mn 3+ , and the more Mn 4+ were favourable to the releasable oxygen. The doping of appropriate Ni ions promoted the OSC of the LaMnO 3 perovskites by increasing the Mn 4+ content and adjusting the structural defects. On the other hand, the doped Ni ions could make the BO 6 distortion disappearing in the LaMnO 3 perovskites to reduce the lattice oxygen activity

  16. SiC epitaxial layer growth in a novel multi-wafer VPE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr.; O`Loughlin, M.J. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States); Mani, S.S. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States)

    1998-06-01

    Preliminary results are presented for SiC epitaxial layer growth employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7 x 2-inch) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600 C. Specular epitaxial layers have been grown in the reactor at growth rates from 3-5 {mu}m/hr. The thickest layer grown to data was 42 {mu}m. The layers exhibit minimum unintentional n-type doping of {proportional_to}1 x 10{sup 15} cm{sup -3}, room temperature mobilities of {proportional_to}1000 cm{sup 2}/Vs, and intentional n-type doping from {proportional_to}5 x 10{sup 15} cm{sup -3} to >1 x 10{sup 19} cm{sup -3}. Intrawafer thickness and doping uniformities of 4% and 7% (standard deviation/mean) have been obtained, respectively, on 35 mm diameter substrates. Recently, 3% thickness uniformity has been demonstrated on a 50 mm substrate. Within a run, wafer-to-wafer thickness deviation is {proportional_to}4-14%. Doping variation is currently larger, ranging as much as a factor of two from the highest to the lowest doped wafer. Continuing efforts to improve the susceptor temperature uniformity and reduce unintentional hydrocarbon generation to improve layer uniformity and reproducibility, are presented. (orig.) 18 refs.

  17. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wu, Yuh-Renn [Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan (China)

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimized GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.

  18. Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm(0.5)Ca(0.5)MnO(3) films.

    Science.gov (United States)

    Chen, Y Z; Sun, J R; Zhao, J L; Wang, J; Shen, B G; Pryds, N

    2009-11-04

    We investigated the structure and magnetotransport properties of Sm(0.5)Ca(0.5)MnO(3) (SCMO) films epitaxially grown on (011)-oriented SrTiO(3) substrates, which exhibited clear charge/orbital ordering transition. A significant anisotropy of ∼1000 in the colossal magnetoresistance (CMR) effect was observed in the films with a thickness between 50 and 80 nm, which was distinctly different from the basically isotropic CMR effect in bulk SCMO. The large anisotropy in the CMR can be ascribed to the intrinsic asymmetric strain in the film, which plays an important role in tuning the spin-orbit coupling in manganite films. The origin of the peculiar CMR effect is discussed.

  19. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M M; Rayan, D A; El-Barawy, K [Central Metallurgical Research and Development Institute PO Box: 87 Helwan, Cairo (Egypt)

    2010-01-01

    Nanocrystallite Mn doped Zn{sub 1-X}S (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn{sup 2+} ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200{sup o}C for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn{sup 2+} ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn{sup 2+} ions up to 0.2.

  20. A photoemission study of Mn grown on GaAs(100)

    International Nuclear Information System (INIS)

    James, D.; Riley, J.; Leckey, R.; Usher, B.; Sieber, N.; Seyller, Th.; Ley, L.

    2002-01-01

    Full text: Metal contacts on semiconductors have been an important area for device manufacture. The possibility of lattice matched growth of magnetic metals on semiconductors was once thought to be a unobtainable goal. More recently it has been found that transition metals can react with the semiconductor substrates, forming another lattice with a more comparable lattice constant, from which epitaxial growth can then proceed. Al grows epitaxially on GaN even with a lattice mismatch greater than 10%. In this instance, Al displaces Ga being driven by a larger heat of formation to produce an AlN buffer layer, on which Al can then grow. This paper investigates the room temperature deposition of Mn onto GaAs(100) at room temperature. The Photoemission study was carried out at the UEL56/2 PGM2 beam line at BESSY II in Berlin, Germany. Synchrotron radiation was used to observe the surface as thin layers of Mn were deposited. The interaction of manganese with the substrate tends to donate electron density to neighbouring atoms, decreasing binding energy. No further segregation of substitutional or interstitial Mn and Ga can be seen from angle dependence data at this temperature, with metallic manganese eventually attenuating the bulk Ga signal to the point where it is indistinguishable from the background. It is concluded that there the metal reacts with the semiconductor surface with some indiffusion as confirmed using SIMS. Previously, the reaction was only thought to have taken place above room temperature. The resulting structure consists of a Ga-As-Mn buffer layer as with the higher temperature depositions

  1. Epitaxial growth of manganese oxide films on MgAl2O4 (001) substrates and the possible mechanism

    Science.gov (United States)

    Ren, Lizhu; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2014-03-01

    Three types of manganese oxide films were grown on MgAl2O4 (001) substrates by plasma-assisted molecular beam epitaxy (PA-MBE) under different growth rates and substrate temperatures. The structural characteristics and chemical compositions of the films were investigated by using in-situ reflection high-energy electron diffraction (RHEED), ex-situ X-ray diffraction, Raman, and X-ray photoelectron spectra (XPS). At a lower substrate temperature (730 K), the epitaxial film tends to form mixed phases with a coexistence of Mn3O4 and Mn5O8 in order to relieve the mismatch-strain. However, at a higher substrate temperature (750 K), all of the films crystallize into Mn3O4; the critical thickness of the film grown under a lower growth rate (7 Å/min) is much larger than that under a high growth rate (10 Å/min). When the film reaches a certain critical thickness, the surface will become fairly rough, and another oriented phase Mn3O4 would crystallize on such a surface.

  2. Structural and magnetic properties of Cr and Mn doped InN

    International Nuclear Information System (INIS)

    Ney, A.; Rajaram, R.; Arenholz, E.; Harris, J.S.; Samant, M.; Farrow, R.F.C.; Parkin, S.S.P.

    2006-01-01

    We present a detailed magnetic characterization of Cr and Mn doped InN films be means of superconducting quantum interference device magnetometry and X-ray magnetic circular dichroism. The InN:Cr films exhibit ferromagnetic behavior up to 300 K in a doping region from 2% to 8% without detectable phase segregation. The easy axis of magnetization is found to be in the film plane. On the contrary, Mn-doped films show signatures of phase segregation and paramagnetic behavior

  3. Mn{sup 2+} ions distribution in doped sol–gel deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Mariana, E-mail: mstefan@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Ghica, Daniela; Nistor, Sergiu V.; Maraloiu, Adrian V. [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Plugaru, Rodica [National Institute for R & D in Microtechnologies (IMT), Erou Iancu Nicolae Str. 126A, 077190 Bucharest (Romania)

    2017-02-28

    Highlights: • Several Mn{sup 2+} centers observed by EPR in sol–gel ZnO films. • Mn{sup 2+} ions localized at Zn{sup 2+} sites in ZnO grains and disordered ZnO phase. • Sixfold coordinated Mn{sup 2+} ions localized in inter-grain region. • Aggregated Mn in insular-like regions between ZnO grains in the ZnO:5%Mn film. • Aggregated Mn phase presence and distribution observed by EPR and EDX-STEM. - Abstract: The localization and distribution of the Mn{sup 2+} ions in two sol–gel deposited ZnO films doped with different manganese concentrations were investigated by electron paramagnetic resonance spectroscopy and analytical transmission electron microscopy. In the lightly doped sample the Mn{sup 2+} ions are mainly localized substitutionally at isolated tetrahedrally coordinated Zn{sup 2+} sites in both crystalline ZnO nanograins (34%) and surrounding disordered ZnO (52%). In the highly doped ZnO film, a much smaller proportion of manganese substitutes Zn{sup 2+} in the crystalline and disordered ZnO (10%). The main amount (85%) of manganese aggregates in a secondary phase as an insular-like distribution between the ZnO nanograins. The remaining Mn{sup 2+} ions (14% and 5% at low and high doping levels, respectively) are localized at isolated, six-fold coordinated sites, very likely in the disordered intergrain region. Annealing at 600 °C induced changes in the Mn{sup 2+} ions distribution, reflecting the increase of the ZnO crystallization degree, better observed in the lightly doped sample.

  4. Structural, morphological and optical properties of spray deposited Mn-doped CeO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G., E-mail: jp@ece.sastra.edu

    2014-07-25

    Highlights: • Spray deposited undoped and Mn-doped CeO{sub 2} thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO{sub 2} thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO{sub 2} films were studied. It was found that both the undoped and doped CeO{sub 2} films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO{sub 2} film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported.

  5. Preparation of nanometer sized Mn doped Zn based oxides powder for DMS applications

    CSIR Research Space (South Africa)

    Das, J

    2009-01-01

    Full Text Available In order to study the size dependent DMS (Diluted Magnetic Semiconductor) behavior of Mn doped ZnO, the authors have systematically prepared a series of nanosized green powder based on Mn doped ZnO (Zn 1-x Mn x O, where x=0.02 - 0.1) materials using...

  6. Low-temperature flux growth of sulfates, molybdates, and tungstates of Ca, Sr, and Ba and investigation of doping with Mn6+

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Ehrentraut, D.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, R.

    The growth of undoped and $Mn^{6+}$-doped molybdates and tungstates of alkali-earth metals and BaSO4 has been investigated. Single crystals were grown by the flux method within the temperature range of 600–475 °C, using the ternary NaCl–KCl–CsCl solvent. Sizes of undoped crystals increase within the

  7. The effect of ultraviolet irradiation on the photothermal, photoluminescence and photoluminescence excitation spectra of Mn-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Briones Cruz, Almira; Shen Qing; Toyoda, Taro

    2006-01-01

    Research involving Mn doped nanocrystalline ZnS (ZnS:Mn) has grown in recent years, partly due to the high quantum luminescence efficiencies that have been reported. We measured the photoacoustic (PA), the photoluminescence (PL) and the photoluminescence excitation (PLE) spectra of surface-passivated and unpassivated ZnS:Mn. The effects of UV irradiation on the PL and PLE spectra were also studied. A decrease in the PA intensity after UV exposure was observed for the ZnS:Mn, indicating a decrease in the nonradiative relaxation probability. The observed increase in PL intensity indicates a corresponding increase in the radiative transition probability. For the PLE spectra, possible aggregation of the primary particles could have resulted in the lower measured energy of the PLE peak compared to the value predicted by the effective mass approximation theory

  8. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    Science.gov (United States)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-06-01

    In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].

  9. Preparation of Mn doped CeO_2 nanoparticles with enhanced ferromagnetism

    International Nuclear Information System (INIS)

    Ravi, S.; Winfred Shashikanth, F.

    2017-01-01

    Spherical-like CeO_2 and Mn-doped CeO_2 using 6-aminohexanoic acid as surfactant exhibit enhanced ferromagnetism. The optical absorption spectra reveal a red shift with a band gap of 2.51 eV. The mechanics of ferromagnetism and the red shift were analyzed. These results provide a promising platform for developing a dilute magnetic semiconductor in spintronics. - Highlights: • Pure and Mn-doped CeO_2 is prepared with aminohexanoic acid as capping. • They exhibit wide optical absorption with red-shift in their band gap. • Mn-doped CeO_2 nanoparticle exhibit hysteresis at room temperature. • Results were promising to use in spintronics and opto-electronics field.

  10. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  11. Properties of Mn-doped ZnO nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E.; Bakin, A.; Wehmann, H.H.; Al-Suleiman, M.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Schmid, H.; Mader, W. [Universitaet Bonn, Institut fuer Anorganische Chemie, Bonn (Germany); Bremers, H.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Luedke, J.; Albrecht, M. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2008-06-15

    The structural and magnetic properties of Mn-doped ZnO nanopowder are investigated and compared to undoped ZnO crystals. Mn incorporation leads to an increase in the lattice constants as revealed by X-ray diffraction measurements. An inhomogeneous distribution of the Mn atoms within the nanopowder was detected by energy-dispersive X-ray and electron-energy-loss spectroscopy measurements. Magnetic features are investigated by means of SQUID magnetometry on ensembles of powder particles as well as by magnetic force microscopy to study the behavior of single grains. (orig.)

  12. Nitrogen doping efficiency during vapor phase epitaxy of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, L.B.; Brandt, C.D. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States); Burk, A.A. Jr. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States)

    1998-06-01

    This work examines the interrelationships among doping efficiency, mole fraction, and Si/C ratio for intentional doping of 4H-SiC during vapor phase epitaxy using N{sub 2}. For four Si/C ratios, the doping concentration increased linearly as a function of increasing N{sub 2} partial pressure with a slope of 1.0 {+-} 0.03. Variation of propane mole fraction while the SiH{sub 4} and N{sub 2} mole fractions were kept constant revealed two different modes of nitrogen incorporation, corresponding to carbon-rich and silicon-rich conditions. (orig.) 14 refs.

  13. Structural, elastic and magnetic properties of Mn and Sb doped chromium nitride – An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Ikram Un Nabi Lone; Sheik Sirajuddeen M Mohamed, E-mail: msheiksiraj@bsauniv.ac.in; Shameem Banu, I.B.; Sathik Basha, S.

    2017-05-01

    Structural, magnetic and elastic properties of Mn and Sb doped CrN were investigated by the electronic band structure calculations using Full Potential Linear Augmented Plane Wave (FP-LAPW) method. The host compound CrN was doped with Mn and Sb separately, in the doping concentration of 12.5% to replace Cr atoms. The introduction of Mn and Sb atoms replacing the Cr atoms does not change the structural stability of the compound. The changes in magnetic and elastic properties were investigated and compared in GGA and GGA+U methods. The doped CrN undergoes a relative increase in the magnetic order with the substitution of Mn and Sb atoms. In GGA method, the magnetic moments are found to be greater in Mn doped CrN than that found in Sb doped Cr{sub 0.875}NSb{sub 0.125}. When doped with Sb, the elastic moduli such as Young’s modulus, bulk modulus and rigidity modulus show a relative increase in comparison with that in Mn doped CrN. Using Hubbard model in GGA+U method, both the magnetic and elastic properties increase in Mn and Sb doped compounds. - Highlights: • Mn and Sb doped Chromium Nitride. • Structural properties. • Magnetic properties. • Elastic properties.

  14. Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism.

    Science.gov (United States)

    Zheng, Yulin; Wang, Wenliang; Li, Xiaochan; Li, Yuan; Huang, Liegen; Li, Guoqiang

    2017-08-16

    The polarity of GaN epitaxial films grown on LiGaO 2 (001) substrates by pulsed laser deposition has been well controlled. It is experimentally proved that the GaN epitaxial films grown on nitrided LiGaO 2 (001) substrates reveal Ga-polarity, while the GaN epitaxial films grown on non-nitrided LiGaO 2 (001) substrates show N-polarity. The growth mechanisms for these two cases are systematically studied by first-principles calculations based on density functional theory. Theoretical calculation presents that the adsorption of a Ga atom preferentially occurs at the center of three N atoms stacked on the nitrided LiGaO 2 (001) substrates, which leads to the formation of Ga-polarity GaN. Whereas the adsorption of a Ga atom preferentially deposits at the top of a N atom stacked on the non-nitrided LiGaO 2 (001) substrates, which results in the formation of N-polarity GaN. This work of controlling the polarity of GaN epitaxial films is of paramount importance for the fabrication of group-III nitride devices for various applications.

  15. Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhiyi [Optoelectronic Institute, Guilin University of Electronic Technology, Guilin 541004, Guangxi (China); Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Ma, Li [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Wang, Xiaojun, E-mail: xwang@georgiasouthern.edu [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-01-15

    Photoluminescence and phosphorescence from different recombining centers in the Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4} phosphors have been observed. By UV excitation the undoped sample presents a broad band of blue–white emission from the host defects while the Mn-doped samples show both the host and Mn{sup 2+} emissions with different phosphorescent durations. At the beginning of UV excitation after the phosphorescence has been exhausted, the fluorescent time dependence of Mn{sup 2+} exhibits a fast decay process to a constant intensity, different from the rising or charging process as the typical behavior for the common persistent phosphors. This unusual behavior was studied using electron paramagnetic resonance (EPR) spectroscopy. A decrease of the EPR signal from Mn{sup 2+} was found for the sample under UV irradiation, suggesting the occurrence of ionization of Mn{sup 2+} to Mn{sup 3+}. A slow recovering process of the ionization has also been detected, which is consistent with the observation of phosphorescence from Mn{sup 2+} doped samples. - Highlights: • Photoluminescence and phosphorescence observed from Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4}. • Unusual charging process from the common phosphors observed and analyzed. • Photo-stimulated EPR with a slow recovering process of Mn{sup 2+} ionization observed.

  16. Facile hydrothermal synthesis of mn doped ZnO nanopencils for development of amperometric glucose biosensors

    Science.gov (United States)

    Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2018-05-01

    Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.

  17. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2012-01-01

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies

  18. Structure, reactivity and electronic properties of Mn doped Ni{sub 13} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com

    2013-06-15

    In this work we have studied the structural and magnetic properties of Ni{sub 13} cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H{sub 2} molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni{sub 12}Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni{sub 12}MnH{sub 2}. Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H{sub 2} absorption in the doped Ni{sub 13−m}Mn{sub m} alloy clusters. This has been reported earlier for smaller Ni{sub n} clusters [1].

  19. Effect of Mg Doping on the Photoluminescence of GaN:Mg Films by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy

    International Nuclear Information System (INIS)

    Sui Yan-Ping; Yu Guang-Hui

    2011-01-01

    We investigate undoped GaN and Mg-doped GaN grown by rf plasma-assisted molecular beam epitaxy (MBE) with different Mg concentrations by photoluminescence (PL) at low temperature, Hall-effect and XRD measurements. In the PL spectra of lightly Mg-doped GaN films, a low intensity near band edge (NBE) emission and strong donor-acceptor pair (DAP) emission with its phonon replicas are observed. As the Mg concentration is increased, the DAP and NBE bands become weaker and a red shift of these bands is observed in the PL spectra. Yellow luminescence (YL) is observed in heavily Mg-doped GaN. The x-ray diffraction is employed to study the structure of the films. Hall measurement shows that there is a maximum value (3.9 × 10 18 cm −3 ) of hole concentration with increasing Mg source temperature for compensation effect. PL spectra of undoped GaN are also studied under N-rich and Ga-rich growth conditions. Yellow luminescences of undoped Ga-rich GaN and heavily Mg-doped GaN are compared, indicating the different origins of the YL bands. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    International Nuclear Information System (INIS)

    Neogi, S.K.; Karmakar, R.; Misra, A.K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-01-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn 1−x Mn x O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO 3 ) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ 1 and τ 2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase

  1. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Karmakar, R. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Misra, A.K. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India); Das, D. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India)

    2013-11-15

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn{sub 1−x}Mn{sub x}O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO{sub 3}) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ{sub 1} and τ{sub 2} are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase.

  2. Solid phase epitaxial growth of high mobility La:BaSnO_3 thin films co-doped with interstitial hydrogen

    International Nuclear Information System (INIS)

    Niedermeier, Christian A.; Rhode, Sneha; Fearn, Sarah; Moram, Michelle A.; Ide, Keisuke; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    This work presents the solid phase epitaxial growth of high mobility La:BaSnO_3 thin films on SrTiO_3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO_3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm"2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO_3 thin films, and a 9%–16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO_3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO_3 thin films were increased to 3 × 10"1"9" cm"−"3 and in La:BaSnO_3 thin films from 6 × 10"1"9" cm"−"3 to 1.5 × 10"2"0" cm"−"3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO_3 electron effective mass of 0.27 ± 0.05 m_0 and an optical mobility of 26 ± 7 cm"2/Vs. As compared to La:BaSnO_3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO_3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.

