WorldWideScience

Sample records for epitaxial silicon sensitive

  1. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  2. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  3. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  4. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    International Nuclear Information System (INIS)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-01-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a ∼10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38

  5. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  6. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  7. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  8. Synthesis of Si epitaxial layers from technical silicon by liquid-phase epitaxy method

    International Nuclear Information System (INIS)

    Ibragimov, Sh.I.; Saidov, A.S.; Sapaev, B.; Horvat, M.A.

    2004-01-01

    ·cm, concentration of carriers up to n∼4.33·10 17 cm -3 , mobility up to μ∼206 cm 2 /V·s, life time up to τ∼(5-10)·10 -6 s. We had been investigated spectral sensitivity and current-voltage characteristic of the epitaxial layer brought up from technical silicon + stannum at room temperature and at nitrogen one. The preliminary results of photoelectric measurement show advantage of the obtained structures for semiconductor instrument manufacture

  9. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  10. Charge collection properties of heavily irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Fretwurst, E.; Lindstroem, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2005-01-01

    Detectors processed on epitaxial silicon seem to be a viable solution for the extreme radiation levels in the innermost layers of tracking detectors at upgraded LHC (SLHC). A set of epitaxial pad detectors of 50 and 75μm thicknesses (ρ=50Ωcm) was irradiated with 24GeV/c protons and reactor neutrons up to equivalent fluences of 10 16 cm -2 . Charge collection for minimum ionizing electrons from a 90 Sr source was measured using a charge sensitive preamplifier and a 25ns shaping circuit. The dependence of collected charge on annealing time and operation temperature was studied. Results were used to predict the performance of fine pitch pixel detectors proposed for SLHC

  11. Charge collection properties of heavily irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia)]. E-mail: Gregor.Kramberger@ijs.si; Cindro, V. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Dolenc, I. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Fretwurst, E. [University of Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany); Lindstroem, G. [University of Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany); Mandic, I. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Mikuz, M. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia); Zavrtanik, M. [Institute Jozef Stefan, Jamova 39, SI-1111 Ljubljana (Slovenia)

    2005-12-01

    Detectors processed on epitaxial silicon seem to be a viable solution for the extreme radiation levels in the innermost layers of tracking detectors at upgraded LHC (SLHC). A set of epitaxial pad detectors of 50 and 75{mu}m thicknesses ({rho}=50{omega}cm) was irradiated with 24GeV/c protons and reactor neutrons up to equivalent fluences of 10{sup 16}cm{sup -2}. Charge collection for minimum ionizing electrons from a {sup 90}Sr source was measured using a charge sensitive preamplifier and a 25ns shaping circuit. The dependence of collected charge on annealing time and operation temperature was studied. Results were used to predict the performance of fine pitch pixel detectors proposed for SLHC.

  12. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  13. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  14. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  15. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  16. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  17. Use of epitaxial silicon diodes in photon dosimetry

    International Nuclear Information System (INIS)

    Pereira, Lilian Nunes

    2013-01-01

    In this work we report on results obtained with two rad-hard epitaxial (EPI) silicon diodes as on-line dosimeter for diagnostic radiology, mammography and computed tomography, in the 28 kV to 150 kV range. The epitaxial diodes used were processed at University of Hamburg on 50 μm thick epitaxial silicon layer. One sample was not irradiated before using as a dosimeter, while the other received a gamma pre-dose of 200kGy from 60 Co. For comparison, a standard float zone silicon diode was also studied. The samples irradiation was performed using X-ray beams from a Pantak/Seifert generator, model Isovolt 160 HS, previously calibrated with standardized ionization chambers, located at Laboratorio de Calibracao de Instrumentos of IPEN-CNEN/SP. The diode was connected to an electrometer Keithley 6517B in the photovoltaic mode. Irradiations were carried out with the diodes positioned at lm from the X-ray tube (focal spot). The main dosimetric parameters of the EPI samples were evaluated in according to IEC 61674 norm. The calibration coefficients of the diode, in terms of air kerma, were also determined. The repeatability was measured with photon beams of all qualities. The current signals induced showed the diodes are stable, characterized by coefficients of variation less than 0.3%. The current response of the unirradiated EPI diode has been shown to be very linear with dose-rate in the range of 0.8 up to 77.2 mGy/min. A linear relation between charge and dose in the whole energy range was observed for the three samples. It is important to notice that for EPI diodes non energy dependence was observed for mammography beams and until 70kV for radiodiagnostic qualities. The unirradiated diode presented sensitivity higher than the others, showing a decrease of 8% in this parameter after accumulated dose of 49.15 Gy. The dark currents were stable about 0.4 pA during the irradiations, value 10 4 higher than the lowest photocurrents measured. The directional response of both

  18. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  19. Increased carrier lifetimes in epitaxial silicon layers on buried silicon nitride produced by ion implantation

    International Nuclear Information System (INIS)

    Skorupa, W.; Kreissig, U.; Hensel, E.; Bartsch, H.

    1984-01-01

    Carrier lifetimes were measured in epitaxial silicon layers deposited on buried silicon nitride produced by high-dose nitrogen implantation at 330 keV. The values were in the range 20-200 μs. The results are remarkable taking into account the high density of crystal defects in the epitaxial layers. Comparing with other SOI technologies the measured lifetimes are higher by 1-2 orders of magnitude. (author)

  20. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  1. Synchrotron radiation excited silicon epitaxy using disilane

    International Nuclear Information System (INIS)

    Akazawa, Housei; Utsumi, Yuichi

    1995-01-01

    Synchrotron radiation (SR) excited chemical reactions provide new crystal growth methods suitable for low-temperature Si epitaxy. The growth kinetics and film properties were investigated by atomic layer epitaxy (ALE) and photochemical vapor deposition (CVD) modes using Si 2 H 6 . SR-ALE, isolating the surface growth channel mediated by photon stimulated hydrogen desorption, achieves digital growth independent of gas exposure time, SR irradiation time, and substrate temperature. On the other hand in SR-CVD, photolysis of Si 2 H 6 is predominant. In the nonirradiated region, Eley-Rideal type reaction between the photofragments and the surface deposit Si adatoms in a layer-by-layer fashion. In the irradiated region, however, multi-layer photolysis and rebounding occurs within the condensed Si 2 H 6 layer. The pertinent elementary processes were identified by using the high-resolution time-of-flight mass spectroscopy. The SR-CVD can grow a uniform and epitaxial Si film down to 200degC. The surface morphology is controlled by the surfactant effect of hydrogen atoms. (author)

  2. Ultrathin, epitaxial cerium dioxide on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Flege, Jan Ingo, E-mail: flege@ifp.uni-bremen.de; Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Bertram, Florian [Photon Science, Deutsches Elektronensynchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Wollschläger, Joachim [Department of Physics, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  3. Ion beam induced epitaxy in Ge- and B- coimplanted silicon

    International Nuclear Information System (INIS)

    Hayashi, N.; Hasegawa, M.; Tanoue, H.; Takahashi, H.; Shimoyama, K.; Kuriyama, K.

    1992-01-01

    The epitaxial regrowth of amorphous surface layers in and Si substrate has been studied under irradiation with 400 keV Ar + ions at the temperature range from 300 to 435degC. The amorphous layers were obtained by Ge + implantation, followed by B + implantation. The ion beam assisted epitaxy was found to be sensitive to both the substrate orientation and the implanted Ge concentration, and the layer-by-layer epitaxial regrowth seemed to be precluded in Si layers with high doses of Ge implants, e.g., 2.5 x 10 15 ions/cm 2 . Electrical activation of implanted dopant B was also measured in the recrystallized Si layer. (author)

  4. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  5. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  6. Electronic properties of epitaxial 6H silicon carbide

    International Nuclear Information System (INIS)

    Wessels, B.W.; Gatos, H.C.

    1977-01-01

    The electrical conductivity and Hall coefficient were measured in the temperature range from 78 to 900 K for n-type epitaxially grown 6H silicon carbide. A many-valley model of the conduction band was used in the analysis of electron concentration as a function of temperature. From this analysis, the density of states mass to the free electron mass ratio per ellipsoid was calculated to be 0.45. It was estimated that the constant energy surface of the conduction band consists of three ellipsoids. The ionization energy of the shallowest nitrogen donor was found to be 105 meV, when the valley-orbit interaction was taken into account. The electron scattering mechanisms in the epitaxial layers were analyzed and it was shown that the dominant mechanism limiting electron mobility at high temperatures is inter-valley scattering and at low temperatures (200K), impurity and space charge scattering. A value of 360 cm 2 /V sec was calculated for the maximum room temperature Hall mobility expected for electrons in pure 6H SiC. The effect of epitaxial growth temperature on room temperature Hall mobility was also investigated. (author)

  7. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    International Nuclear Information System (INIS)

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.

    1997-12-01

    Epitaxial grown thick layers (≥ 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 x 10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5 x 10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ''sinking'' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 x 10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 x 10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  8. Epitaxial growth of CZT(S,Se) on silicon

    Science.gov (United States)

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  9. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence

    International Nuclear Information System (INIS)

    Bae, I.-T.; Ishimaru, Manabu; Hirotsu, Yoshihiko; Sickafus, Kurt E.

    2004-01-01

    We have investigated the effect of radiation damage and impurity concentration on solid phase epitaxial growth of amorphous silicon carbide (SiC) as well as microstructures of recrystallized layer using transmission electron microscopy. Single crystals of 6H-SiC with (0001) orientation were irradiated with 150 keV Xe ions to fluences of 10 15 and 10 16 /cm 2 , followed by annealing at 890 deg. C. Full epitaxial recrystallization took place in a specimen implanted with 10 15 Xe ions, while retardation of recrystallization was observed in a specimen implanted with 10 16 /cm 2 Xe ions. Atomic pair-distribution function analyses and energy dispersive x-ray spectroscopy results suggested that the retardation of recrystallization of the 10 16 Xe/cm 2 implanted sample is attributed to the difference in amorphous structures between the 10 15 and 10 16 Xe/cm 2 implanted samples, i.e., more chemically disordered atomistic structure and higher Xe impurity concentration in the 10 16 Xe/cm 2 implanted sample

  10. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC

    NARCIS (Netherlands)

    Iezhokin, I.; Offermans, P.; Brongersma, S.H.; Giesbers, A.J.M.; Flipse, C.F.J.

    2013-01-01

    We have measured the electrical response to NO2, N2, NH3, and CO for epitaxial graphene and quasi freestanding epitaxial graphene on 6H-SiC substrates. Quasi freestanding epitaxial graphene shows a 6 fold increase in NO2 sensitivity compared to epitaxial graphene. Both samples show a sensitivity

  11. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  12. Low-temperature epitaxy of silicon by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, B. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany); Dogan, P. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)], E-mail: pinar.dogan@hmi.de; Sieber, I.; Fenske, F.; Gall, S. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)

    2007-07-16

    In this paper we report on homoepitaxial growth of thin Si films at substrate temperatures T{sub s} = 500-650 deg. C under non-ultra-high vacuum conditions by using electron beam evaporation. Si films were grown at high deposition rates on monocrystalline Si wafers with (100), (110) and (111) orientations. The ultra-violet visible reflectance spectra of the films show a dependence on T{sub s} and on the substrate orientation. To determine the structural quality of the films in more detail Secco etch experiments were carried out. No etch pits were found on the films grown on (100) oriented wafers. However, on films grown on (110) and (111) oriented wafers different types of etch pits could be detected. Films were also grown on polycrystalline silicon (poly-Si) seed layers prepared by an Aluminum-Induced Crystallisation (AIC) process on glass substrates. Electron Backscattering Diffraction (EBSD) shows that the film growth proceeds epitaxially on the grains of the seed layer. But a considerably higher density of extended defects is revealed by Secco etch experiments.

  13. Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here the lateral epitaxial overgrowth (LEO) of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy (MBE) growth with radio frequency nitrogen plasma as a gas source. Two kinds of GaN nanostructures are defined by electron beam lithography and realized on a GaN substrate by fast atom beam etching. The epitaxial growth of GaN by MBE is performed on the prepared GaN template, and the selective growth of GaN takes place with the assistance of GaN nanostructures. The LEO of GaN produces novel GaN epitaxial structures which are dependent on the shape and the size of the processed GaN nanostructures. Periodic GaN hexagonal pyramids are generated inside the air holes, and GaN epitaxial strips with triangular section are formed in the grating region. This work provides a promising way for producing novel GaN-based devices by the LEO of GaN using the MBE technique

  14. Radiation damage in proton-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Lange, Joern

    2009-07-01

    In this work radiation hardness of 75 μm, 100 μm and 150 μm thick epitaxial silicon pad diodes of both standard and oxygenated material was investigated. Damage after 24 GeV/c proton irradiation in a 1MeV neutron equivalent fluence range between 10 14 cm -2 and 10 16 cm -2 was studied and isothermal annealing experiments at 80 C were carried out. Standard CV/IV measurements could be performed up to 4 x 10 15 cm -2 . The volume-normalised reverse current was found to increase linearly with fluence with a slope independent of the thickness and impurity concentration. However, due to large fluctuations the fluences had to be renormalised using the current-related damage parameter. Concerning the depletion voltage, nearly all materials remained at a moderate level up to 4 x 10 15 cm -2 . During short-term annealing acceptors annealed out, whereas others were introduced during the long-term annealing. The stable damage was characterised by donor removal at low fluences and fluence-proportional predominant donor introduction for highly irradiated diodes, depending on the oxygen level. No type inversion was observed. Time-resolved measurements with a new 670 nm laser-TCT setup made the determination of the trapping time constant with the charge correction method possible. The results agreed with expectations and showed a linear increase of trapping probability with fluence. The electric field exhibited a double peak structure in highly irradiated diodes. Charge collection efficiency measurements with α-particles were independent of oxygen concentration, but showed an improved efficiency for thinner diodes. A comparison to simulation revealed systematic discrepancies. A non-constant trapping time parameter was proposed as possible solution. (orig.)

  15. Radiation damage in proton-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joern

    2009-07-15

    In this work radiation hardness of 75 {mu}m, 100 {mu}m and 150 {mu}m thick epitaxial silicon pad diodes of both standard and oxygenated material was investigated. Damage after 24 GeV/c proton irradiation in a 1MeV neutron equivalent fluence range between 10{sup 14} cm{sup -2} and 10{sup 16} cm{sup -2} was studied and isothermal annealing experiments at 80 C were carried out. Standard CV/IV measurements could be performed up to 4 x 10{sup 15} cm{sup -2}. The volume-normalised reverse current was found to increase linearly with fluence with a slope independent of the thickness and impurity concentration. However, due to large fluctuations the fluences had to be renormalised using the current-related damage parameter. Concerning the depletion voltage, nearly all materials remained at a moderate level up to 4 x 10{sup 15} cm{sup -2}. During short-term annealing acceptors annealed out, whereas others were introduced during the long-term annealing. The stable damage was characterised by donor removal at low fluences and fluence-proportional predominant donor introduction for highly irradiated diodes, depending on the oxygen level. No type inversion was observed. Time-resolved measurements with a new 670 nm laser-TCT setup made the determination of the trapping time constant with the charge correction method possible. The results agreed with expectations and showed a linear increase of trapping probability with fluence. The electric field exhibited a double peak structure in highly irradiated diodes. Charge collection efficiency measurements with {alpha}-particles were independent of oxygen concentration, but showed an improved efficiency for thinner diodes. A comparison to simulation revealed systematic discrepancies. A non-constant trapping time parameter was proposed as possible solution. (orig.)

  16. Vapor phase epitaxy of silicon on meso porous silicon for deposition on economical substrate and low cost photovoltaic application

    International Nuclear Information System (INIS)

    Quoizola, S.

    2003-01-01

    The silicon is more and more used in the industry. Meanwhile the production cost is a problem to solve to develop the photovoltaic cells production. This thesis presents a new technology based on the use of a meso-porous silicon upper layer,to grow the active silicon layer of 50 μm width. The photovoltaic cell is then realized, the device is removed and placed on a low cost substrate. The silicon substrate of beginning can be used again after cleaning. The first chapter presents the operating and the characteristics of the silicon photovoltaic cell. The second chapter is devoted to the growth technique, the vapor phase epitaxy, and the third chapter to the epitaxy layer. The chapter four deals with the porous silicon and the structure chosen in this study. The chapter five is devoted to the characterization of the epitaxy layer on porous silicon. The photovoltaic cells realized on these layers are presented in the last chapter. (A.L.B.)

  17. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  18. Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates

    International Nuclear Information System (INIS)

    Huang Li; Xu Wen-Yan; Que Yan-De; Mao Jin-Hai; Meng Lei; Pan Li-Da; Li Geng; Wang Ye-Liang; Du Shi-Xuan; Gao Hong-Jun; Liu Yun-Qi

    2013-01-01

    Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercalation, seven different metals have been successfully intercalated at the interface of graphene/Ru(0001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(0001) and on Ir(111), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications. (topical review - low-dimensional nanostructures and devices)

  19. Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon

    NARCIS (Netherlands)

    Nguyen, Duc Minh

    2010-01-01

    In this thesis, the integration of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) thin films into piezoelectric microelectromechanical systems (MEMS) based on silicon is studied. In these structures, all epitaxial oxide layers (thin film/electrode/buffer-layer(s)) were deposited by pulsed laser

  20. Epitaxy - a new technology for fabrication of advanced silicon radiation detectors

    International Nuclear Information System (INIS)

    Kemmer, J.; Wiest, F.; Pahlke, A.; Boslau, O.; Goldstrass, P.; Eggert, T.; Schindler, M.; Eisele, I.

    2005-01-01

    Twenty five years after the introduction of the planar process to the fabrication of silicon radiation detectors a new technology, which replaces the ion implantation doping by silicon epitaxy is presented. The power of this new technique is demonstrated by fabrication of silicon drift detectors (SDDs), whereby both the n-type and p-type implants are replaced by n-type and p-type epi-layers. The very first SDDs ever produced with this technique show energy resolutions of 150 eV for 55 Fe at -35 deg C. The area of the detectors is 10 mm 2 and the thickness 300 μm. The high potential of epitaxy for future detectors with integrated complex electronics is described

  1. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  2. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1999-01-01

    Ion implantation is the principal method used to introduce dopants into silicon for fabrication of semiconductor devices. During ion implantation, damage accumulates in the crystalline silicon lattice and amorphisation may occur over the depth range of the ions if the implant dose is sufficiently high. As device dimensions shrink, the need to produce shallower and shallower highly-doped layers increases and the probability of amorphisation also increases. To achieve dopant-activation, the amorphous or damaged material must be returned to the crystalline state by thermal annealing. Amorphous silicon layers can be crystallised by the solid-state process of solid phase epitaxy (SPE) in which the amorphous layer transforms to crystalline silicon (c-Si) layer by layer using the underlying c-Si as a seed. The atomic mechanism that is responsible for the crystallisation is thought to involve highly-localised bond-breaking and rearrangement processes at the amorphous/crystalline (a/c) interface but the defect responsible for these bond rearrangements has not yet been identified. Since the bond breaking process necessarily generates dangling bonds, it has been suggested that the crystallisation process may solely involve the formation and migration of dangling bonds at the interface. One of the key factors which may shed further light on the nature of the SPE defect is the observed dopant-dependence of the rate of crystallisation. It has been found that moderate concentrations of dopants enhance the SPE crystallisation rate while the presence of equal concentrations of an n-type and a p-type dopant (impurity compensation) returns the SPE rate to the intrinsic value. This provides crucial evidence that the SPE mechanism is sensitive to the position of the Fermi level in the bandgap of the crystalline and/or the amorphous silicon phases and may lead to identification of an energy level within the bandgap that can be associated with the defect. This paper gives details of SPE

  3. Epitaxial Growth of Germanium on Silicon for Light Emitters

    Directory of Open Access Journals (Sweden)

    Chengzhao Chen

    2012-01-01

    Full Text Available This paper describes the role of Ge as an enabler for light emitters on a Si platform. In spite of the large lattice mismatch of ~4.2% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared light emitters with various structures are reviewed, including the tensile-strained Ge epilayer, the Ge epilayer with a delta-doping SiGe layer, and the Ge/SiGe multiple quantum wells on Si. The fundamentals of photoluminescence physics in the different Ge structures are discussed briefly.

  4. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  5. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Science.gov (United States)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  6. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  7. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    Science.gov (United States)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  8. Epitaxial growth of silicon and germanium on (100-oriented crystalline substrates by RF PECVD at 175 °C

    Directory of Open Access Journals (Sweden)

    Mauguin O.

    2012-11-01

    Full Text Available We report on the epitaxial growth of crystalline Si and Ge thin films by standard radio frequency plasma enhanced chemical vapor deposition at 175 °C on (100-oriented silicon substrates. We also demonstrate the epitaxial growth of silicon films on epitaxially grown germanium layers so that multilayer samples sustaining epitaxy could be produced. We used spectroscopic ellipsometry, Raman spectroscopy, transmission electron microscopy and X-ray diffraction to characterize the structure of the films (amorphous, crystalline. These techniques were found to provide consistent results and provided information on the crystallinity and constraints in such lattice-mismatched structures. These results open the way to multiple quantum-well structures, which have been so far limited to few techniques such as Molecular Beam Epitaxy or MetalOrganic Chemical Vapor Deposition.

  9. Spin-injection into epitaxial graphene on silicon carbide

    Science.gov (United States)

    Konishi, Keita; Cui, Zhixin; Hiraki, Takahiro; Yoh, Kanji

    2013-09-01

    We have studied the spin-injection properties in epitaxial graphene on SiC. The ferromagnetic metal (FM) electrodes were composed of a tunnel barrier layer AlOx (14 Å) and a ferromagnetic Co (600 Å) layer. We have successfully observed the clear resistance peaks indicating spin-injection both in the "local" and "non-local" spin measurement set-ups at low temperatures. We estimate spin-injection rate of 1% based on "non-local" measurement and 1.6% based on local measurements. Spin-injection rate of multilayer graphene by mechanical exfoliation method was twice as high as single layer graphene on SiC based on "local" measurement.

  10. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  11. Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature

    Science.gov (United States)

    Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.

    2018-06-01

    Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.

  12. Wide-bandgap epitaxial heterojunction windows for silicon solar cells

    Science.gov (United States)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland; Sekula-Moise, Patricia A.; Vernon, Stanley M.

    1990-01-01

    It is shown that the efficiency of a solar cell can be improved if minority carriers are confined by use of a wide-bandgap heterojunction window. For silicon (lattice constant a = 5.43 A), nearly lattice-matched wide-bandgap materials are ZnS (a = 5.41 A) and GaP (a = 5.45 A). Isotype n-n heterojuntions of both ZnS/Si and GaP/Si were grown on silicon n-p homojunction solar cells. Successful deposition processes used were metalorganic chemical vapor deposition (MO-CVD) for GaP and ZnS, and vacuum evaporation of ZnS. Planar (100) and (111) and texture-etched - (111)-faceted - surfaces were used. A decrease in minority-carrier surface recombination compared to a bare surface was seen from increased short-wavelength spectral response, increased open-circuit voltage, and reduced dark saturation current, with no degradation of the minority carrier diffusion length.

  13. Improved vertical MOSFET performance using an epitaxial channel and a stacked silicon-insulator structure

    International Nuclear Information System (INIS)

    Uchino, T; Gili, E; Ashburn, P; Tan, L; Buiu, O; Hall, S

    2012-01-01

    A vertical MOSFET (VMOST) incorporating an epitaxial channel and a drain junction in a stacked silicon-insulator structure is presented. In this device structure, an oxide layer near the drain junction edge (referred to as a junction stop) acts as a dopant diffusion barrier and consequently a shallow drain junction is formed to suppress short channel effects. To investigate the scalability of this device, a simulation study in the sub-100 nm regime calibrated to measured results on the fabricated devices is carried out. The use of an epitaxial channel delivers 50% higher drive current due to the higher mobility of the retrograde channel and the junction stop structure delivers improvements of threshold voltage roll-off and drain-induced barrier lowering compared with a conventional VMOST. (fast track communication)

  14. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  15. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Science.gov (United States)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  16. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  17. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  18. Control growth of silicon nanocolumns' epitaxy on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Su Kong, E-mail: sukong1985@yahoo.com.my [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia); Dee, Chang Fu [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Yahya, Noorhana [Universiti Teknologi PETRONAS, Faculty of Science and Information Technology (Malaysia); Rahman, Saadah Abdul [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia)

    2013-04-15

    The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius {approx}21 {+-} 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10-20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns' decorated SiNW arrays are discussed in the text.

  19. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  20. The fabrication of quantum wires in silicon utilising the characteristics of solid phase epitaxial regrowth of crystalline silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1998-01-01

    The process of solid phase epitaxy (SPE) in semiconductor materials is one which has been intensively researched due to possible applications in the semiconductor industry. SPE is a solid phase transformation, in which an amorphous layer can be recrystallized either through heating or a combination of heating and ion bombardment. The transformation is believed to occur exclusively at the interface between the amorphous and crystalline layers, with individual atoms from the amorphous phase being incorporated into the crystalline phase by some point defect mechanism. The process has been observed to follow an Arrhenius temperature dependence. A wafer silicon was subjected to a multi-energy silicon implant through a fine nickel grid to amorphise region to a depth of 5μm creating an array of amorphous wells. Metal impurity atoms were then implanted in this region at energy of 500 keV. Samples were examined using an optical microscope and the Alphastep profiler at RMIT. It was confirmed that burgeoning wells were about 2 μm wide and rose about 0.01 μm above the silicon substrate

  1. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    International Nuclear Information System (INIS)

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  2. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  3. A clean measurement of the hydrogen retardation of the rate of solid phase epitaxy in silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1999-01-01

    The rate retarding effects of the impurity hydrogen on solid phase epitaxy (SPE) in silicon have yet to be completely understood. Existing measurements of this behaviour do not coincide exactly, however, several features have attained prominence. Firstly, a linear decrease in the SPE rate is detected up until a certain concentration of hydrogen. Subsequent to this point the rate remains almost constant at around half the intrinsic rate. It is conjectured that the hydrogen bonds to and passivates the defects whose agency enables the incorporation of atoms from the amorphous phase to the crystalline. This rate reduction increases until the defect population is saturated. At this point the reduction in rate ceases. Secondly, a dependence on temperature has not been consolidated, in contrast with the trends observed with the doping species. Here a method is proposed for producing a controlled concentration of hydrogen for the advancing amorphous/crystalline interface to encounter during epitaxy. A bubble layer is formed in crystalline silicon approximately 0.6μm beneath the surface through the implantation of hydrogen at 65 keV with fluences of 4 x 10 16 /cm 2 and 3 x 10 16 /cm 2 and annealing for 1 hour at 850 deg C in dry argon. The anneal doesn't out gas all the introduced hydrogen, leaving a remnant gas pressure in the bubbles. The hydrogen implants at the two fluences should yield two samples with different amounts of hydrogen trapped in the bubbles. A buried amorphous layer is created to encompass the bubble layer containing this residual contaminant through silicon self implantation at appropriate energies and fluences. The progress of the front interface of the buried amorphous layer is monitored by time resolved reflectivity (TRR) as SPE is effected at various temperatures

  4. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    International Nuclear Information System (INIS)

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  5. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  6. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    International Nuclear Information System (INIS)

    Akbari-Sharbaf, Arash; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Fanchini, Giovanni

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10 19 cm −3 at 98 °C to ∼ 1 · 10 18 cm −3 at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults

  7. The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide

    International Nuclear Information System (INIS)

    De Heer, Walt A

    2012-01-01

    Graphene electronics was officially invented at the Georgia Institute of Technology in 2003 after experimental and theoretical research on graphene properties starting from 2001. This paper focuses on the motivation and events leading to the invention of graphene electronics, as well as on recent developments. Graphene electronics was originally conceived as a new electronics paradigm to incorporate the room-temperature ballistic and coherent properties of carbon nanotubes in a patternable electronic material. Graphene on silicon carbide was chosen as the most suitable material. Other electronics schemes, involving transferred (exfoliated and chemical vapor deposition-produced) graphitic materials, that operate in the diffusive regime may not be competitive with standard methods and may therefore not significantly impact electronics. In recent years, epitaxial graphene has improved to the point where graphene electronics according to the original concept appears to be within reach. Beyond electronics, epitaxial graphene research has led to important developments in graphene physics in general and has become a leading platform for graphene science as well.

