WorldWideScience

Sample records for epitaxially grown ag

  1. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  2. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece); Grazianetti, C.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, I-20126, Milano (Italy); Chiappe, D.; Molle, A. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy)

    2013-12-16

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  3. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  4. Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method

    International Nuclear Information System (INIS)

    Zorenko, Yu; Zorenko, T.; Gorbenko, V.; Voznyak, T.; Popielarski, P.; Batentschuk, M.; Osvet, A.; Brabec, Ch; Kolobanov, V.; Spasky, D.; Fedorov, A.

    2016-01-01

    In this work, investigation of the spectroscopic parameters of the luminescence of Yb"3"+ ions in single crystalline films of Lu_3Al_5O_1_2 and Y_3Al_5O_1_2 garnets was performed using the synchrotron radiation excitation with the energy in the range of Yb"3"+ charge transitions (CT), exciton range and the onset of interband transitions of these garnets. The basic spectroscopic parameters of the Yb"3"+ CT luminescence in LuAG and YAG hosts were determined and summarized with taking into account the differences in the band gap structure of these garnets. - Highlights: • Single crystalline films of Yb doped LuAG and YAG garnets were grown by LPE method. • Yb"3"+ luminescence of LuAG:Yb and YAG:Yb film were studied using synchrotron radiation. • Basic parameters of Yb"3"+ charge transfer luminescence in LuAG and YAG were determined.

  5. Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Tous, Jan; Blazek, Karel; Kucera, Miroslav; Nikl, Martin; Mares, Jiri A.

    2012-01-01

    Very thin scintillator imaging plates have recently become of great interest. In high resolution X-ray radiography, very thin scintillator layers of about 5–20 μm are used to achieve 2D-spatial resolutions below 1 μm. Thin screens can be prepared by mechanical polishing from single crystals or by epitaxial growth on single-crystal substrates using the Liquid Phase Epitaxy technique (LPE). Other types of screens (e.g. deposited powder) do no reach required spatial resolutions. This work compares LPE-grown YAG and LuAG scintillator films doped with different rare earth ions (Cerium, Terbium and Europium). Two different fluxes were used in the LPE growth procedure. These LPE films are compared to YAG:Ce and LuAG:Ce screens made from bulk single crystals. Relative light yield was detected by a highly sensitive CCD camera. Scintillator screens were excited by a micro-focus X-ray source and the generated light was gathered by the CCD camera’s optical system. Scintillator 2D-homogeneity is examined in an X-ray imaging setup also using the CCD camera.

  6. Scintillation efficiency and X-ray imaging with the RE-doped LuAG thin films grown by liquid phase epitaxy

    Czech Academy of Sciences Publication Activity Database

    Touš, J.; Blažek, K.; Kučera, M.; Nikl, Martin; Mareš, Jiří A.

    2012-01-01

    Roč. 47, č. 4 (2012), s. 311-314 ISSN 1350-4487 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : single crystal * scintillator * LuAG * X-ray radiography * LPE growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.861, year: 2012

  7. UHV-TEM/TED observation of Ag islands grown on Si( 1 1 1 ) 3× 3-Ag surface

    Science.gov (United States)

    Oshima, Yoshifumi; Nakade, Hiroyuki; Shigeki, Sinya; Hirayama, Hiroyuki; Takayanagi, Kunio

    2001-11-01

    Growths of Ag islands on Si(1 1 1)3×3-Ag surface at room temperature were observed by UHV transmission electron microscopy and diffraction. The Ag islands grown after six monolayer deposition had neither (1 0 0) nor (1 1 0) orientation, but had two complex epitaxial orientations dominantly. One was striped islands which gave rise to a diffraction pattern commensurate with the 3×3 lattice of the Si(1 1 1) surface. The other was the coagulated islands whose diffraction pattern indicated the Ag(1 -3 4) sheet grown parallel to the Si(1 1 1) surface.

  8. Misfit dislocations in (001) Cu/(111) Ag epitaxial bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vook, R W; Chao, S S

    1979-01-01

    Two sets of elongated epitaxial (111) Ag islands rotated by 90/sup 0/ with respect to each other were observed to grow on (001) Cu substrates. In addition, two sets of edge misfit dislocations lay parallel to (110) Cu and (110) Cu or equivalently along (110) Ag and (112) Ag. Their Burgers vectors were determined, together with the elastic strains in these two directions. The island elongation was interpreted as arising from a lower strain energy in the preferred direction of growth.

  9. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.

    2016-01-01

    on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro...

  10. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    International Nuclear Information System (INIS)

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-01-01

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation

  11. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  12. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  13. Characterization of GaN/AlGaN epitaxial layers grown

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers ...

  14. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  15. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  16. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  17. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  18. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  19. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  20. Electrical properties of epitaxially grown VOx thin films

    NARCIS (Netherlands)

    Rata, A.D.; Chezan, A.R; Presura, C.N.; Hibma, T

    2003-01-01

    High quality VOx thin films on MgO(100) substrates were prepared and studied from the structural and electronic point of view. Epitaxial growth was confirmed by RHEED and XRD techniques. The oxygen content of VOx thin films as a function of oxygen flux was determined using RBS. The upper and lower

  1. GaN:Co epitaxial layers grown by MOVPE

    Czech Academy of Sciences Publication Activity Database

    Šimek, P.; Sedmidubský, D.; Klímová, K.; Mikulics, M.; Maryško, Miroslav; Veselý, M.; Jurek, Karel; Sofer, Z.

    2015-01-01

    Roč. 44, Mar (2015), 62-68 ISSN 0022-0248 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : doping * metalorganic vapor phase epitaxy * cobalt * gallium compounds * nitrides * magnetic materials spintronics Subject RIV: CA - Inorganic Chemistry Impact factor: 1.462, year: 2015

  2. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K., E-mail: tarun@rrcat.gov.in [Semiconductor Physics and Devices Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  3. Plasticity and microstructure of epitaxial Ag/Ni multilayers; Mechanische Eigenschaften und Mikrostruktur epitaktischer Ag/Ni-Multilagenschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias K.

    2007-10-15

    To meet the still increasing technical demands of new materials, it is required to improve basic knowledge of thin films and multilayers. This thesis describes the microstructure and mechanical behaviour of thin epitaxial Ag/Ni-multilayers. Former investigations were only done on polycrystalline multilayers or epitaxial single layers. The manufacture of epitaxial Ag/Ni-multilayers on (111) orientated Si-substrates was performed by a magnetron sputtering technique under ultra high vacuum (UHV). The thickness of the alternating Ag- and Ni-layers varies between 100 and 400 nm, the thickness of the whole film varies between 200 and 800 nm. Hardness and flow stress of Ag/Ni-multilayers were measured with a nanoindentation technique, a substrate curvature method and by X-ray diffraction. The hardness of these multilayers varies between 1.5 and 2.0 GPa. The Ag single film hardness is 0.5 GPa and Ni film 1.8 GPa. The flow stress of the Ag/Ni-multilayers varies between 350 and 800 MPa. The Ag single layer shows a flow stress of 100 MPa and Ni of 450 MPa. Both hardness and flow stress increase with decreasing layer thickness. In situ TEM and HRTEM experiments showed a semicoherent Ag/Ni-interface. It was observed that these interfaces act as sources and sinks. Dislocation loops formed at the interface expand and shrink according to the stress state. They combine with loops from the opposite interface or with the interface itself and form threading dislocations. Dislocation loops penetrating an interface were not observed. Results were compared with various models which simulate flow stress in thin films and multilayers. The most important models are calculated by Nix-Freund, the Source-model after von Blanckenhagen and the Hall-Petch-model. (orig.)

  4. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  5. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  6. Characterization of GaN/AlGaN epitaxial layers grown by ...

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical ... reported by introducing annealing of the GaN layer in nitrogen [5], Fe doping [6], .... [2] Y F Wu, S M Wood, R P Smith, S Sheppard, S T Allen, P Parikh and J Milligan,.

  7. Microstructure of epitaxial YBa2Cu3O7-x thin films grown on LaAlO3 (001)

    International Nuclear Information System (INIS)

    Hsieh, Y.; Siegal, M.P.; Hull, R.; Phillips, J.M.

    1990-01-01

    We report a microstructural investigation of the epitaxial growth of YBa 2 Cu 3 O 7-x (YBCO) thin films on LaAlO 3 (001) substrates using transmission electron microscopy (TEM). Epitaxial films grow with two distinct modes: c epitaxy (YBCO) single crystal with the c (axis normal to the surface and a epitaxy (YBCO) single crystal with the c axis in the interfacial plane), where c epitaxy is the dominant mode grown in all samples 35--200 nm thick. In 35 nm YBCO films annealed at 850 degree C, 97±1% of the surface area is covered by c epitaxy with embedded anisotropic a-epitaxial grains. Quantitative analysis reveals the effect of film thickness and annealing temperature on the density, grain sizes, areal coverages, and anisotropic growth of a epitaxy

  8. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  9. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    International Nuclear Information System (INIS)

    Hernandez-Maldonado, D.; Herrera, M.; Sales, D.L.; Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L.; Pizarro, J.; Galindo, P.L.; Molina, S.I.

    2010-01-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  10. Ge films grown on Si substrates by molecular-beam epitaxy below 450 deg. C

    International Nuclear Information System (INIS)

    Liu, J.; Kim, H.J.; Hul'ko, O.; Xie, Y.H.; Sahni, S.; Bandaru, P.; Yablonovitch, E.

    2004-01-01

    Ge thin films are grown on Si(001) substrates by molecular-beam epitaxy at 370 deg. C. The low-temperature epitaxial growth is compatible with the back-end thermal budget of current generation complementary metal-oxide-semiconductor technology, which is restricted to less than 450 deg. C. Reflection high-energy electron diffraction shows that single-crystal Ge thin films with smooth surfaces could be achieved below 450 deg. C. Double-axis x-ray θ/2θ scans also show that the epitaxial Ge films are almost fully strain-relaxed. As expected, cross-sectional transmission electron microscopy shows a network of dislocations at the interface. Hydrogen and oxide desorption techniques are proved to be necessary for improving the quality of the Ge films, which is reflected in improved minority carrier diffusion lengths and exceptionally low leakage currents

  11. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  12. Epitaxially grown strained pentacene thin film on graphene membrane.

    Science.gov (United States)

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Turski, H.; Muziol, G.; Wolny, P.; Cywiński, G.; Grzanka, S.; Sawicka, M.; Perlin, P.; Skierbiszewski, C.

    2014-01-01

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ N ) during quantum wells (QWs) growth. We found that high Φ N improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold current density are discussed

  14. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  15. Dynamical x-ray diffraction studies of interfacial strain in superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Chu, S.N.G.; Hamm, R.A.; Panish, M.B.; Ritter, D.; Mancrander, A.T.

    1992-01-01

    This paper reports on dynamical X-ray diffraction studies that have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined

  16. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  17. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    International Nuclear Information System (INIS)

    Scalise, E.; Cinquanta, E.; Houssa, M.; Broek, B. van den; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.

    2014-01-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  18. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, E., E-mail: emilio.scalise@fys.kuleuven.be [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Cinquanta, E. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Houssa, M.; Broek, B. van den [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Chiappe, D. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Grazianetti, C. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Pourtois, G. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Ealet, B. [Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Molle, A. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano (MI) (Italy); Afanas’ev, V.V.; Stesmans, A. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-02-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  19. Bromine doping of CdTe and CdMnTe epitaxial layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Scholl, S. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Schierstedt, K. von (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Hommel, D. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1993-03-01

    We report on the n-type doping of CdTe and CdMnTe with bormine as a novel dopant material. /the thin films were grown by molecular beam epitaxy. ZnBr[sub 2] was used as a source material for the n-type doping. Free carrier concentrations at room temperature of up to 2.8x10[sup 18] cm[sup -3] could be readily obtained for both CdTe as well as CdMnTe thin films with Mn concentrations below 10%. This is to our knowledge the highest value ever obtained for the dilute magnetic semiconductor CdMnTe. For ZnBr[sub 2] source temperatures up to 60 C - corresponding to a free carrier concentration of (2-3)x10[sup 18] cm[sup -3] - the free carrier concentration of the epitaxial film increases with ZnBr[sub 2] source temperature. For higher ZnBr[sub 2] source temperatures compensation becomes dominant, which is indicated by a steep decrease of the free carrier concentration with increasing ZnBr[sub 2] source temperature. In addition the carrier mobility decreases drastically for such high dopant fluxes. A model of bromine incorporation is proposed. (orig.)

  20. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  1. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  2. Extended defects in epitaxial Sc2O3 films grown on (111) Si

    International Nuclear Information System (INIS)

    Klenov, Dmitri O.; Edge, Lisa F.; Schlom, Darrell G.; Stemmer, Susanne

    2005-01-01

    Epitaxial Sc 2 O 3 films with the cubic bixbyite structure were grown on (111) Si by reactive molecular beam epitaxy. High-resolution transmission electron microscopy (HRTEM) revealed an abrupt, reaction-layer free interface between Sc 2 O 3 and Si. The ∼10% lattice mismatch between Si and Sc 2 O 3 was relieved by the formation of a hexagonal misfit dislocation network with Burgers vectors of 1/2 Si and line directions parallel to Si . A high density of planar defects and threading dislocations was observed. Analysis of lattice shifts across the planar defects in HRTEM showed that these faults were likely antiphase boundaries (APBs). ABPs form when film islands coalesce during growth because films nucleate with no unique arrangement of the ordered oxygen vacancies in the bixbyite structure relative to the Si lattice

  3. Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces

    Science.gov (United States)

    2011-01-01

    Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures. PMID:21479111

  4. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    Science.gov (United States)

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  5. Rubrene epitaxial layers for organic TFT's grown by hot wall epitaxy

    International Nuclear Information System (INIS)

    Abd AL-Baqi, S.

    2010-01-01

    Facilitating communication and developing new techniques for information exchange lies at the heart of today's technological progress and has substantially transformed access and transfer of knowledge. Improving technology in order to secure future progress lies at the core of much research. The following work is a contribution towards achieving this goal. Semiconductor devices have immensely influenced technological progress and one of these devices is the field effect transistor (FET). FETs are the building blocks of today's communication and information technologies. Thus, the development of high performance devices is the driving force in solid state physics. For decades semiconductor technology has focused mainly on silicon based devices as it is abundantly available and because of the relative ease of production. Alternative materials like organic semiconductors have received special attention in recent years because of their low production cost and easy processing. Organic materials such as oligomers and conjugated polymers have interesting advantages compared to their inorganic counterparts. Organic materials can be easily deposited over large flexible substrates by spin and dip coating techniques. Furthermore, simple electronic circuits can be fabricated by ink-jet printing. Additionally, the electrical properties of organic compounds can be tuned by adding side groups or replacing individual elements in the molecules. To obtain more knowledge about the growth mechanism of rubrene thin films, experiments have been conducted to observe its behaviour. Rubrene is of interest for its high single crystal mobility and its use as an organic semiconductor material. In this work, the morphology of rubrene films grown by HWE has been studied by using different techniques like Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Pole Figure Measurement (XRD), and Transmission Electron Microscopy (TEM). The results obtained from measurements are

  6. Structural and magentic characterization of rare earth and transition metal films grown on epitaxial buffer films on semiconductor substrates

    International Nuclear Information System (INIS)

    Farrow, R.F.C.; Parkin, S.S.P.; Speriosu, V.S.; Bezinge, A.; Segmuller, A.P.

    1989-01-01

    Structural and magnetic data are presented and discussed for epitaxial films of rare earth metals (Dy, Ho, Er) on LaF 3 films on the GaAs(TTT) surface and Fe on Ag films on the GaAs(001) surface. Both systems exhibit unusual structural characteristics which influence the magnetic properties of the metal films. In the case of rare earth epitaxy on LaF 3 the authors present evidence for epitaxy across an incommensurate or discommensurate interface. Coherency strain is not transmitted into the metal which behaves much like bulk crystals of the rare earths. In the case of Fe films, tilted epitaxy and long-range coherency strain are confirmed by X- ray diffractometry. Methods of controlling some of these structural effects by modifying the epitaxial structures are presented

  7. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  8. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Heo, Y.W.; Norton, D.P.; Pearton, S.J.

    2005-01-01

    The properties of ZnO films grown by molecular-beam epitaxy are reported. The primary focus was on understanding the origin of deep-level luminescence. A shift in deep-level emission from green to yellow is observed with reduced Zn pressure during the growth. Photoluminescence and Hall measurements were employed to study correlations between deep-level/near-band-edge emission and carrier density. With these results, we suggest that the green emission is related to donor-deep acceptor (Zn vacancy V Zn - ) and the yellow to donor-deep acceptor (oxygen vacancy, O i - )

  9. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    Science.gov (United States)

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  10. Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: vdcosta@asu.edu; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-08-14

    We investigated the compositional dependence of the near-bandgap dielectric function and the E{sub 0} critical point in pseudomorphic Ge{sub 1-x}Sn{sub x} alloys grown on Ge (100) substrate by molecular beam epitaxy. The complex dielectric functions were obtained using spectroscopic ellipsometry from 0.5 to 4.5 eV at room temperature. Analogous to the E{sub 1} and E{sub 1}+Δ{sub 1} transitions, a model consisting of the compositional dependence of relaxed alloys along with the strain contribution predicted by the deformation potential theory fully accounts for the observed compositional dependence in pseudomorphic alloys.

  11. Interface termination and band alignment of epitaxially grown alumina films on Cu-Al alloy

    Science.gov (United States)

    Yoshitake, Michiko; Song, Weijie; Libra, Jiří; Mašek, Karel; Šutara, František; Matolín, Vladimír; Prince, Kevin C.

    2008-02-01

    Epitaxial ultrathin alumina films were grown on a Cu-9 at. % Al(111) substrate by selective oxidation of Al in the alloy in ultrahigh vacuum. The photoelectron spectra of Al 2p and valence band were measured in situ during oxidation. By analyzing multiple peaks of Al 2p, the interface atomic structure was discussed. The energy difference between the Fermi level of the substrate and the valence band maximum of alumina (band offset) was obtained. The relation between the interface atomic structure and the band offset was compared with the reported first-principles calculations. A novel method for controlling the band offset was proposed.

  12. Raman investigation of GaP–Si interfaces grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, A.; Cornet, C.; Boyer, S.; Nguyen Thanh, T.; Létoublon, A.; Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Moreac, A. [Institut de Physique de Rennes, UMR-CNRS n°6251, Université Rennes1, Campus de Beaulieu — 35042 Rennes cedex (France); Ponchet, A. [CEMES, UPR CNRS 8011, F-31055 Toulouse (France); Le Corre, A. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France)

    2013-08-31

    Raman spectroscopy was used to investigate the residual strain in thin GaP layers deposited on Si substrates by molecular beam epitaxy. Different growth conditions were used to obtain a clean GaP–Si interface, including migration enhanced epitaxy. The strain induced Raman shifts of the longitudinal and the transverse optical GaP lattice modes were analyzed. The effects of crystalline defects are discussed, supported by high resolution transmission electron microscopy and X-ray scattering studies. Finally, Raman Spectroscopy reveals the presence of disorder (or surface)-activated optical phonons. This result is discussed in the light of surface morphology analyses. - Highlights: ► GaP thin layers grown by molecular beam epitaxy on Si substrates. ► Strain-induced Raman shifts of the optical GaP modes are analyzed. ► Simulation of optical GaP modes by density functional perturbation theory. ► Comparison with X-ray diffraction and electron and scanning probe microscopy data.

  13. X-ray diffraction study of rare earth epitaxial structures grown by MBE onto (111) GaAs

    International Nuclear Information System (INIS)

    Bennett, W.R.; Farrow, R.F.C.; Parkin, S.S.P.; Marinero, E.E.; Segmuller, A.P.

    1989-01-01

    The authors report on the new epitaxial system LaF 3 /Er/Dy/Er/LaF 3 /GaAs(111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF 3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films

  14. P-N junction solar cell grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hazrati Fard, M.

    2001-01-01

    Growth of GaAs epilayers by Molecular Beam Epitaxy was accomplished for the first time in Iran. The layers were grown on GaAs (001) substrates (p+ wafer) with Si impurity for p n junction solar cell fabrication at a rate of nearly one micron per hour and 0.25 micron per quarter. Crystalline quality of grown layers had been monitored during growth by Reflection High Energy Electron Diffraction system. Doping profile and layer thickness was assessed by electrochemical C-V profiling method. Then Hall measurements were conducted on small samples both in room temperature and liquid nitrogen temperature so giving average carrier concentration and compensation ratio. The results as like: V oc , I sc , F F, η were comparable with other laboratory reports. information for obtaining good and repeatable growths was collected. Therefore, the conditions of repeatable quality growth p n junction solar cells onto GaAs (001) substrates were determined

  15. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  16. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  17. Temperature and coverage effects on the stability of epitaxial silicene on Ag(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongsheng; Han, Nannan; Zhao, Jijun, E-mail: zhao_jijun@hotmail.com

    2017-07-01

    Highlights: • Chemical potential phase diagrams of silicene/Ag(111) at varied temperatures. • The priorities of various silicene phases in experiments are explained. • A proper experimental condition to obtain homogeneous 4 × 4 silicene is recommended. - Abstract: Silicene, the single layer of silicon atoms arranged in a honeycomb lattice, has been synthesized in recent experiments and attracted significant attentions. Silicene is promising in future nanoelectronic devices due to its outstanding electronic properties. In experiments, however, different silicene superstructures coexist on Ag(111) substrate. For the device applications, homogenous silicene sheet with large scale and high quality is highly desired. Here, for the first time, we investigate both the temperature and the coverage effects on the thermal stability of epitaxial silicene on Ag(111) surface by ab initio molecular dynamics simulations. The relationship between the stability of various silicene superstructures and the growth conditions, including temperature and coverage of silicon atoms, is revealed by plotting the chemical potential phase diagram of silicene on Ag(111) surfaces at different temperatures. Our results are helpful for understanding the observed diversity of silicene phases on Ag(111) surfaces and provide some useful guidance for the synthesis of homogenous silicene phase in experiments.

  18. Effects of substrate material on carbon films grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, M.; Xu, X.Y.; Man, B.Y.; Kong, D.M.; Xu, S.C.

    2012-01-01

    Highlights: ► We prepared tri-layers by laser molecular beam epitaxy (LMBE) on sapphire substrate. ► We found that the formation of the graphene film has a strong relation to the structure and properties of the substrate. ► The different carbon film formation mechanism of the buffer layers can affect the morphology of the film. - Abstract: The carbon thin films were grown on different substrates with different buffer layers by laser molecular beam epitaxy (LMBE) with a high purity graphite carbon target. A UV pulsed KrF excimer laser with a wavelength of 248 nm was used as laser source. The structure, surface morphology and other properties of the carbon thin films were characterized by Raman spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM). The results show that the properties of the carbon thin films and the formation of the graphene film have a strong relation to the structure and properties of the substrate. The substrate with a hexagonal wurtzite structure which is similar to the hexagonal honeycomb structure of the carbon atoms arranged in the graphene is more beneficial for the formation of the graphene thin film. In our experiment conditions, the carbon films grown on sapphire substrates with different buffer layers have an ordered structure and a smooth surface, and form high quality tri-layer graphene films.

  19. GaIn As Quantum Dots (QD) grown by Liquid Phase Epitaxy (LPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Vazquez, F E; Mishurnyi, V A; Gorbatchev, A Yu; De Anda, F [Universidad Autonoma de San Luis Potosi, Instituto de Investigation en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico); Elyukhin, V A, E-mail: fcoe_ov@prodigy.net.m, E-mail: andre@cactus.iico.uaslp.m [CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Mexico D.F., CP 07360 (Mexico)

    2009-05-01

    The majority of the semiconductor structures with QD today are grown by MBE and MOCVD. It is known that the best material quality can be achieved by LPE because, in contrast to MBE and MOCVD, this method is realized at near-equilibrium conditions. To develop QD LPE technology first of all it is necessary to find out a growth technique allowing the crystallization of epitaxial materials with very small volume. This can be done by means of different techniques. In this work we apply a low temperature short-time growth method, which allows the production not only of single, but also of multilayer heterostructures. We have grown Ga{sub x}In{sub 1-z}As QD on GaAs (100) substrates at 450 C. The details of the QD formation, depending on composition of the Ga{sub x}In{sub -x} As solid solutions, have been studied by atom-force microscopy. The photoluminescence spectra of investigated samples show, in addition to a short-wave GaAs related peak, a longer wavelength line, which disappears after removal of the grown GaInAs material using an etching solution. This fact, together with atom-force microscopy results can be interpreted as a proof that QD heterostructures were grown successfully by LPE.

  20. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    International Nuclear Information System (INIS)

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  1. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    International Nuclear Information System (INIS)

    Akbari-Sharbaf, Arash; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Fanchini, Giovanni

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10 19 cm −3 at 98 °C to ∼ 1 · 10 18 cm −3 at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults

  2. Multilayer epitaxial graphene grown on the (SiC 000 1-bar ) surface; structure and electronic properties

    International Nuclear Information System (INIS)

    Sprinkle, M; Hicks, J; Tinkey, H; Clark, M C; Hass, J; Conrad, E H; Tejeda, A; Taleb-Ibrahimi, A; Le Fevre, P; Bertran, F; Soukiassian, P; Martinotti, D

    2010-01-01

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (0 0 0 1-bar ) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  3. High quality long-wavelength lasers grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine

    International Nuclear Information System (INIS)

    Miller, B.I.; Young, M.G.; Oron, M.; Koren, U.; Kisker, D.

    1990-01-01

    High quality long-wavelength InGaAsP/InP lasers were grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine (TBA) as a substitute for AsH 3 . Electrical and photoluminescence measurements on InGaAs and InGaAsP showed that TBA-grown material was at least as good as AsH 3 material in terms of suitability for lasers. From two wafers grown by TBA, current thresholds I th as low as 11 mA were obtained for a 2-μm-wide semi-insulating blocking planar buried heterostructure laser lasing near 1.3 μm wavelength. The differential quantum efficiencies η D were as high as 21%/facet with a low internal loss α=21 cm -1 . In addition I th as low as 18 mA and η D as high as 18% have been obtained for multiplequantum well lasers at 1.54 μm wavelength. These results show that TBA might be used to replace AsH 3 without compromising on laser performance

  4. Structural properties of In0.53Ga0.47As epitaxial films grown on Si (111) substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gao, Fangliang; Wen, Lei; Zhang, Xiaona; Guan, Yunfang; Li, Jingling; Zhang, Shuguang; Li, Guoqiang

    2015-01-01

    In 0.53 Ga 0.47 As epitaxial films are grown on 2-inch diameter Si (111) substrates by growing a low-temperature In 0.4 Ga 0.6 As buffer layer using molecular beam epitaxy. The effect of the buffer layer thickness on the as-grown In 0.53 Ga 0.47 As films is characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy (TEM). It is revealed that the crystalline quality and surface morphology of as-grown In 0.53 Ga 0.47 As epilayer are strongly affected by the thickness of the In 0.4 Ga 0.6 As buffer layer. From TEM investigation, we understand that the type and the distribution of dislocations of the buffer layer and the as-grown In 0.53 Ga 0.47 As film are different. We have demonstrated that the In 0.4 Ga 0.6 As buffer layer with a thickness of 12 nm can advantageously release the lattice mismatch stress between the In 0.53 Ga 0.47 As and Si substrate, ultimately leading to a high-quality In 0.53 Ga 0.47 As epitaxial film with low surface roughness. - Highlights: • We provide a simple approach to achieve high-quality In 0.53 Ga 0.47 As films on Si. • An appropriate thickness of In 0.4 Ga 0.6 As buffer layer can release mismatch strain. • High-quality In 0.53 Ga 0.47 As film is grown on Si using 12-nm-thick buffer layer. • Smooth surface In 0.53 Ga 0.47 As film is grown on Si using 12-nm-thick buffer layer

  5. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Götsch, Thomas; Mayr, Lukas [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Stöger-Pollach, Michael [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2015-03-15

    Highlights: • Preparation of unsupported yttrium-stabilized zirconia films. • Control of ordering and epitaxy by temperature of deposition template. • Adjustment of film defectivity by deposition and post-oxidation temperature. • Reproducibility of target stoichiometry in the deposited films. • Lateral and vertical chemical homogeneity. - Abstract: Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films (“YSZ”, 8 mol% Y{sub 2}O{sub 3}) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  6. Rare-earth-ion doped KY(WO4)2 optical waveguides grown by liquid-phase epitaxy

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Apostolopoulos, V.; Utke, U.; Pollnau, Markus

    High-quality KY(WO4)2 thin layers doped with rare-earth-ions were grown using liquid-phase epitaxy. A low-temperature mixture of chlorides was used as the flux and undoped KY(WO4)2 crystals as substrates. The crystalline layers possessed thicknesses up to 10 µm. Passive and active planar waveguiding

  7. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.; Hsu, W.; James, J.; Onyegam, E. U.; Guchhait, S.; Banerjee, S. K.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm

  8. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  9. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    Science.gov (United States)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  10. Unusual strain in homoepitaxial CdTe(001) layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, H.; Waag, A.; Moeller, M.O.; Regnet, M.M.; Landwehr, G. [Physikalisches Institut, Univ. Wuerzburg (Germany)

    1994-01-01

    For homoepitaxial CdTe(001) films grown by molecular beam epitaxy onto CdTe(001) substrates, a difference between the lattice constants of the substrate and the layer was systematically observed using high resolution X-ray diffraction. Reciprocal space maps point out an unusual strain state of such layers which is indicated by the position of their reciprocal lattice points. They lie in a section of reciprocal space which is usually forbidden by elasticity theory. The strain is laterally anisotropic leading to a monoclinic symmetry of the thin films. The lateral strain is depth dependent. Possible reasons for the formation of the unusual strain are discussed, and a correlation of the unusual strain with the growth conditions is attempted

  11. Microstructure of InxGa1−xN nanorods grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Webster, R F; Soundararajah, Q Y; Griffiths, I J; Cherns, D; Novikov, S V; Foxon, C T

    2015-01-01

    Transmission electron microscopy is used to examine the structure and composition of In x Ga 1−x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core–shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration. (paper)

  12. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  13. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  14. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    International Nuclear Information System (INIS)

    Schulze, J.; Oehme, M.; Werner, J.

    2012-01-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that – depending on the chosen operating point and device design – the diode serves as a broadband high speed photo detector, Franz–Keldysh effect modulator or light emitting diode.

  15. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J., E-mail: schulze@iht.uni-stuttgart.de; Oehme, M.; Werner, J.

    2012-02-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that - depending on the chosen operating point and device design - the diode serves as a broadband high speed photo detector, Franz-Keldysh effect modulator or light emitting diode.

  16. SIMS studies of CI- doped Zn Se epilayers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gard, F.S.; Riley, J.D.; Lekey, R.; Usher, B.F.; Prine, K.

    2004-01-01

    Chlorine is one of the most used species to produce n-type zinc selenium epilayers. In this paper, we present secondary ion mass spectrometry profiles of a series of chlorine-doped zinc selenium samples, which were grown in a molecular beam epitaxy chamber. These profiles have been used to examine the limitation of secondary ion mass spectrometry analysis of narrow chlorine-delta layers. In order to covert secondary ion mass spectrometry raw data to quantified data, the depth profile from a chlorine-implanted standard sample has been used to estimate the u seful ion yield o f chlorine and thus the instrument sensitivity for chlorine in a zinc selenium matrix. The u seful ion yield a nd detection limit of chlorine in the zinc selenium host matrix were calculated to be 4.7 X 10 -17 atoms/ cm 3 , respectively

  17. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-01-01

    We report the highest mobility values above 2000 cm 2 /Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  18. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  19. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  20. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  1. Aluminum Gallium Nitride Alloys Grown via Metalorganic Vapor-Phase Epitaxy Using a Digital Growth Technique

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-04-01

    This work investigates the use of a digital growth technique as a viable method for achieving high-quality aluminum gallium nitride (Al x Ga1- x N) films via metalorganic vapor-phase epitaxy. Digital alloys are superlattice structures with period thicknesses of a few monolayers. Alloys with an AlN mole fraction ranging from 0.1 to 0.9 were grown by adjusting the thickness of the AlN layer in the superlattice. High-resolution x-ray diffraction was used to determine the superlattice period and c-lattice parameter of the structure, while reciprocal-space mapping was used to determine the a-lattice parameter and evaluate growth coherency. A comparison of the measured lattice parameter with both the nominal value and also the underlying buffer layer is discussed.

  2. Group III nitride-arsenide long wavelength lasers grown by elemental source molecular beam epitaxy

    International Nuclear Information System (INIS)

    Coldren, C. W.; Spruytte, S. G.; Harris, J. S.; Larson, M. C.

    2000-01-01

    Elemental source molecular beam epitaxy was used to grow InGaNAs quantum well samples, edge-emitting laser diodes, and vertical-cavity laser diodes on GaAs substrates. The quantum well samples exhibited an as-grown room temperature photoluminescence peak beyond 1310 nm which both increased dramatically in intensity and blueshifted with thermal annealing. Edge emitting laser diodes had threshold current densities as low as 450 and 750 A/cm 2 for single and triple quantum well active regions, respectively, and emitted light at 1220-1250 nm. The vertical cavity laser diodes emitted light at 1200 nm and had threshold current densities of 3 kA/cm 2 and efficiencies of 0.066 W/A. (c) 2000 American Vacuum Society

  3. Thermal stability of iron silicide nanowires epitaxially grown on Si(110) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Qiang, E-mail: zouzhq@shanghaitech.edu.cn [School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong, Shanghai, 201210 (China); Li, Xu; Liu, Xiao-Yong; Shi, Kai-Juan; Guo, Xin-Qiu [Analytical and Testing Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-03-31

    Highlights: • The α-FeSi{sub 2} nanowires epitaxially grown on Si(110) can be stable up to 750 °C. • The stable temperature of the nanowires is much lower than that of the bulk α-FeSi{sub 2} due to their small size and high relative surface area. • With increasing annealing temperature, the α-FeSi{sub 2} nanowires undergo an Ostwald ripening process and transform into large β-FeSi{sub 2} nanorods or three-dimensional nanocrystals. • The reduction in surface energy drives the transformation from metallic α-FeSi{sub 2} phase to semiconducting β-FeSi{sub 2} phase. - Abstract: Metallic α-FeSi{sub 2} nanowires (NWs) are epitaxially grown on Si(110) at 650 °C. Their evolution as a function of annealing temperature has been studied in situ by scanning tunneling microscopy. The NWs are stable up to 750 °C, which is much lower than that of the bulk α-FeSi{sub 2}. With further increasing the annealing temperature, some NWs begin to shrink in length and transform into wider and higher semiconducting β-FeSi{sub 2} nanorods or three-dimensional (3D) islands at 925 °C. The phase transformation is driven by the reduction in surface energy. On the other hand, some α-FeSi{sub 2} NWs begin to dissolve and become thinner until disappearing. The growth of the β-FeSi{sub 2} nanorods or 3D nanocrystals follows the Ostwald ripening mechanism, i.e., the large islands grow in size at the expense of the small ones. X-ray photoelectron spectroscopy study shows that the Fe 2p peaks of β-FeSi{sub 2} nanocrystals exhibit a negative shift of 0.2 eV with respect to the α-FeSi{sub 2} NWs.

  4. Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Morita, K.; Inomata, Y.; Suemasu, T.

    2006-01-01

    The electrical properties and optical absorption (OA) spectra of undoped BaSi 2 films grown by molecular beam epitaxy were investigated The electron density and mobility of BaSi 2 grown epitaxially on Si(111) were 5 x 10 15 cm -3 and 820 cm 2 /V.s at room temperature, respectively. The conduction-band discontinuity at the BaSi 2 /Si heterojunction was estimated to be 0.7 eV from the current-voltage characteristics of n-BaSi 2 /n-Si isotype diodes. OA spectra were measured on polycrystalline BaSi 2 films grown on transparent fused silica substrates with predeposited polycrystalline Si layer. The indirect absorption edge was derived to be 1.3 eV, and the optical absorption coefficient reached 10 5 cm -1 at 1.5 eV

  5. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    Science.gov (United States)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  6. Ellipsometric study of GaN/AIN/Si(111) heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Nabi, M. A. U.; Ashfaq, A.; Arshad, M. I.; Ali, A.; Mahmood, K.; Hasan, M. A.; Asghar, M.

