WorldWideScience

Sample records for epitaxial microwave chemical

  1. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  2. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    Science.gov (United States)

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  3. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  4. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  5. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  6. Microwave impedance of epitaxial high-temperature superconductor films

    International Nuclear Information System (INIS)

    Melkov, G.A.; Malyshev, V.Yu.; Bagada, A.V.

    1995-01-01

    In the 3 cm band dependences of the epitaxial HTS film surface resistance on the magnitude of ac and dc magnetic fields have been measured. YBa 2 Cu 3 O 7-σ films on sapphire were investigated. It was established that alternating magnetic field produces a stronger impact on the surface resistance than dc field. To explain experimental results the assumption is made that a HTS film is not an ideal superconductor and consists of series-connected sections of various types: sections of an ideal superconductor, sections of low and large resistance intragranular Josephson junctions, shunted by the ideal superconductor, and finally, sections of intergranular Josephson junctions few for epitaxial films. In these conditions the dependences of the surface resistance on dc magnetic field are caused by Abrikosov's vortices moving in ideal superconductive sections, and dependences on the amplitude of ac magnetic field are caused by switching of large resistance junctions to a low resistance state

  7. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    Directory of Open Access Journals (Sweden)

    K.-H. Cho

    2013-10-01

    Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  8. Microwave Technology--Applications in Chemical Synthesis

    Science.gov (United States)

    Microwave heating, being specific and instantaneous, is unique and has found a place for expeditious chemical syntheses. Specifically, the solvent-free reactions are convenient to perform and have advantages over the conventional heating protocols as summarized in the previous se...

  9. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  10. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  11. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  12. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    Science.gov (United States)

    Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco

    2017-12-01

    We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.

  13. Chemically stabilized epitaxial wurtzite-BN thin film

    Science.gov (United States)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  14. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  15. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Science.gov (United States)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  16. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  17. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  18. Microwave plasma emerging technologies for chemical processes

    NARCIS (Netherlands)

    de la Fuente, Javier F.; Kiss, Anton A.; Radoiu, Marilena T.; Stefanidis, Georgios D.

    2017-01-01

    Microwave plasma (MWP) technology is currently being used in application fields such as semiconductor and material processing, diamond film deposition and waste remediation. Specific advantages of the technology include the enablement of a high energy density source and a highly reactive medium,

  19. Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies

    International Nuclear Information System (INIS)

    Miller, D.; Richards, P.L.; Etemad, S.; Inam, A.; Venkatesan, T.; Dutta, B.; Wu, X.D.; Eom, C.B.; Geballe, T.H.; Newman, N.; Cole, B.F.

    1991-01-01

    We have measured the residual loss in five epitaxial a-b plane films of the high-T c superconductor YBa 2 Cu 3 O 7 . Microwave measurements near 10 GHz were made by resonance techniques at 4 K. Submillimeter measurements from ∼1.5 to 21 THz were made at 2 K by a direct absorption technique. We use a model of weakly coupled superconducting grains and a homogeneous two-fluid model to fit the data for each film below the well-known absorption edge at 13.5 THz. When the penetration depth determined from muon spin rotation measurements is used to constrain each model, the weakly coupled grain model is able to fit the measured absorptivities for all films, but the two-fluid model is less successful

  20. Chemical solution deposition techniques for epitaxial growth of complex oxides

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Koster, G.; Huijben, Mark; Rijnders, G.

    2015-01-01

    The chemical solution deposition (CSD) process is a wet-chemical process that is employed to fabricate a wide variety of amorphous and crystalline oxide thin films. This chapter describes the typical steps in a CSD process and their influence on the final microstructure and properties of films, and

  1. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  2. Direct microwave annealing of SiC substrate for rapid synthesis of quality epitaxial graphene

    Czech Academy of Sciences Publication Activity Database

    Cichoň, Stanislav; Macháč, P.; Fekete, Ladislav; Lapčák, L.

    2016-01-01

    Roč. 98, Mar (2016), s. 441-448 ISSN 0008-6223 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : graphene * SiC * microwave Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.337, year: 2016

  3. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    Science.gov (United States)

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  4. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  5. Novel edible oil sources: Microwave heating and chemical properties.

    Science.gov (United States)

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  7. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  8. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kumar, A.; Voevodin, A.A.; Paul, R.; Altfeder, I.; Zemlyanov, D.; Zakharov, D.N.; Fisher, T.S.

    2013-01-01

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface

  9. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: kumar50@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Paul, R. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Altfeder, I. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Zemlyanov, D.; Zakharov, D.N. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Fisher, T.S., E-mail: tsfisher@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States)

    2013-01-01

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface.

  10. Submillimeter and microwave residual losses in epitaxial films of Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O

    International Nuclear Information System (INIS)

    Miller, D.; Richards, P.L.; Eom, C.B.; Geballe, T.H.; Etemad, S.; Inam, A.; Venkatesan, T.; Martens, J.S.; Lee, W.Y.

    1992-12-01

    We have used a novel bolometric technique and a resonant technique to obtain accurate submillimeter and microwave residual loss data for epitaxial thin films of YBa 2 Cu 3 O 7 , Tl 2 Ca 2 Ba 2 Cu 3 O 10 and Tl 2 CaBa 2 Cu 2 O 8 . For all films we obtain good agreement between the submillimeter and microwave data, with the residual losses in both the Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O films scaling approximately as frequency squared below ∼ 1 THz. We are able to fit the losses in the Y-Ba-Cu-O films to a two fluid and a weakly coupled grain model for the a-b planeconductivity, in good agreement with results from a Kramers-Kronig analysis of the loss data

  11. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  12. Interface manipulation in GaxIn1-xAs/InP multiple layer structures grown by chemical beam epitaxy

    NARCIS (Netherlands)

    Rongen, R.T.H.; van Rijswijk, A.J.C.; Leijs, M.R.; Es, van C.M.; Vonk, H.; Wolter, J.H.

    1997-01-01

    In this study the control of interfacial layers in nanometre thin heterostructures is demonstrated by variation of the growth interruption sequence (GIS) at the binary - ternary interfaces. All samples have been prepared by chemical beam epitaxy simultaneously growing the structures on exact (100)

  13. Hydrogen reduction in GaAsN thin films by flow rate modulated chemical beam epitaxy

    International Nuclear Information System (INIS)

    Saito, K.; Nishimura, K.; Suzuki, H.; Ohshita, Y.; Yamaguchi, M.

    2008-01-01

    The amount of residual H in the GaAsN film grown by chemical beam epitaxy (CBE) can be decreased by flow rate modulation growth. Many H atoms in the films grown by CBE exist as N-H or N-H 2 structures. Although a higher growth temperature was required for decreasing the H concentration ([H]), it caused a decrease in the N concentration ([N]). A reduction in [H] while keeping [N] constant was necessary. By providing an intermittent supply of Ga source while continuously supplying As and N sources, [H] effectively decreased in comparison with the [H] value in the film grown at the same temperature by conventional CBE without reducing [N

  14. The effect of microwave pretreatment on chemical looping gasification of microalgae for syngas production

    International Nuclear Information System (INIS)

    Hu, Zhifeng; Ma, Xiaoqian; Jiang, Enchen

    2017-01-01

    Highlights: • Microwave pretreatment is beneficial to chemical-looping gasification reaction. • Gasification efficiency and gas yield increased greatly under microwave pretreatment. • 60 s is the optimal microwave pretreatment time in CLG to produce syngas. • Suitable microwave pretreatment can make the structure of solid residue become loose. • 750 W is the optimal microwave pretreatment power in CLG to produce syngas. - Abstract: Chemical-looping gasification (CLG) of Chlorella vulgaris was carried out in a quartz tube reactor under different microwave pretreatment. The product fractional yields, conversion efficiency and analysis of performance parameters were analyzed in order to obtain the characterization and optimal conditions of microwave pretreatment for syngas production. The results indicate that microwave pretreatment is conducive to CLG reaction. Furthermore, the higher power or the longer time in the process of microwave pretreatment could not exhibit a better effect on CLG. In addition, 750 W and 60 s is the optimal microwave pretreatment power and time respectively to obtain a great reducibility of oxygen carrier, high conversion efficiency, high products yield and good LHV. The H_2 yield, LHV, gasification efficiency and gas yield increased obviously from 18.12%, 12.14 MJ/Nm"3, 59.76% and 1.04 Nm"3/kg of untreated Chlorella vulgaris to 24.55%, 13.13 MJ/Nm"3, 72.16% and 1.16 Nm"3/kg of the optimal microwave pretreatment condition, respectively.

  15. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  16. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom; Lai, Keji; Wang, Hailiang; Dai, Hongjie; Kelly, Michael A.; Shen, Zhi-xun

    2009-01-01

    inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can

  17. Electrical properties of GaAsN film grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Nishimura, K.; Suzuki, H.; Saito, K.; Ohshita, Y.; Kojima, N.; Yamaguchi, M.

    2007-01-01

    The local vibrational modes (LVMs) observed by Fourier transform infrared (FTIR) spectroscopy in GaAsN films grown by chemical beam epitaxy (CBE) was studied, and the influence of the nitrogen-hydrogen bond (N-H) concentration on the hole concentration was investigated. The absorption peak around 936 cm -1 is suggested to be the second harmonic mode of the substitutional N, N As , LVM around 469 cm -1 . The absorption peak around 960 cm -1 is suggested to be the wagging mode of the N-H, where the stretch mode is observed around 3098 cm -1 . The hole concentration linearly increases with increasing N-H concentration, and the slope increases with increasing growth temperature. It indicates that the hole concentration in GaAsN film is determined by both the number of the N-H and unknown defect, such as impurities, vacancies, and interstitials. This defect concentration increases with increasing growth temperature, suggesting that it is determined by Arrhenius type reaction

  18. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  19. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    Science.gov (United States)

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does

  20. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices

    NARCIS (Netherlands)

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-01-01

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to

  1. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom

    2009-11-11

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces. © 2009 American Chemical Society.

  2. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  3. Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    Recently, single layer MoS2 with a direct band gap of 1.9 eV has been proposed as a candidate for two dimensional nanoelectronic devices. However, the synthetic approach to obtain high-quality MoS2 atomic thin layers is still problematic. Spectroscopic and microscopic results reveal that both single layers and tetrahedral clusters of MoS2 are deposited directly on the SiO2/Si substrate by chemical vapor deposition. The tetrahedral clusters are mixtures of 2H- and 3R-MoS2. By ex situ optical analysis, both the single layers and tetrahedral clusters can be attributed to van der Waals epitaxial growth. Due to the similar layered structures we expect the same growth mechanism for other transition-metal disulfides by chemical vapor deposition. © 2013 The Royal Society of Chemistry.

  4. Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products

    NARCIS (Netherlands)

    Lagha, A.; Chemat, S.; Bartels, P.V.; Chemat, F.

    1999-01-01

    A compact apparatus in which a specific position can be irradiated by microwaves (MW) and ultrasound (US) simultaneously has been developed. The MW-US reactor has been designed for atmospheric pressure digestion and dissolution of biological and chemical products. The reactor can treat a range of

  5. Structural characterization of epitaxial LiFe_5O_8 thin films grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R.

    2016-01-01

    We report on detailed microstructural and atomic ordering characterization by transmission electron microscopy in epitaxial LiFe_5O_8 (LFO) thin films grown by chemical vapor deposition (CVD) on MgO (001) substrates. The experimental results of LFO thin films are compared with those for bulk LFO single crystal. Electron diffraction studies indicate weak long-range ordering in LFO (α-phase) thin films in comparison to bulk crystal where strong ordering is observed in optimally annealed samples. The degree of long-range ordering depends on the growth conditions and the thickness of the film. Annealing experiment along with diffraction study confirms the formation of α-Fe_2O_3 phase in some regions of the films. This suggests that under certain growth conditions γ-Fe_2O_3-like phase forms in some pockets in the as-grown LFO thin films that then convert to α-Fe_2O_3 on annealing. - Highlights: • Atomic ordering in LiFe_5O_8 bulk single crystal and epitaxial thin films. • Electron diffraction studies reveal different level of ordering in the system. • Formation of γ-Fe_2O_3 like phase has been observed.

  6. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  7. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  8. Wavelength tuning of InAs quantum dots grown on InP (100) by chemical-beam epitaxy

    International Nuclear Information System (INIS)

    Gong, Q.; Noetzel, R.; Veldhoven, P.J. van; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    We report on an effective way to continuously tune the emission wavelength of InAs quantum dots (QDs) grown on InP (100) by chemical-beam epitaxy. The InAs QD layer is embedded in a GaInAsP layer lattice matched to InP. With an ultrathin GaAs layer inserted between the InAs QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated surface In layer floating on the GaInAsP buffer layer

  9. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  10. Optimization of microwave-induced chemical etching for rapid development of neutron-induced recoil tracks in CR-39 detectors

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Bandyopadhyay, T.

    2014-01-01

    A systematic investigation is carried out to optimize the recently established microwave-induced chemical etching (MICE) parameters for rapid development of neutron-induced recoil tracks in CR-39 detectors. Several combinations of all available microwave powers with different etching durations were analysed to determine the most suitable etching condition. The etching duration was found to reduce with increasing microwave power and the tracks were observed at about 18, 15, 12, and 6 min for 300, 450, 600 and 900 W of microwave powers respectively compared to a few hours in chemical etching (CE) method. However, for complete development of tracks the etching duration of 30, 40, 50 and 60 min were found to be suitable for the microwave powers of 900, 600, 450 and 300 W, respectively. Temperature profiles of the etchant for all the available microwave powers at different etching durations were generated to regulate the etching process in a controlled manner. The bulk etch rates at different microwave powers were determined by 2 methods, viz., gravimetric and removed thickness methods. A logarithmic expression was used to fit the variation of bulk etch rate with microwave power. Neutron detection efficiencies were obtained for all the cases and the results on track parameters obtained with MICE technique were compared with those obtained from another detector processed with chemical etching. - Highlights: • Microwave-induced chemical etching method is optimized for rapid development of recoil tracks due to neutrons in CR-39 detector. • Several combinations of microwave powers and etching durations are investigated to standardize the suitable etching condition. • Bulk-etch rates are determined for all microwave powers by two different methods, viz. gravimetric and removed thickness method. • The method is found to be simple, effective and much faster compared to conventional chemical etching

  11. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  12. Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times

    Directory of Open Access Journals (Sweden)

    P. S. Garcia

    2015-11-01

    Full Text Available Microwave devulcanization is known to be a promising and an efficient rubber recycling method which makes possible for the rubber to regain its fluidity, and makes it capable of being remolded and revulcanized. The focus of this work is to understand the physical and chemical changes that occur in the ground tire rubber after different microwave exposure periods. For this purpose chemical, thermal, rheological and morphological analyses were performed on the tire rubber, which contains natural rubber (NR and styrene-butadiene rubber (SBR as polymeric material. The results showed that the microwave treatment promoted the breaking of sulfur cross-links and consequently increased the rubber fluidity. However, long periods of exposure led to degradation and modification of some properties. At nanoscale, the deformation of the devulcanized NR domain under stress was observed, and the morphology obtained appears to be a droplet dispersion morphology. The most exposed samples presented only one glass transition temperature, and from this it was concluded that the treatment may have played an important role in the compatibilization of the elastomeric blend. Based on the results, it is required to control the microwave exposure time and polymeric degradation in order to achieve a regenerated rubber with satisfactory properties.

  13. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Cornelis F. De Hoop; Tingxing Hu; Jinqiu Qi; Todd F. Shupe

    2016-01-01

    Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combinedwith chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction couldeliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7 min, andthe cellulose enriched residues could be readily purified by...