  8. Properties of a radiation-induced charge multiplication region in epitaxial silicon diodes

    CERN Document Server

    Lange, Jörn; Fretwurst, Eckhart; Klanner, Robert; Lindström, Gunnar

    2010-01-01

    Charge multiplication (CM) in p$^+$n epitaxial silicon pad diodes of 75, 100 and 150 $\\upmu$m thickness at high voltages after proton irradiation with 1 MeV neutron equivalent fluences in the order of $10^{16}$ cm$^{-2}$ was studied as an option to overcome the strong trapping of charge carriers in the innermost tracking region of future Super-LHC detectors. Charge collection efficiency (CCE) measurements using the Transient Current Technique (TCT) with radiation of different penetration (670, 830, 1060 nm laser light and $\\alpha$-particles with optional absorbers) were used to locate the CM region close to the p$^+$-implantation. The dependence of CM on material, thickness of the epitaxial layer, annealing and temperature was studied. The collected charge in the CM regime was found to be proportional to the deposited charge, uniform over the diode area and stable over a period of several days. Randomly occurring micro discharges at high voltages turned out to be the largest challenge for operation of the dio...

  9. SU-E-J-91: Novel Epitaxial Silicon Array for Quality Assurance in Photon and Proton Therapy

    International Nuclear Information System (INIS)

    Talamonti, C; Zani, M; Scaringella, M; Bruzzi, M; Bucciolini, M; Menichelli, D; Friedl, F

    2014-01-01

    Purpose: to demonstrate suitability of a novel silicon array for measuring the dose properties of highly conformal photon and proton beams. Methods: prototype under test is a 24cm long linear array prototype, although the underlying technology is suitable to construct 2D arrays as well. It is based on a 64pixels monolithic sensor with 1mm pixel pitch, made of epitaxial ptype silicon. Thanks to design modularity, more sensors can be placed side by side without breaking pixel pitch. Flattened and unflattened photon beams, as well as proton radiation from a cyclotron in pencil beam scanning mode, were considered. Measurements of beam characteristics as percentage depth doses, dose profiles, output factors and energy response, which are necessary to deliver radiation with high precision and reliability, were performed. Results: Dose rate independence with photons was verified in the dose per pulse range 0.03 to 2mGy. Results clearly indicate nondependence of the detector sensitivity both for flattened and unflattened beams, with a variation of at most 0.5percentage. OFs were obtained for field with a lateral size ranging from 0.8cm to 16cm and the results are in good agreement with ion chamber A1SL, max difference less than 1.5percentage. Field sizes and beam penumbra were measured and compared to EBT film results. Concerning proton beams, sensitivity independence on dose rate was verified by changing the beam current in the interval 2-130Gy/s. Field sizes and beam penumbra measurements are in agreement with data taken with a scintillating 2D array with 0.5mm resolution IBA Lynx, and a better penumbra definition than an array of ionization chambers IBA MatriXX is reached. Conclusion: The device is a novel and valuable tool for QA both for photon and proton dose delivery. All measurements demonstrated its capability to measure with high spatial resolution many crucial properties of the RT beam

  10. SU-E-J-91: Novel Epitaxial Silicon Array for Quality Assurance in Photon and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Talamonti, C; Zani, M; Scaringella, M; Bruzzi, M; Bucciolini, M [University of Florence, Firenze (Italy); Menichelli, D; Friedl, F [IBA Dosimetry, Schwarzenbruck, Bavaria (Germany)

    2014-06-01

    Purpose: to demonstrate suitability of a novel silicon array for measuring the dose properties of highly conformal photon and proton beams. Methods: prototype under test is a 24cm long linear array prototype, although the underlying technology is suitable to construct 2D arrays as well. It is based on a 64pixels monolithic sensor with 1mm pixel pitch, made of epitaxial ptype silicon. Thanks to design modularity, more sensors can be placed side by side without breaking pixel pitch. Flattened and unflattened photon beams, as well as proton radiation from a cyclotron in pencil beam scanning mode, were considered. Measurements of beam characteristics as percentage depth doses, dose profiles, output factors and energy response, which are necessary to deliver radiation with high precision and reliability, were performed. Results: Dose rate independence with photons was verified in the dose per pulse range 0.03 to 2mGy. Results clearly indicate nondependence of the detector sensitivity both for flattened and unflattened beams, with a variation of at most 0.5percentage. OFs were obtained for field with a lateral size ranging from 0.8cm to 16cm and the results are in good agreement with ion chamber A1SL, max difference less than 1.5percentage. Field sizes and beam penumbra were measured and compared to EBT film results. Concerning proton beams, sensitivity independence on dose rate was verified by changing the beam current in the interval 2-130Gy/s. Field sizes and beam penumbra measurements are in agreement with data taken with a scintillating 2D array with 0.5mm resolution IBA Lynx, and a better penumbra definition than an array of ionization chambers IBA MatriXX is reached. Conclusion: The device is a novel and valuable tool for QA both for photon and proton dose delivery. All measurements demonstrated its capability to measure with high spatial resolution many crucial properties of the RT beam.

  11. Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI

    Directory of Open Access Journals (Sweden)

    John E. Cunningham

    2012-04-01

    Full Text Available We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical p-i-n diodes exhibit very low dark current density of 5 mA/cm2 at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics.

  12. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-01-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10 16 n eq /cm 2 . Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics

  13. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, Maurizio, E-mail: boscardi@fbk.eu [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Calvo, Daniela [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Giacomini, Gabriele [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Wheadon, Richard [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Ronchin, Sabina; Zorzi, Nicola [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy)

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10{sup 16} n{sub eq}/cm{sup 2}. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  14. Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction

    International Nuclear Information System (INIS)

    Dadgar, A; Schulze, F; Wienecke, M; Gadanecz, A; Blaesing, J; Veit, P; Hempel, T; Diez, A; Christen, J; Krost, A

    2007-01-01

    GaN-on-silicon is a low-cost alternative to growth on sapphire or SiC. Today epitaxial growth is usually performed on Si(111), which has a threefold symmetry. The growth of single crystalline GaN on Si(001), the material of the complementary metal oxide semiconductor (CMOS) industry, is more difficult due to the fourfold symmetry of this Si surface leading to two differently aligned domains. We show that breaking the symmetry to achieve single crystalline growth can be performed, e.g. by off-oriented substrates to achieve single crystalline device quality GaN layers. Furthermore, an exotic Si orientation for GaN growth is Si(110), which we show is even better suited as compared to Si(111) for the growth of high quality GaN-on-silicon with a nearly threefold reduction in the full width at half maximum (FWHM) of the (1 1-bar 0 0)ω-scan. It is found that a twofold surface symmetry is in principal suitable for the growth of single crystalline GaN on Si

  15. Characterization of 150μm thick epitaxial silicon detectors from different producers after proton irradiation

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Moll, M.; Haerkoenen, J.; Kronberger, M.; Trummer, J.; Rodeghiero, P.

    2007-01-01

    Epitaxial (EPI) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of 150μm thick EPI silicon diodes irradiated with 24GeV/c protons up to a fluence of 3x10 15 p/cm 2 has been performed by means of Charge Collection Efficiency (CCE) measurements, investigations with the Transient Current Technique (TCT) and standard CV/IV characterizations. The aim of the work was to investigate the impact of radiation damage as well as the influence of the wafer processing on the material performance by comparing diodes from different manufacturers. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. While the generation of leakage current due to irradiation is similar in all investigated series of detectors, a difference in the effective doping concentration can be observed after irradiation. In the CCE measurements an anomalous drop in performance was found even for diodes exposed to very low fluences (5x10 13 p/cm 2 ) in all measured series. This result was confirmed for one series of diodes in TCT measurements with an infrared laser. TCT measurements with a red laser showed no type inversion up to fluences of 3x10 15 p/cm 2 for n-type devices whereas p-type diodes undergo type inversion from p- to n-type for fluences higher than ∼2x10 14 p/cm 2

  16. Characterization of 150 $\\mu$m thick epitaxial silicon detectors from different producers after proton irradiation

    CERN Document Server

    Hoedlmoser, H; Haerkoenen, J; Kronberger, M; Trummer, J; Rodeghiero, P

    2007-01-01

    Epitaxial (EPI) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of 150 mm thick EPI silicon diodes irradiated with 24GeV=c protons up to a fluence of 3 1015 p=cm2 has been performed by means of Charge Collection Efficiency (CCE) measurements, investigations with the Transient Current Technique (TCT) and standard CV=IV characterizations. The aim of the work was to investigate the impact of radiation damage as well as the influence of the wafer processing on the material performance by comparing diodes from different manufacturers. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. While the generation of leakage current due to irradiation is similar in all investigated series of detectors, a difference in the effective doping concentration can be observed after irradiation. In the CCE measurements an anomalous drop in performance was found even for diodes exposed to ...

  17. Changing of micromorphology of silicon-on-sapphire epitaxial layer surface at irradiation by subthreshold energy X-radiation

    CERN Document Server

    Kiselev, A N; Skupov, V D; Filatov, D O

    2001-01-01

    The morphology of silicon-on-sapphire epitaxial layer surface after pulse irradiation by the X-rays with the energy of <= 140 keV is studied. The study on the irradiated material surface is carried out by the methods of the atomic force microscopy and ellipsometry. The average roughness value after irradiation constitutes 7 nm. The change in the films surface microrelief occurs due to reconstruction of their dislocation structure under the action of elastic waves, originating in the X radiation

  18. THE IMPACT OF THE METHOD OF UNDERLAY SURFACE PROCESSING ON THE DEVELOPMENT OF DEFECTS IN EPITAXIAL COMPOSITIONS IN THE COURSE OF SILICON PHOTO-TRANSDUCERS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Zoya Nikonova

    2017-06-01

    Full Text Available For the production of silicon photo-transducers (PhT the acquisition of epitaxial compositions (EC with high resistivity of working layer. One of the main parameters characterizing the quality of EC is the density of dislocation and other structural defects. Great impact on the development of defects during epitaxial growth is produced by the quality of underlay preparation before that. Multiple research of relatively thin (less than 20-30 microns epitaxial layers demonstrated, that contamination or damages of underlay surface cause the development of defects of wrapping, counterparts, macroscopic protuberances in the growing layer. During inverted epitaxy there are no high requirements as for structural perfection of epitaxial layer as far as in PhT, produced on the basis of EC for which inverted silicon structures (ISS serve with the working layer of mono-crystal substrate. Therefore in inverted epitaxy it is the problem of the development in the course of defects growth not in epitaxial layer, but in underlay, that becomes the major one. The processes of the development of defects in underlay in the course of growing thick (approximately 300 microns epitaxial layer are scarcely researched by now. Scientists sustained the idea that when using dislocation-free underlays for growing in the working layer of ISS there are dislocations with the density of 103 sm-2 and more. Thus, investigation of the factors that determine the development of dislocations in underlay in the process of epitaxy, has now gained great practical value.

  19. Porous silicon: X-rays sensitivity

    International Nuclear Information System (INIS)

    Gerstenmayer, J.L.; Vibert, Patrick; Mercier, Patrick; Rayer, Claude; Hyvernage, Michel; Herino, Roland; Bsiesy, Ahmad

    1994-01-01

    We demonstrate that high porosity anodically porous silicon is radioluminescent. Interests of this study are double. Firstly: is the construction of porous silicon X-rays detectors (imagers) possible? Secondly: is it necessary to protect silicon porous based optoelectronic systems from ionising radiations effects (spatial environment)? ((orig.))

  20. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  1. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    International Nuclear Information System (INIS)

    Lindstroem, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hoenniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Roeder, Ralf

    2006-01-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of Φ eq =10 16 cm -2 . Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E C -0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90 Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of

  2. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Gunnar [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany)]. E-mail: gunnar.lindstroem@desy.de; Dolenc, Irena [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Hoenniger, Frank [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Kramberger, Gregor [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Moll, Michael [CERN, Geneva, 1211 (Switzerland); Nossarzewska, Elsbieta [ITME, Institute for Electronocs Materials Technology, Warsaw, 01919 (Poland); Pintilie, Ioana [National Institute of Materials Physics, Bucharest, 077125 (Romania); Roeder, Ralf [CiS Institute for Microsensors gGmbH, Erfurt, 99099 (Germany)

    2006-11-30

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 {mu}m had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of {phi} {sub eq}=10{sup 16} cm{sup -2}. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E {sub C}-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with {sup 90}Sr electrons (mip's) is also almost identical to what was expected

  3. Analysis of temperature profiles and the mechanism of silicon substrate plastic deformation under epitaxial growth

    International Nuclear Information System (INIS)

    Mirkurbanov, H.A.; Sazhnev, S.V.; Timofeev, V.N.

    2004-01-01

    Full text: Thermal treatment of silicon wafers holds one of the major place in the manufacturing of semi-conductor devices. Thermal treatment includes wafer annealing, thermal oxidation, epitaxial growing etc. Quality of wafers in the high-temperature processes (900-1200 deg C) is estimated by the density of structural defects, including areas of plastic deformation, which are shown as the slip lines appearance. Such areas amount to 50-60 % of total wafer surface. The plastic deformation is caused by the thermal stresses. Experimental and theoretical researches allowed to determine thermal balance and to construct a temperature profiles throughout the plate surface. Thermal stresses are caused by temperature drop along the radius of a wafer and at the basic peripheral ring. The threshold temperature drop between center f a wafer and its peripherals (ΔT) for slip lines appearance, amounts to 15-17 deg. C. At the operating temperature of 900-1200 deg. C and ΔT>20 deg. C, the stresses reach the silicon yield point. According to the results of the researches of structure and stress profiles in a wafer, the mechanism of slip lines formation has been constructed. A source of dislocations is the rear broken layer of thickness 8-10 microns, formed after polishing. The micro-fissures with a density 10 5 -10 6 cm -2 are the sources of dislocations. Dislocations move on a surface of a wafer into a slip plane (111). On a wafer surface with orientation (111) it is possible to allocate zones where the tangential stress vector is most favorably directed with respect to a slip plane leaving on a surface, i.e. the shift stresses are maximal in the slip plane. The way to eliminate plastic deformation is to lower the temperature drop to a level of <15 deg. C and elimination of the broken layer in wafer

  4. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  5. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  6. Quantitative analysis of the epitaxial recrystallization effect induced by swift heavy ions in silicon carbide

    International Nuclear Information System (INIS)

    Benyagoub, A.

    2015-01-01

    This paper discusses recent results on the recrystallization effect induced by swift heavy ions (SHI) in pre-damaged silicon carbide. The recrystallization kinetics was followed by using increasing SHI fluences and by starting from different levels of initial damage within the SiC samples. The quantitative analysis of the data shows that the recrystallization rate depends drastically on the local amount of crystalline material: it is nil in fully amorphous regions and becomes more significant with increasing amount of crystalline material. For instance, in samples initially nearly half-disordered, the recrystallization rate per incident ion is found to be 3 orders of magnitude higher than what it is observed with the well-known IBIEC process using low energy ions. This high rate can therefore not be accounted for by the existing IBIEC models. Moreover, decreasing the electronic energy loss leads to a drastic reduction of the recrystallization rate. A comprehensive quantitative analysis of all the experimental results shows that the SHI induced high recrystallization rate can only be explained by a mechanism based on the melting of the amorphous zones through a thermal spike process followed by an epitaxial recrystallization initiated from the neighboring crystalline regions if the size of the latter exceeds a certain critical value. This quantitative analysis also reveals that recent molecular dynamics calculations supposed to reproduce this phenomenon are wrong since they overestimated the recrystallization rate by a factor ∼40.

  7. Enhancing the far-UV sensitivity of silicon CMOS imaging arrays

    Science.gov (United States)

    Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2014-07-01

    We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.

  8. Electrical activation of solid-phase epitaxially regrown ultra-low energy boron implants in Ge preamorphised silicon and SOI

    International Nuclear Information System (INIS)

    Hamilton, J.J.; Collart, E.J.H.; Colombeau, B.; Jeynes, C.; Bersani, M.; Giubertoni, D.; Sharp, J.A.; Cowern, N.E.B.; Kirkby, K.J.

    2005-01-01

    The formation of highly activated ultra-shallow junctions (USJ) is one of the key requirements for the next generation of CMOS devices. One promising method for achieving this is the use of Ge preamorphising implants (PAI) prior to ultra-low energy B implantation. In future technology nodes, bulk silicon wafers may be supplanted by Silicon-on-Insulator (SOI), and an understanding of the Solid Phase Epitaxial (SPE) regrowth process and its correlation to dopant electrical activation in both bulk silicon and SOI is essential in order to understand the impact of this potential technology change. This kind of understanding will also enable tests of fundamental models for defect evolution and point-defect reactions at silicon/oxide interfaces. In the present work, B is implanted into Ge PAI silicon and SOI wafers with different PAI conditions and B doses, and resulting samples are annealed at various temperatures and times. Glancing-exit Rutherford Backscattering Spectrometry (RBS) is used to monitor the regrowth of the amorphous silicon, and the resulting redistribution and electrical activity of B are monitored by SIMS and Hall measurements. The results confirm the expected enhancement of regrowth velocity by B doping, and show that this velocity is otherwise independent of the substrate type and the Ge implant distribution within the amorphised layer. Hall measurements on isochronally annealed samples show that B deactivates less in SOI material than in bulk silicon, in cases where the Ge PAI end-of-range defects are close to the SOI back interface

  9. Tunneling Spectroscopy Studies of Epitaxial Graphene on Silicon Carbide(0001) and Its Interfaces

    Science.gov (United States)

    Sandin, Andreas Axel Tomas

    A two dimensional network of sp2 bonded carbon atoms is defined as graphene. This novel material possesses remarkable electronic properties due to its unique band structure at the vicinity of the Fermi energy. The toughest challenge to bring use of graphene electronic properties in device geometries is that graphene is exceptionally sensitive to its electrical environment for integration into macroscopic system of electrical contacts and substrates. One of the most promising substrates for graphene is the polar surfaces of SiC for the reason it can be grown epitaxially by sublimating Si from the top-most SiC atomic layers. In this work, the interfaces of graphene grown on the Si-terminated polar surface SiC(0001) is studied in UHV using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), low energy electron diffraction (LEED) and auger electron Spectroscopy (AES). STM is used image the graphene surface and interfaces with the capability of atomic resolution. LEED is used to study surface atomic reciprocal ordering and AES is used to determine surface atomic composition during the graphene formation. Interfacial layer (Buffer layer), Single layer graphene and bilayer graphene are identified electronically by means of probing the first member of the image potential derived state. This state is found by dZ/dV spectroscopy in the high energy unoccupied states and is exceptionally sensitive to electrostatic changes to the surface which is detected by energy shifts of image potential states (IPS). This sensitivity is utilized to probe the graphene screening of external electric fields by varying the electric field in the tunneling junction and addresses the fact that charged impurity scattering is likely to be crucial for epitaxial graphene on SiC(0001) when it comes to transport parameters. Shifts of IPS energy position has also been used verify work function changes for identification of several Sodium Intercalation structures of epitaxial

  10. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Science.gov (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.

    2017-02-01

    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  11. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2011-01-01

    Full Text Available A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  12. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  13. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light. PMID:22319353

  14. Kerfless epitaxial silicon wafers with 7 ms carrier lifetimes and a wide lift-off process window

    Science.gov (United States)

    Gemmel, Catherin; Hensen, Jan; David, Lasse; Kajari-Schröder, Sarah; Brendel, Rolf

    2018-04-01

    Silicon wafers contribute significantly to the photovoltaic module cost. Kerfless silicon wafers that grow epitaxially on porous silicon (PSI) and are subsequently detached from the growth substrate are a promising lower cost drop-in replacement for standard Czochralski (Cz) wafers. However, a wide technological processing window appears to be a challenge for this process. This holds in particularly for the etching current density of the separation layer that leads to lift-off failures if it is too large or too low. Here we present kerfless PSI wafers of high electronic quality that we fabricate on weakly reorganized porous Si with etch current densities varying in a wide process window from 110 to 150 mA/cm2. We are able to detach all 17 out of 17 epitaxial wafers. All wafers exhibit charge carrier lifetimes in the range of 1.9 to 4.3 ms at an injection level of 1015 cm-3 without additional high-temperature treatment. We find even higher lifetimes in the range of 4.6 to 7.0 ms after applying phosphorous gettering. These results indicate that a weak reorganization of the porous layer can be beneficial for a large lift-off process window while still allowing for high carrier lifetimes.

  15. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  16. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  17. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Isobe, Shigehito [Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  18. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-01-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10 −2 Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R RMS of ∼0.4 nm

  19. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Taioli, Simone [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Chemistry, University of Bologna, Bologna (Italy); Garberoglio, Giovanni [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Simonucci, Stefano [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Physics, University of Camerino, Camerino (Italy); Beccara, Silvio a [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Aversa, Lucrezia [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Nardi, Marco [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany); Verucchi, Roberto [Institute of Materials for Electronics and Magnetism, FBK-CNR, Trento (Italy); Iannotta, Salvatore [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parma (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  20. Phase-sensitive optical processing in silicon waveguides

    DEFF Research Database (Denmark)

    Petermann, Klaus; Gajda, A.; Dziallas, Claudia

    2015-01-01

    Parametric optical signal processing is reviewed for silicon nano-rib-waveguides with a reverse-biased pin-junction. Phase-sensitive parametric amplification with a phase-sensitive extinction of more than 20 dB has been utilized for the regeneration of DPSK signals...

  1. Enhanced piezoelectric properties of (110)-oriented PbZr1−xTixO3 epitaxial thin films on silicon substrates at shifted morphotropic phase boundary

    NARCIS (Netherlands)

    Wan, X.; Houwman, Evert Pieter; Steenwelle, Ruud Johannes Antonius; van Schaijk, R.; Nguyen, Duc Minh; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    Piezoelectrical, ferroelectrical, and structural properties of epitaxial pseudocubic (110)pc oriented 500 nm thick PbZr1−xTixO3 thin films, prepared by pulsed laser deposition on (001) silicon substrates, were measured as a function of composition. The dependence of the measurement data on the Ti

  2. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  3. High resolution x-ray scattering studies of strain in epitaxial thin films of yttrium silicide grown on silicon (111)

    International Nuclear Information System (INIS)

    Marthinez-Miranda, L.J.; Santiago-Aviles, J.J.; Siegal, M.P.; Graham, W.R.; Heiney, P.A.

    1990-01-01

    The authors have used high resolution grazing incidence x-ray scattering (GIXS) to study the in- plane and out-of-plane structure of epitaxial YSi 2-x films grown on Si(111), with thicknesses ranging from 85 Angstrom to 510 Angstrom. Their results indicate that the films are strained, and that film strain increases as a function of thickness, with lattice parameters varying from a = 3.846 Angstrom/c = 4.142 Angstrom for the 85 Angstrom film to a = 3.877 Angstrom/c = 4.121 Angstrom for the 510 Angstrom film. The authors correlate these results with an increase in pinhole areal coverage as a function of thickness. In addition, the authors' measurements show no evidence for the existence of ordered silicon vacancies in the films

  4. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  5. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  6. Design of a charge sensitive preamplifier on high resistivity silicon

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.; Rescia, S.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Strueder, L.; Kemmer, J.

    1987-01-01

    A low noise, fast charge sensitive preamplifier was designed on high resistivity, detector grade silicon. It is built at the surface of a fully depleted region of n-type silicon. This allows the preamplifier to be placed very close to a detector anode. The preamplifier uses the classical input cascode configuration with a capacitor and a high value resistor in the feedback loop. The output stage of the preamplifier can drive a load up to 20pF. The power dissipation of the preamplifier is 13mW. The amplifying elements are ''Single Sided Gate JFETs'' developed especially for this application. Preamplifiers connected to a low capacitance anode of a drift type detector should achieve a rise time of 20ns and have an equivalent noise charge (ENC), after a suitable shaping, of less than 50 electrons. This performance translates to a position resolution better than 3μm for silicon drift detectors. 6 refs., 9 figs

  7. Contribution of numerical simulation to silicon carbide bulk growth and epitaxy

    International Nuclear Information System (INIS)

    Meziere, Jerome; Pons, Michel; Cioccio, Lea Di; Blanquet, Elisabeth; Ferret, Pierre; Dedulle, Jean-Marc; Baillet, Francis; Pernot, Etienne; Anikin, Michail; Madar, Roland; Billon, Thierry

    2004-01-01

    High temperature epitaxial processes for SiC bulk and thin films by physical vapour transport and chemical vapour deposition are reviewed from an academic point of view using heat and mass transfer modelling and simulation. The objective is to show that this modelling approach could provide information on fabrication and characterization for the improvement of the knowledge of the growth history. Recent results of our integrated research programme on SiC, taking into account the fabrication, process modelling and characterization, will be presented

  8. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    Science.gov (United States)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a

  9. Surface segregation as a means of gettering Cu in liquid-phase-epitaxy silicon thin layers grown from Al-Cu-Si solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.H.; Ciszek, T.F.; Reedy, R.; Asher, S.; King, D. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors demonstrate that, by using the natural surface segregation phenomenon, Cu can be gettered to the surface from the bulk of silicon layers so that its concentrations in the liquid-phase-epitaxy (LPE) layers are much lower than its solubility at the layer growth temperature and the reported 10{sup 17} cm{sup {minus}3} degradation threshold for solar-cell performance. Secondary-ion mass spectroscopy (SIMS) analysis indicates that, within a micron-deep sub-surface region, Cu accumulates even in as-grown LPE samples. Slower cooling after growth to room temperature enhances this Cu enrichment. X-ray photoelectron spectroscopy (XPS) measurement shows as much as 3.2% Cu in a surface region of about 50 {Angstrom}. More surface-sensitive, ion-scattering spectroscopy (ISS) analysis further reveals about 7% of Cu at the top surface. These results translate to an areal gettering capacity of about 1.0 x 10{sup 16} cm{sup {minus}2}, which is higher than the available total-area density of Cu in the layer and substrate (3.6 x 10{sup 15} cm{sup {minus}2} for a uniform 1.2 x 10{sup 17}cm{sup {minus}3} Cu throughout the layer and substrate with a total thickness of 300 {mu}m).

  10. Solid phase epitaxy on N-type polysilicon films formed by aluminium induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O., E-mail: Ozge.Tuzun@iness.c-strasbourg.f [InESS, UMR 7163 CNRS-UdS, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Slaoui, A.; Roques, S.; Focsa, A. [InESS, UMR 7163 CNRS-UdS, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Jomard, F.; Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France)

    2009-10-01

    In this work, undoped amorphous silicon layers were deposited on n-type AIC seed films and then annealed at different temperatures for epitaxial growth. The epitaxy was carried out using halogen lamps (rapid thermal process or RTP) or a tube conventional furnace (CTP). We investigated the morphology of the resulting 2 {mu}m thick epi-layers by means of optical microscopy. An average grain size of about 40 {mu}m is formed after 90 s annealing at 1000 {sup o}C in RTP. The stress and degree of crystallinity of the epi-layers were studied by micro-Raman Spectroscopy and UV-visible spectrometer as a function of annealing time. The presence of compressive stress is observed from the peak position which shifts from 520.0 cm{sup -1} to 521.0 cm{sup -1} and 522.3 cm{sup -1} after CTP annealing for 10 min and 90 min, respectively. It is shown that the full width at half maximum (FWHM) varies from 9.8 cm{sup -1} to 15.6 cm{sup -1}, and the magnitude of stress is changing from 325 MPa to 650 MPa. Finally, the highest crystallinity is achieved after annealing at 1000 {sup o}C for 90 min in a tube furnace exhibiting a crystalline fraction of 81.5%. X-ray diffraction technique was used to determine the preferential orientation of the poly-Si thin films formed by SPE technique on n{sup +} type AIC layer. The preferential orientation is <100> for all annealing times at 1000 {sup o}C.