  3. Multilayer epitaxial graphene grown on the (SiC 000 1-bar ) surface; structure and electronic properties

    International Nuclear Information System (INIS)

    Sprinkle, M; Hicks, J; Tinkey, H; Clark, M C; Hass, J; Conrad, E H; Tejeda, A; Taleb-Ibrahimi, A; Le Fevre, P; Bertran, F; Soukiassian, P; Martinotti, D

    2010-01-01

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (0 0 0 1-bar ) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  4. Growth and properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7−δ}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} epitaxial trilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Minaxi, E-mail: meenanith@gmail.com; Kumar, Arvind; Sharma, K. K. [Department of Physics, National Institute of Technology, Hamirpur -177005 (India); Kumar, Ravi [Centre for Materials Science and Engineering, National Institute of Technology, Hamirpur -177005 (India); Beant College of Engineering and Technology, Gurdaspur Punjab-143521 (India); Choudhary, R. J. [UGC-DAE-Consortium for Scientific Research, Khandwa Road, Indore-452001 (India)

    2015-08-28

    We report the growth and properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7−δ}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} LSMO/YBCO/LSMO epitaxial trilayer films, fabricated on SrTiO{sub 3} substrate using pulsed laser deposition technique. From x-ray diffraction and high resolution x-ray diffraction measurements, it is confirmed that the grown trilayered films are single phase and epitaxial in nature. Magneto-transport and magnetic properties are found to be dependent on the thickness of YBCO spacer layer. We infer that for fixed thickness of top and bottom LSMO layers, superconductivity is completely suppressed. At 100 K, the hysteresis loops reveal the ferromagnetic signature of trilayered film. At room temperature, we obtain a butterfly type scenario, signifies the co-existence of ferromagnetic and antiferromagnetic interaction. In addition, at room temperature, the YBCO spacer layer allowing the top and bottom LSMO layers to interact antiferromagnetically.

  5. Low-field tunnel-type magnetoresistance properties of polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 thin films

    CERN Document Server

    Shim, I B; Choi, S Y

    2000-01-01

    The low-field tunnel-type magnetoresistance (TMB) properties of sol-gel derived polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 (LSMO) thin films were investigated. The polycrystalline thin films were fabricated on Si (100) with a thermally oxidized SiO sub 2 layer while the epitaxial thin films were grown on LaAlO sub 3 (001) single-crystal substrates. The epitaxial thin films displayed both typical intrinsic colossal magnetoresistance (CMR) and abnormal extrinsic tunnel-type magnetoresistance behaviors. Tunnel-type MR ratio as high as 0.4% were observed in the polycrystalline thin films at a field of 120 Oe at room temperature (300 K) whereas the ratios were less than 0.1% for the epitaxial films in the same field range. The low-field tunnel-type MR of polycrystalline LSMO/SiO sub 2 ?Si (100) thin films originated from the behaviors of the grain-boundary properties.

  6. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  7. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  8. Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-assisted molecular-beam epitaxy using a ZnS epitaxial buffer layer

    International Nuclear Information System (INIS)

    Onuma, T.; Chichibu, S.F.; Uedono, A.; Yoo, Y.-Z.; Chikyow, T.; Sota, T.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    Nonradiative photoluminescence (PL) lifetime (τ nr ) and point defect density in the (0001) ZnO epilayer grown on (111) Si substrates by laser-assisted molecular-beam epitaxy (L-MBE) using a (0001) ZnS epitaxial buffer layer were compared with those in the ZnO films on (111) and (001) Si substrates prepared by direct transformation of ZnS epilayers on Si by thermal oxidation [Yoo et al., Appl. Phys. Lett. 78, 616 (2001)]. Both the ZnO films exhibited excitonic reflectance anomalies and corresponding PL peaks at low temperature, and the density or size of vacancy-type point defects (Zn vacancies), which were measured by the monoenergetic positron annihilation measurement, in the L-MBE epilayer was lower than that in the films prepared by the oxidation transformation. The ZnO epilayer grown on a (0001) ZnS epitaxial buffer on (111) Si exhibited longer τ nr of 105 ps at room temperature

  9. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    Science.gov (United States)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  10. Sb/Mn co-doped oxyfluoride silicate glasses for potential applications in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Zhang, Xianghua, E-mail: xiang-hua.zhang@univ-rennes1.fr [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Ma, Hongli [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France)

    2016-03-15

    A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching method to explore red luminescent materials for potential applications in photosynthesis of green plants, and these glasses are investigated by means of luminescence decay curves, absorption, emission, and excitation spectra. We find that the as-prepared glasses are transparent in the visible region and can emit strong red light under ultraviolet, purple, and green light excitations. Furthermore, energy transfer from Sb{sup 3+} to Mn{sup 2+} ions occurs in Sb/Mn co-doped glasses. The results demonstrate that the as-prepared Sb/Mn co-doped oxyfluoride silicate glasses may serve as a potential candidate for developing glass greenhouse, which can enhance the utilization of solar energy for the photosynthesis of the green plants.

  11. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    Science.gov (United States)

    Malinverni, M.; Lamy, J.-M.; Martin, D.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.; Grandjean, N.

    2014-12-01

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH3-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10-4 Ω cm2, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH3-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm2 ridge dimension and a threshold current density of ˜5 kA cm-2 in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al0.06Ga0.94N:Mg despite the low growth temperature.

  12. X-ray diffraction study of rare earth epitaxial structures grown by MBE onto (111) GaAs

    International Nuclear Information System (INIS)

    Bennett, W.R.; Farrow, R.F.C.; Parkin, S.S.P.; Marinero, E.E.; Segmuller, A.P.

    1989-01-01

    The authors report on the new epitaxial system LaF 3 /Er/Dy/Er/LaF 3 /GaAs(111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF 3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films

  13. Electrical transport properties and laser-induced voltage effect in La{sub 0.8}Ca{sub 0.2}MnO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Theingi, Mya [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China); University of Yangon, Department of Chemistry, Yangon (Myanmar); Ma, Ji; Zhang, Hui; Cui, Qi; Yi, Jianhong; Chen, Qingming [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China)

    2014-03-15

    La{sub 0.8}Ca{sub 0.2}MnO{sub 3} (LCMO) thin films about 200 nm thickness were grown on untilted and tilted (5 , 10 and 15 ) LaAlO{sub 3} (100) single crystal substrates by pulsed laser deposition technique. Electrical properties of the epitaxial thin films were studied by conventional four-probe technique and the anisotropic thermoelectric properties of the films grown on the tilted substrates have been investigated by laser-induced voltage (LIV) measurements. X-ray diffraction analysis and atomic force microscopy results show that the prepared LCMO thin films have a single phase and high crystalline quality. The remarkably large temperature coefficient of resistance (TCR) values (above 11 %/K) are observed in the all films. TCR value reaches 18 %/K on the film grown on 10 tilted substrate. The intensity of LIV signals monotonously increases with the tilting angles, and the largest signal is 148 mV with the fast time response 229 ns for the film grown on 15 tilted substrate. (orig.)

  14. Structural and electrical properties of Ge-on-Si(0 0 1) layers with ultra heavy n-type doping grown by MBE

    Science.gov (United States)

    Yurasov, D. V.; Antonov, A. V.; Drozdov, M. N.; Yunin, P. A.; Andreev, B. A.; Bushuykin, P. A.; Baydakova, N. A.; Novikov, A. V.

    2018-06-01

    In this paper we report about the formation of ultra heavy doped n-Ge layers on Si(0 0 1) substrates by molecular beam epitaxy and their characterization by different independent techniques. Combined study of structural and electrical properties of fabricated layers using secondary ion mass spectroscopy, X-ray diffraction, Hall effect and reflection measurements was carried out and it has revealed the achievable charge carrier densities exceeding 1020 cm-3 without deterioration of crystalline quality of such doped layers. It was also shown that X-ray analysis can be used as a fast, reliable and non-destructive method for evaluation of the electrically active Sb concentration in heavy doped Ge layers. The appropriate set of doping density allowed to adjust the plasmonic resonance position in Ge:Sb layers in a rather wide range reaching the wavelength of 3.6 μm for the highest doping concentration. Room temperature photoluminescence confirmed the high crystalline quality of such doped layers. Our results indicated the attainability of high electron concentration in Ge:Sb layers grown on Si substrates without crystalline quality deterioration which may find potential applications in the fields of Si-based photonics and mid-IR plasmonics.

  15. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Science.gov (United States)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  16. Growth of GaMnAs under near-stoichiometric conditions

    International Nuclear Information System (INIS)

    Avrutin, V.; Humienik, D.; Frank, S.; Koeder, A.; Schoch, W.; Limmer, W.; Sauer, R.; Waag, A.

    2005-01-01

    We studied the effect of the V/III flux ratio and substrate temperature on magnetotransport properties and lattice parameters of Ga 0.96 Mn 0.04 As grown by molecular-beam epitaxy. For all the substrate temperatures, the conductivities and Curie temperatures of the layers were found to increase as the V/III flux ratio approaches 1. A Curie temperature as high as 95 K was achieved for the Ga 0.96 Mn 0.04 As samples grown at 240 deg. C and a V/III ratio of about 1.5. The lattice parameter of Ga 0.96 Mn 0.04 As increased with decreasing V/III ratio and/or increasing growth temperature. Possible reasons for the effect of the V/III ratio on the magnetotransport properties and lattice parameter of GaMnAs are discussed

  17. Defects induced ferromagnetism in Mn doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  18. Defects induced ferromagnetism in Mn doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  19. High-quality AlGaN/GaN grown on sapphire by gas-source molecular beam epitaxy using a thin low-temperature AlN layer

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, M.J.; Li, L.K.; Turk, B.; Wang, W.I.; Syed, S.; Simonian, D.; Stormer, H.L.

    2000-07-01

    Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gas-source molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm{sup 2}/Vs with carrier sheet densities of 6.1 x 10{sup 12} cm{sup {minus}2}, and 5.8 x 10{sup 12} cm{sup {minus}2} at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

  20. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  1. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece); Grazianetti, C.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, I-20126, Milano (Italy); Chiappe, D.; Molle, A. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy)

    2013-12-16

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  2. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong

    2017-10-01

    In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.

  3. Formation process and superparamagnetic properties of (Mn,Ga)As nanocrystals in GaAs fabricated by annealing of (Ga,Mn)As layers with low Mn content

    DEFF Research Database (Denmark)

    Sadowski, Janusz; Domagala, Jaroslaw Z.; Mathieu, Roland

    2011-01-01

    °C) annealing of (Ga,Mn)As layers with Mn concentrations between 0.1% and 2%, grown by molecular beam epitaxy at 270°C. Decomposition of (Ga,Mn)As is already observed at the lowest annealing temperature of 400°C for layers with initial Mn content of 1% and 2%. Both cubic and hexagonal (Mn......,Ga)As nanocrystals, with similar diameters of 7-10 nm, are observed to coexist in layers with an initial Mn content of 0.5% and 2% after higher-temperature annealing. Measurements of magnetization relaxation in the time span 0.1-10 000 s provide evidence for superparamagnetic properties of the (Mn,Ga)As nanocrystals......X-ray diffraction, transmission electron microscopy, and magnetization measurements are employed to study the structural and magnetic properties of Mn-rich (Mn,Ga)As nanocrystals embedded in GaAs. These nanocomposites are obtained by moderate-temperature (400°C) and high-temperature (560°C and 630...

  4. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  5. Structural refinement, photoluminescence and Raman spectroscopy of wurtzite Mn-doped Zn O pellets

    Energy Technology Data Exchange (ETDEWEB)

    Marquina, J.; Martin, J.; Luengo, J.; Vera, F.; Roa, L. [Centro de Estudios Avanzados en Optica, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Gonzalez, J. [Centro de Estudios de Semiconductores, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Rodriguez, F.; Renero L, C.; Valiente, R. [Malta-Consolider Team, CITIMAC, Facultad de Ciencias, Universidad de Cantabria, Santander 69005 (Spain); Delgado, G. E., E-mail: marquinajesus@gmail.com [Laboratorio de Cristalografia, Facultad de Ciencias, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of)

    2017-11-01

    We report the results of the Rietveld refinement, photoluminescence and Raman spectroscopy of Mn-doped Zn O ceramic pellets. Rietveld refinement shows that samples crystallize in the wurtzite structure and for the Mn-doped sample indicated that the Mn atoms substitute the Zn tetrahedral crystallographic sites in the Zn O host lattice. The emission and absorption spectra of Mn-doped Zn O have been investigated in the visible-UV region and the data have been interpreted in terms of the wurtzite Zn O electronic structure. Two broad bands, one due to superposition between donor bound excitons (DX) and free excitons (FX) and other due free-to bond excitonic recombination (FB) dominates the low-temperature photoluminescence spectra of Mn-doped Zn O bulk. In the Raman spectrum, an extra mode at ∼520 cm{sup -1} has been observed in agreement with earlier works, and it is an indicator for the incorporation of Mn{sup +2} ions into the Zn O host matrix since it is not is observed in Zn O pristine. Rietveld refinement of the X-ray diffraction patterns, energy-dispersive X-ray spectroscopy (EDS) technique, and Raman spectroscopies were performed to study these effects. (Author)

  6. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  7. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    International Nuclear Information System (INIS)

    Hernandez-Maldonado, D.; Herrera, M.; Sales, D.L.; Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L.; Pizarro, J.; Galindo, P.L.; Molina, S.I.

    2010-01-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  8. Effect of (Mn,Cr) co-doping on structural, electronic and magnetic properties of zinc oxide by first-principles studies

    Science.gov (United States)

    Aimouch, D. E.; Meskine, S.; Boukortt, A.; Zaoui, A.

    2018-04-01

    In this study, structural, electronic and magnetic properties of Mn doped (ZnO:Mn) and (Mn,Cr) co-doped zinc oxide (ZnO:(Mn,Cr)) have been calculated with the FP-LAPW method by using the LSDA and LSDA+U approximations. Going through three configurations of Mn,Cr co-doped ZnO corresponding to three different distances between manganese and chromium, we have analyzed that ZnO:(Mn,Cr) system is more stable in its preferred configuration2. The lattice constant of undoped ZnO that has been calculated in this study is in a good agreement with the experimental and theoretical values. It was found to be increased by doping with Mn or (Mn,Cr) impurities. The band structure calculations showed the metallic character of Mn doped and Mn,Cr co-doped ZnO. As results, by using LSDA+U (U = 6eV), we show the half-metallic character of ZnO:Mn and ZnO:Mn,Cr. We present the calculated exchange couplings d-d of Mn doped ZnO which is in a good agreement with the former FPLO calculation data and the magnetization step measurement of the experimental work. The magnetic coupling between neighboring Mn impurities in ZnO is found to be antiferromagnetic. In the case of (Mn,Cr) co-doped ZnO, the magnetic coupling between Mn and Cr impurities is found to be antiferromagnetic for configuration1 and 3, and ferromagnetic for configuration2. Thus, the ferromagnetic coupling is weak in ZnO:Mn. Chromium co-doping greatly enhance the ferromagnetism, especially when using configuration2. At last, we present the 2D and 3D spin-density distribution of ZnO:Mn and ZnO:(Mn,Cr) where the ferromagnetic state in ZnO:(Mn,Cr) comes from the strong p-d and d-d interactions between 2p-O, 3d-Mn and 3d-Cr electrons. The results of our calculations suggest that the co-doping ZnO(Mn, Cr) can be among DMS behavior for spintronic applications.

  9. Raman investigation of GaP–Si interfaces grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, A.; Cornet, C.; Boyer, S.; Nguyen Thanh, T.; Létoublon, A.; Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Moreac, A. [Institut de Physique de Rennes, UMR-CNRS n°6251, Université Rennes1, Campus de Beaulieu — 35042 Rennes cedex (France); Ponchet, A. [CEMES, UPR CNRS 8011, F-31055 Toulouse (France); Le Corre, A. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France)

    2013-08-31

    Raman spectroscopy was used to investigate the residual strain in thin GaP layers deposited on Si substrates by molecular beam epitaxy. Different growth conditions were used to obtain a clean GaP–Si interface, including migration enhanced epitaxy. The strain induced Raman shifts of the longitudinal and the transverse optical GaP lattice modes were analyzed. The effects of crystalline defects are discussed, supported by high resolution transmission electron microscopy and X-ray scattering studies. Finally, Raman Spectroscopy reveals the presence of disorder (or surface)-activated optical phonons. This result is discussed in the light of surface morphology analyses. - Highlights: ► GaP thin layers grown by molecular beam epitaxy on Si substrates. ► Strain-induced Raman shifts of the optical GaP modes are analyzed. ► Simulation of optical GaP modes by density functional perturbation theory. ► Comparison with X-ray diffraction and electron and scanning probe microscopy data.

  10. Preparation of Mn doped CeO{sub 2} nanoparticles with enhanced ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@mepcoeng.ac.in; Winfred Shashikanth, F.

    2017-06-15

    Spherical-like CeO{sub 2} and Mn-doped CeO{sub 2} using 6-aminohexanoic acid as surfactant exhibit enhanced ferromagnetism. The optical absorption spectra reveal a red shift with a band gap of 2.51 eV. The mechanics of ferromagnetism and the red shift were analyzed. These results provide a promising platform for developing a dilute magnetic semiconductor in spintronics. - Highlights: • Pure and Mn-doped CeO{sub 2} is prepared with aminohexanoic acid as capping. • They exhibit wide optical absorption with red-shift in their band gap. • Mn-doped CeO{sub 2} nanoparticle exhibit hysteresis at room temperature. • Results were promising to use in spintronics and opto-electronics field.

  11. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.kundu@saha.ac.in; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 70064 (India)

    2016-05-23

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  12. Upconversion photoluminescence of epitaxial Yb{sup 3+}/Er{sup 3+} codoped ferroelectric Pb(Zr,Ti)O{sub 3} films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: zhangy_acd@hotmail.com [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kämpfe, Thomas [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Bai, Gongxun [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Mietschke, Michael; Yuan, Feifei; Zopf, Michael [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Abel, Stefan [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Eng, Lukas M. [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Hühne, Ruben [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Fompeyrine, Jean [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Ding, Fei, E-mail: f.ding@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schmidt, Oliver G. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer strasse 70, 09107 Chemnitz (Germany)

    2016-05-31

    Thin films of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} (PZT:Yb/Er) have been epitaxially grown on the SrTiO{sub 3} buffered Si wafer by pulsed laser deposition. Strong upconversion photoluminescence was observed in the PZT:Yb/Er thin film. Using piezoresponse force microscopy, polar domains in the PZT:Yb/Er film can be reversibly switched with a phase change of 180°. Ferroelectric hysteresis loop shape with a well-saturated response was observed. The epitaxially grown lanthanide-doped PZT on silicon opens up a promising route to the integration of luminescent functional oxides on the silicon platform. - Highlights: • Epitaxial growth of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} films on SrTiO{sub 3} buffered silicon • Upconversion emissions were obtained from the lanthanide ion doped thin films. • Saturated ferroelectric hysteresis loops were observed. • Polar domains were switched by PFM with a phase change of 180°.

  13. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  14. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi, E-mail: kamphysics@gmail.com; Gujarati, Vivek P.; Chaki, S. H. [Department of Physics, Sardar Patel University, VallabhVidyanagr-388120,Anand, Gujarat, India. (India)

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  15. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge

    Directory of Open Access Journals (Sweden)

    K. R. Simov

    2018-01-01

    Full Text Available Mn doping of group-IV semiconductors (Si/Ge is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn–Mn bonding.

  16. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling

    Science.gov (United States)

    Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox

    2018-05-01

    The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.

  17. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide

    Science.gov (United States)

    Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan

    2018-05-01

    Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.

  18. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    Science.gov (United States)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  19. Structural and magnetic properties of (NdBa)MnO3 films on lattice-matched substrates

    DEFF Research Database (Denmark)

    Khoryushin, Alexey V.; Mozhaeva, Julia E.; Mozhaev, Peter B.

    2013-01-01

    Structural and magnetic properties of (NdBa)MnO3 thin films grown on several perovskite substrates by pulsed laser deposition are presented. A high crystal quality epitaxial film with smooth surface and low level of internal strain may be grown up to thicknesses of 70 nm. The in-plane distortion ...