  14. Impact of Microwave Treatment on Chemical Constituents in Fresh Rhizoma Gastrodiae (Tianma by UPLC-MS Analysis

    Directory of Open Access Journals (Sweden)

    Qimeng Fan

    2014-01-01

    Full Text Available Fresh Rhizoma Gastrodiae (Tianma was processed in a microwave oven at 2450 MHz in order to study the effect on the main chemical component changes taking place during microwave treatment. It was found that microwave affected the chemical composition of Tianma. Seven compounds, including gastrodin, gastrodigenin (p-hydroxybenzylalcohol, p-hydroxybenzaldehyde, vanillyl alcohol, vanillin, adenine, and 5-hydroxymethylfurfural, were identified in this study. As major active compounds, the contents of gastrodin and gastrodigenin in MWT Tianma were both twice as much as those in raw Tianma. Besides, the MS data show that there are still some unidentified compositions in Tianma, and there are also many converted compounds in MWT Tianma, which is worthy of further work. The results have indicated that microwave treated fresh Tianma might be helpful in designing the processing of traditional Chinese medicine and the application of microwave technology in traditional Chinese medicine needs to be researched further in the future.

  15. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    Science.gov (United States)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  16. Fabrication of CdS films with superhydrophobicity by the microwave assisted chemical bath deposition.

    Science.gov (United States)

    Liu, Y; Tan, T; Wang, B; Zhai, R; Song, X; Li, E; Wang, H; Yan, H

    2008-04-15

    A simple method of microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate cadmium sulfide (CdS) thin films. The superhydrophobic surface with a water contact angle (CA) of 151 degrees was obtained. Via a scanning electron microscopy (SEM) observation, the film was proved having a porous micro/nano-binary structure which can change the property of the surface and highly enhance the hydrophobicity of the film. A possible mechanism was suggested to describe the growth of the porous structure, in which the microwave heating takes an important role in the formation of two distinct characteristic dimensions of CdS precipitates, the growth of CdS sheets in micro-scale and sphere particles in nano-scale. The superhydrophobic films may provide novel platforms for photovoltaic, sensor, microfluidic and other device applications.

  17. Structural and optical properties of GaxIn1-xP layers grown by chemical beam epitaxy

    Science.gov (United States)

    Seong, Tae-Yeon; Yang, Jung-Ja; Ryu, Mee Yi; Song, Jong-In; Yu, Phil W.

    1998-05-01

    Chemical beam epitaxial (CBE) GaxIn1-xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{-1+δ,1-δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of 1/2\\{bar 110\\} , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (˜45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.

  18. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    nanostructured without patterning the graphene itself. This method produces graphene nanostructures with atomically smooth edges that ultimately determine the transport properties of these structures. The coherent collection of papers in this special issue of Journal of Physics D: Applied Physics provides a snapshot of the current state of the art, presented by leading experts, highlighting various aspects of the science and technology of epitaxial graphene. This collection systematically addresses the production of epitaxial graphene on the two polar faces of silicon carbide, as well as the structural and electronic properties of the graphene films. Special attention is paid to the rapidly emerging field of chemically modified graphene, which promises to introduce a bandgap into the electronic structure of graphene, which is critical for many electronic applications. Also presented are methods to incorporate properties of the silicon carbide itself, as well as advanced methods to produce high-quality graphene and graphene nanostructures using structured growth methods.

  19. Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system

    International Nuclear Information System (INIS)

    Wang Zhipeng; Shoji, Mao; Ogata, Hironori

    2011-01-01

    We employ a new gas mixture of CH 4 -Ar to fabricate carbon nanosheets by microwave plasma enhanced chemical vapor deposition at the growth temperature of less than 500 deg. C. The catalyst-free nanosheets possess flower-like structures with a large amount of sharp edges, which consist of a few layers of graphene sheets according to the observation by transmission electron microscopy. These high-quality carbon nanosheets demonstrated a faster electron transfer between the electrolyte and the nanosheet surface, due to their edge defects and graphene structures.

  20. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  1. Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via a soft chemical route from NdNiO3 precursors.

    Science.gov (United States)

    Onozuka, T; Chikamatsu, A; Katayama, T; Fukumura, T; Hasegawa, T

    2016-07-26

    A new phase of oxyhydride NdNiOxHy with a defect-fluorite structure was obtained by a soft chemical reaction of NdNiO3 epitaxial thin films on a substrate of SrTiO3 (100) with CaH2. The epitaxial relationship of this phase relative to SrTiO3 could be controlled by changing the reaction temperature. At 240 °C, NdNiOxHy grew with a [001] orientation, forming a thin layer of infinite-layer NdNiO2 at the interface between the NdNiOxHy and the substrate. Meanwhile, a high-temperature reaction at 400 °C formed [110]-oriented NdNiOxHy without NdNiO2.

  2. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  3. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  4. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  5. Epitaxial growth of Si1−xGex alloys and Ge on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition without substrate heating

    International Nuclear Information System (INIS)

    Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Sato, Shigeo

    2014-01-01

    By using electron-cyclotron-resonance (ECR) Ar-plasma chemical vapor deposition (CVD) without substrate heating, the epitaxial growth process of Si 1−x Ge x alloy and Ge films deposited directly on dilute-HF-treated Si(100) was investigated. From the reflection high energy electron diffraction patterns of the deposited Si 1−x Ge x alloy (x = 0.50, 0.75) and Ge films on Si(100), it is confirmed that epitaxial growth can be realized without substrate heating, and that crystallinity degradation at larger film thickness is observed. The X-ray diffraction peak of the epitaxial films reveals the existence of large compressive strain, which is induced by lattice matching with the Si(100) substrate at smaller film thicknesses, as well as strain relaxation behavior at larger film thicknesses. The Ge fraction of Si 1−x Ge x thin film is in good agreement with the normalized GeH 4 partial pressure. The Si 1−x Ge x deposition rate increases with an increase of GeH 4 partial pressure. The GeH 4 partial pressure dependence of partial deposition rates [(Si or Ge fraction) × (Si 1−x Ge x thickness) / (deposition time)] shows that the Si partial deposition rate is slightly enhanced by the existence of Ge. From these results, it is proposed that the ECR-plasma CVD process can be utilized for Ge fraction control in highly-strained heterostructure formation of group IV semiconductors. - Highlights: • Si 1−x Ge x alloy and Ge were epitaxially grown on Si(100) without substrate heating. • Large strain and its relaxation behavior can be observed by X-ray diffraction. • Ge fraction of Si 1−x Ge x is equal to normalized GeH 4 partial pressure. • Si partial deposition rate is slightly enhanced by existence of Ge

  6. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    Science.gov (United States)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  7. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  8. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  9. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-01-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 deg. C down to 450 deg. C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  10. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  11. Structured nanocarbon on various metal foils by microwave plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Rius, G; Yoshimura, M

    2013-01-01

    We present a versatile process for the engineering of nanostructures made of crystalline carbon on metal foils. The single step process by microwave plasma-enhance chemical vapor deposition is demonstrated for various substrate materials, such as Ni or Cu. Either carbon nanotubes (CNT) or carbon nanowalls (CNW) are obtained under same growth conditions and without the need of additional catalyst. The use of spacer and insulator implies a certain control over the kind of allotropes that are obtained. High density and large surface area are morphological characteristics of the thus obtained C products. The possibility of application on many metals, and in the alloy composition, on as-delivered commercially available foils indicates that this strategy can be adapted to a bunch of specific applications, while the production of C nanostructures is of remarkable simplicity.

  12. Morphology and structure of Ti-doped diamond films prepared by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Liu, Xuejie; Lu, Pengfei; Wang, Hongchao; Ren, Yuan; Tan, Xin; Sun, Shiyang; Jia, Huiling

    2018-06-01

    Ti-doped diamond films were deposited through a microwave plasma chemical vapor deposition (MPCVD) system for the first time. The effects of the addition of Ti on the morphology, microstructure and quality of diamond films were systematically investigated. Secondary ion mass spectrometry results show that Ti can be added to diamond films through the MPCVD system using tetra n-butyl titanate as precursor. The spectra from X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy and the images from scanning electron microscopy of the deposited films indicate that the diamond phase clearly exists and dominates in Ti-doped diamond films. The amount of Ti added obviously influences film morphology and the preferred orientation of the crystals. Ti doping is beneficial to the second nucleation and the growth of the (1 1 0) faceted grains.

  13. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  15. Molecular beam epitaxy a short history

    CERN Document Server

    Orton, J W

    2015-01-01

    This volume describes the development of molecular beam epitaxy from its origins in the 1960s through to the present day. It begins with a short historical account of other methods of crystal growth, both bulk and epitaxial, to set the subject in context, emphasising the wide range of semiconductor materials employed. This is followed by an introduction to molecular beams and their use in the Stern-Gerlach experiment and the development of the microwave MASER.

  16. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis

    International Nuclear Information System (INIS)

    Huong, Tran Thu; Vinh, Le Thi; Phuong, Ha Thi; Khuyen, Hoang Thi; Anh, Tran Kim; Tu, Vu Duc; Minh, Le Quoc

    2016-01-01

    In this report, we are presenting the controlled fabrication results of the strong emission YVO 4 : Eu 3+ nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO 4 : Eu 3+ prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO 4 : Eu 3+ nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of 5 D 0 – 7 F j (j=1, 2, 3, and 4) of Eu 3+ ions with the highest luminescence intensity of 5 D 0 → 7 F 2 transition. - Highlights: • The strong emission YVO 4 :Eu 3+ nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO 4 :Eu 3+ nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO 4 :Eu 3+ nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  17. Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch

    International Nuclear Information System (INIS)

    Hong, Yong C.; Kim, Jeong H.; Uhm, Han S.

    2004-01-01

    The threat of chemical and biological warfare agents in a domestic terrorist attack and in military conflict is increasing worldwide. Elimination and decontamination of chemical and biological warfare (CBW) agents are immediately required after such an attack. Simulated experiment for elimination of CBW agents by making use of atmospheric-pressure microwave plasma torches is carried out. Elimination of biological warfare agents indicated by the vitrification or burnout of sewage sludge powders and decomposition of toluene gas as a chemical agent stimulant are presented. A detailed characterization for the elimination of the simulant chemicals using Fourier transform infrared and gas chromatography is also presented

  18. Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch

    Science.gov (United States)

    Hong, Yong C.; Kim, Jeong H.; Uhm, Han S.

    2004-02-01

    The threat of chemical and biological warfare agents in a domestic terrorist attack and in military conflict is increasing worldwide. Elimination and decontamination of chemical and biological warfare (CBW) agents are immediately required after such an attack. Simulated experiment for elimination of CBW agents by making use of atmospheric-pressure microwave plasma torches is carried out. Elimination of biological warfare agents indicated by the vitrification or burnout of sewage sludge powders and decomposition of toluene gas as a chemical agent stimulant are presented. A detailed characterization for the elimination of the simulant chemicals using Fourier transform infrared and gas chromatography is also presented.

  19. Epitaxial growth of SrTiO3/YBa2Cu3O7 - x heterostructures by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.

    1994-06-01

    We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.

  20. Control of metamorphic buffer structure and device performance of In(x)Ga(1-x)As epitaxial layers fabricated by metal organic chemical vapor deposition.

    Science.gov (United States)

    Nguyen, H Q; Yu, H W; Luc, Q H; Tang, Y Z; Phan, V T H; Hsu, C H; Chang, E Y; Tseng, Y C

    2014-12-05

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼10(6) cm(-2)), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 10(12) eV(-1) cm(-2) in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  1. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Domini, Claudia E. [Departamento de Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Hidalgo, Montserrat [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain)]. E-mail: a.canals@ua.es

    2006-03-02

    In the present work, experimental design was used for the fast optimization of three kinds of sample digestion procedures with the final aim of obtaining the COD value of wastewater samples. The digestion methods evaluated were 'closed microwave-assisted' (CMWD), 'open microwave-assisted' (OMWD) and 'ultrasound-assisted' (USD). Classical digestion was used as reference method. The optimum values for the different variables studied in each method were: 90 psi pressure, 475 W power and 4 min irradiation time (CMWD); 150 deg. C temperature and 4 min irradiation time (OMWD); 90% of maximum nominal power (180 W), 0.9 s (s{sup -1}) cycles and 1 min irradiation time (USD). In all cases, interference concentration that produces a deviation of 10% in COD values is 13.4, 23.4, 21.1 and 2819 mg/L for S{sup 2-}, Fe{sup 2+}, NO{sub 2} {sup -} and Cl{sup -}, respectively. Under optimum conditions, the proposed digestion methods have been successfully applied, with the exception of pyridine, to several pure organic compounds and COD recoveries for 10 real wastewater samples were ranged between 88 and 104% of the values obtained with the classical (open reflux) method used as reference, with R.S.D. lower than 4% in most cases. Thus, the use of ultrasound energy for COD determination seems to be an interesting and promising alternative to conventional open reflux and microwave-assisted digestion methods used for the same purpose since the instrumentation is simpler, cheaper and safer and the digestion step faster than the ones used for the same purpose.

  2. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  3. Effect of ultrasonic and microwave disintegration on physico-chemical and biodegradation characteristics of waste-activated sludge.

    Science.gov (United States)

    Doğruel, Serdar; Özgen, Aslı Sedem

    2017-04-01

    The purpose of this study was to investigate the effect of ultrasonic and microwave disintegration on physico-chemical and biodegradability properties of waste-activated sludge (WAS) from a municipal wastewater treatment plant. Another aim was to carry out particle size distribution (PSD) analysis as an integral component of sludge characterization to highlight the transformation mechanisms involved in pretreatment processes and better understand the biodegradation patterns of sonicated and irradiated WAS liquids examined by means of respirometric measurements. Various combinations of sonication and microwave irradiation parameters were applied to optimize operating conditions. The optimum ultrasonic density was determined as 1.5 W/mL, and energy dosages lower than 30,000 kJ/kg TS resulted in a fairly linear increase in the soluble chemical oxygen demand (SCOD) release. An irradiation time of 10 min and a temperature of 175°C were selected as the optimum microwave pretreatment conditions for sludge liquefaction. The most apparent impact of ultrasonication on the PSD of COD was the shifting of the peak at the particulate fraction (>1600 nm) toward the lowest size range (<2 nm). Microwave heating at the selected experimental conditions and ultrasonic pretreatment at 30,000 kJ/kg TS exhibited comparable size distribution and biodegradation characteristics to those of domestic sewage.

  4. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    Science.gov (United States)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  5. Physical-chemical and technological aspects of the preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O by method of metal organic vapour phase epitaxy

    International Nuclear Information System (INIS)

    Stejskal, J.; Nevriva, M.; Leitner, J.

    1995-01-01

    The method of metal organic vapour phase epitaxy (MO VPE) was used for preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O. The suitable chemical precursors (β-diketonates) on the literature data and of the own thermodynamic calculations were selected. The optimal thermodynamic data and thermodynamic stability of the prepared samples were determined

  6. Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover

    Science.gov (United States)

    Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger

    This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

  7. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    Science.gov (United States)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  8. Remote operation of microwave systems for solids content analysis and chemical dissolution in highly radioactive environments

    International Nuclear Information System (INIS)

    Sturcken, E.F.; Floyd, T.S.; Manchester, D.P.