    2013-01-01

    GaN and related structures attracted a great interest in the recent years for electronic and optoelectronic applications due to their promising properties. GaN is grown popularly on foreign substrates like sapphire and SiC. However, silicon due to its favourable properties attended the great attention of material scientists and researchers to utilize as substrate for heteroepitaxy of GaN based structures and devices. Silicon substrates are low cost, available in large diameters and have well characterized thermal and electrical properties. In this study, GaN/AlN/Si(111) heterostructures were grown by molecular beam epitaxy. We performed x-ray diffraction spectroscopy and spectroscopic ellipsometry on these samples to study their structural and optical properties. XRD measurements performed on these samples revealed the presence of high quality GaN films as well as the presence of AlN buffer layer with the following miller indices: GaN (002), GaN (004), GaN (006) and GaN (110) along with Si peak of phase (111). The ellipsometric data obtained were used to characterize the GaN/Si samples as a function of film thickness. Refractive index, extinction coefficient and dielectric constant were calculated by the measured data. (author)

  7. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    Directory of Open Access Journals (Sweden)

    T. Ojima

    2018-04-01

    Full Text Available Real-time in situ reflection high energy electron diffraction (RHEED observations of Fe3O4, γ-Fe2O3, and (Co,Fe3O4 films on MgO(001 substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE and pulsed laser deposition (PLD experiments. This suggests that the layer-by-layer growth of spinel ferrite (001 films is general in most physical vapor deposition (PVD processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  8. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  9. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  10. Defect distribution in low-temperature molecular beam epitaxy grown Si/Si(100), improved depth profiling with monoenergetic positrons

    International Nuclear Information System (INIS)

    Szeles, C.; Asoka-Kumar, P.; Lynn, K.G.; Gossmann, H.; Unterwald, F.C.; Boone, T.

    1995-01-01

    The depth distribution of open-volume defects has been studied in Si(100) crystals grown by molecular beam epitaxy at 300 degree C by the variable-energy monoenergetic positron beam technique combined with well-controlled chemical etching. This procedure gave a 10 nm depth resolution which is a significant improvement over the inherent depth resolving power of the positron beam technique. The epitaxial layer was found to grow defect-free up to 80 nm, from the interface, where small vacancy clusters, larger than divacancies, appear. The defect density then sharply increases toward the film surface. The result clearly shows that the nucleation of small open-volume defects is a precursor state to the breakdown of epitaxy and to the evolution of an amorphous film

  11. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  12. Strain in epitaxial high-index Bi{sub 2}Se{sub 3}(221) films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Chen, Weiguang [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Guo, Xin; Ho, Wingkin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Jia, Jinfeng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, Department of Physics and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Xie, Maohai, E-mail: mhxie@hku.hk [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-02-28

    Highlights: • High-index, off c-axis, Bi{sub 2}Se{sub 3} has been grown by molecular beam epitaxy on In{sub 2}Se{sub 3}. • A retarded strain relaxation process in such high-index Bi{sub 2}Se{sub 3} is observed, enabling experimentally probe strain effect on topological insulators. • It has been shown by calculation that the Dirac electrons participate in chemical bonding at the heterointerface. - Abstract: High-index Bi{sub 2}Se{sub 3}(221) film has been grown on In{sub 2}Se{sub 3}-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi{sub 2}Se{sub 3}(221) can be attributed to the layered structure of Bi{sub 2}Se{sub 3} crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi{sub 2}Se{sub 3} and In{sub 2}Se{sub 3} by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  13. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  14. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  15. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine N. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kuciauskas, Darius; Dippo, Pat; Barnes, Teresa M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Swartz, Craig H.; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Myers, Thomas H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666 (United States)

    2016-08-29

    Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  16. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  17. Successful Fabrication of GaN Epitaxial Layer on Non-Catalytically grown Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Won [Konkuk University, Chungju (Korea, Republic of); Choi, Suk-Ho [Kyung Hee University, Yongin (Korea, Republic of)

    2016-07-15

    Sapphire is widely used as a substrate for the growth of GaN epitaxial layer (EPI), but has several drawbacks such as high cost, large lattice mismatch, non-flexibility, and so on. Here, we first employ graphene directly grown on Si or sapphire substrate as a platform for the growth and lift-off of GaN-light-emitting diode (LED) EPI, useful for not only recycling the substrate but also transferring the GaN-LED EPI to other flexible substrates. Sequential standard processes of nucleation/recrystallization of GaN seeds and deposition of undoped (u-) GaN/AlN buffer layer were done on graphene/substrate before the growth of GaN-LED EPI, accompanied by taping and lift-off of u-GaN/AlN or GaN-LED EPI. This approach can overcome the limitations by the catalytic growth and transfer of graphene, and make the oxygen-plasma treatment of graphene for the growth of GaN EPI unnecessary.

  18. STM studies of GeSi thin layers epitaxially grown on Si(111)

    Science.gov (United States)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  19. Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lee, S.C.; Ng, S.S.; Hassan, H. Abu; Hassan, Z.; Zainal, N.; Novikov, S.V.; Foxon, C.T.; Kent, A.J.

    2014-01-01

    Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. - Highlights: • First time experimental studies of IR optical phonons in bulk like, cubic GaN layer. • Detection of extra phonon modes of cubic GaN by polarized IR reflectance technique. • Revelation of IR multiphonon modes of cubic GaN by first derivative numerical method. • Observation of multiphonon modes requires very high angle of incidence. • Resonance splitting effect induced by third phonon mode is a qualitative indicator

  20. Electrical properties of GaAsN film grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Nishimura, K.; Suzuki, H.; Saito, K.; Ohshita, Y.; Kojima, N.; Yamaguchi, M.

    2007-01-01

    The local vibrational modes (LVMs) observed by Fourier transform infrared (FTIR) spectroscopy in GaAsN films grown by chemical beam epitaxy (CBE) was studied, and the influence of the nitrogen-hydrogen bond (N-H) concentration on the hole concentration was investigated. The absorption peak around 936 cm -1 is suggested to be the second harmonic mode of the substitutional N, N As , LVM around 469 cm -1 . The absorption peak around 960 cm -1 is suggested to be the wagging mode of the N-H, where the stretch mode is observed around 3098 cm -1 . The hole concentration linearly increases with increasing N-H concentration, and the slope increases with increasing growth temperature. It indicates that the hole concentration in GaAsN film is determined by both the number of the N-H and unknown defect, such as impurities, vacancies, and interstitials. This defect concentration increases with increasing growth temperature, suggesting that it is determined by Arrhenius type reaction

  1. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    Science.gov (United States)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  2. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    Science.gov (United States)

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  3. Effects of magnesium contents in ZnMgO ternary alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sheng-Yao, E-mail: shenghu2729@yahoo.com [Department of Digital Technology Design, Tungfang Design Institute, Hunei, Kaohsiung 82941, Taiwan (China); Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Weng, Yu-Hsiang [Department of Electrical Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2015-07-05

    Highlights: • ZnMgO alloys with different Mg contents have been produced by MBE. • Optical and structural properties have been measured and investigated. • Stress is tensile and is increased as the increasing of Mg contents. • The asymmetric behavior of the Raman mode was influenced due to the Mg contents. - Abstract: Ternary alloys of ZnMgO samples with different magnesium contents have been grown by molecular beam epitaxy on the sapphire substrates. Room temperature photoluminescence energy of ZnMgO shifted as high as 3.677 eV by increasing Mg contents corresponding to the higher Urbach average localization energy which indicates more randomness in the alloys with higher Mg contents. XRD results are also verified that the c-axis length decreases as the increasing Mg contents linking to the increased tensile stress produced by the Mg atoms. Raman spectra analyzed by the spatial correlation model to describe that the linewidth Γ is decreased but the correlation length L is increased as the increasing of Mg contents.

  4. Effects of magnesium contents in ZnMgO ternary alloys grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hu, Sheng-Yao; Chou, Wu-Ching; Weng, Yu-Hsiang

    2015-01-01

    Highlights: • ZnMgO alloys with different Mg contents have been produced by MBE. • Optical and structural properties have been measured and investigated. • Stress is tensile and is increased as the increasing of Mg contents. • The asymmetric behavior of the Raman mode was influenced due to the Mg contents. - Abstract: Ternary alloys of ZnMgO samples with different magnesium contents have been grown by molecular beam epitaxy on the sapphire substrates. Room temperature photoluminescence energy of ZnMgO shifted as high as 3.677 eV by increasing Mg contents corresponding to the higher Urbach average localization energy which indicates more randomness in the alloys with higher Mg contents. XRD results are also verified that the c-axis length decreases as the increasing Mg contents linking to the increased tensile stress produced by the Mg atoms. Raman spectra analyzed by the spatial correlation model to describe that the linewidth Γ is decreased but the correlation length L is increased as the increasing of Mg contents

  5. Redundant Sb condensation on GaSb epilayers grown by molecular beam epitaxy during cooling procedure

    International Nuclear Information System (INIS)

    Arpapay, B.; Şahin, S.; Arıkan, B.; Serincan, U.

    2014-01-01

    The effect of four different cooling receipts on the surface morphologies of unintentionally-doped GaSb epilayers on GaSb (100) substrates grown by molecular beam epitaxy is reported. Those receipts include three different Sb beam equivalent pressure (BEP) levels and two different termination temperatures. Surface morphologies of epilayers were examined by wet etching, surface profiler, atomic force microscopy, scanning electron microscopy and Raman spectroscopy. The results demonstrate that during the cooling period, a Sb BEP of 4.00 × 10 −4 Pa at a termination temperature of 400 °C induces a smooth surface without Sb condensation whereas same Sb BEP at a termination temperature of 350 °C forms a 300 nm thick Sb layer on the surface. In addition, it is revealed that by applying a wet etching procedure and using a surface profiler it is possible to identify this condensed layer from the two-sloped feature of mesa profile. - Highlights: • Sb beam flux termination temperature is crucial for redundant Sb condensation. • Sb beam flux level has a role on the thickness of redundant condensed Sb layer. • Redundant Sb layer thickness can be measured by two-sloped mesa structure

  6. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  7. Characteristics of threading dislocations in ZnO grown on facet-controlled epitaxial overgrown GaN templates

    International Nuclear Information System (INIS)

    Zhou, H L; Chua, S J; Chow, S Y; Pan, H; Zhu, Y W; Feng, Y P; Wang, L S; Zang, K Y; Liu, W; Tripathy, S

    2007-01-01

    Using transmission electron microscopy (TEM), the authors have investigated the behavior of threading dislocations in ZnO selectively grown on a facet-controlled epitaxial overgrown GaN template. In this case, the ZnO is grown by a vapor transport method. The TEM study in the overgrown regions shows that all the pure-edge type dislocations in ZnO are parallel toward the mask area and vertical propagation of dislocation to the ZnO surface is minimized. Using such a selective growth technique on a faceted semi-polar GaN surface, a reduction of threading dislocation density in ZnO could be achieved

  8. Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    Science.gov (United States)

    2012-01-01

    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144

  9. Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan

    2006-01-01

    A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low

  10. Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

    Science.gov (United States)

    Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan

    2006-12-01

    A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low

  11. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-05-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results in a strained film and a high dislocation density—two effects that have been associated with efficiency droop, which is the disastrous drop in efficiency of a light-emitting diode (LED) as the input current increases. Heteroepitaxially grown nanowires have recently attracted great interest due to their property of eliminating the detrimental effects of the lattice mismatch and the corollary efficiency droop. In this study, InGaN nanowires were grown on a low-cost Si (111) substrate via molecular beam epitaxy. Unique nanostructures, taking the form of mushrooms, have been observed in localized regions on the samples. These nanomushrooms consist of a nanowire body with a wide cap on top. Photoluminescence characterization revealed that the nanowires emit violet-blue, whilst the nanomushrooms emit a broad yellow-orange-red luminescence. The simultaneous emission from the nanowires and nanomushrooms forms white light. Structural characterization of a single nanomushroom via transmission electron microscopy revealed a simultaneous increase in indium and decrease in gallium at the interface between the body and the cap. Furthermore, the cap itself was found to be indium-rich, confirming it as the source of the longer wavelength yellow-orange-red luminescence. It is believed that the nanomushroom cap formed as a consequence of the saturation of growth on the c-plane of the nanowire. It is proposed that the formation of an indium droplet on the tip of the nanowire saturated growth on the c-plane, forcing the indium and gallium adatoms to incorporate on the sidewall m-planes instead, but only at the nanowire tip. This resulted in the formation of a mushroom-like cap on the tip. How and why the indium droplets formed is not

  12. Structural disorder of natural BimSen superlattices grown by molecular beam epitaxy

    Science.gov (United States)

    Springholz, G.; Wimmer, S.; Groiss, H.; Albu, M.; Hofer, F.; Caha, O.; Kriegner, D.; Stangl, J.; Bauer, G.; Holý, V.

    2018-05-01

    The structure and morphology of BimSen epitaxial layers with compositions ranging from Bi2Se3 to the Bi1Se1 grown by molecular beam epitaxy with different flux compositions are investigated by transmission electron microscopy, high-resolution x-ray diffraction, and atomic force microscopy. It is shown that the lattice structure changes significantly as a function of the beam flux composition, i.e., Se/BiSe flux ratio that determines the stoichiometry of the layers. A perfect Bi2Se3 phase is formed only with a sufficiently high additional Se flux, whereas Bi1Se1 is obtained when only a BiSe compound source without additional Se is used. For intermediate values of the excess Se flux during growth, Bi2Se3 -δ layers are obtained with the Se deficit δ varying between 0 and 1. This Se deficit is accommodated by incorporation of additional Bi-Bi double layers into the Bi2Se3 structure that otherwise exclusively consists of Se-Bi-Se-Bi-Se quintuple layers. While a periodic insertion of such Bi double layers would result in the formation of natural BimSen superlattices, we find that this Bi double-layer insertion is rather stochastic with a high degree of disorder depending on the film composition. Therefore, the structure of such epilayers is better described by a one-dimensional paracrystal model, consisting of disordered sequences of quintuple and double layers rather than by strictly periodic natural superlattices. From detailed analysis of the x-ray diffraction data, we determine the dependence of the lattice parameters a and c and distances of the individual (0001) planes dj as a function of composition, evidencing that only the in-plane lattice parameter a shows a linear dependence on composition. The simulation of the diffraction curves with the random stacking paracrystal model yields an excellent agreement with the experimental data and it brings quantitative information on the randomness of the stacking sequence, which is compared to growth modeling using Monte

  13. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  14. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A. Y. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Smirnov, N. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Rare Metals, B. Tolmachevsky, 5, Moscow 119017 (Russian Federation); Yakimov, E. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Science, 6, Academician Ossipyan str., Chernogolovka, Moscow Region 142432 (Russian Federation); Lee, In-Hwan, E-mail: ihlee@jbnu.ac.kr [School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Pearton, S. J. [University of Florida, Gainesville, Florida 32611 (United States)

    2016-01-07

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 10{sup 6 }cm{sup −2}, while in the seed region it was 10{sup 8 }cm{sup −2}. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 10{sup 15 }cm{sup −3} range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  15. Photoluminescence investigation of thick GaN films grown on Si substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Yang, M.; Ahn, H. S.; Chang, J. H.; Yi, S. N.; Kim, K. H.; Kim, H.; Kim, S. W.

    2003-01-01

    The optical properties of thick GaN films grown by hydried vapor phase epitaxy (HVPE) using a low-temperature intermediate GaN buffer layer grown on a (111) Si substrate with a ZnO thin film were investigated by using photoluminescence (PL) measurement at 300 K and 77 K. The strong donor bound exciton (DBE) at 357 nm with a full width at half maximum (FWHM) of 15 meV was observed at 77 K. The value of 15 meV is extremely narrow for GaN grown on Si substrate by HVPE. An impurity-related peak was also observed at 367 nm. The origin of impurity was investigated using Auger spectroscopy.

  16. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  17. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    International Nuclear Information System (INIS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-01-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO 3 film grown on (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness

  18. Investigation of CuGaSe2/CuInSe2 double heterojunction interfaces grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Sathiabama Thiru

    2015-02-01

    Full Text Available In-situ reflection high-energy electron diffraction (RHEED observation and X-ray diffraction measurements were performed on heterojunction interfaces of CuGaSe2/CnInSe2/CuGaSe2 grown on GaAs (001 using migration-enhanced epitaxy. The streaky RHEED pattern and persistent RHEED intensity oscillations caused by the alternate deposition of migration-enhanced epitaxy sequence are observed and the growths of smooth surfaces are confirmed. RHEED observation results also confirmed constituent material interdiffusion at the heterointerface. Cross-sectional transmission electron microscopy showed a flat and abrupt heterointerface when the substrate temperature is as low as 400 °C. These have been confirmed even by X-ray diffraction and photoluminescence measurements.

  19. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  20. Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-09-15

    Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.

  1. Efficient n-type doping of CdTe epitaxial layers grown by photo-assisted molecular beam epitaxy with the use of chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, D.; Scholl, S.; Kuhn, T.A.; Ossau, W.; Waag, A.; Landwehr, G. (Univ. Wuerzburg, Physikalisches Inst. (Germany)); Bilger, G. (Univ. Stuttgart, Inst. fuer Physikalische Elektronik (Germany))

    1993-01-30

    Chlorine has been used successfully for the first time for n-type doping of CdTe epitaxial layers (epilayers) grown by photo-assisted molecular beam epitaxy. Similar to n-type doping of ZnSe layers, ZnCl[sub 2] has been used as source material. The free-carrier concentration can be varied over more than three orders of magnitude by changing the ZnCl[sub 2] oven temperature. Peak mobilities are 4700 cm[sup 2] V[sup -1] s[sup -1] for an electron concentration of 2x10[sup 16] cm[sup -3] and 525 cm[sup 2] V[sup -1] s[sup -1] for 2x10[sup 18] cm[sup -3]. The electrical transport data obtained by Van der Pauw configuration and Hall structure measurements are consistent with each other, indicating a good uniformity of the epilayers. In photoluminescence the donor-bound-exciton emission dominates for all chlorine concentrations. This contasts significantly with results obtained for indium doping, commonly used for obtaining n-type CdTe epilayers. The superiority of chlorine over indium doping and the influence of growth parameters on the behaviour of CdTe:Cl layers will be discussed on the basis of transport, luminescence, secondary ion mass spectroscopy and X-ray photoelectron spectroscopy data. (orig.).

  2. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    Science.gov (United States)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  3. Inhomogeneous Si-doping of gold-seeded InAs nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, Chloe; Coinon, Christophe; Wallart, Xavier; Leturcq, Renaud [Institute of Electronics Microelectronics and Nanotechnology, UMR CNRS 8520, ISEN Department, Avenue Poincare, CS60069, 59652 Villeneuve d' Ascq Cedex (France); Caroff, Philippe [Institute of Electronics Microelectronics and Nanotechnology, UMR CNRS 8520, ISEN Department, Avenue Poincare, CS60069, 59652 Villeneuve d' Ascq Cedex (France); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-06-03

    We have investigated in situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore, the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.

  4. Raman Scattering analysis of InGaAs and AlGaAs superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Bahceli, S.

    2010-01-01

    InGaAs/GaAs and AlGaAs/GaAs multiple quantum well structures were grown by molecular beam epitaxy and investigated by X-ray diffraction and micro Raman spectroscopy. Phonon modes are investigated in backscattering from (001) surface. In the measured micro Raman spectrum for both structure, phonon peaks can be resolved for GaAs. These are longitudinal optical (LO) mode at 293 cm - 1 and 294 cm - 1 for InGaAs and AlGaAs, respectively.

  5. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    International Nuclear Information System (INIS)

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  6. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  7. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    International Nuclear Information System (INIS)

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-01-01

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations

  8. Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hickey, M. C.; Holmes, S. N.

    2009-01-01

    The interfacial, electrical, and magnetic properties of the Heusler alloy Co2MnGa grown epitaxially on GaAs(100) are presented with an emphasis on the use of this metal-semiconductor combination for a device that operates on the principles of spin-injection between the two materials. Through...... was monitored in situ by reflection high energy electron diffraction and the bulk composition was measured ex situ with inductively coupled plasma optical emission spectroscopy. The Co2MnGa L21 cubic structure is strained below a thickness of 20 nm on GaAs(100) but relaxed in films thicker than 20 nm...

  9. Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates

    International Nuclear Information System (INIS)

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.; Lefebvre, P.; Jahn, U.; Trampert, A.

    2011-01-01

    This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission.

  10. Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Prohl, Christopher; Lenz, Andrea, E-mail: alenz@physik.tu-berlin.de [Technische Universität Berlin, Institut für Festkörperphysik, 10623 Berlin (Germany); Döscher, Henning; Kleinschmidt, Peter; Hannappel, Thomas [Helmholtz Center Berlin for Materials and Energy, 14109 Berlin (Germany)

    2016-05-15

    In a fundamental cross-sectional scanning tunneling microscopy investigation on epitaxially grown GaP layers on a Si(001) substrate, differently oriented antiphase boundaries are studied. They can be identified by a specific contrast and by surface step edges starting/ending at the position of an antiphase boundary. Moreover, a change in the atomic position of P and Ga atoms along the direction of growth is observed in agreement with the structure model of antiphase boundaries in the GaP lattice. This investigation opens the perspective to reveal the orientation and position of the antiphase boundaries at the atomic scale due to the excellent surface sensitivity of this method.

  11. Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles

    International Nuclear Information System (INIS)

    Limaye, Mukta V.; Singh, Shashi B.; Date, Sadgopal K.; Gholap, R.S.; Kulkarni, Sulabha K.

    2009-01-01

    Zinc oxide in the bulk as well as in the nanocrystalline form is thermodynamically stable in the wurtzite structure. However, zinc oxide in the zinc-blende structure is more useful than that in the wurtzite structure due to its superior electronic properties as well as possibility of efficient doping. Therefore, zinc oxide shell is grown epitaxially on zinc sulphide core nanoparticles having zinc-blende structure. It is shown that doping of manganese could be achieved in zinc oxide nanoshell with zinc-blende structure

  12. Structural characterization of ZnO films grown by molecular beam epitaxy on sapphire with MgO buffer

    International Nuclear Information System (INIS)

    Pecz, B.; El-Shaer, A.; Bakin, A.; Mofor, A.-C.; Waag, A.; Stoemenos, J.

    2006-01-01

    The structural characteristics of the ZnO film grown on sapphire substrate using a thin MgO buffer layer were studied using transmission electron microscopy and high-resolution x-ray diffraction. The growth was carried out in a modified plasma-molecular beam epitaxy system. The observed misfit dislocations were well confined at the sapphire overgrown interface exhibiting domain matching epitaxy, where the integral multiples of lattice constants match across the interface. The main extended defects in the ZnO film were the threading dislocations having a mean density of 4x10 9 cm -2 . The formation of the MgO buffer layer as well as the ZnO growth were monitored in situ by reflection high-energy electron diffraction. The very thin ∼1 nm, MgO buffer layer can partially interdiffuse with the ZnO as well as react with the Al 2 O 3 substrate forming an intermediate epitaxial layer having the spinel (MgO/Al 2 O 3 ) structure

  13. Growth of epitaxially oriented Ag nanoislands on air-oxidized Si(1 1 1)-(7 × 7) surfaces: Influence of short-range order on the substrate

    International Nuclear Information System (INIS)

    Roy, Anupam; Bhattacharjee, K.; Ghatak, J.; Dev, B.N.

    2012-01-01

    Clean Si(1 1 1)-(7 × 7) surfaces, followed by air-exposure, have been investigated by reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short-range (7 × 7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(1 1 1)-(7 × 7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ∼2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(1 1 1)-(7 × 7) surfaces has been investigated by in situ RHEED and STM and ex situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550 °C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [11 ¯ 0] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si along with its twin [1 ¯ 10] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si , as observed for epitaxial growth of Ag on Si(1 1 1) surfaces. The twins are thus rotated by a 180° rotation of the Ag unit cell about the Si[1 1 1] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(1 1 1) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short-range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.

  14. Properties of Hg1-xCdxTe epitaxial films grown on (211)CdTe and (211)CdZnTe

    International Nuclear Information System (INIS)

    Di Stefano, M.C.; Gilabert, U.; Heredia, E.; Trigubo, A.B.

    2004-01-01

    Hg 1-x Cd x Te (MCT) epitaxial films have been grown employing single crystalline substrates of CdTe and Cd 0.96 Zn 0.04 Te with (211)Cd and (211)Te crystalline orientations. The Isothermal Vapor Phase Epitaxy (ISOVPE) technique without Hg overpressure has been used for the epitaxial growth. Substrates and films were characterized by optical microscopy, chemical etching and X ray diffraction (Laue technique). The electrical properties were determined by Hall effect measurements. The characterization results allowed to evaluate the crystalline quality of MCT films. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process

    International Nuclear Information System (INIS)

    Yin Xingtian; Que Wenxiu; Shen Fengyu

    2011-01-01

    Well-aligned ZnO nanorods (NRs) arrays with Ag nanoparticles (NPs) on the (002) plane are obtained by combining a liquid epitaxy technique with an electrodeposition process. Cyclic voltammetry study is employed to understand the electrochemical behaviors of the electrodeposition system, and potentiostatic method is employed to deposit silver NPs on the ZnO NRs in the electrolyte with an Ag + concentration of 1 mM. X-ray diffraction analysis is used to study the crystalline properties of the as-prepared samples, and energy dispersive X-ray is adopted to confirm the composition at the surface of the deposited samples. Results indicate only a small quantity of silver can be deposited on the surface of the samples. Effect of the deposition potential and time on the morphological properties of the resultant Ag NPs/ZnO NRs are investigated in detail. Scanning electron microscopy images and transmission electron microscopy images indicate that the Ag NPs deposited on the (002) plane of the ZnO NRs with a large dispersion in diameter can be obtained by a single potentiostatic deposition process, while dense Ag NPs with a much smaller diameter dispersion on the top of the ZnO NRs, most of which locate on the conical tip of the ZnO NRs, can be obtained by a two-potentiostatic deposition process, The mechanism of this deposition process is also suggested.

  16. Strain-symmetrized Si/SiGe multi-quantum well structures grown by molecular beam epitaxy for intersubband engineering

    International Nuclear Information System (INIS)

    Zhao, M.; Karim, A.; Ni, W.-X.; Pidgeon, C.R.; Phillips, P.J.; Carder, D.; Murdin, B.N.; Fromherz, T.; Paul, D.J.

    2006-01-01

    Three strain-symmetrized Si/SiGe multi-quantum well structures, designed for probing the carrier lifetime of intrawell intersubband transitions between heavy hole 1 (HH1) and light hole 1 (LH1) states with transition energies below the optical phonon energy, were grown by molecular beam epitaxy at low temperature on fully relaxed SiGe virtual substrates. The grown structures were characterized by using various experimental techniques, showing a high crystalline quality and very precise growth control. The lifetime of the LH1 excited state was determined directly with pump-probe spectroscopy. The measurements indicated an increase of the lifetime by a factor of ∼2 due to the increasingly unconfined LH1 state, which agreed very well with the design. It also showed a very long lifetime of several hundred picoseconds for the holes excited out of the well to transit back to the well through a diagonal process

  17. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  18. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  19. Influence of substrate quality on structural properties of AlGaN/GaN superlattices grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F. [NaMLab gGmbH, Nöthnitzer Straße 64, 01187 Dresden (Germany); Merkel, U.; Schmult, S. [TU Dresden, Institute of Semiconductors and Microsystems, Nöthnitzer Straße 64, 01187 Dresden (Germany); Mikolajick, T. [NaMLab gGmbH, Nöthnitzer Straße 64, 01187 Dresden (Germany); TU Dresden, Institute of Semiconductors and Microsystems, Nöthnitzer Straße 64, 01187 Dresden (Germany)

    2014-02-28

    Short-period AlGaN/GaN superlattices were established as versatile test structures to investigate the structural properties of molecular beam epitaxy (MBE)-grown GaN and AlGaN layers and their dependence on the GaN substrate quality. X-ray diffractometry data of the investigated superlattices allow access to relevant structural parameters such as aluminum mole fraction and layer thicknesses. The occurrence of theoretically predicted intense high-order satellite peaks and pronounced interface fringes in the diffraction pattern reflects abrupt interfaces and perfect 2-dimensional growth resulting in smooth surfaces. The data unambiguously demonstrate that the structural quality of the MBE grown layers is limited by the structural properties of the GaN substrate.

  20. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  1. GaN epitaxial layers grown on multilayer graphene by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  2. Structural characterization of epitaxial LiFe_5O_8 thin films grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R.

    2016-01-01

    We report on detailed microstructural and atomic ordering characterization by transmission electron microscopy in epitaxial LiFe_5O_8 (LFO) thin films grown by chemical vapor deposition (CVD) on MgO (001) substrates. The experimental results of LFO thin films are compared with those for bulk LFO single crystal. Electron diffraction studies indicate weak long-range ordering in LFO (α-phase) thin films in comparison to bulk crystal where strong ordering is observed in optimally annealed samples. The degree of long-range ordering depends on the growth conditions and the thickness of the film. Annealing experiment along with diffraction study confirms the formation of α-Fe_2O_3 phase in some regions of the films. This suggests that under certain growth conditions γ-Fe_2O_3-like phase forms in some pockets in the as-grown LFO thin films that then convert to α-Fe_2O_3 on annealing. - Highlights: • Atomic ordering in LiFe_5O_8 bulk single crystal and epitaxial thin films. • Electron diffraction studies reveal different level of ordering in the system. • Formation of γ-Fe_2O_3 like phase has been observed.

  3. High-resolution hydrogen profiling in AlGaN/GaN heterostructures grown by different epitaxial methods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Posada Flores, F; Redondo-Cubero, A; Bengoechea, A; Brana, A F; Munoz, E [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM) and Dpto. IngenierIa Electronica (DIE), ETSI de Telecomunicacion, Universidad Politecnica de Madrid, E-28040 Madrid (Spain); Gago, R [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Jimenez, A [Dpto. Electronica, Escuela Politecnica Superior, Universidad de Alcala, E-28805 Alcala de Henares, Madrid (Spain); Grambole, D, E-mail: fposada@die.upm.e [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, PF 51019, D-01314 Dresden (Germany)

    2009-03-07

    Hydrogen (H) incorporation into AlGaN/GaN heterostructures used in high electron mobility transistors, grown by different methods, is studied by high-resolution depth profiling. Samples grown on sapphire and Si(1 1 1) substrates by molecular-beam epitaxy and metal-organic vapour phase epitaxy; involving H-free and H-containing precursors, were analysed to evaluate the eventual incorporation of H into the wafer. The amount of H was measured by means of nuclear reaction analysis (NRA) using the {sup 1}H({sup 15}N,{alpha}{gamma}){sup 12}C reaction up to a depth of {approx}110 nm into the heterostructures. Interestingly, the H profiles are similar in all the samples analysed, with an increasing H content towards the surface and a negligible H incorporation into the GaN layer (0.24 {+-} 0.08 at%) or at the AlGaN/GaN interface. Therefore, NRA shows that H uptake is not related to the growth process or technique employed and that H contamination may be due to external sources after growth. The eventual correlation between topographical defects on the AlGaN surface and the H concentration are also discussed.

  4. Low temperature step-graded InAlAs/GaAs metamorphic buffer layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Shang, X Z; Wu, S D; Liu, C; Wang, W X; Guo, L W; Huang, Q; Zhou, J M

    2006-01-01

    Low-temperature step-graded InAlAs metamorphic buffer layers on GaAs substrate grown by molecular beam epitaxy were investigated. The strain relaxation and the composition of the top InAlAs layer were determined by high-resolution triple-axis x-ray diffraction measurements, which show that the top InAlAs layer is nearly fully relaxed. Surface morphology was observed by reflection high-energy electron diffraction pattern and atomic force microscopy. Under a selected range of growth parameters, the root mean square surface roughness of the sample grown at 380 deg. C is 0.802 nm, which has the smallest value compared with those of other samples. Furthermore, The ω-2θ and ω scans of the triple-axis x-ray diffraction, and photoluminescence show the sample grown at 380 deg. C has better crystalline quality. With decreasing As overpressure at this growth temperature, crystalline quality became poor and could not maintain two dimensional growth with increasing overpressure. The carrier concentrations and Hall mobilities of the InAlAs/ InGaAs/GaAs MM-HEMT structure on low-temperature step-graded InAlAs metamorphic buffer layers grown in optimized conditions are high enough to make devices

  5. Spectroscopic and magnetic properties of Mn doped GaN epitaxial films grown by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vidyasagar, R.; Lin, Y.-T.; Tu, L.-W.

    2012-01-01

    Graphical abstract: We report here that micro-Raman scattering spectrum for Mn doped GaN thin film has displayed a new peak manifested at 578 cm −1 , by which it is attributed to interior LVM originated by the incorporation of Mn ions in place of Ga sites. Mn doped GaN thin film also showed the typical negative magnetoresistance up to ∼50 K, revealing that the film showed magnetic ordering of spins below 50 K. Display Omitted Highlights: ► GaN and Mn doped GaN single phase wurtzite structures grown by PAMBE. ► The phase purity of the epilayers investigated by HRXRD, HRSEM and EDX. ► The red shift in near band edge emission has been observed using micro-PL. ► A new peak related LVM at 578 cm −1 in micro-Raman scattering measurements confirmed Mn doped into GaN. ► Negative-magnetoresistance investigations have showed that the film has T c −1 , which is attributed to the vacancy-related local vibrational mode of Mn occupying the Ga site. Temperature dependent negative magnetoresistance measurements provide a direct evidence of magnetic ordering below 50 K for the Mn doped GaN thin film.

  6. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  7. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    Science.gov (United States)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  8. Deep levels in a-plane, high Mg-content MgxZn1−xO epitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gür, Emre; Tabares, G.; Hierro, A.; Arehart, A.; Ringel, S. A.; Chauveau, J. M.

    2012-01-01

    Deep level defects in n-type unintentionally doped a-plane Mg x Zn 1−x O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg x Zn 1−x O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E c − 1.4 eV, 2.1 eV, 2.6 V, and E v + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E c − 2.1 eV, E v + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E v + 0.3 eV and E c − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E v + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E c − 1.4 eV and E c − 2.6 eV levels in Mg alloyed samples.

  9. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Prusa, Petr; Nikl, Martin; Mares, Jiri A.; Nitsch, Karel; Beitlerova, Alena; Kucera, Miroslav

    2009-01-01

    Y 3 Al 5 O 12 :Ce (YAG:Ce) thin films were grown from PbO-,BaO-, and MoO 3 -based fluxes using the liquid phase epitaxy (LPE) method. Photoelectron yield, its time dependence within 0.5-10 μs shaping time, and energy resolution of these samples were measured under α-particle excitation. For comparison a sample of the Czochralski grown bulk YAG:Ce single crystal was measured as well. Photoelectron yield values of samples grown from the BaO-based flux were found superior to other LPE films and comparable with that of the bulk single crystal. The same is valid also for the time dependence of photoelectron yield. Obtained results are discussed taking into account the influence of the flux and technology used. Additionally, α particle energy deposition in very thin films is modelled and discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electrical transport in n-type ZnMgSSe grown by molecular beam epitaxy on GaAs

    International Nuclear Information System (INIS)

    Marshall, T.; Petruzzello, J.A.; Herko, S.P.

    1994-01-01

    Significant progress in improving the Performance of blue-green II-VI semiconductor injection lasers has come about from advances in the epitaxial growth and doping of ZnMgSSe on GaAs substrates. This paper investigates electrical transport and its relation to structural quality in n-type Zn 1-y Mg y S x Se 1-x epilayers doped with Cl, grown by molecular beam epitaxy. The composition parameters x and y vary from about 0.12-0.18 and 0.08-0.15, respectively. The quaternary epilayers studied are lattice-matched (or nearly so) to the GaAs substrate. Temperature-dependent Hall-effect measurements are performed on seven n-type ZnMgSSe:Cl epilayers, and a technique is presented whereby the resulting mobility-vs-temperature data is compared with data for ZnSe to obtain a structural figure of merit that is useful in characterizing the quaternary epilayer. 29 refs., 4 figs

  11. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Cirlin, G E; Reznik, R R; Shtrom, I V

    2017-01-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail...

  12. Structural atomic-scale analysis of GaAs/AlGaAs quantum wires and quantum dots grown by droplet epitaxy on a (311)A substrate

    NARCIS (Netherlands)

    Keizer, J.G.; Jo, M.; Mano, T.; Noda, T.; Sakoda, K.; Koenraad, P.M.