  20. Domain matching epitaxy of cubic In{sub 2}O{sub 3} on r-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Patrick; Trampert, Achim; Ramsteiner, Manfred; Bierwagen, Oliver [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117, Berlin (Germany)

    2015-07-15

    Undoped, Sn-doped, and Mg-doped In{sub 2}O{sub 3} layers were grown on rhombohedral r-plane sapphire (α-Al{sub 2}O{sub 3} (10.2)) by plasma-assisted molecular beam epitaxy. X-ray diffraction and Raman scattering experiments demonstrated the formation of phase-pure, cubic (110)-oriented In{sub 2}O{sub 3} for Sn- and Mg-concentrations up to 2 x 10{sup 20} and 6 x 10{sup 20} cm{sup -3}, respectively. Scanning electron microscopy images showed facetted domains without any surface-parallel (110) facets. High Mg- or Sn-doping influenced surface morphology and the facet formation. X-ray diffraction Φ-scans indicated the formation of two rotational domains separated by an angle Φ = 86.6 due to the substrate mirror-symmetry around the in-plane-projected Al{sub 2}O{sub 3} c-axis. The in-plane epitaxial relationships to the substrate were determined for both domains. For the first domain it is Al{sub 2}O{sub 3}[01.0] parallel In{sub 2}O{sub 3}[3 anti 3 anti 4]. For the second domain the inplane epitaxial relation is Al{sub 2}O{sub 3}[01.0] parallel In{sub 2}O{sub 3}[3 anti 34]. A low-mismatch coincidence lattice of indium atoms from the film and oxygen atoms from the substrate rationalizes this epitaxial relation by domain-matched epitaxy. Cross-sectional transmission-electron microscopy showed a columnar domain-structure, indicating the vertical growth of the rotational domains after their nucleation. Coincidence structure of In{sub 2}O{sub 3} (110) (In atoms in red) grown on Al{sub 2}O{sub 3} (10.2) (O atoms in blue) showing two rotational domians. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Optical spectroscopy of rare-earth ions doped KY(WO4)2 thin films

    NARCIS (Netherlands)

    García-Revilla, S.; Valiente, R.; Romanyuk, Y.E.; Utke, I.; Pollnau, Markus

    KY(WO4)2 thin films doped with Dy3+, Tb3+, Yb3+, were grown onto KY(WO4)2 substrates using liquid-phase epitaxy. Spectroscopic investigations of the grown layers were performed. Obtained results were compared with spectra given for bulk crystals. Upconversion experiments after direct Yb3+ excitation

  2. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO3 probed by X-ray diffractometry and micro-Raman spectroscopy

    Science.gov (United States)

    Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.

  3. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  4. EPR and optical investigation of Mn2+ doped L-histidine-4-nitrophenolate 4-nitrophenol single crystal

    Science.gov (United States)

    Prabakaran, R.; Subramanian, P.

    2018-04-01

    Single crystals of L-histidine-4-nitrophenolate 4-nitrophenol[LHFNP] complex doped with Mn2+ were grown by the slow evaporation method at room temperature. The EPR spectrum reveals the entry of one Mn2+ ion in the lattice. The angular variation plot was drawn between the angles and the magnetic field position. The spin Hamiltonian parameters were obtained by EPR-NMR program. The D and E values show the rhombic field around the ion and is an interstitial one. The g value obtained here suggests that the Mn2+ ion experiences a strong field and there is a transfer of electron from the metal ion to the ligand atom. The optical absorption study shows various bands and are assigned to the transition from the ground state 6A1g(S). The Racah and crystal field parameters have also been evaluated and fitted to the experimental values. The Racah parameter shows the covalent bonding between the metal ion to the ligand.

  5. Microstructure of epitaxial YBa2Cu3O7-x thin films grown on LaAlO3 (001)

    International Nuclear Information System (INIS)

    Hsieh, Y.; Siegal, M.P.; Hull, R.; Phillips, J.M.

    1990-01-01

    We report a microstructural investigation of the epitaxial growth of YBa 2 Cu 3 O 7-x (YBCO) thin films on LaAlO 3 (001) substrates using transmission electron microscopy (TEM). Epitaxial films grow with two distinct modes: c epitaxy (YBCO) single crystal with the c (axis normal to the surface and a epitaxy (YBCO) single crystal with the c axis in the interfacial plane), where c epitaxy is the dominant mode grown in all samples 35--200 nm thick. In 35 nm YBCO films annealed at 850 degree C, 97±1% of the surface area is covered by c epitaxy with embedded anisotropic a-epitaxial grains. Quantitative analysis reveals the effect of film thickness and annealing temperature on the density, grain sizes, areal coverages, and anisotropic growth of a epitaxy

  6. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  7. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    Science.gov (United States)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  8. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  9. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  10. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  11. Synthesis of Mn doped ZnO nanoparticles with biocompatible capping

    International Nuclear Information System (INIS)

    Sharda; Jayanthi, K.; Chawla, Santa

    2010-01-01

    Free standing nanoparticles of ZnO doped with transition metal ion Mn have been prepared by solid state reaction method at 500 deg. C. X-ray diffraction (XRD) analysis confirmed high quality monophasic wurtzite hexagonal structure with particle size of 50 nm and no signature of dopant as separate phase. Incorporation of Mn has been confirmed with EDS. Bio-inorganic interface was created by capping the nanoparticles with heteromultifunctional organic stabilizer mercaptosuccinic acid (MSA). The surface morphological studies by scanning electron microscopy (SEM) showed formation of spherical particles and the nanoballs grow in size uniformly with MSA capping. MSA capping has been confirmed with thermo gravimetric analysis (TGA) and FTIR. Photoluminescence (PL) studies show that the ZnO:Mn 2+ particles are excitable by blue light and emits in orange and red. Occurrence of room temperature ferromagnetism in Mn doped ZnO makes such biocompatible luminescent magnetic nanoparticles very promising material.

  12. High mobility 2D electron gas in CdTe/CdMgTe heterostructures

    International Nuclear Information System (INIS)

    Karczewski, G.; Jaroszynski, J.; Kurowski, M.; Barcz, A.; Wojtowicz, T.; Kossut, J.

    1997-01-01

    We report on iodine doping of molecular beam epitaxy (MBE)-grown Cd(Mn)Te quasi-bulk films and modulation-doped CdTe/Cd 1-y Mg y Te two-dimensional (2D) single quantum well structures. Modulation doping with iodine of CdTe/Cd 1-y Mg y Te structures resulted in fabrication of a 2D electron gas with mobility exceeding 10 5 cm 2 /(Vs). This is the highest mobility reported in wide-gap II-VI materials

  13. Thermodynamic properties of multiferroic Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Samatham, S. Shanmukharao; Singh, D. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India); Rayaprol, S. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Das, D. [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, V. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Ganesan, V. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India)

    2015-09-25

    Highlights: • Specific heat data shows that T{sub N} increases for Mg doped YbMnO{sub 3} from 83 K to 86 K. • Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x = 0.0 and 0.05) shows multiple magnetic transitions. • RCP are found to be 26.1 J/mol and 27.2 J/mol for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}. - Abstract: Calorimetric studies of polycrystalline samples Yb{sub 1−x}Mg{sub x}MnO{sub 3} with x = 0.0 and 0.05 are reported. It is revealed that the Mg doping raises the antiferromagnetic ordering temperature, T{sub N,} from 83 K for x = 0.0 to 86 K for x = 0.05. A ferromagnetic ordering is also observed around 3 K. The broad feature in the specific heat data just above ferromagnetic ordering, is attributed to the Schottky anomaly. The estimated effective molecular fields from the Schottky analysis are H{sub mf} = 3.0 and 3.5 T for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}, respectively. High temperature shift of Schottky anomaly with Mg doping indicates increase in effective molecular field of Mn at the Yb 4b site. The data supports that the idea that although molecular field is mainly responsible for the Schottky anomaly in Yb{sub 1−x}Mg{sub x}MnO{sub 3} and Mn{sup 3+} spin ordering also affects it. Magnetic part of the specific heat is obtained by subtracting the lattice contribution estimated using two Debye temperatures. The magnetic entropy change (ΔS{sub mag}) for pure and doped samples are 2.0 J mol{sup −1} K{sup −1} and 2.1 J mol{sup −1} K{sup −1} respectively, while the relative cooling power (RCP) calculate 26.1 J/mol, 27.2 J/mol for a field change of 10 T.

  14. Interface strain coupling and its impact on the transport and magnetic properties of LaMnO3 thin films grown on ferroelectrically active substrates

    International Nuclear Information System (INIS)

    Zheng, R.K.; Wang, Y.; Habermeier, H.-U.; Chan, H.L.W.; Li, X.M.; Luo, H.S.

    2012-01-01

    Highlights: ► Strong interface strain coupling in LaMnO 3 /PMN-PT heterostructure. ► In situ dynamic turning of the strain and lattice distortion of LaMnO 3 films. ► Coupling of electrons to lattice strain is crucial to understand the strain effect. - Abstract: Thin films of LaMnO 3 have been epitaxially grown on 〈0 0 1〉 oriented ferroelectric 0.67Pb(Mg 1/3 Nb 2/3 )O 3 -0.33PbTiO 3 (PMN-PT) single-crystal substrates. The poling of the PMN-PT crystal causes a decrease in the resistance and an increase in the magnetization and magnetoresistance of the LaMnO 3 film. In situ X-ray diffraction measurements revealed that these changes arise from the poling-induced strain in the PMN-PT substrate, which reduces the in-plane tensile strain and the Jahn–Teller (JT) distortion of MnO 6 octahedra of the LaMnO 3 film. Moreover, it was found that the transport properties of LaMnO 3 films are much more sensitive to the poling-induced strain than that of CaMnO 3 films for which there is no JT distortion, implying that the electron–lattice coupling is one of the most important ingredients in understanding the strain effect in LaMnO 3 films.

  15. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    International Nuclear Information System (INIS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-01-01

    The free hole carriers in GaN have been limited to concentrations in the low 10 18 cm -3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ∼10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ∼1.5x10 19 cm -3

  16. Convenient synthesis of Mn-doped Zn (O,S) nanoparticle photocatalyst for 4-nitrophenol reduction

    Science.gov (United States)

    Susanto Gultom, Noto; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    The conversion of 4-nitrophenol as a toxic and waste pollutant to 4-aminophenol as a non-toxic and useful compound by photocatalytic reduction is highly important. In this work, the solid-solution concept by doping was involved to synthesis earth-abundant and green material of Mn-doped Zn(O,S). Zn(O,S) with different Mn doping contents was easily synthesized at low temperature 90°C for 4-NP reduction without using the reducing agent of NaBH4. The Mn-doped Zn(O,S) catalyst exhibited the enhancements in optical and electrochemical properties compared to un-doped Zn(O,S).It was found that 10% Mn-doped Zn(O,S) had the best properties and it could totally reduce 4-NP after 2h photoreactions under low UV illumination. The hydrogen ion was proposed to involve the 4-NP reduction to 4-AP, which is hydrogen ion and electron replaced the oxygen in amino (NO2) group of 4-NP to form the nitro (NH2) group. We alsoproposed the incorporation of Mn in Zn site in the Zn(O,S) host lattice could make the oxygen surface bonding weak for easily forming the oxygen vacancy. The more oxygen vacancy for more hydrogen ion would be generated to consume for 4-NP reduction.

  17. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    International Nuclear Information System (INIS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-01-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4 A 2 ( 4 F) → 4 T 1 ( 4 G) and 4 T 1 ( 4 G) → 6 A 1 ( 6 S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs

  18. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Directory of Open Access Journals (Sweden)

    A. A. Baker

    2015-07-01

    Full Text Available We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, ml/ms. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  19. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom)

    2015-07-15

    We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, m{sub l}/m{sub s}. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  20. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Malinverni, M., E-mail: marco.malinverni@epfl.ch; Lamy, J.-M.; Martin, D.; Grandjean, N. [ICMP, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Feltin, E.; Dorsaz, J. [NOVAGAN AG, CH-1015 Lausanne (Switzerland); Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C. [EXALOS AG, CH-8952 Schlieren (Switzerland)

    2014-12-15

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH{sub 3}-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10{sup −4} Ω cm{sup 2}, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH{sub 3}-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm{sup 2} ridge dimension and a threshold current density of ∼5 kA cm{sup −2} in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al{sub 0.06}Ga{sub 0.94}N:Mg despite the low growth temperature.

  1. Colossal Magnetoresistance in La-Y-Ca-Mn-O Films

    NARCIS (Netherlands)

    Chen, L.H.; Tiefel, T.H.; Jin, S.; Palstra, T.T.M.; Ramesh, R.; Kwon, C.

    1996-01-01

    Magnetoresistance behavior of La0.60Y0.07CaMnOx, thin films epitaxially grown on LaAlO3 has been investigated. The films exhibit colossal magnetoresistance with the MR ratio in excess of 10^8% at ~60K, H = 7T, which is the highest ever reported for thin film manganites. The partial substitution of

  2. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  3. Organic molecules passivated Mn doped Zinc Selenide quantum dots and its properties

    International Nuclear Information System (INIS)

    Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.

    2011-01-01

    Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn 2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.

  4. Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor

    Science.gov (United States)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-12-01

    Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.

  5. Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite

    Directory of Open Access Journals (Sweden)

    El-Dek S. I.

    2017-10-01

    Full Text Available Two series of Mn-Zn nanoferrites (namely Mn1-xZnxFe2O4 and Mn1-xZnxFe2-yRyO4 were synthesized using standard ceramic technique. X-ray diffraction and FT-IR were employed in the chacterization of the nanopowder. The X-ray density for each sample increased after laser irradiation which was correlated with the decrease in the unit cell volume. The study involved the thermal and frequency variation of the dielectric constant and AC conductivity of the investigated samples before and after laser irradiation. The later altered the conductivity by decreasing its value for the rare earth doped samples except for the Sm3+ doped one. The results suggested the exploitation of Mn-Zn doped rare earth nanoferrites in many technological applications demanding high resistivity.

  6. Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Gan, Yulin; Christensen, Dennis Valbjørn

    2017-01-01

    Modulation-doped oxide two-dimensional electron gas formed at the LaMnO3 (LMO) buffered disorderd-LaAlO3/SrTiO3 (d-LAO/LMO/STO) heterointerface provides new opportunities for electronics as well as quantum physics. Herein, we studied the dependence of Sr-doping of La1-xSrxMnO3 (LSMO, x = 0, 1/8, ...... of LSMO during the deposition of disordered LAO or that the energy levels of Mn 3d electrons at the interface of LSMO/STO are hardly varied even when changing the LSMO composition from LMO to SrMnO3....

  7. Investigating the effect of Mn-doped CeO2 nanoparticles by co-precipitation method

    International Nuclear Information System (INIS)

    Prabaharan, D.D.M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, Suresh

    2018-01-01

    The paper exhibits a detailed study about the synthesis and characterization in analysis of structural, morphological, optical and electrical investigations of pure and Mn-doped Cerium oxide (CeO 2 ) nanoparticles which were synthesized by co-precipitation technique. Phase formation of the prepared sample was analyzed with powder X-ray diffraction (PXRD) examines, scanning electron microscopy (SEM) examination. The PXRD comes about affirmed partial crystallinity having cubic phases and the crystallite sizes of the pure and Mn-doped Cerium oxide (CeO 2 ) were estimated by utilizing Debye-Scherrer's formula and they were calculated to be 12 and 14 nm individually. SEM pictures revealed that the particles were profoundly accumulated and were of permeable nature. The optical properties of pure and Mn-doped CeO 2 were ascertained by using UV-visible absorption spectrum. The estimated band gap values for the pure and the Mn-doped CeO 2 nanoparticles were observed to be 2.7 and 2.6 eV, respectively, utilizing UV-Vis spectroscopy. At different frequencies and temperatures the dielectric properties of the Mn-doped Cerium oxide (CeO 2 ) nanoparticles, for example, the dielectric consistent, the dielectric loss and the AC conductivity, were studied. (orig.)

  8. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  9. A study of 1/f noise in InP grown by CBE

    NARCIS (Netherlands)

    Chen, X.Y.; Leijs, M.R.

    1996-01-01

    The origin of low-frequency noise in InP was studied experimentally by measuring the noise of InP layers grown by chemical beam epitaxy (CBE). Such InP layers are unintentionally doped, but of varying purity and always of n-type conductivity. We performed noise measurements at temperatures from 77

  10. Synthesis and characterization of Mn2+-doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Keywords. Nanoparticles; nanocomposite; Mn2+-doped ZnS; annealing; X-ray diffrac- tion; FTIR; ultra violet. ... is an important wide band gap semiconductor, has attracted much attention owing to its wide applications ... semiconductor nanoparticles ZnS : Mn2+ is used as phosphors and also in thin film electroluminescent ...

  11. Ge films grown on Si substrates by molecular-beam epitaxy below 450 deg. C

    International Nuclear Information System (INIS)

    Liu, J.; Kim, H.J.; Hul'ko, O.; Xie, Y.H.; Sahni, S.; Bandaru, P.; Yablonovitch, E.

    2004-01-01

    Ge thin films are grown on Si(001) substrates by molecular-beam epitaxy at 370 deg. C. The low-temperature epitaxial growth is compatible with the back-end thermal budget of current generation complementary metal-oxide-semiconductor technology, which is restricted to less than 450 deg. C. Reflection high-energy electron diffraction shows that single-crystal Ge thin films with smooth surfaces could be achieved below 450 deg. C. Double-axis x-ray θ/2θ scans also show that the epitaxial Ge films are almost fully strain-relaxed. As expected, cross-sectional transmission electron microscopy shows a network of dislocations at the interface. Hydrogen and oxide desorption techniques are proved to be necessary for improving the quality of the Ge films, which is reflected in improved minority carrier diffusion lengths and exceptionally low leakage currents

  12. Mn2+ anchored CdS polymer nanocomposites: An efficient alternative for Mn2+ doped CdS nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Bhaskar Jyoti; Nath, Bikash Chandra; Borah, Chandramika; Dolui, Swapan Kumar

    2015-01-01

    A chelating bi-functional polymer brushes was prepared via atom transfer radical polymerization using grafting-from methodology. Mn 2+ -anchored CdS-polymer nanocomposites were synthesized using this graft copolymer by simple chelation method resulting in emission at about 620 nm which originates from the fluorescence of manganese ions embedded on the surface of CdS nanoparticles. This method provides an efficient straightforward substitute of Mn 2+ dopped CdS nanoparticles. Optical properties of the composites were investigated which indicates that simple Mn 2+ chelation and subsequent binding of CdS in a polymer matrix can have similar effect in the luminescence property as those synthesized via complex doping methods. Moreover this methodology can be applied for synthesis of any metal anchored nanocomposites proficiently and cost effectively in large-scale production. - Highlights: • A chelating bifunctional copolymer brush was synthesized via ATRP. • CdS nanoparticles and Mn 2+ were coupled with the bifunctional polymer. • Composites showed emission properties similar to Mn 2+ doped CdS nanoparticles. • Side chain length of the polymers also affect the emission properties of the composites.

  13. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  14. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    Science.gov (United States)

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  15. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Galil, A. [Solid State Physics and Accelerators Department, NCRRT, Atomic Energy Authority, Cairo (Egypt); Balboul, M.R., E-mail: m_balboul@yahoo.com [Solid State Physics and Accelerators Department, NCRRT, Atomic Energy Authority, Cairo (Egypt); Sharaf, A. [Radiation Engineering Department, NCRRT, Atomic Energy Authority, Cairo (Egypt)

    2015-11-15

    In the present work undoped and Mn doped ZnO nanoparticles (ZnO:Mn), diluted magnetic semiconductors, were successfully synthesized by the sol–gel method at room temperature. The morphology of ZnO nanoparticles constituted by flower-like structures with hexagonal morphologies that changed significantly after the incorporation of Mn. Rietveld refinements results showed that Mn ions are successfully doped into ZnO matrix without altering its wurtzite phase. Meanwhile, Raman spectroscopy analyses confirm the wurtzite structure of undoped ZnO and ZnO:Mn nanoparticles. The lattice parameters increase with increasing Mn content due to the large ionic radius of Mn{sup 2+} compared to that of Zn{sup 2+}. Electron spin resonance measurements were performed to gain information about oxidation state and site occupancy of the magnetic Mn ions in the ZnO lattice. Moreover, UV–vis absorption spectra have been utilized to calculate the optical band gap of the undoped ZnO and ZnO:Mn nanoparticles before and after different γ-irradiation doses. The band gap of ZnO:Mn (2%) is 2.62 eV which is noticeably smaller than the 3.26 eV of undoped ZnO. The thermal decomposition properties of the prepared nanoparticle samples were also studied using simultaneous Thermogravimetric analysis in temperature range from 30 to 500 °C.

  16. Observation of point defects in impurity-doped zinc selenide films using a monoenergetic positron beam

    International Nuclear Information System (INIS)

    Miyajima, T.; Okuyama, H.; Akimoto, K.; Mori, Y.; Wei, L.; Tanigawa, S.