    1986-10-01

    Microwave systems provide quick and easy determination of solids content of samples in high-level radioactive cells. In addition, dissolution of samples is much faster when employing microwave techniques. These are great advantages because work in cells,using master-slave manipulators through leaded glass walls, is normally slower by an order of magnitude than direct contact methods. This paper describes the modifiction of a moisture/solids analyzer microwave system and a drying/digestion microwave system for remote operation in radiation environments. The moisture/solids analyzer has operated satisfactorily for over a year in a gamma radiation field of 1000 roentgens per hour and the drying/digestion system is ready for installation in a cell

  9. Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Uma Sangari, N., E-mail: umasangariselvakumar@gmail.com [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India); Chitra Devi, S. [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India)

    2013-01-15

    A microwave assisted chemical precipitation method has been employed for the synthesis of nano zinc oxide rods by reacting zinc nitrate and potassium hydroxide. The amount of potassium hydroxide was adjusted for three different pHs to achieve ZnO nano rods with varying aspect ratio. The mechanism of growth of nano rods is explained briefly. The average crystallite size of the as synthesized samples was analyzed by means of powder XRD pattern and estimated to vary from 25.6 nm to 43.1 nm. The existence of rods was confirmed using scanning electron microscopy (SEM). The samples were also analyzed using FT-IR. The optical properties of the samples were also studied by means of UV-visible spectra and Room Temperature Photo Luminescence studies. The band gap of the samples was determined from the DRS spectrum. A strong near band emission peaks due to surface defects are observed in the PL spectrum. - Graphical abstract: At the solution pH of 11 and 9, tetrapod-like and flower-like ZnO nano rods were formed along with separated rods respectively due to the formation of activated nuclei of different sizes. Highlights: Black-Right-Pointing-Pointer Increase in alkalinity of the precursor solution results in longer rods. Black-Right-Pointing-Pointer Beyond a saturation limit, the excess of added OH{sup -} ions inhibited the growth of rods. Black-Right-Pointing-Pointer Keeping all parameters the same, the alkalinity can only modify the aspect ratio of the rods and not their morphology.

  10. Magnetic anisotropy and chemical long-range order in epitaxial ferrimagnetic CrPt sub 3 films

    CERN Document Server

    Maret, M; Köhler, J; Poinsot, R; Ulhaq-Bouillet, C; Tonnerre, J M; Berar, J F; Bucher, E

    2000-01-01

    Thin films of CrPt sub 3 were prepared by molecular beam epitaxy on both Al sub 2 O sub 3 (0 0 0 1) and MgO(0 0 1) substrates, either directly by co-deposition of Cr and Pt at high temperatures or after in situ annealing of superlattices [Cr(2 A)/Pt(7 A)]. In situ RHEED observations and X-ray diffraction measurements have allowed us to check the single-crystal quality of CrPt sub 3 films and to determine the degree of L1 sub 2 -type long-range order (LRO). In films co-deposited between 850 deg. C and 950 deg. C a nearly perfect LRO has been observed. As in bulk alloys, such ordering yields a ferrimagnetic order, while the disordered films are non-magnetic. In contrast with the ferromagnetic L1 sub 2 -type ordered CoPt sub 3 (1 1 1) films, the ferrimagnetic CrPt sub 3 (1 1 1) films exhibit perpendicular magnetic anisotropy with quality factors, K sub u /K sub d , as large as 5 and large coercivities around 450 kA/m. Such anisotropy could be related to the arrangement of Cr atoms, which owing to their large mag...

  11. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    Science.gov (United States)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  12. Magnetization dynamics in La{sub 0.67}Ca{sub 0.33}MnO{sub 3} epitaxial films probed with resonant and non-resonant microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Porwal, Rajni; Pant, R. P.; Budhani, R. C., E-mail: rcb@iitk.ac.in [National Physical Laboratory, Council of Scientific and Industrial Research, Dr K S Krishnan Marg, New Delhi-110012 (India)

    2015-01-07

    Temperature (T) dependent microwave absorption measurements are performed on La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) epitaxial thin films of thickness 100 and 200 nm in an electron paramagnetic resonance spectrometer operating in X-band. The resonant absorption peak is monitored for out-of-plane (H{sup ⊥}) and in-plane (H{sup ∥}) dc magnetic field (H) as the system goes through magnetic ordering. These data suggest a resilient transformation to the ferromagnetic (FM) phase in the vicinity of the Curie temperature (T{sub C}), indicative of a phase separation, which is dominant in the thinner film. The saturation magnetization is calculated from SQUID magnetometry on the same film. A pronounced zero-field absorption is seen in H{sup ∥} geometry displaying anomalous growth in 100 nm film at T < T{sub C}. This feature is correlated with the magneto-conductivity of the manganite which is colossal in the vicinity of T{sub C} in the well-ordered film of thickness 200 nm. Signature of standing spin wave modes is seen in H{sup ⊥} measurements which are analyzed to calculate the spin wave stiffness constant D(T) in the limit of zero temperature. The same is also inferred from the decay of equilibrium magnetization in the framework of Bloch law. These studies reveal that a bulk like LCMO is obtained in the fully relaxed thicker films.

  13. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation

    International Nuclear Information System (INIS)

    Foo, K.Y.; Hameed, B.H.

    2011-01-01

    In this work, pistachio nut shell, a biomass residue abundantly available from the pistachio nut processing industries, was utilized as a feedstock for the preparation of activated carbon (PSAC) via microwave assisted KOH activation. The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. The porosity, functional and surface chemistry were featured by means of low temperature nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. Result showed that the BET surface area, Langmuir surface area, and total pore volume of PSAC were 700.53 m 2 g -1 , 1038.78 m 2 g -1 and 0.375 m 3 g -1 , respectively. The adsorptive property of PSAC was tested using methylene blue dye as the targeted adsorbate. Equilibrium data was best fitted by the Langmuir isotherm model, showing a monolayer adsorption capacity of 296.57 mg g -1 . The study revealed the potentiality of microwave-induced activation as a viable activation method. -- Highlights: → Pistachio nut shell activated carbon (PSAC) was prepared via microwave assisted KOH activation. → The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. → BET surface area of PSAC was 700.53 m 2 /g. → Monolayer adsorption capacity of PSAC for MB was 296.57 mg/g.

  14. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Foo, K. Y. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H., E-mail: chbassim@eng.usm.my [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2011-07-15

    In this work, pistachio nut shell, a biomass residue abundantly available from the pistachio nut processing industries, was utilized as a feedstock for the preparation of activated carbon (PSAC) via microwave assisted KOH activation. The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. The porosity, functional and surface chemistry were featured by means of low temperature nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. Result showed that the BET surface area, Langmuir surface area, and total pore volume of PSAC were 700.53 m{sup 2} g{sup -1}, 1038.78 m{sup 2} g{sup -1} and 0.375 m{sup 3} g{sup -1}, respectively. The adsorptive property of PSAC was tested using methylene blue dye as the targeted adsorbate. Equilibrium data was best fitted by the Langmuir isotherm model, showing a monolayer adsorption capacity of 296.57 mg g{sup -1}. The study revealed the potentiality of microwave-induced activation as a viable activation method. -- Highlights: {yields} Pistachio nut shell activated carbon (PSAC) was prepared via microwave assisted KOH activation. {yields} The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. {yields} BET surface area of PSAC was 700.53 m{sup 2}/g. {yields} Monolayer adsorption capacity of PSAC for MB was 296.57 mg/g.

  15. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  16. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying.

    Science.gov (United States)

    Nawirska-Olszańska, Agnieszka; Stępień, Bogdan; Biesiada, Anita; Kolniak-Ostek, Joanna; Oziembłowski, Maciej

    2017-07-29

    Studies on methods for fixing foods (with a slight loss of bioactive compounds) and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity.

  17. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L. after Convective and Microwave Drying

    Directory of Open Access Journals (Sweden)

    Agnieszka Nawirska-Olszańska

    2017-07-01

    Full Text Available Studies on methods for fixing foods (with a slight loss of bioactive compounds and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity.

  18. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    Science.gov (United States)

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  19. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based...

  20. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  1. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  2. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    Science.gov (United States)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  3. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  4. Origin of the near-band-edge photoluminescence in ZnO nanorods realised by vapour phase epitaxy and aqueous chemical growth

    Energy Technology Data Exchange (ETDEWEB)

    Bekeny, C.; Hilker, B.; Wischmeier, L.; Voss, T. [IFP, University of Bremen, P.O Box 330440, 28334 Bremen (Germany); Postels, B.; Mofor, A.; Bakin, Andrey; Waag, A. [IHT, TU Braunschweig, P.O Box 3329, 38023 Braunschweig (Germany)

    2007-07-01

    Well established high temperature growth techniques like the vapourliquid-solid (VLS: 1100 C) and vapour-phase-epitaxy (VPE: 800 C) have been successfully optimized while the low-temperature aqueous chemical growth (ACG: 90 C) is being extended to yield large-scale high quality ZnO nanorods. Here, a detailed and systematic photoluminescence (PL) study is presented to understand the microscopic processes responsible for the near-band-edge (NBE) emission in nanorods obtained from these processes. For the ACG samples, the as-grown nanorods show relatively broad NBE emission (15 meV) attributed to the presence of large donor densities. After annealing in various atmospheres at {proportional_to}800 C, a significant reduction of the linewidth ({proportional_to}4 meV) and even the appearance of relatively sharp excitonic transitions is explained by the drastic reduction of the donor density. In contrast, the as-grown VPE and VLS samples exhibit well-resolved and sharp peaks resulting from exciton-related transitions. There is a shift in the room-temperature PL peak for VLS and VPE samples and is shown to result from contributions of the free exciton peak, its first and second order phonon replicas and not due to quantum confinement and or laser heating as assumed in literature.

  5. Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study

    International Nuclear Information System (INIS)

    Chen, R. S.; Tsai, H. Y.; Huang, Y. S.; Chen, Y. T.; Chen, L. C.; Chen, K. H.

    2012-01-01

    The normalized gains, which determines the intrinsic photoconduction (PC) efficiencies, have been defined and compared for the gallium nitride (GaN) nanowires (NWs) grown by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). By excluding the contributions of experimental parameters and under the same light intensity, the CVD-grown GaN NWs exhibit the normalized gain which is near two orders of magnitude higher than that of the MBE-ones. The temperature-dependent time-resolved photocurrent measurement further indicates that the higher photoconduction efficiency in the CVD-GaN NWs is originated from the longer carrier lifetime induced by the higher barrier height (φ B = 160 ± 30 mV) of surface band bending. In addition, the experimentally estimated barrier height at 20 ± 2 mV for the MBE-GaN NWs, which is much lower than the theoretical value, is inferred to be resulted from the lower density of charged surface states on the non-polar side walls.

  6. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  7. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor

  8. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    International Nuclear Information System (INIS)

    Saroj, R K; Dhar, S

    2014-01-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima. (paper)

  9. Epitaxial Pb(Mg1/3Nb2/3)O3 thin films synthesized by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Bai, G. R.; Streiffer, S. K.; Baumann, P. K.; Auciello, O.; Ghosh, K.; Stemmer, S.; Munkholm, A.; Thompson, Carol; Rao, R. A.; Eom, C. B.

    2000-01-01

    Metal-organic chemical vapor deposition was used to prepare Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) thin films on (001) SrTiO 3 and SrRuO 3 /SrTiO 3 substrates, using solid Mg β-diketonate as the Mg precursor. Parameters including the precursor ratio in the vapor phase, growth temperature, growth rate, and reaction pressure in the reactor chamber were varied in order to determine suitable growth conditions for producing phase-pure, epitaxial PMN films. A cube-on-cube orientation relationship between the thin film and the SrTiO 3 substrate was found, with a (001) rocking curve width of 0.1 degree sign , and in-plane rocking-curve width of 0.8 degree sign . The root-mean-square surface roughness of a 200-nm-thick film on SrTiO 3 was 2 to 3 nm as measured by scanning probe microscopy. The zero-bias dielectric constant and loss measured at room temperature and 10 kHz for a 200-nm-thick film on SrRuO 3 /SrTiO 3 were approximately 1100 and 2%, respectively. The remnant polarization for this film was 16 μC/cm 2 . (c) 2000 American Institute of Physics

  10. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  11. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection.

    Science.gov (United States)

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-09-01

    Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer's instructions. Dimensional changes were measured before and after different disinfection procedures. Dentsply aquasil showed smallest dimensional change (-0.0046%) and impregum penta soft highest linear dimensional changes (-0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method.

  12. Microwave assisted rapid growth of Mg(OH){sub 2} nanosheet networks for ethanol chemical sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hazmi, Faten [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Dar, G.N. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Al-Ghamdi, A.A.; Al-Sayari, S.A. [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Al-Hajry, A. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Kim, S.H. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Al-Tuwirqi, Reem M. [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Alnowaiserb, Fowzia [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer A facile microwave-assisted synthesis and characterizations of magnesium hydroxide (Mg(OH){sub 2}) nanosheet networks. Black-Right-Pointing-Pointer Fabrication of ethanol sensor based on (Mg(OH){sub 2}) nanosheet networks. Black-Right-Pointing-Pointer Good sensitivity ({approx}3.991 {mu}A cm{sup -2} mM{sup -1}) and lower detection limit (5 {mu}M). Black-Right-Pointing-Pointer This research opens a way to utilize Mg(OH){sub 2} nanostructures for chemical sensors applications. - Abstract: This paper reports a facile microwave-assisted synthesis of magnesium hydroxide (Mg(OH){sub 2}) nanosheet networks and their utilization for the fabrication of efficient ethanol chemical sensor. The synthesized nanosheets networks were characterized in terms of their morphological, structural and optical properties using various analysis techniques such as field emission scanning electron microscopy (FESEM), X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR) and UV-Vis spectroscopy. The detailed morphological and structural investigations reveal that the synthesized (Mg(OH){sub 2}) products are nanosheet networks, grown in high density, and possessing hexagonal crystal structure. The optical band gap of as-synthesized Mg(OH){sub 2} nanosheet networks was examined by UV-Vis absorption spectrum, and found to be 5.76 eV. The synthesized nanosheet networks were used as supporting matrices for the fabrication of I-V technique based efficient ethanol chemical sensor. The fabricated ethanol sensor based on nanosheet networks exhibits good sensitivity ({approx}3.991 {mu}A cm{sup -2} mM{sup -1}) and lower detection limit (5 {mu}M), with linearity (R = 0.9925) in short response time (10.0 s). This work demonstrate that the simply synthesized Mg(OH){sub 2} nanosheet networks can effectively be used for the fabrication of efficient ethanol chemical sensors.

  13. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying

    OpenAIRE

    Nawirska-Olsza?ska, Agnieszka; St?pie?, Bogdan; Biesiada, Anita; Kolniak-Ostek, Joanna; Oziemb?owski, Maciej

    2017-01-01

    Studies on methods for fixing foods (with a slight loss of bioactive compounds) and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols ...

  14. Double carriers pulse DLTS for the characterization of electron-hole recombination process in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Suzuki, Hidetoshi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2011-01-01

    A nitrogen-related electron trap (E1), located approximately 0.33 eV from the conduction band minimum of GaAsN grown by chemical beam epitaxy, was confirmed by investigating the dependence of its density with N concentration. This level exhibits a high capture cross section compared with that of native defects in GaAs. Its density increases significantly with N concentration, persists following post-thermal annealing, and was found to be quasi-uniformly distributed. These results indicate that E1 is a stable defect that is formed during growth to compensate for the tensile strain caused by N. Furthermore, E1 was confirmed to act as a recombination center by comparing its activation energy with that of the recombination current in the depletion region of the alloy. However, this technique cannot characterize the electron-hole (e-h) recombination process. For that, double carrier pulse deep level transient spectroscopy is used to confirm the non-radiative e-h recombination process through E1, to estimate the capture cross section of holes, and to evaluate the energy of multi-phonon emission. Furthermore, a configuration coordinate diagram is modeled based on the physical parameters of E1. -- Research Highlights: → Double carrier pulse DLTS method confirms the existence of SRH center. → The recombination center in GaAsN depends on nitrogen concentration. → Minority carrier lifetime in GaAsN is less than 1 ns. → A non-radiative recombination center exits in GaAsN.