    2011-01-01

    We report the structural analysis at the atomic scale of GaAs/AlGaAs quantum wires and quantum dots grown by droplet epitaxy on a (311)A-oriented substrate. The shape, interfaces, and composition of these nanostructures and their surrounding matrix are investigated. We show that quantum wires can be

  13. Investigation of aluminium ohmic contacts to n-type GaN grown by molecular beam epitaxy

    Science.gov (United States)

    Kribes, Y.; Harrison, I.; Tuck, B.; Kim, K. S.; Cheng, T. S.; Foxon, C. T.

    1997-11-01

    Using epi-layers of different doping concentrations, we have investigated aluminium contacts on n-type gallium nitride grown by plasma source molecular beam epitaxy. To achieve repeatable and reliable results it was found that the semiconductor needed to be etched in aqua-regia before the deposition of the contact metallization. Scanning electron micrographs of the semiconductor surface show a deterioration of the semiconductor surface on etching. The specific contact resistivity of the etched samples were, however, superior. Annealing the contacts at 0268-1242/12/11/030/img9 produced contacts with the lowest specific contact resistance of 0268-1242/12/11/030/img10. The long-term aging of these contacts was also investigated. The contacts and the sheet resistance were both found to deteriorate over a three-month period.

  14. High resolution x-ray scattering studies of strain in epitaxial thin films of yttrium silicide grown on silicon (111)

    International Nuclear Information System (INIS)

    Marthinez-Miranda, L.J.; Santiago-Aviles, J.J.; Siegal, M.P.; Graham, W.R.; Heiney, P.A.

    1990-01-01

    The authors have used high resolution grazing incidence x-ray scattering (GIXS) to study the in- plane and out-of-plane structure of epitaxial YSi 2-x films grown on Si(111), with thicknesses ranging from 85 Angstrom to 510 Angstrom. Their results indicate that the films are strained, and that film strain increases as a function of thickness, with lattice parameters varying from a = 3.846 Angstrom/c = 4.142 Angstrom for the 85 Angstrom film to a = 3.877 Angstrom/c = 4.121 Angstrom for the 510 Angstrom film. The authors correlate these results with an increase in pinhole areal coverage as a function of thickness. In addition, the authors' measurements show no evidence for the existence of ordered silicon vacancies in the films

  15. Optical Properties of InGaAs/ GaAs Multi Quantum Wells Structure Grown By Molecular Beam Epitaxy

    International Nuclear Information System (INIS)

    Mohd Sharizal Alias; Mohd Fauzi Maulud; Mohd Razman Yahya; Abdul Fatah Awang Mat; Suomalainen, Soile

    2008-01-01

    Inclusive analysis on the optical characteristics of InGaAs/ GaAs QW structure for 980 nm semiconductor laser operation is presented from experimental and theoretical point of view. The InGaAs/ GaAs quantum well structure is grown by molecular beam epitaxy at different indium composition and quantum well thickness for optical characteristic comparison. Photoluminescence spectra from the measurement show that the spectrum is in good agreement with the simulation results. Detail simulation on the material gain for the InGaAs/ GaAs quantum well as a function of carrier densities and operating temperature is also performed in order to optimize the semiconductor laser design for device fabrication. (author)

  16. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions

    International Nuclear Information System (INIS)

    Zhang Meng; Bhattacharya, Pallab; Guo Wei; Banerjee, Animesh

    2010-01-01

    Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 deg. C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1x10 18 cm -3 . The corresponding doping efficiency and hole mobility are ∼4.9% and 3.7 cm 2 /V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (λ peak =529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 Ω.

  17. Thickness dependence of optical properties of VO2 thin films epitaxially grown on sapphire (0 0 0 1)

    International Nuclear Information System (INIS)

    Xu Gang; Jin Ping; Tazawa, Masato; Yoshimura, Kazuki

    2005-01-01

    Vanadium dioxide (VO 2 ) films were epitaxially grown on α-Al 2 O 3 (0 0 0 1) by rf reactive magnetron sputtering. The effects of film thickness ranging from 3 to 150 nm on optical properties were investigated. It revealed that the semiconductor--metal phase transition temperature considerably decreases as film thickness decreases, in particular for the film with thickness less than 10 nm. On the other hand, we found that the difference in visible transmittance between the two phases of VO 2 also varies with film thickness. For the films with thickness less than 50 nm, the semiconductor phase exhibits lower visible transmittance than its metallic phase, while for those with thickness larger than 50 nm the situation is reversed

  18. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy

    Science.gov (United States)

    Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning

    2018-06-01

    GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.

  19. Wavelength tuning of InAs quantum dots grown on InP (100) by chemical-beam epitaxy

    International Nuclear Information System (INIS)

    Gong, Q.; Noetzel, R.; Veldhoven, P.J. van; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    We report on an effective way to continuously tune the emission wavelength of InAs quantum dots (QDs) grown on InP (100) by chemical-beam epitaxy. The InAs QD layer is embedded in a GaInAsP layer lattice matched to InP. With an ultrathin GaAs layer inserted between the InAs QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated surface In layer floating on the GaInAsP buffer layer

  20. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  1. InGaAs/InP, quantum wells and quantum wires grown by vapor levitation epitaxy using chloride transport

    International Nuclear Information System (INIS)

    Cox, H.M.; Morais, P.C.; Hwang, D.M.; Bastos, P.; Gmitter, T.J.; Nazar, L.; Worlock, J.M.; Yablonovitch, E.; Hummel, S.G.

    1988-09-01

    A variety of InGaAs/InP quantum structures have been grown by vapor levitation epitaxy (VLE) and investigated by low temperature photoluminescence (PL). Excellent long-range uniformity of QW peak positions across a two-inch diameter wafer is achieved. Monolayer thickness variations in single QW's are used to establish an essentially unambiguous correlation of QW thickness with energy upshift for ultra-thin quantum wells. PL evidence is presented of the growth, for the first time by any technique, of an InGaAs/InP QW of single monolayer thickness (2.93 (angstrom)). Quantum wires were fabricated entirely by VLE as thin as one monolayer and estimated to be three unit cells wide. (author) [pt

  2. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  3. Far-infrared phonon spectroscopy of Pb1-xMn xTe layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Romcevic, N.; Nadolny, A.J.; Romcevic, M.; Story, T.; Taliashvili, B.; Milutinovic, A.; Trajic, J.; Lusakowska, E.; Vasiljevic-Radovic, D.; Domukhovski, V.; Osinniy, V.; Hadzic, B.; Dziawa, P.

    2007-01-01

    In this paper we used far-infrared spectroscopy, reflection high energy electron diffraction (RHEED), X-ray diffraction and atomic force microscopy (AFM) to investigate structural and optical properties of Pb 1-x Mn x Te layers grown by molecular beam epitaxy (MBE). A numerical model for calculating the reflectivity coefficient for complex systems which include films, buffer layer and substrate has been applied. The infrared reflectivity spectra consist of Pb 1-x Mn x Te phonons, which exhibit intermediate one-two mode behavior, and MnTe phonons. A good agreement between calculated and experimental spectra is achieved. We registered the local distribution of Mn impurities depending on substrate type. For films growth on BaF 2 substrate we registered the orthorhombic local structure of MnTe clusters, while in the case of KCl substrate this structure is cubic. The Pb 1-x Mn x Te long wavelength optical phonons were described by the modified Genzel's model

  4. 1.142 mu m GaAsBi/GaAs Quantum Well Lasers Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Wu, Xiaoyan; Pan, Wenwu; Zhang, Zhenpu

    2017-01-01

    in GaAsBi0.058/GaAs quantum well LDs grown by molecular beam epitaxy. The output power is up to 127 mW at 300 K under pulsed mode. We also demonstrate continuous wave mode operation up to 273 K for the first time. The temperature coefficient of the GaAsBi/GaAs LD is 0.26 nm/K in the temperature range......As a promising new class of near-infrared light emitters, GaAsBi laser diodes (LDs) are considered to have a high energy efficiency and an insensitive temperature dependence of the band gap. In this paper, we realize the longest ever reported lasing wavelength up to 1.142 mu m at room temperature...

  5. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-03-01

    Full Text Available Vanadium dioxide (VO2 thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF-plasma assisted oxide molecular beam epitaxy (O-MBE. The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD, atomic force microscopy (AFM, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS analyses. An excellent reversible metal-to-insulator transition (MIT characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows.

  6. Characterization of as-grown and heavily irradiated GaN epitaxial structures by photoconductivity and photoluminescence

    International Nuclear Information System (INIS)

    Gaubas, E.; Jurs e-dot nas, S.; Tomasiunas, R.; Vaitkus, J.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.

    2005-01-01

    The influence of radiation defects on photoconductivity transients and photoluminescence (PL) spectra have been examined in semi-insulating GaN epitaxial layers grown on bulk n-GaN/sapphire substrates. Defects induced by 10-keV X-ray irradiation with a dose of 600Mrad and 100-keV neutrons with fluences of 5x10 14 and 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the radiation defect density. A simultaneous decrease with radiation-induced defect density is also observed in the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime, which is due to excess carrier multi-trapping. The decay can be described by the stretched exponential approximation exp[-(t/τ) α ] with different values of α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The value of the fracton dimension d s of the disordered structure, evaluated as d s =2α/(1-α), changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, implying percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiation

  7. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  8. Investigation of AgInS2 thin films grown by coevaporation

    Science.gov (United States)

    Arredondo, C. A.; Clavijo, J.; Gordillo, G.

    2009-05-01

    AgInS2 thin films were grown on soda-lime glass substrates by co-evaporation of the precursors in a two-step process. X-ray diffraction (XRD) measurements indicated that these compounds grow in different phases and with different crystalline structure depending upon the deposition conditions. However, through a parameter study, conditions were found to grow thin films containing only the AgInS2 phase with chalcopyrite type structure. In samples containing a mixture of several phases, the contribution in percentage terms of each phase to the whole compound was estimated with the help of the PowderCell simulation package. It was also found that the AgInS2 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.95 eV, indicating that this compound has good properties to perform as absorbent layer in thin film tandem solar cells. The effect of the deposition conditions on the optical and morphological properties was also investigated through spectral transmitance and atomic force microscopy (AFM) measurements.

  9. Investigation of AgInS{sub 2} thin films grown by coevaporation

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, C A; Gordillo, G [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); J, Clavijo, E-mail: caarredondoo@unal.edu.c, E-mail: ggordillog@unal.edu.c [Departamento de Quimica, Universidad Nacional de Colombia, Bogota, Cr.30 N0 45-03 (Colombia)

    2009-05-01

    AgInS{sub 2} thin films were grown on soda-lime glass substrates by co-evaporation of the precursors in a two-step process. X-ray diffraction (XRD) measurements indicated that these compounds grow in different phases and with different crystalline structure depending upon the deposition conditions. However, through a parameter study, conditions were found to grow thin films containing only the AgInS{sub 2} phase with chalcopyrite type structure. In samples containing a mixture of several phases, the contribution in percentage terms of each phase to the whole compound was estimated with the help of the PowderCell simulation package. It was also found that the AgInS{sub 2} films present p-type conductivity, a high absorption coefficient (greater than 10{sub 4} cm{sub -1}) and an energy band gap Eg of about 1.95 eV, indicating that this compound has good properties to perform as absorbent layer in thin film tandem solar cells. The effect of the deposition conditions on the optical and morphological properties was also investigated through spectral transmitance and atomic force microscopy (AFM) measurements.

  10. Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism.

    Science.gov (United States)

    Zheng, Yulin; Wang, Wenliang; Li, Xiaochan; Li, Yuan; Huang, Liegen; Li, Guoqiang

    2017-08-16

    The polarity of GaN epitaxial films grown on LiGaO 2 (001) substrates by pulsed laser deposition has been well controlled. It is experimentally proved that the GaN epitaxial films grown on nitrided LiGaO 2 (001) substrates reveal Ga-polarity, while the GaN epitaxial films grown on non-nitrided LiGaO 2 (001) substrates show N-polarity. The growth mechanisms for these two cases are systematically studied by first-principles calculations based on density functional theory. Theoretical calculation presents that the adsorption of a Ga atom preferentially occurs at the center of three N atoms stacked on the nitrided LiGaO 2 (001) substrates, which leads to the formation of Ga-polarity GaN. Whereas the adsorption of a Ga atom preferentially deposits at the top of a N atom stacked on the non-nitrided LiGaO 2 (001) substrates, which results in the formation of N-polarity GaN. This work of controlling the polarity of GaN epitaxial films is of paramount importance for the fabrication of group-III nitride devices for various applications.

  11. Spectroscopic ellipsometry analysis of GaAs1-xNx layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ben Sedrine, N.; Rihani, J.; Stehle, J.L.; Harmand, J.C.; Chtourou, R.

    2008-01-01

    In this work, we present the effect of nitrogen incorporation on the dielectric function of GaAsN samples, grown by molecular beam epitaxy (MBE) followed by a rapid thermal annealing (for 90 s at 680 deg. C). The GaAs 1-x N x samples with N content up to 1.5% (x = 0.0%, 0.1%, 0.5%, 1.5%), are investigated using room temperature spectroscopic ellipsometry (SE). The optical transitions in the spectral region around 3 eV are analyzed by fitting analytical critical point line shapes to the second derivative of the dielectric function. It was found that the features associated with E 1 and E 1 + Δ 1 transitions are blue-shifted and become less sharp with increasing nitrogen incorporation, in contrast to the case of E 0 transition energy in GaAs 1-x N x . An increase of the split-off Δ 1 energy with nitrogen content was also obtained, in agreement to results found with MOVPE GaAs 1-x N x grown samples

  12. Abnormal optical behaviour of InAsSb quantum dots grown on GaAs substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Rihani, J.; Ben Sedrine, N.; Sallet, V.; Harmand, J.C.; Oueslati, M.; Chtourou, R.

    2008-01-01

    InAs(Sb) quantum dots (QDs) samples were grown on GaAs (001) substrate by Molecular Beam Epitaxy (MBE). The structural characterization by Atomic Force Microscopy (AFM) of samples shows that InAsSb islands size increases strongly with antimony incorporation in InAs/GaAs QDs and decreases with reducing the growth temperature from 520 deg. C to 490 deg. C. Abnormal optical behaviour was observed in room temperature (RT) photoluminescence (PL) spectra of samples grown at high temperature (520 deg. C). Temperature dependent PL study was investigated and reveals an anomalous evolution of emission peak energy (EPE) of InAsSb islands, well-known as 'S-inverted curve' and attributed to the release of confined carriers from the InAsSb QDs ground states to the InAsSb wetting layer (WL) states. With only decreasing the growth temperature, the S-inverted shape was suppressed indicating a fulfilled 3D-confinement of carriers in the InAsSb/GaAs QD sample

  13. Unusual photoluminescence properties of vertically aligned InN nanorods grown by plasma-assisted molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Shen, C.H.; Chen, H.Y.; Lin, H.W.; Wu, C.Y.; Gwo, S.; Klochikhin, A.A.; Davydov, V.Yu.

    2007-01-01

    We report the unusual photoluminescence (PL) properties of vertically aligned InN nanorod arrays grown on Si(111) with a Si 3 N 4 buffer layer. The optimum growth conditions of InN nanorods are obtained by controlling the III/V ratio and the growth temperature. Structural characterization by X-ray diffraction and scanning electron microscopy indicates that individual nanorods are wurtzite InN single crystals with the growth direction along the c-axis. Near-infrared PL from InN nanorods is clearly observed at room temperature. However, in comparison to the PL from InN epitaxial films, the PL from InN nanorods is significantly lower in efficiency and exhibit anomalous temperature dependence. We propose that these unusual PL properties are results of considerable structural disorder (especially for the low-temperature grown InN nanorods) and strong surface electron accumulation effect. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Raman scattering and Rutherford backscattering studies on InN films grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Yee Ling; Peng Xingyu; Liao, Ying Chieh; Yao Shude; Chen, Li Chyong; Chen, Kuei Hsien; Feng, Zhe Chuan

    2011-01-01

    A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A 1 and E 1 plus E 2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 x 10 20 cm -3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.

  15. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    Science.gov (United States)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  16. Highly c-axis oriented growth of GaN film on sapphire (0001 by laser molecular beam epitaxy using HVPE grown GaN bulk target

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2013-09-01

    Full Text Available Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001 substrates by laser molecular beam epitaxy (LMBE were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM, micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS. The x-ray rocking curve full width at a half maximum (FWHM value for (0002 reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002 plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  17. A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, K. L.; Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-12-28

    GaAs growth by hydride vapor phase epitaxy (HVPE) has regained interest as a potential route to low cost, high efficiency thin film photovoltaics. In order to attain the highest efficiencies, deep level defect incorporation in these materials must be understood and controlled. The arsenic anti-site defect, As{sub Ga} or EL2, is the predominant deep level defect in HVPE-grown GaAs. In the present study, the relationships between HVPE growth conditions and incorporation of EL2 in GaAs epilayers were determined. Epitaxial n-GaAs layers were grown under a wide range of deposition temperatures (T{sub D}) and gallium chloride partial pressures (P{sub GaCl}), and the EL2 concentration, [EL2], was determined by deep level transient spectroscopy. [EL2] agreed with equilibrium thermodynamic predictions in layers grown under conditions in which the growth rate, R{sub G}, was controlled by conditions near thermodynamic equilibrium. [EL2] fell below equilibrium levels when R{sub G} was controlled by surface kinetic processes, with the disparity increasing as R{sub G} decreased. The surface chemical composition during growth was determined to have a strong influence on EL2 incorporation. Under thermodynamically limited growth conditions, e.g., high T{sub D} and/or low P{sub GaCl}, the surface vacancy concentration was high and the bulk crystal was close to equilibrium with the vapor phase. Under kinetically limited growth conditions, e.g., low T{sub D} and/or high P{sub GaCl}, the surface attained a high GaCl coverage, blocking As adsorption. This competitive adsorption process reduced the growth rate and also limited the amount of arsenic that incorporated as As{sub Ga}. A defect incorporation model which accounted for the surface concentration of arsenic as a function of the growth conditions, was developed. This model was used to identify optimal growth parameters for the growth of thin films for photovoltaics, conditions in which a high growth rate and low [EL2] could be

  18. Reduction of buffer layer conduction near plasma-assisted molecular-beam epitaxy grown GaN/AlN interfaces by beryllium doping

    International Nuclear Information System (INIS)

    Storm, D.F.; Katzer, D.S.; Binari, S.C.; Glaser, E.R.; Shanabrook, B.V.; Roussos, J.A.

    2002-01-01

    Beryllium doping of epitaxial GaN layers is used to reduce leakage currents through interfacial or buffer conducting layers grown by plasma-assisted molecular-beam epitaxy on SiC. Capacitance-voltage measurements of Schottky barrier test structures and dc pinch-off characteristics of unintentionally doped GaN high-electron-mobility transistors indicate that these leakage currents are localized near the GaN/AlN interface of our AlGaN/GaN/AlN device structures. Insertion of a 2000 Aa Be:GaN layer at the interface reduces these currents by three orders of magnitude

  19. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    Science.gov (United States)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  20. CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy

    Science.gov (United States)

    Sharma, S.; Hildebrandt, E.; Major, M.; Komissinskiy, P.; Radulov, I.; Alff, L.

    2018-04-01

    Buffer-free, highly textured (0 0 1) oriented CeCo5 thin films showing perpendicular magnetic anisotropy were synthesized on (0 0 1) Al2O3 substrates by molecular beam epitaxy. Ce exists in a mixture of Ce3+ and Ce4+ valence states as shown by X-ray photoelectron spectroscopy. The first anisotropy constant, K1, as measured by torque magnetometry was 0.82 MJ/m3 (8.2 ×106erg /cm3) . A maximum coercivity of 5.16 kOe with a negative temperature coefficient of -0.304%K-1 and a magnetization of 527.30 emu/cm3 was measured perpendicular to the film plane at 5 K. In addition, a large anisotropy of the magnetic moment of 15.5% was observed. These magnetic parameters make CeCo5 a potential candidate material for spintronic and magnetic recording applications.

  1. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  2. InAs film grown on Si(111) by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Caroff, P; Jeppsson, M; Mandl, B; Wernersson, L-E; Wheeler, D; Seabaugh, A; Keplinger, M; Stangl, J; Bauer, G

    2008-01-01

    We report the successful growth of high quality InAs films directly on Si(111) by Metal Organic Vapor Phase Epitaxy. A nearly mirror-like and uniform InAs film is obtained at 580 0 C for a thickness of 2 μm. We measured a high value of the electron mobility of 5100 cm 2 /Vs at room temperature. The growth is performed using a standard two-step procedure. The influence of the nucleation layer, group V flow rate, and layer thickness on the electrical and morphological properties of the InAs film have been investigated. We present results of our studies by Atomic Force Microscopy, Scanning Electron Microscopy, electrical Hall/van der Pauw and structural X-Ray Diffraction characterization

  3. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  4. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-01-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results

  5. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  6. As-free pnictide LaNi{sub 1-x}Sb{sub 2} thin films grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2012-07-01

    We use reactive molecular beam epitaxy (RMBE) as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaNi{sub 1-x}Sb{sub 2} were grown on (100)MgO substrates from elemental sources by simultaneous evaporation of high purity La, Ni and Sb metals by e-gun. The LaNi{sub 1-x}Sb{sub 2} thin films grow epitaxially and are (00l) oriented with high crystalline quality, as evident from RHEED and X-Ray diffraction studies. The Ni deficient LaNi{sub 1-x}Sb{sub 2} thin films show metallic behavior with a room temperature resistivity of 110 {mu}{Omega} cm, while the stoichiometric compound is a semiconductor/insulator. The isostructural compound with Bi as pnictide shows a superconducting transition with a T{sub C}(0) of 3.1 K.

  7. Superconducting thin films of As-free pnictide LaPd{sub 1-x}Sb{sub 2} grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2013-07-01

    We use reactive molecular beam epitaxy as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaPd{sub 1-x}Sb{sub 2} were grown on (100) MgO substrates from elemental sources by simultaneous evaporation of high purity La, Pd and Sb metals by e-gun. LaPd{sub 1-x}Sb{sub 2} belongs to a novel class of pnictide superconductors with a peculiar pnictide square net layer. Previously, we have reported epitaxial growth of isostructural Bi based compounds. The substitution of Bi by Sb leads to thin films with metallic behavior and room temperature resistivity of about 85 μΩ cm. The highest observed transition temperature T{sub c} inLaPd{sub 1-x}Sb{sub 2} is 3.1 K and does not depend on x. We discuss strategies to increase T{sub c} in this pnictide subfamily.

  8. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    Science.gov (United States)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  9. Structural characterization of AgGaTe{sub 2} layers grown on a- and c-sapphire substrates by a closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya; Usui, Ayaka [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2014-07-15

    AgGaTe{sub 2} layers were grown on a- and c-plane sapphire substrates by a closed space sublimation method with varying the source temperature. Grown films were evaluated by θ -2θ and pole figure measurements of X-ray diffraction. AgGaTe{sub 2} layers were grown to have strong preference for the (103) orientation. However, it was cleared the Ag{sub 5}Te{sub 3} was formed along with the AgGaTe{sub 2} when the layer was grown on c-plane sapphire. The orientation of the film was analyzed by using the pole figure, and resulted in AgGaTe{sub 2} without Ag{sub 5}Te{sub 3} layers could be grown on a-plane sapphire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  11. Spectral properties of hydrothermally-grown Nd:LuAG, Yb:LuAG, and Yb:Lu{sub 2}O{sub 3} laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David C., E-mail: DBrown@snakecreeklasers.com [Snake Creek Lasers LLC, Friendsville, PA 18818 (United States); McMillen, Colin D.; Moore, Cheryl; Kolis, Joseph W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634-0973 (United States); Envid, Victoria [Snake Creek Lasers LLC, Friendsville, PA 18818 (United States)

    2014-04-15

    We have investigated the hydrothermal growth of, and spectrally characterized, the lutetium based laser materials Nd:LuAG, Yb:LuAG, and Yb:Lu{sub 2}O{sub 3}. Absorption cross-section data are presented for Nd:LuAG at 83, 175, and 295 K. Absorption cross-section data was also obtained for Yb:LuAG at 83, 175, and 295 K; the 295 K data was used to generate emission cross-sections using the method of reciprocity. For Yb:Lu{sub 2}O{sub 3}, we present absorption cross-sections at 295 K as well as emission cross-sections derived using reciprocity. -- Highlights: • We present spectral properties for hydrothermally-grown laser crystals. • Absorption cross-section data are presented for Nd:LuAG and Yb:LuAG at 83, 175, and 295 K. • Emission cross-sections are presented for Yb:LuAG at 295 K derived by reciprocity. • We present absorption cross-sections at 295 K as well as emission cross-sections derived using reciprocity for the laser material Yb:Lu{sub 2}O{sub 3}.

  12. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    Science.gov (United States)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  13. Effects of swift heavy ion irradiation on La0.5Pr0.2Sr0.3MnO3 epitaxial thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Markna, J.H.; Parmar, R.N.; Rana, D.S.; Ravi Kumar; Misra, P.; Kukreja, L.M.; Kuberkar, D.G.; Malik, S.K.

    2007-01-01

    We report the observation of room temperature insulator to metal transition and magnetoresistance characteristics of Swift Heavy Ions (SHIs) irradiated La 0.5 Pr 0.2 Sr 0.3 MnO 3 (LPSMO) epitaxial thin films grown on single crystal (1 0 0) SrTiO 3 substrates using Pulsed Laser Deposition. The epitaxial nature and crystallanity of the films was confirmed from the structural and magnetoresistance characteristics. Irradiation with the 200 MeV Ag 15+ ions at a fluence of about 5 x 10 11 ions/cm 2 showed suppression in the resistivity by ∼68% and 31% for the films with 50 nm and 100 nm thickness respectively. The possible reasons for this suppression could be either release of strain in the films in the dead layer at the interface of film-substrate or Swift Heavy Ions induced annealing which in turn affects the Mn-O-Mn bond angle thereby favoring the Zener double exchange. Field Coefficient of Resistance (FCR) values for both films, determined from R-H data and magnetoresistance data, showed a marginal enhancement after irradiation

  14. Surface photovoltage and photoluminescence study of thick Ga(In)AsN layers grown by liquid-phase epitaxy

    International Nuclear Information System (INIS)

    Donchev, V; Milanova, M; Lemieux, J; Shtinkov, N; Ivanov, I G

    2016-01-01

    We present an experimental and theoretical study of Ga(In)AsN layers with a thickness of around 1 μm grown by liquid-phase epitaxy (LPE) on n-type GaAs substrates. The samples are studied by surface photovoltage (SPV) spectroscopy and by photoluminescence spectroscopy. Theoretical calculations of the electronic structure and the spectral dependence of the dielectric function are carried out for different nitrogen concentrations using a full-band tight-binding approach in the sp 3 d 5 s*s N parameterisation. The SPV spectra measured at room temperature clearly show a red shift of the absorption edge with respect to the absorption of the GaAs substrate. This shift, combined with the results of the theoretical calculations, allows assessing the nitrogen concentration in different samples. The latter increases with increasing the In content. The analysis of the SPV phase spectra provides information about the alignment of the energy bands across the structures. The photoluminescence measurements performed at 2 K show a red shift of the emission energy with respect to GaAs, in agreement with the SPV results. (paper)

  15. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-01-01

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10 16 cm −3 to 6 × 10 17 cm −3 . Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10 17 cm −3 is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission

  16. Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Sung-Yong; Jin, Niu; Rice, Anthony T.; Berger, Paul R.; Yu, Ronghua; Fang, Z-Q.; Thompson, Phillip E.

    2003-01-01

    Deep-level transient spectroscopy measurements were performed in order to investigate the effects of substrate growth temperature and dopant species on deep levels in Si layers during low-temperature molecular beam epitaxial growth. The structures studied were n + -p junctions using B doping for the p layer and p + -n junctions using P doping for the n layer. While the density of hole traps H1 (0.38-0.41 eV) in the B-doped p layers showed a clear increase with decreasing growth temperature from 600 to 370 degree sign C, the electron trap density was relatively constant. Interestingly, the minority carrier electron traps E1 (0.42-0.45 eV) and E2 (0.257 eV), found in the B-doped p layers, are similar to the majority carrier electron traps E11 (0.48 eV) and E22 (0.269 eV) observed in P-doped n layers grown at 600 degree sign C. It is hypothesized that these dominating electron traps are associated with pure divacancy defects and are independent of the dopant species

  17. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Y. J. Ma

    2017-07-01

    Full Text Available We report structural properties as well as electrical and optical behaviors of beryllium (Be-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm−3, and for Be densities below 9.5×1017 cm−3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm−3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  18. Vertical transport in isotype InAlN/GaN dipole induced diodes grown by molecular beam epitaxy

    Science.gov (United States)

    Fireman, M. N.; Li, Haoran; Keller, Stacia; Mishra, Umesh K.; Speck, James S.

    2017-05-01

    InAlN dipole diodes were developed and fabricated on both (0001) Ga-Face and (" separators="| 000 1 ¯) N-face oriented GaN on sapphire templates by molecular beam epitaxy. The orientation and direction of the InAlN polarization dipole are functions of the substrate orientation and composition, respectively. Special consideration was taken to minimize growth differences and impurity uptake during growth on these orientations of opposite polarity. Comparison of devices on similarly grown structures with In compositions in excess of 50% reveals that dipole diodes shows poorer forward bias performance and exhibited an increase in reverse bias leakage, regardless of orientation. Similarly, (0001) Ga-face oriented InAlN at a lowered 40% In composition had poor device characteristics, namely, the absence of expected exponential turn on in forward bias. By contrast, at In compositions close to 40%, (" separators="| 000 1 ¯) N-face oriented InAlN devices had excellent performance, with over five orders of magnitude of rectification and extracted barrier heights of 0.53- 0.62 eV; these values are in close agreement with simulation. Extracted ideality factors ranging from 1.08 to 1.38 on these devices are further evidence of their optimal performance. Further discussion focuses on the growth and orientation conditions that may lead to this discrepancy yet emphasizes that with proper design and growth strategy, the rectifying dipole diodes can be achieved with InAlN nitride dipole layers.

  19. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    Science.gov (United States)

    Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.

    2017-07-01

    We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  20. Properties of MIS structures based on graded-gap HgCdTe grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadookh, S. M.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Sidorov, Yu. G.; Vasiliev, V. V.

    2008-01-01

    The effect of near-surface graded-gap layers on the electrical characteristics of MIS structures fabricated based on heteroepitaxial Hg 1-x Cd x Te films grown by molecular beam epitaxy with a two-layer SiO 2 /Si 3 N 4 insulator and anodic oxide film is studied experimentally. It is shown that a larger modulation of capacitance (depth and width of the valley) is observed compared with the structures without the graded-gap layer. The field dependences of photovoltage of MIS structures with the graded-gap layers had a classical form and were characterized by a drop only in the enrichment region. For the structures without the graded-gap layer with x = 0.22, a drop in the voltage dependence of the photocurrent is observed in the region of pronounced inversion. This drop is governed by limitation of the space charge region by processes of tunneling generation via deep levels. The properties of the HgCdTe-insulator interfaces are studied.

  1. Structural and optical properties of GaxIn1-xP layers grown by chemical beam epitaxy

    Science.gov (United States)

    Seong, Tae-Yeon; Yang, Jung-Ja; Ryu, Mee Yi; Song, Jong-In; Yu, Phil W.

    1998-05-01

    Chemical beam epitaxial (CBE) GaxIn1-xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{-1+δ,1-δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of 1/2\\{bar 110\\} , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (˜45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.

  2. Ellipsometry of rough CdTe(211)B-Ge(211) surfaces grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Badano, Giacomo; Ballet, Philippe; Zanatta, Jean-Paul; Baudry, Xavier; Million, Alain; Garland, James W.

    2006-01-01

    The effect of surface roughness on the ellipsometric response of semiconductor surfaces is investigated. CdTe(211)B layers were grown on Ge(211) by molecular beam epitaxy using less than optimal growth conditions to enhance the formation of surface roughness. Their optical properties, measured by rotating-compensator ellipsometry, showed small but significant sample-to-sample differences not explainable in terms of nanometer-scale roughness. A critical-point analysis established that the critical-point structure of the dielectric function was the same for all samples. This result suggested that the observed sample-to-sample variations were due to macroscopic roughness, which scatters off-specular light into the detector, thereby causing errors. We introduced tentative corrections for off-specular reflection that fitted the observed differences and thus supported the idea that off-specular reflection was responsible for the observed differences. These results were obtained using CdTe but are easily extensible to other rough opaque materials

  3. Comparative study of polar and semipolar (112¯2) InGaN layers grown by metalorganic vapour phase epitaxy

    International Nuclear Information System (INIS)

    Dinh, Duc V.; Zubialevich, V. Z.; Oehler, F.; Kappers, M. J.; Humphreys, C. J.; Alam, S. N.; Parbrook, P. J.; Caliebe, M.; Scholtz, F.

    2014-01-01

    InGaN layers were grown simultaneously on (112 ¯ 2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (≥750 °C), the indium content ( ¯ 2) and (0001) InGaN layers was similar. However, for temperatures less than 750 °C, the indium content of the (112 ¯ 2) InGaN layers (15%–26%) were generally lower than those with (0001) orientation (15%–32%). The compositional deviation was attributed to the different strain relaxations between the (112 ¯ 2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112 ¯ 2) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112 ¯ 2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ≈(50–60) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

  4. Above-bandgap optical properties of biaxially strained GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Richard D’Costa, Vijay, E-mail: elevrd@nus.edu.sg; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Soon Tok, Eng [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-01-13

    The complex dielectric function of biaxially strained Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.17) alloys grown on Ge (100) has been determined by spectroscopic ellipsometry from 1.2 to 4.7 eV. The effect of substitutional Sn incorporation and the epitaxial strain on the energy transitions E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}′, and E{sub 2} of GeSn alloys is investigated. Our results indicate that the strained GeSn alloys show Ge-like electronic bandstructure with all the transitions shifted downward due to the alloying of Sn. The strain dependence of E{sub 1} and E{sub 1} + Δ{sub 1} transitions is explained using the deformation potential theory, and values of −5.4 ± 0.4 eV and 3.8 ± 0.5 eV are obtained for the hydrostatic and shear deformation potentials, respectively.

  5. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

    Science.gov (United States)

    Li, Lixia; Pan, Dong; Yu, Xuezhe; So, Hyok; Zhao, Jianhua

    2017-10-01

    Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from [111] to . The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs. Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156).

  6. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  7. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.

    2017-01-01

    The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/VHEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.

  8. Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-assisted molecular-beam epitaxy using a ZnS epitaxial buffer layer

    International Nuclear Information System (INIS)

    Onuma, T.; Chichibu, S.F.; Uedono, A.; Yoo, Y.-Z.; Chikyow, T.; Sota, T.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    Nonradiative photoluminescence (PL) lifetime (τ nr ) and point defect density in the (0001) ZnO epilayer grown on (111) Si substrates by laser-assisted molecular-beam epitaxy (L-MBE) using a (0001) ZnS epitaxial buffer layer were compared with those in the ZnO films on (111) and (001) Si substrates prepared by direct transformation of ZnS epilayers on Si by thermal oxidation [Yoo et al., Appl. Phys. Lett. 78, 616 (2001)]. Both the ZnO films exhibited excitonic reflectance anomalies and corresponding PL peaks at low temperature, and the density or size of vacancy-type point defects (Zn vacancies), which were measured by the monoenergetic positron annihilation measurement, in the L-MBE epilayer was lower than that in the films prepared by the oxidation transformation. The ZnO epilayer grown on a (0001) ZnS epitaxial buffer on (111) Si exhibited longer τ nr of 105 ps at room temperature

  9. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    Science.gov (United States)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  10. Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition

    Directory of Open Access Journals (Sweden)

    Emanuele Cavaliere

    2017-12-01

    Full Text Available Nanocomposite systems and nanoparticle (NP films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs films and of Ag NPs/TiO2 porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO2 (Ag/Ti 50-50 nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE. We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO2 NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.

  11. Raman scattering from epitaxial HfN layers grown on MgO(001)

    International Nuclear Information System (INIS)

    Stoehr, M.; Seo, H.-S.; Petrov, I.; Greene, J.E.