    1992-01-01

    We studied point defects in ZnSe films grown by molecular beam epitaxy using the positron annihilation method. We found that doping with Ga atoms induces vacancy-type defects such as Zn vacancies, and that heavy doping with oxygen atoms induces interstitial type defects. We think that these defects are one of the causes of active carrier saturation in doped ZnSe films. (author)

  17. Microhardness of epitaxial layers of GaAs doped with rare earths

    International Nuclear Information System (INIS)

    Kulish, U.M.; Gamidov, Z.S.; Kuznetsova, I.Yu.; Petkeeva, L.N.; Borlikova, G.V.

    1989-01-01

    Results of the study of microhardness of GaAS layer doped by certain rare earths - Gd, Tb, Dy - are presented. The assumption is made that the higher is the value of the first potential of rare earth impurity ionization (i.e. the higher is the filling of 4f-shell), the lower is the effect of the element on electric and mechanical properties of GaAs epitaxial layers

  18. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  19. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  20. Structural and magnetic Properties of Mn, Co, Ni doped ZnO ...

    African Journals Online (AJOL)

    It is abundant, cost effective, non-toxic and also it is used in many bio-medical applications. ... The XRD of Mn-doped ZnO nanocrystals shows hexagonal structure. ... The TM doped ZnO nanocrystals shows weak ferromagnetic properties at ...

  1. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    International Nuclear Information System (INIS)

    Zhao, Qian; Xiong, Zhihua; Luo, Lan; Sun, Zhenhui; Qin, Zhenzhen; Chen, Lanli; Wu, Ning

    2017-01-01

    Highlights: • It is found nonmagnetic GaN ML exhibits half-metallic FM behavior by Mn doping due to double exchange mechanism. • Interestingly, the FM coupling is enhanced with the increasing tensile strain due to stronger interaction between Mn-3d and N-2p state. • While, the FM interaction is weakened with the increasing compressive strain until it transforms into AFM under strain of −9.5%. • These results provide a feasible approach for the fabrication of 2D DMS based GaN ML. - Abstract: To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  2. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Xiong, Zhihua, E-mail: xiong_zhihua@126.com [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Luo, Lan [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Sun, Zhenhui [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Qin, Zhenzhen [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Chen, Lanli [Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Wu, Ning [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China)

    2017-02-28

    Highlights: • It is found nonmagnetic GaN ML exhibits half-metallic FM behavior by Mn doping due to double exchange mechanism. • Interestingly, the FM coupling is enhanced with the increasing tensile strain due to stronger interaction between Mn-3d and N-2p state. • While, the FM interaction is weakened with the increasing compressive strain until it transforms into AFM under strain of −9.5%. • These results provide a feasible approach for the fabrication of 2D DMS based GaN ML. - Abstract: To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  3. Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Morita, K.; Inomata, Y.; Suemasu, T.

    2006-01-01

    The electrical properties and optical absorption (OA) spectra of undoped BaSi 2 films grown by molecular beam epitaxy were investigated The electron density and mobility of BaSi 2 grown epitaxially on Si(111) were 5 x 10 15 cm -3 and 820 cm 2 /V.s at room temperature, respectively. The conduction-band discontinuity at the BaSi 2 /Si heterojunction was estimated to be 0.7 eV from the current-voltage characteristics of n-BaSi 2 /n-Si isotype diodes. OA spectra were measured on polycrystalline BaSi 2 films grown on transparent fused silica substrates with predeposited polycrystalline Si layer. The indirect absorption edge was derived to be 1.3 eV, and the optical absorption coefficient reached 10 5 cm -1 at 1.5 eV

  4. Optical characterization of Zn-doped In{sub 0.14}Ga{sub 0.86}As{sub 0.13}Sb{sub 0.87} layers grown by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Reyes, Joel, E-mail: jdiazr2010@yahoo.com [CIBA-IPN, Ex-Hacienda de San Juan Molino Km. 1.5. Tepetitla, Tlaxcala 90700. Mexico (Mexico); Rodriguez-Fragoso, Patricia; Mendoza-Alvarez, Julio Gregorio [Departamento de Fisica, CINVESTAV-IPN, A.P. 14-740, Mexico, D.F. 07000 (Mexico)

    2013-02-15

    Quaternary layers were grown by liquid phase epitaxy on (1 0 0) GaSb substrates under lattice-matching conditions. The low-temperature photoluminescence of p-type In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} was obtained as a function of incorporated zinc concentration. The photoluminescence spectra were interpreted using a model which takes into account nonparabolicity of the valence band. Calculations of the peak position and photoluminescence transitions were performed. Both the band filling as well as band tailing due to Coulomb interaction of free carriers with ionized impurities and shrinkage due to exchange interaction between free carriers were considered in order to properly account for the observed features of photoluminescence spectra. It is proposed that low-temperature photoluminescence band-to-band energy transition can be used to obtain the carrier concentration in p-type In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y}. This method could be used to estimate free carrier concentration ranging from 6.036 Multiplication-Sign 10{sup 16} to 1.350 Multiplication-Sign 10{sup 18} cm{sup -3}. - Highlights: Black-Right-Pointing-Pointer In this work the optical characterization of InGaAsSb highly doped with zinc by grown LPE.is reported Black-Right-Pointing-Pointer It analyses the LT-PL of p-type InGaAsSb layersis analzysed as a function of incorporated zinc concentration. Black-Right-Pointing-Pointer The PL was interpreted using a model that takes into account nonparabolicity of the valence band. Black-Right-Pointing-Pointer The band-to-band transition energy can be used to estimate the hole concentration in InGaAsSb.

  5. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    Science.gov (United States)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  6. Structural, optical, and magnetic properties of Mn and Fe-doped Co3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    C. Stella

    2015-08-01

    Full Text Available Mn and Fe-doped Co3O4 nanoparticles were prepared by a simple precipitation method. The synthesized particles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, and vibrating sample magnetometer (VSM techniques. XRD analysis showed the cubic structure of Co3O4. SEM and TEM images confirmed the formation of interconnected nanoparticles. Mn and Fe-doped Co3O4 showed broad absorption in the visible region compared to undoped sample and the band gap values are red shifted. Five Raman active modes were observed from the Raman spectra. FTIR spectra confirmed the spinel structure of Co3O4 and the doping of Mn and Fe shifts the vibrational modes to lower wave number region. The magnetic measurements confirmed that Fe-doped Co3O4 shows a little ferromagnetic behavior compared to undoped and Mn-doped Co3O4, which could be related to the uncompensated surface spins and the finite size effects.

  7. Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Malinverni, Marco; Grandjean, Nicolas

    2016-02-01

    We grew heavily Mg-doped GaN using ammonia molecular-beam epitaxy. The use of low growth temperature (740 °C) allows decreasing the incorporation of donor-like defects (p-type doping compensation. As a result, a net acceptor concentration of 7 × 1019 cm-3 was achieved, and the hole concentration measured by Hall effect was as high as 2 × 1019 cm-3 at room temperature. Using such a high Mg doping level, we fabricated GaN backward diodes without polarization-assisted tunneling. The backward diodes exhibited a tunneling-current density of 225 A/cm2 at a reverse bias of -1 V at room temperature.

  8. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  9. Neutron investigation of Ru-doped Nd1/2Ca1/2MnO3. Comparison with Cr-doped Nd1/2Ca1/2MnO3

    International Nuclear Information System (INIS)

    Moritomo, Yutaka; Nonobe, Toshihiko; Machida, Akihiko; Ohoyama, Kenji

    2002-01-01

    Lattice and magnetic properties are investigated for 3% Ru- and Cr-doped Nd 1/2 Ca 1/2 MnO 3 . The parent Nd 1/2 Ca 1/2 MnO 3 is a charge-ordered insulator (T CO =250K). With decreasing temperature below ≅210K, these compounds are separated into two perovskite phases, that is, the long-c and short-c phases. The long-c region shows a ferromagnetic transition at T C ≅210K for the Ru-doped compound and ≅130K for the Cr-doped compound, while the short-c region shows antiferromagnetic transition at T N ≅150K for Ru and ≅110K for Cr. We discuss the origin of the enhanced T C for the Ru-doped compound in terms of the effective one-electron bandwidth W of the e g -band. (author)

  10. Redundant Sb condensation on GaSb epilayers grown by molecular beam epitaxy during cooling procedure

    International Nuclear Information System (INIS)

    Arpapay, B.; Şahin, S.; Arıkan, B.; Serincan, U.

    2014-01-01

    The effect of four different cooling receipts on the surface morphologies of unintentionally-doped GaSb epilayers on GaSb (100) substrates grown by molecular beam epitaxy is reported. Those receipts include three different Sb beam equivalent pressure (BEP) levels and two different termination temperatures. Surface morphologies of epilayers were examined by wet etching, surface profiler, atomic force microscopy, scanning electron microscopy and Raman spectroscopy. The results demonstrate that during the cooling period, a Sb BEP of 4.00 × 10 −4 Pa at a termination temperature of 400 °C induces a smooth surface without Sb condensation whereas same Sb BEP at a termination temperature of 350 °C forms a 300 nm thick Sb layer on the surface. In addition, it is revealed that by applying a wet etching procedure and using a surface profiler it is possible to identify this condensed layer from the two-sloped feature of mesa profile. - Highlights: • Sb beam flux termination temperature is crucial for redundant Sb condensation. • Sb beam flux level has a role on the thickness of redundant condensed Sb layer. • Redundant Sb layer thickness can be measured by two-sloped mesa structure

  11. Recent Advances on p-Type III-Nitride Nanowires by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Songrui Zhao

    2017-09-01

    Full Text Available p-Type doping represents a key step towards III-nitride (InN, GaN, AlN optoelectronic devices. In the past, tremendous efforts have been devoted to obtaining high quality p-type III-nitrides, and extraordinary progress has been made in both materials and device aspects. In this article, we intend to discuss a small portion of these processes, focusing on the molecular beam epitaxy (MBE-grown p-type InN and AlN—two bottleneck material systems that limit the development of III-nitride near-infrared and deep ultraviolet (UV optoelectronic devices. We will show that by using MBE-grown nanowire structures, the long-lasting p-type doping challenges of InN and AlN can be largely addressed. New aspects of MBE growth of III-nitride nanostructures are also discussed.

  12. Nonreciprocal propagation of light without external magnetic fields in a semiconductor waveguide isolator with a MnAs layer

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, T. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan) and Japan Science and Techonology Agency, SORST (Japan)]. E-mail: ametomo@hotaka.t.u-tokyo.ac.jp; Shimizu, H. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Techonology Agency, SORST (Japan); Hai, P.N. [Department of Electronic Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Japan Science and Techonology Agency, SORST (Japan); Tanaka, M. [Department of Electronic Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Japan Science and Techonology Agency, SORST (Japan); Nakano, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Techonology Agency, SORST (Japan)

    2007-03-15

    A 1.5-{mu}m, TM-mode waveguide optical isolator was developed for use in photonic integrated circuits. It consists of an InGaAlAs-based optical waveguide with a ferromagnetic MnAs layer and makes use of nonreciprocal propagation loss of light induced by the magnetized MnAs layer. With a large-remanence MnAs layer grown with the Mn-template epitaxy method, the isolator successfully showed an 8.7 dB/mm isolation ratio without external magnetic fields.

  13. Optical and structural properties of undoped and Mn2+ doped Ca–Li hydroxyapatite nanopowders using mechanochemical synthesis

    International Nuclear Information System (INIS)

    Ravindranadh, K.; Babu, B.; Pushpa Manjari, V.; Thirumala Rao, G.; Rao, M.C.; Ravikumar, R.V.S.S.N.

    2015-01-01

    Undoped and Mn 2+ doped calcium–lithium hydroxyapatite (CLHA) nanopowders were prepared by mechanochemical synthesis. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, transmission electron microscope, optical absorption, photoluminescence, electron paramagnetic resonance and FT-IR spectroscopy techniques. From powder XRD pattern, lattice cell parameters and average crystallite sizes were evaluated. The morphologies of prepared samples were analyzed by using SEM and TEM studies. Optical and EPR data confirmed that the doped Mn 2+ enter into the host material as distorted octahedral site. Photoluminescence spectra of undoped and Mn 2+ doped CLHA nanopowders exhibited blue, blue-green emission bands at 425, 443, 468 nm and green, strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for undoped and Mn 2+ doped CLHA nanopowders. Vibrational bands related to phosphate molecules, P–O–H and hydroxyl ions are observed in FT-IR spectra. - Highlights: • PXRD pattern of prepared undoped and Mn 2+ doped CLHA nanopowders are in nanosize. • Optical and EPR studies reveal site symmetry of Mn 2+ doped CLHA nanopowders are distorted octahedral symmetry. • FT-IR spectra exhibits the various vibrational modes of phosphate ions, P–O–H and water molecules

  14. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  15. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  16. Defect analysis of NiMnSb epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Stonert, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, F. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France); Molenkamp, L.W. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Bach, P. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Schmidt, G. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, POB 510119, 01314 Dresden (Germany)

    2005-10-15

    NiMnSb layers grown on InP substrates with InGaAs buffer were studied by the backscattering/channeling spectrometry (RBS/C) with He beams. The nature of predominant defects observed in the layers was studied by determination of incident-energy dependence of the relative channeling yield. The defects are described as a combination of large amount of interstitial atoms and of stacking faults or grain boundaries. The presence of grains was confirmed by transmission electron microscopy.

  17. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO{sub 3} probed by X-ray diffractometry and micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.; Stender, D. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Medarde, M. [Paul Scherrer Institute, Laboratory for Developments and Methods, 5232 Villigen-PSI (Switzerland); Lippert, T., E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Wokaun, A.; Schneider, C.W. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO{sub 3} thin films grown on (1 1 0)-YAlO{sub 3} substrates shows the co-existence of a strained and relaxed “sublayer” within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 −1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 −1 0] and [0 0 1] directions.

  18. Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, S. [SoloPower, Inc., 5981 Optical Ct., San Jose, CA 95138 (United States); Bacaksiz, E., E-mail: eminb@ktu.edu.tr [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Parlak, M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Yilmaz, S.; Polat, I.; Altunbas, M. [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuerksoy, M.; Topkaya, R. [Department of Physics, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey); Ozdogan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey)

    2011-10-17

    Highlights: {yields} Cadmium sulphide thin films were deposited by vacuum evaporation. {yields} Elemental Mn was deposited onto CdS thin films by using electron beam evaporation and annealed under vacuum at different temperatures. {yields} Structural, optical and magnetic studies of Mn-doped CdS have been investigated. {yields} X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. {yields} Magnetic measurements show that Mn-doped CdS thin films exhibit a ferromagnetism behavior at room temperature. - Abstract: The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 deg. C to 400 deg. C in step of 50 deg. C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. The incorporation of Mn did not cause any change in the texture but reduced the peak intensity and lead to a smaller crystallite size. Investigation of surface morphology using atomic force microscopy confirmed the decrease in the grain size with the Mn diffusion. In addition, a more uniform grain size distribution was observed in the doped films. X-ray photoelectron spectroscopy analysis showed that Mn atoms on the surface of the films were bounded to either sulphur or oxygen atoms. Auger electron spectroscopy of the diffusion-doped CdS sample at 350 deg. C indicated that the atomic Mn concentration was higher close to the surface region and Mn was distributed with a steadily decreasing profile through the bulk of the film with an average atomic concentration value around few

  19. Molecular beam epitaxy of single crystal colossal magnetoresistive material

    International Nuclear Information System (INIS)

    Eckstein, J.N.; Bozovic, I.; Rzchowski, M.; O'Donnell, J.; Hinaus, B.; Onellion, M.

    1996-01-01

    The authors have grown films of (LaSr)MnO 3 (LSMO) and (LaCa)MnO 3 (LCMO) using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). Depending on growth conditions, substrate lattice constant and the exact cation stoichiometry, the films are either pseudomorphic or strain relaxed. The pseudomorphic films show atomically flat surfaces, with a unit cell terrace structure that is a replica of that observed on the slightly vicinal substrates, while the strain relaxed films show bumpy surfaces correlated with a dislocation network. All films show tetragonal structure and exhibit anisotropic magnetoresistance, with a low field response, (1/R)(dR/dH) as large as 5 T -1

  20. Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping

    International Nuclear Information System (INIS)

    Hashem, A.M.; Abdel-Latif, A.M.; Abuzeid, H.M.; Abbas, H.M.; Ehrenberg, H.; Farag, R.S.; Mauger, A.; Julien, C.M.

    2011-01-01

    Highlights: → Doping MnO 2 with Sn improved properties of α-MnO 2 . → Thermal stabilization and electrochemical performances were improved. → Doping affected also the morphology feature of α-MnO 2 . - Abstract: Sn-doped MnO 2 was prepared by hydrothermal reaction between KMnO 4 as oxidant, fumaric acid C 4 H 4 O 4 as reductant and SnCl 2 as doping agent. XRD analysis indicates the cryptomelane α-MnO 2 crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO 2 to rod-like structure for Sn-MnO 2 . Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO 2 cell display lower capacity loss.

  1. Magnesium doping in InAlAs and InGaAs/Mg films lattice-matched to InP grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Ezzedini, Maher, E-mail: maher.ezz7@gmail.com [Monastir University, Laboratoire de Micro-Optoélectroniques et Nanostructures (Tunisia); Sfaxi, Larbi, E-mail: sfaxi.larbi@yahoo.fr [Sousse University, High School of Sciences and Technology of Hammam Sousse (Tunisia); M’Ghaieth, Ridha, E-mail: ridha.mghaieth@fsm.rnu.tn [Monastir University, Laboratoire de Micro-Optoélectroniques et Nanostructures (Tunisia)

    2017-01-15

    Mg-doped InAlAs and InGaAs films were grown at 560 °C lattice matched to InP semi-insulting substrate by metalorganic vapor phase epitaxy (MOVPE) under various Cp{sub 2}Mg flow conditions. Hall effect, photoluminescence (PL), high-resolution X-ray diffraction (HR-XRD), and secondary ion mass (SIMS) were the tools used in this work. The crystalline quality and the n-p conversion of the InAlAs and InGaAs/Mg films are described and discussed in relation to the Cp{sub 2}Mg flow. Distinguishing triple emission peaks in PL spectra is observed and seems to be strongly dependent on the Cp{sub 2}Mg flow. SIMS is employed to analyze the elements in the epitaxial layers. The variation of indium and magnesium components indicates a decrease of magnesium incorporation during the growth of InAlAs layers leading to a contracted lattice. In addition, the magnesium incorporation in the InGaAs lattice during growth has been confirmed by SIMS.

  2. Structural and Magnetic Properties of Mn doped ZnO Thin Film Deposited by Pulsed Laser Deposition

    KAUST Repository

    Baras, Abdulaziz

    2011-07-01

    Diluted magnetic oxide (DMO) research is a growing field of interdisciplinary study like spintronic devices and medical imaging. A definite agreement among researchers concerning the origin of ferromagnetism in DMO has yet to be reached. This thesis presents a study on the structural and magnetic properties of DMO thin films. It attempts to contribute to the understanding of ferromagnetism (FM) origin in DMO. Pure ZnO and Mn doped ZnO thin films have been deposited by pulsed laser deposition (PLD) using different deposition conditions. This was conducted in order to correlate the change between structural and magnetic properties. Structural properties of the films were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconducting quantum interference device (SQUID) was used to investigate the magnetic properties of these films. The structural characterizations showed that the quality of pure ZnO and Mn doped ZnO films increased as oxygen pressure (PO) increased during deposition. All samples were insulators. In Mn doped films, Mn concentration decreased as PO increased. The Mn doped ZnO samples were deposited at 600˚C and oxygen pressure from 50-500mTorr. All Mn doped films displayed room temperature ferromagnetism (RTFM). However, at 5 K a superparamagnetic (SPM) behavior was observed in these samples. This result was accounted for by the supposition that there were secondary phase(s) causing the superparamagnetic behavior. Our findings hope to strengthen existing research on DMO origins and suggest that secondary phases are the core components that suppress the ferromagnetism. Although RTFM and SPM at low temperature has been observed in other systems (e.g., Co doped ZnO), we are the first to report this behavior in Mn doped ZnO. Future research might extend the characterization and exploration of ferromagnetism in this system.

  3. Local moment formation and magnetic coupling of Mn dopants in Bi2Se3: A low-temperature ferromagnetic resonance study

    Science.gov (United States)

    Savchenko, D.; Tarasenko, R.; Vališka, M.; Kopeček, J.; Fekete, L.; Carva, K.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.