  11. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Aheli Ghosh

    2017-09-01

    Full Text Available The growth, morphological, and electrical properties of thin-film Ge grown by molecular beam epitaxy on Si using a two-step growth process were investigated. High-resolution x-ray diffraction analysis demonstrated ∼0.10% tensile-strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt. Micro-Raman spectroscopic analysis corroborated the strain-state of the Ge thin-film. Cross-sectional transmission electron microscopy revealed the formation of 90  ° Lomer dislocation network at Ge/Si heterointerface, suggesting the rapid and complete relaxation of Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphology with surface roughness < 2 nm. Temperature dependent Hall mobility measurements and the modelling thereof indicated that ionized impurity scattering limited carrier mobility in Ge layer. Capacitance- and conductance-voltage measurements were performed to determine the effect of epilayer dislocation density on interfacial defect states (Dit and their energy distribution. Finally, extracted Dit values were benchmarked against published Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained were comparable with Ge MOS devices integrated on Si via alternative buffer schemes. This comprehensive study of directly-grown epitaxial Ge-on-Si provides a pathway for the development of Ge-based electronic devices on Si.

  12. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy

    Science.gov (United States)

    Ghosh, Aheli; Clavel, Michael B.; Nguyen, Peter D.; Meeker, Michael A.; Khodaparast, Giti A.; Bodnar, Robert J.; Hudait, Mantu K.

    2017-09-01

    The growth, morphological, and electrical properties of thin-film Ge grown by molecular beam epitaxy on Si using a two-step growth process were investigated. High-resolution x-ray diffraction analysis demonstrated ˜0.10% tensile-strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt. Micro-Raman spectroscopic analysis corroborated the strain-state of the Ge thin-film. Cross-sectional transmission electron microscopy revealed the formation of 90° Lomer dislocation network at Ge/Si heterointerface, suggesting the rapid and complete relaxation of Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphology with surface roughness published Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained were comparable with Ge MOS devices integrated on Si via alternative buffer schemes. This comprehensive study of directly-grown epitaxial Ge-on-Si provides a pathway for the development of Ge-based electronic devices on Si.

  13. Upconversion photoluminescence of epitaxial Yb{sup 3+}/Er{sup 3+} codoped ferroelectric Pb(Zr,Ti)O{sub 3} films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: zhangy_acd@hotmail.com [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kämpfe, Thomas [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Bai, Gongxun [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Mietschke, Michael; Yuan, Feifei; Zopf, Michael [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Abel, Stefan [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Eng, Lukas M. [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Hühne, Ruben [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Fompeyrine, Jean [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Ding, Fei, E-mail: f.ding@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schmidt, Oliver G. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer strasse 70, 09107 Chemnitz (Germany)

    2016-05-31

    Thin films of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} (PZT:Yb/Er) have been epitaxially grown on the SrTiO{sub 3} buffered Si wafer by pulsed laser deposition. Strong upconversion photoluminescence was observed in the PZT:Yb/Er thin film. Using piezoresponse force microscopy, polar domains in the PZT:Yb/Er film can be reversibly switched with a phase change of 180°. Ferroelectric hysteresis loop shape with a well-saturated response was observed. The epitaxially grown lanthanide-doped PZT on silicon opens up a promising route to the integration of luminescent functional oxides on the silicon platform. - Highlights: • Epitaxial growth of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} films on SrTiO{sub 3} buffered silicon • Upconversion emissions were obtained from the lanthanide ion doped thin films. • Saturated ferroelectric hysteresis loops were observed. • Polar domains were switched by PFM with a phase change of 180°.

  14. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1998-01-01

    The kinetics of dopant-enhanced solid phase epitaxy (SPE) have been measured in buried a-Si layers doped with arsenic. SPE rates were measured over the temperature range 480 - 660 deg C for buried a-Si layers containing ten different As concentrations. In the absence of H-retardation effects, the dopant-enhanced SPE rate is observed to depend linearly on the As concentration over the entire range of concentrations, 1-16 x 10 19 cm -3 covered in the study. The Fermi level energy was calculated as a function of doping and find an equation that can provide good fits to the data. The implications of these results for models of the SPE process is discussed

  15. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    Science.gov (United States)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  16. Position sensitive silicon detectors inside the Tevatron collider

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1986-01-01

    Four position sensitive silicon detectors have been tested inside the Tevatron beam pipe at Fermilab. The system is the prototype of the small angle silicon spectrometer designed to study primarily p-anti p elastic and diffractive cross-sections at the Collider of Fermilab (CDF). Particles in the beam halo during p-anti p storage tests were used to study the performance of the detectors. Efficiency, linearity of response and spatial resolution are shown. Measurements performed at different distances from the beam axis have shown that the detectors could be operated at 8.5 mm from the beam with low rates and no disturbance to the circulating beams. This distance corresponds to about 11 times the standard half-width of the local beam envelope. The behaviour of the detectors with the radiation dose has also been investigated. (orig.)

  17. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  18. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  19. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  20. Epitaxial Reactor Development for Growth of Silicon-on-Insulator Devices.

    Science.gov (United States)

    1987-04-01

    emision from substrate reflected from interface 40 Constructive interference condition 2tc= n X / 1 * Destrictive interference condition 2tD= (2n+1) X...combinations of growth conditions resulted in no oxide growth on the original silicon wafer. Growths occurred for Si:O molecular ratios higher than 1:1...growth rates occurred at 1050 0 C with water vapor at 1250 cc/min and silane at 50 cc/min. These results are shown in Table 6. The molecular ratio was 2:1

  1. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    2014-01-01

    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding...... short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account...

  2. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    Science.gov (United States)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  3. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kordyasz, A.J.; Bednarek, A. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); Le Neindre, N.; Bougault, R.; Lopez, O.; Merrer, Y.; Vient, E. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); Parlog, M. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest Magurele (Romania); Casini, G.; Poggi, G.; Bini, M.; Valdre, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S. [INFN Firenze, Sesto Fiorentino (Italy); Universita di Firenze, Sesto Fiorentino (Firenze) (Italy); Kowalczyk, M. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Frankland, J.D.; Bonnet, E.; Chbihi, A.; Gruyer, D. [CEA et IN2P3-CNRS, GANIL, Caen-Cedex 05 (France); Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M.F.; Salomon, F. [IN2P3-CNRS, Institut de Physique Nucleaire, Orsay-Cedex (France); Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M. [INFN, Bologna (Italy); Universita di Bologna, Bologna (Italy); Alba, R.; Santonocito, D.; Maiolino, C. [INFN, Catania (Italy); Universita di Catania, LNS, Catania (Italy); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN LNL Legnaro, Legnaro (Padova) (Italy); Kozik, T.; Kulig, P.; Twarog, T.; Sosin, Z. [Jagiellonian University, Cracow (Poland); Gasior, K.; Grzeszczuk, A.; Zipper, W. [University of Silesia, Silesian University, Katowice (Poland); Sarnecki, J.; Lipinski, D.; Wodzinska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyzak, K. [Institute of Electronic Materials Technology, Warsaw (Poland); Tarasiuk, K.J. [University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Khabanowa, Z. [Faculty of Physics, Warsaw University of Technology, Warsaw (Poland); Kordyasz, L. [Warsaw University of Technology, Faculty of Mechatronics, Institute of Mikromechanics and Photonics, Department of Design of Precision Devices, Warsaw (Poland)

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R and D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B{sup +} ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from {sup 241}Am (left angle E{sub α} right angle = 5.5 MeV). Preliminary tests on the first thin detector (area ∼ 20 x 20 mm{sup 2}) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction {sup 84}Kr (E = 35 A MeV) + {sup 112}Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge. (orig.)

  4. Position sensitive photon detectors using epitaxial InGaAs/InAlAs quantum wells

    International Nuclear Information System (INIS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Jark, H.; Eichert, D.M.; Cucini, R.; Menk, R.H.; Biasiol, G.

    2014-01-01

    This work deals with the investigation of novel position-sensitive devices based on InGaAs/InAlAs quantum wells, which could be applied to several applications of either synchrotron or conventional light sources. Such devices may be used as fast and efficient detectors due to the direct, low-energy band gap and high electron mobility at room temperature. Metamorphic In 0.75 Ga 0.25 As/In 0.75 Al 0.25 As quantum wells containing a two-dimensional electron gas were grown by molecular beam epitaxy. Two devices with size of 5 × 5 mm 2 were prepared by using optical lithography. In the first, the active layers were segmented into four electrically insulated quadrants. Indium ohmic contacts were realized on the corner of each quadrant (for readout) and on the back surface (for bias). In the second, the quantum well was left unsegmented and covered by 400 nm of Al providing a single bias electrode, while four readout electrodes were fabricated on the back side by depositing and segmenting a Ni/Ge/Au layer. Photo-generated carriers can be collected at the readout electrodes by biasing from either the QW side or the back side of the devices during beam exposure. Individual currents obtained from each electrode allow monitoring of both the position and the intensity of the impinging beam for photon energies ranging from visible to hard X-ray. Such detector prototypes were tested with synchrotron radiation. Moreover, the position of the beam can be estimated with a precision of 800 nm in the segmented QW. A lower precision of 10 μm was recorded in the unsegmented QW due to the charge diffusion through the 500-μm-thick wafer, with however a lower electronic noise due to the better uniformity of the contacts

  5. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  6. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  7. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  8. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Adam Nepomuk, E-mail: otte@gatech.edu; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-21

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm{sup 2} at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  9. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  10. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  11. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  12. Investigation of microstructure and morphology for the Ge on porous silicon/Si substrate hetero-structure obtained by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gouder, S.; Mahamdi, R.; Aouassa, M.; Escoubas, S.; Favre, L.; Ronda, A.; Berbezier, I.

    2014-01-01

    Thick porous silicon (PS) buffer layers are used as sacrificial layers to epitaxially grow planar and fully relaxed Ge membranes. The single crystal Ge layers have been deposited by molecular beam epitaxy (MBE) on PS substrate. During deposition, the pore network of PS layers has been filled with Ge. We investigate the structure and morphology of PS as fabricated and after annealing at various temperatures. We show that the PS crystalline lattice is distorted and expanded in the direction perpendicular to the substrate plane due to the presence of chemisorbed –OH. An annealing at high temperature (> 500 °C), greatly changes the PS morphology and structure. This change is marked by an increase of the pore diameter while the lattice parameter becomes tensily strained in the plane (compressed in the direction perpendicular). The morphology and structure of Ge layers are investigated by transmission electron microscopy, high resolution X-ray diffraction and atomic force microscopy as a function of the deposition temperature and deposited thickness. The results show that the surface roughness, level of relaxation and Si-Ge intermixing (Ge content) depend on the growth temperature and deposited thickness. Two sub-layers are distinguished: the layer incorporated inside the PS pores (high level of intermixing) and the layer on top of the PS surface (low level of intermixing). When deposited at temperature > 500 °C, the Ge layers are fully relaxed with a top Si 1−x Ge x layer x = 0.74 and a very flat surface. Such layer can serve as fully relaxed ultra-thin SiGe pseudo-substrate with high Ge content. The epitaxy of Ge on sacrificial soft PS pseudo-substrate in the experimental conditions described here provides an easy way to fabricate fully relaxed SiGe pseudo-substrates. Moreover, Ge thin films epitaxially deposited by MBE on PS could be used as relaxed pseudo-substrate in conventional microelectronic technology. - Highlights: • We have developed a rapid and low

  13. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Keywords. Porous silicon; passivation; palladium; oxidation; XPS. Abstract. Nano porous silicon (PS) was formed on -type monocrystalline silicon of 2–5 cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its ...

  14. Silicon nanowire structures as high-sensitive pH-sensors

    International Nuclear Information System (INIS)

    Belostotskaya, S O; Chuyko, O V; Kuznetsov, A E; Kuznetsov, E V; Rybachek, E N

    2012-01-01

    Sensitive elements for pH-sensors created on silicon nanostructures were researched. Silicon nanostructures have been used as ion-sensitive field effect transistor (ISFET) for the measurement of solution pH. Silicon nanostructures have been fabricated by 'top-down' approach and have been studied as pH sensitive elements. Nanowires have the higher sensitivity. It was shown, that sensitive element, which is made of 'one-dimensional' silicon nanostructure have bigger pH-sensitivity as compared with 'two-dimensional' structure. Integrated element formed from two p- and n-type nanowire ISFET ('inverter') can be used as high sensitivity sensor for local relative change [H+] concentration in very small volume.

  15. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    International Nuclear Information System (INIS)

    Holland, S.E.

    2000-01-01

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels

  16. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  17. Impact of GaN transition layers in the growth of GaN epitaxial layer on silicon

    International Nuclear Information System (INIS)

    Zhao Danmei; Zhao Degang; Jiang Desheng; Liu Zongshun; Zhu Jianjun; Chen Ping; Liu Wei; Li Xiang; Shi Ming

    2015-01-01

    A method for growing GaN epitaxial layer on Si (111) substrate is investigated. Due to the large lattice mismatch between GaN and AlN, GaN grown directly above an AlN buffer layer on the Si substrate turns out to be of poor quality. In this study, a GaN transition layer is grown additionally on the AlN buffer before the GaN epitaxial growth. By changing the growth conditions of the GaN transition layer, we can control the growth and merging of islands and control the transfer time from 3D to 2D growth mode. With this method, the crystalline quality of the GaN epitaxial layer can be improved and the crack density is reduced. Here, we have investigated the impact of a transition layer on the crystalline quality and stress evolution of a GaN epitaxial layer with methods of X-ray diffraction, optical microscopy and in situ reflectivity trace. With the increasing thickness of transition layer, the crack decreases and the crystalline quality is improved. But when the transition layer exceeds a critical thickness, the crystalline quality of the epilayer becomes lower and the crack density increases. (paper)

  18. On selecting a sensitive region thickness of a silicon semiconductor detector for operation under counting conditions

    International Nuclear Information System (INIS)

    Pronkin, N.S.; Khakhalin, V.V.

    1972-01-01

    The paper discusses the selection of a thickness of a sensitive area of a silicon semiconductor detector, used in the count regime based on the signal to noise ratio and β-radiation registration efficiency. (author)

  19. Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays

    Science.gov (United States)

    Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2015-10-01

    We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.

  20. Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide

    DEFF Research Database (Denmark)

    Kang, Ning; Fadil, Ahmed; Pu, Minhao

    2013-01-01

    We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption.......We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption....

  1. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  2. Experimental and numerical studies on the sensitivity of carbon fibre/silicone rubber composite sensors

    International Nuclear Information System (INIS)

    Yang, Lili; Ge, Yong; Zhu, Qinghua; Zhang, Ce; Wang, Zongpeng; Liu, Penghuan

    2012-01-01

    Flexible conductive composite sensors are of great importance for applications in structural monitoring due to their low cost, high durability and excellent compatibility. In this work, carbon fibre/silicone rubber composites were prepared and their sensitivity near the percolation threshold was investigated experimentally and theoretically. Results show that carbon fibre/silicone rubber composites have great mechanical and sensitivity even under high strain conditions. Two models based on the tunnelling effect and general effective medium theory were found to understand the sensitivity of composites with lower and higher fractions of carbon fibre. Moreover, the reversibility of the sensing performance is improved with the increase of carbon fibre addition. (paper)

  3. Illumination-invariant face recognition with a contrast sensitive silicon retina

    Energy Technology Data Exchange (ETDEWEB)

    Buhmann, J.M. [Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany). Inst. fuer Informatik II; Lades, M. [Bochum Univ. (Germany). Inst. fuer Neuroinformatik; Eeckman, F. [Lawrence Livermore National Lab., CA (United States)

    1993-11-29

    Changes in lighting conditions strongly effect the performance and reliability of computer vision systems. We report face recognition results under drastically changing lighting conditions for a computer vision system which concurrently uses a contrast sensitive silicon retina and a conventional, gain controlled CCD camera. For both input devices the face recognition system employs an elastic matching algorithm with wavelet based features to classify unknown faces. To assess the effect of analog on-chip preprocessing by the silicon retina the CCD images have been digitally preprocessed with a bandpass filter to adjust the power spectrum. The silicon retina with its ability to adjust sensitivity increases the recognition rate up to 50 percent. These comparative experiments demonstrate that preprocessing with an analog VLSI silicon retina generates image data enriched with object-constant features.

  4. Silicon position sensitive detectors for the Helios (NA 34) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Manns, T; Plants, D; Shepard, P F; Thompson, J A; Tosh, R; Chand, T; Shivpuri, R; Baker, W

    1987-01-15

    The design construction and testing of X-Y tracking modules for a silicon microstrip vertex detector for use in Fermilab experiment E706 is discussed. A successful adaptation of various technologies, essential for instrumenting this class of detectors at a university laboratory is described. Emphasis is placed on considerable cost reduction, design flexibiity and more rapid turnover with a view toward large detectors for the future.

  5. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Savenkov, G. G. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Morozov, V. A. [Saint-Petersburg State University (Russian Federation); Zegrya, A. G.; Ulin, N. V., E-mail: Ulin@mail.ioffe.ru; Ulin, V. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lukin, A. A. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Bragin, V. A.; Oskin, I. A. [AO Scientific Production Association Poisk (Russian Federation); Mikhailov, Yu. M. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the silicon powder.

  6. Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia

    2014-06-25

    In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.

  7. Physical and electrical characterization of corundum substrates and epitaxial silicon layers in view of fabricating integrated circuits

    International Nuclear Information System (INIS)

    Trilhe, J.; Legal, H.; Rolland, G.

    1975-01-01

    The S.O.S. technology (silicon on insulating substrate) allows compact, radiation hard, fast integrated circuits to be fabricated. It is noticeable that complex integrated circuits on corundum substrates obtained with various fabrication processes have various electrical characteristics. Possible correlations between the macroscopic defects of the substrate and the electrical characteristics of the circuit were investigated [fr

  8. Vertically etched silicon nano-rods as a sensitive electron detector

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, M; Akbari, M; Soleimani-Amiri, S; Sadeghipari, M; Shahsafi, A; Akhavan Farahani, A; Mohajerzadeh, S

    2015-01-01

    We have used vertically etched silicon nano-rods to realize electron detectors suitable for scanning electron microscopes. The results of deep etching of silicon nano-structures are presented to achieve highly ordered arrays of nano-rods. The response of the electron detector to energy of the primary electron beam and the effects of various sizes and materials has been investigated, indicating its high sensitivity to secondary and back-scattered electrons. The miniaturized structure of this electron detector allows it to be placed in the vicinity of the specimen to improve the resolution and contrast. This detector collects electrons and converts the electron current to voltage directly by means of n-doped silicon nano-rods on a p-type silicon substrate. Silicon nano-rods enhance the surface-to-volume ratio of the detector as well as improving the yield of electron detection. The use of nano-structures and silicon nanowires as an electron detector has led to higher sensitivities than with micro-structures. (paper)

  9. Fabrication and characterization of silicon nanowires by means of molecular beam epitaxy; Herstellung und Charakterisierung von Silizium-Nanodraehten mittels Molekularstrahlepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Luise

    2007-06-19

    In this work, basic processes of silicon whisker growth were examined. For the first time, Si nanowhiskers were produced under UHV conditions by Molecular Beam Epitaxy (MBE) and characterized by different analysis methods afterwards. The existence of Au/Si droplets on a Si(111) substrate surface is a precondition of this growth method. Analyses of the temporal development of the Au/Si droplets during the whisker growth show a decrease of the number of small droplets resp. whiskers during the whisker growth with increasing growth time. This behaviour, i.e. the dissolution of smaller droplets/whiskers and the growth of larger ones in parallel can be explained by Ostwald ripenning. The diffusion-determined material transition of gold, which occurs during this process, is theoretically described by the Lifshitz-Slyozov-Wagner (LSW)-Theory. After this theory only whiskers grow which radii are larger than the critical radius. The whisker radii are temperature dependend whereas analogous whisker radii exist for identical growth times. Electron microscopy analysis show that all whiskers possess a hexagonal but no cylindrical habitus. The planes that form during the growth are crystallographic (111) planes. The growth of Si nanowhiskers under MBE conditions is determined by the Vapour Liquid Solid (VLS) mechanism and by surface diffusion of Si atoms. (orig.)

  10. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  11. Structural sensitivity of x-ray Bragg projection ptychography to domain patterns in epitaxial thin films

    International Nuclear Information System (INIS)

    Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.

    2016-01-01

    Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO_3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.

  12. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  13. Recyclability of mixed office waste papers containing pressure sensitive adhesives and silicone release liners

    Science.gov (United States)

    Julie Hess; Roberta Sena-Gomes; Lisa Davie; Marguerite Sykes

    2001-01-01

    Increased use of pressure sensitive adhesives for labels and stamps has introduced another contaminant into the office paper stream: silicone- coated release liners. This study examines methods and conditions for removal of contaminants, including these liners, from a typical batch of discarded office papers. Removal of contaminants contained in the furnish were...

  14. Position-sensitive silicon strip detector characterization using particle beams

    CERN Document Server

    Maenpaeae, Teppo

    2012-01-01

    Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution.They are widely used in many high-energy physics experiments. Modern high energyphysics experiments impose harsh operation conditions on the detectors, e.g., of LHCexperiments. The high radiation doses cause the detectors to eventually fail as a resultof excessive radiation damage. This has led to a need to study radiation tolerance usingvarious techniques. At the same time, a need to operate sensors approaching the endtheir lifetimes has arisen.The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal,measurement apparatuses are built. The devices are then used to measure the propertiesof irradiated detectors. The measurement data are analyzed, and conclusions are drawn.Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle acceler...

  15. Study on photon sensitivity of silicon diodes related to materials used for shielding

    International Nuclear Information System (INIS)

    Moiseev, T.

    1999-01-01

    Large area silicon diodes used in electronic neutron dosemeters have a significant over-response to X- and gamma-rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diode's active area and strongly affects the neutron sensitivity of such dosemeters. Since silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon-induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low-energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X- and gamma rays energy range is proposed by designing a composed photon filter. (author)

  16. Study on Photon Sensitivity of Silicon Diodes Related to Materials Used for Shielding

    International Nuclear Information System (INIS)

    Moiseev, T.

    2000-01-01

    Large area Silicon diodes used in electronic neutron dosemeters have a significant over-response to X and gamma rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diodes active area and strongly affects the neutron sensitivity of such dosemeters. Since Silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X and gamma rays energy range is proposed by designing a composed photon filter. (author)

  17. Charge-sensitive preamplifier IC for silicon calorimetry at colliders

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Chekhovsky, V.A.; Emel'yanchik, I.F.; Shumeiko, N.M.; Golutvin, I.A.; Zamyatin, N.I.; Dvornikov, O.V.

    1995-01-01

    Four versions of a fast monolithic charge-sensitive preamplifier (CSP) were designed using microwave BJT-JFET technology. The best one has a 3.5 ns rise time for input detector capacitance C d =100 pF and approximately 8 mW power dissipation for 5 V supply voltage. The ENC performance at shaping time 30 ns is 1350 e+17 e/pF for C d up to 600 pF. Crosstalk in a four-channel amplifier made in the same chip was measured to be about -46 dB for C d =100 pF. The linear output voltage swing is 0.8 V for voltage supply 5 V. The IC has revealed good radiation hardness to neutron irradiation. ((orig.))

  18. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    Science.gov (United States)

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  19. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia

    Science.gov (United States)

    Hamed, N. K. A.; Ahmad, M. K.; Urus, N. S. T.; Mohamad, F.; Nafarizal, N.; Ahmad, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    In carrying out experimental research in performance between silicon solar panel and dye-sensitive solar panel, we have been developing a device and a system. This system has been developed consisting of controllers, hardware and software. This system is capable to get most of the input sources. If only need to change the main circuit and coding for a different source input value. This device is able to get the ambient temperature, surface temperature, surrounding humidity, voltage with load, current with load, voltage without load and current without load and save the data into external memory. This device is able to withstand the heat and rain as it was fabricated in a waterproof box. This experiment was conducted to examine the performance of both the solar panels which are capable to maintain their stability and performance. A conclusion based on data populated, the distribution of data for dye-sensitized solar panel is much better than silicon solar panel as dye-sensitized solar panel is very sensitive to heat and not depend only on midday where is that is the maximum ambient temperature for both solar panel as silicon solar panel only can give maximum and high output only when midday.

  20. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  1. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity...... of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  2. Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.

    Science.gov (United States)

    Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali

    2018-03-27

    There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.

  3. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  4. Modification of inkjet printer for polymer sensitive layer preparation on silicon-based gas sensors

    Directory of Open Access Journals (Sweden)

    Tianjian Li

    2015-04-01

    Full Text Available Inkjet printing is a versatile, low cost deposition technology with the capabilities for the localized deposition of high precision, patterned deposition in a programmable way, and the parallel deposition of a variety of materials. This paper demonstrates a new method of modifying the consumer inkjet printer to prepare polymer-sensitive layers on silicon wafer for gas sensor applications. A special printing tray for the modified inkjet printer to support a 4-inch silicon wafer is designed. The positioning accuracy of the deposition system is tested, based on the newly modified printer. The experimental data show that the positioning errors in the horizontal direction are negligibly small, while the positioning errors in the vertical direction rise with the increase of the printing distance of the wafer. The method for making suitable ink to be deposited to form the polymer-sensitive layer is also discussed. In the testing, a solution of 0.1 wt% polyvinyl alcohol (PVA was used as ink to prepare a sensitive layer with certain dimensions at a specific location on the surface of the silicon wafer, and the results prove the feasibility of the methods presented in this article.

  5. Light Enhanced Hydrofluoric Acid Passivation: A Sensitive Technique for Detecting Bulk Silicon Defects

    Science.gov (United States)

    Grant, Nicholas E.

    2016-01-01

    A procedure to measure the bulk lifetime (>100 µsec) of silicon wafers by temporarily attaining a very high level of surface passivation when immersing the wafers in hydrofluoric acid (HF) is presented. By this procedure three critical steps are required to attain the bulk lifetime. Firstly, prior to immersing silicon wafers into HF, they are chemically cleaned and subsequently etched in 25% tetramethylammonium hydroxide. Secondly, the chemically treated wafers are then placed into a large plastic container filled with a mixture of HF and hydrochloric acid, and then centered over an inductive coil for photoconductance (PC) measurements. Thirdly, to inhibit surface recombination and measure the bulk lifetime, the wafers are illuminated at 0.2 suns for 1 min using a halogen lamp, the illumination is switched off, and a PC measurement is immediately taken. By this procedure, the characteristics of bulk silicon defects can be accurately determined. Furthermore, it is anticipated that a sensitive RT surface passivation technique will be imperative for examining bulk silicon defects when their concentration is low (<1012 cm-3). PMID:26779939

  6. Growth of gallium nitride based devices on silicon(001) substrates by metalorganic vapor phase epitaxy; Wachstum von Galliumnitrid-basierten Bauelementen auf Silizium(001)-Substraten mittels metallorganischer Gasphasenepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Reiher, Fabian

    2009-02-25

    The main topic of this thesis is to investigate GaN-based layer systems grown by metalorganic vapor phase epitaxy on Si(001) substrates. A temperature shift up to 45 K is measured for a complete device structure on a 2-inch silicon substrate. By using a 40 nm thin LT-AlN-seed layer (680 C), the GaN crystallites on Si(001) substrates are almost oriented with their GaN(10 anti 12)-planes parallel to the Si(001)-plane. A four-fold azimuthal symmetry occurs for these layers, with the GaN[10 anti 11]-direction is aligned parallel to one of the four equivalent left angle 110 right angle -directions, respectively. However, a mono-crystalline and fully coalesced GaN-layer with this crystallographic orientation could not yet been obtained. If a deposition temperature of more than 1100 C is used for the AlN-seed layer, solely the GaN[0001]- growth direction of crystallites occurs in the main GaN layer on Si(001) substrates. These c-axis oriented GaN columns feature two opposite azimuthal alignments that are rotated by 90 with respect to each other and with GaN[11 anti 20] parallel Si[110] and GaN[10 anti 10] parallel Si[110], respectively. By using 4 off-oriented substrates towards the Si[110]-direction, one certain azimuthal texture component can be selected. The critical value of the miscut angle corresponds to theoretical calculations predicting the occurrence of atomic double steps on the Si(001) surface. The achieved crystallographic quality of the GaN layers on Si(001) is characterized by having a tilt of FWHM=0.27 and a twist of FWHM=0.8 of the crystallites, determined by X-ray diffraction. A completely crack-free, up to 2.5 {mu}m thick, and mono-crystalline GaN-template can be realized on Si(001), integrating 4 or 5 LT-AlN-interlayers in the GaN buffer structure. Based on this structure, the first successful implementation of an (InGaN/GaN)-LED on Si(001) is achieved. Furthermore, the possible fabrication of GaN-based FET-structures is demonstrated with a fully

  7. VUV-sensitive silicon-photomultipliers for the nEXO-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Gerrit; Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The nEXO (next Enriched Xenon Observatory) experiment will search for the neutrinoless double beta decay of Xe-136 with a liquid xenon TPC (Time ProjectionChamber). The sensitivity of the experiment is related to the energy resolution, which itself depends on the accuracies of the measurements of the amount of drifting electrons and the number of scintillation photons with their wavelength being in the vacuum ultraviolet band. Silicon Photomultipliers (SiPM) shall be used for the detection of the scintillation light, since they can be produced extremely radiopure. Commercially available SiPM do not fulfill all requirements of the nEXO experiment, thus a dedicated development is necessary. To characterize the silicon photomultipliers, we have built a test apparatus for xenon liquefaction, in which a VUV-sensitive photomultiplier tube can be operated together with the SiPM. In this contribution we present our apparatus for the SiPM characterization measurements and our latest results on the test of the silicon photomultipliers for the detection of xenon scintillation light.