  15. Capacitance–voltage and current–voltage characteristics for the study of high background doping and conduction mechanisms in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-01-01

    Highlights: ► The cause of high background doping was confirmed and characterized. ► The current–voltage characteristics deviate from the thermionic emission. ► The recombination current is attributed to a hole trap (E V + 0.52 eV). ► The hole trap (E V + 0.52 eV) was confirmed by DLTS measurements. -- Abstract: The temperature dependence of capacitance–voltage (C–V) and current voltage (I–V) characteristics were used to study the cause of high background doping and the underlying current transport mechanisms in GaAsN Schottky diode grown by chemical beam epitaxy (CBE). In one hand, a nitrogen-related sigmoid increase of junction capacitance and ionized acceptor concentration was observed in the temperature range 70–100 K and was attributed to the thermal ionization of a nitrogen–hydrogen-related deep acceptor-state, with thermal activation energy of approximately 0.11 eV above the valence band maximum (VBM) of GaAsN. This acceptor state is mainly responsible for the high background doping in unintentionally doped GaAsN grown by CBE. On the other hand, the I–V characteristics at different temperatures were found to deviate from the well known pure thermionic-emission mechanism. Based on their fitting at each temperature, the recombination current in the space charge region of GaAsN Schottky diode was mainly attributed to a hole trap, localized at 0.51 eV above the VBM. Given the accuracy of measurements, this result was confirmed by deep level transient spectroscopy measurements. Nevertheless, considering the Shockley–Read–Hall model of generation-recombination, the recombination activity of this defect was quantified and qualified to be weak compared with the markedly degradation of minority carrier lifetime in GaAsN material

  16. Cost analysis on a continuously operated fine chemicals production plant at 10 kg/day using a combination of microprocessing and microwave heating

    NARCIS (Netherlands)

    Benaskar, F.; Ben-Abdelmoumen, A.; Patil, N.G.; Rebrov, E.; Meuldijk, J.; Hessel, V.; Hulshof, L.A.; Krtschil, U.; Schouten, J.C.

    2011-01-01

    An extended cost study consisting of 14 process scenarios was carried out to envisage the cost impact of microprocessing and microwaves separately or in combination for two liquid-phase model reactions in fine-chemicals synthesis: (1) Ullmann C–O cross-coupling reaction and (2) the aspirin

  17. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01.

    Science.gov (United States)

    Cheong, Kit-Leong; Wang, Lan-Ying; Wu, Ding-Tao; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2016-09-01

    Cordyceps sinensis is a well-known tonic food with broad medicinal properties. The aim of the present study was to investigate the optimization of microwave-assisted extraction (MAE) and characterize chemical structures and chain conformation of polysaccharides from a novel C. sinensis fungus UM01. Ion-exchange and gel filtration chromatography were used to purify the polysaccharides. The chemical structure of purified polysaccharide was determined through gas chromatography-mass spectrometry. Moreover, high performance size exclusion chromatography combined with refractive index detector and multiangle laser light scattering were conducted to analyze the molecular weight (Mw ) and chain conformation of purified polysaccharide. Based on the orthogonal design L9 , optimal MAE conditions could be obtained through 1300 W of microwave power, with a 5-min irradiation time at a solid to water ratio of 1:60, generating the highest extraction yield of 6.20%. Subsequently, the polysaccharide UM01-S1 was purified. The UM01-S1 is a glucan-type polysaccharide with a (1→4)-β-d-glucosyl backbone and branching points located at O-3 of Glcp with a terminal-d-Glcp. The Mw , radius of gyration (Rg ) and hydrodynamic radius (Rh ) of UM01-S1 were determined as 5.442 × 10(6)  Da, 21.8 and 20.2 nm, respectively. Using the polymer solution theory, the exponent (ν) value of the power law function was calculated as 0.38, and the shape factor (ρ = Rg /Rh ) was 1.079, indicating that UM01-S1 has a sphere-like conformation with a branched structure in an aqueous solution. These results provide fundamental information for the future application of polysaccharides from cultured C. sinensis in health and functional food area. © 2016 Institute of Food Technologists®

  18. Effects of Pretreatment on the Electronic Properties of Plasma Enhanced Chemical Vapor Deposition Hetero-Epitaxial Graphene Devices

    Science.gov (United States)

    Zhang, Lian-Chang; Shi, Zhi-Wen; Yang, Rong; Huang, Jian

    2014-09-01

    Quasi-monolayer graphene is successfully grown by the plasma enhanced chemical vapor deposition heteroepitaxial method we reported previously. To measure its electrical properties, the prepared graphene is fabricated into Hall ball shaped devices by the routine micro-fabrication method. However, impurity molecules adsorbed onto the graphene surface will impose considerable doping effects on the one-atom-thick film material. Our experiment demonstrates that pretreatment of the device by heat radiation baking and electrical annealing can dramatically influence the doping state of the graphene and consequently modify the electrical properties. While graphene in the as-fabricated device is highly p-doped, as confirmed by the position of the Dirac point at far more than +60 V, baking treatment at temperatures around 180°C can significantly lower the doping level and reduce the conductivity. The following electrical annealing is much more efficient to desorb the extrinsic molecules, as confirmed by the in situ measurement, and as a result, further modify the doping state and electrical properties of the graphene, causing a considerable drop of the conductivity and a shifting of Dirac point from beyond +60 V to 0 V.

  19. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra......A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the v(4) band is essentially unaffected by perturbations....

  20. Controlled fabrication of the strong emission YVO{sub 4}:Eu{sup 3+} nanoparticles and nanowires by microwave assisted chemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Huong, Tran Thu, E-mail: tthuongims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Vinh, Le Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Department of Chemistry, Hanoi University of Mining and Geology (Viet Nam); Phuong, Ha Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Department of Chemistry, Hanoi University of Medicine (Viet Nam); Khuyen, Hoang Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Anh, Tran Kim [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Duy Tan University, 14/25 Quang Trung, Da Nang (Viet Nam); Tu, Vu Duc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Physics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 62102, Taiwan (China); Minh, Le Quoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Duy Tan University, 14/25 Quang Trung, Da Nang (Viet Nam)

    2016-05-15

    In this report, we are presenting the controlled fabrication results of the strong emission YVO{sub 4}: Eu{sup 3+} nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO{sub 4}: Eu{sup 3+} prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO{sub 4}: Eu{sup 3+} nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of {sup 5}D{sub 0}–{sup 7}F{sub j} (j=1, 2, 3, and 4) of Eu{sup 3+} ions with the highest luminescence intensity of {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. - Highlights: • The strong emission YVO{sub 4}:Eu{sup 3+} nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO{sub 4}:Eu{sup 3+} nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO{sub 4}:Eu{sup 3+} nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  1. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  2. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field

    International Nuclear Information System (INIS)

    Liu Hanxing; Guo, Liling; Zou Long; Cao Minhe; Zhou Jian; Ouyang Shixi

    2004-01-01

    Solid-state chemical reaction mechanism for the reaction between BaCO 3 and TiO 2 in microwave field was investigated based on X-ray power diffraction (XRD) data and theory of diffusion. The compositions of the resultant after reaction under different conditions were studied by employing XRD. The quantitative analyses based on XRD data showed the reaction in microwave field was quite different from that in the conventional method. A model was proposed to explain the change of the ratio between the reactant BaCO 3 , TiO 2 and the resultant BaTiO 3 for the chemical reaction. The formation kinetic of BaTiO 3 from the BaCO 3 and TiO 2 was calculated by employing this theoretical model. The reaction rate between BaCO 3 and TiO 2 in microwave field was much higher than that in conventional method. The activation energy of the atomic diffusions in this solid chemical reaction is only 58 kJ/mol, which was only about 1/4 of 232 kJ/mol in the conventional value. The result suggests that the microwave field enhance atomic diffusion during the reaction

  3. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, E A; Abdel-Fatah, O M [Dept. of Biochem., Faculty of Agric., Cairo University. (Egypt); El-Adawy, M; Badea, M Y [Food Technol. Dept., National Center for Research and Radiation Technol., Atomic Energy Authority (Egypt)

    2000-07-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone.

  4. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    International Nuclear Information System (INIS)

    Abdel-Rahim, E.A.; Abdel-Fatah, O.M.; El-Adawy, M.; Badea, M.Y.

    2000-01-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone

  5. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  6. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  7. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  8. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  9. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); Patil, Sandip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kim, Tae-Gyu [Department of Nano System and Process Engineering, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongnam, Pusan 627-706 (Korea, Republic of); Yonekura, Daisuke [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.jp [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan)

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B{sub 2}O{sub 3} concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B{sub 2}O{sub 3} concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/{mu}m, respectively. The field emission current stability investigated at the preset value of {approx}1 {mu}A is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  10. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  11. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  12. Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M

    2004-01-01

    The growth of thin microwave organosilicon plasma polymers on model zinc surfaces was investigated as a function of the film thickness and the oxygen partial pressure during film deposition. The evolution of the topology of the film was studied by atomic force microscopy (AFM). The nano- and micro-roughness was investigated at the inner and the outer surfaces of the plasma polymers. A special etching procedure was developed to reveal the underside of the plasma polymer and thereby its inner surface. Rough films contained voids at the interface, which reduced the polymer/metal contact area. The increase in oxygen partial pressure led to a smoother film growth with a perfect imitation of the substrate topography at the interface. The chemical structure of the films was determined by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). ToF-SIMS at the outer and the inner surface of the plasma polymers showed that the density of methylsilyl groups increases in the outer surface layer of the plasma polymer and depends on the oxygen partial pressure. The chemical composition of the films could be altered to pure SiO{sub 2} without changing the morphology by using oxygen-plasma post-treatment. This was proved by means of IRRAS and AFM. Chemistry and topology of the films were correlated with the apparent water contact angle. It was found that a linear relationship exists between the nanoscopic roughness of the plasma polymer and the static contact angle of water. Superposition of a nanoscopic roughness of the metal surface and the nanoscopic roughness of methylsilyl-rich films led to ultra-hydrophobic films with water contact angles up to 160 deg.

  13. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  14. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in

  15. Effect of pre-cooking methods on the chemical and sensory deterioration of ready-to-eat chicken patties during chilled storage and microwave reheating.

    Science.gov (United States)

    Ferreira, Valquíria C S; Morcuende, David; Madruga, Marta S; Hernández-López, Silvia H; Silva, Fábio A P; Ventanas, Sonia; Estévez, Mario

    2016-06-01

    The effects of pre-cooking methods, namely, boiling (BL), roasting (RT) and grilling (GR), refrigerated storage (14 days/+4 °C) and microwave reheating on chicken patties were studied. Physical, chemical and sensory parameters were evaluated in order to correlate the chemical deterioration of ready-to-eat chicken patties with the acceptance of the odor. Chemical deterioration was evaluated through the chemical composition, Maillard compounds, Thiobarbituric acid-reactive substances (TBARS) and volatiles. Sensory deterioration (odor liking) was performed by an acceptance test with hedonic scale. According to the TBARS values and volatile compounds generated in the head space during the examined stages, the pre-cooking method and the storage time had a significant effect on lipid oxidation, whereas reheating in a microwave had a negligible impact. At each succeeding processing stage, panelists gave lower odor scores to all samples and no significant differences were found between treatments at any stage. RT and GR patties showed less intense chemical changes and presented higher acceptation scores by the sensory panel than BL patties. Thus, the choice of pre-cooking method and control of storage conditions plays a key role in the inhibition of oxidative changes in ready-to-eat chicken patties.

  16. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  17. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  18. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  19. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  20. Interface relaxation and band gap shift in epitaxial layers

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  1. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  2. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    Science.gov (United States)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  3. Microwaves and chemical synthesis

    International Nuclear Information System (INIS)

    Parodi, F.

    1999-01-01

    The article summarizes, through some key references, the most important aspects of the theme, focusing, in particular, on the achievable advantages by the application of this clean and efficient technology (whose big potentialities open wide future developments) to the fields of polymerization processes and organic syntheses [it

  4. The Effect of Selected Fruit Juice Concentrates Used as Osmotic Agents on the Drying Kinetics and Chemical Properties of Vacuum-Microwave Drying of Pumpkin

    Directory of Open Access Journals (Sweden)

    Krzysztof Lech

    2018-01-01

    Full Text Available The study examined the osmotic dehydration of pumpkin slices in chokeberry, flowering quince, and raspberry concentrated juices. Products obtained were subjected to vacuum-microwave finish drying (VMD. The objective of the study was to evaluate the drying kinetics and the chemical properties, that is, total polyphenolics content and antioxidant capacity of the vacuum-microwave-dried pumpkin products. The concentration and temperature of the juices were 40°Brix and 45°C, respectively. The pumpkin slices were pretreated in concentrated juices for 0.5, 1, 2, 3, and 6 hours. Vacuum-microwave finish drying was carried out at the power of magnetrons that ensured the maintenance of the safe temperature (below 90°C of the slices measured with the use of infrared camera. The results of the study showed that the moisture content of samples during the pretreatment in concentrated juices was decreasing until the equilibrium stage. The logarithmic model was used to describe the drying kinetics of pumpkin during VMD. Osmotic pretreatment resulted in a decrease in colour coordinates, improved the antioxidant activity of dried product, and prolonged the duration of VMD.

  5. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  6. [EVALUATION OF CHANGES OF GEOMETRICAL PARAMETERS OF ALGINATE DENTAL IMPRESSIONS DUE TO THE INFLUENCE OF CHEMICAL AND MICROWAVE DISINFECTION METHOD USING 3D TECHNOLOGIES].

    Science.gov (United States)

    Nespraydko, V P; Shevchuk, V A; Michaylov, A A; Lyseyko, N V

    2015-01-01

    This clinical and laboratory study evaluated the effect of two methods of disinfection in different modes at the volume changes of alginate dental impressions and plaster models poured from them, as compared to the same parameters of plastic master models (PMM), using three-dimensional non-contact laser scanner and software. Immersion chemical disinfection for 15 min, microwave disinfection at 354 W for 10 minutes and combined disinfection with the power of 319 W for 4 minutes did not significantly affect the volumetric dimensional accuracy of the alginate impressions (P > 0.05).

  7. Influence of variation in the concentration of ammonium hydroxide on the size of ZnO crystal obtained by Microwave Chemical Bath Deposition

    International Nuclear Information System (INIS)

    Galeazzi, R; Díaz, T; García, G; Rivera, B L; Rosendo, E; López, R; Morales, N; González, C M

    2013-01-01

    Films of good crystalline quality of ZnO were successfully prepared using the microwave chemical bath deposition method at a temperature of 80 °C. Concentration of the basic precursor was varied systematically in order to obtain different degrees of acidity in the precursor solutions. Increasing the pH causes an increase in yield. This increase is reflected on the thickness of the deposit. The results of atomic force microscopy (AFM) show an increase in particle size with increasing pH in agreement with the results obtained by profilometry.

  8. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Tung, Fa-Kuei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ohira, Yutaka; Tanji, Takayoshi

    2008-01-01

    Carbon nanotubes are grown directly on a scanning tunneling microscopy tip by liquid catalyst-assisted microwave-enhanced chemical vapor deposition, and effects of hydrogen plasma treatment on the tip have been investigated in detail by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. The unaligned CNTs on the as-grown tip apex have been realigned and reshaped by subsequent hydrogen plasma treatment. The diameter of CNTs is enlarged mainly due to amorphous layers being re-sputtered over their outer shells

  9. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  10. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  11. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  12. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films

    Science.gov (United States)

    Hu, S.; Seidel, J.