    2018-05-01

    We compare the magnetic and electronic configuration of single Mn atoms in molecular beam epitaxy (MBE) grown Bi2Se3 thin films, focusing on electron paramagnetic (ferromagnetic) resonance (EPR and FMR, respectively) and superconducting quantum interference device (SQUID) techniques. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) reveal the expected increase of disorder with increasing concentration of magnetic guest atoms, however, Kikuchi patterns show that disorder consists majorly of μm-scale 60° twin domains in the hexagonal Bi2Se3 structure, which are promoted by the presence of single unclustered Mn impurities. Ferromagnetism below TC (5.4±0.3) K can be well described by critical scaling laws M (T) (1 - T /TC) β with a critical exponent β = (0.34 ± 0.2) , suggesting 3D Heisenberg class magnetism instead of e.g. 2D-type coupling between Mn-spins in van der Waals gap sites. From EPR hyperfine structure data we determine a Mn2+ (d5, S = 5/2) electronic configuration with a g-factor of 2.002 for -1/2 → +1/2 transitions. In addition, from the strong dependence of the low temperature FMR fields and linewidth on the field strength and orientation with respect to the Bi2Se3 (0001) plane, we derive magnetic anisotropy energies of up to K1 = -3720 erg/cm3 in MBE-grown Mn-doped Bi2Se3, reflecting the first order magneto-crystalline anisotropy of an in-plane magnetic easy plane in a hexagonal (0001) crystal symmetry. We observe an increase of K1 with increasing Mn concentration, which we interpret to be correlated to a Mn-induced in-plane lattice contraction. Across the ferromagnetic-paramagnetic transition the FMR intensity is suppressed and resonance fields converge the paramagnetic limit of Mn2+ (d5, S = 5/2).

  4. Large magnetoresistance in La-Ca-Mn-O films

    International Nuclear Information System (INIS)

    Chen, L.H.; Jin, S.; Tiefel, T.H.; Ramesh, R.; Schurig, D.

    1995-01-01

    A very large magnetoresistance value in excess of 10 6 % has been obtained at 110 K, H = 6 T in La-Ca-Mn-O thin films epitaxially grown on LaAlO 3 substrates by pulsed laser deposition. The as-deposited film exhibits a substantial magnetoresistance value of 39,000%, which is further improved by heat treatment. A strong dependence of the magnetoresistance on film thickness was observed, with the value reduced by orders of magnitude when the film is made thicker than ∼2,000 angstrom. This behavior is interpreted in terms of lattice strain in the La-Ca-Mn-O films

  5. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped

  6. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  7. Li(Zn,Co,MnAs: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Directory of Open Access Journals (Sweden)

    Bijuan Chen

    2016-11-01

    Full Text Available We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMnyAs with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,MnAs. No ferromagnetic order occurs with single (Zn,Co or (Zn, Mn substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ∼40 K. The maximum saturation moment of the this system reached to 2.17μB/Mn, which is comparable to that of Li (Zn,MnAs. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in “111” LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,MnAs, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  8. Overcoming doping limits in MOVPE grown n-doped InP for plasmonic applications

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Xiao, Sanshui; Lavrinenko, Andrei

    2015-01-01

    Effect of the growth parameters on carrier concentration in MOVPE grown silicon-doped InP is studied. The dopant flow, V/III ratio and substrate temperature are optimized by considering the origin of the doping limits. In addition, two different group V precursors, namely PH3 and TBP, are compare......×1019cm-3 is achieved. Optical properties of the samples are investigated by Fourier transform infrared reflection (FTIR) spectroscopy and are fitted by a Drude-Lorentz function....

  9. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  10. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kole, A. K.; Kumbhakar, P. [Nanoscience Laboratory, Department of Physics, National Institute of Technology, Durgapur 713209, West Bengal (India); Tiwary, C. S. [Department of Materials Engineering, Indian Institute of Science (IISc.), Bangalore 560012 (India)

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  11. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La5/8-yPryCa3/8MnO3 films

    International Nuclear Information System (INIS)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun; Huang, Haoliang; Yang, Yuanjun; Luo, Zhenlin; Yang, Mengmeng; Gao, Chen

    2014-01-01

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La 5/8-y Pr y Ca 3/8 MnO 3 (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001) pc SrTiO 3 (tensile strain), LaAlO 3 (compressive strain) and NdGaO 3 (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films

  12. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  13. Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces

    Science.gov (United States)

    2011-01-01

    Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures. PMID:21479111

  14. Ultranarrow and widely tunable Mn2+-Induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys.

    Science.gov (United States)

    Hazarika, Abhijit; Layek, Arunasish; De, Suman; Nag, Angshuman; Debnath, Saikat; Mahadevan, Priya; Chowdhury, Arindam; Sarma, D D

    2013-06-28

    Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width ≤150  meV in the orange-red region and a surprisingly large spectral width (≥180  meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (∼370  meV) covering the deep green--deep red region and (ii) exhibit widths substantially lower (∼60-75  meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

  15. Aqueous synthesis of highly luminescent glutathione-capped Mn{sup 2+}-doped ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kolmykov, Oleksii [Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France); Coulon, Joël [Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME), UMR 7564, CNRS, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000 Nancy (France); Lalevée, Jacques [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, CNRS, 15 rue Jean Starcky, 68093 Mulhouse (France); Alem, Halima; Medjahdi, Ghouti [Université de Lorraine, Institut Jean Lamour (IJL), UMR 7198, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Schneider, Raphaël, E-mail: raphael.schneider@univ-lorraine.fr [Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2014-11-01

    In this paper, an aqueous-based route has been developed to prepare highly luminescent glutathione (GSH)-capped Mn-doped ZnS quantum dots (QDs). The dots obtained have an average diameter of 4.3 nm and exhibit the Mn{sup 2+}-related orange luminescence with very low surface defect density. The highest photoluminescence was observed for a Mn{sup 2+} to Zn{sup 2+} molar ratio of 3%. Consecutive overcoating of the Mn:ZnS@GSH QDs by a ZnS shell was done, and the core/shell structured QDs exhibit a PL quantum yield of 23%. Transmission electron microscopy, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy, UV–visible spectroscopy and spectrofluorometry have been used to characterize the crystal structure, the doping status, and the optical properties of the doped-QDs. Our systematic investigation shows that Mn:ZnS/ZnS@GSH QDs are highly promising fluorescent labels in biological applications.

  16. EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method.

    Science.gov (United States)

    Gupta, Atul K; Kripal, Ram

    2012-10-01

    The structural properties of Mn doped CdS (Mn:CdS) nanoparticles (NPs) are studied using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-vis), Photoluminescence (PL), Raman and Electron paramagnetic resonance (EPR) spectroscopy. XRD analysis shows the nanostructure with 2-4 nm of average crystallite size. The planes (110), (103) and (112) in XRD pattern distinguish the wurtzite structure of the Mn:CdS NPs. The intensity of the plane (102) increases as the doping concentration of Mn(2+) increases. UV-vis absorption spectra show blue shift as compared to bulk CdS. The optical band gap energy of Mn(2+) (0, 0.35, 0.70 and 1.35 at.%) doped CdS NPs corresponding to absorption edge are found to be 5.29, 5.28, 5.25 and 5.21 eV, respectively. The intensity of luminescence is changing with the concentration of Mn(2+) doped in CdS NPs. Raman spectra show blue shift in fundamental optical phonon mode (1LO) as well as second optical phonon mode (2LO) as compared to bulk CdS. The intensity ratio of the 2LO to 1LO modes slightly decreases as Mn(2+) concentration increases. EPR shows the existence of Mn(2+) with different local structures in CdS nanoparticles. The values of spectroscopic splitting factor (g) and hyperfine interaction constant (A) decrease as Mn(2+) concentration increases in CdS NPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  18. Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Wan, Dao Yong; Fan, Zhi Yu; Dong, Yong Xiang; Baasanjav, Erdenebayar; Jun, Hang-Bae; Jin, Bo; Jin, En Mei; Jeong, Sang Mun

    2018-01-01

    NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01) cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping res...

  19. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    Science.gov (United States)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  20. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Science.gov (United States)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  1. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  2. Deep levels in a-plane, high Mg-content MgxZn1−xO epitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gür, Emre; Tabares, G.; Hierro, A.; Arehart, A.; Ringel, S. A.; Chauveau, J. M.

    2012-01-01

    Deep level defects in n-type unintentionally doped a-plane Mg x Zn 1−x O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg x Zn 1−x O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E c − 1.4 eV, 2.1 eV, 2.6 V, and E v + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E c − 2.1 eV, E v + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E v + 0.3 eV and E c − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E v + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E c − 1.4 eV and E c − 2.6 eV levels in Mg alloyed samples.

  3. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation

    International Nuclear Information System (INIS)

    Riedl, C; Coletti, C; Starke, U

    2010-01-01

    Graphene, a monoatomic layer of graphite, hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This paper reviews the controlled growth of epitaxial graphene layers on SiC(0 0 0 1) and the manipulation of their electronic structure. We show that epitaxial graphene on SiC grows on top of a carbon interface layer that-although it has a graphite-like atomic structure-does not display the linear π-bands typical for graphene due to a strong covalent bonding to the substrate. Only the second carbon layer on top of this interface acts like monolayer graphene. With a further carbon layer, a graphene bilayer system develops. During the growth of epitaxial graphene on SiC(0 0 0 1) the number of graphene layers can be precisely controlled by monitoring the π-band structure. Experimental fingerprints for in situ growth control could be established. However, due to the influence of the interface layer, epitaxial graphene on SiC(0 0 0 1) is intrinsically n-doped and the layers have a long-range corrugation in their density of states. As a result, the Dirac point energy where the π-bands cross is shifted away from the Fermi energy, so that the ambipolar properties of graphene cannot be exploited. We demonstrate methods to compensate and eliminate this structural and electronic influence of the interface. We show that the band structure of epitaxial graphene on SiC(0 0 0 1) can be precisely tailored by functionalizing the graphene surface with tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) molecules. Charge neutrality can be achieved for mono- and bilayer graphene. On epitaxial bilayer graphene, where a band gap opens due to the asymmetric electric field across the layers imposed by the interface, the magnitude of this band gap

  4. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    Science.gov (United States)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  5. Improvement of the electrochemical performance of nanosized {alpha}-MnO{sub 2} used as cathode material for Li-batteries by Sn-doping

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, A.M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abdel-Latif, A.M.; Abuzeid, H.M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abbas, H.M. [National Research Centre, Physical Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Farag, R.S. [Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo (Egypt); Mauger, A. [Universite Pierre et Marie Curie, Institut de Mineralogie et Physique de la Matiere Condensee (IMPMC), 4 Place Jussieu, 75005 Paris (France); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 Place Jussieu, 75005 Paris (France)

    2011-10-06

    Highlights: > Doping MnO{sub 2} with Sn improved properties of {alpha}-MnO{sub 2}. > Thermal stabilization and electrochemical performances were improved. > Doping affected also the morphology feature of {alpha}-MnO{sub 2}. - Abstract: Sn-doped MnO{sub 2} was prepared by hydrothermal reaction between KMnO{sub 4} as oxidant, fumaric acid C{sub 4}H{sub 4}O{sub 4} as reductant and SnCl{sub 2} as doping agent. XRD analysis indicates the cryptomelane {alpha}-MnO{sub 2} crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO{sub 2} to rod-like structure for Sn-MnO{sub 2}. Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO{sub 2} cell display lower capacity loss.

  6. Evaluation of charge storage ability of chrome doped Mn2O3 nanostructures derived by cathodic electrodeposition

    Directory of Open Access Journals (Sweden)

    Hamideh Darjazi

    2016-12-01

    Full Text Available A facile synthetic route has been proposed to prepare cauliflower-like nanostructures of Cr doped Mn2O3. The synthesis was carried out by constant current cathodic electrodeposition from Mn2+ nitrate solutions containing minor amounts of dichromate. It was found that the presence of Cr mediates the formation of cathodic MnO2 which then reacts with the excess Mn2+ species to form Mn2O3 nanostructures. X-Ray Diffraction (XRD, Scanning Electron Microscopy (SEM and Differential Thermal Analysis (DTA were used to characterize the nanostructures. The storage ability of the obtained nanostructures was investigated by cyclic voltammetry (CV in 0.5 M Na2SO4 solution. The results indicated that the Cr doped manganese oxide material shows better performance than the non-doped one, and the charge capacity (SC of doped manganese oxide (218 F/g was higher than pure manganese oxide (208 F/g.

  7. Highly c-axis oriented growth of GaN film on sapphire (0001 by laser molecular beam epitaxy using HVPE grown GaN bulk target

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2013-09-01

    Full Text Available Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001 substrates by laser molecular beam epitaxy (LMBE were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM, micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS. The x-ray rocking curve full width at a half maximum (FWHM value for (0002 reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002 plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  8. Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays

    Science.gov (United States)

    Omri, K.; Alyamani, A.; Mir, L. El

    2018-02-01

    Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).

  9. The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN

    International Nuclear Information System (INIS)

    Kang, Joongoo; Chang, K. J.

    2007-01-01

    We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V Ga ) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V Ga , and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V Ga . The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V Ga complex, which consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V Ga lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length

  10. Properties of Hg1-xCdxTe epitaxial films grown on (211)CdTe and (211)CdZnTe

    International Nuclear Information System (INIS)

    Di Stefano, M.C.; Gilabert, U.; Heredia, E.; Trigubo, A.B.

    2004-01-01

    Hg 1-x Cd x Te (MCT) epitaxial films have been grown employing single crystalline substrates of CdTe and Cd 0.96 Zn 0.04 Te with (211)Cd and (211)Te crystalline orientations. The Isothermal Vapor Phase Epitaxy (ISOVPE) technique without Hg overpressure has been used for the epitaxial growth. Substrates and films were characterized by optical microscopy, chemical etching and X ray diffraction (Laue technique). The electrical properties were determined by Hall effect measurements. The characterization results allowed to evaluate the crystalline quality of MCT films. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Arsenic complexes optical signatures in As-doped HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G. [CEA-LETI Minatec Campus, 17 rue des Martyrs, 38000 Grenoble (France)

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  12. Arsenic complexes optical signatures in As-doped HgCdTe

    International Nuclear Information System (INIS)

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G.

    2013-01-01

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  13. Suppression of Electron Spin Relaxation in Mn-Doped GaAs

    Science.gov (United States)

    Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2008-08-01

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  14. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Buriakov, A. M.; Bilyk, V. R.; Mishina, E. D. [Moscow Technological University “MIREA” (Russian Federation); Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Vasil’evskii, I. S. [National Research Nuclear University “MEPhI” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation)

    2017-04-15

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity of the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.

  15. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    International Nuclear Information System (INIS)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Vincent, B.; Gencarelli, F.; Clarysse, T.; Vandervorst, W.; Caymax, M.; Loo, R.; Jensen, A.; Petersen, D.H.; Zaima, S.

    2012-01-01

    We have investigated the Ga and Sn content dependence of the crystallinity and electrical properties of Ga-doped Ge 1-x Sn x layers that are heteroepitaxially grown on Ge(001) substrates. The doping of Ga to levels as high as the solubility limit of Ga at the growth temperature leads to the introduction of dislocations, due to the increase in the strain of the Ge 1-x Sn x layers. We achieved the growth of a fully strained Ge 0.922 Sn 0.078 layer on Ge with a Ga concentration of 5.5 × 10 19 /cm 3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge 1-x Sn x layer decreased as the Sn content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge 1-x Sn x epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge 0.950 Sn 0.050 layer annealed at 600°C for 1 min is 3.6 times less than that of the Ga-doped Ge/Ge sample. - Highlights: ► Heavy Ga-doping into fully strained GeSn layers without the introduction of dislocations ► The uniform Ga depth profile allowed the introduction of Sn ► The decrease in resistivity with an increase in the activation level of Ga was caused by the introduction of Sn

  16. Structural characterization of half-metallic Heusler compound NiMnSb

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Abdul-Kader, A.M.; Bach, P.; Schmidt, G.; Molenkamp, L.W.; Turos, A.; Karczewski, G

    2004-06-01

    High resolution X-ray diffraction (HRXRD) and Rutherford backscattering/channeling (RBS/c) techniques were used to characterize layers of NiMnSb grown by molecular beam epitaxy (MBE) on InP with a In{sub x}Ga{sub 1-x}As buffer. Angular scans in the channeling mode reveal that the crystal structure of NiMnSb is tetragonally deformed with c/a=1.010{+-}0.002, in agreement with HRXRD data. Although HRXRD demonstrates the good quality of the pseudomorphic NiMnSb layers the channeling studies show that about 20% of atoms in the layers do not occupy lattice sites in the [0 0 1] rows of NiMnSb. The possible mechanisms responsible for the observed disorder are discussed.

  17. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    Science.gov (United States)

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Significant improvement in performances of LiNi0.5Mn1.5O4 through surface modification with high ordered Al-doped ZnO electro-conductive layer

    International Nuclear Information System (INIS)

    Sun, Hongdan; Xia, Bingbo; Liu, Weiwei; Fang, Guoqing; Wu, Jingjing; Wang, Haibo; Zhang, Ruixue; Kaneko, Shingo; Zheng, Junwei; Wang, Hongyu; Li, Decheng

    2015-01-01

    Graphical abstract: Al-doped ZnO (AZO)-coated LiNi 0.5 Mn 1.5 O 4 (LNMO) was prepared by sol–gel method. AZO-coated LNMO electrode shows excellent rate capability and a remarkable improvement in the cyclic performance at a high rate at elevated temperature. - Highlights: • Al-doped ZnO (AZO)-coated LiNi 0.5 Mn 1.5 O 4 (LNMO) was prepared by a traditional sol–gel method. • Al-doped ZnO (AZO) layer grown on the surface of LNMO is high ordered. • At a high rate of 10 C, the discharge capacity of the AZO-coated LNMO electrode can reach 114 mAh g −1 . • Al-doped ZnO (AZO) modification improved cyclic performance of LNMO at high temperatures. - Abstract: Al-doped ZnO (AZO)-coated LiNi 0.5 Mn 1.5 O 4 (LNMO) was prepared by sol–gel method. Transmission electron microscopy (TEM) analysis indicates that AZO layer grown on the surface of LNMO is high ordered. The results of electrochemical performance measurements reveal that the AZO-coated LNMO electrode displays the best rate capability compared with the bare LNMO and ZnO-coated LNMO, even at a high rate of 10 C. The discharge capacity of the AZO-coated LNMO electrode can still reach 114.3 mAh g −1 , about 89% of its discharge capacity at 0.1 C. Moreover, AZO-coated LNMO electrode shows a remarkable improvement in the cyclic performance at a high rate at elevated temperature due to the protective effect of AZO coating layer. The electrode delivers a capacity of 120.3 mAh g −1 with the capacity retention of 95% at 5 C in 50 cycles at 50 °C. The analysis of electrochemical impedance spectra (EIS) indicates that AZO-coated LNMO possesses the lowest charge transfer resistance compared to the bare LNMO and ZnO-coated LNMO, which may be responsible for improved rate capability

  19. Homogeneity testing and quantitative analysis of manganese (Mn in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    V. K. Unnikrishnan

    2014-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×109 W/cm2. The spatially integrated plasma emission was collected and imaged on to the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.

  20. Visible light carrier generation in co-doped epitaxial titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B., E-mail: ryan.comes@pnnl.gov; Kaspar, Tiffany C.; Chambers, Scott A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Smolin, Sergey Y.; Baxter, Jason B. [Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Gao, Ran [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Apgar, Brent A. [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801 (United States); Martin, Lane W. [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bowden, Mark E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2015-03-02

    Perovskite titanates such as SrTiO{sub 3} (STO) exhibit a wide range of important functional properties, including ferroelectricity and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications; however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr, we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr{sup 3+} dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to 2.4–2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  1. Extended defects in epitaxial Sc2O3 films grown on (111) Si

    International Nuclear Information System (INIS)

    Klenov, Dmitri O.; Edge, Lisa F.; Schlom, Darrell G.; Stemmer, Susanne

    2005-01-01

    Epitaxial Sc 2 O 3 films with the cubic bixbyite structure were grown on (111) Si by reactive molecular beam epitaxy. High-resolution transmission electron microscopy (HRTEM) revealed an abrupt, reaction-layer free interface between Sc 2 O 3 and Si. The ∼10% lattice mismatch between Si and Sc 2 O 3 was relieved by the formation of a hexagonal misfit dislocation network with Burgers vectors of 1/2 Si and line directions parallel to Si . A high density of planar defects and threading dislocations was observed. Analysis of lattice shifts across the planar defects in HRTEM showed that these faults were likely antiphase boundaries (APBs). ABPs form when film islands coalesce during growth because films nucleate with no unique arrangement of the ordered oxygen vacancies in the bixbyite structure relative to the Si lattice

  2. Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys

    International Nuclear Information System (INIS)

    Turek, I.; Divis, M.; Niznansky, D.; Vejpravova, J.