  8. Studies of the sensitivity dependence of float zone silicon diodes on gamma absorbed dose

    International Nuclear Information System (INIS)

    Pascoalino, K.C.S.; Santos, T.C. dos; Barbosa, R.F.; Camargo, F. de; Goncalves, J.A.C.; Bueno, C.C.

    2011-01-01

    Full text: Several advantages of silicon diodes which include small size, low cost, high sensitivity and wide availability, make them suitable for dosimetry and for radiation field mapping. However, the small radiation tolerance of ordinary silicon devices has imposed constraints on their application in intense radiation fields such as found in industrial radiation processes. This scenario has been changed with the development of radiation hard silicon devices to be used as track detectors in high-energy physics experiments. Particularly, in this work it is presented the dosimetric results obtained with a batch of nine junction silicon diodes developed, in the framework of CERN RD50 Collaboration, as good candidates for improved radiation hardness. These diodes were produced with 300 micrometer n-type silicon substrate grown by standard float zone technique and processed by the Microelectronics Center of Helsinki University of Technology. The samples irradiation was performed using a Co-60 irradiator (Gammacell 220) which delivers a dose-rate of 2 kGy/h. During the irradiation, the unbiased diodes were connected through low-noise coaxial cables to the input of a KEITHLEY 617 electrometer, in order to monitor the devices photocurrent as a function of the exposure time. To study the response uniformity of the batch of nine diodes as well the sensitivity dependence on the absorbed dose, they were irradiated with different doses from 5 kGy up to 50 kGy. The sensitivity response of each device was investigated through the on-line measurements of the current signals as a function of the exposure time. For doses up to 5 kGy, all diodes exhibited a current decay of almost six percent in comparison with the value registered at the start-time of the irradiation. However, this decrease in the current sensitivity is much smaller than those observed with ordinary diodes for the same absorbed dose. The dose-response curves of the devices were also investigated through the plot

  9. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  10. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. On the origin of increased sensitivity and mass resolution using silicon masks in MALDI.

    Science.gov (United States)

    Diologent, Laurent; Franck, Julien; Wisztorski, Maxence; Treizebre, Anthony; Focsa, Cristian; Fournier, Isabelle; Ziskind, Michael

    2014-02-04

    Since its development, MALDI has proved its performance in the analysis of intact biomolecules up to high molecular weights, regardless of their polarity. Sensitivity of MALDI instruments is a key point for breaking the limits of observing biomolecules of lower abundances. Instrumentation is one way to improve sensitivity by increasing ion transmission and using more sensitive detection systems. On the other side, improving MALDI ion production yields would have important outcomes. MALDI ion production is still not well-controlled and, indeed, the amount of ions produced per laser shot with respect to the total volume of desorbed material is very low. This has particular implications for certain applications, such as MALDI MS imaging where laser beam focusing as fine as possible (5-10 μm) is searched in order to reach higher spatial resolution images. However, various studies point out an intrinsic decrease in signal intensity for strong focusing. We have therefore been interested in developing silicon mask systems to decrease an irradiated area by cutting rather than focusing the laser beam and to study the parameters affecting sensitivity using such systems. For this, we systematically examined variation with laser fluence of intensity and spectral resolution in MALDI of standard peptides when using silicon-etched masks of various aperture sizes. These studies demonstrate a simultaneous increase in spectral resolution and signal intensity. Origin of this effect is discussed in the frame of the two-step ionization model. Experimental data in the low fluence range are fitted with an increase of the primary ionization through matrix-silicon edge contact provided by the masks. On the other hand, behavior at higher fluence could be explained by an effect on the secondary ionization via changes in the plume dynamics.

  12. Modified MIS-structure based on nanoporous silicon with enhanced sensitivity to the hydrogen containing gases

    Energy Technology Data Exchange (ETDEWEB)

    Gorbanyuk, T.; Evtukh, A.; Litovchenko, V.; Solntsev, V. [Institute of Semiconductor Physics, Kiev (Ukraine)

    2008-07-01

    The gas sensitivity of metal-insulator-semiconductor (MIS)-structures based on nanoporous silicon with active electrodes from palladium/tungsten oxide composite has been studied. It was found that the using of palladium/tungsten oxide composite (instead of thin palladium film) leads to enhanced sensitivity of MIS structures to hydrogen sulphide in air. The mechanism of this phenomenon has been established. The enhanced H{sub 2}S sensitivity is explained in the following way. The microparticles of tungsten trioxide inside palladium matrix stimulate the dissociation of hydrogen sulphide molecules, and hydrogen atoms and/or protons flow down to palladium surface, are absorbed by palladium volume, diffuse to palladium/oxidized nanoporous silicon interface. Hydrogen atoms adsorbed at the interface are polarized and give rise to a dipole layer. As a result, the voltage shift of the capacity-voltage (C-V) curve proportional to the measured gas concentration is observed. The surface microstructure of Pd/WO{sub 3} composite was studied by AFM microscopy. The chemical content of the composite film has been investigated by SIMS. It was found that the composite film on nanoporous silicon surface poses the holes with the size about 0.05 {mu}m, the mean separation between tungsten oxide microparticles is 1-2 {mu}m. It also was found that the using of the additional double layer polymer film (polymer film (phthalocyanine zinc)/semicon-ductor film (cadmium sulphide)) on composite film surface leads to the additional enhancement of the gas sensitivity to hydrogen sulphide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor

    Directory of Open Access Journals (Sweden)

    Raffaele Caroselli

    2017-12-01

    Full Text Available Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU, which allowed us to directly detect refractive index variations in the 10−7 RIU range.

  14. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.

    Science.gov (United States)

    Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime

    2017-12-05

    Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.

  15. SENSITIVITY TEMPERATURE DEPENDENCE RESEARCH OF TV-CAMERAS BASED ON SILICON MATRIXES

    Directory of Open Access Journals (Sweden)

    Alexey N. Starchenko

    2017-07-01

    Full Text Available Subject of Research. The research is dedicated to the analysis of sensitivity change patterns of the cameras based on silicon CMOS-matrixes in various ambient temperatures. This information is necessary for the correct camera application for photometric measurements in-situ. The paper deals with studies of sensitivity variations of two digital cameras with different silicon CMOS matrixes in visible and near IR regions of the spectrum at temperature change. Method. Due to practical restrictions the temperature changes were recorded in separate spectral intervals important for practical use of the cameras. The experiments were carried out with the use of a climatic chamber, providing change and keeping the temperature range from minus 40 to plus 50 °C at a pitch of 10 о С. Two cameras were chosen for research: VAC-135-IP with OmniVision OV9121 matrix and VAC-248-IP with OnSemiconductor VITA2000 matrix. The two tested devices were placed in a climatic chamber at the same time and illuminated by one radiation source with a color temperature about 3000 K in order to eliminate a number of methodological errors. Main Results. The temperature dependence of the signals was shown to be linear and the matrixes sensitivities were determined. The results obtained are consistent with theoretical views, in general. The coefficients of thermal sensitivity were computed by these dependencies. It is shown that the greatest affect of temperature on the sensitivity occurs in the area (0.7–1.1 mkm. Temperature coefficients of sensitivity increase with the downward radiation wavelength increase. The experiments carried out have shown that it is necessary to take into account the changes in temperature sensitivity of silicon matrixes in the red and near in IR regions of the spectrum. The effect reveals itself in a clearly negative way in cameras with an amplitude resolution of 10-12 bits used for aerospace and space spectrozonal photography. Practical Relevance

  16. Color sensitive silicon photomultiplers with micro-cell level encoding for DOI PET detectors

    Science.gov (United States)

    Shimazoe, Kenji; Koyama, Akihiro; Takahashi, Hiroyuki; Ganka, Thomas; Iskra, Peter; Marquez Seco, Alicia; Schneider, Florian; Wiest, Florian

    2017-11-01

    There have been many studies on Depth Of Interaction (DOI) identification for high resolution Positron Emission Tomography (PET) systems, including those on phoswich detectors, double-sided readout, light sharing methods, and wavelength discrimination. The wavelength discrimination method utilizes the difference in wavelength of stacked scintillators and requires a color sensitive photodetector. Here, a new silicon photomultiplier (SiPM) coupled to a color filter (colorSiPM) was designed and fabricated for DOI detection. The fabricated colorSiPM has two anode readouts that are sensitive to blue and green color. The colorSiPM's response and DOI identification capability for stacked GAGG and LYSO crystals are characterized. The fabricated colorSiPM is sensitive enough to detect a peak of 662 keV from a 137 Cs source.

  17. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  18. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-30

    Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

  19. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    International Nuclear Information System (INIS)

    Yan, Hai; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed

  20. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  1. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Cirlin, G E; Reznik, R R; Shtrom, I V

    2017-01-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail...

  2. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    Science.gov (United States)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  3. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon...

  4. The measurement of phi 60 mm x 600 mu m silicon PIN detector gamma sensitivity and time respond

    CERN Document Server

    Hu Meng Chun; Ye Wen Ying

    2002-01-01

    phi 60 mm x 600 mu m silicon PIN detector is a large area and high sensitive one which has been developed in near years. The authors have measured their gamma sensitivity and the time response. The experiment and theoretical calculated results in: sup 6 sup 0 Co gamma sensitivity is about 5 fC centre dot cm sup 2 /MeV, the rise time is about 10 ns and the half-high-width time is about 35 ns

  5. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection

    International Nuclear Information System (INIS)

    Guo, Yuanyuan; Su, Shao; Wei, Xinpan; Zhong, Yiling; Su, Yuanyuan; He, Yao; Huang, Qing; Fan, Chunhai

    2013-01-01

    We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1–10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications. (paper)

  6. Intrinsic spin polarized electronic structure of CrO2 epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fujiwara, Hirokazu; Sunagawa, Masanori; Kittaka, Tomoko; Terashima, Kensei; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2015-01-01

    We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO 2 . We used CrO 2 epitaxial films on TiO 2 (100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO 2 . In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (E F ) with an energy gap of 0.5 eV below E F were observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO 2 film, constituting spectroscopic evidence for the half-metallicity of CrO 2 at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d

  7. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  8. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  9. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  10. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  11. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  12. Sensitivity of triple-crystal X-ray diffractometers to microdefects in silicon

    International Nuclear Information System (INIS)

    Molodkin, V.B.; Olikhovskii, S.I.; Len, E.G.; Kislovskii, E.N.; Kladko, V.P.; Reshetnyk, O.V.; Vladimirova, T.P.; Sheludchenko, B.V.

    2009-01-01

    The dynamical theory, which describes both diffraction profiles and reciprocal space maps measured from imperfect crystals with account for instrumental factors of triple-crystal diffractometer (TCD), has been developed for adequate quantitative characterization of microdefects. Analytical expressions for coherent and diffuse scattering (DS) intensities measured by TCD in the Bragg diffraction geometry have been derived by using the generalized statistical dynamical theory of X-ray scattering in real single crystals with randomly distributed defects. The DS intensity distributions from single crystals containing clusters and dislocation loops have been described by explicit analytical expressions. Particularly, these expressions take into account anisotropy of displacement fields around defects with discrete orientations. Characteristics of microdefect structures in silicon single crystals grown by Czochralsky- and float-zone methods have been determined by analyzing the measured TCD profiles and reciprocal space maps. The sensitivities of reciprocal space maps and diffraction profiles to defect characteristics have been compared. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. 14C autoradiography with an energy-sensitive silicon pixel detector.

    Science.gov (United States)

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  14. Effect of preliminary annealing of silicon substrates on the spectral sensitivity of photodetectors in bipolar integrated circuits

    International Nuclear Information System (INIS)

    Blynskij, V.I.; Bozhatkin, O.A.; Golub, E.S.; Lemeshevskaya, A.M.; Shvedov, S.V.

    2010-01-01

    We examine the results of an effect of preliminary annealing on the spectral sensitivity of photodetectors in bipolar integrated circuits, formed in silicon grown by the Czochralski method. We demonstrate the possibility of substantially improving the sensitivity of photodetectors in the infrared region of the spectrum with twostep annealing. The observed effect is explained by participation of oxidation in the gettering process, where oxidation precedes formation of a buried n + layer in the substrate. (authors)

  15. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  16. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  17. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  18. Highly Sensitive Switchable Heterojunction Photodiode Based on Epitaxial Bi2FeCrO6 Multiferroic Thin Films.

    Science.gov (United States)

    Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad

    2018-04-18

    Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.

  19. The Study of Al0.29Ga0.71N-BASED Schottky Photodiodes Grown on Silicon by Plasma-Assisted Molecular Beam Epitaxy

    Science.gov (United States)

    Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Hassan, H. Abu; Abdullah, M. J.; Mohammad, N. N.; Ahmad, M. A.; Yusof, Y.

    2013-05-01

    In this paper, the growth and characterization of epitaxial Al0.29Ga0.71N grown on Si(111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. PL spectrum of sample has shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing that it is comparable in crystal quality of the sample when compared with previous reports. From the Raman measurement of as-grown Al0.29Ga0.71N layer on GaN/AlN/Si sample. We found that the dominant E2 (high) phonon mode of GaN appears at 572.7 cm-1. The E2 (high) mode of AlN appears at 656.7 cm-1 and deviates from the standard value of 655 cm-1 for unstrained AlN. Finally, AlGaN Schottky photodiode have been fabricated and analyzed by mean of electrical characterization, using current-voltage (I-V) measurement to evaluate the performance of this device.

  20. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Hien Thu [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Houwman, Evert; Boota, Muhammad [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Dekkers, Matthijn [SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Vu, Hung Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Rijnders, Guus [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectric properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between

  1. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis.

    Science.gov (United States)

    Tsao, Chia-Wen; Yang, Zhi-Jie

    2015-10-14

    Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.

  2. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    International Nuclear Information System (INIS)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-01-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm 3 . For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  3. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  4. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-21

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  5. Study on 150μm thick n- and p-type epitaxial silicon sensors irradiated with 24 GeV/c protons and 1 MeV neutrons

    International Nuclear Information System (INIS)

    Kaska, Katharina; Moll, Michael; Fahrer, Manuel

    2010-01-01

    A study on 150μm epitaxial (EPI) n- and p-type silicon diodes irradiated with neutrons up to 8x10 15 n/cm 2 and protons up to 1.7x10 15 p/cm 2 has been performed by means of CV/IV, charge collection efficiency (CCE) and transient current technique (TCT) measurements. It is found that the effective space charge density increases three times faster after proton than after neutron irradiation with a slightly higher effective space charge generation rate for n-type material compared to p-type material. A drop in charge collection efficiency already at fluences of 1x10 12 n eq /cm 2 can be seen in n-type material, but is absent in p-type material. TCT measurements show space charge sign inversion from positive to negative charge in n-type material after neutron irradiation and from negative to positive space charge in p-type material after proton irradiation. No difference was found in the response of diodes manufactured by different producers out of the same wafer material.

  6. Proof of concept of an epitaxy-free layer-transfer process for silicon solar cells based on the reorganisation of macropores upon annealing

    International Nuclear Information System (INIS)

    Depauw, V.; Gordon, I.; Beaucarne, G.; Poortmans, J.; Mertens, R.; Celis, J.-P.

    2009-01-01

    To answer the challenge of less expensive renewable electricity, the photovoltaics community is focusing on producing thinner silicon solar cells. A few years ago, in the field of silicon-on-nothing structures, micron-thick monocrystalline layers suspended over their parent wafer were produced by high-temperature annealing of specific arrays of macropores. Those macropores reorganise into one single void and leave a thin overlayer on top. Since this method may be an inexpensive way of fabricating high-quality silicon films, this paper investigates its potential for photovoltaic applications. In particular, we investigated if large surfaces can be produced and transferred to foreign substrates with this method. We fabricated basic solar cells, without rear-surface passivation, on 5 cm x 5 cm-large and 1-μm-thick films transferred to glass, that showed energy-conversion efficiencies up to 2.6%. These cells demonstrate the feasibility of the presented concept as a layer-transfer process for solar-cell application. After formation by annealing, the film is only barely attached to its parent wafer, but can still safely be handled provided that any abrupt gas flow or pumping to vacuum is avoided. After transfer and permanent bonding, the sample can be handled as any bulk wafer.

  7. Design Approaches for Enhancing Photovoltaic Performance of Silicon Solar Cells Sensitized by Proximal Nanocrystalline Quantum Dots

    Science.gov (United States)

    Shafiq, Natis

    Energy transfer (ET) based sensitization of silicon (Si) using proximal nanocrystal quantum dots (NQDs) has been studied extensively in recent years as a means to develop thin and flexible Si based solar cells. The driving force for this research activity is a reduction in materials cost. To date, the main method for determining the role of ET in sensitizing Si has been optical spectroscopic studies. The quantitative contribution from two modes of ET (namely, nonradiative and radiative) has been reported using time-resolved photoluminescence (TRPL) spectroscopy coupled with extensive theoretical modelling. Thus, optical techniques have established the potential for utilizing ET based sensitization of Si as a feasible way to develop novel NQD-Si hybrid solar cells. However, the ultimate measure of the efficiency of ET-based mechanisms is the generation of electron-hole pairs by the impinging photons. It is therefore important to perform electrical measurements. However, only a couple of studies have attempted electrical quantification of ET modes. A few studies have focused on photocurrent measurements, without considering industrially relevant photovoltaic (PV) systems. Therefore, there is a need to develop a systematic approach for the electrical quantification of ET-generated charges and to help engineer new PV architectures optimized for harnessing the full advantages of ET mechanisms. Within this context, the work presented in this dissertation aims to develop an experimental testing protocol that can be applied to different PV structures for quantifying ET contributions from electrical measurements. We fabricated bulk Si solar cells (SCs) as a test structure and utilized CdSe/ZnS NQDs for ET based sensitization. The NQD-bulk Si hybrid devices showed ˜30% PV enhancement after NQD deposition. We measured external quantum efficiency (EQE) of these devices to quantify ET-generated charges. Reflectance measurements were also performed to decouple contributions of

  8. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  9. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    Science.gov (United States)

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  10. Water Splitting over Epitaxially Grown InGaN Nanowires on-Metallic Titanium/Silicon Template: Reduced Interfacial Transfer Resistance and Improved Stability

    KAUST Repository

    Ebaid, Mohamed

    2018-03-09

    Water splitting using InGaN-based photocatalysts may have a great contribution in future renewable energy production systems. Among the most important parameters to solve are those related to substrate lattice-matching compatibility. Here, we directly grow InGaN nanowires (NWs) on a metallic Ti/Si template, for improving water splitting performance compared to a bare Si substrate. The open circuit potential of the epitaxially grown InGaN NWs on metallic Ti was almost two times that of those grown on Si substrate. The interfacial transfer resistance was also reduced significantly after introducing the metallic Ti interlayer. An applied-bias-photon-to-current conversion efficiency of 2.2% and almost unity Faradic efficiency for hydrogen generation were achieved using this approach. The InGaN NWs grown on Ti showed improved stability of hydrogen generation under continuous operation conditions, when compared to those grown on Si, emphasizing the role of the semiconductor-on-metal approach in enhancing the overall efficiency of water splitting catalysts.

  11. Photoluminescence studies of cubic phase GaN grown by molecular beam epitaxy on (001) silicon covered with SiC layer

    International Nuclear Information System (INIS)

    Godlewski, M.; Ivanov, V.Yu.; Bergman, J.P.; Monemar, B.; Barski, A.; Langer, R.

    1997-01-01

    In this work we evaluate optical properties of cubic phase GaN epilayers grown on top of (001) silicon substrate prepared by new process. Prior to the growth Si substrate was annealed at 1300-1400 o C in propane. The so-prepared substrate is covered within a thin (∼ 4 nm) SiC wafer, which allowed a successful growth of good morphological quality cubic phase GaN epilayers. The present results confirm recent suggestion on smaller ionization energies of acceptors in cubic phase GaN epilayers. (author)

  12. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  13. Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects.

    Science.gov (United States)

    Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin

    2016-06-28

    Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.

  14. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  15. One-step Ge/Si epitaxial growth.

    Science.gov (United States)

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  16. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    Science.gov (United States)

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  17. Sensitization of erbium in silicon-rich silica : the effect of annealing temperature and hydrogen passivation

    International Nuclear Information System (INIS)

    Wilkinson, A.R.; Forcales, M.; Elliman, R.G.

    2005-01-01

    This paper reports on the effect of annealing temperature and hydrogen passivation on the excitation cross-section and photoluminescence of erbium in silicon-rich silica. Samples were prepared by co-implantation of Si and Er into SiO 2 followed by a single thermal anneal at temperatures ranging from 800 to 1100 degrees C, and with or without hydrogen passivation performed at 500 degrees C. Using time-resolved photoluminescence, the effective erbium excitation cross-section is shown to increase by a factor 3, while the number of optically active erbium ions decreases by a factor of 4 with increasing annealing temperature. Hydrogen passivation is shown to increase the luminescence intensity and to shorten the luminescence lifetime at 1.54 μm only in the presence of Si nanocrystals. The implications fo these results for realizing a silicon-based optical amplifier are also discussed. (author). 19 refs., 3 figs

  18. High-efficiency silicon doping of InP and In0.53Ga0.47As in gas source and metalorganic molecular beam epitaxy using silicon tetrabromide

    International Nuclear Information System (INIS)

    Jackson, S.L.; Fresina, M.T.; Baker, J.E.; Stillman, G.E.

    1994-01-01

    Efficient vapor source Si doping of InP and In 0.53 Ga 0.47 As have been demonstrated using SiBr 4 as the Si source for both gas source (GSMBE) and metalorganic molecular beam epitaxy (MOMBE). Net electron concentrations ranging from n=2x10 17 to 6.8x10 19 cm -3 and from 9x10 16 to 3x10 19 cm -3 have been obtained for InP and In 0.53 Ga 0.47 As, respectively. Comparison of these data with those for Si 2 H 6 indicate that the Si incorporation efficiency with SiBr 4 is more than 10 000 times greater than with Si 2 H 6 for substrate temperatures in the range of 475≤T s ≤500 degree C. Specular surface morphologies were obtained, even for the most heavily doped samples. While [Si] as high as 1.8x10 20 cm -3 was obtained in InP, the net electron concentrations and 300 K Hall mobilities decrease with increasing [Si] for [Si]>6.8x10 19 cm -3 . Contact resistances as low as R c =3x10 -8 Ω cm 2 were obtained using a nonalloyed Ti/Pt/Au contact to InP layers doped to n=6.3x10 19 cm -3 . During GSMBE growth, an increased Si background concentration ([Si]∼2x10 17 cm -3 ) was observed after extended use of the SiBr 4 source for these heavy doping concentrations. This increased background was not observed in MOMBE-grown material. Depth profiles of pulse-doped structures indicate the absence of memory effects for structures grown by MOMBE

  19. Silicon position-sensitive detectors for the Helios (NA 34) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Manns, T; Plants, D; Shepard, P F; Thompson, J A; Tosh, R; Chand, T; Shivpuri, R; Baker, W

    1987-01-15

    The design construction and testing of X-Y tracking modules for a silicon microstrip vertex detector for use in Fermilab experiment E706 is discussed. A successful adaptation of various technologies, essential for instrumenting this class of detectors at a university laboratory is described. Emphasis is placed on considerable cost reduction, design flexibiity and more rapid turnover with a view toward large detectors for the future.

  20. Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors

    Science.gov (United States)

    Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong

    2018-04-01

    In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

  1. Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra.

    Science.gov (United States)

    Nguyen, Minh-Hang; Tsai, Hau-Jie; Wu, Jen-Kuei; Wu, Yi-Shiuan; Lee, Ming-Chang; Tseng, Fan-Gang

    2013-09-15

    We present a chemical-biosensor in the Mid-IR range and based on cascaded porous silicon made on p- and n-type (100) silicon substrates of resistivities between 0.001Ωcm and 0.005Ωcm. The stacked porous layers of various porosities (20-80%) and thicknesses (5-9μm) are formed by successive electrochemical etchings with different current densities. Working with FTIR technique that possesses fast response, high sensitivity, and capability of detecting and identifying functional groups, the cascaded porous structures provided enhanced refractive index sensitivities and reduced detection limits in chemical and biodetection. The largest wavenumber shifts were 50cm(-1)/mM obtained for d-(+)-glucose and 96cm(-1)/μg/mL for Cy5-conjungated Rabbit Anti-Mouse IgG. The lowest detectable concentration of glucose was 80μM (1.4mg/mL) with PS porosity of 40% and thickness of about 9μm while it was 40ng/mL for Cy5-conjugated Rabbit Anti-Mouse IgG which is 2.5×10(5) folds better than those in literature. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A critical discussion of the vacancy diffusion model of ion beam induced epitaxial crystallization

    International Nuclear Information System (INIS)

    Heera, V.

    1989-01-01

    A simple vacancy diffusion model of ion beam induced epitaxial crystallization of silicon including divacancy formation is developed. The model reproduces some of the experimental findings, as e.g. the dose rate dependence of the crystallization rate. However, the measured activation energy of the ion beam induced epitaxial crystallization cannot be accounted for by vacancy diffusion alone. (author)

  3. Sensitive silicon PIN-diode dosimeter for fast neutrons and method to control and increase its sensitivity

    International Nuclear Information System (INIS)

    Swinehart, P.R.; Swartz, J.M.

    1978-01-01

    With the personnel dosimeter, applicable e.g. in medicine, a dose of 0.1 rad for neutrons with an energy greater than 10 keV can be detected. In the range between 0.1 and 20 rad sensitivity is increased to 5 mV/rad. This sensitivity can be achieved by distributing the mass of the semiconductor material of the diode or equal to four times the reciprocal base width. Appropriate dimensions are 750 μm for the edge length of the end surface resp. diameter and 750 μm up to 5000 μm for the base width. (DG) [de

  4. Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor

    Science.gov (United States)

    Lee, Ryoongbin; Kwon, Dae Woong; Kim, Sihyun; Kim, Sangwan; Mo, Hyun-Sun; Kim, Dae Hwan; Park, Byung-Gook

    2017-12-01

    In this study, we investigated the effects of nanowire size on the current sensitivity of silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs). The changes in on-current (I on) and resistance according to pH were measured in fabricated SiNW ISFETs of various lengths and widths. As a result, it was revealed that the sensitivity expressed as relative I on change improves as the width decreases. Through technology computer-aided design (TCAD) simulation analysis, the width dependence on the relative I on change can be explained by the observation that the target molecules located at the edge region along the channel width have a stronger effect on the sensitivity as the SiNW width is reduced. Additionally, the length dependence on the sensitivity can be understood in terms of the resistance ratio of the fixed parasitic resistance, including source/drain resistance, to the varying channel resistance as a function of channel length.