    2006-01-01

    Stoichiometric single-crystal HfN layers grown on MgO(001) are analyzed by Raman spectroscopy. Second-order Raman scattering predominates, but first-order modes in the acoustic and optical ranges are also visible. The latter indicates that the O h symmetry of NaCl-structure HfN is broken. The large mass difference between Hf and N leads to a correspondingly large separation, 250 cm -1 , between the first-order acoustic and optical bands. Within this gap, four Raman lines are clearly observed. The first three are the second-order transverse acoustic mode (240 cm -1 ), the sum of the first-order transverse and longitudinal acoustic modes (280 cm -1 ), and the second-order longitudinal acoustic mode (325 cm -1 ). The fourth line at 380 cm -1 is identified as the difference between the first-order optical and acoustic modes. The observed first-order Raman scattering, as well as the width of the gap between the first-order acoustic and optical modes, is in good agreement with previously calculated HfN phonon density of states

  12. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  13. Crystal structure and properties of tetragonal EuAg4In8 grown by metal flux technique

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C.

    2015-01-01

    The compound EuAg 4 In 8 has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg 4 In 8 crystallizes in the CeMn 4 Al 8 structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg 4 In 8 is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg 4 In 8 was measured in the temperature range 2–300 K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg 4 In 8 is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg 4 In 8 has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg 4 In 8 phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg 4 In 8 . • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior

  14. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    Science.gov (United States)

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  15. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.

    Science.gov (United States)

    Bru-Chevallier, C; El Akra, A; Pelloux-Gervais, D; Dumont, H; Canut, B; Chauvin, N; Regreny, P; Gendry, M; Patriarche, G; Jancu, J M; Even, J; Noe, P; Calvo, V; Salem, B

    2011-10-01

    The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate. Confinement effects of the Si/SiO2 quantum well are expected to heighten the indirect silicon bandgap and then give rise to a type I interface with the InGaAs quantum dots. Band structure and optical properties are modeled within the tight binding approximation: direct energy bandgap is demonstrated in SiO2/Si/InAs/Si/SiO2 heterostructures for very thin Si layers and absorption coefficient is calculated. Thinned SOI substrates are successfully prepared using successive etching process resulting in a 2 nm-thick Si layer on top of silica. Another key point to get light emission from InGaAs quantum dots is to avoid any dislocations or defects in the quantum dots. We investigate the quantum dot size distribution, density and structural quality at different V/III beam equivalent pressure ratios, different growth temperatures and as a function of the amount of deposited material. This study was performed for InGaAs quantum dots grown on Si(001) substrates. The capping of InGaAs quantum dots by a silicon epilayer is performed in order to get efficient photoluminescence emission from quantum dots. Scanning transmission electronic microscopy images are used to study the structural quality of the quantum dots. Dislocation free In50Ga50As QDs are successfully obtained on a (001) silicon substrate. The analysis of QDs capped with silicon by Rutherford Backscattering Spectrometry in a channeling geometry is also presented.

  16. Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD

    International Nuclear Information System (INIS)

    Arslan, Engin; Ozbay, Ekmel; Ozturk, Mustafa K; Ozcelik, Suleyman; Teke, Ali

    2008-01-01

    We report the growth of GaN films on the Si(1 1 1) substrate by metalorganic chemical vapour phase deposition (MOCVD). Different buffer layers were used to investigate their effects on the structural and optical properties of GaN layers. A series of GaN layers were grown on Si(1 1 1) with different buffer layers and buffer thicknesses and were characterized by Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction (XRD) and photoluminescence (PL) measurements. We first discuss the optimization of the LT-AlN/HT-AlN/Si(1 1 1) templates and then the optimization of the graded AlGaN intermediate layers. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.6 μm. The XRD and PL measurements results confirmed that a wurtzite GaN was successfully grown. The resulting GaN film surfaces were flat, mirror-like and crack-free. The mosaic structure in the GaN layers was investigated. With a combination of Williamson-Hall measurements and the fitting of twist angles, it was found that the buffer thickness determines the lateral coherence length, vertical coherence length, as well as the tilt and twist of the mosaic blocks in GaN films. The PL spectra at 8 K show that a strong band edge photoluminescence of GaN on Si (1 1 1) emits light at an energy of 3.449 eV with a full width at half maximum (FWHM) of approximately 16 meV. At room temperature, the peak position and FWHM of this emission become 3.390 eV and 58 meV, respectively. The origin of this peak was attributed to the neutral donor bound exciton. It was found that the optimized total thickness of the AlN and graded AlGaN layers played a very important role in the improvement of quality and in turn reduced the cracks during the growth of GaN/Si(1 1 1) epitaxial layers

  17. Electronic structure of Co islands grown on the {radical}3 x {radical}3-Ag/Ge(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiao-Lan; Chou, Chi-Hao; Lin, Chun-Liang; Tomaszewska, Agnieszka; Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw

    2011-09-30

    By means of room temperature scanning tunneling spectroscopy (RT STS), we have studied the electronic structure of two different Ag/Ge(111) phases as well as Co islands grown on the {radical}3 x {radical}3-Ag/Ge (111) forming either {radical}13 x {radical}13 or 2 x 2 patterns. The spectrum obtained from 4 x 4-Ag/Ge(111) structure shows the existence of a shoulder at 0.7 V which is also present in the electronic structure of the Ge(111)-c2 x 8 and indicates donation of Ge electrons to electronic states of the Ag-driven phase. However, this fact is not supported by the electronic spectrum taken from the {radical}3 x {radical}3-Ag/Ge (111). The complexity of the Co-{radical}13 x {radical}13 islands bonding with the substrate is mirrored by a large number of peaks in their electronic spectra. The spectra obtained from the Co-2 x 2 islands which had grown on the step differ from those taken from Co-2 x 2 islands located along the edge of the terrace by a number of peaks at negative sample bias. This discrepancy is elucidated in terms of dissimilarities of Co-substrate interaction accompanying Co islands growth on different areas of the stepped surface.

  18. Effect of In_xGa_1_−_xAs interlayer on the properties of In_0_._3Ga_0_._7As epitaxial films grown on Si (111) substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gao, Fangliang; Wen, Lei; Zhang, Shuguang; Li, Jingling; Zhang, Xiaona; Li, Guoqiang; Liu, Ying

    2015-01-01

    High-quality In_0_._3Ga_0_._7As films have been epitaxially grown on Si (111) substrate by inserting an In_xGa_1_−_xAs interlayer with various In compositions by molecular beam epitaxy. The effect of In_xGa_1_−_xAs interlayer on the surface morphology and structural properties of In_0_._3Ga_0_._7As films is studied in detail. It reveals that In_0_._3Ga_0_._7As films grown at appropriate In composition in In_xGa_1_−_xAs interlayer exhibit smooth surface with a surface root-mean-square roughness of 1.7 nm; while In_0_._3Ga_0_._7As films grown at different In composition of In_xGa_1_−_xAs interlayer show poorer properties. This work demonstrates a simple but effective method to grow high-quality In_0_._3Ga_0_._7As epilayers on Si substrates, and brings up a broad prospect for the application of InGaAs-based optoelectronic devices on Si substrates. - Highlights: • We provide a simple approach to achieve high-quality In_0_._3Ga_0_._7As films on Si. • An In_0_._2_8Ga_0_._7_2As interlayer can release mismatch strain. • High-quality In_0_._3Ga_0_._7As film is grown on Si using 10-nm-thick interlayer. • Smooth surface In_0_._3Ga_0_._7As film is grown on Si using 10-nm-thick interlayer.

  19. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  20. Transport and magnetic properties of Pr1-x Ca x MnO3 epitaxial films grown on LaAlO3 substrates

    International Nuclear Information System (INIS)

    Maniwa, A.; Okano, K.; Ohkubo, I.; Kumigashira, H.; Oshima, M.; Lippmaa, M.; Kawasaki, M.; Koinuma, H.

    2007-01-01

    We have measured physical properties of Pr 1- x Ca x MnO 3 (PCMO) epitaxial thin films with different hole concentrations (x=0.2, 0.3, 0.4, and 0.5) grown on LaAlO 3 (1 0 0) substrates by laser molecular beam epitaxy technique. The temperature dependence of the resistivity shows insulating behavior in all temperature regions and the resistivity itself monotonously decreases as x increases. This insulating nature of PCMO films is similar to that of bulk PCMO crystals. However, we did not find any indication of the resistivity anomaly associated with the onset of charge ordering irrespective of x. These results suggest that the compressive strain strongly suppresses charge-ordered states in PCMO

  1. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  2. High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Bhasker, H. P.; Dhar, S.; Sain, A.; Kesaria, Manoj; Shivaprasad, S. M.

    2012-01-01

    Transport and optical properties of random networks of c-axis oriented wedge-shaped GaN nanowalls grown spontaneously on c-plane sapphire substrates through molecular beam epitaxy are investigated. Our study suggests a one dimensional confinement of carriers at the top edges of these connected nanowalls, which results in a blue shift of the band edge luminescence, a reduction of the exciton-phonon coupling, and an enhancement of the exciton binding energy. Not only that, the yellow luminescence in these samples is found to be completely suppressed even at room temperature. All these changes are highly desirable for the enhancement of the luminescence efficiency of the material. More interestingly, the electron mobility through the network is found to be significantly higher than that is typically observed for GaN epitaxial films. This dramatic improvement is attributed to the transport of electrons through the edge states formed at the top edges of the nanowalls.

  3. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  4. Electron-diffraction and spectroscopical characterisation of ultrathin ZnS films grown by molecular beam epitaxy on GaP(0 0 1)

    International Nuclear Information System (INIS)

    Zhang, L.; Szargan, R.; Chasse, T.

    2004-01-01

    ZnS films were grown by molecular beam epitaxy employing a single compound effusion cell on GaP(0 0 1) substrate at different temperatures, and characterised by means of low energy electron diffraction, X-ray and ultra-violet photoelectron spectroscopy, angle-resolved ultra-violet photoelectron spectroscopy and X-ray emission spectroscopy. The GaP(0 0 1) substrate exhibits a (4x2) reconstruction after Ar ion sputtering and annealing at 370 deg. C. Crystal quality of the ZnS films depends on both film thickness and growth temperature. Thinner films grown at higher temperatures and thicker films grown at lower temperatures have better crystal quality. The layer-by-layer growth mode of the ZnS films at lower (25, 80 and 100 deg. C) temperatures changes to layer-by-layer-plus-island mode at higher temperatures (120, 150 and 180 deg. C). A chemical reaction takes place and is confined to the interface. The valence band offset of the ZnS-GaP heterojunction was determined to be 0.8±0.1 eV. Sulphur L 2,3 emission spectra of ZnS powder raw material and the epitaxial ZnS films display the same features, regardless of the existence of the Ga-S bonding in the film samples

  5. Epitaxial (100)-oriented Mo/V superlattice grown on MgO(100) by dcMS and HiPIMS

    International Nuclear Information System (INIS)

    Shayestehaminzadeh, S.; Magnusson, R.L.; Gislason, H.P.; Olafsson, S.

    2013-01-01

    Epitaxial (100)-oriented Mo/V superlattices have been grown by High Power Impulse Magnetron Sputtering (HiPIMS) and dc Magnetron Sputtering (dcMS) on single-crystalline MgO(100) substrates at growth temperatures ranging from 30 °C to 600 °C. Superlattice bilayer period of Mo/V around 12/12 monolayers and 15 repeat periods was studied. This study aims to investigate the effect of the HiPIMS process on reducing the growth temperature of Mo/V superlattices using the high energy ionized Mo, V species in the HiPIMS plasma. In one case, the Mo layer was only grown with the HiPIMS process and V layer grown using the dcMS process while in another both layers were grown with the HiPIMS process. The as-deposited films were characterized by X-ray reflection and diffraction techniques. The dcMS process was found to give superior superlattice growth at high growth temperatures while a mixed Mo HiPIMS and V dcMS process gives better result at lower growth temperatures (300 °C). Room temperature growth reveals that neither the mixed Mo HiPIMS and V dcMS process nor the pure HiPIMS for both materials can produce better result compared to the pure dcMS process, which gives a relatively better result. - Highlights: • Epitaxial (100)-oriented Mo/V superlattices have been grown by HiPIMS and dcMS on MgO(100) for various temperatures. • The study was aimed to investigate the effect of ionized HiPIMS process onlowering the growth temperature. • The dcMS process was found to give superior superlattice growth at high growth temperature. • The mixed Mo HiPIMS and V dcMS process gives best result at lower growth temperatures

  6. Structural characterization of zincblende Ga1-xMnxN epilayers grown by molecular beam epitaxy on (001) GaAs substrates

    International Nuclear Information System (INIS)

    Fay, M.W.; Han, Y.; Brown, P.D.; Novikov, S.V.; Edmonds, K.W.; Campion, R.P.; Gallagher, B.L.; Foxon, C.T.

    2005-01-01

    Zincblende p-type Ga 1-x Mn x N epilayers, grown with and without AlN/GaN buffer layers using plasma-assisted molecular beam epitaxy on (001) oriented GaAs substrates, have been investigated using a variety of complementary transmission electron microscopy techniques. The epilayers were found to contain a high anisotropic density of stacking faults and microtwins. MnAs inclusions were identified at the Ga 1-x Mn x N/(001)GaAs interface extending into the substrate. The use of AlN/GaN buffer layers was found to inhibit the formation of these inclusions

  7. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    Science.gov (United States)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

  8. Temperature dependence of optical transitions in Al xGa1-xAs/GaAs quantum well structures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Caballero-Rosas, A.; Mejia-Garcia, C.; Contreras-Puente, G.; Lopez-Lopez, M.

    2005-01-01

    Quantum well (QW) structures of Al x Ga 1-x As/GaAs were characterized by photoluminescence technique as a function of the temperature between 10 and 300 K. The structures were grown on a 500 nm thick GaAs buffer layer with Molecular Beam Epitaxy technique. We have studied the properties of in-situ Cl 2 -etched GaAs surfaces and overgrown QW structures as a function of the etching temperature (70 and 200 deg. C). Several models were used to fit the experimental points. Best fit to experimental points was obtained with the Paessler model

  9. Characterization by Raman scattering, x-ray diffraction, and transmission electron microscopy of (AlAs)m(InAs)m short period superlattices grown by migration enhanced epitaxy

    DEFF Research Database (Denmark)

    Bradshaw, J.; Song, X.J.; Shealy, J.R.

    1992-01-01

    We report growth of (InAs)1(AlAs)1 and (InAs)2(AlAs)2 strained layer superlattices by migration enhanced epitaxy. The samples were grown on InP (001) substrates and characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. Satellite peaks in the x-ray data...... confirm the intended periodicity and indicate the presence of some disorder in the monolayer sample. The energies of the zone folded and quantum confined optic phonons are in reasonable agreement with calculations based on one-dimensional elastic continuum and linear chain models. Journal of Applied...

  10. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M.R. Philip

    2017-06-01

    Full Text Available We report on the achievement of high efficiency green, yellow, and red InGaN/AlGaN dot-in-a-wire nanowire light-emitting diodes grown on Si(111 by molecular beam epitaxy. The peak emission wavelengths were altered by varying the growth conditions, including the substrate temperature, and In/Ga flux ratio. The devices demonstrate relatively high (>40% internal quantum efficiency at room temperature, relative to that measured at 5 K. Moreover, negligible blue-shift in peak emission spectrum associated with no efficiency droop was measured when injection current was driven up to 556 A/cm2.

  11. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    Science.gov (United States)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  12. Luminescence of Y2O2S-Eu3+ and Ln2O2S-Tb3+ films grown by the method of photostimulated epitaxy

    International Nuclear Information System (INIS)

    Maksimovskij, S.N.; Sidorov, P.P.; Sluch, M.I.

    1990-01-01

    Study of luminescence of Y 2 O 2 S-Eu 3+ (1) and La 2 O 2 S-Tb 3+ (2) films, grown from vapor phase by photostimulated epitaxy method is carried out. Spectroscopic analysis data showed that films(1) spectra contain narrow lines, relating to C 3V symmetry centre, and wider lines, relating to C S symmetry centre. Films(2) possess intensive luminescence in green spectral region, but luminescence lines are wider due to higher number of defects. As to production of film luminescent screens the method is shown to be promising

  13. Double-heterostructure PbSnTe lasers grown by molecular-beam epitaxy with cw operation up to 114 K

    International Nuclear Information System (INIS)

    Walpole, J.N.; Calawa, A.R.; Harman, T.C.; Groves, S.H.

    1976-01-01

    Double-heterostructure Pb/sub 1-x/Sn/sub x/Te lasers with active regions of Pb 0 . 782 Sn 0 . 218 Te have been grown by molecular-beam epitaxy which operate cw up to heat-sink temperatures of 114 0 K. Temperature tuning of the emission from 15.9 to 8.54 μm wavelength is obtained, with emission at 77 0 K near 11.5 μm. The current-voltage characteristics show an abrupt change in slope at threshold, indicating high incremental internal quantum efficiency

  14. InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Yeh, N.-T.; Liu, W.-S.; Chen, S.-H.; Chiu, P.-C.; Chyi, J.-I.

    2002-01-01

    This letter presents the lasing properties of InAs/GaAs quantum dot lasers with InGaP cladding layers grown by solid-source molecular-beam epitaxy. These Al-free lasers exhibit a threshold current density of 138 A/cm 2 , an internal loss of 1.35 cm -1 , and an internal quantum efficiency of 31% at room temperature. At a low temperature, a very high characteristic temperature of 425 K and very low threshold current density of 30 A/cm 2 are measured

  15. Stimulated emission at 2.8 μm from Hg-based quantum well structures grown by photoassisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Giles, N.C.; Yang, Z.; Han, J.W.; Cook, J.W. Jr.; Schetzina, J.F.

    1990-01-01

    We report the first observation of stimulated emission from Hg-based quantum well structures in which the active region is a HgCdTe superlattice. The laser structures were grown on (100) CdZnTe substrates by photoassisted molecular beam epitaxy. Cleaved laser cavities were optically pumped using the 1.06 μm output from a continuous wave Nd:YAG laser. Stimulated emission cavity modes were seen at cw laser power densities as low as 3.4 kW/cm 2 and at temperatures ≥60 K

  16. Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Singha, R.K. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Manna, S.; Bar, R.; Das, S. [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India)

    2017-06-15

    Highlights: We have elaborately explained the individual Ge QD charging phenomena and current transport, which is very important to understand the Ge/Si nano devices. This paper will give a flavor to properly understand these phenomena linked together along with the photocurrent mechanism which is related to the Ge/Si valence band offset. • Both the CAFM and KPFM techniques point out the functionality of doping nature of the underneath Si substrate on the aforementioned characteristics of Ge QDs. • Analysis of the surface potential mapping using KPFM technique yields an approximate valence band offset measurement which is required to understand the intra-valence transition of holes for the realization of long wavelength infrared photodetector. • KPFM and CAFM can be utilized to explore the charging/discharging phenomena of dots and their composition variations. • Current-voltage (I–V) characteristics of the individual Ge QD strongly depends on the individual QD size. • Energy band diagrams for diamond tip and Ge QD shows the higher barrier for electrons and lower barrier for holes allowing the easy tunneling for holes to dominate the transport. - Abstract: It is fundamentally important to understand the nanoscale electronic properties of a single quantum dot (QD) contrary to an ensemble of QDs. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are two important tools, which could be employed to probe surface potential, charging phenomena, and current transport mechanism of individual QD. We demonstrate the aforementioned characteristics of self-assembled Ge QDs, which was grown on Si substrates by solid source molecular beam epitaxy driven by the Stranski-Krastanov method. Study reveals that each Ge QD acts as charge storage node even at zero applied bias. The shape, size and density of QDs could be well probed by CAFM and KPFM, whereas QD facets could be better resolved by the conductive tip. The CAFM investigation

  17. Characteristics of the epitaxy of InGaN-based light-emitting diodes grown by nanoscale epitaxial lateral overgrowth using a nitrided titanium buffer layer

    International Nuclear Information System (INIS)

    Shieh, Chen-Yu; Li, Zhen-Yu; Chang, Jenq-Yang; Chi, Gou-Chung

    2015-01-01

    In this work, a buffer layer of nitrided titanium (Ti) achieved through the nitridation of a Ti metal layer on a sapphire substrate was used for the epitaxial growth of InGaN-based light-emitting diodes (LEDs) achieved by low pressure metal-organic chemical vapor deposition. The effect of in-situ Ti metal nitridation on the performance of these InGaN-based LEDs was then investigated. It was very clear that the use of the nitrided Ti buffer layer (NTBL) induced the formation of a nanoscale epitaxial lateral overgrowth layer during the epitaxial growth. When evaluated by Raman spectroscopy, this epi-layer exhibited large in-plane compressive stress releasing with a Raman shift value of 567.9 cm -1 . Cathodoluminescence spectroscopy and transmission electron microscopy results indicated that the InGaN-based LEDs with an NTBL have improved crystal quality, with a low threading dislocations density being yielded via the strain relaxation in the InGaN-based LEDs. Based on the results mentioned above, the electroluminescence results indicate that the light performance of InGaN-based LEDs with an NTBL can be enhanced by 45% and 42% at 20 mA and 100 mA, respectively. These results suggest that the strain relaxation and quality improvement in the GaN epilayer could be responsible for the enhancement of emission power. - Highlights: • The crystal-quality of InGaN-based LEDs with NTBL by NELOG was improved. • The InGaN-based LEDs with NTBL have strain releases by NELOG. • The optical properties of InGaN-based LEDs were shown by CL and EL measurements

  18. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  19. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-01-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12 nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2 eV, which corresponds to a 3.2 eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior

  20. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    Science.gov (United States)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  1. Formation and reconstruction of Se nanoislands at the surface of thin epitaxial ZnSe layers grown on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovskiy, V. I.; Krivobok, V. S., E-mail: krivobok@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kuznetsov, P. I.; Nikolaev, S. N.; Onistchenko, E. E.; Pruchkina, A. A.; Temiryazev, A. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radio-Engineering and Electronics (Russian Federation)

    2016-05-15

    Strained epitaxial ZnSe layers are grown on GaAs substrates by the method of vapor-phase epitaxy from metal-organic compounds. It is found that Se nanoislands with a density of 10{sup 8} to 10{sup 9} cm{sup –2} are formed at the surface of such layers. It is established that an increase in the size of Se islands and a decrease in their density take place after completion of growth. Annealing in a H{sub 2} atmosphere at a temperature higher than 260°C leads to the disappearance of Se islands and to a decrease in the surface roughness. It is shown that annealing does not lead to deterioration of the structural perfection of the epitaxial ZnSe films; rather, annealing gives rise to a decrease in the intensity of impurity–defect luminescence and to an increase in the intensity of intrinsic radiation near the bottom of the exciton band.

  2. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.; Alves, E.; Roqan, Iman S.; O’ Donnell, K. P.; Nishikawa, A.; Fujiwara, Y.; Boćkowski, M.

    2010-01-01

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  3. Improvement of electrical property of Si-doped GaN grown on r-plane sapphire by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, K.; Furuzuki, T.; Ohkawa, K.

    2006-01-01

    Electrical property of Si-doped GaN layers grown on r-plane sapphire substrates by atmospheric metalorganic vapor-phase epitaxy was investigated. The electron mobility was drastically improved when GaN was grown by means of optimized combinations of growth temperature and low-temperature GaN buffer thickness. The highest room-temperature mobility of 220cm 2 /Vs was recorded at the carrier density of 1.1x10 18 cm -3 . Temperature dependence of electrical property revealed that the peak mobility of 234cm 2 /Vs was obtained at 249K. From the slope of carrier density as a function of inverse temperature, the activation energy of Si-donors was evaluated to be 11meV

  4. Characterization of GaN quantum discs embedded in AlxGa1-xN nanocolumns grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ristic, J.; Calleja, E.; Sanchez-Garcia, M.A.; Ulloa, J.M.; Sanchez-Paramo, J.; Calleja, J.M.; Jahn, U.; Trampert, A.; Ploog, K.H.

    2003-01-01

    GaN quantum discs embedded in AlGaN nanocolumns with outstanding crystal quality and very high luminescence efficiency were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy under highly N-rich conditions. Nanocolumns with diameters in the range of 30-150 nm, with no traces of any extended defects, as confirmed by transmission electron microscopy, were obtained. GaN quantum discs, 2 and 4 nm thick, were grown embedded in AlGaN nanocolumns by switching on and off the Al flux during variable time spans. Strong optical emissions from GaN quantum discs, observed by photoluminescence and cathodoluminescence measurements, reveal quantum confinement effects. While Raman data indicate that the nanocolumns are fully relaxed, the quantum discs appear to be fully strained. These nanostructures have a high potential for application in efficient vertical cavity emitters

  5. Passivation effect on optical and electrical properties of molecular beam epitaxy-grown HgCdTe/CdTe/Si layers

    Science.gov (United States)

    Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.

    2006-06-01

    The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.

  6. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.

    2010-09-16

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  7. Surfactant effects of indium on cracking in AlN/GaN distributed Bragg reflectors grown via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Miller, C. M.; Korakakis, D.

    2011-01-01

    Aluminum Nitride (AlN) and Gallium Nitride (GaN) superlattice structures are often characterized by a network of cracks resulting from the large lattice mismatch and difference in thermal expansion coefficients, especially as the thickness of the layers increases. This work investigates the influence of indium as a surfactant on strain and cracking in AlN/GaN DBRs grown via Metal Organic Vapor Phase Epitaxy (MOVPE). DBRs with peak reflectivities ranging from 465 nm to 540 nm were grown and indium was introduced during the growth of the AlN layer. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and reduced the total crack length in these structures by a factor of two.

  8. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    Science.gov (United States)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  9. Characterization of low Al content Al{sub x}Ga{sub 1-x}N epitaxial films grown by atmospheric-pressure MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Toure, A.; Halidou, I.; Benzarti, Z.; Bchetnia, A.; El Jani, B. [Faculte des Sciences, Unite de Recherche sur les Hetero-Epitaxies et Applications, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, Unite de Service Commun de Recherche ' ' High Resolution X-ray Diffractometer' ' , 5019 Monastir (Tunisia)

    2012-05-15

    Al{sub x}Ga{sub 1-x}N epitaxial films grown on GaN/sapphire by atmospheric-pressure metalorganic vapor phase epitaxy (AP-MOVPE) using trimethylgallium (TMG) and trimethylaluminum (TMA) as group III precursors have been studied. Two groups of samples were grown. The aluminum (Al) solid composition of Al{sub x}Ga{sub 1-x}N was varied in the range from 0.03 to 0.20 by changing the molar flow ratio [TMA/(TMA + TMG)]. The effect of TMA flow rate, respectively, TMG flow rate, on the growth rate, and Al solid composition is discussed. The structural properties of the alloys have been investigated by high-resolution X-ray diffraction (HRXRD). The optical properties of these samples were investigated by photoluminescence (PL). It is found that on increasing Al solid composition, via an increase of the TMA flow rate, the structural quality is deteriorated and the growth efficiency decreases. On the other hand, when the TMG flow rate is reduced, a decrease of the full width at half-maximum (FWHM) is observed with Al content. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The Study of Al0.29Ga0.71N-BASED Schottky Photodiodes Grown on Silicon by Plasma-Assisted Molecular Beam Epitaxy

    Science.gov (United States)

    Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Hassan, H. Abu; Abdullah, M. J.; Mohammad, N. N.; Ahmad, M. A.; Yusof, Y.

    2013-05-01

    In this paper, the growth and characterization of epitaxial Al0.29Ga0.71N grown on Si(111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. PL spectrum of sample has shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing that it is comparable in crystal quality of the sample when compared with previous reports. From the Raman measurement of as-grown Al0.29Ga0.71N layer on GaN/AlN/Si sample. We found that the dominant E2 (high) phonon mode of GaN appears at 572.7 cm-1. The E2 (high) mode of AlN appears at 656.7 cm-1 and deviates from the standard value of 655 cm-1 for unstrained AlN. Finally, AlGaN Schottky photodiode have been fabricated and analyzed by mean of electrical characterization, using current-voltage (I-V) measurement to evaluate the performance of this device.

  11. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  12. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  13. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  14. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; No, Young Soo; Kim, Su Youn; Cho, Woon Jo; Kwack, Kae Dal; Kim, Tae Whan

    2011-01-01

    Research highlights: The CuAlO 2 /Ag/CuAlO 2 multilayer films were grown on glass substrates using radio-frequency magnetron sputtering at room temperature. Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. The morphology Ag films with a thickness of 8 nm was uniform. The morphology of the Ag films inserted in the CuAlO 2 films significantly affected the optical transmittance and the resistivity of the CuAlO 2 films deposited on glass substrates. The maximum transmittance of the CuAlO 2 /Ag/CuAlO 2 multilayer films with a thickness of 8 nm was 89.16%. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films with an Ag film thickness of 18 nm was as small as about 2.8 x 10 -5 Ω cm. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films was decreased as a result of the thermal annealing treatment. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as TCO films in solar cells. - Abstract: Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. The resistivity of the 40 nm-CuAlO 2 /18 nm-Ag/40 nm-CuAlO 2 multilayer films was 2.8 x 10 -5 Ω cm, and the transmittance of the multilayer films with an Ag film thickness of 8 nm was approximately 89.16%. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as

  15. Interface manipulation in GaxIn1-xAs/InP multiple layer structures grown by chemical beam epitaxy

    NARCIS (Netherlands)

    Rongen, R.T.H.; van Rijswijk, A.J.C.; Leijs, M.R.; Es, van C.M.; Vonk, H.; Wolter, J.H.

    1997-01-01

    In this study the control of interfacial layers in nanometre thin heterostructures is demonstrated by variation of the growth interruption sequence (GIS) at the binary - ternary interfaces. All samples have been prepared by chemical beam epitaxy simultaneously growing the structures on exact (100)

  16. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    International Nuclear Information System (INIS)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe 50 Co 50 alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal

  17. Water Splitting over Epitaxially Grown InGaN Nanowires on-Metallic Titanium/Silicon Template: Reduced Interfacial Transfer Resistance and Improved Stability

    KAUST Repository

    Ebaid, Mohamed

    2018-03-09

    Water splitting using InGaN-based photocatalysts may have a great contribution in future renewable energy production systems. Among the most important parameters to solve are those related to substrate lattice-matching compatibility. Here, we directly grow InGaN nanowires (NWs) on a metallic Ti/Si template, for improving water splitting performance compared to a bare Si substrate. The open circuit potential of the epitaxially grown InGaN NWs on metallic Ti was almost two times that of those grown on Si substrate. The interfacial transfer resistance was also reduced significantly after introducing the metallic Ti interlayer. An applied-bias-photon-to-current conversion efficiency of 2.2% and almost unity Faradic efficiency for hydrogen generation were achieved using this approach. The InGaN NWs grown on Ti showed improved stability of hydrogen generation under continuous operation conditions, when compared to those grown on Si, emphasizing the role of the semiconductor-on-metal approach in enhancing the overall efficiency of water splitting catalysts.

  18. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    Science.gov (United States)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  19. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics

    CERN Document Server

    Xu, X; Moretti, F; Pauwels, K; Lecoq, P; Auffray, E; Dujardin, C

    2014-01-01

    Under a stationary stable regime undoped and Ce-doped LuAG (Lu3Al5O12) single-crystal fibers were grown by a micro-pulling-down technique. The meniscus length corresponding to the equilibrium state was <200 mu m. Fluctuations in the fiber composition and pulling rate were found to have a significant effect on the properties of the fibers grown. A great improvement in the performance was found in samples containing low Ce concentrations (<= 0.1 at.\\%) and produced using pulling rates <0.5 mm min(-1). Under such conditions a good lateral surface fiber quality was obtained and light propagation was significantly improved. Conversely, a high Ce concentration and a high pulling rate resulted in a strong degradation of the fiber surface quality causing defects to appear and a decrease in light output. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.kundu@saha.ac.in; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 70064 (India)

    2016-05-23

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  1. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy.

    Science.gov (United States)

    Tong, C Z; Yoon, S F

    2008-09-10

    We have directly imaged the formation of a GaAs quantum ring (QR) using droplet epitaxy followed by annealing in arsenic ambient. Based on the atomic force micrograph measurement and the analysis of surface energy, we determine that the formation of self-assembled GaAs QRs is due to the gallium atom's diffusion and crystallization driven by the gradient of surface energy. The phenomenon that GaAs is etched by the gallium droplets is reported and analyzed. It has been demonstrated that the epitaxy layers, such as AlAs and InGaP, can be used as the etching stop layer and hence can be used to control the shape and height of the QRs.

  2. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    SmCo 5 (0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al 2 O 3 (0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo 5 crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo 5 epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo 5 (0001) single-crystal thin film is successfully obtained. Nucleation of SmCo 5 crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo 5 layer

  3. Epitaxial condition and polarity in GaN grown on a HfN-buffered Si(111) wafer

    Science.gov (United States)

    Xu, X.; Armitage, R.; Shinkai, Satoko; Sasaki, Katsutaka; Kisielowski, C.; Weber, E. R.

    2005-05-01

    Single-crystal GaN thin films have been deposited epitaxially on a HfN-buffered Si(111) substrates by molecular-beam epitaxy. The microstructural and compositional characteristics of the films were studied in detail by transmission electron microscopy (TEMs). Cross-sectional TEM investigations have revealed the crystallographic orientation relationship in different GaN /HfN/Si layers. GaN film polarity is studied by conventional TEM and convergent beam electron diffraction simulations, and the results show that the GaN film has a Ga polarity with relatively high density of inversion domains. Based on our observations, growth mechanisms related to the structural properties are discussed.

  4. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    Science.gov (United States)

    Ganz, P. R.; Schaadt, D. M.

    2011-12-01

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  5. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang; Li, Guoqiang

    2014-01-01

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In x Ga 1−x As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In x Ga 1−x As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In x Ga 1−x As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In x Ga 1−x As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In x Ga 1−x As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In x Ga 1−x As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates

  6. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M. Agrawal

    2017-01-01

    Full Text Available The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V∼1and GaN is grown under N-rich growth regime (III/V<1. The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1 and metal rich growth regime (III/V≥1, respectively. AlGaN/GaN high electron mobility transistor (HEMT heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm−2.

  7. XRD analysis of strained Ge-SiGe heterostructures on relaxed SiGe graded buffers grown by hybrid epitaxy on Si(0 0 1) substrates

    International Nuclear Information System (INIS)

    Franco, N.; Barradas, N.P.; Alves, E.; Vallera, A.M.; Morris, R.J.H.; Mironov, O.A.; Parker, E.H.C.

    2005-01-01

    Ge/Si 1-x Ge x inverted modulation doped heterostructures with Ge channel thickness of 16 and 20 nm were grown by a method of hybrid epitaxy followed by ex situ annealing at 650 deg. C for p-HMOS application. The thicker layers of the virtual substrate (6000 nm graded SiGe up to x = 0.6 and 1000 nm uniform composition with x = 0.6) were produced by ultrahigh vacuum chemical vapor deposition (UHV-CVD) while the thinner, Si(2 nm)-SiGe(20 nm)-Ge-SiGe(15 nm + 5 nm B-doped + 20 nm) active layers were grown by low temperature solid-source (LT-SS) MBE at T = 350 deg. C. As-grown and annealed samples were measured by X-ray diffraction (XRD). Reciprocal space maps (RSMs) allowed us to determine non-destructively the precise composition (∼1%) and strain of the Ge channel, along with similar information regarding the other layers that made up the whole structure. Layer thickness was determined with complementary high-resolution Rutherford backscattering (RBS) experiments

  8. Impact of substrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Armstrong, A.; Poblenz, C.; Green, D.S.; Mishra, U.K.; Speck, J.S.; Ringel, S.A.