    2007-01-01

    Formation of local magnetic moments in the intermetallic compound LaFe 2 Si 2 due to doping by a few at% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured 57 Fe Moessbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments

  3. Shift in optical properties of Mn doped CdS (A DFT+U study)

    Science.gov (United States)

    khan, M. Junaid Iqbal; Kanwal, Zarfishan; Nauman Usmani, M.

    2018-01-01

    Current study is based on PBE-GGA and GGA+U computational approach for calculating optical properties of Mn doped CdS. Cd atom in host CdS lattice (rocksalt structure) are substituted with Mn at various lattice positions and shift in optical properties is observed by increasing supercell size by employing PBE-GGA and Hubbard term. Optical properties vary with changing supercell size and show significant change for GGA+U. Blue shift in absorption spectrum and plots for PDOS, TDOS are in accordance with existing reported work. Moreover strong p-d hybridization is observed due to Mn and S orbital interactions and localization of d-states are scrutinized in vicinity of Fermi level or conduction band minima. GGA+U absorption curve shows redshift and a tremendous change in optical properties is observed due to different bonding. Doping Mn into CdS host lattice illustrates enhancement in Opto-electrical properties which maximizes CdS:Mn system scope in optoelectronic devices.

  4. Optical and structural properties of undoped and Mn{sup 2+} doped Ca–Li hydroxyapatite nanopowders using mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranadh, K. [Department of Physics, Andhra Loyola College, Vijayawada 520008 (India); Department of Physics, Acharya Nagarjuna University, Guntur 522510 (India); Babu, B.; Pushpa Manjari, V.; Thirumala Rao, G. [Department of Physics, Acharya Nagarjuna University, Guntur 522510 (India); Rao, M.C. [Department of Physics, Andhra Loyola College, Vijayawada 520008 (India); Ravikumar, R.V.S.S.N., E-mail: rvssn@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Guntur 522510 (India)

    2015-03-15

    Undoped and Mn{sup 2+} doped calcium–lithium hydroxyapatite (CLHA) nanopowders were prepared by mechanochemical synthesis. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, transmission electron microscope, optical absorption, photoluminescence, electron paramagnetic resonance and FT-IR spectroscopy techniques. From powder XRD pattern, lattice cell parameters and average crystallite sizes were evaluated. The morphologies of prepared samples were analyzed by using SEM and TEM studies. Optical and EPR data confirmed that the doped Mn{sup 2+} enter into the host material as distorted octahedral site. Photoluminescence spectra of undoped and Mn{sup 2+} doped CLHA nanopowders exhibited blue, blue-green emission bands at 425, 443, 468 nm and green, strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for undoped and Mn{sup 2+} doped CLHA nanopowders. Vibrational bands related to phosphate molecules, P–O–H and hydroxyl ions are observed in FT-IR spectra. - Highlights: • PXRD pattern of prepared undoped and Mn{sup 2+} doped CLHA nanopowders are in nanosize. • Optical and EPR studies reveal site symmetry of Mn{sup 2+} doped CLHA nanopowders are distorted octahedral symmetry. • FT-IR spectra exhibits the various vibrational modes of phosphate ions, P–O–H and water molecules.

  5. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  6. Thickness dependence of microstructures in La0.9Sr0.1MnO3 thin films grown on exact-cut and miscut SrTiO3 substrates

    International Nuclear Information System (INIS)

    Zhang Hongdi; An Yukai; Mai Zhenhong; Lu Huibin; Zhao Kun; Pan Guoqiang; Li Ruipeng; Fan Rong

    2008-01-01

    The thickness dependence of microstructures of La 0.9 Sr 0.1 MnO 3 (LSMO) thin films grown on exact-cut and miscut SrTiO 3 (STO) substrates, respectively, was investigated by high-angle X-ray diffraction (HXRD), X-ray small-angle reflection (XSAR), X-ray reciprocal space mapping and atomic force microscopy (AFM). Results show that the LSMO films are in pseudocubic structure and are highly epitaxial [0 0 1]-oriented growth on the (0 0 1) STO substrates. The crystalline quality of the LSMO film is improved with thickness. The epitaxial relationship between the LSMO films and the STO substrates is [0 0 1] LSMO -parallel [0 0 1] EXACT-STO , and the LSMO films have a slight mosaic structure along the q x direction for the samples grown on the exact-cut STO substrates. However, an oriented angle of about 0.24 deg. exists between [0 0 1] LSMO and [0 0 1] MISCUT-STO , and the LSMO films have a mosaic structure along the q z direction for that grown on the miscut STO substrates. The mosaic structure of both groups of the samples tends to reduce with thickness. The diffraction intensity of the (0 0 4) peaks increases with thickness of the LSMO film. The XSAR and AFM observations show that for both groups, the interface is sharp and the surface is rather smooth. The mechanism was discussed briefly

  7. Defect formation and carrier doping in epitaxial films of the ''parent'' compound SrCuO2: Synthesis of two superconductors descendants

    International Nuclear Information System (INIS)

    Feenstra, R.; Norton, D.P.; Budai, J.D.; Jones, E.C.; Christen, D.K.; Kawai, T.

    1995-04-01

    The infinite layer or parent compounds ACuO 2 (A: Ca-Sr-Ba) constitute the simplest copper oxygen perovskites that contain the CuO 2 sheets essential for superconductivity. The stabilization of these basic ''building blocks'' as epitaxial films, therefore, provides alluring opportunities towards the search for new superconducting compounds and elucidation of the underlying mechanisms. In this work, general trends of the defect formation and carrier doping for epitaxial films of the intermediate endmember SrCuO 2 are reviewed. First results are presented from successful attempts to induce hole-doped superconductivity via the processing-controlled incorporation of charge reservoir layers

  8. Emission spectra of phosphor MgSO4 doped with Dy and Mn

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Chen Lixin; Tang Qiang; Luo Daling; Qiu Zhiren

    2001-01-01

    Emission spectra of phosphor MgSO 4 doped with Dy and Dy/Mn were measured with an optical multichannel analyzer and a linear heating system whose temperature was controlled by a microcomputer. The emission spectrum bands at 480 nm and 580 nm of phosphor MgSO 4 doped with Dy were observed in the three dimensional (3D) glow curves. Compared with the 3D spectrum of CaSO 4 :Dy and the spectrum bands of MgSO 4 :Dy shows the same wavelengths which resulted from the quantum transitions among the energy levels of Dy 3 '+ ions. The intensities of the glow peaks in both spectrum bands (480 nm and 580 nm) of phosphor MgSO 4 doped with Dy/Mn were dramatically reduced except the 380 degree C glow peak

  9. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  10. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor

  11. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  12. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  13. Doping and bond length contributions to Mn K-edge shift in La1 ...

    Indian Academy of Sciences (India)

    ... corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, ...

  14. Epitaxy of (Ga,Mn)As; Epitaxie von (Ga,Mn)As

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Martin

    2012-09-14

    The focus of this work lies on the enhancement of the magnetic properties of the ferromagnetic semiconductor Gallium manganese arsenide (GaMnAs), which is a basic material for the research in spintronics: It is told, how a high sample reproducibility and a strong control over the growth process can be gained by applying band edge spectroscopy and a special procedure for the material flux calibration. Also the most important methods for the electrical characterization of GaMnAs are discussed in a critical manner by showing that the anomalous Hall Effect contributes significantly to the Hall resistance even at room temperature and that Novak's method for the termination of the Curie-temperature provides correct values for layers with low defect concentration. Furthermore it is reported on the considerable enlargement of the useable parameter space of GaMnAs which was enabled by the enhanced control over the growth process: It was possible to grow layers with a very high Manganese content of 22% and Curie temperatures of 172 K and even once were produced which showed a strong magnetic moment despite an insulating behaviour at low temperatures. A last key aspect is the growth and characterization of ultra-thin GaMnAs layers, giving prospects for gating experiments or experiments on the proximity effect as these layers combine high Curie temperatures with insulating behaviour.

  15. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2015-09-01

    Full Text Available Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS, and ultraviolet-visible spectrophotometer. Results showed that the loading rate of TiO2 in Mn/Ti-N-WACF was improved by Mn/N co-doping. After calcination at 450 °C, the degree of crystallinity of TiO2 was reduced due to Mn/N co-doption in the resulting Mn/Ti-N-WACF samples, but the TiO2 crystal phase was not changed. XPS spectra revealed that some Ti4+ ions from the TiO2 lattice of Mn/Ti-N-WACF system were substituted by doped Mn. Moreover, new bonds formed within N–Ti–N and Ti–N–O because of the doped N that substituted some oxygen atoms in the TiO2 lattice. Notably, the degradation rate of methylene blue for Mn/Ti-N-WACF was improved because of the co-doped Mn/N under visible-light irradiation.

  16. Sulfonsuccinate (AOT Capped Pure and Mn-Doped CdS Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Venkatesan

    2012-01-01

    Full Text Available CdS nanoparticles and thin films are well known for their excellent semiconducting properties. When transition metal ions are doped into the CdS, it exhibits magnetic properties in addition to semiconducting properties and they are termed as dilute magnetic semiconductors (DMSs. In this paper, we discuss the preparation of sodium bis(2-ethylhexyl sulfonsuccinate (AOT capped CdS nanoparticles and thin films doped with magnetic impurity Mn. Sodium bis(2-ethulexyl sulfonsuccinate (AOT, capping agent promotes the uniform formation of nanoparticles. Optical characterizations are made using the UV-Vis spectrometer, PL, and FTIR. XRD shows the hexagonal structure of the CdS. SEM images and EDS measurements were made for the thin films. EPR shows the clear hyperfine lines corresponding to Mn2+ ion in the CdS nanoparticles.

  17. Simple and greener synthesis of highly photoluminescence Mn{sup 2+}-doped ZnS quantum dots and its surface passivation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbo; Liang, Xuhua; Ma, Xuan; Hu, Yahong [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi’an, Shannxi, 710069 (China); Hu, Xiaoyun; Li, Xinghua [Department of Physics, Northwest University, No. 229 Taibai North Road, Xi’an, Shannxi, 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi’an, Shannxi, 710069 (China)

    2014-10-15

    Graphical abstract: TEM and HRTEM (inset) images of the as-prepared Mn{sup 2+}-doped ZnS QDs and the passivation mechanism model of GSH-capped ZnS QDs (b). - Highlights: • Highly photoluminescent Mn{sup 2+}-doped ZnS quantum dots were synthesized by a simple synthetic method. • The effects of Mn{sup 2+} doping concentration, reaction time and temperature on PL intensity were investigated. • The mechanism of surface passivation was described. - Abstract: In this paper, we reported a simple synthetic method of highly photoluminescent (PL) and stable Mn{sup 2+}-doped ZnS quantum dots (QDs) with glutathione (GSH) as the capping molecule and focused on mechanism of the surface passivation of QDs. The Mn{sup 2+}-doped ZnS QDs that was synthesized in basic solution (pH 10) at 120 °C for 5 h exhibited blue trap-state emission around 418 nm and a strong orange-red emission at about 580 nm with an excitation wavelength of 330 nm. The optimum doping concentration is determined to be 1.5 at.%, and the present Mn{sup 2+}-doped ZnS QDs synthesized under the optimal reaction condition exhibited a quantum yield of 48%. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) indicated that the Mn{sup 2+}-doped ZnS QDs were 3–5 nm in size with a zinc blend structure. More importantly, the PL intensity and chemical stability can be improved using organic ligand modification strategies, it was found that GSH could passivate surface defects very efficiently by comparing and analyzing the results of the different organic ligands modification. The cadmium-free Mn{sup 2+}-doped ZnS QDs well-passivated with GSH as capping molecule acquired the advantages of strong PL and excellent chemical stability, which are important to QD applications.

  18. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Science.gov (United States)

    Pomar, Alberto; Konstantinović, Zorica; Bagués, Nuria; Roqueta, Jaume; López-Mir, Laura; Balcells, Lluis; Frontera, Carlos; Mestres, Narcis; Gutiérrez-Llorente, Araceli; Šćepanović, Maja; Lazarević, Nenad; Popović, Zoran; Sandiumenge, Felip; Martínez, Benjamín; Santiso, José

    2016-09-01

    We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4) in a pristine perovskite matrix (LaMnO3) by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight ( 9º) c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  19. Structural and functional properties of La1-xBaxMnO3 thin films on SrTiO3

    International Nuclear Information System (INIS)

    Belenchuk, A.; Kantser, V.; Shapoval, O.; Zasavitsky, E.; Moshnyaga, V.

    2011-01-01

    Full text: Colossal magneto resistive manganites such as La 1-x Ba x MnO3 (LBMO) show a reach diversity of a attractive physical properties and the epitaxy of manganites has figured conspicuously in the search for new generations of electronic materials for information processing, data storage, and sensing. All applications require manganite films with a smooth morphology and perfect functional properties such as a large magnetization and a small residual resistivity. We investigated the structural and functional properties of the epitaxial LBMO thin films grown on the near perfect matched SrTiO 3 substrates by metalorganic aerosol deposition technique. AFM surface analysis shows a very smooth films surface indicating the layer-by-layer growth mode. The occurrence of a distinct Laue thickness fringes in X-ray diffraction spectra indicates a high quality single-crystalline growth of an uniformly strained LBMO films. But the small-angle x-ray scattering reveals the presence of a few unit cells intermediate layer with a modified electronic density. Transport measurements determine a high metal-insulator transition temperature (T MI >340 K) confirming near optimal Ba doping of LBMO with the residual resistivity of 350 μΩcm at 50 K. According to the inductive coupled plasma emission spectroscopy analysis the LBMO has level of Ba doping x=0.32. However, SQUID magnetization measurements reveal the coexistence of a high Curie temperature (T C =335 K) and a low coercitive field (27-30 Oe) with a reduced saturation magnetization (∼3 μ B /Mn) and broadened para-ferromagnetic transition. The presence of magnetic phase inhomogeneity can be further revealed from the form of low-temperature magnetization loops. We discuss the results within the concept of a 'hidden' magnetic layer situated close to the film-substrate interface and the presence of magnetic phase separation phenomenon in the main part of the LBMO film. (authors)

  20. Elemental moment variation of bcc Fe{sub x}Mn{sub 1−x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bhatkar, H.; Snow, R.J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc Fe{sub x}Mn{sub 1−x} on MgO(001). It is observed that the 20 nm thick Fe{sub x}Mn{sub 1−x} alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L{sub 3} binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x~0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism - Highlights: • Bcc Fe{sub x}Mn{sub 1−x} films were stabilized beyond bulk range by epitaxial growth on MgO. • XMCD shows negligible moment in Mn regardless of composition. • Fe moment stays constant until 84% Mn concentration. • Magnetic moment suddenly collapses before any structural change seen in RHEED.

  1. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    Science.gov (United States)

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  2. New configurations for short-pulses high power solid-state lasers: conception and realization of highly doped waveguide amplifiers/lasers grown by liquid phase epitaxy and demonstration of Y2SiO5: Yb and Lu2SiO5: Yb femtosecond lasers

    International Nuclear Information System (INIS)

    Thibault, F.

    2006-04-01

    Yb-doped yttrium and lutetium ortho-silicates, Y 2 SiO 5 :Yb and Lu 2 SiO 5 :Yb respectively, exhibit spectroscopic properties favorable to an efficient laser operation in both high power cw and femtosecond regime. Their first diode-pumped femtosecond operation demonstration lead to exceptional performances in terms of output power and efficiency. In order to realize compact and efficient solid-state laser devices using those materials, we chose a configuration with an Yb-doped medium planar waveguide geometry, grown by liquid phase epitaxy, face-pumped by a single laser diode bar. The growth of highly doped Y 2 SiO 5 :Yb layers, within a large range of compositions and thicknesses, was demonstrated. The refractive index increase due to the substitution of the various dopants is analyzed. The layers spectroscopic properties are similar to the bulk ones, with an noticeably higher crystalline quality. The Yb ion lifetime evolution with respect to its doping shows up a particularly low decrease, proof of a low concentration of extrinsic quenching centers. The covered YSO:24%Yb waveguides exhibit lower than 0.3 dB/cm propagation losses, and provided up to 2.9 dB/cm net amplification at 1082 nm with a single mode output. The realization of the first diode-pumped monolithic cw waveguide lasers was also demonstrated. For a 4% output coupler, they provided up to 340 mW at 1082 nm with a 14% slope efficiency. (author)

  3. Photoluminescence and Raman studies for the confirmation of oxygen vacancies to induce ferromagnetism in Fe doped Mn:ZnO compound

    Energy Technology Data Exchange (ETDEWEB)

    Das, J., E-mail: jayashree304@gmail.com [Department of Physics, Silicon Institute of Technology, Bhubaneswar 751024, Odisha (India); Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710 (South Africa); Mishra, D.K. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710 (South Africa); Department of Physics, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar 751030, Odisha (India); Srinivasu, V.V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710 (South Africa); Sahu, D.R. [Amity Institute of Nanotechnology, Amity University, Noida (India); Roul, B.K. [Institute of Materials Science, Planetarium Building, Acharya Vihar, Bhubaneswar, Odisha (India)

    2015-05-15

    With a motivation to compare the magnetic property, we synthesised undoped, transition metal (TM) Mn doped and (Mn:Fe) co-doped ZnO ceramics in the compositions ZnO, Zn{sub 0.98}Mn{sub 0.02}O and Zn{sub 0.96}(Mn{sub 0.02}Fe{sub 0.02})O. Systematic investigations on the structural, microstructural, defect structure and magnetic properties of the samples were performed. Low temperature as well as room temperature ferromagnetism has been observed for all our samples, however, enhanced magnetisation at room temperature has been noticed when ZnO is co-doped with Fe along with Mn. Particularly the sample with the composition Zn{sub 0.96}Mn{sub 0.02}Fe{sub 0.02}O showed a magnetisation value more than double of the sample with composition Zn{sub 0.98}Mn{sub 0.02}O, indicating long range strong interaction between the magnetic impurities leading to higher ferromagnetic ordering. Raman and PL studies reveal presence of higher defects in form of oxygen vacancy clusters created in the sample due to Fe co doping. PL study also reveals enhanced luminescence efficiency in the co doped sample. Temperature dependent magnetisation study of this sample shows the spin freezing temperature around 39 K indicating the presence of small impurity phase of Mn{sub 2−x}Zn{sub x}O{sub 3} type. Electron Spin Resonance signal obtained supports ferromagnetic state in the co doped sample. Enhancement of magnetisation is attributed to interactions mediated by magnetic impurities through large number of oxygen vacancies created by Fe{sup 3+} ions forming bound magnetic polarons (BMP) and facilitating long range ferromagnetic ordering in the co- doped system. - Highlights: • Comparison of magnetic property of ZnO, Zn{sub 0.98}Mn {sub 0.02}O and Zn{sub 0.96}(Mn{sub 0.02}Fe{sub 0.02})O. • Observation of enhanced magnetisation at room temperature in (Mn,Fe) doped ZnO. • Raman and PL studies reveal presence of higher oxygen vacancy clusters. • Electron Spin Resonance signal supports

  4. Molecular beam epitaxy of iodine-doped CdTe and (CdMg)Te

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Waag, A.; Litz, Th.; Scholl, S.; Schmitt, M.; Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstofforschung, Stuttgart (Germany))

    1994-08-01

    The n-type doping of CdTe and (CdMg)Te by the use of the solid dopant source material ZnI[sub 2] is reported. Doping levels as high as 7x10[sup 18] cm[sup -3] have been obtained in CdTe with carrier mobilities around 500 cm[sup 2]/V[center dot]s at room temperature. For a dopant incorporation higher than 1x10[sup 19] cm[sup -3] the free carrier concentration decreases, indicating the onset of a compensation mechanism, which is observed in the case of chlorine and bromine doping, too. Preliminary experiments show that with increasing Mg concentration the free carrier concentration decreases. Nevertheless, CdMgTe with a magnesium concentration x=0.37 (band gap 2.2 eV at room temperature) can be doped up to 2x10[sup 17] cm[sup -3]. The existence of deep donor levels in this CdTe based ternary is not supposed to be the only reason for the reduction of the free carrier concentration. For high Mg support during molecular beam epitaxial (MBE) growth of wide gap (CdMg)Te layers, the ZnI[sub 2] incorporation is reduced, leading to low doping levels, too

  5. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  6. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1998-01-01

    The kinetics of dopant-enhanced solid phase epitaxy (SPE) have been measured in buried a-Si layers doped with arsenic. SPE rates were measured over the temperature range 480 - 660 deg C for buried a-Si layers containing ten different As concentrations. In the absence of H-retardation effects, the dopant-enhanced SPE rate is observed to depend linearly on the As concentration over the entire range of concentrations, 1-16 x 10 19 cm -3 covered in the study. The Fermi level energy was calculated as a function of doping and find an equation that can provide good fits to the data. The implications of these results for models of the SPE process is discussed

  7. Effects of substrate material on carbon films grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, M.; Xu, X.Y.; Man, B.Y.; Kong, D.M.; Xu, S.C.