  5. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  6. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles

    Science.gov (United States)

    Hwang, Jangsun; Hwang, Mintai P.; Choi, Moonhyun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2016-10-01

    Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications - a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+.

  7. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  8. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  9. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  10. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.

    Science.gov (United States)

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N

    2016-06-07

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  11. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    International Nuclear Information System (INIS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerda, Joaquin; Sebastia, Angel; Benlloch, Jose M.

    2007-01-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme

  12. High Sensitivity pH Sensor Based on Porous Silicon (PSi Extended Gate Field-Effect Transistor

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available In this study, porous silicon (PSi was prepared and tested as an extended gate field-effect transistor (EGFET for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  13. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  14. Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity

    International Nuclear Information System (INIS)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-01-01

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H 2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene’s Fermi level, leading to tunable sensitivity and detection of H 2 down to the sub-ppm range. (paper)

  15. Functionalized graphene/silicon chemi-diode H₂ sensor with tunable sensitivity.

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-03-28

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.

  16. Charge migration contribution to the sensitive layer of a silicon detector

    International Nuclear Information System (INIS)

    Croitoru, N.; Seidman, A.; Rancoita, P.G.

    1984-01-01

    The charge migration from the field-free region has been investigated, by comparing the expected peak position (which takes into account the depleted layer only) of the energy-loss of relativistic electrons with the measured one. The measurement sensitive layer was found to be systematically larger than the depleted one. This effect is accounted for the charge migration to diffusion

  17. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  18. Monitoring the beam flux in molecular beam epitaxy using laser multiphoton ionization

    International Nuclear Information System (INIS)

    Chien, R.; Sogard, M.R.

    1990-01-01

    In this paper, we will describe a method using laser nonresonant multiphoton ionization to measure beam flux in molecular beam epitaxy (MBE) systems. The results were obtained in a test chamber where a focused excimer laser beam was used to photoionize a small fraction of the atomic and molecular beams. The constituents of the beams were identified by a time-of-flight mass spectrometer. Ion signal strength was found to be directly correlated to the temperature of the atomic beam oven. Good stability and sensitivity on gallium, aluminum, and silicon atomic beams was demonstrated. Arsenic was also detected. We demonstrated very sensitive detection of contaminant atomic and molecular constituents of our system. We have also detected the presence of short-term fluctuations in the gallium flux from an effusion source. These fluctuations, previously suspected, can be in excess of ±10%

  19. Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor.

    Science.gov (United States)

    Bonanno, Lisa M; Delouise, Lisa A

    2010-01-15

    Currently, there is need for laboratory-based high-throughput and reliable point-of-care drug screening methodologies. We demonstrate here a chip-based label-free porous silicon (PSi) photonic sensor for detecting opiates in urine. This technique provides a cost-effective alternative to conventional labeled drug screening immunoassays with potential for translation to multiplexed analysis. Important effects of surface chemistry and competitive binding assay protocol on the sensitivity of opiate detection are revealed. Capability to tune sensitivity and detection range over approximately 3 orders of magnitude (18.0 nM to 10.8 muM) was achieved by varying the applied urine specimen volume (100-5 muL), which results in systematic shifts in the competitive binding response curve. A detection range (0.36-4.02 muM) of morphine in urine (15 muL) was designed to span the current positive cutoff value (1.05 muM morphine) in medical opiate urine screening. Desirable high cross-reactivity to oxycodone, in addition to other common opiates, morphine, morphine-3-glucuronide, 6-acetyl morphine, demonstrates an advantage over current commercial screening assays, while low interference with cocaine metabolite was maintained. This study uniquely displays PSi sensor technology as an inexpensive, rapid, and reliable drug screening technology. Furthermore, the versatile surface chemistry developed can be implemented on a range of solid-supported sensors to conduct competitive inhibition assays.

  20. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  1. Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Suryo Wasisto, Hutomo; Uhde, Erik; Peiner, Erwin

    2017-06-01

    In this paper, the asymmetric resonance frequency (f 0) responses of thermally in-plane excited silicon cantilevers for a pocket-sized, cantilever-based airborne nanoparticle detector (Cantor) are analysed. By measuring the shift of f 0 caused by the deposition of nanoparticles (NPs), the cantilevers are used as a microbalance. The cantilever sensors are low cost manufactured from silicon by bulk-micromachining techniques and contain an integrated p-type heating actuator and a sensing piezoresistive Wheatstone bridge. f 0 is tracked by a homemade phase-locked loop (PPL) for real-time measurements. To optimize the sensor performance, a new cantilever geometry was designed, fabricated and characterized by its frequency responses. The most significant characterisation parameters of our application are f 0 and the quality factor (Q), which have high influences on sensitivity and efficiency of the NP detector. Regarding the asymmetric resonance signal, a novel fitting function based on the Fano resonance replacing the conventionally used function of the simple harmonic oscillator and a method to calculate Q by its fitting parameters were developed for a quantitative evaluation. To obtain a better understanding of the resonance behaviours, we analysed the origin of the asymmetric line shapes. Therefore, we compared the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator. In correspondence to the Fano effect, we could reconstruct the measured resonance curves by coupling two signals with constant amplitude and the expected signal of the cantilever, respectively. Moreover, the phase of the measurement signal can be analysed by this method, which is important to understand the locking process of the PLL circuit. Besides the frequency analysis, experimental results and calibration measurements with different particle types are presented. Using the described analysis method, decent results to optimize a next

  2. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  3. Charge-sensitive poly-silicon TFT amplifiers for a-Si:H pixel particle detectors

    International Nuclear Information System (INIS)

    Cho, G.; Perez-Mendez, V.; Hack, M.; Lewis, A.

    1992-04-01

    Prototype charge-sensitive poly-Si TFT amplifiers have been made for the amplification of signals (from an a-Si:H pixel diode used as an ionizing particle detector). They consist of a charge-sensitive gain stage, a voltage gain stage and a source follower output stage. The gain-bandwidth product of the amplifier is ∼ 300 MHz. When the amplifier is connected to a pixel detector of 0.2 pF, it gives a charge-to-voltage gain of ∼ 0.02 mV/electrons with a pulse rise time less than 100 nsec. An equivalent noise charge of the front-end TFT is ∼ 1000 electrons for a shaping time of 1 μsec

  4. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  5. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu, Shicai [Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Dezhou 253023 (China); Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, Shouzhen, E-mail: jiang_sz@126.com [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China); Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China)

    2017-02-28

    Highlights: • We directly grown AgNPs on substrate by annealing method in the quartz tube. Compare with spin-coating Ag nanoparticles solution method, we got more uniform distribution of AgNPs and the AgNPs better adsorption on the substrate. • We use a simple and lost-cost method to obtain the pyramidal silicon (PSi). The PSi possessing well-separated pyramid arrays can make contribution to the homogeneity and sensitivity of the substrate. • In our work, graphene oxide (GO) film is uniformly deposited on AgNPs and PSi by using a spin-coating method. The GO films endow the hybrid system a good stability and enhance the homogeneity and sensitivity of the substrate. - Abstract: In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10{sup −12} M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R{sup 2} of 612 and 773 cm{sup −1} can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow

  6. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    Science.gov (United States)

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-01

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  7. High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.

    Science.gov (United States)

    Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu

    2018-04-18

    High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.

  8. Pulse shape discrimination with silicon detectors using charge and current-sensitive preamplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H.; Rauly, E.; Blumenfeld, Y.; Borderie, B.; Chabot, M.; Edelbruck, P.; Lavergne, L.; Le Bris, J.; Le Neindre, N.; Richard, A.; Rivet, M.F.; Scarpaci, J.A.; Barbey, S.; Becheva, E.; Bzyl, F.R.; D' Esesquelles, P.; Galichet, E.; Lalu, G.; Martinet, G.; Pierre, S. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Legou, Th.; Tillier, J.; Bocage, F.; Bougault, R.; Carniol, B.; Cussol, D.; Etasse, D.; Grevy, S.; Lopez, O.; Tamain, B.; Vient, E. [Caen Univ., LPC, IN2P3-CNRS, ENSI, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metier, 75 - Paris (France); Guinet, D.; Lautesse, Ph. [Villeurbanne Univ., Institut de Physique Nucleaire, IN2P3-CNRS, 69 (France); Lanzalone, G. [Catania Univ., INFN, Laboratori Nazionali del Sud and Dipartimento di Fisica e Astronomia, (Italy); Politi, G. [Catania Univ., INFN, Sezione di Catania and Dipartimento di Fisica e Astronomia (Italy); Rosato, E. [Napoli, Univ., Dipt. di Scienze Fisiche e Sezione INFN (Italy)

    2003-07-01

    For the first time shapes of current pulses from light charged particles and carbon ions are presented. Capabilities for pulse shape discrimination techniques are demonstrated. In this work, charge and current-sensitive preamplifier prototypes for nuclear structure and dynamics experiments have been developed and tested with the aim of improving PSD (pulse shape discrimination) method by studying in detail current signal shapes from particles and ions over a large energy range. Note that current signal shapes have been recently used in atomic cluster studies to identify partitions of carbon cluster fragmentation. The paper is organized as follows. Section 2 is devoted to characterization of preamplifiers. In section 3, results of on beam tests will be presented, discussed and compared to a simple simulation.

  9. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  10. STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars; Hallam, Toby; Curson, Neil J.; Simmons, Michelle Y.; Clark, Robert G

    2003-05-15

    We investigate the morphology of epitaxial Si layers grown on clean and on hydrogen terminated Si(0 0 1) to explore the growth strategy for the fabrication of a Si-based quantum computer. We use molecular beam epitaxy to deposit 5 monolayers of silicon at a temperature of 250 deg. C and scanning tunnelling microscopy to image the surface at room temperature after growth and after various rapid annealing steps in the temperature range of 350-600 deg. C. The epitaxial layer grown on the hydrogenated surface shows a significantly higher surface roughness due to a lower mobility of silicon surface atoms in the presence of hydrogen. Annealing at temperatures {>=}550 deg. C reduces the roughness of both epitaxial layers to the value of a clean silicon surface. However, the missing dimer defect density of the epitaxial layer grown on the hydrogenated surface remains higher by a factor of two compared to the layer grown on clean Si(0 0 1). Our results suggest a quantum computer growth strategy in which the hydrogen resist layer is desorbed before the epitaxial silicon layer is grown at low temperature to encapsulate phosphorus quantum bits.

  11. Simulation and measurement of short infrared pulses on silicon position sensitive device

    International Nuclear Information System (INIS)

    Krapohl, D; Esebamen, O X; Nilsson, H E; Thungstroem, G

    2011-01-01

    Lateral position sensitive devices (PSD) are important for triangulation, alignment and surface measurements as well as for angle measurements. Large PSDs show a delay on rising and falling edges when irradiated with near infra-red light. This delay is also dependent on the spot position relative to the electrodes. It is however desirable in most applications to have a fast response. We investigated the responsiveness of a Sitek PSD in a mixed mode simulation of a two dimensional full sized detector. For simulation and measurement purposes focused light pulses with a wavelength of 850 nm, duration of 1μs and spot size of 280μm were used. The cause for the slopes of rise and fall time is due to time constants of the device capacitance as well as the photo-generation mechanism itself. To support the simulated results, we conducted measurements of rise and fall times on a physical device. Additionally, we quantified the homogeneity of the device by repositioning a spot of light from a pulsed ir-laser diode on the surface area.

  12. A broadband-sensitive upconverter La(Ga0.5Sc0.5)O3:Er,Ni,Nb for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Takeda, Yasuhiko; Mizuno, Shintaro; Luitel, Hom Nath; Tani, Toshihiko

    2016-01-01

    We have developed an upconverter that significantly broadens the sensitive range, to overcome the shortcoming that conventional Er 3+ -doped upconverters used for crystalline silicon solar cells can utilize only a small portion of the solar spectrum at around 1.55 μm. We have designed the combination of the sensitizers and host material to utilize photons not absorbed by silicon or Er 3+ ions. Ni 2+ ions have been selected as the sensitizers that absorb photons in the wavelength range between the silicon absorption edge (1.1 μm) and the Er 3+ absorption band and transfer the energies to the Er 3+ emitters, with La(Ga,Sc)O 3 as the host material. The Ga to Sc ratio has been optimized to tune the location of the Ni 2+ absorption band for sufficient energy transfer. Co-doping with Nb 5+ ions is needed for charge balance to introduce divalent Ni 2+ ions into the trivalent Ga 3+ and Sc 3+ sites. In addition to 1.45–1.58 μm photons directly absorbed by the Er 3+ ions, we have demonstrated upconversion of 1.1–1.35 μm photons in the Ni 2+ absorption band to 0.98 μm photons, using 10% Er, 0.5% Ni, and 0.5% Nb-doped La(Ga 0.5 Sc 0.5 )O 3 . The broadband-sensitive upconverter developed here can improve conversion efficiency of crystalline silicon solar cells more notably than conventional ones

  13. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  14. Installation of the light tight cover for the SSD modules (the modules are behind the aluminium plate). The silicon sensors are sensitive to light tight, so ambient light will increase the noise and may even damage them.

    CERN Multimedia

    Nooren, G.

    2004-01-01

    Installation of the light tight cover for the SSD modules (the modules are behind the aluminium plate). The silicon sensors are sensitive to light tight , so ambient light will increase the noise and may even damage them.

  15. Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxy

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Wacaser, Brent A.; Petersen, Dirch Hjorth

    2008-01-01

    deposition (CVD) or metal organic VPE (MOVPE). However, VPE of semiconducting nanowires is not compatible with several microfabrication processes due to the high synthesis temperatures and issues such as cross-contamination interfering with the intended microsystem or the VPE process. By selectively heating...... a small microfabricated heater, growth of nanowires can be achieved locally without heating the entire microsystem, thereby reducing the compatibility problems. The first demonstration of epitaxial growth of silicon nanowires by this method is presented and shows that the microsystem can be used for rapid...

  16. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions

    International Nuclear Information System (INIS)

    Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas

    2012-01-01

    In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role. (paper)

  17. Intrinsic stability of ferroelectric and piezoelectric properties of epitaxial PbZr0.45Ti0.55O3 thin films on silicon in relation to grain tilt

    Directory of Open Access Journals (Sweden)

    Evert P Houwman, Minh D Nguyen, Matthijn Dekkers and Guus Rijnders

    2013-01-01

    Full Text Available Piezoelectric thin films of PbZr0.45Ti0.55O3 were grown on Si substrates in four different ways, resulting in different crystalline structures, as determined by x-ray analysis. The crystalline structures were different in the spread in tilt angle and the in-plane alignment of the crystal planes between different grains. It is found that the deviations of the ferroelectric polarization loop from that of the ideal rectangular loop (reduction of the remanent polarization with respect to the saturation polarization, dielectric constant of the film, slanting of the loop, coercive field value all scale with the average tilt angle. A model is derived based on the assumption that the tilted grain boundaries between grains affect the film properties locally. This model describes the observed trends. The effective piezoelectric coefficient d33,eff shows also a weak dependence on the average tilt angle for films grown in a single layer, whereas it is strongly reduced for the films deposited in multiple layers. The least affected properties are obtained for the most epitaxial films, i.e. grown on a SrTiO3 epitaxial seed layer, by pulsed laser deposition. These films are intrinsically stable and do not require poling to acquire these stable properties.

  18. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  19. Zirconates heteroepitaxy on silicon

    Science.gov (United States)

    Fompeyrine, Jean; Seo, Jin Won; Seigwart, Heinz; Rossel, Christophe; Locquet, Jean-Pierre

    2002-03-01

    In the coming years, agressive scaling in CMOS technology will probably trigger the transition to more advanced materials, for example alternate gate dielectrics. Epitaxial thin films are attractive candidates, as long as the difficult chemical and structural issues can be solved, and superior properties can be obtained. Since very few binary oxides can match the electrical, physical and structural requirements which are needed, a combination of those binaries are used here to investigate other lattice matched oxides. We will report on the growth of crystalline zirconium oxide thin films stabilized with different cationic substitutions. All films have been grown in an oxide-MBE system by direct evaporation of the elements on silicon substrates and exposure to molecular or atomic oxygen. The conditions required to obtain epitaxial thin films will be discussed, and successful examples will be presented.

  20. Singlet oxygen sensitizing materials based on porous silicone: photochemical characterization, effect of dye reloading and application to water disinfection with solar reactors.

    Science.gov (United States)

    Manjón, Francisco; Santana-Magaña, Montserrat; García-Fresnadillo, David; Orellana, Guillermo

    2010-06-01

    Photogeneration of singlet molecular oxygen ((1)O(2)) is applied to organic synthesis (photooxidations), atmosphere/water treatment (disinfection), antibiofouling materials and in photodynamic therapy of cancer. In this paper, (1)O(2) photosensitizing materials containing the dyes tris(4,4'-diphenyl-2,2'-bipyridine)ruthenium(II) (1, RDB(2+)) or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (2, RDP(2+)), immobilized on porous silicone (abbreviated RDB/pSil and RDP/pSil), have been produced and tested for waterborne Enterococcus faecalis inactivation using a laboratory solar simulator and a compound parabolic collector (CPC)-based solar photoreactor. In order to investigate the feasibility of its reuse, the sunlight-exposed RDP/pSil sensitizing material (RDP/pSil-a) has been reloaded with RDP(2+) (RDP/pSil-r). Surprisingly, results for bacteria inactivation with the reloaded material have demonstrated a 4-fold higher efficiency compared to those of either RDP/pSil-a, unused RDB/pSil and the original RDP/pSil. Surface and bulk photochemical characterization of the new material (RDP/pSil-r) has shown that the bactericidal efficiency enhancement is due to aggregation of the silicone-supported photosensitizer on the surface of the polymer, as evidenced by confocal fluorescence lifetime imaging microscopy (FLIM). Photogenerated (1)O(2) lifetimes in the wet sensitizer-doped silicone have been determined to be ten times longer than in water. These facts, together with the water rheology in the solar reactor and the interfacial production of the biocidal species, account for the more effective disinfection observed with the reloaded photosensitizing material. These results extend and improve the operational lifetime of photocatalytic materials for point-of-use (1)O(2)-mediated solar water disinfection.

  1. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities.

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

  2. Rapid diffusion of molybdenum trace contamination in silicon

    International Nuclear Information System (INIS)

    Tobin, S.P.; Greenwald, A.C.; Wolfson, R.G.; Meier, D.L.; Drevinsky, P.J.

    1985-01-01

    Molybdenum contamination has been detected in silicon epitaxial layers and substrate wafers after processing in any one of several epitaxial silicon reactors. Greatly reduced minority carrier diffusion lengths and lifetimes are consistent with Mo concentrations measured by DLTS in the 10 12 and 10 13 cm -3 ranges. Depth profiling of diffusion length and the Mo deep level show much greater penetration than expected from previous reports of Mo as a slow diffuser. The data indicate a lower limit of 10 -8 cm 2 /sec for the diffusion coefficient of Mo in silicon at 1200 0 C, consistent with high diffusivities measured for other transition metals

  3. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  4. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    Science.gov (United States)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  5. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  6. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  7. Application of spin-sensitive electron spectroscopies to investigations of electronic and magnetic properties of solid surfaces and epitaxial systems: Progress report, 1 January 1987-31 December 1987

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1987-08-01

    Research during the second year of this grant has focussed on: (1) investigation of surface magnetic structure of Ni(lll) by Spin-Polarized Low Energy Electron Diffraction (SPLEED) and overhaul of the apparatus to incorporate additional spin-dependent electron spectroscopies and epitaxial growth capabilities; and (2) investigation of dynamics of metastable atom deexcitation at magnetic and adsorbate-covered surfaces using Spin-Polarized Metastable Deexcitation Spectroscopy (SPMDS)

  8. Fabrication and Characterization of High-Sensitivity Underwater Acoustic Multimedia Communication Devices with Thick Composite PZT Films

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Liu

    2017-01-01

    Full Text Available This paper presents a high-sensitivity hydrophone fabricated with a Microelectromechanical Systems (MEMS process using epitaxial thin films grown on silicon wafers. The evaluated resonant frequency was calculated through finite-element analysis (FEA. The hydrophone was designed, fabricated, and characterized by different measurements performed in a water tank, by using a pulsed sound technique with a sensitivity of −190 dB ± 2 dB for frequencies in the range 50–500 Hz. These results indicate the high-performance miniaturized acoustic devices, which can impact a variety of technological applications.

  9. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  10. Quantum Hall effect in epitaxial graphene with permanent magnets.

    Science.gov (United States)

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  11. Quantum Hall effect in epitaxial graphene with permanent magnets

    Science.gov (United States)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  12. Enhanced sensitivity to the time variation of the fine-structure constant and mp/me in diatomic molecules: A closer examination of silicon monobromide

    International Nuclear Information System (INIS)

    Beloy, K.; Borschevsky, A.; Schwerdtfeger, P.; Flambaum, V. V.

    2010-01-01

    Recently it was pointed out that transition frequencies in certain diatomic molecules have an enhanced sensitivity to variations in the fine-structure constant α and the proton-to-electron mass ratio m p /m e due to a near cancellation between the fine structure and vibrational interval in a ground electronic multiplet [V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007)]. One such molecule possessing this favorable quality is silicon monobromide. Here we take a closer examination of SiBr as a candidate for detecting variations in α and m p /m e . We analyze the rovibronic spectrum by employing the most accurate experimental data available in the literature and perform ab initio calculations to determine the precise dependence of the spectrum on variations in α. Furthermore, we calculate the natural linewidths of the rovibronic levels, which place a fundamental limit on the accuracy to which variations may be determined.

  13. Mg doping of GaN by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lieten, R R; Buchowicz, G; Dubon, O; Motsnyi, V; Zhang, L; Cheng, K; Leys, M; Degroote, S; Borghs, G

    2011-01-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% 17 cm -3 and a mobility of 15 cm 2 V -1 s -1 . Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 x 10 17 cm -3 . The corresponding Mg concentration is 5 x 10 19 cm -3 , indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 deg. or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 deg. C.

  14. Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1997-01-01

    Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.

  15. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  16. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  17. SiC epitaxy growth using chloride-based CVD

    International Nuclear Information System (INIS)

    Henry, Anne; Leone, Stefano; Beyer, Franziska C.; Pedersen, Henrik; Kordina, Olof; Andersson, Sven; Janzén, Erik

    2012-01-01

    The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: addition of hydrogen chloride to the standard precursors or using methyltrichlorosilane, a molecule that contains silicon, carbon and chlorine. Optical and electrical techniques are used to characterize the layers.

  18. Materials issues in silicon integrated circuit processing

    International Nuclear Information System (INIS)

    Wittmer, M.; Stimmell, J.; Strathman, M.

    1986-01-01

    The symposium on ''Materials Issues in Integrated Circuit Processing'' sought to bring together all of the materials issued pertinent to modern integrated circuit processing. The inherent properties of the materials are becoming an important concern in integrated circuit manufacturing and accordingly research in materials science is vital for the successful implementation of modern integrated circuit technology. The session on Silicon Materials Science revealed the advanced stage of knowledge which topics such as point defects, intrinsic and extrinsic gettering and diffusion kinetics have achieved. Adaption of this knowledge to specific integrated circuit processing technologies is beginning to be addressed. The session on Epitaxy included invited papers on epitaxial insulators and IR detectors. Heteroepitaxy on silicon is receiving great attention and the results presented in this session suggest that 3-d integrated structures are an increasingly realistic possibility. Progress in low temperature silicon epitaxy and epitaxy of thin films with abrupt interfaces was also reported. Diffusion and Ion Implantation were well presented. Regrowth of implant-damaged layers and the nature of the defects which remain after regrowth were discussed in no less than seven papers. Substantial progress was also reported in the understanding of amorphising boron implants and the use of gallium implants for the formation of shallow p/sup +/ -layers

  19. Transfer-free electrical insulation of epitaxial graphene from its metal substrate.

    Science.gov (United States)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo; Dalmiglio, Matteo; Orlando, Fabrizio; Baraldi, Alessandro; Gammelgaard, Lauge; Barreto, Lucas; Bianchi, Marco; Perkins, Edward; Hofmann, Philip

    2012-09-12

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen, and the eventual formation of a SiO(2) layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique.

  20. Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate

    DEFF Research Database (Denmark)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo

    2012-01-01

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen......, and the eventual formation of a SiO2 layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique....

  1. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  2. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  3. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    Science.gov (United States)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  4. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Science.gov (United States)

    Guo, Jia; Xu, Shicai; Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong; Jiang, Shouzhen; Ning, Tingyin

    2017-02-01

    In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10-12 M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R2 of 612 and 773 cm-1 can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow the hybrid system a good stability and long lifetime. This GO-AgNPs-PSi substrate may provide a new way toward practical applications for the ultrasensitive and label-free SERS detection in areas of medicine, food safety and biotechnology.

  5. Radiation hardness of silicon detectors manufactured on wafers from various sources

    International Nuclear Information System (INIS)

    Dezillie, B.; Bates, S.; Glaser, M.; Lemeilleur, F.; Leroy, C.

    1997-01-01

    Impurity concentrations in the initial silicon material are expected to play an important role for the radiation hardness of silicon detectors, during their irradiation and for their evolution with time after irradiation. This work reports on the experimental results obtained with detectors manufactured using various float-zone (FZ) and epitaxial-grown material. Preliminary results comparing the changes in leakage current and full depletion voltage of FZ and epitaxial detectors as a function of fluence and of time after 10 14 cm -2 proton irradiation are given. The measurement of charge collection efficiency for epitaxial detectors is also presented. (orig.)

  6. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    International Nuclear Information System (INIS)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-01-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  7. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    Energy Technology Data Exchange (ETDEWEB)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Patriarche, Gilles [CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Sundaram, Suresh; El Gmili, Youssef [CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Salvestrini, Jean-Paul [Université de Lorraine, CentraleSupélec, LMOPS, EA4423, 57070 Metz (France); Heer, Walt A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS, Institut Néel, BP166, 38042 Grenoble Cedex 9 (France)

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  8. Near infrared group IV optoelectronics and novel pre-cursors for CVD epitaxy

    Science.gov (United States)

    Hazbun, Ramsey Michael

    Near infrared and mid infrared optoelectronic devices have become increasingly important for the telecommunications, security, and medical imaging industries. The addition of nitrogen to III-V alloys has been widely studied as a method of modifying the band gap for mid infrared (IR) applications. In xGa1-xSb1-y Ny/InAs strained-layer superlattices with type-II (staggered) energy offsets on GaSb substrates, were modeled using eight-band k˙p simulations to analyze the superlattice miniband energies. Three different zero-stress strain balance conditions are reported: fixed superlattice period thickness, fixed InAs well thickness, and fixed InxGa1-xSb 1-yNy barrier thickness. Optoelectronics have traditionally been the realm of III-V semiconductors due to their direct band gap, while integrated circuit chips have been the realm of Group IV semiconductors such as silicon because of its relative abundance and ease of use. Recently the alloying of Sn with Ge and Si has been shown to allow direct band-gap light emission. This presents the exciting prospect of integrating optoelectronics into current Group IV chip fabrication facilities. However, new approaches for low temperature growth are needed to realize these new SiGeSn alloys. Silicon-germanium epitaxy via ultra-high vacuum chemical vapor deposition has the advantage of allowing low process temperatures. Deposition processes are sensitive to substrate surface preparation and the time delay between oxide removal and epitaxial growth. A new monitoring process utilizing doped substrates and defect decoration etching is demonstrated to have controllable and unique sensitivity to interfacial contaminants. Doped substrates were prepared and subjected to various loading conditions prior to the growth of typical Si/SiGe bilayers. The defect densities were correlated to the concentration of interfacial oxygen suggesting this monitoring process may be an effective complement to monitoring via secondary ion mass spectrometry

  9. Microscopic study of electrical properties of CrSi2 nanocrystals in silicon

    Directory of Open Access Journals (Sweden)

    Lányi Štefan

    2011-01-01

    Full Text Available Abstract Semiconducting CrSi2 nanocrystallites (NCs were grown by reactive deposition epitaxy of Cr onto n-type silicon and covered with a 50-nm epitaxial silicon cap. Two types of samples were investigated: in one of them, the NCs were localized near the deposition depth, and in the other they migrated near the surface. The electrical characteristics were investigated in Schottky junctions by current-voltage and capacitance-voltage measurements. Atomic force microscopy (AFM, conductive AFM and scanning probe capacitance microscopy (SCM were applied to reveal morphology and local electrical properties. The scanning probe methods yielded specific information, and tapping-mode AFM has shown up to 13-nm-high large-area protrusions not seen in the contact-mode AFM. The electrical interaction of the vibrating scanning tip results in virtual deformation of the surface. SCM has revealed NCs deep below the surface not seen by AFM. The electrically active probe yielded significantly better spatial resolution than AFM. The conductive AFM measurements have shown that the Cr-related point defects near the surface are responsible for the leakage of the macroscopic Schottky junctions, and also that NCs near the surface are sensitive to the mechanical and electrical stress induced by the scanning probe.