    2006-01-01

    The electrical conductivity and deep level spectrum of GaN grown by molecular beam epitaxy and codoped with carbon and silicon were investigated for substrate temperatures T s of 650 and 720 deg. C as a function relative carbon and silicon doping levels. With sufficiently high carbon doping, semi-insulating behavior was observed for films grown at both temperatures, and growth at T s =720 deg. C enhanced the carbon compensation ratio. Similar carbon-related band gap states were observed via deep level optical spectroscopy for films grown at both substrate temperatures. Due to the semi-insulating nature of the films, a lighted capacitance-voltage technique was required to determine individual deep level concentrations. Carbon-related band gap states underwent substantial redistribution between deep level and shallow acceptor configurations with change in T s . In light of a T s dependence for the preferential site of carbon incorporation, a model of semi-insulating behavior in terms of carbon impurity state incorporation mediated by substrate temperature is proposed

  9. Structural, Optical, and Electrical Characterization of β-Ga2O3 Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy Suitable for UV Sensing

    Directory of Open Access Journals (Sweden)

    Abraham Arias

    2018-01-01

    Full Text Available β-Ga2O3 thin films were grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The films were grown using an elemental gallium source and oxygen supplied by an RF plasma source. Reflection high-energy electron diffraction (RHEED was used to monitor the surface quality in real time. Both in situ RHEED and ex situ X-ray diffraction confirmed the formation of single crystal β-phase films with excellent crystallinity on c-plane sapphire. Spectroscopic ellipsometry was used to determine the film thicknesses, giving values in the 11.6–18.8 nm range and the refractive index dispersion curves. UV-Vis transmittance measurements revealed that strong absorption of β-Ga2O3 starts at ∼270 nm. Top metal contacts were deposited by thermal evaporation for I-V characterization, which has been carried out in dark, as well as under visible and UV light illumination. The optical and electrical measurements showed that the grown thin films of β-Ga2O3 are excellent candidates for deep-ultraviolet detection and sensing.

  10. Morphological and microstructural stability of N-polar InAlN thin films grown on free-standing GaN substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hardy, Matthew T.; Storm, David F.; Downey, Brian P.; Katzer, D. Scott; Meyer, David J.; McConkie, Thomas O.; Smith, David J.; Nepal, Neeraj

    2016-01-01

    The sensitivity of the surface morphology and microstructure of N-polar-oriented InAlN to variations in composition, temperature, and layer thickness for thin films grown by plasma-assisted molecular beam epitaxy (PAMBE) has been investigated. Lateral compositional inhomogeneity is present in N-rich InAlN films grown at low temperature, and phase segregation is exacerbated with increasing InN fraction. A smooth, step-flow surface morphology and elimination of compositional inhomogeneity can be achieved at a growth temperature 50 °C above the onset of In evaporation (650 °C). A GaN/AlN/GaN/200-nm InAlN heterostructure had a sheet charge density of 1.7 × 10 13  cm −2 and no degradation in mobility (1760 cm 2 /V s) relative to 15-nm-thick InAlN layers. Demonstration of thick-barrier high-electron-mobility transistors with good direct-current characteristics shows that device quality, thick InAlN layers can be successfully grown by PAMBE

  11. Morphological and microstructural stability of N-polar InAlN thin films grown on free-standing GaN substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Matthew T., E-mail: matthew.hardy.ctr@nrl.navy.mil; Storm, David F.; Downey, Brian P.; Katzer, D. Scott; Meyer, David J. [Electronics Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington DC 20375 (United States); McConkie, Thomas O.; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Nepal, Neeraj [Sotera Defense Solutions, 2200 Defense Hwy Suite 405, Crofton, Maryland 21114 (United States)

    2016-03-15

    The sensitivity of the surface morphology and microstructure of N-polar-oriented InAlN to variations in composition, temperature, and layer thickness for thin films grown by plasma-assisted molecular beam epitaxy (PAMBE) has been investigated. Lateral compositional inhomogeneity is present in N-rich InAlN films grown at low temperature, and phase segregation is exacerbated with increasing InN fraction. A smooth, step-flow surface morphology and elimination of compositional inhomogeneity can be achieved at a growth temperature 50 °C above the onset of In evaporation (650 °C). A GaN/AlN/GaN/200-nm InAlN heterostructure had a sheet charge density of 1.7 × 10{sup 13 }cm{sup −2} and no degradation in mobility (1760 cm{sup 2}/V s) relative to 15-nm-thick InAlN layers. Demonstration of thick-barrier high-electron-mobility transistors with good direct-current characteristics shows that device quality, thick InAlN layers can be successfully grown by PAMBE.

  12. X-ray characterization of CdO thin films grown on a-, c-, r- and m-plane sapphire by metalorganic vapour phase-epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Perez, J.; Martinez-Tomas, C.; Munoz-Sanjose, V. [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, C/Dr. Moliner 50, 46100 Burjassot (Spain)

    2005-02-01

    CdO thin films have been grown on a-plane (11 anti 20), c-plane (0001), r-plane (01 anti 12) and m-plane (10 anti 10) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including {theta}-2{theta} scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the presence or absence of extended defects. The rocking curves indicate that high quality thin films, in terms of tilt and twist, can be obtained on r-, c- and m-plane sapphire, while further improvement is needed over the a-orientation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. X-ray characterization of CdO thin films grown on a-, c-, r- and m-plane sapphire by metalorganic vapour phase-epitaxy

    International Nuclear Information System (INIS)

    Zuniga-Perez, J.; Martinez-Tomas, C.; Munoz-Sanjose, V.

    2005-01-01

    CdO thin films have been grown on a-plane (11 anti 20), c-plane (0001), r-plane (01 anti 12) and m-plane (10 anti 10) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including θ-2θ scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the presence or absence of extended defects. The rocking curves indicate that high quality thin films, in terms of tilt and twist, can be obtained on r-, c- and m-plane sapphire, while further improvement is needed over the a-orientation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Yuan, Chi-Tsu; Shen, Ji-Lin

    2014-01-01

    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400

  15. Luminescence properties of Si-capped β-FeSi{sub 2} nanodots epitaxially grown on Si(001) and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amari, Shogo; Ichikawa, Masakazu [Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2014-02-28

    We studied the luminescence properties of Si-capped β-FeSi{sub 2} nanodots (NDs) epitaxially grown on Si substrates by using photoluminescence (PL) and electroluminescence (EL) spectroscopies. Codepositing Fe and Si on ultrathin SiO{sub 2} films induced the self-assembly of epitaxial β-FeSi{sub 2} NDs. The PL spectra of the Si/β-FeSi{sub 2} NDs/Si structure depended on the crystal orientation of the Si substrate. These structures exhibited a broad PL peak near 0.8 eV on both Si(001) and (111) substrates. The PL intensity depended on the shape of the β-FeSi{sub 2} NDs. For the flat NDs, which exhibited higher PL intensity, we also recorded EL spectra. We explained the luminescence properties of these structures by the presence of nanostructured Si offering radiative electronic states in the Si cap layers, generated by nano-stressors for upper Si layer: the strain-relaxed β-FeSi{sub 2} NDs.

  16. Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Skierbiszewski, C.; Wasilewski, Z.R.; Siekacz, M.; Feduniewicz, A.; Perlin, P.; Wisniewski, P.; Borysiuk, J.; Grzegory, I.; Leszczynski, M.; Suski, T.; Porowski, S.

    2005-01-01

    We report on the InGaN multiquantum laser diodes (LDs) made by rf plasma-assisted molecular beam epitaxy (PAMBE). The laser operation at 408 nm is demonstrated at room temperature with pulsed current injections using 50 ns pulses at 0.25% duty cycle. The threshold current density and voltage for the LDs with cleaved uncoated mirrors are 12 kA/cm 2 (900 mA) and 9 V, respectively. High output power of 0.83 W is obtained during pulse operation at 3.6 A and 9.6 V bias with the slope efficiency of 0.35 W/A. The laser structures are deposited on the high-pressure-grown low dislocation bulk GaN substrates taking full advantage of the adlayer enhanced lateral diffusion channel for adatoms below the dynamic metallic cover. Our devices compare very favorably to the early laser diodes fabricated using the metalorganic vapor phase epitaxy technique, providing evidence that the relatively low growth temperatures used in this process pose no intrinsic limitations on the quality of the blue optoelectronic components that can be fabricated using PAMBE

  17. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  18. Some properties of Ga-As-Alsub(x)Gasub(1-x)As heterojunction grown by low temperature liquid phase epitaxy

    International Nuclear Information System (INIS)

    Yu Lisheng; Liu Hongxun; Zhang Bei; Wang Shumin

    1986-03-01

    GaAs-Alsub(x)Gasub(1-x)As heterojunction was grown by liquid phase epitaxy at low growth temperature 650-700 deg. C. The series resistance of heterojunction with DH laser structure was measured. Doping properties of Mg in GaAs and Alsub(x)Gasub(1-x)As were investigated. It is found that impurity concentration of Mg as high as 10 18 cm -3 can be doped easily. The Shubnikov-de-Haas oscillation was observed in GaAs-N Alsub(0.35)Gasub(0.65)As heterointerface. It is demonstrated that in these heterointerfaces there exists 2DEG with some contribution from 3D electron of N-AlGaAs layer. (author)

  19. Properties of epitaxial Ba2YCu3O7-x films on LaAlO3(001) grown using optimized conditions

    International Nuclear Information System (INIS)

    Siegal, M.P.; Phillips, J.M.; van Dover, R.B.; Tiefel, T.H.; Marshall, J.H.; Carlson, D.J.

    1990-01-01

    The superconducting and structural properties of Ba 2 YCu 3 O 7-x (BYCO) films on LaAlO 3 (001) substrates can be improved by carefully optimizing the post-deposition annealing parameters. Films are grown by codeposition of BaF 2 , Y, and Cu in the correct stoichiometric ratio to within 1% of 2:1:3. Compositional deviations greater than ± 1% result in the degradation of film quality. Important annealing parameters include the ambient, annealing temperature, oxidation temperature, and duration of the anneal. Films are characterized for epitaxial quality (χ min ), morphology, critical temperature (T c ), sharpness of the superconducting transition (ΔT), and critical current density (J c ). The optimized films have relatively smooth morphology with χ min c > 90 K, ΔT c > 10 6 A/cm 2 in essentially zero magnetic field at 77 K

  20. AlGaN nanocolumns and AlGaN/GaN/AlGaN nanostructures grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, J.; Sanchez-Garcia, M.A.; Ulloa, J.M.; Calleja, E. [Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Paramo, J.; Calleja, J.M. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Jahn, U.; Trampert, A.; Ploog, K.H. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2002-12-01

    This work reports on the characterization of hexagonal, single crystal AlGaN nanocolumns with diameters in the range of 30 to 100 nm grown by molecular beam epitaxy on Si(111) substrates. The change of the flux ratio between the Al and the total III-element controls the alloy composition. The Al composition trend versus the Al flux is consistent both with the E{sub 2} phonon energy values measured by inelastic light scattering and the luminescence emission peaks position. High quality low dimensional AlGaN/GaN/AlGaN heterostructures with five GaN quantum discs, 2 and 4 nm thick, embedded into the AlGaN columns, were designed in order to study the quantum confinement effects. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  1. STM/STS Measurements of Two-Dimensional Electronic States in Magnetic Fields at Epitaxially Grown InAs(111)A Surfaces

    International Nuclear Information System (INIS)

    Niimi, Y; Kanisawa, K; Kojima, H; Kambara, H; Hirayama, Y; Tarucha, S; Fukuyama, Hiroshi

    2007-01-01

    The local density of states (LDOS) at the epitaxially grown InAs surface on a GaAs substrate was studied at very low temperatures in magnetic fields up to 6 T by scanning tunneling microscopy and spectroscopy. We observed a series of peaks, associated with Landau quantization of the two-dimensional electron system (2DES), in the tunnel spectra just above the subband energy (-80 meV) of the 2DES. The intervals between the peaks are consistent with the estimation from the effective mass of the 2DES at the InAs surface. In a wider energy range, another type of oscillation which was independent of magnetic field was also observed. This oscillation can be explained by the energy dependence of the transmission probability of the tunneling current through the Schottky barrier formed at the interface between the InAs film and GaAs substrate

  2. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.

    2007-01-01

    Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots

  3. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, H. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences of the PL characteristics are explained by the effects of the WL.

  4. Structural and electrical properties of InAs/GaSb superlattices grown by metalorganic vapor phase epitaxy for midwavelength infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arikata, Suguru; Kyono, Takashi [Semiconductor Technologies Laboratory, Sumitomo Electric Industries, LTD., Hyogo (Japan); Miura, Kouhei; Balasekaran, Sundararajan; Inada, Hiroshi; Iguchi, Yasuhiro [Transmission Devices Laboratory, Sumitomo Electric Industries, LTD., Yokohama (Japan); Sakai, Michito [Sensor System Research Group, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Katayama, Haruyoshi [Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan); Akita, Katsushi [Sumiden Semiconductor Materials, LTD., Hyogo (Japan)

    2017-03-15

    InAs/GaSb superlattice (SL) structures were fabricated on GaSb substrates by metalorganic vapor phase epitaxy (MOVPE) toward midwavelength infrared (MWIR) photodiodes. Almost defect-free 200-period SLs with a strain-compensation interfacial layer were successfully fabricated and demonstrate an intense photoluminescence peak centered at 6.1 μm at 4 K and an external quantum efficiency of 31% at 3.5 μm at 20 K. These results indicate that the high-performance MWIR detectors can be fabricated in application with the InAs/GaSb SLs grown by MOVPE as an attractive method for production. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electrical characteristics of thermal CVD B-doped Si films on highly strained Si epitaxially grown on Ge(100) by plasma CVD without substrate heating

    International Nuclear Information System (INIS)

    Sugawara, Katsutoshi; Sakuraba, Masao; Murota, Junichi

    2010-01-01

    Using an 84% relaxed Ge(100) buffer layer formed on Si(100) by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (CVD), influence of strain upon electrical characteristics of B-doped Si film epitaxially grown on the Ge buffer have been investigated. For the thinner B-doped Si film, surface strain amount is larger than that of the thicker film, for example, strain amount reaches 2.0% for the thickness of 2.2 nm. It is found that the hole mobility is enhanced by the introduction of strain to Si, and the maximum enhancement of about 3 is obtained. This value is higher than that of the usually reported mobility enhancement by strain using Si 1 -x Ge x buffer. Therefore, introduction of strain using relaxed Ge film formed by ECR plasma enhanced CVD is useful to improve future Si-based device performance.

  6. Structural, optical, and hydrogenation properties of ZnO nanowall networks grown on a Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Su, S.C.; Lu, Y.M.; Zhang, Z.Z.; Li, B.H.; Shen, D.Z.; Yao, B.; Zhang, J.Y.; Zhao, D.X.; Fan, X.W.

    2008-01-01

    ZnO nanowall networks were grown on a Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (P-MBE) without using catalysts. Scanning electronic microscopy (FE-SEM) confirmed the formation of nanowalls with a thickness of about 10-20 nm. X-ray diffraction (XRD) showed that the ZnO nanowall networks were crystallized in a wurtzite structure with their height parallel to the direction. Photoluminescence (PL) of the ZnO nanowall networks exhibited free excitons (FEs), donor-bound exciton (D 0 X), donor-acceptor pair (DAP), and free exciton to acceptor (FA) emissions. The growth mechanism of the ZnO nanowall networks was discussed, and their hydrogenation was also studied

  7. Highly repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Growden, Tyler A.; Fakhimi, Parastou; Berger, Paul R.; Storm, David F.; Meyer, David J.; Zhang, Weidong; Brown, Elliott R.

    2016-01-01

    AlN/GaN resonant tunneling diodes grown on low dislocation density semi-insulating bulk GaN substrates via plasma-assisted molecular-beam epitaxy are reported. The devices were fabricated using a six mask level, fully isolated process. Stable room temperature negative differential resistance (NDR) was observed across the entire sample. The NDR exhibited no hysteresis, background light sensitivity, or degradation of any kind after more than 1000 continuous up-and-down voltage sweeps. The sample exhibited a ∼90% yield of operational devices which routinely displayed an average peak current density of 2.7 kA/cm 2 and a peak-to-valley current ratio of ≈1.15 across different sizes.

  8. Highly repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Growden, Tyler A.; Fakhimi, Parastou; Berger, Paul R., E-mail: pberger@ieee.org [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Storm, David F.; Meyer, David J. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Zhang, Weidong; Brown, Elliott R. [Departments of Physics and Electrical Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-08-22

    AlN/GaN resonant tunneling diodes grown on low dislocation density semi-insulating bulk GaN substrates via plasma-assisted molecular-beam epitaxy are reported. The devices were fabricated using a six mask level, fully isolated process. Stable room temperature negative differential resistance (NDR) was observed across the entire sample. The NDR exhibited no hysteresis, background light sensitivity, or degradation of any kind after more than 1000 continuous up-and-down voltage sweeps. The sample exhibited a ∼90% yield of operational devices which routinely displayed an average peak current density of 2.7 kA/cm{sup 2} and a peak-to-valley current ratio of ≈1.15 across different sizes.

  9. Structural characterization of GaAs self-assembled quantum dots grown by Droplet Epitaxy on Ge virtual substrates on Si

    International Nuclear Information System (INIS)

    Frigeri, C.; Bietti, S.; Isella, G.; Sanguinetti, S.

    2013-01-01

    The structure of self-assembled quantum dots (QDs) grown by Droplet Epitaxy on Ge virtual substrates has been investigated by TEM. The QDs have a pyramidal shape with base and height of 50 nm. By (0 0 2) dark field TEM it was seen that the pyramid top is Ga poor and Al rich most likely because of the higher mobility of Ga along the pyramid sides down to the base. The investigated QDs contain defects identified as As precipitates by Moirè fringes. The smallest ones (3–5 nm) are coherent with the GaAs lattice suggesting that they could be a cubic phase of As precipitation. It seems to be a metastable phase since the hexagonal phase is recovered as the precipitate size increases above ∼5 nm.

  10. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Daniltsev, V. M.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  11. High-temperature operation of self-assembled GaInNAs/GaAsN quantum-dot lasers grown by solid-source molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yoon, S.F.; Sun, Z.Z.; Yew, K.C.

    2006-01-01

    Self-assembled GaInNAs/GaAsN single layer quantum-dot (QD) lasers grown using solid-source molecular-beam epitaxy have been fabricated and characterized. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm 2 from a GaInNAs QD laser (50x1700 μm 2 ) at 10 deg. C. High-temperature operation up to 65 deg. C was also demonstrated from an unbonded GaInNAs QD laser (50x1060 μm 2 ), with high characteristic temperature of 79.4 K in the temperature range of 10-60 deg. C

  12. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Buriakov, A. M.; Bilyk, V. R.; Mishina, E. D. [Moscow Technological University “MIREA” (Russian Federation); Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Vasil’evskii, I. S. [National Research Nuclear University “MEPhI” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation)

    2017-04-15

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity of the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.

  13. Optical investigation of atomic steps in ultra-thin InGaAs/InP quantum wells grown by vapor levitation epitaxy

    International Nuclear Information System (INIS)

    Morais, P.C.

    1988-09-01

    Ultra-thin InGaAs/InP single-quantum-well structures, grown by chloride transport vapor levitation epitaxy, have been investigated by low temperature photoluminescence (PL). Well resolved peaks are observed in the PL spectra which we attribute to monolayer (a/2=2.93 A) variations in quantum well (QW) thickness. Separate peak positions for QW thicknesses corresponding to 2-6 monolayers have been determined, providing an unambiguous thickness calibration for spectral shifts due to quantum confinement. The PL peak corresponding to two monolayers occurs at 1.314 eV corresponding to an energy shift of 524 meV. Experimental data agree very well with a simple effective-mass theory. (author) [pt

  14. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  15. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  16. Growth kinetics and properties of ZnO/ZnMgO heterostructures grown by radical-source molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.V. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Ioffe Physico-Technical Institute, Polytekhnicheskaya Street 26, 194021 St. Petersburg (Russian Federation); El-Shaer, A.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Shubina, T.V.; Listoshin, S.B. [Ioffe Physico-Technical Institute, Polytekhnicheskaya Street 26, 194021 St. Petersburg (Russian Federation)

    2007-07-01

    A phenomenological approach to quantitative description of Zn(Mg)O growth by radical-source molecular beam epitaxy, based on the experimental studies of RHEED intensity oscillations, has been developed. It allows a precise control of growth rate, composition and stoichiometry at any growth temperature, Along with optimization of a growth initiation procedure on a c-sapphire, it is necessary condition for fabrication of high quality ZnO epilayers and ZnO/ZnMgO heterostructures in a wide Mg composition range. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Molecular Beam Epitaxy-Grown InGaN Nanomushrooms and Nanowires for White Light Source Applications

    KAUST Repository

    Gasim, Anwar A.; Bhattacharya, Pallab K.; Cha, Dong Kyu; Ng, Tien Khee; Ooi, Boon S.

    2012-01-01

    We report the observation of coexisting InGaN nanomushrooms and nanowires grown via MBE. Photoluminescence characterization shows that the nanostructures emit yellow and blue light, respectively. The combined emission is promising for white-LEDs.

  18. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  19. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  20. Oxygen engineering of HfO{sub 2-x} thin films grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU-Darmstadt (Germany); Zaumseil, Peter; Schroeder, Thomas [IHP, Frankfurt, Oder (Germany)

    2010-07-01

    Reactive molecular beam epitaxy (R-MBE) is an ideal tool for tailoring physical properties of thin films to specific needs. For the development of cutting-edge oxides for thin film applications a precise control of oxygen defects is crucial. R-MBE in combination with rf-activated oxygen allows reproducibly growing oxide thin films with precise oxidation conditions enabling oxygen engineering. R-MBE was used to grow Hf and HfO{sub 2{+-}}{sub x} thin films with different oxidation conditions on sapphire single crystal substrates. Structural characterization was carried out using rotating anode x-ray diffraction revealing highly textured to epitaxial thin films on c-cut sapphire. Furthermore, switching of film orientation by varying the oxidation conditions was observed demonstrating the role of oxygen in the growth procedure. The investigation of electrical properties using a four probe measurement setup showed conductivities in the range of 1000 {mu}{omega}cm for oxygen deficient HfO{sub 2-x} thin films. Optical properties were investigated using a photospectrometer and additionally x-ray photoelectron spectroscopy was carried out to study the band gap and valence states. Both techniques were used to monitor the oxygen content in deficient HfO{sub 2-x} thin films. Our results demonstrate the importance of oxygen engineering even in the case of 'simple' oxides.

  1. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: nukaga@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90{sup 0} each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  2. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    International Nuclear Information System (INIS)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 0 C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90 0 each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  3. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  4. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wu, Yuh-Renn [Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan (China)

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimized GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.

  5. The effect of Bi composition on the properties of InP{sub 1−x}Bi{sub x} grown by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Das, T. D., E-mail: tddas@hotmail.com [Department of Electronic Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)

    2014-05-07

    InP{sub 1−x}Bi{sub x} epilayers (x ≥ 1.2%) on InP (001) are grown reproducibly by liquid phase epitaxy with conventional solution baking in a H{sub 2} environment. The Bi composition and surface morphology of the grown layers are studied by secondary ion mass spectroscopy and atomic force microscopy, respectively. High-resolution x-ray diffraction is used to characterize the lattice parameters and the crystalline quality of the layers. 10 K photoluminescence measurements indicate three clearly resolved peaks in undoped InP layers with band-to-band transition at 1.42 eV which is redshifted with Bi incorporation in the layer with a maximum band gap reduction of 50 meV/% Bi. The effect is attributed to the interaction between the valence band edge and Bi-related defect states as is explained here by valence-band anticrossing model. Room temperature Hall measurements indicate that the mobility of the layer is not significantly affected for Bi concentration up to 1.2%.

  6. High Al-content AlxGa1-xN epilayers grown on Si substrate by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hussein, A.SH.; Thahab, S.M.; Hassan, Z.; Chin, C.W.; Abu Hassan, H.; Ng, S.S.

    2009-01-01

    The microstructure and optical properties of Al x Ga 1-x N/GaN/AlN films on Si (1 1 1) substrate grown by plasma-assisted molecular beam epitaxy (MBE) have been studied and investigated. Reflection high energy electron diffraction (RHEED), scanning electron microscopy (SEM), high-resolution X-ray diffraction (HR-XRD), energy dispersive X-ray spectroscopy (EDS) line analysis and photoluminescence (PL) were used to investigate a reconstruction pattern, cross-section, mole fraction and crystalline quality of the heterostructure. By applying the Vegard's law, a high Al-mole fraction of Al x Ga 1-x N sample with value of 0.43 has been obtained and compared with EDS line analysis measurement value. PL spectrum has exhibited a sharp and intense band edge emission of GaN with the absence of yellow emission band, indicating good crystal quality of the Al x Ga 1-x N has been successfully grown on Si substrate.

  7. Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study

    International Nuclear Information System (INIS)

    Chen, R. S.; Tsai, H. Y.; Huang, Y. S.; Chen, Y. T.; Chen, L. C.; Chen, K. H.

    2012-01-01

    The normalized gains, which determines the intrinsic photoconduction (PC) efficiencies, have been defined and compared for the gallium nitride (GaN) nanowires (NWs) grown by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). By excluding the contributions of experimental parameters and under the same light intensity, the CVD-grown GaN NWs exhibit the normalized gain which is near two orders of magnitude higher than that of the MBE-ones. The temperature-dependent time-resolved photocurrent measurement further indicates that the higher photoconduction efficiency in the CVD-GaN NWs is originated from the longer carrier lifetime induced by the higher barrier height (φ B = 160 ± 30 mV) of surface band bending. In addition, the experimentally estimated barrier height at 20 ± 2 mV for the MBE-GaN NWs, which is much lower than the theoretical value, is inferred to be resulted from the lower density of charged surface states on the non-polar side walls.

  8. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    International Nuclear Information System (INIS)

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  9. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  11. Thick Bi2Sr2CaCu2O8+δ films grown by liquid-phase epitaxy for Josephson THz applications

    Science.gov (United States)

    Simsek, Y.; Vlasko-Vlasov, V.; Koshelev, A. E.; Benseman, T.; Hao, Y.; Kesgin, I.; Claus, H.; Pearson, J.; Kwok, W.-K.; Welp, U.

    2018-01-01

    Theoretical and experimental studies of intrinsic Josephson junctions (IJJs) that naturally occur in high-T c superconducting Bi2Sr2CaCu2O8+δ (Bi-2212) have demonstrated their potential for novel types of compact devices for the generation and sensing of electromagnetic radiation in the THz range. Here, we show that the THz-on-a-chip concept may be realized in liquid-phase epitaxial-grown (LPE) thick Bi-2212 films. We have grown μm thick Bi-2212 LPE films on MgO substrates. These films display excellent c-axis alignment and single crystal grains of about 650 × 150 μm2 in size. A branched current-voltage characteristic was clearly observed in c-axis transport, which is a clear signature of underdamped IJJs, and a prerequisite for THz-generation. We discuss LPE growth conditions allowing improvement of the structural quality and superconducting properties of Bi-2212 films for THz applications.

  12. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang; Bü rck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G.; Azucena, Carlos; Wang, Zhengbang; Heiß ler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S.; Wö ll, Christof H.

    2014-01-01

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Static and dynamic magnetic properties of B2 ordered Co2MnAl film epitaxially grown on GaAs

    International Nuclear Information System (INIS)

    Liu, Jihong; Qiao, Shuang

    2015-01-01

    Co 2 MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. However, on the premise of high polarization, the optimization of the magnetic damping constant is directly determined the critical current density for spin torque transfer switching and also the stability of spin polarization for spin injection transfer, thus research on damping constant is also very important. In this paper, we have systematically investigated the magnetic damping constant in Co 2 MnAl film epitaxially grown on GaAs(100) substrate by FMR and TR-MOKE measurements, and found that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. While, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may provide important information for Co 2 MnAl/GaAs heterostructure and its potential application in spintronics. - Graphical abstract: Co 2 MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. In this paper, we have successfully grown the B2-ordered Co 2 MnAl film on GaAs (100) substrate and systematically investigated the magnetic damping constant in Co 2 MnAl film epitaxially grown on GaAs(100) substrate by employing both FMR and TR-MOKE measurements. Our results show that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. However, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may be more useful for Co 2 MnAl/GaAs heterostructure and its possible application in spintronics. - Highlights: • B2 ordered Co 2 MnAl was successfully prepared and studied by LMOKE and ROT-MOKE. • Static magnetic measurements show clear cubic anisotropy with K C of 5.0 × 10 4

  14. Structure and magnetism of ultrathin Co and Fe films epitaxially grown on Pd/Cu(0 0 1)

    International Nuclear Information System (INIS)

    Lu, Y.F.; Przybylski, M.; Yan, L.; Barthel, J.; Meyerheim, H.L.; Kirschner, J.

    2005-01-01

    A contribution originating from the Co/Pd and Fe/Pd interfaces to the magneto-optical Kerr effect (MOKE) rotation is analyzed for Co and/or Fe films grown on a Pd-buffer-monolayer on Cu(0 0 1). A clear increase of the MOKE signal in comparison to the Co(Fe) films grown directly on Cu(0 0 1) is detected. An interpretation is supported by similar observations for Co films grown on Pd(1 1 0) and Pd(0 0 1). In particular, the sign reversal of the Kerr loops with increasing thickness of the Co(Fe) films is discussed. Magneto-optical effects are separated from the real magnetization and its dependence on the film thickness

  15. Transparent SiON/Ag/SiON multilayer passivation grown on a flexible polyethersulfone substrate using a continuous roll-to-roll sputtering system

    Science.gov (United States)

    2012-01-01

    We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400

  16. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    Science.gov (United States)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  17. Z-Contrast STEM Imaging of Long-Range Ordered Structures in Epitaxially Grown CoPt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kazuhisa Sato

    2013-01-01

    Full Text Available We report on atomic structure imaging of epitaxial L10 CoPt nanoparticles using chemically sensitive high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM. Highly ordered nanoparticles formed by annealing at 973 K show single-variant structure with perpendicular c-axis orientation, while multivariant ordered domains are frequently observed for specimens annealed at 873 K. It was found that the (001 facets of the multivariant particles are terminated by Co atoms rather than by Pt, presumably due to the intermediate stage of atomic ordering. Coexistence of single-variant particles and multivariant particles in the same specimen film suggests that the interfacial energy between variant domains be small enough to form such structural domains in a nanoparticle as small as 4 nm in diameter.

  18. Microneedle crystals of cyano-substituted thiophene/phenylene co-oligomer epitaxially grown on KCl surface

    Science.gov (United States)

    Torii, Kazuki; Dokiya, Shohei; Tanaka, Yosuke; Yoshinaga, Shohei; Yanagi, Hisao

    2017-06-01

    A cyno-substituted thiophene/phenylene co-oligomer (TPCO), 5,5‧-bis(4‧-cyanobiphenyl-4-yl)-2,2‧-bithiophene (BP2T-CN), is vapor-deposited on KCl (001) surface kept at 220 °C by the mask-shadowing method. Transmission electron microscopy and fluorescence microscopy reveal that the deposited BP2T-CN crystallizes in two types of morphologies: microneedles and thin film crystallites. In particular, the predominant microneedles epitaxially grow in four directions in the manner that the BP2T-CN molecules align along the [110]KCl or [-110]KCl. X-ray diffraction patterns indicate that the BP2T-CN molecules in the microneedle lie parallel while those in the thin film crystallite obliquely stand on the KCl surface.

  19. Real time spectroscopic ellipsometry investigation of homoepitaxial GaN grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tong-Ho; Choi, Soojeong; Wu, Pae; Brown, April [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Moto, Akihiro [Innovation Core SEI, Inc., 3235 Kifer Road, Santa Clara, CA 95051 (United States)

    2006-06-15

    The growth of GaN by plasma assisted molecular beam epitaxy on GaN template substrates (GaN on sapphire) is investigated with in-situ multi-channel spectroscopic ellipsometry. Growth is performed under various Ga/N flux ratios at growth temperatures in the range 710-780 C. The thermal roughening of the GaN template caused by decomposition of the surface is investigated through the temporal variation of the GaN pseudodielectric function over the temperature range of 650 C to 850 C. The structural, morphological, and optical properties are also discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Substrate Misorientation Effects On (A1,Ga)As And (Al,Ga)As/GaAs Structures Grown By Molecular Beam Epitaxy

    Science.gov (United States)

    Tsui, Raymond K.; Kramer, Gary D.; Curless, J. A.; Peffley, Marilyn S.

    1987-04-01

    (Al,Ga)As layers have rough surface morphologies when deposited under certain growth conditions in molecular beam epitaxy (MBE). This leads to poor interfaces between (A1,Ga)- As and GaAs and degraded performance in heterojunction devices. We have observed that by misorienting the substrate slightly from (100), in a manner specific to the growth conditions, smooth (Al,Ga)As layers 3-4 μm thick can be grown at a rate of ≍ 1 μm/h for various AlAs mole fractions, x. Similar conditions for nominal (100) result in a rough, textured morphology. Experiments were carried out using flat substrates of specific misorientations as well as lens-shaped substrates. The lenticular substrates allowed all orientations within 14° of (100) [i.e., out to (511)] to be evaluated in one growth run. Deposition conditions that were varied included x, substrate temperature, and V/III beam flux ratio. Smooth layers obtained using optimal misorientations showed superior optical characteris-tics as determined from low-temperature photoluminescence (PL) measurements. The 4.2K PL spectra of smooth layers exhibit well-resolved exciton-related peaks, and do not have the deeper-level defect-related peaks observed in the spectra of rough layers. Single quantum well structures with A10.3Ga0.7As barriers and a 100 A-wide GaAs well deposited on mis-oriented substrates also have superior optical properties compared to a structure grown on nominal (100). Such findings may have significant implications for the performance of heterojunction device structures grown by MBE.

  1. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  2. Formation of grown-in defects in molecular beam epitaxial Ga(In)NP: Effects of growth conditions and postgrowth treatments

    International Nuclear Information System (INIS)

    Dagnelund, D.; Buyanova, I. A.; Wang, X. J.; Chen, W. M.; Utsumi, A.; Furukawa, Y.; Wakahara, A.; Yonezu, H.

    2008-01-01

    Effects of growth conditions and post-growth treatments, such as presence of N ions, N 2 flow, growth temperature, In alloying, and postgrowth rapid thermal annealing (RTA), on formation of grown-in defects in Ga(In)NP prepared by molecular beam epitaxy are studied in detail by the optically detected magnetic resonance (ODMR) technique. Several common residual defects, such as two Ga-interstitial defects (i.e., Ga i -A and Ga i -B) and two unidentified defects with a g factor around 2 (denoted by S1 and S2), are closely monitored. Bombardment of impinging N ions on grown sample surface is found to facilitate formation of these defects. Higher N 2 flow is shown to have an even more profound effect than a higher number of ions in introducing these defects. Incorporation of a small amount of In (e.g., 5.1%) in GaNP seems to play a minor role in the formation of the defects. In GaInNP with 45% of In; however, the defects were found to be abundant. Effect of RTA on the defects is found to depend on initial configurations of Ga i -related defects formed during the growth. In the alloys where the Ga i -A and Ga i -B defects are absent in the as-grown samples (i.e., GaNP grown at a low temperature of 460 deg. C), the concentrations of the two Ga i defects are found to increase after postgrowth RTA. This indicates that the defects originally introduced in the as-grown alloys have been transformed into the more thermally stable Ga i -A and Ga i -B during RTA. On the other hand, when the Ga i -A and Ga i -B are readily abundant (e.g., at higher growth temperatures (≥500 deg. C), RTA leads to a slight reduction of the Ga i -A and Ga i -B ODMR signals. The S2 defect is also shown to be thermally stable upon the RTA treatment

  3. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  4. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer

    Science.gov (United States)

    Sato, T.; Ohsuna, T.; Yano, M.; Kato, A.; Kaneko, Y.

    2017-08-01

    To clarify the magnetic properties of the NdFe12Nx compound, which shows promise as a high-performance permanent magnet material, NdFe12Nx epitaxial films fabricated by using a V underlayer on MgO (100) single-crystalline substrates were investigated. Nd-Fe films deposited on a V underlayer consist of NdFe12 grains, which have a c-axis orientation perpendicular to the film plane, as well as α-Fe and Nd2Fe17 phases. In the Nd-Fe-N film obtained by subsequent nitridation of the Nd-Fe film, NdFe12Nx grains grew as the dominant phase, and the volume fractions of α-Fe phases dropped below 5%. A Nd-Fe-N film with a thickness of 50 nm exhibits a saturation magnetization (Ms) of 1.7 T, an anisotropy field (HA) of ˜60 kOe, a magnetocrystalline anisotropy energy (K1) of ˜4.1 MJ/m3, and a coercivity (Hc) of 1.7 kOe. The Hc of a Nd-Fe-N film with a thickness of 25 nm is 4.3 kOe. These results indicate that NdFe12Nx compounds have a superior Ms compared to Nd-Fe-B magnets, while the enhancement in Hc is indispensable.