    2016-08-01

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  13. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  14. Microwave Irradiation

    Indian Academy of Sciences (India)

    Way to Eco-friendly, Green Chemistry. Rashmi ... The rapid heating of food in the kitchen using microwave ovens ... analysis; application to waste treatment; polymer technology; ... of microwave heating in organic synthesis since the first contri-.

  15. Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Erdan; Hu, Yuanan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Cheng, Hefa, E-mail: hefac@umich.edu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2015-12-15

    Highlights: • Cu{sup 2+} and Fe{sup 3+} in zeolite pores enhance atrazine sorption and MW-induced degradation. • Exchanged zeolites perform well over multiple sorption–regeneration cycles. • Fe{sup 3+} species in the zeolite micropores have much greater stability than those of Cu{sup 2+}. • DOC in natural waters can compromise the sorption capacity of exchanged zeolites. • Iron-exchanged dealuminated Y zeolites hold great promise for practical applications. - Abstract: Transition metal-exchanged dealuminated Y zeolites were used to adsorb atrazine from aqueous solutions, followed by regeneration of the sorbents and destruction of the sorbed atrazine with microwave irradiation. Exchange of copper and iron into the zeolite's micropores significantly enhanced its sorption capacity and selectivity toward atrazine, and increased the microwave-induced degradation rate of the sorbed atrazine by 3–4-folds. Both the copper- and iron-exchanged zeolites could be regenerated and reused multiple times, while the catalytic activity of the latter was more robust due to the much greater chemical stability of Fe{sup 3+} species in the micropores. The presence of humic acid, and common cations and anions had little impact on the sorption of atrazine on the transition metal-exchanged zeolites. In the treatment of atrazine spiked in natural surface water and groundwater samples, sorptive removal of atrazine was found to be impacted by the level of dissolved organic carbon, probably through competition for the micropore spaces and pore blocking, while the water matrices exhibited no strong effect on the microwave-induced degradation of sorbed atrazine. Overall, iron-exchanged dealuminated Y zeolites show great potential for removal and destruction of atrazine from contaminated surface water and groundwater in practical implementation of the novel treatment technology.

  16. Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices

    International Nuclear Information System (INIS)

    Hu, Erdan; Hu, Yuanan; Cheng, Hefa

    2015-01-01

    Highlights: • Cu"2"+ and Fe"3"+ in zeolite pores enhance atrazine sorption and MW-induced degradation. • Exchanged zeolites perform well over multiple sorption–regeneration cycles. • Fe"3"+ species in the zeolite micropores have much greater stability than those of Cu"2"+. • DOC in natural waters can compromise the sorption capacity of exchanged zeolites. • Iron-exchanged dealuminated Y zeolites hold great promise for practical applications. - Abstract: Transition metal-exchanged dealuminated Y zeolites were used to adsorb atrazine from aqueous solutions, followed by regeneration of the sorbents and destruction of the sorbed atrazine with microwave irradiation. Exchange of copper and iron into the zeolite's micropores significantly enhanced its sorption capacity and selectivity toward atrazine, and increased the microwave-induced degradation rate of the sorbed atrazine by 3–4-folds. Both the copper- and iron-exchanged zeolites could be regenerated and reused multiple times, while the catalytic activity of the latter was more robust due to the much greater chemical stability of Fe"3"+ species in the micropores. The presence of humic acid, and common cations and anions had little impact on the sorption of atrazine on the transition metal-exchanged zeolites. In the treatment of atrazine spiked in natural surface water and groundwater samples, sorptive removal of atrazine was found to be impacted by the level of dissolved organic carbon, probably through competition for the micropore spaces and pore blocking, while the water matrices exhibited no strong effect on the microwave-induced degradation of sorbed atrazine. Overall, iron-exchanged dealuminated Y zeolites show great potential for removal and destruction of atrazine from contaminated surface water and groundwater in practical implementation of the novel treatment technology.

  17. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  18. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue,

  19. Characteristic of doping and diffusion of heavily doped n and p type InP and InGaAs epitaxial layers grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pinzone, C.J.; Dupuis, R.D.; Ha, N.T.; Luftman, H.S.; Gerrard, N.D.

    1990-01-01

    Electronic and photonic device applications of the InGaAs/InP materials system often require the growth of epitaxial material doped to or near the solubility limit of the impurity in the host material. These requirements present an extreme challenge for the crystal grower. To produce devices with abrupt dopant profiles, preserve the junction during subsequent growth, and retain a high degree of crystalline perfection, it is necessary to understand the limits of dopant incorporation and the behavior of the impurity in the material. In this study, N-type doping above 10 19 cm -3 has been achieved in InP and InGaAs using Sn as a dopant. P-type Zn doping at these levels has also been achieved in these materials but p type activation above ∼3 x 10 18 cm -3 in InP has not been seen. All materials were grown by the metalorganic chemical vapor deposition (MOCVD) crystal growth technique. Effective diffusion coefficients have been measured for Zn and Sn in both materials from analysis of secondary ion mass spectra (SIMS) of specially grown and annealed samples

  20. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    Science.gov (United States)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  1. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under Microwave Chemical Reactor.

    Science.gov (United States)

    Li, Yihuai; Ye, Bin; Shen, Jiaowen; Tian, Zhen; Wang, Lijun; Zhu, Luping; Ma, Teng; Yang, Dongya; Qiu, Fengxian

    2013-06-01

    A solid base catalyst was prepared by the sodium potassium tartrate doped zirconia and microwave assisted transesterification of soybean oil was carried out for the production of biodiesel. It was found that the catalyst of 2.0(n(Na)/n(Zr)) and calcined at 600°C showed the optimum activity. The base strength of the catalysts was tested by the Hammett indicator method, and the results showed that the fatty acid methyl ester (FAME) yield was related to their total basicity. The catalyst was also characterized by FTIR, TGA, XRD and TEM. The experimental results showed that a 2.0:1 volume ratio of methanol to oil, 65°C reaction temperature, 30 min reaction time and 10 wt.% catalyst amount gave the highest the yield of biodiesel. Compared to conventional method, the reaction time of the way of microwave assisted transesterification was shorter. The catalyst had longer lifetime and maintained sustained activity after being used for four cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  3. Growth and characterization of ZnO films deposited by chemical bath and annealed by microwaves (CBD-A{mu}W)

    Energy Technology Data Exchange (ETDEWEB)

    DIaz-Reyes, J [CIBA-IPN, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico); Martinez-Juarez, J; Garcia, M L; Galeazzi, R [CIDS-ICUAP, BUAP, 14 Sur y San Claudio S/N, CU. Edif. No. 137, Col. San Manuel, Puebla, Puebla 72570 (Mexico); Juarez, G, E-mail: jdiazr2001@yahoo.com [DIE-SEES, CINVESTAV-IPN, A. P. 14-740, Mexico, D. F. 07000 (Mexico)

    2010-06-15

    A study of the growth and the physical properties of ZnO films deposited by chemical bath technique and annealed by microwave are presented. For the deposition solution the molar ratio between zinc nitrate and urea is varied in a range of 1:1... 1:10. By X-ray obtains that layers have hexagonal polycrystalline wurtzite type unitary cell. The Raman spectra show the first order experimental Raman spectra of ZnO. The first order Raman modes are identified in the ZnO Raman spectra. The 300K photoluminescence shows radiative bands labelled by red, yellow, green and violet bands, which are associated to defects of oxygen and zinc vacancies. By EDS measurements determined their stoichiometry, which allows relating it with the intensity of radiative bands associated to oxygen and zinc vacancies.

  4. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor

    International Nuclear Information System (INIS)

    Wang Peng; Lu, Jennifer; Zhou, Otto

    2008-01-01

    The microwave plasma enhanced chemical vapor deposition (MPECVD) method is now commonly used for directional and conformal growth of carbon nanotubes (CNTs) on supporting substrates. One of the shortcomings of the current process is the lack of control of the diameter and diameter distribution of the CNTs due to difficulties in synthesizing well-dispersed catalysts. Recently, block copolymer derived catalysts have been developed which offer the potential of fine control of both the size of and the spacing between the metal clusters. In this paper we report the successful growth of CNTs with narrow diameter distribution using polystyrene-block-polyferrocenylethylmethylsilane (PS-b-PFEMS) as the catalyst precursor. The study shows that higher growth pressure leads to better CNT growth. Besides the pressure, the effects on the growth of CNTs of the growth parameters, such as temperature and precursor gas ratio, are also studied

  5. A Systematic Study of the Relationship among the Morphological, Structural and Photoelectrochemical Properties of ZnO Nanorods Grown Using the Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-08-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO seed layer/fluorine-doped tin oxide (FTO) substrate for different growth durations ranging from 5 to 40 min using the microwave chemical bath deposition method. We studied the effect of growth duration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this study, we found that the photoelectrochemical properties of the ZnO nanostructures were largely affected by their morphological and structural properties. As a result, we obtained the highest photocurrent density of 0.46 mA/cm{sup 2} (at 1.5 V vs. SCE) from the sample grown for 30 min.

  6. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  7. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  8. Molecular beam epitaxy for the future

    International Nuclear Information System (INIS)

    Takahashi, K.

    1984-01-01

    Molecular beam epitaxy (MBE) is most commonly used to fabricate super-lattices, high electron mobility transistors, multi-quantum well lasers and other new semiconductor devices by utilizing its excellent controlability. MBE for the future is presumed to include techniques such as metalorganic chemical vapor deposition, photochemical reaction process using gas sources and ion implantation. A report on the crystal growth of GaAs using metalorganics, trimethylgallium and triethylgallium, which are usually used in chemical vapor deposition, as gaseous sources of gallium in an MBE system is made. (Author) [pt

  9. Characterization of GaN/AlGaN epitaxial layers grown

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers ...

  10. Essential Oils Extracted Using Microwave-Assisted Hydrodistillation from Aerial Parts of Eleven Artemisia Species: Chemical Compositions and Diversities in Different Geographical Regions of Iran

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2017-03-01

    Full Text Available This study aimed to assess the chemical compositions of essential oils (EOs extracted through microwave-assisted hydrodistillation from aerial parts of 11 Artemisia species growing wild in different regions in Northern, Eastern, Western, and Central parts of Iran. The EOs were subsequently analyzed via GC and GC-MS. The percentage yields of the EOs varied over the range of 0.21-0.50 (w/w%. On the basis of these characterizations and spectral assignments, natural compounds including camphor, 1,8-cineole, camphene, α-pinene, β-pinene, β-thujone, and sabinene were the most abundant and frequent constituents among all studied chemical profiles. Accordingly, oxygenated monoterpenes, monoterpene hydrocarbons, and non-terpene hydrocarbons were the dominant groups of natural compounds in the chemical profiles of 13, 4, and 2 samples, respectively. Moreover, five chemotypes were identified using statistical analyses: camphene, α-pinene and β-pinene; 1,8-cineole; camphore and 1,8-cineole; camphore and camphore and β-thujone.

  11. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  12. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  13. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Jany, Ch.

    1998-01-01

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp 2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  14. Synchrotron radiation excited silicon epitaxy using disilane

    International Nuclear Information System (INIS)

    Akazawa, Housei; Utsumi, Yuichi

    1995-01-01

    Synchrotron radiation (SR) excited chemical reactions provide new crystal growth methods suitable for low-temperature Si epitaxy. The growth kinetics and film properties were investigated by atomic layer epitaxy (ALE) and photochemical vapor deposition (CVD) modes using Si 2 H 6 . SR-ALE, isolating the surface growth channel mediated by photon stimulated hydrogen desorption, achieves digital growth independent of gas exposure time, SR irradiation time, and substrate temperature. On the other hand in SR-CVD, photolysis of Si 2 H 6 is predominant. In the nonirradiated region, Eley-Rideal type reaction between the photofragments and the surface deposit Si adatoms in a layer-by-layer fashion. In the irradiated region, however, multi-layer photolysis and rebounding occurs within the condensed Si 2 H 6 layer. The pertinent elementary processes were identified by using the high-resolution time-of-flight mass spectroscopy. The SR-CVD can grow a uniform and epitaxial Si film down to 200degC. The surface morphology is controlled by the surfactant effect of hydrogen atoms. (author)

  15. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Chung, S J; Lee, Y S; Suh, E-K; Senthil Kumar, M; An, M H

    2010-01-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  16. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    Science.gov (United States)

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a

  17. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  18. The Structure and Molecular Parameters of Camphene Determined by Fourier Transform Microwave Spectroscopy and Quantum Chemical Calculations

    Science.gov (United States)

    Neeman, Elias M.; Dréan, Pascal; Huet, T. R.

    2016-06-01

    The emission of volatile organic compounds, from plants has strong revelance for plant physiology, plant ecology and atmospheric chemistry. Camphene (C10H16) is a bicyclic monoterpene which is emitted in the atmosphere by biogenic sources. The structure of the unique stable conformer was optimized using density functional theory and ab initio calculations. The rotational spectrum of camphene was recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. Signals from the parent species and from the ten 13C isotopomers were observed in natural abundance. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. A magnetic hyperfine structure associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled.The rotational constants coupled to the equilibrium structure calculations were used to determine the r_0 and the r_m(1) gas-phase geometries of the carbon skeleton. The present work provides the first spectroscopic characterization of camphene in the gas phase and these results are also relevant for ozonolysis kinetics study through Criegee intermediates. R. Baraldi, F. Rapparini, O. Facini, D. Spano and P. Duce, Journal of Mediterranean Ecology, Vol.6, No.1, (2005). A. Bracho-Nunez, N. M. Knothe, S. Welter, M. Staudt, W. R. Costa, M. A. R. Liberato, M. T. F. Piedade, and J. Kesselmeier Biogeosciences, 10, 5855-5873, (2013). Minna Kivimäenpää, Narantsetseg Magsarjav, Rajendra Ghimire, Juha-Matti Markkanen, Juha Heijari, Martti Vuorinen and Jarmo K. Holopainen, Atmospheric Environment, 60, 477-485, (2012). R.C. de M. Oliveira and G. F. Bauerfeldt, J. Phys. Chem. A, 119 2802-2812 (2015)

  19. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  20. Selenidation of epitaxial silicene on ZrB2

    NARCIS (Netherlands)

    Wiggers, F. B.; Yamada-Takamura, Y.; Kovalgin, A. Y.; de Jong, M. P.

    2018-01-01

    The deposition of elemental Se on epitaxial silicene on ZrB2 thin films was investigated with synchrotron-based core-level photoelectron spectroscopy and low-energy electron diffraction. The deposition of Se at room temperature caused the appearance of Si 2p peaks with chemical shifts of n × 0.51 ±

  1. Application of Microwave Irradiation to Rapid Organic Inclusion Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Microwave irradiation has been used in chemical laboratories for moisture analysis and wet asking procedures of biological and geological materials for a number of years [1]. More recently the microwave irradiation also widely used for rapid organic synthesis [2]. However, there have not yet been any reports concerning the ultilisatioin of microwave ovens in the routine organic inclusion complex regularly in chemical research.