  10. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  11. Design Optimization and Fabrication of High-Sensitivity SOI Pressure Sensors with High Signal-to-Noise Ratios Based on Silicon Nanowire Piezoresistors

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2016-10-01

    Full Text Available In order to meet the requirement of high sensitivity and signal-to-noise ratios (SNR, this study develops and optimizes a piezoresistive pressure sensor by using double silicon nanowire (SiNW as the piezoresistive sensing element. First of all, ANSYS finite element method and voltage noise models are adopted to optimize the sensor size and the sensor output (such as sensitivity, voltage noise and SNR. As a result, the sensor of the released double SiNW has 1.2 times more sensitivity than that of single SiNW sensor, which is consistent with the experimental result. Our result also displays that both the sensitivity and SNR are closely related to the geometry parameters of SiNW and its doping concentration. To achieve high performance, a p-type implantation of 5 × 1018 cm−3 and geometry of 10 µm long SiNW piezoresistor of 1400 nm × 100 nm cross area and 6 µm thick diaphragm of 200 µm × 200 µm are required. Then, the proposed SiNW pressure sensor is fabricated by using the standard complementary metal-oxide-semiconductor (CMOS lithography process as well as wet-etch release process. This SiNW pressure sensor produces a change in the voltage output when the external pressure is applied. The involved experimental results show that the pressure sensor has a high sensitivity of 495 mV/V·MPa in the range of 0–100 kPa. Nevertheless, the performance of the pressure sensor is influenced by the temperature drift. Finally, for the sake of obtaining accurate and complete information over wide temperature and pressure ranges, the data fusion technique is proposed based on the back-propagation (BP neural network, which is improved by the particle swarm optimization (PSO algorithm. The particle swarm optimization–back-propagation (PSO–BP model is implemented in hardware using a 32-bit STMicroelectronics (STM32 microcontroller. The results of calibration and test experiments clearly prove that the PSO–BP neural network can be effectively applied

  12. Trends in heteroepitaxy of III-Vs on silicon for photonic and photovoltaic applications

    Science.gov (United States)

    Lourdudoss, Sebastian; Junesand, Carl; Kataria, Himanshu; Metaferia, Wondwosen; Omanakuttan, Giriprasanth; Sun, Yan-Ting; Wang, Zhechao; Olsson, Fredrik

    2017-02-01

    We present and compare the existing methods of heteroepitaxy of III-Vs on silicon and their trends. We focus on the epitaxial lateral overgrowth (ELOG) method as a means of achieving good quality III-Vs on silicon. Initially conducted primarily by near-equilibrium epitaxial methods such as liquid phase epitaxy and hydride vapour phase epitaxy, nowadays ELOG is being carried out even by non-equilibrium methods such as metal organic vapour phase epitaxy. In the ELOG method, the intermediate defective seed and the mask layers still exist between the laterally grown purer III-V layer and silicon. In a modified ELOG method called corrugated epitaxial lateral overgrowth (CELOG) method, it is possible to obtain direct interface between the III-V layer and silicon. In this presentation we exemplify some recent results obtained by these techniques. We assess the potentials of these methods along with the other existing methods for realizing truly monolithic photonic integration on silicon and III-V/Si heterojunction solar cells.

  13. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  14. Molecular beam epitaxy of graphene on mica

    International Nuclear Information System (INIS)

    Lippert, G.; Dabrowski, J.; Yamamoto, Y.; Mehr, W.; Lupina, G.; Herziger, F.; Maultzsch, J.; Baringhaus, J.; Tegenkamp, C.; Lemme, M.C.

    2012-01-01

    Realization of graphene devices is often hindered by the fact that the known layer growth methods do not meet the requirements of the device fabrication in silicon mainstream technology. For example, the relatively straightforward method of decomposition of hexagonal SiC is not CMOS-compatible due to the high-thermal budget it requires [Moon et al., IEEE Electron Device Lett. 31, 260 (2010)]. Techniques based on layer transfer are restricted because of the uncertainty of residual metal contaminants, particles, and structural defects. Of interest is thus a method that would allow one to grow a graphene film directly in the device area where graphene is needed. Production of large area graphene is not necessarily required in this case, but high quality of the film and metal-free growth on an insulating substrate at temperatures below 1000 C are important requirements. We demonstrate direct growth of defect-free graphene on insulators at moderate temperatures by molecular beam epitaxy. The quality of the graphene was probed by high-resolution Raman spectroscopy, indicating a negligible density of defects. The spectra are compared with those from graphene flakes mechanically exfoliated from native graphite onto mica. These results are combined with insights from density functional theory calculations. A model of graphene growth on mica and similar substrates is proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Solar cells with gallium phosphide/silicon heterojunction

    Science.gov (United States)

    Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina

    2015-09-01

    One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.

  16. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  17. A broadband-sensitive upconverter La(Ga{sub 0.5}Sc{sub 0.5})O{sub 3}:Er,Ni,Nb for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Mizuno, Shintaro; Luitel, Hom Nath; Tani, Toshihiko [Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2016-01-25

    We have developed an upconverter that significantly broadens the sensitive range, to overcome the shortcoming that conventional Er{sup 3+}-doped upconverters used for crystalline silicon solar cells can utilize only a small portion of the solar spectrum at around 1.55 μm. We have designed the combination of the sensitizers and host material to utilize photons not absorbed by silicon or Er{sup 3+} ions. Ni{sup 2+} ions have been selected as the sensitizers that absorb photons in the wavelength range between the silicon absorption edge (1.1 μm) and the Er{sup 3+} absorption band and transfer the energies to the Er{sup 3+} emitters, with La(Ga,Sc)O{sub 3} as the host material. The Ga to Sc ratio has been optimized to tune the location of the Ni{sup 2+} absorption band for sufficient energy transfer. Co-doping with Nb{sup 5+} ions is needed for charge balance to introduce divalent Ni{sup 2+} ions into the trivalent Ga{sup 3+} and Sc{sup 3+} sites. In addition to 1.45–1.58 μm photons directly absorbed by the Er{sup 3+} ions, we have demonstrated upconversion of 1.1–1.35 μm photons in the Ni{sup 2+} absorption band to 0.98 μm photons, using 10% Er, 0.5% Ni, and 0.5% Nb-doped La(Ga{sub 0.5}Sc{sub 0.5})O{sub 3}. The broadband-sensitive upconverter developed here can improve conversion efficiency of crystalline silicon solar cells more notably than conventional ones.

  18. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables

  19. Integration of functional complex oxide nanomaterials on silicon

    Directory of Open Access Journals (Sweden)

    Jose Manuel eVila-Fungueiriño

    2015-06-01

    Full Text Available The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications that can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE. Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be exposed, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devices.

  20. Characterization of Sensitivity Encoded Silicon Photomultiplier (SeSP) with 1-Dimensional and 2-Dimensional Encoding for High Resolution PET/MR

    Science.gov (United States)

    Omidvari, Negar; Schulz, Volkmar

    2015-06-01

    This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.

  1. Film-thickness and composition dependence of epitaxial thin-film PZT-based

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2013-01-01

    The transverse piezoelectric coefficient e31,f and mass-sensitivity were measured on piezoelectric cantilevers based on epitaxial PZT thin-films with film-thicknesses ranging from 100 to 2000 nm. The highest values of e31,f and mass-sensitivity were observed at a film thickness of 500–750 nm, while

  2. Suppressing segregation in highly phosphorus doped silicon monolayers

    NARCIS (Netherlands)

    Keizer, Joris; Kölling, Sebastian; Koenraad, Paul; Simmons, Michelle Y.

    2015-01-01

    Sharply defined dopant profiles and low resistivity are highly desired qualities in the microelectronic industry, and more recently, in the development of an all epitaxial Si:P based quantum computer. In this work, we use thin (monolayers thick) room temperature grown silicon layers, so-called

  3. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  4. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  5. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  6. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  7. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  8. Superior radiation tolerance of thin epitaxial silicon detectors

    CERN Document Server

    Kramberger, G; Fretwurst, E; Honniger, F; Lindström, G; Pintilie, I; Röder, R; Schramm, A; Stahl, J

    2003-01-01

    For the LHC upgrade (fluences up to 10**1**6 p/cm**2) epi-Si devices are shown to be a viable solution. No type inversion was measured up to 1.3 multiplied by 10**1**524 GeV/c protons/cm**2 and the charge collection efficiency (CCE) remained close to 100%. For reactor neutrons CCE was measured to be 60% at 8 multiplied by 10**1**5 n/cm **2. Annealing measurements have shown that only moderate cooling during beam off periods would be necessary. As a tentative explanation for the superior quality of these devices, we assume that radiation-induced donor generation leads to compensation effects of deep acceptors. In the future, we will extend the experiments to fluences up to 10**1**6 p/cm**2 and use also different variants of the epi-Si material and device geometry.

  9. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  10. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  11. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  12. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  13. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    Science.gov (United States)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  14. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  15. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  16. Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate

    International Nuclear Information System (INIS)

    Fromm, F; Wehrfritz, P; Seyller, Th; Hundhausen, M

    2013-01-01

    Raman spectroscopy is frequently used to study the properties of epitaxial graphene grown on silicon carbide (SiC). In this work, we present a confocal micro-Raman study of epitaxial graphene on SiC(0001) in top-down geometry, i.e. in a geometry where both the primary laser light beam as well as the back-scattered light is guided through the SiC substrate. Compared to the conventional top-up configuration, in which confocal micro-Raman spectra are measured from the air side, we observe a significant intensity enhancement in top-down configuration, indicating that most of the Raman-scattered light is emitted into the SiC substrate. The intensity enhancement is explained in terms of dipole radiation at a dielectric surface. The new technique opens the possibility to probe graphene layers in devices where the graphene layer is covered by non-transparent materials. We demonstrate this by measuring gate-modulated Raman spectra of a top-gated epitaxial graphene field effect device. Moreover, we show that these measurements enable us to disentangle the effects of strain and charge on the positions of the prominent Raman lines in epitaxial graphene on SiC. (paper)

  17. Nucleation of two-dimensional islands on Si (111) during high-temperature epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Sitnikov, S. V., E-mail: sitnikov@isp.nsc.ru; Kosolobov, S. S.; Latyshev, A. V. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-02-15

    The process of two-dimensional island nucleation at the surface of ultra large Si (111) during hightemperature epitaxial growth is studied by in situ ultrahigh-vacuum reflection electron microscopy. The critical terrace size D{sub crit}, at which a two-dimensional island is nucleated in the center, is measured in the temperature range 900–1180°C at different silicon fluxes onto the surface. It is found that the parameter D{sub crit}{sup 2} is a power function of the frequency of island nucleation, with the exponent χ = 0.9 ± 0.05 in the entire temperature range under study. It is established that the kinetics of nucleus formation is defined by the diffusion of adsorbed silicon atoms at temperatures of up to 1180°C and the minimum critical nucleus size corresponds to 12 silicon atoms.

  18. Electrical activation of phosphorus in silicon

    International Nuclear Information System (INIS)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y.; Clark, R.G.

    2003-01-01

    Full text: We present studies of phosphorus δ-doping in silicon with a view to determining the degree of electrical activation of the dopants. These results have a direct consequence for the use of phosphorus as a qubit in a silicon-based quantum computer such as that proposed by Kane. Room temperature and 4 K Hall effect measurements are presented for phosphorus δ-doped layers grown in n-type silicon using two different methods. In the first method, the δ-layer was deposited by a phosphorus effusion cell in an MBE chamber. In the second method, the Si surface was dosed with phosphine gas and then annealed to 550 deg C to incorporate P into the substrate. In both methods, the P δ-doped layer was subsequently encapsulated by ∼25 nm of Si grown epitaxially. We discuss the implications of our results on the fabrication of the Kane quantum computer

  19. Chemical polishing of epitoxial silicon wafer

    International Nuclear Information System (INIS)

    Osada, Shohei

    1978-01-01

    SSD telescopes are used for the determination of the kind and energy of charged particles produced by nuclear reactions, and are the equipments combining ΔE counters and E counters. The ΔE counter is a thin SSD which is required to be thin and homogeneous enough to get the high resolution of measurement. The SSDs for ΔE counters have so far been obtained by polishing silicon plates mechanically and chemically or by applying electrolytic polishing method on epitaxial silicon wafers, but it was very hard to obtain them. The creative etching equipment and technique developed this time make it possible to obtain thin SSDs for ΔE counters. The outline of the etching equipment and its technique are described in the report. The etching technique applied for the silicon films for ΔE counters with thickness of about 10 μm was able to be experimentally established in this study. (Kobatake, H.)

  20. Subsurface contributions in epitaxial rare-earth silicides

    Energy Technology Data Exchange (ETDEWEB)

    Luebben, Olaf; Shvets, Igor V. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College, Dublin (Ireland); Cerda, Jorge I. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, Madrid (Spain); Chaika, Alexander N. [Institute of Solid State Physics, RAS, Chernogolovka (Russian Federation)

    2015-07-01

    Metallic thin films of heavy rare-earth silicides epitaxially grown on Si(111) substrates have been widely studied in recent years because of their appealing properties: unusually low values of the Schottky barrier height, an abrupt interface, and a small lattice mismatch. Previous studies also showed that these silicides present very similar atomic and electronic structures. Here, we examine one of these silicides (Gd{sub 3}Si{sub 5}) using scanning tunneling microscopy (STM) image simulations that go beyond the Tersoff-Hamann approach. These simulations strongly indicate an unusual STM depth sensitivity for this system.

  1. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  2. Artificial epitaxy of indium antimonide

    International Nuclear Information System (INIS)

    Ershov, V.I.; Givargizov, E.I.

    1987-01-01

    The results of the experiments on recrystallization of thin InSb films deposited on oxidized silicon by flash evaporation with ionized beams are given. Artificial microreliefs (topographic and thermal ones) were used for controlling the growth process. An orientation mechanism of the growing film by the microrelief is discussed. The experiments on preparation of regular single-crystal islands are described

  3. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  4. Quantum Nanostructures by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  5. Photovoltaic x-ray detectors based on the GaAs epitaxial structures

    CERN Document Server

    Akhmadullin, R A; Dvoryankina, G G; Dikaev, Y M; Ermakov, M G; Ermakova, O N; Krikunov, A I; Kudryashov, A A; Petrov, A G; Telegin, A A

    2002-01-01

    The new photovoltaic detector of the X-ray radiation is proposed on the basis of the GaAs epitaxial structures, which operates with high efficiency of the charge carriers collection without shift voltage and at the room temperature. The structures are grown by the method of the gas-phase epitaxy on the n sup + -type highly-alloyed substrates. The range of sensitivity to the X-ray radiation is within the range of effective energies from 8 up to 120 keV. The detector maximum response in the current short circuit mode is determined

  6. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  7. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    International Nuclear Information System (INIS)

    Hernandez-Maldonado, D.; Herrera, M.; Sales, D.L.; Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L.; Pizarro, J.; Galindo, P.L.; Molina, S.I.

    2010-01-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  8. Gas Source Techniques for Molecular Beam Epitaxy of Highly Mismatched Ge Alloys

    Directory of Open Access Journals (Sweden)

    Chad A. Stephenson

    2016-12-01

    Full Text Available Ge and its alloys are attractive candidates for a laser compatible with silicon integrated circuits. Dilute germanium carbide (Ge1−xCx offers a particularly interesting prospect. By using a precursor gas with a Ge4C core, C can be preferentially incorporated in substitutional sites, suppressing interstitial and C cluster defects. We present a method of reproducible and upscalable gas synthesis of tetrakis(germylmethane, or (H3Ge4C, followed by the design of a hybrid gas/solid-source molecular beam epitaxy system and subsequent growth of defect-free Ge1−xCx by molecular beam epitaxy (MBE. Secondary ion mass spectroscopy, transmission electron microscopy and contactless electroreflectance confirm the presence of carbon with very high crystal quality resulting in a decrease in the direct bandgap energy. This technique has broad applicability to growth of highly mismatched alloys by MBE.

  9. Molecular beam epitaxy a short history

    CERN Document Server

    Orton, J W

    2015-01-01

    This volume describes the development of molecular beam epitaxy from its origins in the 1960s through to the present day. It begins with a short historical account of other methods of crystal growth, both bulk and epitaxial, to set the subject in context, emphasising the wide range of semiconductor materials employed. This is followed by an introduction to molecular beams and their use in the Stern-Gerlach experiment and the development of the microwave MASER.

  10. InAs nanocrystals on SiO2/Si by molecular beam epitaxy for memory applications

    International Nuclear Information System (INIS)

    Hocevar, Moiera; Regreny, Philippe; Descamps, Armel; Albertini, David; Saint-Girons, Guillaume; Souifi, Abdelkader; Gendry, Michel; Patriarche, Gilles

    2007-01-01

    We studied a memory structure based on InAs nanocrystals grown by molecular beam epitaxy directly on thermal SiO 2 on silicon. Both nanocrystal diameter and density can be controlled by growth parameters. Transmission electron microscopy analysis shows high crystallinity and low size dispersion. In an electrical test structure with a 3.5 nm tunnel oxide, we observed that 80% of the initial injected electrons remain stored in the InAs nanocrystals after 3 months and that the retention time for electrons in InAs nanocrystals is four orders of magnitude higher than in silicon nanocrystals

  11. Obtaining of bilateral high voltage epitaxial p—i—n Si structures by LPE method

    Directory of Open Access Journals (Sweden)

    Vakiv N. M.

    2013-12-01

    Full Text Available Silicon p—i—n-structures are usually obtained using conventional diffusion method or liquid phase epitaxy (LPE. In both cases, the formation of p- and n-layers occurs in two stages. This technological approach is quite complex. Moreover, when forming bilateral high-voltage epitaxial layers, their parameters significantly deteriorate as a result of prolonged heat treatment of active high-resistivity layer. Besides, when using diffusion method, it is impossible to provide good reproducibility of the process. In this paper a technique of growing bilateral high-voltage silicon p—i—n-structures by LPE in a single process is proposed. The authors have obtained the optimum compounds of silicon-undersaturated molten solutions for highly doped (5•1018 cm–3 contact layers: 0.4—0.8 at. % aluminum in gallium melt for growing p-Si-layers and 0.03—0.15 at. % ytterbium in tin melt for n-Si-layers. Parameters of such structures provide for manufacturing of high-voltage diodes on their basis. Such diodes can be used in navigational equipment, communication systems for household and special purposes, on-board power supply systems, radar systems, medical equipment, etc.

  12. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  13. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  14. The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces

    Science.gov (United States)

    Ye, Ning

    Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides-silicon

  15. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer.

    Science.gov (United States)

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-05-22

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10(-4) to 10(2) ng/mL).

  16. Photoenhanced atomic layer epitaxy. Hikari reiki genshiso epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y. (Toshiba corp., Tokyo (Japan))

    1991-10-01

    The growth temperature range was greatly expanded of atomic layer epitaxy (ALE) expected as the growth process of ultra-thin stacks. Ga layers and As layers were formed one after the other on a GaAs substrate in the atmosphere of trimethylgallium (TMG) or AsH{sub 2} supplied alternately, by KrF excimer laser irradiation normal to the substrate. As a result, the growth temperature range was 460-540{degree}C nearly 10 times that of 500 {plus minus} several degrees centigrade in conventional thermal growth method. Based on the experimental result where light absorption of source molecules adsorbed on a substrate surface was larger than that under gaseous phase condition, new adsorbed layer enhancement model was proposed to explain above irradiation effect verifying it by experiments. As this photoenhancement technique is applied to other materials, possible fabrication of new crystal structures as a super lattice with ultra-thin stacks of single atomic layers is expected because of a larger freedom in material combination for hetero-ALE. 11 refs., 7 figs.

  17. Germanium silicon physics and materials

    CERN Document Server

    Willardson, R K; Bean, John C; Hull, Robert

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  18. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    International Nuclear Information System (INIS)

    Scalise, E.; Cinquanta, E.; Houssa, M.; Broek, B. van den; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.

    2014-01-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  19. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  20. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, E., E-mail: emilio.scalise@fys.kuleuven.be [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Cinquanta, E. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Houssa, M.; Broek, B. van den [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Chiappe, D. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Grazianetti, C. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Pourtois, G. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Ealet, B. [Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Molle, A. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano (MI) (Italy); Afanas’ev, V.V.; Stesmans, A. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-02-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  1. Nitrogen doping efficiency during vapor phase epitaxy of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, L.B.; Brandt, C.D. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States); Burk, A.A. Jr. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States)

    1998-06-01

    This work examines the interrelationships among doping efficiency, mole fraction, and Si/C ratio for intentional doping of 4H-SiC during vapor phase epitaxy using N{sub 2}. For four Si/C ratios, the doping concentration increased linearly as a function of increasing N{sub 2} partial pressure with a slope of 1.0 {+-} 0.03. Variation of propane mole fraction while the SiH{sub 4} and N{sub 2} mole fractions were kept constant revealed two different modes of nitrogen incorporation, corresponding to carbon-rich and silicon-rich conditions. (orig.) 14 refs.

  2. Stable configurations of graphene on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  3. Research Update: Enhanced energy storage density and energy efficiency of epitaxial Pb0.9La0.1(Zr0.52Ti0.48O3 relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Minh D. Nguyen

    2016-08-01

    Full Text Available Pb0.9La0.1(Zr0.52Ti0.48O3 (PLZT relaxor-ferroelectric thin films were grown on SrRuO3/SrTiO3/Si substrates by pulsed laser deposition. A large recoverable storage density (Ureco of 13.7 J/cm3 together with a high energy efficiency (η of 88.2% under an applied electric field of 1000 kV/cm and at 1 kHz frequency was obtained in 300-nm-thick epitaxial PLZT thin films. These high values are due to the slim and asymmetric hysteresis loop when compared to the values in the reference undoped epitaxial lead zirconate titanate Pb(Zr0.52Ti0.48O3 ferroelectric thin films (Ureco = 9.2 J/cm3 and η = 56.4% which have a high remanent polarization and a small shift in the hysteresis loop, under the same electric field.

  4. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  5. Silicon doped InP as an alternative plasmonic material for mid-infrared

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  6. Solar cell fabricated on welded thin flexible silicon

    Directory of Open Access Journals (Sweden)

    Hessmann Maik Thomas

    2015-01-01

    Full Text Available We present a thin-film crystalline silicon solar cell with an AM1.5 efficiency of 11.5% fabricated on welded 50 μm thin silicon foils. The aperture area of the cell is 1.00 cm2. The cell has an open-circuit voltage of 570 mV, a short-circuit current density of 29.9 mA cm-2 and a fill factor of 67.6%. These are the first results ever presented for solar cells on welded silicon foils. The foils were welded together in order to create the first thin flexible monocrystalline band substrate. A flexible band substrate offers the possibility to overcome the area restriction of ingot-based monocrystalline silicon wafers and the feasibility of a roll-to-roll manufacturing. In combination with an epitaxial and layer transfer process a decrease in production costs can be achieved.

  7. GaN-on-Silicon - Present capabilities and future directions

    Science.gov (United States)

    Boles, Timothy

    2018-02-01

    Gallium Nitride, in the form of epitaxial HEMT transistors on various substrate materials, is the newest and most promising semiconductor technology for high performance devices in the RF, microwave, and mmW arenas. This is particularly true for GaN-on-Silicon based devices and MMIC's which enable both state-of-the-art high frequency functionality and the ability to scale production into large wafer diameter CMOS foundries. The design and development of GaN-on-Silicon structures and devices will be presented beginning with the basic material parameters, growth of the required epitaxial construction, and leading to the fundamental operational theory of high frequency, high power HEMTs. In this discussion comparisons will be made with alternative substrate materials with emphasis on contrasting the inherent advantages of a silicon based system. Theory of operation of microwave and mmW high power HEMT devices will be presented with special emphasis on fundamental limitations of device performance including inherent frequency limiting transit time analysis, required impedance transformations, internal and external parasitic reactance, thermal impedance optimization, and challenges improved by full integration into monolithic MMICs. Lastly, future directions for implementing GaN-on-Silicon into mainstream CMOS silicon semiconductor technologies will be discussed.

  8. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  9. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  10. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  11. Self-assembled magnetic nanostructures: Epitaxial Ni nanodots on TiN/Si (001) surface

    International Nuclear Information System (INIS)

    Zhou, H.; Narayan, J.

    2006-01-01

    Systems containing single domain magnetic particles are of great interest in view of their possible applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this work is plan-view STEM Z-contrast imaging study of the self-assembly growth of magnetic nickel nanostructures by domain matching epitaxy under Volmer-Weber (V-W) mode. The growth was carried out using pulsed laser deposition (PLD) technique with epitaxial titanium nitride film as the template, which was in turn grown on silicon (001) substrate via domain matching epitaxy. Our results show that the base of nickel islands is rectangular with the two principal edges parallel to two orthogonal directions, which is [110] and [1-bar 1 0] for [001] oriented growth. The size distribution of the islands is relatively narrow, comparable to that obtained from self-assembled islands grown under Stranski-Krastanow (S-K) mode. A certain degree of self-organization was also found in the lateral distribution of islands: island chains were observed along the directions close to , which are also the edge directions. The interaction between neighboring islands through the island edge-induced strain field is believed to be responsible for the size uniformity and the lateral ordering

  12. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  13. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  14. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    Science.gov (United States)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  15. Possibility of the use of intermediate carbidsiliconoxide nanolayers on polydiamond substrates for gallium nitride layers epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Averichkin, P. A., E-mail: P-Yugov@mail.ru; Donskov, A. A. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation); Dukhnovsky, M. P. [R & D Enterprise Istok (Russian Federation); Knyazev, S. N. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation); Kozlova, Yu. P. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Yugova, T. G.; Belogorokhov, I. A. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation)

    2016-04-15

    The results of using carbidsiliconoxide (a-C:SiO1{sub .5}) films with a thickness of 30–60 nm, produced by the pyrolysis annealing of oligomethylsilseskvioksana (CH{sub 3}–SiO{sub 1.5}){sub n} with cyclolinear (staircased) molecular structure, as intermediate films in the hydride vapor phase epitaxy of gallium nitride on polycrystalline CVD-diamond substrates are presented. In the pyrolysis annealing of (CH{sub 3}–SiO{sub 1.5}){sub n} films in an atmosphere of nitrogen at a temperature of 1060°C, methyl radicals are carbonized to yield carbon atoms chemically bound to silicon. In turn, these atoms form a SiC monolayer on the surface of a-C:SiO{sub 1.5} films via covalent bonding with silicon. It is shown that GaN islands grow on such an intermediate layer on CVD-polydiamond substrates in the process of hydride vapor phase epitaxy in a vertical reactor from the GaCl–NH{sub 3}–N{sub 2} gas mixture.