  5. Vortex pinning landscape in YBa2Cu3O7 films grown by hybrid liquid phase epitaxy

    International Nuclear Information System (INIS)

    Maiorov, B; Kursumovic, A; Stan, L; Zhou, H; Wang, H; Civale, L; Feenstra, R; MacManus-Driscoll, J L

    2007-01-01

    The influence of film thickness and growth rate on the vortex pinning in hybrid liquid phase epitaxy (HLPE) films was explored. Film growth rates as high as 12 nm s -1 (0.7 μm min -1 ) produced high J c films. Weak or no thickness dependence was found in films of thickness ranging from 0.4 to 3 μm. Field and angular measurements of the critical current density (J c ) and the power-law exponent (N) of the current-voltage curves were used to determine the nature of pinning. Films thinner than 0.6 μm showed a higher density of correlated defects parallel to the ab plane than thicker films. Using HLPE, it was possible to achieve very strong pinning in films ∼3 μm thick, yielding critical currents over 300 A cm -1 width at self-field, and as high as 35 A cm -1 width at μ 0 H = 3 T at T = 75.5 K. Decreasing the deposition rate allowed improving the high field performance, opening up the possibility to engineer the pinning landscape of the HLPE films

  6. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on SixGe1-x Nanowires.

    Science.gov (United States)

    Wen, Feng; Tutuc, Emanuel

    2018-01-10

    We report the growth and characterization of epitaxial, coherently strained Si x Ge 1-x -Si core-shell nanowire heterostructure through vapor-liquid-solid growth mechanism for the Si x Ge 1-x core, followed by an in situ ultrahigh-vacuum chemical vapor deposition for the Si shell. Raman spectra acquired from individual nanowire reveal the Si-Si, Si-Ge, and Ge-Ge modes of the Si x Ge 1-x core and the Si-Si mode of the shell. Because of the compressive (tensile) strain induced by lattice mismatch, the core (shell) Raman modes are blue (red) shifted compared to those of unstrained bare Si x Ge 1-x (Si) nanowires, in good agreement with values calculated using continuum elasticity model coupled with lattice dynamic theory. A large tensile strain of up to 2.3% is achieved in the Si shell, which is expected to provide quantum confinement for electrons due to a positive core-to-shell conduction band offset. We demonstrate n-type metal-oxide-semiconductor field-effect transistors using Si x Ge 1-x -Si core-shell nanowires as channel and observe a 40% enhancement of the average electron mobility compared to control devices using Si nanowires due to an increased electron mobility in the tensile-strained Si shell.

  7. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica

    International Nuclear Information System (INIS)

    Qi, J L; Nagashio, K; Nishimura, T; Toriumi, A

    2014-01-01

    Clean, flat and orientation-identified graphene on a substrate is in high demand for graphene electronics. In this study, the hetero-epitaxial graphene growth on Cu(111)/mica(001) by chemical vapor deposition is investigated to check the applicability for top-gate insulator research on graphene, as well as graphene channel research, by transferring graphene on to SiO 2 /Si substrates. After adjusting the graphene growth conditions, the surface roughness of the graphene/Cu/mica substrate and the average smoothed areas are ∼0.34 nm and ∼100 μm 2 , respectively. The orientation of graphene in the graphene/Cu/mica substrate can be identified by the hexagonal void morphology of Cu. Moreover, we demonstrate a relatively high mobility of ∼4500 cm 2 V −1 s −1 in graphene transferred on the SiO 2 /Si substrate. These results suggest that the present graphene/Cu/mica substrate can be used for top-gate insulator research on graphene. (papers)

  8. Microstructure and Magnetic Properties of Fe and Fe-alloy Thin Films Epitaxially Grown on MgO(100) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Katsuki; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: matsubara@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Fe, Fe{sub 50}Co{sub 50}, and Fe{sub 80}Ni{sub 20} (at. %) single-crystal films with the (100){sub bcc} plane parallel to the substrate surface were prepared on MgO(100) single-crystals heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The film growth mechanism, the film structure, and the magnetic properties were investigated. In-situ reflection high energy electron diffraction and X-ray diffraction analyses indicate that the strains in the films are very small though there are fairly large mismatches of -3.7{approx}-4.3% at the film/substrate interface. Cross-sectional high-resolution transmission electron microscopy shows that misfit dislocations are introduced in the film at the interface. Dislocations are also observed in the film up to around 10{approx}20 nm distance from the interface. The presence of such dislocation relieves the strain caused by the lattice mismatch. The in-plane magnetization properties of these films reflect the magnetocrystalline anisotropies of respective bulk Fe, Fe{sub 50}Co{sub 50}, and Fe{sub 80}Ni{sub 20} crystals.

  9. Microstructure and Magnetic Properties of Fe and Fe-alloy Thin Films Epitaxially Grown on MgO(100) Substrates

    International Nuclear Information System (INIS)

    Matsubara, Katsuki; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Fe, Fe 50 Co 50 , and Fe 80 Ni 20 (at. %) single-crystal films with the (100) bcc plane parallel to the substrate surface were prepared on MgO(100) single-crystals heated at 300 0 C by ultra high vacuum molecular beam epitaxy. The film growth mechanism, the film structure, and the magnetic properties were investigated. In-situ reflection high energy electron diffraction and X-ray diffraction analyses indicate that the strains in the films are very small though there are fairly large mismatches of -3.7∼-4.3% at the film/substrate interface. Cross-sectional high-resolution transmission electron microscopy shows that misfit dislocations are introduced in the film at the interface. Dislocations are also observed in the film up to around 10∼20 nm distance from the interface. The presence of such dislocation relieves the strain caused by the lattice mismatch. The in-plane magnetization properties of these films reflect the magnetocrystalline anisotropies of respective bulk Fe, Fe 50 Co 50 , and Fe 80 Ni 20 crystals.

  10. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  11. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    Science.gov (United States)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  12. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stacking...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  13. Structural properties of layers of HgCdTe, grown by the laser epitaxy method on silicon substrates

    International Nuclear Information System (INIS)

    Plyatsko, S.V.; Vergush, M.M.; Litvin, P.M.; Kozirjev, Yu.M.; Shevlyakov, S.A.

    2001-01-01

    Thin films (0.1-1.5 μm) of HgCdTe on substrates Si (100) and Si (111) from monocrystal and pressed sources Hg 1-x Cd x Te (x=0.22) sprayed by laser IR radiation were grown and are investigated. The concentration of macro defects (drops) on the surface of films is determined by the relation of the diameter of a laser beam and depth of the crater, formed by laser irradiation. The size of crystal grains almost does not depend on the temperature of a substrate and power densities of a laser radiation and increases with the thickness of a layer

  14. Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dekoster, J.; Degroote, S.; Meersschaut, J.; Moons, R.; Vantomme, A. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Bottyan, L.; Deak, L.; Szilagyi, E.; Nagy, D.L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Baron, A.Q.R. [European Synchrotron Radiation Facility (France); Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    1999-09-15

    Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Moessbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Moessbauer reflectometry. From the fits of the time spectrum and the resonant {phi}-{phi} scans a model for the sublayer magnetization of the multilayer is deduced.

  15. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique

    Science.gov (United States)

    Kisan Patil, Pallavi; Luna, Esperanza; Matsuda, Teruyoshi; Yamada, Kohki; Kamiya, Keisuke; Ishikawa, Fumitaro; Shimomura, Satoshi

    2017-03-01

    We report a GaAs0.96Bi0.04/GaAs multiple quantum well (MQW) light emitting diode (LED) grown by molecular beam epitaxy using a two-substrate-temperature (TST) technique. In particular, the QWs and the barriers in the intrinsic region were grown at the different temperatures of {T}{{GaAsBi}} = 350 °C and {T}{{GaAs}} = 550 ^\\circ {{C}}, respectively. Investigations of the microstructure using transmission electron microscopy (TEM) reveal homogeneous MQWs free of extended defects. Furthermore, the local determination of the Bi distribution profile across the MQWs region using TEM techniques confirm the uniform Bi distribution, while revealing a slightly chemically graded GaAs-on-GaAsBi interface due to Bi surface segregation. Despite this small broadening, we found that Bi segregation is significantly reduced (up to 18% reduction) compared to previous reports on Bi segregation in GaAsBi/GaAs MQWs. Hence, the TST procedure proves as a very efficient method to reduce Bi segregation and thus increase the quality of the layers and interfaces. These improvements positively reflect in the optical properties. Room temperature photoluminescence and electroluminescence (EL) at 1.23 μm emission wavelength are successfully demonstrated using TST MQWs containing less Bi content than in previous reports. Finally, LED fabricated using the present TST technique show current-voltage (I-V) curves with a forward voltage of 3.3 V at an injection current of 130 mA under 1.0 kA cm-2 current excitation. These results not only demonstrate that TST technique provides optical device quality GaAsBi/GaAs MQWs but highlight the relevance of TST-based growth techniques on the fabrication of future heterostructure devices based on dilute bismides.

  16. Role of dislocations and carrier concentration in limiting the electron mobility of InN films grown by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Tangi, Malleswararao; De, Arpan; Shivaprasad, S. M.

    2018-01-01

    We report the molecular beam epitaxy growth of device quality InN films on GaN epilayer and nano-wall network (NWN) templates deposited on c-sapphire by varying the film thickness up to 1 μm. The careful experiments are directed towards obtaining high mobility InN layers having a low band gap with improved crystal quality. The dislocation density is quantified by using high resolution X-ray diffraction rocking curve broadening values of symmetric and asymmetric reflections, respectively. We observe that the dislocation density of the InN films grown on GaN NWN is less than that of the films grown on the GaN epilayer. This is attributed to the nanoepitaxial lateral overlayer growth (ELOG) process, where the presence of voids at the interface of InN/GaN NWN prevents the propagation of dislocation lines into the InN epilayers, thereby causing less defects in the overgrown InN films. Thus, this new adaptation of the nano-ELOG growth process enables us to prepare InN layers with high electron mobility. The obtained electron mobility of 2121 cm2/Vs for 1 μm thick InN/GaN NWN is comparable with the literature values of similar thickness InN films. Furthermore, in order to understand the reasons that limit electron mobility, the charge neutrality condition is employed to study the variation of electron mobility as a function of dislocation density and carrier concentration. Overall, this study provides a route to attaining improved crystal quality and electronic properties of InN films.

  17. Calcium impurity as a source of non-radiative recombination in (In,Ga)N layers grown by molecular beam epitaxy

    KAUST Repository

    Young, E. C.; Grandjean, N.; Mates, T. E.; Speck, J. S.

    2016-01-01

    Ca as an unintentional impurity has been investigated in III-nitride layers grown by molecular beam epitaxy (MBE). It is found that Ca originates from the substrate surface, even if careful cleaning and rinsing procedures are applied. The initial Ca surface coverage is ∼1012 cm−2, which is consistent with previous reports on GaAs and silicon wafers. At the onset of growth, the Ca species segregates at the growth front while incorporating at low levels. The incorporation rate is strongly temperature dependent. It is about 0.03% at 820 °C and increases by two orders of magnitude when the temperature is reduced to 600 °C, which is the typical growth temperature for InGaN alloy. Consequently, [Ca] is as high as 1018 cm−3 in InGaN/GaN quantum well structures. Such a huge concentration might be detrimental for the efficiency of light emitting diodes (LEDs) if one considers that Ca is potentially a source of Shockley-Read-Hall (SRH) defects. We thus developed a specific growth strategy to reduce [Ca] in the MBE grown LEDs, which consisted of burying Ca in a low temperature InGaN/GaN superlattice (SL) before the growth of the active region. Finally, two LED samples with and without an SL were fabricated. An increase in the output power by one order of magnitude was achieved when Ca was reduced in the LED active region, providing evidence for the role of Ca in the SRH recombination.

  18. Influence of V/III growth flux ratio on trap states in m-plane GaN grown by ammonia-based molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhang, Z.; Arehart, A. R.; Hurni, C. A.; Speck, J. S.; Ringel, S. A.

    2012-01-01

    Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) were utilized to investigate the behavior of deep states in m-plane, n-type GaN grown by ammonia-based molecular beam epitaxy (NH 3 -MBE) as a function of systematically varied V/III growth flux ratios. Levels were detected at E C - 0.14 eV, E C - 0.21 eV, E C - 0.26 eV, E C - 0.62 eV, E C - 0.67 eV, E C - 2.65 eV, and E C - 3.31 eV, with the concentrations of several traps exhibiting systematic dependencies on V/III ratio. The DLTS spectra are dominated by traps at E C - 0.14 eV and E C - 0.67 eV, whose concentrations decreased monotonically with increasing V/III ratio and decreasing oxygen impurity concentration, and by a trap at E C - 0.21 eV that revealed no dependence of its concentration on growth conditions, suggestive of different physical origins. Higher concentrations of deeper trap states detected by DLOS with activation energies of E C - 2.65 eV and E C - 3.31 eV in each sample did not display measureable sensitivity to the intentionally varied V/III ratio, necessitating further study on reducing these deep traps through growth optimization for maximizing material quality of NH 3 -MBE grown m-plane GaN.

  19. Capacitance–voltage and current–voltage characteristics for the study of high background doping and conduction mechanisms in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-01-01

    Highlights: ► The cause of high background doping was confirmed and characterized. ► The current–voltage characteristics deviate from the thermionic emission. ► The recombination current is attributed to a hole trap (E V + 0.52 eV). ► The hole trap (E V + 0.52 eV) was confirmed by DLTS measurements. -- Abstract: The temperature dependence of capacitance–voltage (C–V) and current voltage (I–V) characteristics were used to study the cause of high background doping and the underlying current transport mechanisms in GaAsN Schottky diode grown by chemical beam epitaxy (CBE). In one hand, a nitrogen-related sigmoid increase of junction capacitance and ionized acceptor concentration was observed in the temperature range 70–100 K and was attributed to the thermal ionization of a nitrogen–hydrogen-related deep acceptor-state, with thermal activation energy of approximately 0.11 eV above the valence band maximum (VBM) of GaAsN. This acceptor state is mainly responsible for the high background doping in unintentionally doped GaAsN grown by CBE. On the other hand, the I–V characteristics at different temperatures were found to deviate from the well known pure thermionic-emission mechanism. Based on their fitting at each temperature, the recombination current in the space charge region of GaAsN Schottky diode was mainly attributed to a hole trap, localized at 0.51 eV above the VBM. Given the accuracy of measurements, this result was confirmed by deep level transient spectroscopy measurements. Nevertheless, considering the Shockley–Read–Hall model of generation-recombination, the recombination activity of this defect was quantified and qualified to be weak compared with the markedly degradation of minority carrier lifetime in GaAsN material

  20. Nitridation effects of Si(1 1 1) substrate surface on InN nanorods grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tan, Jin, E-mail: jintan_cug@163.com [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Li, Bin; Song, Hao; Wu, Zhengbo; Chen, Xin [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-02-05

    Graphical abstract: The morphology evolution of InN nanorods in samples (g)–(i). The alignment of InN nanorods is improved and the deviation angle distribution narrows down with increase in nitriding time. It suggests that extending the nitriding time can enhance the vertical orientation of InN nanorods. - Highlights: • InN nanorods were grown on surface nitrided Si(1 1 1) substrate using PAMBE system. • Nitridation of substrate surface has a strong effect on morphology of InN nanorods. • InN nanorods cannot be formed with 1 min nitridation of Si(1 1 1) substrate. • Increasing nitriding time will increase optimum growth temperature of InN nanorods. • Increasing nitriding time can enhance vertical orientation of InN nanorods. - Abstract: The InN nanorods were grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE) system, with a substrate nitridation process. The effect of nitriding time of Si(1 1 1) substrate on morphology, orientation and growth temperature of InN nanorods was characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The deviation angle of InN nanorods was measured to evaluate the alignment of arrays. The results showed that InN nanorods could not be formed with 1 min nitridation of Si(1 1 1) substrate, but they could be obtained again when the nitriding time was increased to more than 10 min. In order to get aligned InN nanorods, the growth temperature needed to increase with longer nitriding time. The vertical orientation of InN nanorods could be enhanced with increase in nitriding time. The influence of the substrate nitridation on the photoluminescence (PL) spectra of InN nanorods has been investigated.

  1. Calcium impurity as a source of non-radiative recombination in (In,Ga)N layers grown by molecular beam epitaxy

    KAUST Repository

    Young, E. C.

    2016-11-23

    Ca as an unintentional impurity has been investigated in III-nitride layers grown by molecular beam epitaxy (MBE). It is found that Ca originates from the substrate surface, even if careful cleaning and rinsing procedures are applied. The initial Ca surface coverage is ∼1012 cm−2, which is consistent with previous reports on GaAs and silicon wafers. At the onset of growth, the Ca species segregates at the growth front while incorporating at low levels. The incorporation rate is strongly temperature dependent. It is about 0.03% at 820 °C and increases by two orders of magnitude when the temperature is reduced to 600 °C, which is the typical growth temperature for InGaN alloy. Consequently, [Ca] is as high as 1018 cm−3 in InGaN/GaN quantum well structures. Such a huge concentration might be detrimental for the efficiency of light emitting diodes (LEDs) if one considers that Ca is potentially a source of Shockley-Read-Hall (SRH) defects. We thus developed a specific growth strategy to reduce [Ca] in the MBE grown LEDs, which consisted of burying Ca in a low temperature InGaN/GaN superlattice (SL) before the growth of the active region. Finally, two LED samples with and without an SL were fabricated. An increase in the output power by one order of magnitude was achieved when Ca was reduced in the LED active region, providing evidence for the role of Ca in the SRH recombination.

  2. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    Science.gov (United States)

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  3. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  4. Growth-temperature- and thermal-anneal-induced crystalline reorientation of aluminum on GaAs (100) grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Xiang, N.

    2007-01-01

    The authors investigated the growth of Al thin films on GaAs (100) substrates by molecular beam epitaxy. It is found that the growth at 550 degree sign C results in a texture that consists of (100)Al[010](parallel sign)(100)GaAs[011] and (100)Al[010](parallel sign)(100)GaAs[010] rotated 45 degree sign with respect to each other, while the growth at 300 degree sign C leads to a mixture phase of (100)Al[010](parallel sign)(100)GaAs[011] and (110)Al[001](parallel sign)(100)GaAs[011]. In situ annealing of the Al film grown at 300 degree sign C causes a reorientation of the crystalline from (100)Al[010](parallel sign)(100)GaAs[011] to (110)Al[001](parallel sign)(100)GaAs[011]. The grain sizes of the Al film are increased by the increased growth temperature and in situ annealing; the ratio of the exposed to the covered surface is not changed significantly by changing the growth temperature but decreased by annealing; and the small islands in between the large ones are removed by annealing. These observations are explained based on island migration and coalescence

  5. A submillimetre-wave SIS mixer using NbN/MgO/NbN trilayers grown epitaxially on an MgO substrate

    CERN Document Server

    Uzawa, Y; Saito, A; Takeda, M; Wang, Z

    2002-01-01

    We have designed, fabricated and tested a quasi-optical superconductor-insulator-superconductor (SIS) mixer employing distributed NbN/MgO/NbN tunnel junctions and NbN/MgO/NbN microstriplines at submillimetre-wave frequencies. These trilayers were fabricated by dc- and rf-magnetron sputtering on an MgO substrate at ambient temperature so that the NbN and MgO films were grown epitaxially. Our SIS mixer consists of an MgO hyperhemispherical lens with an antireflection cap and a self-complementary log-periodic antenna made of a single-crystal NbN film, on which the distributed SIS junctions and the two-section impedance transformers were mirror-symmetrically placed at the feed point of the antenna. As designed, the junctions are 0.6 mu m wide and 15.5 mu m long, which is sufficient to absorb the incoming signal along this lossy transmission line, assuming a current density of 10 kA cm sup - sup 2. The mixer showed good I-V characteristics, with subgap-to-normal resistance ratios of about 13, although weak-link br...

  6. Properties of InSbN grown on GaAs by radio frequency nitrogen plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lim, K P; Yoon, S F; Pham, H T

    2009-01-01

    We report the growth of InSbN on a lattice-mismatched GaAs substrate using radio frequency nitrogen plasma-assisted molecular beam epitaxy. The effects of a two-step thin InSb buffer layer grown at 330 and 380 deg. C and substrate temperature (270-380 deg. C) on the properties of the InSbN are studied. The crystalline quality of the InSbN is significantly improved by the two-step buffer layer due to defect suppression. The shifting in the absorption edge of the InSbN from ∼5 to 8 μm following an increase in the substrate temperature is correlated with the reduction in free carrier concentration from ∼10 18 to 10 16 cm -3 and increase in concentration of N substituting Sb from ∼0.2 to 1%. These results will be beneficial to those working on the pseudo-monolithic integration of InSbN detectors on a GaAs platform.

  7. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    Science.gov (United States)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  8. Surface segregation as a means of gettering Cu in liquid-phase-epitaxy silicon thin layers grown from Al-Cu-Si solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.H.; Ciszek, T.F.; Reedy, R.; Asher, S.; King, D. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors demonstrate that, by using the natural surface segregation phenomenon, Cu can be gettered to the surface from the bulk of silicon layers so that its concentrations in the liquid-phase-epitaxy (LPE) layers are much lower than its solubility at the layer growth temperature and the reported 10{sup 17} cm{sup {minus}3} degradation threshold for solar-cell performance. Secondary-ion mass spectroscopy (SIMS) analysis indicates that, within a micron-deep sub-surface region, Cu accumulates even in as-grown LPE samples. Slower cooling after growth to room temperature enhances this Cu enrichment. X-ray photoelectron spectroscopy (XPS) measurement shows as much as 3.2% Cu in a surface region of about 50 {Angstrom}. More surface-sensitive, ion-scattering spectroscopy (ISS) analysis further reveals about 7% of Cu at the top surface. These results translate to an areal gettering capacity of about 1.0 x 10{sup 16} cm{sup {minus}2}, which is higher than the available total-area density of Cu in the layer and substrate (3.6 x 10{sup 15} cm{sup {minus}2} for a uniform 1.2 x 10{sup 17}cm{sup {minus}3} Cu throughout the layer and substrate with a total thickness of 300 {mu}m).

  9. Experimental investigations of atomic ordering effects in the epitaxial Ga{sub x}In{sub 1-x}P, coherently grown on GaAs (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, P.V., E-mail: paul@phys.vsu.ru [Voronezh State University, Universitetskaya pl., 1, 394006 Voronezh (Russian Federation); Goloshchapov, D.L.; Khudyakov, Yu.Yu.; Lenshin, A.S.; Lukin, A.N. [Voronezh State University, Universitetskaya pl., 1, 394006 Voronezh (Russian Federation); Arsentyev, I.N., E-mail: arsentyev@mail.ioffe.ru [Ioffe Physical and Technical Institute, Polytekhnicheskaya, 26, 194021 St-Petersburg (Russian Federation); Prutskij, Tatiana, E-mail: prutskij@yahoo.com [Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Privada 17 Norte, No 3417, Col San Miguel Hueyotlipan, 72050 Puebla, Puebla (Mexico)

    2017-03-15

    A range of structural and spectroscopic techniques were used for the study of the properties of epitaxial Ga{sub x}In{sub 1-x}P alloys with an ordered arrangement of atoms in a crystal lattice grown by MOCVD on single-crystalline substrates of GaAs (100). The appearance of atomic ordering in the coherent growth conditions of the ordered Ga{sub x}In{sub 1-x}P alloy on GaAs (100) resulted in cardinal changes of the structural and optical properties of semiconductor in comparison to disordered alloys, including the change of the crystal lattice parameter and, consequently, reduced crystal symmetry, decreased band gap and formation of two different types of surface nanorelief. This is the first report of the calculation of parameters of the crystal lattice in Ga{sub x}In{sub 1-x}P with ordering taking into account the elastic stresses dependent on long-range ordering. Based on the variance analysis data with regard to the IR-reflection spectra as well as the UV-spectroscopy data obtained in the transmission-reflection mode, the main optical characteristics of the ordered Ga{sub x}In{sub 1-x}P alloys were determined for the first time, namely, refractive index dispersion and high-frequency dielectric constant. All of the experimental results were in good agreement with the previously developed theoretical beliefs.

  10. Spontaneous core–shell elemental distribution in In-rich InxGa1−xN nanowires grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gómez-Gómez, M; Garro, N; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Segura-Ruiz, J; Martinez-Criado, G; Denker, C; Malindretos, J; Rizzi, A

    2014-01-01

    The elemental distribution of self-organized In-rich In x Ga 1−x N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures. (paper)

  11. Spontaneous core-shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy

    Science.gov (United States)

    Gómez-Gómez, M.; Garro, N.; Segura-Ruiz, J.; Martinez-Criado, G.; Cantarero, A.; Mengistu, H. T.; García-Cristóbal, A.; Murcia-Mascarós, S.; Denker, C.; Malindretos, J.; Rizzi, A.

    2014-02-01

    The elemental distribution of self-organized In-rich InxGa1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core-shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures.

  12. Spontaneous core–shell elemental distribution in In-rich In(x)Ga1-xN nanowires grown by molecular beam epitaxy.

    Science.gov (United States)

    Gómez-Gómez, M; Garro, N; Segura-Ruiz, J; Martinez-Criado, G; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Denker, C; Malindretos, J; Rizzi, A

    2014-02-21

    The elemental distribution of self-organized In-rich In(x)Ga1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality nonpolar heterostructures.

  13. Characterization of majority and minority carrier deep levels in p-type GaN:Mg grown by molecular beam epitaxy using deep level optical spectroscopy

    International Nuclear Information System (INIS)

    Armstrong, A.; Caudill, J.; Ringel, S. A.; Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.

    2008-01-01

    Deep level defects in p-type GaN:Mg grown by molecular beam epitaxy were characterized using steady-state photocapacitance and deep level optical spectroscopy (DLOS). Low frequency capacitance measurements were used to alleviate dispersion effects stemming from the deep Mg acceptor. Use of DLOS enabled a quantitative survey of both deep acceptor and deep donor levels, the latter being particularly important due to the limited understanding of minority carrier states for p-type GaN. Simultaneous electron and hole photoemissions resulted in a convoluted deep level spectrum that was decoupled by emphasizing either majority or minority carrier optical emission through control of the thermal filling time conditions. In this manner, DLOS was able to resolve and quantify the properties of deep levels residing near both the conduction and valence bandedges in the same sample. Bandgap states through hole photoemission were observed at E v +3.05 eV, E v +3.22 eV and E v +3.26 eV. Additionally, DLOS revealed levels at E c -3.24 eV and E c -2.97 eV through electron emission to the conduction band with the former attributed to the Mg acceptor itself. The detected deep donor concentration is less than 2% of activated [Mg] and demonstrates the excellent quality of the film

  14. Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer.

    Science.gov (United States)

    Pak, Sangyeon; Lee, Juwon; Lee, Young-Woo; Jang, A-Rang; Ahn, Seongjoon; Ma, Kyung Yeol; Cho, Yuljae; Hong, John; Lee, Sanghyo; Jeong, Hu Young; Im, Hyunsik; Shin, Hyeon Suk; Morris, Stephen M; Cha, SeungNam; Sohn, Jung Inn; Kim, Jong Min

    2017-09-13

    van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS 2 /WS 2 vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS 2 to MoS 2 in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.

  15. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Klimov, E. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Vasiliev, A. L.; Imamov, R. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Trunkin, I. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2017-01-15

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.

  16. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  17. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Maryński, A.; Sĕk, G.; Musiał, A.; Andrzejewski, J.; Misiewicz, J. [Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Gilfert, C.; Reithmaier, J. P. [Technische Physik, Institute of Nanostructure Technology and Analytics, CINSaT, University of Kassel, Heinrich Plett-Str. 40, D-34132 Kassel (Germany); Capua, A.; Karni, O.; Gready, D.; Eisenstein, G. [Department of Electrical Engineering, Technion, Haifa 32000 (Israel); Atiya, G.; Kaplan, W. D. [Department of Materials Science and Engineering, Technion, Haifa 32000 (Israel); Kölling, S. [Fraunhofer Institute for Photonic Microsystems, Center for Nanoelectronic Technologies, Königsbrücker Straße 180, D-01099 Dresden (Germany)

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band k·p model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  18. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Chan, C.H.; Wu, J.D.; Huang, Y.S.; Hsu, H.P.; Tiong, K.K.; Su, Y.K.

    2010-01-01

    Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In x Ga 1-x As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 ≤ x ≤ 0.44) in the temperature range of 20 K ≤ T ≤ 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.

  19. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor

  20. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bhasker, H. P.; Dhar, S. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra-400076 (India); Thakur, Varun; Kesaria, Manoj; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore- 560064 (India)

    2014-02-21

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close to a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls.

  1. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    International Nuclear Information System (INIS)

    Saroj, R K; Dhar, S

    2014-01-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima. (paper)

  2. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Redondo-Cubero, A.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-01-01

    Indium incorporation into wurtzite (0001)-oriented In x Al y Ga 1-x-y N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01< y<0.27). The layer stoichiometry was determined by Rutherford backscattering spectrometry (RBS). RBS shows that indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM

  3. Epitaxial structure and electronic property of β-Ga2O3 films grown on MgO (100) substrates by pulsed-laser deposition

    Science.gov (United States)

    Wakabayashi, Ryo; Yoshimatsu, Kohei; Hattori, Mai; Ohtomo, Akira

    2017-10-01

    We investigated heteroepitaxial growth of Si-doped Ga2O3 films on MgO (100) substrates by pulsed-laser deposition as a function of growth temperature (Tg) to find a strong correlation between the structural and electronic properties. The films were found to contain cubic γ-phase and monoclinic β-phase, the latter of which indicated rotational twin domains when grown at higher Tg. The formation of the metastable γ-phase and twin-domain structure in the stable β-phase are discussed in terms of the in-plane epitaxial relationships with a square MgO lattice, while crystallinity of the β-phase degraded monotonically with decreasing Tg. The room-temperature conductivity indicated a maximum at the middle of Tg, where the β-Ga2O3 layer was relatively highly crystalline and free from the twin-domain structure. Moreover, both crystallinity and conductivity of β-Ga2O3 films on the MgO substrates were found superior to those on α-Al2O3 (0001) substrates. A ratio of the conductivity, attained to the highest quantity on each substrate, was almost three orders of magnitude.

  4. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  5. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  6. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    Science.gov (United States)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  7. Comparison of blue-green response between transmission-mode GaAsP- and GaAs-based photocathodes grown by molecular beam epitaxy

    Science.gov (United States)

    Gang-Cheng, Jiao; Zheng-Tang, Liu; Hui, Guo; Yi-Jun, Zhang

    2016-04-01

    In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Al0.7Ga0.3As0.9 P 0.1/GaAs0.9 P 0.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter between the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm-0.6 μm. Project supported by the National Natural Science Foundation of China (Grant No. 61301023) and the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation, China (Grant No. BJ2014001).

  8. Anisotropic magnetotransport in epitaxial La2/3Ca1/3MnO3 thin films grown by dc-sputtering

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Prieto, P.; Baca, E.

    2005-01-01

    We have conducted a comprehensive study of the in-plane/out-of-plane magnetic and magnetotransport properties on (001)-oriented La 2/3 Ca 1/3 MnO 3 films epitaxially grown on single crystal (001)-SrTiO 3 substrates by dc-sputtering at high oxygen pressure. The films grew under tensile strain imposed by the lattice mismatch with the substrate. SQUID magnetometry indicated the presence of magnetocrystalline anisotropy at temperatures below the ferromagnetic Curie temperature T C with the easy plane being the film plane. Resistance measurements in magnetic field strengths of up to 6 T, applied both normal and parallel to the film plane, evidenced a distinctive dependence of the resistivity below T C on the angle of the applied field with respect to the plane of the film. During these measurements, transport current and applied magnetic field was all along maintained perpendicular to each other. Neither low-field magnetoresistance (LFMR) nor large magnetoresistance hysteresis were observed on these samples, suggesting that the tensile strain in the first monolayers has been partially released. Additionally, by rotating the sample 360 around an axis parallel to film plane, in magnetic fields ≥2 T, a quadratic sinusoidal dependence of the magnetoresistance (MR) on the polar angle θ was observed. These results can be consistently interpreted in frame of a generalized version of the theory of anisotropic magnetoresistance in transition-metal ferromagnets. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Correlation between (in)commensurate domains of multilayer epitaxial graphene grown on SiC(0 0 0 1-bar ) and single layer electronic behavior

    International Nuclear Information System (INIS)

    Mendes-de-Sa, T G; Goncalves, A M B; Matos, M J S; Coelho, P M; Magalhaes-Paniago, R; Lacerda, R G

    2012-01-01

    A systematic study of the evolution of the electronic behavior and atomic structure of multilayer epitaxial graphene (MEG) as a function of growth time was performed. MEG was obtained by sublimation of a 4H-SiC(0 0 0 1-bar ) substrate in an argon atmosphere. Raman spectroscopy and x-ray diffraction were carried out in samples grown for different times. For 30 min of growth the sample Raman signal is similar to that of graphite, while for 60 min the spectrum becomes equivalent to that of exfoliated graphene. Conventional x-ray diffraction reveals that all the samples have two different (0001) lattice spacings. Grazing incidence x-ray diffraction shows that thin films are composed of rotated (commensurate) structures formed by adjacent graphene layers. Thick films are almost completely disordered. This result can be directly correlated to the single layer electronic behavior of the films as observed by Raman spectroscopy. Finally, to understand the change in lattice spacings as a result of layer rotation, we have carried out first principles calculations (using density functional theory) of the observed commensurate structures. (paper)

  10. Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, Tokuo; Yona, Hiroaki; Ando, Hironori; Nosei, Daiki; Harada, Yoshiyuki

    2002-01-01

    We observed strong band edge luminescence at 8.5-200 K from 200-880 nm thick InN films grown on 10 nm thick InN buffer layers on Si(001) and Si(111) substrates by electron cyclotron resonance-assisted molecular beam epitaxy. The InN film on the Si(001) substrate exhibited strong band edge photoluminescence (PL) emission at 1.814 eV at 8.5 K, tentatively assigned as donor to acceptor pair [DAP (α-InN)] emission from wurtzite-InN (α-InN) crystal grains, while those on Si(111) showed other stronger band edge PL emissions at 1.880, 2.081 and 2.156 eV, tentatively assigned as donor bound exciton [D 0 X(α-InN)] from α-InN grains, DAP (β-InN) and D 0 X (β-InN) emissions from zinc blende-InN (β-InN) grains, respectively

  11. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  12. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David, E-mail: david.lederman@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Marcus, Matthew A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tarafder, Kartick [Department of Physics, BITS-Pilani Hyderabad Campus, Secunderabad, Andhra Pradesh 500078 (India)

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  13. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Bhasker, H. P.; Dhar, S.; Thakur, Varun; Kesaria, Manoj; Shivaprasad, S. M.

    2014-01-01

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close to a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls

  14. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Science.gov (United States)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  15. Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths

    KAUST Repository

    Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.

    2016-01-01

    Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.

  16. Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths

    KAUST Repository

    Awan, Kashif M.

    2016-08-11

    Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.

  17. Optical and magnetic resonance studies of Mg-doped GaN homoepitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Glaser, E.R.; Murthy, M.; Freitas, J.A.; Storm, D.F.; Zhou, L.; Smith, D.J.

    2007-01-01

    Low-temperature photoluminescence (PL) and optically detected magnetic resonance (ODMR) at 24 GHz have been performed on a series of MBE-grown Mg-doped (10 17 -10 20 cm -3 ) GaN homoepitaxial layers. High-resolution PL at 5 K revealed intense bandedge emission with narrow linewidths (0.2-0.4 meV) attributed to annihilation of excitons bound to shallow Mg acceptors. In contrast to many previous reports for GaN heteroepitaxial layers doped with [Mg]>3x10 18 cm -3 , the only visible PL observed was strong shallow donor-shallow acceptor recombination with zero phonon line at 3.27 eV. Most notably, ODMR on this emission from a sample doped with [Mg] of 1x10 17 cm -3 revealed the first evidence for the highly anisotropic g-tensor (g parallel ∼2.19, g perpendicular ∼0) expected for Mg shallow acceptors in wurtzite GaN. This result is attributed to the much reduced dislocation densities (≤5x10 6 cm -3 ) and Mg impurity concentrations compared to those characteristic of the more conventional investigated Mg-doped GaN heteroepitaxial layers

  18. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    Science.gov (United States)

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  19. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  20. Thickness dependence of the strain, band gap and transport properties of epitaxial In{sub 2}O{sub 3} thin films grown on Y-stabilised ZrO{sub 2}(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K H L; Oropeza, F E; Egdell, R G [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lazarov, V K [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Veal, T D; McConville, C F [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Walsh, A, E-mail: Russell.egdell@chem.ox.ac.uk [Department of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2011-08-24

    Epitaxial films of In{sub 2}O{sub 3} have been grown on Y-stabilised ZrO{sub 2}(111) substrates by molecular beam epitaxy over a range of thicknesses between 35 and 420 nm. The thinnest films are strained, but display a 'cross-hatch' morphology associated with a network of misfit dislocations which allow partial accommodation of the lattice mismatch. With increasing thickness a 'dewetting' process occurs and the films break up into micron sized mesas, which coalesce into continuous films at the highest coverages. The changes in morphology are accompanied by a progressive release of strain and an increase in carrier mobility to a maximum value of 73 cm{sup 2} V{sup -1} s{sup -1}. The optical band gap in strained ultrathin films is found to be smaller than for thicker films. Modelling of the system, using a combination of classical pair-wise potentials and ab initio density functional theory, provides a microscopic description of the elastic contributions to the strained epitaxial growth, as well as the electronic effects that give rise to the observed band gap changes. The band gap increase induced by the uniaxial compression is offset by the band gap reduction associated with the epitaxial tensile strain.