  2. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  3. Seed layer technique for high quality epitaxial manganite films

    Directory of Open Access Journals (Sweden)

    P. Graziosi

    2016-08-01

    Full Text Available We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  4. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Tiwari, Rajanish N.; Chang Li

    2010-01-01

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {100} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was ∼530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/μm) and high current-density (1.6 mA/cm 2 ) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  5. The Influences of H2Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Wen Hua-Chiang

    2008-01-01

    Full Text Available AbstractThe effects of H2flow rate during plasma pretreatment on synthesizing the multiwalled carbon nanotubes (MWCNTs by using the microwave plasma chemical vapor deposition are investigated in this study. A H2and CH4gas mixture with a 9:1 ratio was used as a precursor for the synthesis of MWCNT on Ni-coated TaN/Si(100 substrates. The structure and composition of Ni catalyst nanoparticles were investigated using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The present findings showed that denser Ni catalyst nanoparticles and more vertically aligned MWCNTs could be effectively achieved at higher flow rates. From Raman results, we found that the intensity ratio of G and D bands (ID/IG decreases with an increasing flow rate. In addition, TEM results suggest that H2plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles. As a result, the pretreatment plays a crucial role in modifying the obtained MWCNTs structures.

  6. Study of the Morphological, Structural, Optical and Photoelectrochemical Properties of Zinc Oxide Nanorods Grown Using a Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-04-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO-buffered fluorine-doped tin oxide (FTO) substrate using a microwave chemical bath deposition method with different zinc oxide precursor concentrations from 0.01 to 0.5 M. We investigated the effects of the zinc oxide precursor concentration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this work, we found that ZnO one-dimensional structures mainly grew along the (002) plane, and the nanorod length, diameter, surface area and photoelectrochemical properties were largely dependent on the precursor concentration. That is, the photoelectrochemical properties were affected by the morphological and structural properties of the ZnO. The morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructure were investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM), X-ray diffraction (XRD), UV-visible spectroscopy and 3-electrode potentiostat. We obtained the highest photocurrent density of 0.37 mA/cm{sup 2} (at 1.1 V vs. SCE) from the precursor concentration of 0.07 M, which resulted in ZnO nanostructures with proper length and diameter, large surface area and good structural properties.

  7. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  8. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2008-01-01

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m 3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  9. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  10. TiO{sub 2} films obtained by microwave-activated chemical-bath deposition used to improve TiO{sub 2}-conducting glass contact

    Energy Technology Data Exchange (ETDEWEB)

    Zumeta, I.; Gonzalez, B. [Institute for Material Science and Technology, University of Havana, Colina Universitaria, Ciudad Habana 10 400 (Cuba); Ayllon, J.A.; Domenech, X. [Chemistry Department, Autonomous University of Barcelona, 08290 Cerdanyola del Valles (Spain); Vigil, E. [Institute for Material Science and Technology, University of Havana, Colina Universitaria, Ciudad Habana 10 400 (Cuba); Physics Faculty, University of Havana, Colina Universitaria, Ciudad Habana 10 400 (Cuba)

    2009-10-15

    In traditional solar cells, metal-semiconductor contacts used to extract photogenerated carriers are very important. In dye-sensitized solar cells (DSSC) not much attention has been given to contact between the TiO{sub 2} and the transparent conducting glass (TCO), which is used instead of a metal contact to extract electrons. TiO{sub 2} layers obtained by microwave-activated chemical-bath deposition (MW-CBD) are proposed to improve TiO{sub 2} contact to conducting glass. Spectra of incident photon to current conversion efficiency (IPCE) are obtained for two-photoelectrode TiO{sub 2} photoelectrochemical cells. IPCE spectra show higher values when TiO{sub 2} double layer photoelectrodes are used. In these, the first layer or contacting layer is made by MW-CBD. Best results are obtained for double layer photoelectrodes on FTO (SnO{sub 2}:F) as conducting oxide substrate. Modeling of IPCE spectra reveals the importance of electrical contact and electron extraction rate at the TiO{sub 2}/TCO interface. (author)

  11. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  12. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  13. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  14. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  15. Abstracts of 4. International Workshop on Molecular Beam Epitaxy and Vapour Phase Epitaxy Growth Physics and Technology

    International Nuclear Information System (INIS)

    2001-01-01

    4. International Workshop on Molecular Beam Epitaxy and Vapour Phase Epitaxy Growth Physics and Technology is the periodically held forum for discussion the problems connected with manufacturing of different nanostructures (thin films, quantum wells, quantum dots) needed in microelectronics. Preparation of such materials with desirable optical, electrical and magnetic properties being determined by their chemical composition and crystal structure has been discussed in detail during the workshop sessions. Optimization of crystal growth methods such as VPE and MBE from the view point of obtained material properties has also been extensively discussed

  16. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Manory, R.R.; Paterson, P.J.K.; Stuart, Sue-Anne

    1992-01-01

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  17. Effect of Passivation on Microwave Power Performances of AlGaN/GaN/Si HEMTs

    Directory of Open Access Journals (Sweden)

    H. MOSBAHI

    2014-05-01

    Full Text Available This paper reports on the use of plasma assisted molecular beam epitaxy of AlGaN/GaN high electron mobility transistors (HEMTs grown on silicon substrate. Surface passivation effects on AlGaN/GaN HEMTs were studied using SiO2/SiN dielectric layers grown by plasma enhanced chemical vapor deposition. The direct current measurement, pulsed characteristics and microwave small-signal characteristics were studied before and after passivation. An improvement of drain-source current density and the extrinsic transconductance was observed on the passivated HEMTs when compared with the unpassivated HEMTs. An enhancement of cut-off frequency (ft and maximum power gain (fmax was also observed for the devices with full SiO2/SiN passivation. A good correlation is found between pulsed and power measurements.

  18. Microwave discharge electrodeless lamps (MDELs). Part IX. A novel MDEL photoreactor for the photolytic and chemical oxidation treatment of contaminated wastewaters.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Shinomiya, Tomohiro; Serpone, Nick

    2015-12-01

    This article reports on the fabrication and enhanced performance of a novel microwave discharge electrodeless lamp (MDEL) consisting of a three layered cylindrical structure that was effective in the remediation of wastewater containing the 2,4-D herbicide and the near total sterilization of bacteria-contaminated pond water (E. coli and other microorganisms) through photolysis with the emitted vacuum-UV (185 nm) and UVC (254 nm) light from the MDEL and through chemical oxidation with reactive oxygen species (ROS) produced by the photolysis of dioxygen and air oxygen through one of the photoreactors. The flow rates of the 1.0 L contaminated waters were 0.6 and 1.2 L min(-1). The integrated UV/ROSO2 and UV/ROSair methods used to carry out the degradation of 2,4-D and sterilization processes were more effective than either the UV method alone or the ROSO2 and ROSair methods for short time periods (5 or 8 min). At a lower flow rate, 79% of 2,4-D was degraded by the UV/ROSO2 method and 55% by UV/ROSair after 8 min. At a faster flow rate of 1.2 L min(-1), degradation of 2,4-D in 1.0 L volume of water was 84% and 77% complete by the UV/ROSO2 and the UV/ROSair method, respectively, after 8 min of irradiation. The number of kills of E. coli bacteria was nearly quantitative (98 and 99%) by the UV/ROSO2 and UV/ROSair methods after treating the contaminated water for 5 min. The decrease of total viable microorganisms in pond water was 90% and 80% after 5 min of microwave irradiation at a flow rate of 1.2 L min(-1) by the integrated methods UV/ROSO2 and UV/ROSair, respectively. The rate of flow of oxygen gas through the photoreactor impacted the extent of degradation and the related dynamics of the 2,4-D herbicide.

  19. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  20. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  1. Mechanism of Microwave-Assisted Pyrolysis of Glucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations.

    Science.gov (United States)

    Bao, Liwei; Shi, Lei; Luo, Hu; Kong, Lingzhao; Li, Shenggang; Wei, Wei; Sun, Yuhan

    2017-08-10

    Glucose labeled with 13 C or 18 O was used to investigate the mechanism of its conversion into furfural by microwaveassisted pyrolysis. The isotopic content and location in furfural were determined from GC-MS and 13 C NMR spectroscopic measurements and data analysis. The results suggest that the carbon skeleton in furfural is mainly derived from C1 to C5 of glucose, whereas the C of the aldehyde group and the O of the furan ring in furfural primarily originate from C1 and O5 of glucose, respectively. For the first time, the source of O in the furan ring of furfural was elucidated directly by experiment, providing results that are consistent with predictions from recent quantum chemical calculations. Moreover, further theoretical calculations indicate substantially lower energy barriers than previous predictions by considering the potential catalytic effect of formic acid, which is one of the pyrolysis products. The catalytic role of formic acid is further confirmed by experimental evidence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Measurements of electrophysical characteristics of semiconductor structures with the use of microwave photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Usanov, D. A., E-mail: UsanovDA@info.sgu.ru [Chernyshevsky National Research State University (Russian Federation); Nikitov, S. A. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics (Russian Federation); Skripal, A. V.; Ponomarev, D. V.; Latysheva, E. V. [Chernyshevsky National Research State University (Russian Federation)

    2016-12-15

    A method is proposed for the measurement of the electrophysical characteristics of semiconductor structures: the electrical conductivity of the n layer, which plays the role of substrate for a semiconductor structure, and the thickness and electrical conductivity of the strongly doped epitaxial n{sup +} layer. The method is based on the use of a one-dimensional microwave photonic crystal with a violation of periodicity containing the semiconductor structure under investigation. The characteristics of epitaxial gallium-arsenide structures consisting of an epitaxial layer and the semi-insulating substrate measured by this method are presented.

  3. Epitaxial growth of silicon and germanium on (100-oriented crystalline substrates by RF PECVD at 175 °C

    Directory of Open Access Journals (Sweden)

    Mauguin O.

    2012-11-01

    Full Text Available We report on the epitaxial growth of crystalline Si and Ge thin films by standard radio frequency plasma enhanced chemical vapor deposition at 175 °C on (100-oriented silicon substrates. We also demonstrate the epitaxial growth of silicon films on epitaxially grown germanium layers so that multilayer samples sustaining epitaxy could be produced. We used spectroscopic ellipsometry, Raman spectroscopy, transmission electron microscopy and X-ray diffraction to characterize the structure of the films (amorphous, crystalline. These techniques were found to provide consistent results and provided information on the crystallinity and constraints in such lattice-mismatched structures. These results open the way to multiple quantum-well structures, which have been so far limited to few techniques such as Molecular Beam Epitaxy or MetalOrganic Chemical Vapor Deposition.

  4. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  5. Synthesis of Si epitaxial layers from technical silicon by liquid-phase epitaxy method

    International Nuclear Information System (INIS)

    Ibragimov, Sh.I.; Saidov, A.S.; Sapaev, B.; Horvat, M.A.

    2004-01-01

    Full text: For today silicon is one of the most suitable materials because it is investigated, cheap and several its parameters are even just as good as those of connections A III B V . Disintegration of the USSR has led to the must difficult position of the industry of silicon instrument manufacture because of all industry of semiconductor silicon manufacture had generally concentrated in Ukraine. The importance of semiconductor silicon is rather great, because of, in opinion of expects, the nearest decade this material will dominate over not only on microelectronics but also in the majority of basic researches. Research of obtain of semiconductor silicon, power electronics and solar conversion, is topical interest of the science. In the work research of technological conditions of obtain and measurement of parameters of epitaxial layers obtained from technical silicon + stannum is resulted. Growth of silicon epitaxial layer with suitable parameters on thickness, cleanliness uniformity and structural perfection depends on the correct choice of condition of the growth and temperature. It is shown that in this case the growth occurring without preliminary clearing of materials (mix materials and substrates) at crystallization of epitaxial layer from technical silicon is accompanied by clearing of silicon film from majority of impurities order-of-magnitude. As starting raw material technical silicon of mark Kr.3 has been taken. By means of X-ray microanalyzer 'Jeol' JSM 5910 LV - Japan the quantitative analysis from the different points has been and from the different sides and from different points has been carried out. After corresponding chemical and mechanical processing the quantitative analysis of layer on chip has been carried out. Results of the quantitative analysis are shown. More effective clearing occurs that of the impurity atoms such as Al, P, Ca, Ti and Fe. The obtained material (epitaxial layer) has the parameters: specific resistance ρ∼0.1-4.0

  6. Chemical composition and resistance to oxidation of high-oleic rapeseed oil pressed from microwave pre-treated intact and de-hulled seeds

    International Nuclear Information System (INIS)

    Rękas, A.; Wroniak, M.; Siger, A.; Ścibisz, I.

    2017-01-01

    The influence of a microwave (MV) pre-treatment (3, 6, 9 min, 800W) on the physicochemical properties of high-oleic rapeseed oil prepared from intact (HORO) and de-hulled seeds (DHORO) was investigated in this study. A control DHORO contained higher levels of total tocopherols and carotenoids, while higher concentrations of total phenolic compounds and chlorophylls were detected in the HORO. The MV pre-treatment caused a decrease in the unsaturated fatty acids content that was more evident for the DHOROs. The microwaving time significantly affected phytochemical contents and the color of both types of oils. A vast increase in canolol concentration was noticeable following 9 min of microwaving, which increased 506- and 155-fold in the HORO and DHORO, respectively. At the same time, the antioxidant capacity of oil produced from MV pre-treated seeds for 9 min was nearly 4 times higher than that of the control oil for both types of oils. [es

  7. Spectroscopic ellipsometry characterization of nano-crystalline diamondfilms prepared at various substrate temperatures and pulsed plasma frequencies using microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery

    Czech Academy of Sciences Publication Activity Database

    Mistrík, J.; Janíček, P.; Taylor, Andrew; Fendrych, František; Fekete, Ladislav; Jäger, Aleš; Nesládek, M.

    2014-01-01

    Roč. 571, č. 1 (2014), s. 230-237 ISSN 0040-6090 R&D Projects: GA ČR GA13-31783S; GA MŠk(CZ) LM2011026 Grant - others: COST Nano TP(XE) MP0901; OP VK(XE) CZ.1.07/2.3.00/20.0306 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * thin films * microwave plasma-enhanced chemical vapor deposition * pulsed plasma * low deposition temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.759, year: 2014

  8. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  9. Large microwave tunability of GaAs-based multiferroic heterostructure for applications in monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Chen Yajie; Gao Jinsheng; Vittoria, C; Harris, V G; Heiman, D

    2010-01-01

    Microwave magnetoelectric coupling in a ferroelectric/ferromagnetic/semiconductor multiferroic (MF) heterostructure, consisting of a Co 2 MnAl epitaxial film grown on a GaAs substrate bonded to a lead magnesium niobate-lead titanate (PMN-PT) crystal, is reported. Ferromagnetic resonance measurements were carried out at X-band under the application of electric fields. Results indicate a frequency tuning of 125 MHz for electric field strength of 8 kV cm -1 resulting in a magnetoelectric coupling coefficient of 3.4 Oe cm kV -1 . This work explores the potential of electronically controlled MF devices for use in future monolithic microwave integrated circuits.

  10. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  11. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  12. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  13. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  14. Microwave spectrum, structure, and quantum chemical studies of a compound of potential astrochemical and astrobiological interest: Z-3-amino-2-propenenitrile.