    2012-01-01

    Highlights: ► We prepared tri-layers by laser molecular beam epitaxy (LMBE) on sapphire substrate. ► We found that the formation of the graphene film has a strong relation to the structure and properties of the substrate. ► The different carbon film formation mechanism of the buffer layers can affect the morphology of the film. - Abstract: The carbon thin films were grown on different substrates with different buffer layers by laser molecular beam epitaxy (LMBE) with a high purity graphite carbon target. A UV pulsed KrF excimer laser with a wavelength of 248 nm was used as laser source. The structure, surface morphology and other properties of the carbon thin films were characterized by Raman spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM). The results show that the properties of the carbon thin films and the formation of the graphene film have a strong relation to the structure and properties of the substrate. The substrate with a hexagonal wurtzite structure which is similar to the hexagonal honeycomb structure of the carbon atoms arranged in the graphene is more beneficial for the formation of the graphene thin film. In our experiment conditions, the carbon films grown on sapphire substrates with different buffer layers have an ordered structure and a smooth surface, and form high quality tri-layer graphene films.

  8. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  9. Molecular Doping the Topological Dirac Semimetal Na3Bi across the Charge Neutrality Point with F4-TCNQ.

    Science.gov (United States)

    Edmonds, Mark T; Hellerstedt, Jack; O'Donnell, Kane M; Tadich, Anton; Fuhrer, Michael S

    2016-06-29

    We perform low-temperature transport and high-resolution photoelectron spectroscopy on 20 nm thin film topological Dirac semimetal Na3Bi grown by molecular beam epitaxy. We demonstrate efficient electron depletion ∼10(13) cm(-2) of Na3Bi via vacuum deposition of molecular F4-TCNQ without degrading the sample mobility. For samples with low as-grown n-type doping (1 × 10(12) cm(-2)), F4-TCNQ doping can achieve charge neutrality and even a net p-type doping. Photoelectron spectroscopy and density functional theory are utilized to investigate the behavior of F4-TCNQ on the Na3Bi surface.

  10. Photoluminescence investigation of thick GaN films grown on Si substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Yang, M.; Ahn, H. S.; Chang, J. H.; Yi, S. N.; Kim, K. H.; Kim, H.; Kim, S. W.

    2003-01-01

    The optical properties of thick GaN films grown by hydried vapor phase epitaxy (HVPE) using a low-temperature intermediate GaN buffer layer grown on a (111) Si substrate with a ZnO thin film were investigated by using photoluminescence (PL) measurement at 300 K and 77 K. The strong donor bound exciton (DBE) at 357 nm with a full width at half maximum (FWHM) of 15 meV was observed at 77 K. The value of 15 meV is extremely narrow for GaN grown on Si substrate by HVPE. An impurity-related peak was also observed at 367 nm. The origin of impurity was investigated using Auger spectroscopy.

  11. Defect distribution in low-temperature molecular beam epitaxy grown Si/Si(100), improved depth profiling with monoenergetic positrons

    International Nuclear Information System (INIS)

    Szeles, C.; Asoka-Kumar, P.; Lynn, K.G.; Gossmann, H.; Unterwald, F.C.; Boone, T.

    1995-01-01

    The depth distribution of open-volume defects has been studied in Si(100) crystals grown by molecular beam epitaxy at 300 degree C by the variable-energy monoenergetic positron beam technique combined with well-controlled chemical etching. This procedure gave a 10 nm depth resolution which is a significant improvement over the inherent depth resolving power of the positron beam technique. The epitaxial layer was found to grow defect-free up to 80 nm, from the interface, where small vacancy clusters, larger than divacancies, appear. The defect density then sharply increases toward the film surface. The result clearly shows that the nucleation of small open-volume defects is a precursor state to the breakdown of epitaxy and to the evolution of an amorphous film

  12. GaIn As Quantum Dots (QD) grown by Liquid Phase Epitaxy (LPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Vazquez, F E; Mishurnyi, V A; Gorbatchev, A Yu; De Anda, F [Universidad Autonoma de San Luis Potosi, Instituto de Investigation en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico); Elyukhin, V A, E-mail: fcoe_ov@prodigy.net.m, E-mail: andre@cactus.iico.uaslp.m [CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Mexico D.F., CP 07360 (Mexico)

    2009-05-01

    The majority of the semiconductor structures with QD today are grown by MBE and MOCVD. It is known that the best material quality can be achieved by LPE because, in contrast to MBE and MOCVD, this method is realized at near-equilibrium conditions. To develop QD LPE technology first of all it is necessary to find out a growth technique allowing the crystallization of epitaxial materials with very small volume. This can be done by means of different techniques. In this work we apply a low temperature short-time growth method, which allows the production not only of single, but also of multilayer heterostructures. We have grown Ga{sub x}In{sub 1-z}As QD on GaAs (100) substrates at 450 C. The details of the QD formation, depending on composition of the Ga{sub x}In{sub -x} As solid solutions, have been studied by atom-force microscopy. The photoluminescence spectra of investigated samples show, in addition to a short-wave GaAs related peak, a longer wavelength line, which disappears after removal of the grown GaInAs material using an etching solution. This fact, together with atom-force microscopy results can be interpreted as a proof that QD heterostructures were grown successfully by LPE.

  13. Progress in efficient doping of high aluminum-containing group III-nitrides

    Science.gov (United States)

    Liang, Y.-H.; Towe, E.

    2018-03-01

    The group III-nitride (InN, GaN, and AlN) class of semiconductors has become one of two that are critical to a number of technologies in modern life—the other being silicon. Light-emitting diodes made from (In,Ga)N, for example, dominate recent innovations in general illumination and signaling. Even though the (In,Ga)N materials system is fairly well established and widely used in advanced devices, challenges continue to impede development of devices that include aluminum-containing nitride films such as (Al,Ga)N. The main difficulty is efficient doping of films with aluminum-rich compositions; the problem is particularly severe for p-type doping, which is essential for Ohmic contacts to bipolar device structures. This review briefly summarizes the fundamental issues related to p-type doping, and then discusses a number of approaches that are being pursued to resolve the doping problem or for circumventing the need for p-type doping. Finally, we discuss an approach to doping under liquid-metal-enabled growth by molecular beam epitaxy. Recent results from a number of groups appear to indicate that p-type doping of nitride films under liquid-metal-enabled growth conditions might offer a solution to the doping problem—at least for materials grown by molecular beam epitaxy.

  14. Controlled fabrication and tunable photoluminescence properties of Mn2+ doped graphene–ZnO composite

    International Nuclear Information System (INIS)

    Luan, Xinglong; Zhang, Yihe; Tong, Wangshu; Shang, Jiwu; An, Qi; Huang, Hongwei

    2014-01-01

    Highlights: • Graphene–ZnO composites were synthesized by a mixed solvothermal method. • ZnO quantum dots are distributed uniformly on the graphene sheets. • A possible hypothesis is raised for the influence of graphene oxide on the nucleation of ZnO. • Mn 2+ doped graphene–ZnO composites were fabricated and the emission spectra can be tuned by doping. - Abstract: Graphene–ZnO composites (G–ZnO) with controlled morphology and photoluminescence property were synthesized by a mixed solvothermal method. Mixed solvent were composed by dimethyl sulfoxide and ethylene glycol. Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectra were used to characterize G–ZnO. Graphene as a substrate can help the distribution and the dispersity of ZnO, and a possible model of the interaction between graphene oxide and ZnO particles is proposed. At the same time, graphene also reduce the size of ZnO particles to about 5 nm. Furthermore, Mn 2+ ions dopes G–ZnO successfully by the mixed solvothermal synthesis and the doping of Mn 2+ makes G–ZnO shift red from 465 nm to 548 nm and 554 nm in the emission spectrum. The changes of the emission spectrum by the adding of Mn 2+ make G–ZnO have tunable photoluminescence spectrum which is desirable for practical applications

  15. Andreev reflections at interfaces between delta-doped GaAs and superconducting Al films

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Hansen, Jørn Bindslev

    1996-01-01

    By placing several Si delta-doped layers close to the surface of a GaAs molecular beam epitaxy-grown crystal, we achieve a compensation of the Schottky barrier and obtain a good Ohmic contact between an in situ deposited (without breaking the vacuum) Al metallization layer and a highly modulation...

  16. High-efficiency silicon doping of InP and In0.53Ga0.47As in gas source and metalorganic molecular beam epitaxy using silicon tetrabromide

    International Nuclear Information System (INIS)

    Jackson, S.L.; Fresina, M.T.; Baker, J.E.; Stillman, G.E.

    1994-01-01

    Efficient vapor source Si doping of InP and In 0.53 Ga 0.47 As have been demonstrated using SiBr 4 as the Si source for both gas source (GSMBE) and metalorganic molecular beam epitaxy (MOMBE). Net electron concentrations ranging from n=2x10 17 to 6.8x10 19 cm -3 and from 9x10 16 to 3x10 19 cm -3 have been obtained for InP and In 0.53 Ga 0.47 As, respectively. Comparison of these data with those for Si 2 H 6 indicate that the Si incorporation efficiency with SiBr 4 is more than 10 000 times greater than with Si 2 H 6 for substrate temperatures in the range of 475≤T s ≤500 degree C. Specular surface morphologies were obtained, even for the most heavily doped samples. While [Si] as high as 1.8x10 20 cm -3 was obtained in InP, the net electron concentrations and 300 K Hall mobilities decrease with increasing [Si] for [Si]>6.8x10 19 cm -3 . Contact resistances as low as R c =3x10 -8 Ω cm 2 were obtained using a nonalloyed Ti/Pt/Au contact to InP layers doped to n=6.3x10 19 cm -3 . During GSMBE growth, an increased Si background concentration ([Si]∼2x10 17 cm -3 ) was observed after extended use of the SiBr 4 source for these heavy doping concentrations. This increased background was not observed in MOMBE-grown material. Depth profiles of pulse-doped structures indicate the absence of memory effects for structures grown by MOMBE

  17. Visible light carrier generation in co-doped epitaxial titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B.; Smolin, Sergey Y.; Kaspar, Tiffany C.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.; Baxter, Jason; Chambers, Scott A.

    2015-03-02

    Perovskite titanates such as SrTiO3 (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity—which may be valuable in photovoltaic applications—and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance measurements confirm that optically generated carriers have a recombination lifetime comparable to that of STO and are in agreement with the observations from ellipsometry. Finally, through photoelectrochemical yield measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  18. Strain induced magnetism in La0.5Ca0.5MnO3 systems

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Thomas; Nolle, Daniela; Schuetz, Gisela; Goering, Eberhard [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Aydogdu, Guelguen; Habermeier, Hanns-Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The La{sub 1-x}Ca{sub x}MnO{sub 3} exhibits, besides the double exchange relate magneto resistive effects, many interesting properties as a function of the doping level. Depending on the doping level x the system may exhibit ferromagnetism, antiferromagnetism, orbital ordering, and charge ordering. Epitaxial tensile and compressive strains are very important for the fine tuning of the lattice degree of freedom and therefore for the magnetic nearest neighbor coupling. By *adjusting* tensile and compressive strain with corresponding substrates one can switch between FM and AFM coupling between the FM ordered ab-planes. In order to investigate the influence of different substrates and relaxation effects element specific XMCD measurements were performed on La{sub 0.5}Ca{sub 0.5}MnO{sub 3} systems.

  19. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  20. Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO

    Science.gov (United States)

    Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.

    2018-05-01

    The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.

  1. Field geometry dependence of magnetotransport in epitaxial La2/3Ca1/3MnO3 thin films

    International Nuclear Information System (INIS)

    Saldarriaga, W.; Baca, E.; Prieto, P.; Moran, O.; Grube, K.; Fuchs, D.; Schneider, R.

    2006-01-01

    In-plane and out-of-plane magnetoresistance measurements on epitaxial ∼200nm thin (001)-oriented films of high oxygen pressure DC-sputtering grown manganite La 2/3 Ca 1/3 MnO 3 were carried out. Single crystal (001)-SrTiO 3 substrates were used. The samples featured a Curie temperature T C ∼260K and a magnetic moment μ(T->0K)∼3μ B per Mn atom. Magnetocrystalline anisotropy with the easy axes lying on film plane was evidenced by recording the in-plane and out-of-plane magnetization loops at temperatures, below T C , in magnetic field strengths up to 5T. Evidence for anisotropic magnetotransport in these films was provided by electric measurements in a wide temperature range up to 6T magnetic field strengths applied both perpendicular and parallel to the film plane. In both applied magnetic field geometries, current and magnetic field were maintained perpendicular to each other. Neither low-field magnetoresistance nor large magnetoresistance hysteresis were observed on these samples, suggesting that the tensile strain imposed by the substrate in the first monolayers has partially been released. In addition, by rotating the sample 360 o around an axis parallel to film plane, in magnetic fields >=2T, a quadratic sinusoidal dependence of the magnetoresistance on the polar angle θ was observed. These results can be consistently interpreted using a generalized version of the theory of anisotropic magnetoresistance in transition-metal ferromagnets

  2. Defect Structure of High-Temperature-Grown GaMnSb/GaSb

    International Nuclear Information System (INIS)

    Romanowski, P.; Bak-Misiuk, J.; Dynowska, E.; Domagala, J.Z.; Wojciechowski, T.; Jakiela, R.; Sadowski, J.; Barcz, A.; Caliebe, W.

    2010-01-01

    GaMnSb/GaSb(100) layers with embedded MnSb inclusions have been grown at 720 K using MBE technique. This paper presents the investigation of the defect structure of Ga1-xMnxSb layers with different content of manganese (up to x = 0.07). X-ray diffraction method using conventional and synchrotron radiation was applied. Dimensions and shapes of inclusions were detected by scanning electron microscopy. Depth profiles of elements were measured using secondary ion mass spectroscopy technique. (authors)

  3. Dynamical x-ray diffraction studies of interfacial strain in superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Chu, S.N.G.; Hamm, R.A.; Panish, M.B.; Ritter, D.; Mancrander, A.T.

    1992-01-01

    This paper reports on dynamical X-ray diffraction studies that have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined

  4. High quality TbMnO3 films deposited on YAlO3

    International Nuclear Information System (INIS)

    Glavic, Artur; Voigt, Joerg; Persson, Joerg; Su, Yixi; Schubert, Juergen; Groot, Joost de; Zande, Willi; Brueckel, Thomas

    2011-01-01

    Research highlights: → We found a good substrate and suitable deposition parameters to create untwinned, epitaxial thin films of TbMnO 3 . → Laboratory experiments prove the crystalline quality of the films. → We were able to measure the micro magnetic structure in the films by polarized neutron diffraction (to our knowledge the first neutron investigations on TbMnO 3 thin films). - Abstract: High quality thin films of TbMnO 3 were grown by pulsed laser deposition on orthorhombicYAlO 3 (1 0 0). The interface and surface roughness of a 55 nm thick film were probed by X-ray reflectometry and atomic force microscopy, yielding a roughness of 1 nm. X-ray diffraction revealed untwinned films and a small mosaic spread of 0.04 o and 0.2 o for out-of-plane and in-plane reflections, respectively. This high degree of epitaxy was also confirmed by Rutherford backscattering spectrometry. Using polarized neutron diffraction we could identify a magnetic structure with the propagation vector (0 0.27 0), identical to the bulk magnetic structure of TbMnO 3 .

  5. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xinjuan, E-mail: wangxj@hnu.edu.cn [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Zhang Qinglin [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Zou Bingsuo, E-mail: zoubs@bit.edu.cn [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Micro-nano Technology Center and School of MSE, BIT, Beijing 100081 (China); Lei Aihua; Ren Pinyun [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China)

    2011-10-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 {mu}m were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn{sup 2+} ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  6. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    International Nuclear Information System (INIS)

    Wang Xinjuan; Zhang Qinglin; Zou Bingsuo; Lei Aihua; Ren Pinyun

    2011-01-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  7. Mobility-lifetime product in epitaxial GaAs X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.C. [GESEC R and D, Universite Pierre et Marie Curie, Bat.11, 140 rue de Lourmel, 75015 Paris (France)]. E-mail: guocsun@ccr.jussieu.fr; Zazoui, M. [LPMC, Faculte des Sciences et Techniques-Mohammedia, B.P. 146 Bd Hassan II, Mohammedia, Maroc (Morocco); Talbi, N. [Faculte des Sciences, Universite de Gabes, Route de Medenine, 6029 Gabes (Tunisia); Khirouni, K. [Faculte des Sciences, Universite de Gabes, Route de Medenine, 6029 Gabes (Tunisia); Bourgoin, J.C. [GESEC R and D, Universite Pierre et Marie Curie, Bat.11, 140 rue de Lourmel, 75015 Paris (France)

    2007-04-01

    Self-supported thick (200-500 {mu}m), non-intentionally doped, epitaxial GaAs layers are good candidates for X-ray imaging for the following reasons. Their electronic properties are homogeneous over large areas, they can be grown at low cost, the technology to realize pixel detectors of various size is standard, the defect concentration is low and the fluorescence yield is small. Here, we characterize the defects present in the material and evaluate the mobility-lifetime product, using Deep Level Transient Spectroscopy combined with current-voltage and charge collection measurements.

  8. Ion-beam-induced ferromagnetism in Mn-doped PrFeO{sub 3} thin films grown on Si (100)

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Khalid; Ikram, M.; Mir, Sajad Ahmad; Habib, Zubida; Aarif ul Islam, Shah [National Institute of Technology, Solid State Physics Lab. Department of Physics, Srinagar, J and K (India); Ali, Yasir [Saint Longwal Institute of Engineering and Technology, Sangrur, Punjab (India); Asokan, K. [Inter University Accelerator Centre, Materials Science Division, New Delhi (India)

    2016-01-15

    The present study shows that the ion beam irradiation induces room-temperature ferromagnetic ordering in pulsed laser-deposited Mn-doped PrFeO{sub 3} thin films on Si (100) apart from change in the morphological, structural and electrical properties. Dense electronic excitation produced by high-energy 120 MeV Ag{sup 9+} ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ions irradiation. The appearance of ferromagnetism at 300 K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. (orig.)

  9. Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Seña, N.; Dussan, A. [Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá (Colombia); Mesa, F. [Facultad de Ciencias Naturales y Matemáticas, Grupo NanoTech, Universidad del Rosario, Bogotá (Colombia); Castaño, E.; González-Hernández, R., E-mail: rhernandezj@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia)

    2016-08-07

    We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x = 0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the Mn{sub Ga} substitution is the most stable configuration with a formation energy of ∼1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 μ{sub B}/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors.

  10. Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO2 under 10 T high magnetic field

    International Nuclear Information System (INIS)

    Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu

    2011-01-01

    Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO 2 with Fe, the relative complex permittivity of MnO 2 and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO 2 exhibits good microwave absorption capability. -- Graphical Abstract: Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: → Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized. → We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO 2 . → By doping MnO 2 with Fe, the electromagnetic properties are improved obviously.