  1. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  2. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    Science.gov (United States)

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  3. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    KAUST Repository

    Tangi, Malleswararao

    2016-07-26

    The dislocation free Inx Al 1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of Inx Al 1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2 H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2 H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2 H phonons in Inx Al 1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important Inx Al 1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  4. Trap suppression by isoelectronic In or Sb doping in Si-doped n-GaAs grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Li, A.Z.; Kim, H.K.; Jeong, J.C.; Wong, D.; Schlesinger, T.E.; Milnes, A.G.

    1988-01-01

    The effects of isoelectronic doping of GaAs by In or Sb on the electron deep levels in n-GaAs grown by molecular-beam epitaxy have been investigated in the growth temperature range 500--600 0 C for Si doping levels of 4--7 x 10 16 cm -3 and As-stabilized conditions. The two dominant traps M3 and M6 are drastically reduced in concentration by up to three orders of magnitude for M3 (from 10 15 cm -3 down to 12 cm -3 ) and two and a half orders of magnitude for M6 by introducing 0.2--1 at.% In or Sb and increasing growth temperatures from 500 to 550 0 C. The trap concentrations of M3 and M6 were also significantly reduced by increasing the growth temperature to 600 0 C without In or Sb doping and by decreasing the growth rate from 1.0 to 0.3 μm/h. The incorporation coefficients of In and Sb have been measured and are found to decrease with increasing growth temperature. The growths with high M3 and M6 trap densities are shown to have short minority-carrier diffusion lengths. Indium isoelectronic doping, which is presumed to take place on a gallium sublattice site, and Sb doping, which is expected to take place on an arsenic sublattice site, appear to have rather similar effects in suppressing the concentration of the M3 and M6 electron traps. This suggest that both of these traps are in some way related to (V/sub As/V/sub Ga/) complexes or (V/sub As/XV/sub Ga/) complexes where X is different for M3 and M6 and might be interstitial or impurity related

  5. Double carriers pulse DLTS for the characterization of electron-hole recombination process in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Suzuki, Hidetoshi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2011-01-01

    A nitrogen-related electron trap (E1), located approximately 0.33 eV from the conduction band minimum of GaAsN grown by chemical beam epitaxy, was confirmed by investigating the dependence of its density with N concentration. This level exhibits a high capture cross section compared with that of native defects in GaAs. Its density increases significantly with N concentration, persists following post-thermal annealing, and was found to be quasi-uniformly distributed. These results indicate that E1 is a stable defect that is formed during growth to compensate for the tensile strain caused by N. Furthermore, E1 was confirmed to act as a recombination center by comparing its activation energy with that of the recombination current in the depletion region of the alloy. However, this technique cannot characterize the electron-hole (e-h) recombination process. For that, double carrier pulse deep level transient spectroscopy is used to confirm the non-radiative e-h recombination process through E1, to estimate the capture cross section of holes, and to evaluate the energy of multi-phonon emission. Furthermore, a configuration coordinate diagram is modeled based on the physical parameters of E1. -- Research Highlights: → Double carrier pulse DLTS method confirms the existence of SRH center. → The recombination center in GaAsN depends on nitrogen concentration. → Minority carrier lifetime in GaAsN is less than 1 ns. → A non-radiative recombination center exits in GaAsN.

  6. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Onabe, Kentaro

    2011-12-01

    Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

  7. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    Science.gov (United States)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  8. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  9. Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy

    KAUST Repository

    Browne, David A.

    2015-05-14

    © 2015 AIP Publishing LLC. Unipolar-light emitting diode like structures were grown by NH3 molecular beam epitaxy on c plane (0001) GaN on sapphire templates. Studies were performed to experimentally examine the effect of random alloy fluctuations on electron transport through quantum well active regions. These unipolar structures served as a test vehicle to test our 2D model of the effect of compositional fluctuations on polarization-induced barriers. Variables that were systematically studied included varying quantum well number from 0 to 5, well thickness of 1.5 nm, 3 nm, and 4.5 nm, and well compositions of In0.14Ga0.86N and In0.19Ga0.81N. Diode-like current voltage behavior was clearly observed due to the polarization-induced conduction band barrier in the quantum well region. Increasing quantum well width and number were shown to have a significant impact on increasing the turn-on voltage of each device. Temperature dependent IV measurements clearly revealed the dominant effect of thermionic behavior for temperatures from room temperature and above. Atom probe tomography was used to directly analyze parameters of the alloy fluctuations in the quantum wells including amplitude and length scale of compositional variation. A drift diffusion Schrödinger Poisson method accounting for two dimensional indium fluctuations (both in the growth direction and within the wells) was used to correctly model the turn-on voltages of the devices as compared to traditional 1D simulation models.

  10. Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors

    International Nuclear Information System (INIS)

    Wang, Junya; Dou, Wei; Zhang, Xuetao; Han, Weihua; Mu, Xuemei; Zhang, Yue; Zhao, Xiaohua; Chen, Youxin; Yang, Zhiwei; Su, Qing; Xie, Erqing; Lan, Wei; Wang, Xinran

    2017-01-01

    High stable, flexible and interconnected Co 3 O 4 nanosheets with embedded Ag quantum dots (AgQDs) were uniformly grown on three dimensional graphene (3DG) networks and served as supercapacitor electrode to enhance the pseudocapacitance performance. The AgQDs were used to facilitate the growth of the Co 3 O 4 nanosheets and improve the electrical conductivity of the hybrid electrode by forming a good ohmic contact and provide direct and stable pathways for rapid electron transport. The AgQDs contribute to produce an improved areal capacitance of 421 mF cm −2 (1052.5 F g −1 ) and 53.3 mF cm −2 for the Ag/Co 3 O 4 /3DG hybrid, for both the three- and the two-electrode configuration, respectively. These values are about three times higher compared to a pristine Co 3 O 4 /3DG electrode. The capacitance retention of ∼120% after 10 4 cycles shows that a Ag/Co 3 O 4 /3DG hybrid can provide a long and stable cycle performance with a high specific capacitance. This study provides an effective strategy to improve the performance of electrode materials for supercapacitors with a high efficiency and long life, which makes them promising candidates for future energy-storage applications.

  11. Structural characterization of Fe/Ag bilayers by RBS and AFM

    International Nuclear Information System (INIS)

    Tunyogi, A.; Tancziko, F.; Osvath, Z.; Paszti, F.

    2008-01-01

    Fe/Ag thin films are intensively investigated due to their special magnetic properties. Recently a deposition-order dependent asymmetric interface has been found. When iron is grown on silver, the interface is sharp, while the growth of Ag on Fe results in a long, low-energy tail of the Ag peak in the Rutherford backscattering spectrometry (RBS) spectra. The main purpose of this paper is to show that the low-energy Ag tail is caused by grain boundary diffusion, and that, when elevating the growing temperature of the Ag layer this effect becomes more significant. Two sets of polycrystalline and epitaxial Fe/Ag bilayers were prepared simultaneously onto Si(1 1 1) and MgO(1 0 0), respectively. The iron layers were grown at 250 deg. C and annealed at 450 deg. C in both sets, while the Ag layer was grown in the first set at room temperature (RT) and in the second set at 250 deg. C (HT). The sample composition, the interface sharpness and the quality of the epitaxy were studied by Rutherford backscattering spectrometry (RBS) combined with channeling effect. The surface morphology was determined by atomic force microscopy (AFM). RBS spectra show that in the case of RT samples the epitaxial MgO/Fe/Ag bilayer has sharp, well-defined interface, while for the polycrystalline Si/Fe/Ag sample the silver peak has a low-energy tail. Both the Fe and Ag peaks smeared out in the case of HT samples. AFM-images show that the RT samples have a continuous Ag layer, while the HT samples have fragmented surfaces. The RBS spectra taken on the HT samples were successfully simulated by the RBS-MAST code taking into account their fragmented structures.

  12. Spatially indirect radiative recombination in InAlAsSb grown lattice-matched to InP by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, Louise C.; Abell, Josh; Ellis, Chase T.; Tischler, Joseph G.; Vurgaftman, Igor; Meyer, Jerry R.; Walters, Robert J. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, DC 20375 (United States); Lumb, Matthew P. [The George Washington University, 2121 I Street NW, Washington, DC 20037 (United States); González, María [Sotera Defense Solutions, Inc., Annapolis Junction, Maryland 20701-1067 (United States)

    2015-06-07

    A photoluminescence (PL) spectroscopy study of the bulk quaternary alloy InAlAsSb is presented. Samples were grown lattice-matched to InP by molecular beam epitaxy and two different growth temperatures of 450 °C and 325 °C were compared. Interpolated bandgap energies suggest that the development of this alloy would extend the range of available direct bandgaps attainable in materials lattice-matched to InP to energies as high as 1.81 eV. However, the peak energy of the observed PL emission is anomalously low for samples grown at both temperatures, with the 450 °C sample showing larger deviation from the expected bandgap. A fit of the integrated PL intensity (I) to an I∝P{sup k} dependence, where P is the incident power density, yields characteristic coefficients k = 1.05 and 1.18 for the 450 °C and 325 °C samples, respectively. This indicates that the PL from both samples is dominated by excitonic recombination. A blue-shift in the peak emission energy as a function of P, along with an S-shaped temperature dependence, is observed. These trends are characteristic of spatially-indirect recombination associated with compositional variations. The energy depth of the confining potential, as derived from the thermal quenching of the photoluminescence, is 0.14 eV for the 325 °C sample, which is consistent with the red-shift of the PL emission peak relative to the expected bandgap energy. This suggests that compositional variation is the primary cause of the anomalously low PL emission peak energy. The higher energy PL emission of the 325 °C sample, relative to the 450 °C sample, is consistent with a reduction of the compositional fluctuations. The lower growth temperature is therefore considered more favorable for further growth optimization.

  13. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  14. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  15. The effect of metal-rich growth conditions on the microstructure of Sc{sub x}Ga{sub 1-x}N films grown using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.C.L.; Moram, M.A. [Department of Materials, Imperial College London (United Kingdom); Goff, L.E. [Department of Materials, Imperial College London (United Kingdom); Department of Physics, University of Cambridge (United Kingdom); Barradas, N.P. [CTN - Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Alves, E. [IPFN - Instituto de Plasmas e Fusao Nuclear, Lisboa (Portugal); Laboratorio de Aceleradores e Tecnologias de Radiacao, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Pereira, S. [CICECO and Department of Physics, Universidade de Aveiro (Portugal); Beere, H.E.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A. [Department of Physics, University of Cambridge (United Kingdom)

    2015-12-15

    Epitaxial Sc{sub x}Ga{sub 1-x}N films with 0 ≤ x ≤ 0.50 were grown using molecular beam epitaxy under metal-rich conditions. The Sc{sub x}Ga{sub 1-x}N growth rate increased with increasing Sc flux despite the use of metal-rich growth conditions, which is attributed to the catalytic decomposition of N{sub 2} induced by the presence of Sc. Microstructural analysis showed that phase-pure wurtzite Sc{sub x}Ga{sub 1-x}N was achieved up to x = 0.26, which is significantly higher than that previously reported for nitrogen-rich conditions, indicating that the use of metal-rich conditions can help to stabilise wurtzite phase Sc{sub x}Ga{sub 1-x}N. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. MBE-grown Si and Si1−xGex quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device

    International Nuclear Information System (INIS)

    Manna, S; Aluguri, R; Katiyar, A; Ray, S K; Das, S; Laha, A; Osten, H J

    2013-01-01

    Si and Si 1−x Ge x quantum dots embedded within epitaxial Gd 2 O 3 grown by molecular beam epitaxy have been studied for application in floating gate memory devices. The effect of interface traps and the role of quantum dots on the memory properties have been studied using frequency-dependent capacitance–voltage and conductance–voltage measurements. Multilayer quantum dot memory comprising four and five layers of Si quantum dots exhibits a superior memory window to that of single-layer quantum dot memory devices. It has also been observed that single-layer Si 1−x Ge x quantum dots show better memory characteristics than single-layer Si quantum dots. (paper)

  17. Time-resolved X-ray diffraction study on superconducting YBa{sub 2}Cu{sub 3}O{sub 7} epitaxially grown on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luebcke, A.

    2007-07-01

    In this PhD thesis time-resolved X-ray diffraction in optical pump - X-ray probe scheme was applied for the first time to a High-Temperature Superconductor in the superconducting state. The aim was to study the possible lattice response to optical Cooper pair breaking. As sample a thin YBa{sub 2}Cu{sub 3}O{sub 7} film with a superconducting transition temperature of T{sub c}=90 K, epitaxially grown on a SrTiO{sub 3} single crystal was used. (orig.)

  18. Temperature Dependences of the Product of the Differential Resistance by the Area in MIS-Structures Based on Cd x Hg1- x Te Grown by Molecularbeam Epitaxy on Alternative Si and GaAs Substrates

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Vasil'ev, V. V.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.

    2017-06-01

    In a temperature range of 9-200 K, temperature dependences of the differential resistance of space-charge region in the strong inversion mode are experimentally studied for MIS structures based on CdxHg1-xTe (x = 0.22-0.40) grown by molecular-beam epitaxy. The effect of various parameters of structures: the working layer composition, the type of a substrate, the type of insulator coating, and the presence of a near-surface graded-gap layer on the value of the product of differential resistance by the area is studied. It is shown that the values of the product RSCRA for MIS structures based on n-CdHgTe grown on a Si(013) substrate are smaller than those for structures based on the material grown on a GaAs(013) substrate. The values of the product RSCRA for MIS structures based on p-CdHgTe grown on a Si(013) substrate are comparable with the value of the analogous parameter for MIS structures based on p-CdHgTe grown on a GaAs(013) substrate.

  19. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  20. High-quality AlGaN/GaN grown on sapphire by gas-source molecular beam epitaxy using a thin low-temperature AlN layer

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, M.J.; Li, L.K.; Turk, B.; Wang, W.I.; Syed, S.; Simonian, D.; Stormer, H.L.

    2000-07-01

    Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gas-source molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm{sup 2}/Vs with carrier sheet densities of 6.1 x 10{sup 12} cm{sup {minus}2}, and 5.8 x 10{sup 12} cm{sup {minus}2} at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

  1. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  2. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  3. Electrode interface controlled electrical properties in epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown on Si substrates with SrTiO{sub 3} buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Andra Georgia, E-mail: andra.boni@infim.ro [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); University of Bucharest, Faculty of Physics, Magurele 077125 (Romania); Chirila, Cristina; Pasuk, Iuliana; Negrea, Raluca; Trupina, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); Le Rhun, Gwenael [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Vilquin, Bertrand [Université de Lyon, Ecole Centrale de Lyon, INL, CNRS UMR5270, 36 avenue Guy de Collongue, F-69134 Ecully cedex (France); Pintilie, Ioana; Pintilie, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania)

    2015-10-30

    Electrical properties of ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films grown by pulsed laser deposition on silicon substrate with SrTiO{sub 3} buffer layer grown by molecular beam epitaxy were studied. A SrRuO{sub 3} layer was deposited as bottom electrode also by pulse laser deposition and Pt, Ir, Ru, SrRuO{sub 3} were used as top contacts. Electrical characterization comprised hysteresis and capacitance–voltage measurements in the temperature range from 150 K to 400 K. It was found that the macroscopic electrical properties are affected by the electrode interface, by the choice of the top electrode. However, even for metals with very different work functions (e.g. Pt and SrRuO{sub 3}) the properties of the top and bottom electrode interfaces remain fairly symmetric suggesting a strong influence from the bound polarization charges located near the interface. - Highlights: • Ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} were deposited on Si substrate. • The structural characterization proved the epitaxial growth of the layers. • Macroscopic electrical properties are affected by the choice of the top electrode. • The difference on imprint field, dielectric constant are analyzed depending on the electrode-ferroelectric interface.

  4. Effect of Al mole fraction on structural and electrical properties of AlxGa1-xN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hussein, A. SH.; Hassan, Z.; Thahab, S.M.; Ng, S.S.; Hassan, H. Abu; Chin, C.W.

    2011-01-01

    The effect of Al mole fractions on the structural and electrical properties of Al x Ga 1-x N/GaN thin films grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si (1 1 1) substrates has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. X-ray results revealed that the AlGaN/GaN/AlN was epitaxially grown on Si substrate. By applying Vegard's law, the Al mole fractions of Al x Ga 1-x N samples were found to be 0.11, 0.24, 0.30 and 0.43, respectively. The structural and morphology results indicated that there is a relatively larger tensile strain for the sample with the smallest Al mole fraction; while a smaller compressive strain and larger grain size appear with Al mole fraction equal to 0.30. The strain gets relaxed with the highest Al mole fraction sample. Finally, the linear relationship between the barrier height and Al mole fraction was obtained.

  5. Comparison of the mid-infrared magneto-otical response of GaMnAs films grown by molecular beam epitaxy and ion implantation and pulsed laser melting

    Czech Academy of Sciences Publication Activity Database

    Acbas, G.; Sinova, J.; Scarpulla, M.A.; Dubon, O.D.; Cukr, Miroslav; Novák, Vít; Cerne, J.

    2007-01-01

    Roč. 20, - (2007), s. 457-460 ISSN 1557-1939 R&D Projects: GA ČR GA202/04/1519 Institutional research plan: CEZ:AV0Z10100521 Keywords : epitaxy * diluted magnetic semiconductors * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.425, year: 2007

  6. Structure characterization of Pd/Co/Pd tri-layer films epitaxially grown on MgO single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki

    2011-09-30

    Pd/Co/Pd tri-layer films were prepared on MgO substrates of (001), (111), and (011) orientations at room temperature by ultra high vacuum rf magnetron sputtering. The detailed film structures around the Co/Pd and the Pd/Co interfaces are investigated by reflection high energy electron diffraction. Pd layers of (001){sub fcc}, (111){sub fcc}, and (011){sub fcc} orientations epitaxially grow on the respective MgO substrates. Strained fcc-Co(001) single-crystal layers are formed on the Pd(001){sub fcc} layers by accommodating the fairly large lattice mismatch between the Co and the Pd layers. On the Co layers,, Pd polycrystalline layers are formed. When Co films are formed on the Pd(111){sub fcc} and the Pd(011){sub fcc} layers, atomic mixing is observed around the Co/Pd interfaces and fcc-CoPd alloy phases are coexisting with Co crystals. The Co crystals formed on the Pd(111){sub fcc} layers consist of hcp(0001) + fcc(111) and Pd(111){sub fcc} epitaxial layers are formed on the Co layers. Co crystals epitaxially grow on the Pd(011){sub fcc} layers with two variants, hcp(11-bar 00) and fcc(111). On the Co layers, Pd(011){sub fcc} epitaxial layers are formed.

  7. Tuning of Ag doped core−shell ZnO NWs/Cu2O grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-01-01

    ZnO nanowires (NWs)/Cu 2 O–Ag core–shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core–shell ZnO NWs/Cu 2 O–Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core–shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu 2 O phase were founded. The presence of Ag content in core–shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit−Cu 2 O and the conduction band of W−ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields. (paper)

  8. On the evolution of InAs thin films grown by molecular beam epitaxy on the GaAs(001) surface

    International Nuclear Information System (INIS)

    Grabowski, Jan

    2010-01-01

    Semiconductor nanostructures are currently of high interest for a wide variety of electronic and optoelectronic applications. A large number of devices, in particular for the optical data transmission in the long-wavelength range, essential in modern communication, are based on InAs/GaAs quantum dot (QD) structures. Though the properties of the InAs/GaAs QDs have been extensively studied, only little is known about the formation and structure of the wetting layer (WL) yet. In the present work, the pathway of the InAs WL evolution is studied in detail. For this purpose, InAs thin films in the range of one monolayer (ML) are deposited on the GaAs(001) surface by molecular beam epitaxy (MBE) and studied by reflection high energy electron diffraction (RHEED) and in particular by scanning tunneling microscopy (STM). The InAs thin films are grown in both typical growth regimes, on the GaAs-c(4 x 4) and the GaAs-β2(2 x 4) reconstructed surface, in a variety of thicknesses starting from submonolayers with 0.09 ML of InAs up to 1.65 ML of InAs exceeding the critical thickness for QD growth. In principle, three growth stages are found. At low InAs coverages, the indium adsorbs in agglomerations of typically eight In atoms at energetically preferable surface sites. In the STM images, the signatures of these In agglomerations appear with a clear bright contrast. A structural model for the initial formation of these signatures is presented, and its electronic and strain related properties are discussed. At an InAs coverage of about 0.67ML the initial surface transforms into a (4 x 3) reconstructed In 2/3 Ga 1/3 As ML and the detailed structure and strain properties of this surface are unraveled. On top of the InGaAs ML further deposited InAs forms a second layer, characterized by a typical zig-zag alignment of (2 x 4) reconstructed unit cells, with an alternating α2/α2-m configuration. In contrast to the previous surface reconstructions, where structural strain is

  9. On the evolution of InAs thin films grown by molecular beam epitaxy on the GaAs(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Jan

    2010-12-14

    Semiconductor nanostructures are currently of high interest for a wide variety of electronic and optoelectronic applications. A large number of devices, in particular for the optical data transmission in the long-wavelength range, essential in modern communication, are based on InAs/GaAs quantum dot (QD) structures. Though the properties of the InAs/GaAs QDs have been extensively studied, only little is known about the formation and structure of the wetting layer (WL) yet. In the present work, the pathway of the InAs WL evolution is studied in detail. For this purpose, InAs thin films in the range of one monolayer (ML) are deposited on the GaAs(001) surface by molecular beam epitaxy (MBE) and studied by reflection high energy electron diffraction (RHEED) and in particular by scanning tunneling microscopy (STM). The InAs thin films are grown in both typical growth regimes, on the GaAs-c(4 x 4) and the GaAs-{beta}2(2 x 4) reconstructed surface, in a variety of thicknesses starting from submonolayers with 0.09 ML of InAs up to 1.65 ML of InAs exceeding the critical thickness for QD growth. In principle, three growth stages are found. At low InAs coverages, the indium adsorbs in agglomerations of typically eight In atoms at energetically preferable surface sites. In the STM images, the signatures of these In agglomerations appear with a clear bright contrast. A structural model for the initial formation of these signatures is presented, and its electronic and strain related properties are discussed. At an InAs coverage of about 0.67ML the initial surface transforms into a (4 x 3) reconstructed In{sub 2/3}Ga{sub 1/3}As ML and the detailed structure and strain properties of this surface are unraveled. On top of the InGaAs ML further deposited InAs forms a second layer, characterized by a typical zig-zag alignment of (2 x 4) reconstructed unit cells, with an alternating {alpha}2/{alpha}2-m configuration. In contrast to the previous surface reconstructions, where

  10. Structural study and fabrication of nano-pattern on ultra thin film of Ag grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Banerjee, S.; Mukherjee, S.; Kundu, S.

    2001-01-01

    We present the structural study of ultra thin Ag films using grazing incidence x-ray reflectivity and the modification of these films with the tip of an atomic force microscope. Ag thin films are deposited using dc magnetron sputtering on a Si(001) substrate. Initially, the growth of the film is carpet like and above a certain thickness (∼42 A) the film structure changes to form mounds. This ultra thin film of Ag having carpet-like growth can be modified by the tip of an atomic force microscope, which occurs due to the porous nature of the film. A periodic pattern of nanometer dimensions has been fabricated on this film using the atomic force microscope tip. (author)

  11. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Shweta, E-mail: shwetaverma@rrcat.gov.in; Rao, B. T.; Detty, A. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Ganesan, V.; Phase, D. M. [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India); Rai, S. K. [Indus Synchrotons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Bose, A.; Joshi, S. C. [Proton Linac and Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-04-07

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles of increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.

  12. Comparative study of LaNiO$_3$/LaAlO$_3$ heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    OpenAIRE

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H. -U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity, microstructure as revealed by high-resolution transmission electron microscopy images and resistiv...

  13. Spin wave and percolation studies in epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ettayfi, A. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Colis, S.; Lenertz, M.; Dinia, A. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 UDS-CNRS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco)

    2016-07-01

    We investigate the magnetic and transport properties of high quality La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition. X-ray diffraction shows that the deposited films are epitaxial with the expected pseudo-cubic structure. Using the spin wave theory, the temperature dependence of magnetization was satisfactory modeled at low temperature, in which several fundamental magnetic parameters were obtained (spin wave stiffness, exchange constants, Fermi wave-vector, Mn–Mn interatomic distance). The transport properties were studied via the temperature dependence of electrical resistivity [ρ(T)], which shows a peak at Curie temperature due to metal to insulator transition. The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases. Reasonable agreement with the experimental data is reported. - Highlights: • The magnetic and transport properties of epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films are investigated. • The M(T) curve was modeled at low temperature, and several magnetic parameters were obtained using spin wave theory. • The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases.

  14. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  15. Effects of a finite melt on the thickness and composition of liquid phase epitaxial InGaAsP and InGaAs layers grown by the diffusion-limited step-cooling technique

    International Nuclear Information System (INIS)

    Cook, L.W.; Tashima, M.M.; Stillman, G.E.

    1980-01-01

    The thickness of InGaAsP (lambda/sub g/=1.15 μm) and InGaAs (lambda/sub g/=1.68 μm) liquid phase epitaxial layers grown on (100) InP substrates by the step-cooling technique has been measured as a function of growth time. (lambda/sub g/ is defined as the wavelength corresponding to the energy gap of the epitaxial layer.) For growth times much less than the shortest diffusion time tau/sub i/=l 2 /D/sub i/ of the melt constituents, where l is the melt height and D/sub i/ is the diffusivity of each component in the melt, the thickness is consistent with diffusion-limited theory, and the composition is constant. The time at which the growth rate deviates sharply from diffusion-limited theory and beyond which constant composition growth can no longer be maintained has been determined for the melt size used in our experiments and can be estimated for any melt size

  16. Observation of second spin reorientation transition within ultrathin region in Fe films on Ag(001) surface

    International Nuclear Information System (INIS)

    Khim, T.-Y.; Shin, M.; Lee, H.; Park, B.-G.; Park, J.-H.

    2014-01-01

    We acquired direct measurements for in-plane and perpendicular-to-plane magnetic moments of Fe films using an x-ray magnetic circular dichroism technique with increase of the Fe thickness (up to 40 Å) on the Ag(001) surface. Epitaxial Fe/Ag(001) films were grown in situ with the thickness varying from 2 Å to 40 Å, and the magnetic anisotropy was carefully investigated as a function of the film thickness. We found re-entrance of the in-plane magnetic anisotropy of the Fe film in ultrathin region. The results manifest that the epitaxial Fe/Ag(001) film undergoes two distinct spin reorientation transitions from in-plane to out-of-plane at the film thickness t ≈ 9 Å and back to in-plane at t ≈ 18 Å as t increases.

  17. Epitaxial growth and characterization of approximately 300-nm-thick AlInN films nearly lattice-matched to c-plane GaN grown on sapphire

    Science.gov (United States)

    Miyoshi, Makoto; Yamanaka, Mizuki; Egawa, Takashi; Takeuchi, Tetsuya

    2018-05-01

    AlInN epitaxial films with film thicknesses up to approximately 300 nm were grown nearly lattice-matched to a c-plane GaN-on-sapphire template by metalorganic chemical vapor deposition. The AlInN films showed relative good crystal qualities and flat surfaces, despite the existence of surface pits connected to dislocations in the underlying GaN film. The refractive index derived in this study agreed well with a previously reported result obtained over the whole visible wavelength region. The extinction coefficient spectrum exhibited a clear absorption edge, and the bandgap energy for AlInN nearly lattice-matched to GaN was determined to be approximately 4.0 eV.

  18. m-plane GaN layers grown by rf-plasma assisted molecular beam epitaxy with varying Ga/N flux ratios on m-plane 4H-SiC substrates

    International Nuclear Information System (INIS)

    Armitage, R.; Horita, M.; Suda, J.; Kimoto, T.

    2007-01-01

    A series of m-plane GaN layers with the Ga beam-equivalent pressure (BEP) as the only varied parameter was grown by rf-plasma assisted molecular beam epitaxy on m-plane 4H-SiC substrates using AlN buffer layers. The smoothest growth surfaces and most complete film coalescence were found for the highest Ga BEP corresponding to the Ga droplet accumulation regime. However, better structural quality as assessed by x-ray rocking curves was observed for growth at a lower Ga BEP value below the droplet limit. The variation of rocking curve widths for planes inclined with respect to the epilayer c axis followed a different trend with Ga BEP than those of reflections parallel to the c axis. The GaN layers were found to exhibit a large residual compressive strain along the a axis

  19. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  20. Effect of Al/N ratio during nucleation layer growth on Hall mobility and buffer leakage of molecular-beam epitaxy grown AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Storm, D.F.; Katzer, D.S.; Binari, S.C.; Shanabrook, B.V.; Zhou Lin; Smith, David J.

    2004-01-01

    AlGaN/GaN high electron mobility transistor structures have been grown by plasma-assisted molecular beam epitaxy on semi-insulating 4H-SiC utilizing an AlN nucleation layer. The electron Hall mobility of these structures increases from 1050 cm 2 /V s to greater than 1450 cm 2 /V s when the Al/N flux ratio during the growth of the nucleation layer is increased from 0.90 to 1.07. Buffer leakage currents increase abruptly by nearly three orders of magnitude when the Al/N ratio increases from below to above unity. Transmission electron microscopy indicates that high buffer leakage is correlated with the presence of stacking faults in the nucleation layer and cubic phase GaN in the buffer, while low mobilities are correlated with high dislocation densities

  1. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Xia, Y.; Vinter, B.; Chauveau, J.-M.; Brault, J.; Nemoz, M.; Teisseire, M.; Leroux, M.

    2011-01-01

    Nonpolar (1120) Al 0.2 Ga 0.8 N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (1120) Zn 0.74 Mg 0.26 O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  2. Photoluminescence of heterostructures with GaP1−xNx and GaP1−x−yNxAsy layers grown on GaP and Si substrates by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lazarenko, A. A.; Nikitina, E. V.; Sobolev, M. S.; Pirogov, E. V.; Denisov, D. V.; Egorov, A. Yu.

    2015-01-01

    The structural and optical properties of heterostructures containing GaP 1−x N x ternary and GaP 1−x−y N x As y quaternary alloy layers are discussed. The heterostructures are grown by molecular-beam epitaxy on GaP and Si substrates. The structures are studied by the high-resolution X-ray diffraction technique and photoluminescence measurements in a wide temperature range from 10 to 300 K. In the low-temperature photoluminescence spectra of the alloys with a low nitrogen fraction (x < 0.007), two clearly resolved narrow lines attributed to the localized states of nitrogen pairs and the phonon replicas of these lines are observed

  3. Incorporation of La in epitaxial SrTiO{sub 3} thin films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G., E-mail: ekerdt@utexas.edu [University of Texas at Austin, Department of Chemical Engineering, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [University of Texas at Austin, Department of Physics, Austin, Texas 78712 (United States); Karako, Christine M. [University of Dallas, Department of Chemistry, Irving, Texas 75062 (United States); Bruley, John; Frank, Martin M.; Narayanan, Vijay [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-06-14

    Strontium titanate, SrTiO{sub 3} (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5–25 nm. Atomic layer deposition (ALD) is used to grow the La{sub x}Sr{sub 1−x}TiO{sub 3} (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (∼225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ∼2.0 × 10{sup −2} Ω cm for 20-nm-thick La:STO (x ∼ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO{sub 3} integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  4. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Energy Technology Data Exchange (ETDEWEB)

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  5. Growth and coalescence control of inclined c-axis polar and semipolar GaN multilayer structures grown on Si(111), Si(112), and Si(115) by metalorganic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Sankowska, Iwona [The Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa (Poland)

    2016-09-15

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observed that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.

  6. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  7. Investigation of AlN films grown by molecular beam epitaxy on vicinal Si(111) as templates for GaN quantum dots

    International Nuclear Information System (INIS)

    Benaissa, M.; Vennegues, P.; Tottereau, O.; Nguyen, L.; Semond, F.

    2006-01-01

    The use of AlN epitaxial films deposited on vicinal Si(111) as templates for the growth of GaN quantum dots is investigated by transmission electron microscopy and atomic force microscopy. It is found that the substrate vicinality induces both a slight tilt of the AlN (0001) direction with respect to the [111] direction and a step bunching mechanism. As a consequence, a dislocation dragging behavior is observed giving rise to dislocation-free areas well suited for the nucleation of GaN quantum dots

  8. Water Splitting over Epitaxially Grown InGaN Nanowires on-Metallic Titanium/Silicon Template: Reduced Interfacial Transfer Resistance and Improved Stability

    KAUST Repository

    Ebaid, Mohamed; Min, Jungwook; Zhao, Chao; Ng, Tien Khee; Idriss, Hicham; Ooi, Boon S.

    2018-01-01

    grown on Si substrate. The interfacial transfer resistance was also reduced significantly after introducing the metallic Ti interlayer. An applied-bias-photon-to-current conversion efficiency of 2.2% and almost unity Faradic efficiency for hydrogen

  9. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110)

    International Nuclear Information System (INIS)

    Dávila, M E; Montero, I; Marele, A; Gómez-Rodríguez, J M; De Padova, P; Hennies, F; Pietzsch, A; Shariati, M N; Le Lay, G

    2012-01-01

    We have investigated the geometry and electronic structure of two different types of self-aligned silicon nanoribbons (SiNRs), forming either isolated SiNRs or a self-assembled 5 × 2/5 × 4 grating on an Ag(110) substrate, by scanning tunnelling microscopy and high resolution x-ray photoelectron spectroscopy. At room temperature we further adsorb on these SiNRs either atomic or molecular hydrogen. The hydrogen absorption process and hydrogenation mechanism are similar for isolated or 5 × 2/5 × 4 ordered SiNRs and are not site selective; the main difference arises from the fact that the isolated SiNRs are more easily attacked and destroyed faster. In fact, atomic hydrogen strongly interacts with any Si atoms, modifying their structural and electronic properties, while molecular hydrogen has first to dissociate. Hydrogen finally etches the Si nanoribbons and their complete removal from the Ag(110) surface could eventually be expected. (paper)

  10. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    Science.gov (United States)

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-13

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  11. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces.

    Science.gov (United States)

    Bostancioglu, R Beklem; Gurbuz, Mevlut; Akyurekli, Ayse Gul; Dogan, Aydin; Koparal, A Savas; Koparal, A Tansu

    2017-07-01

    Accelerated Mesenchymal Stem Cells (MSCs) condensation and robust MSC-matrix and MSC-MSC interactions on nano-surfaces may provide critical factors contributing to such events, likely through the orchestrated signal cascades and cellular events modulated by the extracellular matrix. In this study, human adipose tissue derived mesenchymal stem cells (hMSC)', were grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite (HAP) nano-coated surfaces. These metal ions are known to have different chemical and surface properties; therefore we investigated their respective contributions to cell viability, cellular behavior, osteogenic differentiation capacity and substrate-cell interaction. Nano-powders were produced using a wet chemical process. Air spray deposition was used to accumulate the metal ion doped HAP films on a glass substrate. Cell viability was determined by MTT, LDH and DNA quantitation methods Osteogenic differentiation capacity of hMSCs was analyzed with Alizarin Red Staining and Alkaline Phosphatase Specific Activity. Adhesion of the hMSCs and the effect of cell adhesion on biomaterial biocompatibility were explored through cell adhesion assay, immunofluorescence staining for vinculin and f-actin cytoskeleton components, SEM and microarray including 84 known extracellular matrix proteins and cell adhesion pathway genes, since, adhesion is the first step for good biocompability. The results demonstrate that the viability and osteogenic differentiation of the hMSCs (in growth media without osteogenic stimulation) and cell adhesion capability are higher on nanocoated surfaces that include Zn, Ag and/or Cu metal ions than commercial HAP. These results reveal that Zn, Ag and Cu metal ions contribute to the biocompatibility of exogenous material. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evolution of the optical transitions in AlxGa1-xAs/GaAs quantum well structures grown on GaAs buffers with different surface treatments by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Mejia-Garcia, C.; Caballero-Rosas, A.; Lopez-Lopez, M.; Winter, A.; Pascher, H.; Lopez-Lopez, J.L.