    Science.gov (United States)

    Askeland, Eva; Møllendal, Harald; Uggerud, Einar; Guillemin, Jean-Claude; Aviles Moreno, Juan-Ramon; Demaison, Jean; Huet, Thérèse R

    2006-11-23

    Z-3-Amino-2-propenenitrile, H2NCH=CHCN, a compound of astrochemical and astrobiological interest, has been studied by Stark and Fourier transform microwave spectroscopy along with eight of its isotopologues; the synthesis of five of these are reported. The spectra of the ground vibrational state and of three vibrationally excited states belonging to the two lowest normal modes were assigned for the parent species, whereas the ground states were assigned for the isotopologues. The frequency of the lowest in-plane bending fundamental vibration was determined to be 152(20) cm(-1) and the frequency of the lowest out-of-plane fundamental mode was found to be 176(20) cm(-1) by relative intensity measurements. A delicate problem is whether this compound is planar or slightly nonplanar. It was found that the rotational constants of the nine species cannot be used to conclude definitely whether the molecule is planar or not. The experimental dipole moment is mu(a) = 16.45(12), mu(b) = 2.86(6), mu(c) = 0 (assumed), and mu(tot.) = 16.70(12) x 10(-30) C m [5.01(4) D]. The quadrupole coupling constants of the two nitrogen nuclei are chi(aa) = -1.4917(21) and chi(cc) = 1.5644(24) MHz for the nitrogen atom of the cyano group and chi(aa) = 1.7262(18) and chi(cc) = -4.0591(17) MHz for the nitrogen atom of the amino group. Extensive quantum-chemical calculations have been performed, and the results obtained from these calculations have been compared with the experimental values. The equilibrium structures of vinylamine, vinyl cyanide, and Z-3-amino-2-propenenitrile have been calculated. These calculations have established that the equilibrium structure of the title compound is definitely nonplanar. However, the MP2/VQZ energy difference between the planar and nonplanar forms is small, only -423 J/mol. Z-Amino-2-propenenitrile and E-3-amino-2-propenenitrile are formed simply by mixing ammonia and cyanoacetylene at room temperature. A plausible reaction path has been modeled. G3

  15. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  16. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  17. Coherence in a transmon qubit with epitaxial tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, Martin [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Karlsruhe Institute of Technology (Germany); Kline, Jeffrey; Vissers, Michael; Sandberg, Martin; Pappas, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Wisbey, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Saint Louis University, St. Louis, Missouri 63103 (United States); Johnson, Blake; Ohki, Thomas [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States)

    2012-07-01

    Transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors were developed. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T{sub 1} is.72-.86 {mu} sec and the ensemble dephasing time T{sub 2}{sup *} is slightly larger than T{sub 1}. The dephasing time T{sub 2} (1.36 {mu} sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements.

  18. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  19. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  20. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  1. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    International Nuclear Information System (INIS)

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  2. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  3. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  4. Epitaxial growth of CZT(S,Se) on silicon

    Science.gov (United States)

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  5. A high resolution cross section transmission electron microscopy study of epitaxial rare earth fluoride/GaAs(111) interfaces prepared by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chien, C.J.; Bravman, J.C.

    1990-01-01

    The authors report the HRXTEM study of epitaxial rare earth fluoride/GaAs(111) interfaces. Such interfaces are of interest because they are the starting point for growth of buried epitaxial rare earth/rare earth fluoride sandwich structures which exhibit interesting and non bulk-like magnetic properties. Also, the optical transitions in ultrathin epitaxial NdF 3 films may be influenced by strain and defects in the NdF 3 film and the nature of the interface to GaAs. The authors find that the rare earth fluoride/GaAs interfaces are semi-coherent but chemically abrupt with the transition taking place within 3 Angstrom. However, the interface is physically rough and multiple monolayer steps in the GaAs surface tend to tilt boundaries in the fluoride. The origin of these steps is believed to be thermal etching of the GaAs during the heat- cleaning stage prior to epitaxy. The surface of the fluoride film is much smoother than the initial GaAs surface indicating planarization during epitaxy

  6. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  7. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  8. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films.

    Science.gov (United States)

    Hu, S; Seidel, J

    2016-08-12

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  9. Interaction of GaN epitaxial layers with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S

    2004-08-15

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H{sub 2} plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states.

  10. Interaction of GaN epitaxial layers with atomic hydrogen

    International Nuclear Information System (INIS)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S.

    2004-01-01

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H 2 plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states

  11. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  12. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  13. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis

    International Nuclear Information System (INIS)

    Huang, Yu-Fong; Chiueh, Pei-Te; Kuan, Wen-Hui; Lo, Shang-Lien

    2015-01-01

    Agricultural residues are abundant resources to produce renewable energy and valuable chemicals. This study focused on the effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis of agricultural residues. When agricultural residues were under microwave radiation within 10 min, the maximum temperatures of approximately 320, 420, and 530 °C were achieved at the microwave power levels of 300, 400, and 500 W, respectively. Gas yield increased with increasing microwave power level, whereas solid and liquid yields decreased. Besides, gaseous products with higher H 2 content and higher calorific values can be obtained at higher microwave power levels. In addition to microwave power level, lignocellulosic composition was also an important factor. H 2 and CO 2 yields increased with increasing hemicellulose content, whereas CH 4 and CO yields increased with increasing cellulose content. Four empirical equations were derived to present the contributions of lignocellulosic materials to the yields of gaseous components. - Highlights: • About 530 °C was reached within 10 min at a microwave power level of 500 W. • Gas yield increased with increasing microwave power level. • A high correlation between hemicellulose content and either H 2 or CO 2 yield. • A high correlation between cellulose content and either CH 4 or CO yield. • Empirical equations depict contribution of lignocellulosic content to gas yield

  14. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  15. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  16. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  17. The use of microwaves for the automated production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stone-Elander, S.A.

    1993-01-01

    Microwaves have been increasingly used over the last decade to speed up chemical transformations. Nowhere are the dramatic time gains observed so obviously important as in applications with short-lived radioisotopes where every minute gained in multi-step procedures may be important for success. Commercially-available laboratory microwave ovens adapted for remote-control or robot-assisted techniques have been used to speed up primarily incorporations of [ 18 F]fluoride. New applications with microwave cavities not only provide a more controllable microwave field for the transformations, but also lend themselves well to use in multi-step procedures under remote-control. Applications of microwave techniques in radiolabelling procedures are reviewed with respect to the chemical transformations, microwave parameters and apparatus requirements

  18. Selected chemical composition changes in microwave-convective dried parsley leaves affected by ultrasound and steaming pre-treatments - An optimization approach.

    Science.gov (United States)

    Dadan, Magdalena; Rybak, Katarzyna; Wiktor, Artur; Nowacka, Malgorzata; Zubernik, Joanna; Witrowa-Rajchert, Dorota

    2018-01-15

    Parsley leaves contain a high amount of bioactive components (especially lutein), therefore it is crucial to select the most appropriate pre-treatment and drying conditions, in order to obtain high quality of dried leaves, which was the aim of this study. The optimization was done using response surface methodology (RSM) for the following factors: microwave power (100, 200, 300W), air temperature (20, 30, 40°C) and pre-treatment variant (ultrasound, steaming and dipping as a control). Total phenolic content (TPC), antioxidant activity, chlorophyll and lutein contents (using UPLC-PDA) were determined in dried leaves. The analysed responses were dependent on the applied drying parameters and the pre-treatment type. The possibility of ultrasound and steam treatment application was proven and the optimal processing conditions were selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    Science.gov (United States)

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  20. Characterization of GaN/AlGaN epitaxial layers grown by ...

    Indian Academy of Sciences (India)

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical ... reported by introducing annealing of the GaN layer in nitrogen [5], Fe doping [6], .... [2] Y F Wu, S M Wood, R P Smith, S Sheppard, S T Allen, P Parikh and J Milligan,.

  1. Merging Standard CVD Techniques for GaAs and Si Epitaxial Growth

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Van den Bogaard, A.; Nanver, L.K.

    2010-01-01

    A commercial Chemical Vapor Deposition (CVD) system, the ASMI Epsilon 2000 designed for Si and SiGe epitaxy, has, for the first time, been equipped for the growth of GaAs compounds in a manner that does not exclude the use of the system also for Si-based depositions. With the new system, intrinsic,

  2. Molecular-beam epitaxy growth and characterization of 5-μm quantum cascade laser

    International Nuclear Information System (INIS)

    Mamutin, V V; Ustinov, V M; Ilyinskaya, N D; Baydakova, M V; Ber, B Ya; Kasantsev, D Yu

    2011-01-01

    Molecular-beam epitaxy growth of 5 μm emitting strain-compensated quantum semiconductor laser (QCL) is reported. The QCL structure is characterized by complementary techniques: high-resolution X-ray diffraction and dynamical secondary-ion mass-spectrometry, that reveal the high quality of QCL structure and in-depth distribution of chemical composition, respectively.

  3. Epitaxial Growth of Germanium on Silicon for Light Emitters

    Directory of Open Access Journals (Sweden)

    Chengzhao Chen

    2012-01-01

    Full Text Available This paper describes the role of Ge as an enabler for light emitters on a Si platform. In spite of the large lattice mismatch of ~4.2% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared light emitters with various structures are reviewed, including the tensile-strained Ge epilayer, the Ge epilayer with a delta-doping SiGe layer, and the Ge/SiGe multiple quantum wells on Si. The fundamentals of photoluminescence physics in the different Ge structures are discussed briefly.

  4. SiC epitaxy growth using chloride-based CVD

    International Nuclear Information System (INIS)

    Henry, Anne; Leone, Stefano; Beyer, Franziska C.; Pedersen, Henrik; Kordina, Olof; Andersson, Sven; Janzén, Erik

    2012-01-01

    The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: addition of hydrogen chloride to the standard precursors or using methyltrichlorosilane, a molecule that contains silicon, carbon and chlorine. Optical and electrical techniques are used to characterize the layers.

  5. Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives

    Science.gov (United States)

    Găină, Luiza; Cristea, Castelia; Moldovan, Claudia; Porumb, Dan; Surducan, Emanoil; Deleanu, Călin; Mahamoud, Abdalah; Barbe, Jacques; Silberg, Ioan A.

    2007-01-01

    Application of a dynamic microwave power system in the chemical synthesis of some phenothiazine and quinoline derivatives is described. Heterocyclic ring formation, aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensation reactions were performed on solid support, or under solvent free reaction conditions. The microwave-assisted Duff formylation of phenothiazine was achieved. Comparison of microwave-assisted synthesis with the conventional synthetic methods demonstrates advantages related to shorter reaction times and in some cases better reaction yields.

  6. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films.

    Science.gov (United States)

    Kaspar, Tiffany C; Hong, Seungbum; Bowden, Mark E; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R; Comes, Ryan B; Ramuhalli, Pradeep; Henager, Charles H

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La 2 Ti 2 O 7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO 3 (001), SrTiO 3 (110), and rutile TiO 2 (110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO 2 (110) results in epitaxial La 2/3 TiO 3 , an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La 2/3 TiO 3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO 2 (110) is a promising route to realize La 2/3 TiO 3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

  7. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R.; Comes, Ryan B.; Ramuhalli, Pradeep; Henager, Charles H.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-ray diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.

  8. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  9. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    Science.gov (United States)

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  10. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  11. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  12. Quantum Nanostructures by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  13. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  14. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  15. Control growth of silicon nanocolumns' epitaxy on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Su Kong, E-mail: sukong1985@yahoo.com.my [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia); Dee, Chang Fu [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Yahya, Noorhana [Universiti Teknologi PETRONAS, Faculty of Science and Information Technology (Malaysia); Rahman, Saadah Abdul [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia)

    2013-04-15

    The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius {approx}21 {+-} 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10-20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns' decorated SiNW arrays are discussed in the text.

  16. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  17. GaN epitaxial layers grown on multilayer graphene by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  18. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  19. Application of microwave heating to a polyesterification plant

    NARCIS (Netherlands)

    Komorowska-Durka, M.

    2015-01-01

    Utilizing microwave irradiation, a fundamentally different method of the energy transfer, to the chemical process units can potentially be advantageous compared to the conventional heating, inter alia due to the selective nature of interaction of the microwaves with the matter. This doctoral

  20. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  1. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  2. Comparative Analysis of Chemical Composition, Antioxidant and Antibacterial Activities of Mentha rotundifolia Essential oils from Algeria extracted by microwave and hydrodistillation

    Directory of Open Access Journals (Sweden)

    Nacéra HADDACHE

    2017-04-01

    Full Text Available The essential oil of Mentha rotundifolia (L. Huds growing wild from East Algeria (Naciria at 60Km in East of Algiers obtained by hydrodistillation (HD° and a microwave distillation process (MD have been analysed by means of GC-FID and GC/MS in combination with retention indices. In total, 54 constituents were identified (accounting for 96.7 and 95.6% in HD and MD oils, respectively. The main components were piperitone oxide (25.1 and 29.1% in HD and MD oils, respectively, piperitenone oxide (8.9 – 11.8%, terpinen-4-ol (9.3 – 3.4%, β-caryophyllene (5.4 – 7.3%, allo-aromadendrene (5.3 - 6.4% and Dgermacrène (5.4 – 7.1%. In comparison with HD, MD allows to obtain oil in a very short time, with the reduction of solvent used similar yields, comparable qualities and substantial savings of energy. The antioxidant activity was determined according to the ability of the tested samples to scavenge the free radicals 2,2- diphenyl-1-picrylhydrazyl (DPPH*. The essential oil were slightly active (32.6 and 21.8% in HD and MD oils, respectively comparing with BHT (64.7%. The antibacterial activities of the essential oils indicated that Staphylococcus aureus was the more sensitive strain tested to the oils of Mentha rotundifolia with the strongest inhibition zone 28.3 for HD and 26.5 mm for MO.

  3. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  4. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  5. Photoenhanced atomic layer epitaxy. Hikari reiki genshiso epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y. (Toshiba corp., Tokyo (Japan))

    1991-10-01

    The growth temperature range was greatly expanded of atomic layer epitaxy (ALE) expected as the growth process of ultra-thin stacks. Ga layers and As layers were formed one after the other on a GaAs substrate in the atmosphere of trimethylgallium (TMG) or AsH{sub 2} supplied alternately, by KrF excimer laser irradiation normal to the substrate. As a result, the growth temperature range was 460-540{degree}C nearly 10 times that of 500 {plus minus} several degrees centigrade in conventional thermal growth method. Based on the experimental result where light absorption of source molecules adsorbed on a substrate surface was larger than that under gaseous phase condition, new adsorbed layer enhancement model was proposed to explain above irradiation effect verifying it by experiments. As this photoenhancement technique is applied to other materials, possible fabrication of new crystal structures as a super lattice with ultra-thin stacks of single atomic layers is expected because of a larger freedom in material combination for hetero-ALE. 11 refs., 7 figs.

  6. Microwave Technologies as Part of an Integrated Weed Management Strategy: A Review

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available Interest in controlling weed plants using radio frequency or microwave energy has been growing in recent years because of the growing concerns about herbicide resistance and chemical residues in the environment. This paper reviews the prospects of using microwave energy to manage weeds. Microwave energy effectively kills weed plants and their seeds; however, most studies have focused on applying the microwave energy over a sizable area, which requires about ten times the energy that is embodied in conventional chemical treatments to achieve effective weed control. A closer analysis of the microwave heating phenomenon suggests that thermal runaway can reduce microwave weed treatment time by at least one order of magnitude. If thermal runaway can be induced in weed plants, the energy costs associated with microwave weed management would be comparable with chemical weed control.

  7. Microwave-assisted 'greener' synthesis of organics and nanomaterials

    Science.gov (United States)

    Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...