  16. Epitaxial AlN layers on sapphire and diamond; Epitaktische AlN-Schichten auf Saphir und Diamant

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Martin

    2009-04-27

    In this work, epitaxial AlN layers deposited by molecular beam epitaxy on sapphire and diamond substrates were investigated. Starting from this AlN, the dopant silicon was added. The influence of the silicon doping on the structural properties of the host AlN crystal was investigated using high resolution X-ray diffraction. Once the silicon concentration exceeds 1 x 10{sup 19} cm{sup -3}, a significant change of the AlN:Si crystal can be observed: increasing the silicon concentration up to 5 x 10{sup 20} cm{sup -3} results in a decrease of the a lattice parameter by approximately 1.2 pm and an increase of the c lattice parameter by about 1.0 pm. The crystal is stressed additionally by adding silicon resulting in a increase of the biaxial compressive stress of up to 2.0 GPa. Further increase of the silicon concentration leads to lattice relaxation. This result from X-ray diffraction was independently confirmed by Raman spectroscopy investigations. Further increase of the silicon concentration leads to the generation of polycrystalline phases within the epitaxial layer. XTEM measurements detected these polycrystalline phases. In addition, XTEM investigations confirmed also the increase of the lateral crystal size with increasing silicon concentration, as well as a great reduction of the screw dislocation density by more than one order of magnitude as found by X-ray diffraction: in undoped, nitrogen rich grown AlN layers the screw dislocation density is about 3 x 10{sup 8} cm{sup -2}, while AlN layers with a silicon concentration of 5 x 10{sup 20} cm{sup -3} show a screw dislocation density of only 1 x 10{sup 7} cm{sup -2}. In low-doped AlN:Si ([Si]{approx}2 x 10{sup 19} cm{sup -3}) the activation energy of the electronic conductivity is about 250 meV. Increasing the silicon concentration to about 1 x 10{sup 21} cm{sup -3} leads to an increase of the activation energy up to more than 500 meV in the now much more stressed AlN:Si epilayer. Studies of the absorption

  17. Silicon photonic thermometer operating on multiple polarizations

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    A silicon photonics optical thermometer simultaneously operating on the multiple polarizations is designed and experimentally demonstrated. Measured sensitivities are 86pm/°C and 48pm/°C for the transverse-electric and transverse-magnetic polarizations, respectively.......A silicon photonics optical thermometer simultaneously operating on the multiple polarizations is designed and experimentally demonstrated. Measured sensitivities are 86pm/°C and 48pm/°C for the transverse-electric and transverse-magnetic polarizations, respectively....

  18. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  19. Migration of CrSi2 nanocrystals through nanopipes in the silicon cap

    International Nuclear Information System (INIS)

    Galkin, N.G.; Dozsa, L.; Chusovitin, E.A.; Pecz, B.; Dobos, L.

    2010-01-01

    CrSi 2 nanocrystals (NC) were grown by reactive deposition epitaxy of Cr at 550 deg. C. After deposition the Cr is localized in about 20-30 nm dots on the Si surface. The NCs were covered by silicon cap grown by molecular beam epitaxy at 700 deg. C. The redistribution of NCs in the silicon cap was investigated by transmission electron microscopy and atomic force microscopy. The NCs are partly localized at the deposition depth, and partly migrate near the surface. A new migration mechanism of the CrSi 2 NCs is observed, they are transferred from the bulk toward the surface through nanopipes formed in the silicon cap. The redistribution of CrSi 2 NCs strongly depends on Cr deposition rate and on the cap growth temperature.

  20. Calibration of the OPAL jet chamber with UV laser beams. Measurement of the beam position with position-sensitive silicon diodes (PSD)

    International Nuclear Information System (INIS)

    Koch, J.

    1990-03-01

    The OPAL jet chamber is calibrated with tracks produced by UV laser beams. Lateral effect diodes are used for monitoring the laser beam location in the detector. These position sensitive detectors locate the point of impact in two dimensions by the charge division method. Measurements on several diodes were carried out in order to calibrate these devices and to investigate to observed pin-cushion distortion. Using the telegraphers equation suitable expressions were obtained for describing the observed behaviour. It was shown that the magnetic field of OPAL as well as the UV laser wavelength and puls duration had no influence on the position information. (orig.)

  1. Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal–heterojunction-metal broadband UV-A/UV-C detector

    Science.gov (United States)

    Kalra, Anisha; Vura, Sandeep; Rathkanthiwar, Shashwat; Muralidharan, Rangarajan; Raghavan, Srinivasan; Nath, Digbijoy N.

    2018-06-01

    We demonstrate epitaxial β-Ga2O3/GaN-based vertical metal–heterojunction-metal (MHM) broadband UV-A/UV-C photodetectors with high responsivity (3.7 A/W) at 256 and 365 nm, UV-to-visible rejection >103, and a photo-to-dark current ratio of ∼100. A small (large) conduction (valence) band offset at the heterojunction of pulsed laser deposition (PLD)-grown β-Ga2O3 on metal organic chemical vapor deposition (MOCVD)-grown GaN-on-silicon with epitaxial registry, as confirmed by X-ray diffraction (XRD) azimuthal scanning, is exploited to realize detectors with an asymmetric photoresponse and is explained with one-dimensional (1D) band diagram simulations. The demonstrated novel vertical MHM detectors on silicon are fully scalable and promising for enabling focal plane arrays for broadband ultraviolet sensing.

  2. Properties of ion implanted epitaxial CoSi2/Si(1 0 0) after rapid thermal oxidation

    International Nuclear Information System (INIS)

    Zhao, Q.T.; Kluth, P.; Xu, J.; Kappius, L.; Zastrow, U.; Wang, Z.L.; Mantl, S.

    2000-01-01

    Epitaxial CoSi 2 layers were grown on Si(1 0 0) using molecular beam allotaxy. Boron ion implantations and rapid thermal oxidation (RTO) were performed. During oxidation, SiO 2 formed on the surface of the CoSi 2 layers, and the silicides was pushed into the substrate. The diffusion of boron was slightly retarded during oxidation for the specimen with a 20 nm epitaxial CoSi 2 capping layer as compared to the specimen without CoSi 2 capping layer. The electrical measurements showed that the silicide has good Schottky contacts with the boron doped silicon layer after RTO. A nanometer silicide patterning process, based on local oxidation of silicide (LOCOSI) layer, was also investigated. It shows two back-to-back Schottky diodes between the two separated parts of the silicide

  3. Room-temperature operation of a 2.25 μm electrically pumped laser fabricated on a silicon substrate

    International Nuclear Information System (INIS)

    Rodriguez, J. B.; Cerutti, L.; Grech, P.; Tournie, E.

    2009-01-01

    We report on a GaSb-based type-I laser structure grown by molecular beam epitaxy on a (001) silicon substrate. A thin AlSb nucleation layer followed by a 1 μm thick GaSb buffer layer was used to accommodate the very large lattice mismatch existing with the silicon substrate. Processed devices with mesa geometry exhibited laser operation in pulsed mode with a duty cycle up to 10% at room temperature

  4. Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100/Si(100 substrates

    Directory of Open Access Journals (Sweden)

    Gogneau N

    2014-09-01

    Full Text Available Noelle Gogneau,1 Amira Ben Gouider Trabelsi,2 Mathieu G Silly,3 Mohamed Ridene,1 Marc Portail,4 Adrien Michon,4 Mehrezi Oueslati,2 Rachid Belkhou,3 Fausto Sirotti,3 Abdelkarim Ouerghi1 1Laboratoire de Photonique et de Nanostructures, Centre National de la Recherche Scientifique, Marcoussis, France; 2Unité des Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Université de Tunis El Manar Campus Universitaire, Tunis, Tunisia; 3Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France; 4Centre de Recherche sur l'HétéroEpitaxie et Ses Application, Centre National de la Recherche Scientifique, Valbonne, France Abstract: Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising properties. To achieve these prerequisites, many studies are being conducted on various SiC substrates. Here, we review 3C–SiC(100 epilayers grown by chemical vapor deposition on Si(100 substrates for producing graphene by solid state graphitization under ultrahigh-vacuum conditions. Based on various characterization techniques, the structural and electrical properties of epitaxial graphene layer grown on 3C–SiC(100/Si(100 are discussed. We establish that epitaxial graphene presents properties similar to those obtained using hexagonal SiC substrates, with the advantage of being compatible with current Si-processing technology. Keywords: epitaxial graphene, electronic properties, structural properties, silicon carbide 

  5. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  6. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  7. Development of Silicon Detectors for the High Luminosity LHC

    International Nuclear Information System (INIS)

    Eichhorn, Thomas Valentin

    2015-07-01

    The Large Hadron Collider (LHC) at CERN will be upgraded to a High Luminosity LHC in the year 2022, increasing the instantaneous luminosity by a factor of five. This will have major impacts on the experiments at the LHC, such as the Compact Muon Solenoid (CMS) experiment, and especially for their inner silicon tracking systems. Among other things, the silicon sensors used therein will be exposed to unprecedented levels of radiation damage, necessitating a replacement of the entire tracking detector. In order to maintain the excellent current performance, a new tracking detector has to be equipped with sensors of increased radiation hardness and higher granularity. The CMS experiment is undertaking an extensive R and D campaign in the search for the future silicon sensor technology baseline to be used in this upgrade. This thesis presents two methods suitable for use in this search: finite element TCAD simulations and test beam measurements. The simulations are focussed on the interstrip capacitance between sensor strips and are compared to measurements before and after the inclusion of radiation damage effects. A geometrical representation of the strip sensors used in the campaign has been found, establishing the predictive power of simulations. The test beam measurements make use of the high-precision pixel telescopes available at the DESY-II test beam facility. The performance of these telescopes has been assessed and their achievable pointing resolution has been found to be below 2 μm. Thin, epitaxial silicon is a candidate material for usage in radiation hard sensors for the future CMS tracking detector. Sample strip sensors of this material have been irradiated to fluences of up to 1.3 x 10 16 n eq /cm 2 with 800 MeV or 23 GeV protons. Test beam measurements with 5 GeV electrons have been performed to investigate the radiation hardness of epitaxial sensors using the pixel beam telescopes. The epitaxial device under test (DUT) has been integrated into the

  8. High-Tc superconducting antenna-coupled microbolometer on silicon

    Science.gov (United States)

    Rice, Joseph P.; Grossman, Erich N.; Borcherdt, L. J.; Rudman, D. A.

    1994-05-01

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-Tc superconductor YBa2Cu3O7 (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 X 10-6 W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 microsecond(s) , a responsivity of the 1000 V/W range, and a noise-equivalent power in the 10-12 W/Hz1/2 range at 1000 Hz.

  9. High-{Tc} superconducting antenna-coupled microbolometer on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.P.; Grossman, E.N.; Borcherdt, L.J.; Rudman, D.A. [National Inst. of Standards and Technology, Boulder, CO (United States). Cryoelectronic Metrology Group

    1994-12-31

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 {times} 10{sup {minus}6} W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 {micro}s, a responsivity in the 1,000 V/W range, and a noise-equivalent power (NEP) in the 10{sup {minus}12} W/Hz{sup 1/2} range at 1,000 Hz.

  10. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  11. Growth of pseudomorphic structures through organic epitaxy

    International Nuclear Information System (INIS)

    Kaviyil, Sreejith Embekkat; Sassella, Adele; Borghesi, Alessandro; Campione, Marcello; Su Genbo; He Youping; Chen Chenjia

    2012-01-01

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor α-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  12. Superconductivity of Rock-Salt Structure LaO Epitaxial Thin Film.

    Science.gov (United States)

    Kaminaga, Kenichi; Oka, Daichi; Hasegawa, Tetsuya; Fukumura, Tomoteru

    2018-06-06

    We report a superconducting transition in a LaO epitaxial thin film with the superconducting transition onset temperature ( T c ) at around 5 K. This T c is higher than those of other lanthanum monochalcogenides and opposite to their chemical trend: T c = 0.84, 1.02, and 1.48 K for LaX (X = S, Se, Te), respectively. The carrier control resulted in a dome-shaped T c as a function of electron carrier density. In addition, the T c was significantly sensitive to epitaxial strain in spite of the highly symmetric crystal structure. This rock-salt superconducting LaO could be a building block to design novel superlattice superconductors.

  13. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are ∼4% expanded uniformly in-plane (0001), and ∼9% and ∼4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs

  14. Comparison between rad-hard standard float zone (FZ) and magnetic Czochralski (MCZ) silicon diodes in radiotherapy electron beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.C. dos; Goncalves, J.A.C.; Vasques, M.M.; Tobias, C.C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Neves-Junior, W.F.P.; Haddad, C.M.K. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Sociedade Beneficente de Senhoras; Harkonen, J. [Helsinki University of Technology (Denmark). Helsinki Inst. of Physics

    2010-07-01

    Full text. The use of semiconductor detectors has increased in radiotherapy practice since 1980s due to mainly their fast processing time, small sensitive volume and high relative sensitivity to ionizing radiation. Other major advantages of Si devices are excellent repeatability, good mechanical stability, high spatial resolution and the energy independence of mass collision stopping powers ratios (between silicon and water for electron beams with energy from 4 up to 20 MeV). However, ordinary silicon devices are very prone to radiation damage effects. In the last years, the development of radiation tolerant silicon detectors for High Energy Physics experiments has overcome this drawback. In this work we present the preliminary results obtained with a rad-hard epitaxial silicon diode as on-line clinical electron beam dosimeter. The diodes with 25 mm{sup 2} active area, were housed in a PMMA probe and connected, in a photovoltaic mode, to a Keithley 6517B electrometer. During all measurements, the diodes were held between PMMA plates, placed at Zref and centered in a radiation field of 10 cm x 10 cm, with the SSD kept at 100 cm. The devices dosimetric response was evaluated for 6, 9, 12, 15, 18 e 21 MeV electron beams from a Siemens KD 2 Radiotherapy Linear Accelerator, located at Sirio-Libanes Hospital. The radiation induced current in the diodes was registered as a function of the exposure time during 60 s for a fixed 300 MU. To study the short term repeatability, current signals were registered for the same radiation dose, for all energies. The dose-response of the diodes was achieved through the integration of the current signals as a function of the exposure time. The results obtained in the energy range of 6 up to 21 MeV evidenced that, for the same average dose rate of 5.0 cGy/s, the current signals are very stable and repeatable in both cases. For all energies, data shows good instantaneous repeatability with a percentage variation coefficient better than 2

  15. Comprehensive modeling of solid phase epitaxial growth using Lattice Kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Martin-Bragado, Ignacio

    2013-01-01

    Damage evolution of irradiated silicon is, and has been, a topic of interest for the last decades for its applications to the semiconductor industry. In particular, sometimes, the damage is heavy enough to collapse the lattice and to locally amorphize the silicon, while in other cases amorphization is introduced explicitly to improve other implanted profiles. Subsequent annealing of the implanted samples heals the amorphized regions through Solid Phase Epitaxial Regrowth (SPER). SPER is a complicated process. It is anisotropic, it generates defects in the recrystallized silicon, it has a different amorphous/crystalline (A/C) roughness for each orientation, leaving pits in Si(1 1 0), and in Si(1 1 1) it produces two modes of recrystallization with different rates. The recently developed code MMonCa has been used to introduce a physically-based comprehensive model using Lattice Kinetic Monte Carlo that explains all the above singularities of silicon SPER. The model operates by having, as building blocks, the silicon lattice microconfigurations and their four twins. It detects the local configurations, assigns microscopical growth rates, and reconstructs the positions of the lattice locally with one of those building blocks. The overall results reproduce the (a) anisotropy as a result of the different growth rates, (b) localization of SPER induced defects, (c) roughness trends of the A/C interface, (d) pits on Si(1 1 0) regrown surfaces, and (e) bimodal Si(1 1 1) growth. It also provides physical insights of the nature and shape of deposited defects and how they assist in the occurrence of all the above effects

  16. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  17. Self-diffusion in single crystalline silicon nanowires

    Science.gov (United States)

    Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.

    2018-04-01

    Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.

  18. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca, E-mail: f.iacopi@griffith.edu.au [Environmental Futures Research Institute, Griffith University, Nathan 4111 (Australia); Wood, Barry [Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia 4072 (Australia)

    2016-05-02

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm{sup −2} with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  19. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    International Nuclear Information System (INIS)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca; Wood, Barry

    2016-01-01

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm"−"2 with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  20. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.

    Science.gov (United States)

    Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A

    2010-05-20

    Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

  1. Study of Silicon/silicon, Silicon/silicon Dioxide, and Metal-Oxide

    Science.gov (United States)

    Leung, To Chi

    A variable-energy positron beam is used to study Si/Si, Si/SiO_2, and metal-oxide -semiconductor (MOS) structures. The capability of depth resolution and the remarkable sensitivity to defects have made the positron annihilation technique a unique tool in detecting open-volume defects in the newly innovated low temperature (300^circC) molecular-beam-epitaxy (MBE) Si/Si. These two features of the positron beam have further shown its potential role in the study of the Si/SiO_2. Distinct annihilation characteristics has been observed at the interface and has been studied as a function of the sample growth conditions, annealing (in vacuum), and hydrogen exposure. The MOS structure provides an effective way to study the electrical properties of the Si/SiO_2 interface as a function of applied bias voltage. The annihilation characteristics show a large change as the device condition is changed from accumulation to inversion. The effect of forming gas (FG) anneal is studied using positron annihilation and the result is compared with capacitance-voltage (C -V) measurements. The reduction in the number of interface states is found correlated with the changes in the positron spectra. The present study shows the importance of the positron annihilation technique as a non-contact, non-destructive, and depth-sensitive characterization tool to study the Si-related systems, in particular, the Si/SiO_2 interface which is of crucial importance in semiconductor technology, and fundamental understanding of the defects responsible for degradation of the electrical properties.

  2. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  3. Design of a braze alloy for fast epitaxial brazing of superalloys

    Science.gov (United States)

    Piegert, S.; Laux, B.; Rösier, J.

    2012-07-01

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  4. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-01-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm 2 at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm 2 , an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon

  5. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  6. Porous Silicon Sensors- Elusive and Erudite

    OpenAIRE

    H. Saha, Prof.

    2017-01-01

    Porous Silicon Sensors have been fabricated and tested successfully over the last few years as humidity sensors, vapour sensors, gas sensors, piezoresistive pressure sensors and bio- sensors. In each case it has displayed remarkably sensitivity, relatively low temperature operation and ease of fabrication. Brief description of fabrication and properties of all these types of different sensors is reported in this paper. The barriers of porous silicon like contact, non- uniformity, instability ...

  7. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  8. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm².

    Science.gov (United States)

    Liu, Lin-Yue; Wang, Ling; Jin, Peng; Liu, Jin-Liang; Zhang, Xian-Peng; Chen, Liang; Zhang, Jiang-Fu; Ouyang, Xiao-Ping; Liu, Ao; Huang, Run-Hua; Bai, Song

    2017-10-13

    Silicon carbide (SiC) detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1-4 cm² were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  9. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2

    Directory of Open Access Journals (Sweden)

    Lin-Yue Liu

    2017-10-01

    Full Text Available Silicon carbide (SiC detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1–4 cm2 were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  10. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    International Nuclear Information System (INIS)

    Sirikumara, Hansika I.; Jayasekera, Thushari

    2016-01-01

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is ideal for achieving charge-neutral EG.

  11. Interface relaxation and band gap shift in epitaxial layers

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  12. Molecular beam epitaxy for the future

    International Nuclear Information System (INIS)

    Takahashi, K.

    1984-01-01

    Molecular beam epitaxy (MBE) is most commonly used to fabricate super-lattices, high electron mobility transistors, multi-quantum well lasers and other new semiconductor devices by utilizing its excellent controlability. MBE for the future is presumed to include techniques such as metalorganic chemical vapor deposition, photochemical reaction process using gas sources and ion implantation. A report on the crystal growth of GaAs using metalorganics, trimethylgallium and triethylgallium, which are usually used in chemical vapor deposition, as gaseous sources of gallium in an MBE system is made. (Author) [pt

  13. Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E. [PLANT PV, Inc., Oakland, CA (United States); Peters, Craig H. [PLANT PV, Inc., Oakland, CA (United States)

    2014-04-30

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  14. Influence of defects in SiC (0001) on epitaxial graphene

    International Nuclear Information System (INIS)

    Guo Yu; Guo Li-Wei; Lu Wei; Huang Jiao; Jia Yu-Ping; Sun Wei; Li Zhi-Lin; Wang Yi-Fei

    2014-01-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG. (rapid communication)

  15. Selective-area growth of GaN nanowires on SiO{sub 2}-masked Si (111) substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, J. E.; Doundoulakis, G. [Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion (Greece); Lymperakis, L. [Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Eftychis, S.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr [Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion (Greece); Adikimenakis, A.; Tsagaraki, K.; Androulidaki, M.; Konstantinidis, G. [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion (Greece); Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P. [Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patriarchou Grigoriou and Neapoleos 27, 15310 Aghia Paraskevi, Athens (Greece); Koukoula, T.; Kehagias, Th.; Komninou, Ph. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-06-14

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  16. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. ANTIMONY INDUCED CRYSTALLIZATION OF AMORPHOUS SILICON

    Institute of Scientific and Technical Information of China (English)

    Y. Wang; H.Z. Li; C.N. Yu; G.M. Wu; I. Gordon; P. Schattschneider; O. Van Der Biest

    2007-01-01

    Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE(molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.

  18. Proton irradiation effects in silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, E; Vanhellemont, J; Alaerts, A [IMEC, Leuven (Belgium); and others

    1997-03-01

    Proton irradiation effects in silicon devices are studied for components fabricated in various substrates in order to reveal possible hardening effects. The degradation of p-n junction diodes increases in first order proportionally with the fluence, when submitted to 10 MeV proton irradiations in the range 5x10{sup 9} cm{sup -2} to 5x10{sup 11} cm{sup -2}. The damage coefficients for both p- and n-type Czochralski, Float-Zone and epitaxial wafers are reported. Charge-Coupled Devices fabricated in a 1.2 {mu}m CCD-CMOS technology are shown to be quite resistant to 59 MeV H{sup +} irradiations, irrespective of the substrate type. (author)

  19. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  20. Growth and intercalation of graphene on silicon carbide studied by low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Speck, Florian; Ostler, Markus; Wanke, Martina; Seyller, Thomas [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Technische Physik, Erlangen (Germany); Technische Universitaet Chemnitz, Institut fuer Physik (Germany); Besendoerfer, Sven [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Technische Physik, Erlangen (Germany); Krone, Julia [Technische Universitaet Chemnitz, Institut fuer Physik (Germany)

    2017-11-15

    Based on its electronic, structural, chemical, and mechanical properties, many potential applications have been proposed for graphene. In order to realize these visions, graphene has to be synthesized, grown, or exfoliated with properties that are determined by the targeted application. Growth of so-called epitaxial graphene on silicon carbide by sublimation of silicon in an argon atmosphere is one particular method that could potentially lead to electronic applications. In this contribution we summarize our recent work on different aspects of epitaxial graphene growth and interface manipulation by intercalation, which was performed by a combination of low-energy electron microscopy, low-energy electron diffraction, atomic force microscopy and photoelectron spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    In this work, we investigated the formation of n-type polysilicon films on alumina substrates by overdoping a p-type silicon layer obtained by aluminium induced crystallization of amorphous silicon (AIC), and subsequent epitaxy. The phosphorus doping of the AIC was carried out by thermal diffusion from a solid source. The structural quality of the n-type Si film was monitored by optical microscope and scanning electron microscope (SEM). The doping efficiency was determined by resistivity measurements and secondary ion mass spectroscopy (SIMS). The sheet resitivity changed from 2700{omega}/sq to 19.6{omega}/sq after thermal diffusion at 950 deg. C for 1h, indicating the overdoping effect. The SIMS profile carried out after the high temperature epitaxy exhibits a two steps phosphorus distribution, indicating the formation of an n{sup +}n structure.

  2. Electrical property studies of neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fleming, P.H.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1978-01-01

    Results of studies of electrical properties of neutron-transmutation-doped (NTD) silicon are presented. Annealing requirements to remove lattice damage were obtained. The electrical role of clustered oxygen and defect-oxygen complex was investigated. An NTD epitaxial layer on a heavily doped n- or p- type substrate can be produced. There is no evident interaction between lithium introduced by diffusion and phosphorous 31 introduced by irradiation. There may be some type of pairing reaction between lithium 7 introduced by boron 10 fission and any remaining boron

  3. Epitaxy of advanced nanowire quantum devices

    Science.gov (United States)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  4. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  5. Drift mechanism of mass transfer on heterogeneous reaction in crystalline silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, S.A. [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation); Osipov, A.V., E-mail: Andrey.V.Osipov@gmail.com [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation)

    2017-05-01

    This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. In the proposed hydraulic model, the dependences of the film thickness both on the gas pressure and time have been calculated. It was shown that not only the qualitative but also quantitative correspondence between theoretical and experimental results takes place. As one would expect, due to the Einstein relation, at short growth times the drift model coincides with the diffusion one. Consequences of this drift mechanism of epitaxial film growing are discussed. - Graphical abstract: This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. - Highlights: • It is established that the greater pressure, the smaller is the reaction rate. • The reaction product prevents penetration of the reagent into a reaction zone. • For description the hydraulic model of crystal lattice channels is developed. • Theoretical results for polytropic

  6. 3D characterisation of tool wear whilst diamond turning silicon

    OpenAIRE

    Durazo-Cardenas, Isidro Sergio; Shore, Paul; Luo, X.; Jacklin, T.; Impey, S. A.; Cox, A.

    2006-01-01

    Nanometrically smooth infrared silicon optics can be manufactured by the diamond turning process. Due to its relatively low density, silicon is an ideal optical material for weight sensitive infrared (IR) applications. However, rapid diamond tool edge degradation and the effect on the achieved surface have prevented significant exploitation. With the aim of developing a process model to optimise the diamond turning of silicon optics, a series of experimental trials were devi...

  7. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  8. High current density GaAs/Si rectifying heterojunction by defect free Epitaxial Lateral overgrowth on Tunnel Oxide from nano-seed.

    Science.gov (United States)

    Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel

    2016-05-04

    Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

  9. Polarization dependent femtosecond laser modification of MBE-grown III-V nanostructures on silicon

    OpenAIRE

    Zandbergen, Sander R.; Gibson, Ricky; Amirsolaimani, Babak; Mehravar, Soroush; Keiffer, Patrick; Azarm, Ali; Kieu, Khanh

    2017-01-01

    We report a novel, polarization dependent, femtosecond laser-induced modification of surface nanostructures of indium, gallium, and arsenic grown on silicon via molecular beam epitaxy, yielding shape control from linear and circular polarization of laser excitation. Linear polarization causes an elongation effect, beyond the dimensions of the unexposed nanostructures, ranging from 88 nm to over 1 um, and circular polarization causes the nanostructures to flatten out or form loops of material,...