    2010-01-01

    Al 0.3 Ga 0.7 As/GaAs Quantum Well structures were grown by molecular beam epitaxy (MBE) on a 500 nm thick GaAs buffer layer subjected to the following surface processes: a) in-situ Cl 2 etching at 70 o C and 200 o C, b) air-exposure for 30 min. The characteristics of these samples were compared to those of a continuously grown sample with no processing (control sample). We obtained the quantum wells energy transitions using photoreflectance spectroscopy as a function of the temperature (8-300 K), in the range of 1.2 to 2.1 eV. The sample etched at 200 o C shows a larger intensity of the quantum well peaks in comparison to the others samples. We studied the temperature dependence of the excitonic energies in the quantum wells (QWs) as well as in GaAs using three different models; the first one proposed by Varshni [4], the second one by Vina et al. [5], and the third one by Paessler and Oelgart [6]. The Paessler model presents the best fitting to the experimental data.

  13. Characteristic of doping and diffusion of heavily doped n and p type InP and InGaAs epitaxial layers grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pinzone, C.J.; Dupuis, R.D.; Ha, N.T.; Luftman, H.S.; Gerrard, N.D.

    1990-01-01

    Electronic and photonic device applications of the InGaAs/InP materials system often require the growth of epitaxial material doped to or near the solubility limit of the impurity in the host material. These requirements present an extreme challenge for the crystal grower. To produce devices with abrupt dopant profiles, preserve the junction during subsequent growth, and retain a high degree of crystalline perfection, it is necessary to understand the limits of dopant incorporation and the behavior of the impurity in the material. In this study, N-type doping above 10 19 cm -3 has been achieved in InP and InGaAs using Sn as a dopant. P-type Zn doping at these levels has also been achieved in these materials but p type activation above ∼3 x 10 18 cm -3 in InP has not been seen. All materials were grown by the metalorganic chemical vapor deposition (MOCVD) crystal growth technique. Effective diffusion coefficients have been measured for Zn and Sn in both materials from analysis of secondary ion mass spectra (SIMS) of specially grown and annealed samples

  14. Order parameters and magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga epitaxial films grown on MgO (001) and SrTiO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Mitani, Seiji; Hono, Kazuhiro [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-07-21

    We study the relationship between long range order parameters and the magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga (MnGa) epitaxial films grown on MgO (001) and SrTiO{sub 3} (STO) (001) single crystalline substrates. MnGa films deposited on MgO (001) show rather large irregular variation in magnetization with increasing substrate temperature in spite of the improved long range order of total atomic sites. The specific site long range order of Mn-I site characterized in the [101] orientation revealed the fluctuation of the occupation fraction of two Mn atomic sites with elevated substrate temperature, which appears more relevant to the observed magnetization change than the long range order of the total atomic sites. In case of MnGa films grown on the lattice-matched STO (001), high long range order of the total atomic sites in spite of the existence of secondary phase represents that the lattice mismatch plays a crucial role in determining the atomic arrangement of Mn and Ga atoms in the off-stoichiometric compositional case of MnGa.

  15. Effect of III/V ratio on the polarity of AlN and GaN layers grown in the metal rich growth regime on Si(111) by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Agrawal, Manvi; Dharmarasu, Nethaji; Radhakrishnan, K.; Pramana, Stevin Snellius

    2015-01-01

    Wet chemical etching, reflection high energy electron diffraction, scanning electron microscope and convergent beam electron diffraction have been employed to study the polarities of AlN and the subsequently grown GaN as a function of metal flux in the metal rich growth regime. Both AlN and GaN exhibited metal polarity in the intermediate growth conditions. However, in the droplet growth regime, the polarity of AlN and GaN were N polar and Ga polar, respectively. It was observed that Ga polar GaN could be obtained on both Al and N polar AlN. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure exhibiting hall mobility of 900 cm 2 V -1 s -1 and sheet carrier density of 1.2 × 10 13 cm -2 was demonstrated using N polar AlN which confirmed Ga polarity of GaN. Al metal flux was likely to play an important role in controlling the polarity of AlN and determining the polarity of the subsequent GaN grown on Si(111) by plasma assisted molecular beam epitaxy (PA-MBE). (author)

  16. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-01-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (β-In 2 O 3 ) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal (α)-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although β-In 2 O 3 grains with wide band-gap energy were formed in In film by N 2 annealing, they were not easily formed in N 2 -annealed InN films. Even if they were not detected in N 2 -annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]≤0.5%). Although [O]∝1% could be estimated by investigating In 2 O 3 grains formed in N 2 -annealed InN films, [O]≤0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In 2 O 3 grains formed by H 2 annealing with higher reactivity with InN and O 2 , using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  18. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  19. Characterization of GaN P-N Junction Grown on Si (111) Substrate by Plasma-assisted Molecular Beam Epitaxy

    International Nuclear Information System (INIS)

    Rosfariza Radzali; Rosfariza Radzali; Mohd Anas Ahmad; Zainuriah Hassan; Norzaini Zainal; Kwong, Y.F.; Woei, C.C.; Mohd Zaki Mohd Yusoff; Mohd Zaki Mohd Yusoff

    2011-01-01

    In this report, the growth of GaN pn junction on Si (111) substrate by plasma assisted molecular beam epitaxy (PAMBE) is presented. Doping of GaN p-n junction has been carried out using Si and Mg as n-type dopant and p-type dopants, respectively. The sample had been characterized by PL, Raman spectroscopy, HR-XRD and SEM. PL spectrum showed strong band edge emission of GaN at ∼364 nm, indicating good quality of the sample. The image of SEM cross section of the sample showed sharp interfaces. The presence of peak ∼657 cm -1 in Raman measurement exhibited successful doping of Mg in the sample. (author)

  20. Step-flow anisotropy of the m-plane GaN (1100) grown under nitrogen-rich conditions by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Sawicka, Marta; Siekacz, Marcin; Skierbiszewski, Czeslaw; Turski, Henryk; Krysko, Marcin; DziePcielewski, Igor; Grzegory, Izabella; Smalc-Koziorowska, Julita

    2011-01-01

    The homoepitaxial growth of m-plane (1100) GaN was investigated by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions. The surface morphologies as a function of sample miscut were studied, providing evidence for a strong growth anisotropy that is a consequence of the anisotropy of Ga adatom diffusion barriers on the m-plane surface recently calculated ab initio[Lymperakis and Neugebauer, Phys. Rev. B 79, 241308(R) (2009)]. We found that substrate miscut toward [0001] implies a step flow toward while substrate miscut toward [0001] causes formation of atomic steps either perpendicular or parallel to the [0001] direction, under N-rich conditions at 730 deg C. We describe the growth conditions for achieving atomically flat m-plane GaN layers with parallel atomic steps.

  1. Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kageyama, Takeo; Miyamoto, Tomoyuki; Ohta, Masataka; Matsuura, Tetsuya; Matsui, Yasutaka; Furuhata, Tatsuya; Koyama, Fumio

    2004-01-01

    A surfactant effect of antimony (Sb) on highly strained GaInAs quantum wells (QWs) was studied by molecular beam epitaxy. Noticeable improvement of the photoluminescence (PL) was observed by adding the dilute Sb. The QWs showed an increased PL intensity and narrow linewidth of 23 meV for the wavelength range up to 1180 nm. An atomic force microscope study showed a flattened surface morphology by the introduction of the Sb. Broad-area lasers with a GaInAsSb/GaAs double-QW active layer emitting at 1170 nm showed a low threshold current density of 125 A/cm 2 per well for an infinite cavity length

  2. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  3. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  4. Epitaxial grown InP quantum dots on a GaAs buffer realized on GaP/Si(001) templates

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Walter; Wiesner, Michael; Koroknay, Elisabeth; Paul, Matthias; Jetter, Michael; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen und Research Center SCoPE, Universitaet Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2013-07-01

    The increasing necessity of higher computational capacity and security in the information technology requires originally technical solutions, which today's standard microelectronics, as their technical limits are close, can't provide anymore. One way out offers the integration of III-V semiconductor photonics with low-dimensional structures in current CMOS technology, enabling on-chip quantum optical applications, like quantum cryptography or quantum computing. Challenges in the heteroepitaxy of III-V semiconductors and silicon are the mismatches in material properties of the both systems. Defects, like dislocations and anti-phase domains (APDs), inhibit the monolithic integration of III-V semiconductor on Si. We present the growth of a thin GaAs buffer on CMOS-compatible oriented Si(001) by metal-organic vapor-phase epitaxy. To circumvent the forming APDs in the GaAs buffer a GaP on Si template (provided by NAsP{sub III/V} GmbH) was used. The dislocation density was then reduced by integrating several layers of InAs quantum dots in the GaAs buffer to bend the threading misfit dislocations. On top of this structure we grew InP quantum dots embedded in a Al{sub x}Ga{sub 1-x}InP composition and investigated the photoluminescence properties.

  5. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

    Science.gov (United States)

    Pritchett, David; Henderson, Walter; Burnham, Shawn D.; Doolittle, W. Alan

    2006-04-01

    The surface reaction byproducts during the growth of GaN films via metal organic molecular beam epitaxy (MOMBE) were investigated as a means to optimize material properties. Ethylene and ethane were identified as the dominant surface reaction hydrocarbon byproducts, averaging 27.63% and 7.15% of the total gas content present during growth. Intense ultraviolet (UV) photoexcitation during growth was found to significantly increase the abundance of ethylene and ethane while reducing the presence of H2 and N2. At 920°C, UV excitation was shown to enhance growth rate and crystalline quality while reducing carbon incorporation. Over a limited growth condition range, a 4.5×1019-3.4×1020 cm-3 variation in carbon incorporation was achieved at constant high vacuum. Coupled with growth rate gains, UV excitation yielded films with ˜58% less integrated carbon content. Structural material property variations are reported for various ammonia flows and growth temperatures. The results suggest that high carbon incorporation can be achieved and regulated during MOMBE growth and that in-situ optimization through hydrocarbon analysis may provide further enhancement in the allowable carbon concentration range.

  6. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  7. Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses

    Science.gov (United States)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel

    2018-01-01

    Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.

  8. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001 surface: nucleation, morphology, and CMOS compatibility

    Directory of Open Access Journals (Sweden)

    Yuryev Vladimir

    2011-01-01

    Full Text Available Abstract Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001 surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C and high (≳600°C temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001 surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001 quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  9. Photoluminescence studies of cubic phase GaN grown by molecular beam epitaxy on (001) silicon covered with SiC layer

    International Nuclear Information System (INIS)

    Godlewski, M.; Ivanov, V.Yu.; Bergman, J.P.; Monemar, B.; Barski, A.; Langer, R.

    1997-01-01

    In this work we evaluate optical properties of cubic phase GaN epilayers grown on top of (001) silicon substrate prepared by new process. Prior to the growth Si substrate was annealed at 1300-1400 o C in propane. The so-prepared substrate is covered within a thin (∼ 4 nm) SiC wafer, which allowed a successful growth of good morphological quality cubic phase GaN epilayers. The present results confirm recent suggestion on smaller ionization energies of acceptors in cubic phase GaN epilayers. (author)

  10. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  11. Optical characterization of Zn-doped In{sub 0.14}Ga{sub 0.86}As{sub 0.13}Sb{sub 0.87} layers grown by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Reyes, Joel, E-mail: jdiazr2010@yahoo.com [CIBA-IPN, Ex-Hacienda de San Juan Molino Km. 1.5. Tepetitla, Tlaxcala 90700. Mexico (Mexico); Rodriguez-Fragoso, Patricia; Mendoza-Alvarez, Julio Gregorio [Departamento de Fisica, CINVESTAV-IPN, A.P. 14-740, Mexico, D.F. 07000 (Mexico)

    2013-02-15

    Quaternary layers were grown by liquid phase epitaxy on (1 0 0) GaSb substrates under lattice-matching conditions. The low-temperature photoluminescence of p-type In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} was obtained as a function of incorporated zinc concentration. The photoluminescence spectra were interpreted using a model which takes into account nonparabolicity of the valence band. Calculations of the peak position and photoluminescence transitions were performed. Both the band filling as well as band tailing due to Coulomb interaction of free carriers with ionized impurities and shrinkage due to exchange interaction between free carriers were considered in order to properly account for the observed features of photoluminescence spectra. It is proposed that low-temperature photoluminescence band-to-band energy transition can be used to obtain the carrier concentration in p-type In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y}. This method could be used to estimate free carrier concentration ranging from 6.036 Multiplication-Sign 10{sup 16} to 1.350 Multiplication-Sign 10{sup 18} cm{sup -3}. - Highlights: Black-Right-Pointing-Pointer In this work the optical characterization of InGaAsSb highly doped with zinc by grown LPE.is reported Black-Right-Pointing-Pointer It analyses the LT-PL of p-type InGaAsSb layersis analzysed as a function of incorporated zinc concentration. Black-Right-Pointing-Pointer The PL was interpreted using a model that takes into account nonparabolicity of the valence band. Black-Right-Pointing-Pointer The band-to-band transition energy can be used to estimate the hole concentration in InGaAsSb.

  12. Defect structure in m-plane GaN grown on LiAlO{sub 2} using metalorganic and hydride vapour phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Netzel, Carsten; Richter, Eberhard; Knauer, Arne; Brunner, Frank; Weyers, Markus [FBH Berlin (Germany); Mogliatenko, Anna; Neumann, Wolfgang [AG Kristallographie, Institut fuer Physik, HU Berlin (Germany); Kneissl, Michael [FBH Berlin (Germany); Institute of Solid State Physics, TU Berlin (Germany)

    2008-07-01

    The FWHM of symmetric (10 anti 10) XRD rocking curves of m-plane GaN grown on LiAlO{sub 2} is anisotropic. By investigating the microstructure with transmission electron microscopy (TEM) we identified basal plane stacking faults (BSF) and stacking mismatch boundaries (SMB) in the GaN layers. BSFs are aligned in-plane along the a-direction and therefore cause an anisotropic broadening of the FWHM{sub (10 anti 10)} with incidence along [0001]. SMBs have no preferential direction and hence result in an isotropic broadening of the FWHM{sub (10 anti 10)}. We observed that this anisotropy can be reduced by lowering the MOVPE growth temperature. We propose that the lowering of the growth temperature leads to a reduction of BSFs which is accompanied by an increase in SMBs. The MOVPE grown layers were used as templates for the growth of 200 {mu}m thick m-plane GaN layers by HVPE. During HVPE growth the LiAlO{sub 2} substrate thermally decomposed and peeled off after cool-down. On the surface a network of cracks not being aligned to crystallographic directions was found. The layers were not transparent probably due to metallic Ga inclusions and exhibited an asymmetric bow according to the lattice anisotropy of the (100) LiAlO{sub 2} surface.

  13. Lattice vibrations study of Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} quaternary alloys with low (In, As) content grown by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olvera-Herandez, J [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Olvera-Cervantes, J [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Rojas-Lopez, M [Centro de Investigacion en BiotecnologIa Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72160 (Mexico); Navarro-Contreras, H [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico); Vidal, M A [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico); Anda, F de [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico)

    2006-01-01

    Raman scattering spectroscopy was used to measure and analyze the lattice vibrations in some quaternary Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} alloys with low (In, As) contents (0.03 grown by liquid phase epitaxy on (001) GaSb substrates at 540{sup 0}C. High Resolution X-Ray Diffraction results showed profiles associated with a quaternary layer lattice matched to the GaSb substrate as obtained from the (004) reflection. The experimental diffractograms were simulated to estimate alloy composition, thickness and lattice mismatch of the layer. Raman scattering results show phonon frequencies associated to the TO and LO GaAs-like modes as well as GaSb + InAs-like mode, which are characteristic of this quaternary alloy. The As content dependence of the phonon frequency measured in this alloy for low (In, As) contents agree well with the modified Random-Element Isodisplacement (REI) model and also with other available experimental reports. This method can also be used to estimate alloy compositions for this kind of quaternary alloys.

  14. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  15. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  16. Structure characterization of MHEMT heterostructure elements with In{sub 0.4}Ga{sub 0.6}As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Ermakova, M. A. [Federal Agency on Technical Regulating and Metrology, Center for Study of Surface and Vacuum Properties (Russian Federation); Ruban, O. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2016-03-15

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  17. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.; Bouzidi, M.; Chine, Z.; Toure, A.; Halidou, I.; El Jani, B.; Shakfa, M. K.

    2017-01-01

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  18. Structure characterization of MHEMT heterostructure elements with In0.4Ga0.6As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    Science.gov (United States)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2016-03-01

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  19. Structure characterization of MHEMT heterostructure elements with In_0_._4Ga_0_._6As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    International Nuclear Information System (INIS)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2016-01-01

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In_0_._4Ga_0_._6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In_xGa_1_–_xAs ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  20. Absence of low temperature phase transitions and enhancement of ferroelectric transition temperature in highly strained BaTiO{sub 3} epitaxial films grown on MgO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish; Kumar, Dhirendra; Sathe, V. G., E-mail: vasant@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Kumar, Ravi; Sharma, T. K. [Semiconductor Physics and Devices Lab, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-04-07

    Recently, a large enhancement in the ferroelectric transition temperature of several oxides is reported by growing the respective thin films on appropriate substrates. This phenomenon is correlated with high residual strain in thin films often leading to large increase in the tetragonality of their crystal structure. However, such an enhancement of transition temperature is usually limited to very thin films of ∼10 nm thickness. Here, we report growth of fully strained epitaxial thin films of BaTiO{sub 3} of 400 nm thickness, which are coherently grown on MgO substrates by pulsed laser deposition technique. Conventional high resolution x-ray diffraction and also the reciprocal space map measurements confirm that the film is fully strained with in-plane tensile strain of 5.5% that dramatically increases the tetragonality to 1.05. Raman measurements reveal that the tetragonal to cubic structural phase transition is observed at 583 K, which results in an enhancement of ∼200 K. Furthermore, temperature dependent Raman studies on these films corroborate absence of all the low temperature phase transitions. Numerical calculations based on thermodynamical model predict a value of the transition temperature that is greater than 1500 °C. Our experimental results are therefore in clear deviation from the existing strain dependent phase diagrams.

  1. Fluorescence extended X-ray absorption fine structure analysis of half-metallic ferromagnet 'zinc-blende CrAs' grown on GaAs by molecular beam epitaxy

    CERN Document Server

    Ofuchi, H; Ono, K; Oshima, M; Akinaga, H; Manago, T

    2003-01-01

    In this work, geometric structures for a half-metallic ferromagnet 'zinc-blende CrAs', which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 A. This value is close to that which was estimated from the lattice constant (5.82 A) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy.

  2. Fluorescence extended X-ray absorption fine structure analysis of half-metallic ferromagnet 'zinc-blende CrAs' grown on GaAs by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ofuchi, H.; Mizuguchi, M.; Ono, K.; Oshima, M.; Akinaga, H.; Manago, T.

    2003-01-01

    In this work, geometric structures for a half-metallic ferromagnet 'zinc-blende CrAs', which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 A. This value is close to that which was estimated from the lattice constant (5.82 A) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy

  3. Enhancement of Two-Dimensional Electron-Gas Properties by Zn Polar ZnMgO/MgO/ZnO Structure Grown by Radical-Source Laser Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Li Meng

    2015-01-01

    Full Text Available A Zn polar ZnMgO/MgO/ZnO structure with low Mg composition Zn1-xMgxO layer (x = 0.05 grown on a-plane (11–20 sapphire by radical-source laser molecular beam epitaxy was reported. The insertion of a thin (1 nm MgO layer between ZnMgO and ZnO layers in the ZnMgO/ZnO 2DEG structures results in an increase of 2DEG sheet density and affects electron mobility slightly. The carrier concentration reached a value as high as 1.1 × 1013 cm−2, which was confirmed by C-V measurements. A high Hall mobility of 3090 cm2/Vs at 10 K and 332 cm2/Vs at RT was observed from Zn0.95Mg0.05O/MgO/ZnO heterostructure. The choice of the thickness of MgO was discussed. The dependence of carrier sheet density of 2DEG on ZnMgO layer thickness was calculated in theory and the theoretical prediction and experimental results agreed well.

  4. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    International Nuclear Information System (INIS)

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  5. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    Science.gov (United States)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  6. Scanning tunneling microscope observation and magnetic anisotropy of molecular beam epitaxy-grown Fe/Pt superlattices with (111) and (001) orientations

    International Nuclear Information System (INIS)

    Yamamoto, S.; Kato, T.; Iwata, S.; Tsunashima, S.; Uchiyama, S.

    2004-01-01

    The surface morphology and the perpendicular magnetic anisotropy for (001) and (111) oriented [Pt(nML)/Fe(nML)] 10 superlattices were investigated. From in situ scanning tunneling microscope observation, the small grain whose diameter was about 5-10 nm and height was 0.2-0.4 nm, was observed in the Fe(2 ML) surface grown at room temperature on the Pt(111) seed layer, while the surface of the Fe deposited at 150 deg. C was covered with flat terraces and steps. It is found that the (111) oriented films were all in-plane magnetized. On the other hand, the (001) films were in-plane magnetized at room temperature, perpendicular magnetized at 100 deg. C and 150 deg. C

  7. Plastic relaxation of GeSi/Si(001) films grown by molecular-beam epitaxy in the presence of the Sb surfactant

    International Nuclear Information System (INIS)

    Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Kolesnikov, A. V.; Sokolov, L. V.

    2007-01-01

    Plastically relaxed GeSi films with the Ge fraction equal to 0.29-0.42 and thickness as large as 0.5 μm were grown on Si (001) substrates using the low-temperature (350 deg. C) buffer Si layer and Sb as a surfactant. It is shown that introduction of Sb that smoothens the film surface at the stage of pseudomorphic growth lowers the density of threading dislocations in the plastically relaxed heterostructure by 1-1.5 orders of magnitude and also reduces the final roughness of the surface. The root-mean-square value of roughness smaller than 1 nm was obtained for a film with the Ge content of 0.29 and the density of threading dislocations of about 10 6 cm -2 . It is assumed that the effect of surfactant is based on the fact that the activity of surface sources of dislocations is reduced in the presence of Sb

  8. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho-Kyun; Kim, Han-Ki [Department of Display Materials Research Center, Materials Research Center for Information Displays (MRCID), Kyung Hee University, 1 Seocheon-dong, Youngin-si, Gyeonggi-do 446-701 (Korea); Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science(KIMS), 66 Sangnam-dong, Changwon-si, Gyeongnam 641-831 (Korea); Na, Seok-In; Kim, Don-Yu. [Heeger Center for Advanced Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryoung-dong, Gwangju 500-712 (Korea)

    2009-11-15

    We compared the electrical, optical, structural and surface properties of indium-free Ga-doped ZnO (GZO)/Ag/GZO and Al-doped ZnO (AZO)/Ag/AZO multilayer electrodes deposited by dual target direct current sputtering at room temperature for low-cost organic photovoltaics. It was shown that the electrical and optical properties of the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes could be improved by the insertion of an Ag layer with optimized thickness between oxide layers, due to its very low resistivity and surface plasmon effect. In addition, the Auger electron spectroscopy depth profile results for the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes showed no interfacial reaction between the Ag layer and GZO or AZO layer, due to the low preparation temperature and the stability of the Ag layer. Moreover, the bulk heterojunction organic solar cell fabricated on the multilayer electrodes exhibited higher power conversion efficiency than the organic solar cells fabricated on the single GZO or AZO layer, due to much lower sheet resistance of the multilayer electrode. This indicates that indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes are a promising low-cost and low-temperature processing electrode scheme for low-cost organic photovoltaics. (author)

  9. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Chung, S J; Lee, Y S; Suh, E-K; Senthil Kumar, M; An, M H

    2010-01-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  10. Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.

    2015-01-01

    The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.

  11. Point defect balance in epitaxial GaSb

    International Nuclear Information System (INIS)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  12. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.

    2015-10-01

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 1016 to 3.8 × 1019 cm-3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1-2 × 1015 cm-3. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically enhanced growth rates demonstrate

  13. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bresnahan, Rich C. [Veeco Instruments, St. Paul, Minnesota 55127 (United States)

    2015-10-21

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N{sub 2} while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N{sub 2} and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10{sup 16} to 3.8 × 10{sup 19} cm{sup −3} were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10{sup 15} cm{sup −3}. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be

  14. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.

    2015-01-01

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N 2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N 2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10 16 to 3.8 × 10 19 cm −3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10 15 cm −3 . The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the

  15. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures

    Science.gov (United States)

    Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.

    2018-05-01

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.

  16. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  17. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  18. Bandgap measurements and the peculiar splitting of E{sub 2}{sup H} phonon modes of In{sub x}Al{sub 1-x}N nanowires grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Prabaswara, Aditya; Ooi, Boon S., E-mail: boon.ooi@kaust.edu.sa [Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Anjum, Dalaver H.; Yang, Yang [Adavanced nanofabrication Imaging and characterization, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M. [National Center for Nanotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442-6086 (Saudi Arabia)

    2016-07-28

    The dislocation free In{sub x}Al{sub 1-x}N nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of In{sub x}Al{sub 1-x}N NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A{sub 1}(LO) phonons and single mode behavior for E{sub 2}{sup H} phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E{sub 2}{sup H} phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A{sub 1}(LO) and E{sub 2}{sup H} phonons in In{sub x}Al{sub 1-x}N NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important In{sub x}Al{sub 1-x}N nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  19. Insulator at the ultrathin limit: MgO on Ag(001).

    Science.gov (United States)

    Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D

    2001-12-31

    The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.

  20. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  1. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  2. Manifestations of strain–relaxation in the structure of nano-sized Co-2 × 2 islands grown on Ag/Ge(111)-√3 × √3 surface

    International Nuclear Information System (INIS)

    Huang, Xiao-Lan; Tomaszewska, Agnieszka; Lin, Chun-Liang; Tsay, Sung-Lin; Chou, Chi-Hao; Fu, Tsu-Yi

    2012-01-01

    We have examined strain–relaxation of Co-2 × 2 islands grown on the Ag/Ge(111)-√3 × √3 surface by analyzing scanning tunneling microscopy images. We have found that the Co-2 × 2 islands commonly adopt a more compact arrangement as compared to that of the Ge(111) substrate, however they differ in a degree of an atomic compactness. We have not found a distinct relation between strain–relaxation and the island height. Three groups of islands have been identified upon analyzing a correspondence between strain–relaxation and the island size: (i) small islands (not bigger than 80 nm 2 ) with a high atomic compactness, displaying fixed inter-row distances, (ii) small islands with unfixed distances between atomic rows, and (iii) big islands (bigger than 80 nm 2 ) with fixed inter-row distances, but with a less compact atomic arrangement compared to that of the first two groups. We propose a model to account for the relation between the relaxation and the island size. - Highlights: ► We examine strain–relaxation of Co-2 × 2 islands grown on Ag/Ge(111)-√3 × √3 surface. ► The Co-2 × 2 islands are more compact as compared to the substrate. ► No relation between the relaxation and the island height. ► Atomic compactness and atomic order as manifestations of strain–relaxation.

  3. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  4. Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds.

    Science.gov (United States)

    González-Valdez, Eduardo; Alarcón, Alejandro; Ferrera-Cerrato, Ronald; Vega-Carrillo, Héctor René; Maldonado-Vega, María; Salas-Luévano, Miguel Ángel; Argumedo-Delira, Rosalba

    2018-06-15

    This study evaluated the ability of Brassica napus for extracting gold (Au), silver (Ag) and copper (Cu) from a mine tailings, with the inoculation of two Aspergillus niger strains, and the application of ammonium thiocyanate (NH 4 SCN) or ammonium thiosulfate [(NH 4 ) 2 S 2 O 3 ]. After seven weeks of growth inoculated or non-inoculated plants were applied with 1 or 2 g kg -1 of either NH 4 SCN or (NH 4 ) 2 S 2 O 3 , respectively. Eight days after the application of the chemical compounds, plants were harvested for determining the total dry biomass, and the content of Au, Ag, and Cu in plant organs. Application of (NH 4 ) 2 S 2 O 3 or NH 4 SCN resulted in enhanced Au-accumulation in stems (447% and 507%, respectively), while either (NH 4 ) 2 S 2 O 3 +Aspergillus, or NH 4 SCN increased the Au-accumulation in roots (198.5% and 404%, respectively) when compared to the control. Treatments with (NH 4 ) 2 S 2 O 3 or (NH 4 ) 2 S 2 O 3 +Aspergillus significantly increased (P ≤ 0.001) the accumulation of Ag in leaves (677% and 1376%, respectively), while NH 4 SCN + Aspergillus, and (NH 4 ) 2 S 2 O 3 enhanced the accumulation in stems (7153% and 6717.5%). The Ag-accumulation in roots was stimulated by NH 4 SCN+ Aspergillus, and (NH 4 ) 2 S 2 O 3 + Aspergillus (132.5% and 178%, respectively), when compared to the control. The combination of NH 4 SCN+Aspergillus significantly enhanced the Cu-accumulation in leaves (228%); whereas NH 4 SCN+ Aspergillus, or (NH 4 ) 2 S 2 O 3 + Aspergillus resulted in greater accumulation of Cu in stems (1233.5% and 1580%, respectively) than the control. Results suggest that either NH 4 SCN or (NH 4 ) 2 S 2 O 3 (with or without Aspergillus) improved the accumulation of Au and Ag by B. napus. Accumulation of Au and Ag in plant organs overpassed the hyperaccumulation criterion (> 1 mg kg -1 of plant biomass); whereas Cu-accumulation in stems and roots also overpassed such criterion (> 1000 mg kg -1 ) by applying

  5. Magnetic-property changes in epitaxial metal-film sandwiches

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1982-08-01

    Epitaxial metal-film sandwiches (EMFS) containing Pd or Cr, have been prepared between single-crystal Ag or Au. The modified Pd/Cr show major changes in physical properties. Pd has a stretched lattice parameter in Au-Pd-Au, which combines with a tetragonal distortion to cause exchange enhancements up to 28,000 and spin-fluctuation temperatures of 1 to 10 K. In Au-Cr-Au, Cr takes up the fcc structure, leading to superconductivity due to a high N(E/sub F/). These results are contrasted to data for Ag-Pd-Ag and Ag-Cr-Ag EMFS

  6. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  7. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  8. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates

    International Nuclear Information System (INIS)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO 3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO 3 epitaxially on sapphire Al 2 O 3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni 1−x Ti 1−y O 3 films of different Ni/Ti ratios and thicknesses were deposited on Al 2 O 3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO 3 thin films by film stoichiometry and thickness. - Highlights: • NiTiO 3 epitaxial thin films with LiNbO 3 -type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed

  9. Growth of Ag-seeded III-V Nanowires and TEM Characterization

    DEFF Research Database (Denmark)

    Lindberg, Anna Helmi Caroline

    appropriate, the density and the vertical yield were obtained. The crystal structures for the grown nanowires have been investigated with TEM.We have also performed additional growths to further understand exactly how the nanowire growth proceeds as well as to understand the limitations of using Ag as a seed......This thesis deals with growth and characterization of GaAs and InAs nanowires. Today Au nanoparticle-seeding together with self-catalyzing are the dominating techniques to grow III-V nanowires with molecular beam epitaxy. In this thesis we instead investigate the possibility to use Ag as seed...... particle for growth of GaAs and InAs nanowires. The aim with the experiments performed has been to conclude whether Ag can be used to nucleate and grow nanowires on III-V substrates with molecular beam epitaxy. To investigate this we have performed growths of GaAs nanowires on GaAs(111)B and GaAs(100...

  10. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  11. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  12. Atomically flat platinum films grown on synthetic mica

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  13. Semiconductor laser with longitudinal electron-beam pumping and based on a quantum-well ZnCdSe/ZnSe structure grown on a ZnSe substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kozlovskii, Vladimir I; Korostelin, Yurii V; Skasyrsky, Yan K; Shapkin, P V; Trubenko, P A; Dianov, Evgenii M

    1998-01-01

    The method of molecular beam epitaxy on a ZnSe substrate was used to grow a ZnCdSe/ZnSe structure with 115 quantum wells. This structure was made up into a cavity which included part of the substrate. Lasing was excited by longitudinal pumping with a scanning electron beam of E e = 40 - 70 keV energy. At T = 80 K for E e = 65 keV the threshold current density was 60 A cm -2 and the output power was 0.15 W at the 465 nm wavelength. At T= 300 K the lasing (λ= 474 nm) occurred in the ZnSe substrate. (lasers)

  14. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are ∼4% expanded uniformly in-plane (0001), and ∼9% and ∼4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs

  15. c-Axis correlated extended defects and critical current in YBa2Cu3Ox films grown on Au and Ag-nano dot decorated substrates

    International Nuclear Information System (INIS)

    Mikheenko, P.; Sarkar, A.; Dang, V.-S.; Tanner, J.L.; Abell, J.S.; Crisan, A.

    2009-01-01

    We report measurements of critical current in YBa 2 Cu 3 O x films deposited on SrTiO 3 substrates decorated with silver and gold nanodots. An increase in critical current in these films, in comparison with the films deposited on non-decorated substrates, has been achieved. We argue that this increase comes from the c-axis correlated extended defects formed in the films and originated from the nanodots. Additionally to creating extended defects, the nanodots pin them and prevent their exit from the sample during the film growth, thus keeping a high density of defects and providing a lower rate of decrease of the critical current with the thickness of the films. The best pinning is achieved in the samples with silver nanodots by optimising their deposition temperature. The nanodots grown at a temperature of a few hundred deg. C have a small diameter of a few nanometres and a high surface density of 10 11 -10 12 particles/cm 2 . We give evidence of c-axis correlated extended defects in YBa 2 Cu 3 O x films by planar and cross-sectional atomic force microscopy, transmission electron microscopy and angle-dependent transport measurements of critical current.

  16. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.

  17. The effect of growth interruptions at the interfaces in epitaxially grown GaInAsSb/AlGaAsSb multiple-quantum-wells studied with high-resolution x-ray diffraction and photoluminescence

    International Nuclear Information System (INIS)

    Selvig, E; Myrvaagnes, G; Bugge, R; Haakenaasen, R; Fimland, B O

    2006-01-01

    Molecular beam epitaxy has been used to grow GaInAsSb/AlGaAsSb multiple-quantum-well (MQW) structures. Growth has been interrupted at the interfaces between the wells and the barriers. During the growth interruptions, the interfaces have been exposed to Sb x (x=1, 2) and As 2 fluxes. The structures have been studied using high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL). The As content in the interface layers has been found to have a large impact on the HRXRD curves. The As content in the interface layers has been determined by simulation of HRXRD rocking curves. We also show how highly strained interfaces cause more satellite peaks to appear in HRXRD rocking curves. PL spectra show that interrupting growth at the interfaces between wells and barriers and exposing the interfaces to an Sb soak result in flatter interfaces

  18. Comparison of radiative and structural properties of 1.3 µm InxGa(1-x)As quantum-dot laser structures grown by metalorganic chemical vapor deposition and molecular-beam epitaxy: Effect on the lasing properties

    NARCIS (Netherlands)

    Passaseo, A.; Vittorio, de M.; Todaro, M.T.; Tarantini, I.; Giorgi, de M.; Cingolani, R.; Taurino, A.; Catalano, M.; Fiore, A.; Markus, A.; Chen, J.X.; Paranthoën, C.; Oesterle, U.; Ilegems, M.

    2003-01-01

    The authors have studied the radiative and structural properties of identical InxGa(1-x)As quantum dot laser structures grown by metalorg. CVD (MOCVD) and MBE. Despite the comparable emission properties found in the two devices by photoluminescence, electroluminescence, and photocurrent

  19. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  20. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)