  11. Significant improvement in performances of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} through surface modification with high ordered Al-doped ZnO electro-conductive layer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongdan; Xia, Bingbo [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Laboratory of Lithium Ion Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China); Liu, Weiwei [Changzhou Institute of Energy Storage Materials & Devices, Changzhou 213000 (China); Fang, Guoqing; Wu, Jingjing; Wang, Haibo; Zhang, Ruixue [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Laboratory of Lithium Ion Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China); Kaneko, Shingo [Key Laboratory of Lithium Ion Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China); Zheng, Junwei [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Laboratory of Lithium Ion Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China); Wang, Hongyu [Changzhou Institute of Energy Storage Materials & Devices, Changzhou 213000 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Laboratory of Lithium Ion Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Soochow University, Suzhou 215006 (China)

    2015-03-15

    Graphical abstract: Al-doped ZnO (AZO)-coated LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} (LNMO) was prepared by sol–gel method. AZO-coated LNMO electrode shows excellent rate capability and a remarkable improvement in the cyclic performance at a high rate at elevated temperature. - Highlights: • Al-doped ZnO (AZO)-coated LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} (LNMO) was prepared by a traditional sol–gel method. • Al-doped ZnO (AZO) layer grown on the surface of LNMO is high ordered. • At a high rate of 10 C, the discharge capacity of the AZO-coated LNMO electrode can reach 114 mAh g{sup −1}. • Al-doped ZnO (AZO) modification improved cyclic performance of LNMO at high temperatures. - Abstract: Al-doped ZnO (AZO)-coated LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} (LNMO) was prepared by sol–gel method. Transmission electron microscopy (TEM) analysis indicates that AZO layer grown on the surface of LNMO is high ordered. The results of electrochemical performance measurements reveal that the AZO-coated LNMO electrode displays the best rate capability compared with the bare LNMO and ZnO-coated LNMO, even at a high rate of 10 C. The discharge capacity of the AZO-coated LNMO electrode can still reach 114.3 mAh g{sup −1}, about 89% of its discharge capacity at 0.1 C. Moreover, AZO-coated LNMO electrode shows a remarkable improvement in the cyclic performance at a high rate at elevated temperature due to the protective effect of AZO coating layer. The electrode delivers a capacity of 120.3 mAh g{sup −1} with the capacity retention of 95% at 5 C in 50 cycles at 50 °C. The analysis of electrochemical impedance spectra (EIS) indicates that AZO-coated LNMO possesses the lowest charge transfer resistance compared to the bare LNMO and ZnO-coated LNMO, which may be responsible for improved rate capability.

  12. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, 15 June 1979-14 June 1980

    International Nuclear Information System (INIS)

    Wessels, B.W.

    1980-01-01

    In an effort to understand the defect structure of the ternary II-VI compound zinc sulpho-selenide, the binary compound zinc selenide was investigated. Thin single crystalline films of zinc selenide were heteroepitaxially grown on (100) GaAs. Epitaxial layers from 5 to 50 microns thick could be readily grown using a chemical vapor transport technique. The layers had an excellent morphology with few stacking faults and hillocks. Detailed epitaxial growth kinetics were examined as a function of temperature and reactant concentration. It was found that hydrogen flow rate, source and substrate temperature affect the growth rate of the epitaxial films. Au - ZnSe Schottky barrier diodes and ZnSe - GaAs n-p heterojunctions were prepared from the epitaxial layers. Current-voltage characteristics were measured on both types of diodes. From capacitance-voltage measurements the residual doping density of the epitaxial layers were found to be of the order of 10 14 - 10 15 cm -3 . Finally, we have begun to measure the deep level spectrum of both the Schottky barrier diodes and the heterojunctions. Deep level transient spectroscopy appears to be well suited for determining trapping states in ZnSe provided the material has a low enough resistivity

  13. Characteristics of threading dislocations in ZnO grown on facet-controlled epitaxial overgrown GaN templates

    International Nuclear Information System (INIS)

    Zhou, H L; Chua, S J; Chow, S Y; Pan, H; Zhu, Y W; Feng, Y P; Wang, L S; Zang, K Y; Liu, W; Tripathy, S

    2007-01-01

    Using transmission electron microscopy (TEM), the authors have investigated the behavior of threading dislocations in ZnO selectively grown on a facet-controlled epitaxial overgrown GaN template. In this case, the ZnO is grown by a vapor transport method. The TEM study in the overgrown regions shows that all the pure-edge type dislocations in ZnO are parallel toward the mask area and vertical propagation of dislocation to the ZnO surface is minimized. Using such a selective growth technique on a faceted semi-polar GaN surface, a reduction of threading dislocation density in ZnO could be achieved

  14. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nurul Syahidah; Yahya, Ahmad Kamal [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Talari, Mahesh Kumar, E-mail: talari@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia)

    2012-07-15

    Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn{sub 1-x}Mn{sub x}O nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zn{sub i}) and oxygen interstitial (O{sub i}) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (O{sub Zn}) and oxygen vacancy (V{sub o}) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s-d and p-d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Mn{sub x}O nanoparticles were prepared by mechanochemical

  15. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    International Nuclear Information System (INIS)

    Zarifi, M.; Kameli, P.; Ehsani, M.H.; Ahmadvand, H.; Salamati, H.

    2016-01-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La 0.5 Ca 0.5 MnO 3 (LCMO) thin films, grown on (100) SrTiO 3 (STO) and LaAlO 3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator–metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge–orbital order (CO–O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively. - Highlights: • Epitaxial La 0.5 Ca 0.5 MnO 3 thin films, grown on (100) SrTiO 3 and LaAlO 3 substrates. • The compressive strain leads to the increase in the magnetization of the films. • The tensile strain leads to the decrease in the magnetization of the films. • The magnetoresistance is enhanced by increasing film thickness.

  16. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    International Nuclear Information System (INIS)

    Akbari-Sharbaf, Arash; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Fanchini, Giovanni

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10 19 cm −3 at 98 °C to ∼ 1 · 10 18 cm −3 at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults

  17. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    Science.gov (United States)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  18. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Directory of Open Access Journals (Sweden)

    Alberto Pomar

    2016-09-01

    Full Text Available We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4 in a pristine perovskite matrix (LaMnO3 by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight (~9º c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  19. Greener process to synthesize water-soluble Mn.sup.2+-doped CdSSe(ZnS) core(shell) nanocrystals for ratiometric temperature sensing, nanocrystals, and methods implementing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haw; Hsia, Chih-Hao

    2017-07-04

    Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility may be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.

  20. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat; Dogan, Fatih; Kum, Hyun; Manchon, Aurelien; Bhattacharya, Pallab

    2012-01-01

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  1. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat

    2012-07-16

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  2. Suppression of concentration quenching of Er-related luminescence in Er-doped GaN

    International Nuclear Information System (INIS)

    Chen Shaoqiang; Tomita, Shigeo; Kudo, Hiroshi; Akimoto, Katsuhiro; Dierre, Benjamin; Lee, Woong; Sekiguchi, Takashi

    2010-01-01

    Erbium-doped GaN with different doping concentrations were grown by ammonia-source molecular beam epitaxy. The intra-4f-shell transitions related green luminescence were observed by both photoluminescence (PL) and cathodoluminescence (CL) measurements. It was found that concentration quenching of Er-related luminescence was observed in PL measurements while not in CL measurements. The different excitation and relaxation processes are suggested as the cause of the concentration quenching characteristics between PL and CL. The strong Er-related CL intensity in highly doped GaN demonstrates that high energy excitation is a promising approach to suppress the concentration quenching in Er-doped GaN.

  3. P-type doping of semipolar GaN(11 anti 22) by plasma-assisted molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Lahourcade, L. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Pernot, J. [Institut Neel, CNRS et Universite Joseph Fourier, Grenoble (France); Valdueza-Felip, S. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Dept. Electronica, Escuela Politecnica, Universidad de Alcala, Alcala de Henares, Madrid (Spain); Ruterana, P. [CIMAP, UMR6252, CNRS-ENSICAEN-CEA-UCBN, Caen (France); Laufer, A.; Eickhoff, M. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Monroy, E.

    2010-07-15

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(11-22) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(11-22). As a result, the growth widow is reduced for Mg doped layers, and we observe a certain deterioration of the surface morphology. In spite of this difficulties, homogenous Mg incorporation is achieved and layers display p -type conductivity for Mg atomic concentration higher than 7 x 10{sup 18} cm{sup -3}. Microscopy studies show no evidence of the pyramidal defects or polarity inversion domains found in Mg-doped GaN(0001). (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO_2 monodisperse nanoparticles mediated through reactive oxygen species

    International Nuclear Information System (INIS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Haider Naqvi, M. Sajjad; Ahmad, Ishaq

    2016-01-01

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO_2 nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO_2 and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO_2 nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO_2 nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO_2 nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO_2 nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO_2 nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  5. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  6. Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.

    Science.gov (United States)

    Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M

    2017-12-26

    Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

  7. Fabrication of fully epitaxial magnetic tunnel junctions with a Co2MnSi thin film and a MgO tunnel barrier

    International Nuclear Information System (INIS)

    Kijima, H.; Ishikawa, T.; Marukame, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M.

    2007-01-01

    Fully epitaxial magnetic tunnel junctions (MTJs) were fabricated with a Co-based full-Heusler alloy Co 2 MnSi (CMS) thin film having the ordered L2 1 structure as a lower electrode, a MgO tunnel barrier, and a Co 50 Fe 50 upper electrode. Reflection high-energy electron diffraction patterns observed in situ for each layer in the MTJ layer structure during fabrication clearly indicated that all layers of the CMS lower electrode, MgO tunnel barrier, and Co 50 Fe 50 upper electrode grew epitaxially. The microfabricated fully epitaxial CMS/MgO/Co 50 Fe 50 MTJs demonstrated relatively high tunnel magnetoresistance ratios of 90% at room temperature and 192% at 4.2 K

  8. Substrates effect on Zn1-xMnxO thin films grown by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Elanchezhiyan, J.; Bhuvana, K.P.; Gopalakrishnan, N.; Balasubramanian, T.

    2008-01-01

    In this paper, we have presented the surface effect of the substrates on Mn doped ZnO (Zn 1-x Mn x O) thin films grown on Si(1 0 0) and sapphire [i.e. Al 2 O 3 (0 0 0 1)] by RF magnetron sputtering. These grown films have been characterized by X-ray diffraction (XRD), photoluminescence (PL) and vibrating sample magnetometer (VSM) to know its structural, optical and magnetic properties. All these properties have been found to be strongly influenced by the substrate surface on which the films have been deposited. The XRD results show that the Mn doped ZnO films deposited on Si(1 0 0) exhibit a polycrystalline nature whereas the films on sapphire substrate have only (0 0 2) preferential orientations indicating that the films are single crystalline. The studies of room temperature PL spectra reveal that the Zn 1-x Mn x O/Si(1 0 0) system is under severe compressive strain while the strain is almost relaxed in Zn 1-x Mn x O/Al 2 O 3 (0 0 0 1) system. It has been observed from VSM studies that Zn 1-x Mn x O/Al 2 O 3 (0 0 0 1) system shows ferromagnetic nature while the paramagnetic behaviour observed in Zn 1-x Mn x O/Si(1 0 0) system

  9. First-principle investigation on stability of Co-doped spinel λ-Mn4-xCoxO8

    Institute of Scientific and Technical Information of China (English)

    HUANG Ke-long; CHEN Chun-an; LIU Su-qin; LUO Qiong; LIU Zhi-guo

    2007-01-01

    The mechanism of stability of Co-doped spinel λ-MnO2 that is referred to as spinel LiχMn2O4 (χ=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation,resulting in a more stable structure of λ-MnχCr2-χO4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn-O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn-O bonding is ionic and partially covalent, and the covalent Mn-O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Co-doping will enhance the stability of λ-MnO2 and hence improve the electrochemistry performance of LiχMn2O4.

  10. Raman spectroscopy of Ba(Fe{sub 1−x}Mn{sub x}){sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio Teixeira [Universidade Federal de Pelotas (UFPEL), RS (Brazil); Pinheiro, Lincoln Brum Leite Gusmao [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio Grande do Sul (IFRS), Erechim, RS (Brazil); Jurelo, Alcione Roberto, E-mail: arjurelo@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica

    2015-10-01

    Raman scattering measurements on iron–pnictide Mn-doped BaFe{sub 2}As{sub 2} single crystals are reported. Single crystals were grown out of a Fe As self-flux using conventional high-temperature solution growth and characterized by X-ray diffraction, atomic force microscopy, and Raman. Raman spectra were obtained at room temperature and 77 K on ab-and a(b)c-planes. Two of four phonon modes allowed by symmetry were found and identified. It was observed that the scattering intensity of A{sub 1g} mode and the frequencies of the A{sub 1g} and B{sub 1g} phonons are dependent upon doping of Mn. The dependence of scattering intensity and frequency of A{sub 1g} mode on Mn doping might indicate that the Mn ion also occupies the As site. (author)

  11. Structural characterization of epitaxial LiFe_5O_8 thin films grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R.

    2016-01-01

    We report on detailed microstructural and atomic ordering characterization by transmission electron microscopy in epitaxial LiFe_5O_8 (LFO) thin films grown by chemical vapor deposition (CVD) on MgO (001) substrates. The experimental results of LFO thin films are compared with those for bulk LFO single crystal. Electron diffraction studies indicate weak long-range ordering in LFO (α-phase) thin films in comparison to bulk crystal where strong ordering is observed in optimally annealed samples. The degree of long-range ordering depends on the growth conditions and the thickness of the film. Annealing experiment along with diffraction study confirms the formation of α-Fe_2O_3 phase in some regions of the films. This suggests that under certain growth conditions γ-Fe_2O_3-like phase forms in some pockets in the as-grown LFO thin films that then convert to α-Fe_2O_3 on annealing. - Highlights: • Atomic ordering in LiFe_5O_8 bulk single crystal and epitaxial thin films. • Electron diffraction studies reveal different level of ordering in the system. • Formation of γ-Fe_2O_3 like phase has been observed.

  12. High-resolution hydrogen profiling in AlGaN/GaN heterostructures grown by different epitaxial methods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Posada Flores, F; Redondo-Cubero, A; Bengoechea, A; Brana, A F; Munoz, E [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM) and Dpto. IngenierIa Electronica (DIE), ETSI de Telecomunicacion, Universidad Politecnica de Madrid, E-28040 Madrid (Spain); Gago, R [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Jimenez, A [Dpto. Electronica, Escuela Politecnica Superior, Universidad de Alcala, E-28805 Alcala de Henares, Madrid (Spain); Grambole, D, E-mail: fposada@die.upm.e [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, PF 51019, D-01314 Dresden (Germany)

    2009-03-07

    Hydrogen (H) incorporation into AlGaN/GaN heterostructures used in high electron mobility transistors, grown by different methods, is studied by high-resolution depth profiling. Samples grown on sapphire and Si(1 1 1) substrates by molecular-beam epitaxy and metal-organic vapour phase epitaxy; involving H-free and H-containing precursors, were analysed to evaluate the eventual incorporation of H into the wafer. The amount of H was measured by means of nuclear reaction analysis (NRA) using the {sup 1}H({sup 15}N,{alpha}{gamma}){sup 12}C reaction up to a depth of {approx}110 nm into the heterostructures. Interestingly, the H profiles are similar in all the samples analysed, with an increasing H content towards the surface and a negligible H incorporation into the GaN layer (0.24 {+-} 0.08 at%) or at the AlGaN/GaN interface. Therefore, NRA shows that H uptake is not related to the growth process or technique employed and that H contamination may be due to external sources after growth. The eventual correlation between topographical defects on the AlGaN surface and the H concentration are also discussed.

  13. Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4

    International Nuclear Information System (INIS)

    Yuan, Y.F.; Wu, H.M.; Guo, S.Y.; Wu, J.B.; Yang, J.L.; Wang, X.L.; Tu, J.P.

    2008-01-01

    The surface-modified spinel LiMn 2 O 4 by doped LiNi 0.05 Mn 1.95 O 4 was prepared by a tartaric acid gel method. Transmission electron microscope (TEM) images indicated that some small particles with 100-200 nm in diameter modified the surface of large particle LiMn 2 O 4 . Energy dispersive spectrometry (EDS) showed that the particles were LiNi 0.05 Mn 1.95 O 4 . Electrochemical properties of LiNi 0.05 Mn 1.95 O 4 -modified spinel LiMn 2 O 4 were intensively investigated by the galvanostatic charge-discharge tests, cyclic voltammetry (CV) and AC impedance measurements. The doped LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 cathode delivered the same initial discharge capacity as the unmodified LiMn 2 O 4 , but its cyclic stability was evidently improved, the capacity retention ratio reached 96% after 20 cycles, being higher than 89% of the unmodified LiMn 2 O 4 . Cyclic voltammograms of the LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 did not markedly change while the semicircle diameter of AC impedance spectra evidently decreased after 20 cycles, which showed that the surface modification with LiNi 0.05 Mn 1.95 O 4 improved the electrochemical activity and cycling stability of LiMn 2 O 4 .

  14. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  15. Point defect balance in epitaxial GaSb

    International Nuclear Information System (INIS)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  16. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  17. Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries

    Science.gov (United States)

    Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan

    2018-02-01

    The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.

  18. Unsaturated magnetoconductance of epitaxial La0.7Sr0.3MnO3 thin films in pulsed magnetic fields up to 60 T

    Directory of Open Access Journals (Sweden)

    Wei Niu

    2017-05-01

    Full Text Available We report on the temperature and field dependence of resistance of La0.7Sr0.3MnO3 thin films over a wide temperature range and in pulsed magnetic fields up to 60 T. The epitaxial La0.7Sr0.3MnO3 thin films were deposited by laser molecular beam epitaxy. High magnetic field magnetoresistance curves were fitted by the Brillouin function, which indicated the existence of magnetically polarized regions and the underlying hopping mechanism. The unsaturated magnetoconductance was the most striking finding observed in pulsed magnetic fields up to 60 T. These observations can deepen the fundamental understanding of the colossal magnetoresistance in manganites with strong correlation of transport properties and magnetic ordering.

  19. Magnetocaloric effect in In doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Department of Electronics and Physics, Institute of Science, GITAM University, Visakhapatnam 530045 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Vinod, K.; Mani, Awadhesh [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Magnetic and magnetocaloric (MCE) properties of Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3} polycrystalline samples are presented in this paper. Isothermal magnetization measurements reveal a field induced magnetic transition. Magnetic entropy change of 2.34±0.35 J/mole-K for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and 2.64±0.38 J/mole-K for Yb{sub 0.8}In{sub 0.2}MnO{sub 3} field change ΔH =10 KOe is observed around the ferromagnetic ordering temperature of Yb{sup 3+}. Values of relative cooling power for the same field change are found to be 38.03±9 J /mol, and 40.90±10 J/mol for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3}, respectively. These values suggest In doped YbMnO{sub 3} may be a potential candidate for magnetic refrigerant at low temperatures.

  20. Synthesis of MnO nano-particle@Flourine doped carbon and its application in hybrid supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Deyu; Feng, Xiaoke [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei (China); Wei, Xi [School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei (China); Guo, Liping [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei (China); Cai, Haopeng, E-mail: cai_haopeng@whut.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei (China); Tang, Haolin [School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei (China); Xie, Zhizhong, E-mail: zhizhong_xie@163.com [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei (China)

    2017-08-15

    Highlights: • A Fluorine doped carbon encapsulated MnO nanoparticle material was fabricated through a self-assembly method. • Nafion ionomers was used as the fluorine and carbon precursor. • A lithium ion supercapacitor was assemblied by using MnO@FC and porous carbon. • A stable energy density as well as superior cycling stability were demonstrated in this hybrid system. - Abstract: A flourine doped carbon materials encapsulated MnO nano-particle was synthesized through a self-assembly method. The MnO nano-crystal covered with a thin layer of graphite were achieved. This hybrid MnO/carbon materials were employed as negative electrode in a new lithium ion hybrid supercapacitor, while the electrochemical double-layer porous carbon served as positive electrode. The electrochemical performances of this hybrid device were investigated and exhibited relative high capacity upto 40 mAh g{sup −1} in an applied current of 200 mAh g{sup −1}, good rate performance as well as superior cycling stability.