  10. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Directory of Open Access Journals (Sweden)

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  11. Structured epitaxial graphene: growth and properties

    International Nuclear Information System (INIS)

    Hu Yike; Ruan Ming; Guo Zelei; Dong Rui; Palmer, James; Hankinson, John; Berger, Claire; Heer, Walt A de

    2012-01-01

    Graphene is generally considered to be a strong candidate to succeed silicon as an electronic material. However, to date, it actually has not yet demonstrated capabilities that exceed standard semiconducting materials. Currently demonstrated viable graphene devices are essentially limited to micrometre-sized ultrahigh-frequency analogue field effect transistors and quantum Hall effect devices for metrology. Nanoscopically patterned graphene tends to have disordered edges that severely reduce mobilities thereby obviating its advantage over other materials. Here we show that graphene grown on structured silicon carbide surfaces overcomes the edge roughness and promises to provide an inroad into nanoscale patterning of graphene. We show that high-quality ribbons and rings can be made using this technique. We also report on the progress towards high-mobility graphene monolayers on silicon carbide for device applications. (paper)

  12. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  13. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  14. Buried melting in germanium implanted silicon by millisecond flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Yankov, Rossen; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2008-01-01

    Flash lamp annealing in the millisecond range has been used to induce buried melting in silicon. For this purpose high dose high-energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp treatment at high energy densities leads to local melting of the germanium rich layer. The thickness of the molten layer has been found to depend on the irradiation energy density. During the cool-down period, epitaxial crystallization takes place resulting in a largely defect-free layer

  15. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  16. Structure and Properties of Epitaxial Dielectrics on gallium nitride

    Science.gov (United States)

    Wheeler, Virginia Danielle

    upward band bending at the surface, which should be considered when determining heterojunction band offsets with GaN. Epitaxial La2O3 and Sc2O3 were successfully deposited on GaN by molecular beam epitaxy (MBE). Sc 2O3 exhibited a cubic bixbyite crystal structure, while La 2O3 had a mix of both cubic and hexagonal crystal structures. A highly defective structure was observed for La2O3, compared to Sc2O3, which results from its larger mismatch with GaN (14.5% and 8.9%, respectively). TEM images indicated an abrupt atomic interface for Sc2O3 films, but an interfacial layer was observed for La2O3 on GaN. Additionally, La 2O3 was shown to be extremely reactive with water and carbon dioxide in air, forming both hydroxides and carbonates within 15 minutes of exposure. Therefore, tantalum and silicon were investigated as in-situ capping metals to prevent these deleterious effects. XPS was utilized to determine a valence band offset (VBO) and conduction band offset of 1.9 +/- 0.1 eV and 0.9 +/- 0.1 eV for La2O 3 on GaN. Similarly, Sc2O3 had a VBO and CBO of 0.8 +/- 0.1 eV and 2.1 +/- 0.1 eV, respectively. Both oxides exhibited sufficient band offsets to prevent thermionic emission of carriers, even at high operation temperatures, making them good candidates for insulator layers in high temperature, high power applications. Preliminary C-V curves, for La2O3 and Sc2 O3 MOS capacitors, showed large charge accumulation layers, extremely high permittivity values, and low hysteresis windows indicative of low density of interface traps and fixed oxide charges. I-V curves showed a reduction in leakage current density for both oxides compared to Si 3N4, a readily used gate dielectric for GaN devices. The larger reduction achieved with La2O3 films is attributed to a passivating interfacial layer that minimizes the amount of dislocations propagating into the oxide. These preliminary results point to the viability of these gate oxides in GaN MOSFET devices.

  17. Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers

    Science.gov (United States)

    Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari

    2018-01-01

    Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.

  18. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  19. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    International Nuclear Information System (INIS)

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-01-01

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10 -10 Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry

  20. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Chen, S.Y.; Chen, L.J.

    2006-01-01

    Self-assembled epitaxial NiSi 2 nanowires have been fabricated on Si(001) by reactive deposition epitaxy (RDE). The RDE method promoted nanowire growth since it provides deposited atoms sufficient kinetic energy for movement on the Si surface during the growth of silicide islands. The twin-related interface between NiSi 2 and Si is directly related to the nanowire formation since it breaks the symmetry of the surface and leads to the asymmetric growth. The temperature of RDE was found to greatly influence the formation of nanowires. By RDE at 750 deg. C, a high density of NiSi 2 nanowires was formed with an average aspect ratio of 30

  1. Point defect balance in epitaxial GaSb

    International Nuclear Information System (INIS)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  2. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  3. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  4. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  5. Grounding, Shielding and Power Distribution for the LHCb Silicon Tracking

    CERN Document Server

    Bauer, C; Frei, R; Straumann, U; Vázquez, P; Vollhardt, A

    2005-01-01

    This note lists the relevant items for power and grounding, it explains the sensitive detector input signal circuits and describes the grounding, power distribution and line filtering measures applied to each of the electrical units of the LHCb silicon tracking system. This note deals with both silicon sub-projects, the Inner Tracker (IT) and the Trigger Tracker (TT).

  6. Silicon mediated biochemical changes in wheat under salinized and ...

    African Journals Online (AJOL)

    Silicon (Si) can alleviate salinity damage, a major threat to agriculture that causes instability in wheat production. We report on the effects of silicon (150 mg L-1) on the morphological, physiological and biochemical traits in wheat (Triticum aestivum L.) cultivars (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) differing ...

  7. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  8. Light emission from silicon with tin-containing nanocrystals

    Directory of Open Access Journals (Sweden)

    Søren Roesgaard

    2015-07-01

    Full Text Available Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si1−x−ySnxCy, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 ∘C to 900 ∘C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈1017 cm−3 and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 ∘C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  9. Magnetic properties of novel epitaxial films

    International Nuclear Information System (INIS)

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc α-Fe and fcc γ-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk α-Fe. The controversial γ-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism

  10. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  11. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  12. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  13. Fluorine incorporation during Si solid phase epitaxy

    International Nuclear Information System (INIS)

    Impellizzeri, G.; Mirabella, S.; Romano, L.; Napolitani, E.; Carnera, A.; Grimaldi, M.G.; Priolo, F.

    2006-01-01

    We have investigated the F incorporation and segregation in preamorphized Si during solid phase epitaxy (SPE) at different temperatures and for several implanted-F energies and fluences. The Si samples were amorphized to a depth of 550 nm by implanting Si at liquid nitrogen temperature and then enriched with F at different energies (65-150 keV) and fluences (0.07-5 x 10 14 F/cm 2 ). Subsequently, the samples were regrown by SPE at different temperatures: 580, 700 and 800 deg. C. We have found that the amount of F incorporated after SPE strongly depends on the SPE temperature and on the energy and fluence of the implanted-F, opening the possibility to tailor the F profile during SPE

  14. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  15. Optical characterization of epitaxial semiconductor layers

    CERN Document Server

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  16. Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers

    DEFF Research Database (Denmark)

    Liu, Guangqing; Zhang, Qi; Huang, Hsin-Hui

    2016-01-01

    Polarization rotation engineering is a promising path to giant dielectric and electromechanical responses in ferroelectric materials and devices. This work demonstrates robust and reversible in- to out-of-plane polarization rotation in ultrathin (nanoscale) epitaxial (001) tetragonal PbZr0.3Ti0.7O3...... large-scale polarization rotation switching (≈60 μC cm−2) and an effective d 33 response 500% (≈250 pm V−1) larger than the PZT-R layer alone. Furthermore, this enhancement is stable for more than 107 electrical switching cycles. These bilayers present a simple and highly controllable means to design...... and optimize rotational polar systems as an alternate to traditional composition-based approaches. The precise control of the subtle interface-driven interactions between the lattice and the external factors that control polarization opens a new door to enhanced—or completely new—functional properties....

  17. Molecular beam epitaxy applications to key materials

    CERN Document Server

    Farrow, Robin F C

    1995-01-01

    In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.

  18. Twenty years of molecular beam epitaxy

    Science.gov (United States)

    Cho, A. Y.

    1995-05-01

    The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.

  19. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-01-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  20. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  1. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  2. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  3. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  4. The LHCb Silicon Inner Tracker

    International Nuclear Information System (INIS)

    Sievers, P.

    2002-01-01

    A silicon strip detector has been adopted as baseline technology for the LHCb Inner Tracker system. It consists of nine planar stations covering a cross-shaped area around the LHCb beam pipe. Depending on the final layout of the stations the sensitive surface of the Inner Tracker will be of the order of 14 m 2 . Ladders have to be 22 cm long and the pitch of the sensors should be as large as possible in order to reduce costs of the readout electronics. Major design criteria are material budget, short shaping time and a moderate spatial resolution of about 80 μm. After an introduction on the requirements of the LHCb Inner Tracker we present a description and characterization of silicon prototype sensors. First, laboratory and test beam results are discussed

  5. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José ; Burriel, Mó nica

    2010-01-01

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation

  6. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  7. Temperature and coverage effects on the stability of epitaxial silicene on Ag(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongsheng; Han, Nannan; Zhao, Jijun, E-mail: zhao_jijun@hotmail.com

    2017-07-01

    Highlights: • Chemical potential phase diagrams of silicene/Ag(111) at varied temperatures. • The priorities of various silicene phases in experiments are explained. • A proper experimental condition to obtain homogeneous 4 × 4 silicene is recommended. - Abstract: Silicene, the single layer of silicon atoms arranged in a honeycomb lattice, has been synthesized in recent experiments and attracted significant attentions. Silicene is promising in future nanoelectronic devices due to its outstanding electronic properties. In experiments, however, different silicene superstructures coexist on Ag(111) substrate. For the device applications, homogenous silicene sheet with large scale and high quality is highly desired. Here, for the first time, we investigate both the temperature and the coverage effects on the thermal stability of epitaxial silicene on Ag(111) surface by ab initio molecular dynamics simulations. The relationship between the stability of various silicene superstructures and the growth conditions, including temperature and coverage of silicon atoms, is revealed by plotting the chemical potential phase diagram of silicene on Ag(111) surfaces at different temperatures. Our results are helpful for understanding the observed diversity of silicene phases on Ag(111) surfaces and provide some useful guidance for the synthesis of homogenous silicene phase in experiments.

  8. Self-planarized quantum-disks nanowires ultraviolet-B emitter utilizing pendeo-epitaxy

    KAUST Repository

    Janjua, Bilal

    2017-03-03

    The growth of self-assembled, vertically oriented and uniform nanowires (NWs) has remained a challenge for efficient light-emitting devices. Here, we demonstrate dislocation-free AlGaN NWs with spontaneous coalescence, which are grown by plasma-assisted molecular beam epitaxy on an n-type doped silicon (100) substrate. A high density of NWs (filling factor > 95%) was achieved under optimized growth conditions, enabling device fabrication without planarization using ultraviolet (UV)-absorbing polymer materials. UV-B (280-320 nm) light-emitting diodes (LEDs), which emit at ~303 nm with a narrow full width at half maximum (FWHM) (~20 nm) of the emission spectrum, are demonstrated using a large active region (“active region/NW length-ratio” ~ 50%) embedded with 15 stacks of AlxGa1-xN/AlyGa1-yN quantum-disks (Qdisks). To improve the carrier injection, a graded layer is introduced at the AlGaN/GaN interfaces on both p- and n-type regions. This work demonstrates a viable approach to easily fabricate ultra-thin, efficient UV optoelectronic devices on low-cost and scalable silicon substrates.

  9. Ellipsometric study of GaN/AIN/Si(111) heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Nabi, M. A. U.; Ashfaq, A.; Arshad, M. I.; Ali, A.; Mahmood, K.; Hasan, M. A.; Asghar, M.

    2013-01-01

    GaN and related structures attracted a great interest in the recent years for electronic and optoelectronic applications due to their promising properties. GaN is grown popularly on foreign substrates like sapphire and SiC. However, silicon due to its favourable properties attended the great attention of material scientists and researchers to utilize as substrate for heteroepitaxy of GaN based structures and devices. Silicon substrates are low cost, available in large diameters and have well characterized thermal and electrical properties. In this study, GaN/AlN/Si(111) heterostructures were grown by molecular beam epitaxy. We performed x-ray diffraction spectroscopy and spectroscopic ellipsometry on these samples to study their structural and optical properties. XRD measurements performed on these samples revealed the presence of high quality GaN films as well as the presence of AlN buffer layer with the following miller indices: GaN (002), GaN (004), GaN (006) and GaN (110) along with Si peak of phase (111). The ellipsometric data obtained were used to characterize the GaN/Si samples as a function of film thickness. Refractive index, extinction coefficient and dielectric constant were calculated by the measured data. (author)

  10. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  11. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  12. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  13. The formation of hexagonal-shaped InGaN-nanodisk on GaN-nanowire observed in plasma source molecular beam epitaxy

    KAUST Repository

    Ng, Tien Khee

    2014-03-08

    We report on the properties and growth kinetics of defect-free, photoluminescence (PL) efficient mushroom-like nanowires (MNWs) in the form of ~30nm thick hexagonal-shaped InGaN-nanodisk on GaN nanowires, coexisting with the conventional rod-like InGaN-on-GaN nanowires (RNWs) on (111)-silicon-substrate. When characterized using confocal microscopy (CFM) with 458nm laser excitation, while measuring spontaneous-emission at fixed detection wavelengths, the spatial intensity map evolved from having uniform pixelated emission, to having only an emission ring, and then a round emission spot. This corresponds to the PL emission with increasing indium composition; starting from emission mainly from the RNW, and then the 540 nm emission from one MNWs ensemble, followed by the 590 nm emission from a different MNW ensemble, respectively. These hexagonal-shaped InGaN-nano-disks ensembles were obtained during molecular-beam-epitaxy (MBE) growth. On the other hand, the regular rod-like InGaN-on-GaN nanowires (RNWs) were emitting at a shorter peak wavelength of 490 nm. While the formation of InGaN rod-like nanowire is well-understood, the formation of the hexagonal-shaped InGaN-nanodisk-on-GaN-nanowire requires further investigation. It was postulated to arise from the highly sensitive growth kinetics during plasma-assisted MBE of InGaN at low temperature, i.e. when the substrate temperature was reduced from 800 °C (GaN growth) to <600 °C (InGaN growth), during which sparsely populated metal-droplet formation prevails and further accumulated more indium adatoms due to a higher cohesive bond between metallic molecules. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  14. Epitaxial patterning of thin-films: conventional lithographies and beyond

    International Nuclear Information System (INIS)

    Zhang, Wei; Krishnan, Kannan M

    2014-01-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. (topical review)

  15. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  16. Biofunctionalization on Alkylated Silicon Substrate Surfaces via “Click” Chemistry

    OpenAIRE

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J.; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-01-01

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the non-oxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3...

  17. Low cost silicon solar array project: Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon

    Science.gov (United States)

    Breneman, W. C.

    1978-01-01

    Silicon epitaxy analysis of silane produced in the Process Development Unit operating in a completely integrated mode consuming only hydrogen and metallurgical silicon resulted in film resistivities of up to 120 ohms cm N type. Preliminary kinetic studies of dichlorosilane disproportionation in the liquid phase have shown that 11.59% SiH4 is formed at equilibrium after 12 minutes contact time at 56 C. The fluid-bed reactor was operated continuously for 48 hours with a mixture of one percent silane in helium as the fluidizing gas. A high silane pyrolysis efficiency was obtained without the generation of excessive fines. Gas flow conditions near the base of the reactor were unfavorable for maintaining a bubbling bed with good heat transfer characteristics. Consequently, a porous agglomerate formed in the lower portion of the reactor. Dense coherent plating was obtained on the silicon seed particles which had remained fluidizied throughout the experiment.

  18. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    International Nuclear Information System (INIS)

    Chang, Yongwei; Zhang, Miao; Deng, Chuang; Men, Chuanling; Chen, Da; Zhu, Lei; Yu, Wenjie; Wei, Xing; Di, Zengfeng; Wang, Xi

    2015-01-01

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10 17 cm −2 , the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10 17 cm −2 . • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10 17 cm −2 , the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10 17 cm −2 H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF 6 plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era

  19. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yongwei; Zhang, Miao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Deng, Chuang; Men, Chuanling [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Da [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhu, Lei; Yu, Wenjie; Wei, Xing [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Xi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-08-15

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10{sup 17} cm{sup −2}, the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10{sup 17} cm{sup −2}. • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10{sup 17} cm{sup −2}, the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10{sup 17} cm{sup −2} H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF{sub 6} plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era.

  20. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling hea......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  1. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  2. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    International Nuclear Information System (INIS)

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  3. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  4. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  5. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  6. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  7. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  8. State memory in solution gated epitaxial graphene

    Science.gov (United States)

    Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.

    2018-06-01

    We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.

  9. Chiral silicon nanostructures

    International Nuclear Information System (INIS)

    Schubert, E.; Fahlteich, J.; Hoeche, Th.; Wagner, G.; Rauschenbach, B.

    2006-01-01

    Glancing angle ion beam assisted deposition is used for the growth of amorphous silicon nanospirals onto [0 0 1] silicon substrates in a temperature range from room temperature to 475 deg. C. The nanostructures are post-growth annealed in an argon atmosphere at various temperatures ranging from 400 deg. C to 800 deg. C. Recrystallization of silicon within the persisting nanospiral configuration is demonstrated for annealing temperatures above 800 deg. C. Transmission electron microscopy and Raman spectroscopy are used to characterize the silicon samples prior and after temperature treatment

  10. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  11. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  12. Microelectronic temperature sensor; silicon temperature sensor

    International Nuclear Information System (INIS)

    Beitner, M.; Kanert, W.; Reichert, H.

    1982-01-01

    The goal of this work was to develop a silicon temperature sensor with a sensitivity and a reliability as high and a tolerance as small as possible, for use in measurement and control. By employing the principle of spreading-resistance, using silicon doped by neutron transmutation, and trimming of the single wafer tolerances of resistance less than +- 5% can be obtained; overstress tests yielded a long-term stability better than 0.2%. Some applications show the advantageous use of this sensor. (orig.) [de

  13. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.; Buckley, M. R.; Gerbode, S. J.; Cohen, I.

    2010-01-01

    -scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics

  14. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  15. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  16. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  17. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  18. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  19. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    Science.gov (United States)

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    biomedical applications, including biosensor, bioimaging, and cancer therapy. First, we show that the interesting photoluminescence properties (e.g., strong fluorescence and robust photostability) and excellent biocompatibility of silicon nanoparticles (SiNPs) are superbly suitable for direct and long-term visualization of biological systems. The strongly fluorescent SiNPs are highly effective for bioimaging applications, especially for long-term cellular labeling, cancer cell detection, and tumor imaging in vitro and in vivo with high sensitivity. Next, we discuss the utilization of silicon nanomaterials to construct high-performance biosensors, such as silicon-based field-effect transistors (FET) and surface-enhanced Raman scattering (SERS) sensors, which hold great promise for ultrasensitive and selective detection of biological species (e.g., DNA and protein). Then, we introduce recent exciting research findings on the applications of silicon nanomaterials for cancer therapy with encouraging therapeutic outcomes. Lastly, we highlight the major challenges and promises in this field, and the prospect of a new nanobiotechnology platform based on silicon nanomaterials.

  20. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Metaferia, Wondwosen; Kataria, Himanshu; Sun, Yan-Ting; Lourdudoss, Sebastian

    2015-01-01

    In an attempt to achieve an InP–Si heterointerface, a new and generic method, the corrugated epitaxial lateral overgrowth (CELOG) technique in a hydride vapor phase epitaxy reactor, was studied. An InP seed layer on Si (0 0 1) was patterned into closely spaced etched mesa stripes, revealing the Si surface in between them. The surface with the mesa stripes resembles a corrugated surface. The top and sidewalls of the mesa stripes were then covered by a SiO 2 mask after which the line openings on top of the mesa stripes were patterned. Growth of InP was performed on this corrugated surface. It is shown that growth of InP emerges selectively from the openings and not on the exposed silicon surface, but gradually spreads laterally to create a direct interface with the silicon, hence the name CELOG. We study the growth behavior using growth parameters. The lateral growth is bounded by high index boundary planes of {3 3 1} and {2 1 1}. The atomic arrangement of these planes, crystallographic orientation dependent dopant incorporation and gas phase supersaturation are shown to affect the extent of lateral growth. A lateral to vertical growth rate ratio as large as 3.6 is achieved. X-ray diffraction studies confirm substantial crystalline quality improvement of the CELOG InP compared to the InP seed layer. Transmission electron microscopy studies reveal the formation of a direct InP–Si heterointerface by CELOG without threading dislocations. While CELOG is shown to avoid dislocations that could arise due to the large lattice mismatch (8%) between InP and Si, staking faults could be seen in the layer. These are probably created by the surface roughness of the Si surface or SiO 2 mask which in turn would have been a consequence of the initial process treatments. The direct InP–Si heterointerface can find applications in high efficiency and cost-effective Si based III–V semiconductor multijunction solar cells and optoelectronics integration. (paper)

  1. Growth and characterization of Hg 1– Cd Te epitaxial films by ...

    Indian Academy of Sciences (India)

    Growth of Hg1–CdTe epitaxial films by a new technique called asymmetric vapour phase epitaxy (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication have ...

  2. Growth and characterization of Hg1–xCdxTe epitaxial films by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Growth of Hg1–xCdxTe epitaxial films by a new technique called asymmetric vapour phase epitaxy. (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication.

  3. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  4. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation

    International Nuclear Information System (INIS)

    Riedl, C; Coletti, C; Starke, U

    2010-01-01

    Graphene, a monoatomic layer of graphite, hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This paper reviews the controlled growth of epitaxial graphene layers on SiC(0 0 0 1) and the manipulation of their electronic structure. We show that epitaxial graphene on SiC grows on top of a carbon interface layer that-although it has a graphite-like atomic structure-does not display the linear π-bands typical for graphene due to a strong covalent bonding to the substrate. Only the second carbon layer on top of this interface acts like monolayer graphene. With a further carbon layer, a graphene bilayer system develops. During the growth of epitaxial graphene on SiC(0 0 0 1) the number of graphene layers can be precisely controlled by monitoring the π-band structure. Experimental fingerprints for in situ growth control could be established. However, due to the influence of the interface layer, epitaxial graphene on SiC(0 0 0 1) is intrinsically n-doped and the layers have a long-range corrugation in their density of states. As a result, the Dirac point energy where the π-bands cross is shifted away from the Fermi energy, so that the ambipolar properties of graphene cannot be exploited. We demonstrate methods to compensate and eliminate this structural and electronic influence of the interface. We show that the band structure of epitaxial graphene on SiC(0 0 0 1) can be precisely tailored by functionalizing the graphene surface with tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) molecules. Charge neutrality can be achieved for mono- and bilayer graphene. On epitaxial bilayer graphene, where a band gap opens due to the asymmetric electric field across the layers imposed by the interface, the magnitude of this band gap

  5. Silicon radiation detectors: materials and applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented

  6. Singularities of 28Si electrical activation in a single crystal and epitaxial GaAs under radiation annealing

    International Nuclear Information System (INIS)

    Ardyshev, V.M.; Ardyshev, M.V.; Khludkov, S.S.

    2000-01-01

    Using the voltage-capacitance characteristics method, the concentration profiles of 28 Si that is implanted in monocrystal and epitaxial GaAs after fast thermal annealing (FTA) (825, 870, 950 deg C, 12 s) have been studied; using Van-der-Paw method, the electron Hall mobility temperature dependence in the range of 70-400 K has been measured. Unlike thermal annealing (800 deg C, 30 min), the silicon diffusion depth redistribution into GaAs is shown to occur for both types of material. The coefficient of diffusion of Si in the single crystal is 2 times greater, but the electrical activation efficiency is somewhat less than in the epitaxial GaAs for each of the temperatures of FTA. The analysis of the temperature dependence of the electron mobility in ion-implanted layers after FTA gives the evidence about the significantly lower concentration of defects restricting the mobility in comparison with results obtained at thermal annealing during 30 min [ru

  7. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  8. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  9. Growth of β-FeSi2 layers on Si (111) by solid phase and reactive deposition epitaxies

    International Nuclear Information System (INIS)

    Miquita, D.R.; Paniago, R.; Rodrigues, W.N.; Moreira, M.V.B.; Pfannes, H.-D.; Oliveira, A.G. de

    2005-01-01

    Iron silicides were grown on Si (111) substrates by Solid Phase Epitaxy (SPE) and Reactive Deposition Epitaxy (RDE) to identify the optimum conditions to obtain the semiconducting β-FeSi 2 phase. The films were produced under different growth and annealing conditions and analyzed in situ and ex situ by X-ray Photoelectron Spectroscopy, and ex situ by Conversion Electron Moessbauer Spectroscopy. The use of these techniques allowed the investigation of different depth regions of the grown layer. Films of the ε-FeSi and β-FeSi 2 phases were obtained as well as the mixtures Fe 3 Si + ε-FeSi and ε-FeSi + β-FeSi 2 . The sequence Fe 3 Si→ε-FeSi→β-FeSi 2 was found upon annealing, where the phase transformation occurred due to the migration of silicon atoms from the substrate to the surface region of the grown layer. The best conditions for the phase transformation in SPE samples were met after annealing in the range 700 - 800 deg. C. For the RDE samples, the transition to the beta phase occurred between 600 and 700 deg. C, but pure β-FeSi 2 was obtained only after two hours of annealing at 700 deg. C

  10. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  11. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  12. Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2015-01-01

    Full Text Available A method to remove the misfit dislocations and reduce the threading dislocations density (TDD in the germanium (Ge epilayer growth on a silicon (Si substrate is presented. The Ge epitaxial film is grown directly on the Si (001 donor wafer using a “three-step growth” approach in a reduced pressure chemical vapour deposition. The Ge epilayer is then bonded and transferred to another Si (001 handle wafer to form a germanium-on-insulator (GOI substrate. The misfit dislocations, which are initially hidden along the Ge/Si interface, are now accessible from the top surface. These misfit dislocations are then removed by annealing the GOI substrate. After the annealing, the TDD of the Ge epilayer can be reduced by at least two orders of magnitude to <5 × 106 cm−2.

  13. Annealing of silicon epitaxial n+-p-structures irradiated with fast electrons

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Turin, P.M.; Gurinovich, V.A.; Zhdanovich, N.E.

    2010-01-01

    Static (forward voltage drop and barrier capacitance) and dynamic (minority charge carriers lifetime in p-base) parameters changes of n + -p-structures irradiated with electrons (6 MeV) have been investigated. It is established that the forward voltage drop and the barrier capacitance of n + -p-junction recover during annealing at about 623 K, but the minority charge carriers lifetime recovery occurs at annealing temperatures above 773 K. The recovery of a forward voltage drop and barrier capacitance is related with annealing of radiation complexes of divacancy-oxygen (V 2 O) and boron-carbon (B i C s ). The recovery of minority charge carriers lifetime in structures is related mainly with annealing of radiation complex of carbonoxygen (C i O i ). (authors)

  14. Fast thermal annealing of implantation defects in silicon. Solid phase epitaxy and residual imperfection recovery

    International Nuclear Information System (INIS)

    Adekoya, O.A.

    1987-06-01

    Basic processes ruling the crystal reconstitution in solid phase during fast thermal annealing are studied; the role of electronic and thermodynamic effects at the interface is precised, following the implantations of a donor element (p + ), an acceptor element (B + ) and an intrinsic element (Ge + ). Then, after recrystallization, the electric role of residual point defects is shown together with the possibility of total recovery and an important electric activation of the doping [fr

  15. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    Science.gov (United States)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  16. Seed layer technique for high quality epitaxial manganite films

    Directory of Open Access Journals (Sweden)

    P. Graziosi

    2016-08-01

    Full Text Available We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  17. Rationally designed porous silicon as platform for optical biosensors

    International Nuclear Information System (INIS)

    Priano, G.; Acquaroli, L.N.; Lasave, L.C.; Battaglini, F.; Arce, R.D.; Koropecki, R.R.

    2012-01-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: ► Mesoporous silicon structure ► Functionalization of mesoporous silicon as sensors ► Design of the one-dimensional photonic crystal ► Simulation of non-uniformity in covering the sensor structure

  18. Waveguiding properties of Er-implanted silicon-rich oxides

    International Nuclear Information System (INIS)

    Elliman, R.G.; Forcales, M.; Wilkinson, A.R.; Smith, N.J.

    2007-01-01

    The optical properties of erbium-doped silicon-rich silicon-oxide waveguides containing amorphous silicon nanoclusters and/or silicon nanocrystals are reported. Both amorphous nanoclusters and nanocrystals are shown to act as effective sensitizers for Er, with nanocrystals being more effective at low pump powers and nanoclusters being more effective at higher pump powers. All samples are shown to exhibit photo-induced absorption, as measured for a guided 1.5 μm probe beam while the waveguide was illuminated from above with a 477 nm pump beam. At a given pump power samples containing silicon nanocrystals exhibited greater attenuation than samples containing amorphous nanoclusters. The absorption is shown to be consistent with confined-carrier absorption due to photoexcited carriers in the nanocrystals and/or nanoclusters

  19. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  20. Rationally designed porous silicon as platform for optical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Priano, G. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Acquaroli, L.N.; Lasave, L.C. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Battaglini, F. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Arce, R.D., E-mail: rarce@intec.unl.edu.ar [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina); Koropecki, R.R. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina)

    2012-08-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: Black-Right-Pointing-Pointer Mesoporous silicon structure Black-Right-Pointing-Pointer Functionalization of mesoporous silicon as sensors Black-Right-Pointing-Pointer Design of the one-dimensional photonic crystal Black-Right-Pointing-Pointer Simulation of non-uniformity in covering the sensor structure.