  8. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  9. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  10. Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2016-01-01

    Soil can contain large numbers of endocrine disrupting chemicals (EDCs). The varied physicochemical properties of EDCs constitute a great challenge to their determination in this type of environmental matrix. In this work, an analytical method was developed for the simultaneous determination of various classes of EDCs, including parabens, alkylphenols, phenylphenols, bisphenol A, and triclosan, in soils, sediments, and sewage sludge. The method uses microwave-assisted extraction (MAE) in combination with continuous solid-phase extraction for determination by gas chromatography-mass spectrometry. A systematic comparison of the MAE results with those of ultrasound-assisted and Soxhlet extraction showed MAE to provide the highest extraction efficiency (close to 100%) in the shortest extraction time (3 min). The proposed method provides a linear response over the range 2.0 - 5000 ng kg(-1) and features limits of detection from 0.5 to 4.5 ng kg(-1) depending on the properties of the EDC. The method was successfully applied to the determination of target compounds in agricultural soils, pond and river sediments, and sewage sludge. The sewage sludge samples were found to contain all target compounds except benzylparaben at concentration levels from 36 to 164 ng kg(-1). By contrast, the other types of samples contained fewer EDCs and at lower concentrations (5.6 - 84 ng kg(-1)).

  11. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  12. Fuel gas production by microwave plasma in liquid

    International Nuclear Information System (INIS)

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya

    2006-01-01

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid

  13. Properties of Hg1-xCdxTe epitaxial films grown on (211)CdTe and (211)CdZnTe

    International Nuclear Information System (INIS)

    Di Stefano, M.C.; Gilabert, U.; Heredia, E.; Trigubo, A.B.

    2004-01-01

    Hg 1-x Cd x Te (MCT) epitaxial films have been grown employing single crystalline substrates of CdTe and Cd 0.96 Zn 0.04 Te with (211)Cd and (211)Te crystalline orientations. The Isothermal Vapor Phase Epitaxy (ISOVPE) technique without Hg overpressure has been used for the epitaxial growth. Substrates and films were characterized by optical microscopy, chemical etching and X ray diffraction (Laue technique). The electrical properties were determined by Hall effect measurements. The characterization results allowed to evaluate the crystalline quality of MCT films. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  15. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  16. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  17. Simultaneous Microwave Drying and Disinfectionof Flooded Books

    Czech Academy of Sciences Publication Activity Database

    Hájek, Milan; Ďurovič, M.; Paulusová, H.; Weberová, L.

    2011-01-01

    Roč. 31, č. 1 (2011), s. 1-7 ISSN 0034-5806 Institutional research plan: CEZ:AV0Z40720504 Keywords : drying * disinfection * microwave Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.206, year: 2011 http://www.degruyter.com/view/j/rest.2011.32.issue-1/rest.2011.001/rest.2011.001. xml

  18. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O.; Bhasin, Kul B.

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions. (For individual items see A93-27244 to A93-27248)

  19. Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasma-enhanced chemical vapour deposition system

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Ashcheulov, Petr; Čada, Martin; Fekete, Ladislav; Hubík, Pavel; Klimša, Ladislav; Olejníček, Jiří; Remeš, Zdeněk; Jirka, Ivan; Janíček, P.; Bedel-Pereira, E.; Kopeček, Jaromír; Mistrík, J.; Mortet, Vincent

    2015-01-01

    Roč. 212, č. 11 (2015), s. 2418-2423 ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * electrical conductivity * nanocrystalline materials * optical emission spectroscopy * plasma enhanced chemical vapour deposition * SiC Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  20. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  1. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  2. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  3. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  4. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  5. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  6. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  7. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence

    International Nuclear Information System (INIS)

    Bae, I.-T.; Ishimaru, Manabu; Hirotsu, Yoshihiko; Sickafus, Kurt E.

    2004-01-01

    We have investigated the effect of radiation damage and impurity concentration on solid phase epitaxial growth of amorphous silicon carbide (SiC) as well as microstructures of recrystallized layer using transmission electron microscopy. Single crystals of 6H-SiC with (0001) orientation were irradiated with 150 keV Xe ions to fluences of 10 15 and 10 16 /cm 2 , followed by annealing at 890 deg. C. Full epitaxial recrystallization took place in a specimen implanted with 10 15 Xe ions, while retardation of recrystallization was observed in a specimen implanted with 10 16 /cm 2 Xe ions. Atomic pair-distribution function analyses and energy dispersive x-ray spectroscopy results suggested that the retardation of recrystallization of the 10 16 Xe/cm 2 implanted sample is attributed to the difference in amorphous structures between the 10 15 and 10 16 Xe/cm 2 implanted samples, i.e., more chemically disordered atomistic structure and higher Xe impurity concentration in the 10 16 Xe/cm 2 implanted sample

  8. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A.

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

  9. A Review of Microwave-Assisted Reactions for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Saifuddin Nomanbhay

    2017-06-01

    Full Text Available The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  10. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  11. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  12. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  13. MICROWAVES IN ORGANIC SYNTHESIS

    Science.gov (United States)

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  14. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  15. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  17. Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature

    Science.gov (United States)

    Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.

    2018-06-01

    Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.

  18. Fast surface modification by microwave assisted click reactions on silicon substrates

    NARCIS (Netherlands)

    Haensch, C.; Erdmenger, T.; Fijten, M.W.M.; Höppener, S.; Schubert, U.S.

    2009-01-01

    Microwave irradiation has been used for the chemical modification of functional monolayers on silicon surfaces. The thermal and chemical stability of these layers was tested under microwave irradiation to investigate the possibility to use this alternative heating process for the surface

  19. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  20. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  1. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Science.gov (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.

    2017-02-01

    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  2. New phenomena in epitaxial growth: solid films on quasicrystalline substrates

    International Nuclear Information System (INIS)

    Fournee, V; Thiel, P A

    2005-01-01

    An overview is given of the research conducted in the field of solid film growth on quasiperiodic surfaces. An atomistic description of quasicrystalline surfaces is presented and discussed in relation to bulk structural models. The various systems for which thin film growth has been attempted so far are reviewed. Emphasis is placed on the nucleation mechanisms of the solid films, on their growth modes in relation to the nature of the deposited metals, on the possibility of intermixing or alloying at the interface and on the epitaxial relationships at the crystal-quasicrystal interfaces. We also describe situations where the deposited elements adopt a quasiperiodic structure, which opens up the possibility of extending our understanding of the relation between quasiperiodicity and the physical properties of such structurally and chemically complex solids. (topical review)

  3. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  4. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    Science.gov (United States)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-06-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  5. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    Science.gov (United States)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-04-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  6. Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si

    International Nuclear Information System (INIS)

    Seo, J.W.; Fompeyrine, J.; Guiller, A.; Norga, G.; Marchiori, C.; Siegwart, H.; Locquet, J.-P.

    2003-01-01

    We have studied the growth of epitaxial La 2 Zr 2 O 7 thin films on (111) Si. Although the interface structure can be strongly affected by the Si oxidation during the deposition process, epitaxial growth of La 2 Zr 2 O 7 was obtained. A detailed study by means of transmission electron microscopy reveals two types of structures (pyrochlore and fluorite) with the same average chemical composition but strong differences in reactivity and interface formation. The structural complexity of the ordered pyrochlore structure seems to prevent excess oxygen diffusion and interfacial SiO 2 formation

  7. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  8. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  9. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  10. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  11. Defect distribution in low-temperature molecular beam epitaxy grown Si/Si(100), improved depth profiling with monoenergetic positrons

    International Nuclear Information System (INIS)

    Szeles, C.; Asoka-Kumar, P.; Lynn, K.G.; Gossmann, H.; Unterwald, F.C.; Boone, T.

    1995-01-01

    The depth distribution of open-volume defects has been studied in Si(100) crystals grown by molecular beam epitaxy at 300 degree C by the variable-energy monoenergetic positron beam technique combined with well-controlled chemical etching. This procedure gave a 10 nm depth resolution which is a significant improvement over the inherent depth resolving power of the positron beam technique. The epitaxial layer was found to grow defect-free up to 80 nm, from the interface, where small vacancy clusters, larger than divacancies, appear. The defect density then sharply increases toward the film surface. The result clearly shows that the nucleation of small open-volume defects is a precursor state to the breakdown of epitaxy and to the evolution of an amorphous film

  12. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Hao [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lin, Jheng-Cyuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Liu, Heng-Jui; Do, Thi Hien [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Zhu, Yuan-Min; Zhan, Qian [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ha, Thai Duy; Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chiu, Po-Wen, E-mail: pwchiu@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-20

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar to those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  13. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  14. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  15. Microwave photonics shines

    Science.gov (United States)

    Won, Rachel

    2011-12-01

    The combination of microwave photonics and optics has advanced many applications in defence, wireless communications, imaging and network infrastructure. Rachel Won talks to Jianping Yao from the University of Ottawa in Canada about the importance of this growing field.

  16. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  17. Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Roeloffzen, Chris; Heideman, René; Leinse, Arne; Sales Maicas, Salvador; Capmany Francoy, José

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  18. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  19. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  20. Microwave and RF assisted chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Barbero, R.S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    Work during this reporting period has focused on the development of a CVI technique for rapid production of carbon/carbon and alumina composite systems. The focus of the alumina effort is towards porous materials for membrane supports and hot gas filtration. Industrial interest in these applications include companies such as: Dow, Westinghouse, Amoco and DuPont. Applications for the carbon materials are numerous and include: brakes, sporting goods, biomedical materials, flaps and seals for thrust control, after burner nozzles, turbine engine flaps and rotors. This effort will focus on aircraft brakes. A collaboration is underway with Hitco a major producer of carbon/carbon materials.

  1. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  2. The Effect of Microwave Radiation on Prickly Paddy Melon (Cucumis myriocarpus

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available The growing list of herbicide-resistant biotypes and environmental concerns about chemical use has prompted interest in alternative methods of managing weeds. This study explored the effect of microwave energy on paddy melon (Cucumis myriocarpus plants, fruits, and seeds. Microwave treatment killed paddy melon plants and seeds. Stem rupture due to internal steam explosions often occurred after the first few seconds of microwave treatment when a small aperture antenna was used to apply the microwave energy. The half lethal microwave energy dose for plants was 145 J/cm2; however, a dose of at least 422 J/cm2 was needed to kill seeds. This study demonstrated that a strategic burst of intense microwave energy, focused onto the stem of the plant is as effective as applying microwave energy to the whole plant, but uses much less energy.

  3. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    International Nuclear Information System (INIS)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-01-01

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  4. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  5. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    International Nuclear Information System (INIS)

    Pohl, Pawel; Zapata, Israel Jimenez; Bings, Nicolas H.; Voges, Edgar; Broekaert, Jose A.C.

    2007-01-01

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH 4 concentration, the concentration of HCl, HNO 3 and H 2 SO 4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 μg ml -1 . The microstrip plasma tolerated the introduction of 4.2 ml min -1 of H 2 in the Ar working gas, which corresponded to an H 2 /Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H β line was of the order of 5500 K and 1.50 . 10 14 cm -3 , respectively. Detection limits (3σ) of 18 ng ml -1 for As and 31 ng ml -1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml -1 level in a galvanic bath solution containing 2.5% of NiSO 4 . Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g -1 and a value of 144 ± 4 μg g -1 was found

  6. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  7. Growth of pseudomorphic structures through organic epitaxy

    International Nuclear Information System (INIS)

    Kaviyil, Sreejith Embekkat; Sassella, Adele; Borghesi, Alessandro; Campione, Marcello; Su Genbo; He Youping; Chen Chenjia

    2012-01-01

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor α-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  8. Performances of epitaxial GaAs p/i/n structures for X-ray imaging

    CERN Document Server

    Sun, G C; Haguet, V; Pesant, J C; Montagne, J P; Lenoir, M; Bourgoin, J C

    2002-01-01

    We have realized 150 mu mx150 mu m pixels using ion implantation followed by photolithography, metallic contact evaporation and chemical etching on about 200 mu m thick GaAs epitaxial layers. These layers were grown on n sup + and p sup + substrates by an already described Chemical Reaction technique, which is economical, non-polluting and can attain growth rates of several microns per minute. The mesa p sup + /i/n sup + pixel were characterized using current-voltage and capacitance-voltage measurements. The charge collection efficiency was evaluated by photoconductivity measurements under typical conditions of standard radiological examinations.

  9. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  10. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multi-Layered Organic Epitaxial Nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Cadelano, Michele; Quochi, Francesco

    2015-01-01

    Multi-layered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials due to their well-defined morphology, high luminescence efficiencies, and color tunability. We resort to temperature-dependent cw and picosecond photoluminescence (PL......) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multi-layered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T), serving as exciton donor and acceptor material, respectively. The high probability for RET processes...... is confirmed by Quantum Chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P...

  11. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa.

    1994-01-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author)

  12. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa

    1994-11-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author).

  13. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    Science.gov (United States)

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  14. Superconductivity of Rock-Salt Structure LaO Epitaxial Thin Film.

    Science.gov (United States)

    Kaminaga, Kenichi; Oka, Daichi; Hasegawa, Tetsuya; Fukumura, Tomoteru

    2018-06-06

    We report a superconducting transition in a LaO epitaxial thin film with the superconducting transition onset temperature ( T c ) at around 5 K. This T c is higher than those of other lanthanum monochalcogenides and opposite to their chemical trend: T c = 0.84, 1.02, and 1.48 K for LaX (X = S, Se, Te), respectively. The carrier control resulted in a dome-shaped T c as a function of electron carrier density. In addition, the T c was significantly sensitive to epitaxial strain in spite of the highly symmetric crystal structure. This rock-salt superconducting LaO could be a building block to design novel superlattice superconductors.

  15. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    Science.gov (United States)

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  16. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are ∼4% expanded uniformly in-plane (0001), and ∼9% and ∼4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs

  17. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  18. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    International Nuclear Information System (INIS)

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui; Srinivasakannan, C.; Chen, Guo; Peng, Jinhui

    2014-01-01

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite

  19. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, C.H., E-mail: hadlee.joseph@artov.imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Electronics Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome (Italy); Sardi, G.M. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Tuca, S.S.; Gramse, G. [Johannes Kepler University, Institute for Biophysics, Gruberstrasse 40, A-4020 Linz (Austria); Lucibello, A.; Proietti, E. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kienberger, F. [Keysight Technologies Austria GmbH, Keysight Laboratories, Gruberstrasse 40, A-4020 Linz (Austria); Marcelli, R. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-12-15

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S{sub 11} are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S{sub 11} with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  20. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  1. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  2. Structural and electrical properties of c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 thin films

    CERN Document Server

    Zhang, S T; Sun, H P; Pan Xiao Qing; Tan, W S; Liu, Z G; Ming, N B

    2003-01-01

    c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 (SBTi) thin films were fabricated on (001)SrTiO sub 3 (STO) single-crystal substrates and Pt/Ti sub 2 /SiO sub 2 /Si substrates respectively, by pulsed laser deposition (PLD). Structures of the films were systematically characterized by x-ray diffraction (XRD), including theta-2 theta-scans, rocking curve scans and phi-scans, atomic force microscopy and transmission electron microscopy (TEM). The epitaxial orientation relation of the SBTi films on STO is established by selected-area electron diffraction and XRD phi-scans to be (001)SBTi || (001)STO, [11-bar 0]SBTi || [010]STO. Cross-sectional high-resolution TEM studies on the epitaxial SBTi film revealed that SBTi is a single-phase material. A special kind of irrational atomic shift along the [001] direction was observed and is discussed in detail. By using an evanescent microwave probe (EMP), the room-temperature dielectric constant of the epitaxial SBTi film was measured to be 21...

  3. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  4. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  5. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  6. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  7. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  8. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  9. Compact microwave ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; Walther, S.; Owren, H.W.

    1985-05-01

    A small microwave ion source has been fabricated from a quartz tube with one end enclosed by a two grid accelerator. The source is also enclosed by a cavity operated at a frequency of 2.45 GHz. Microwave power as high as 500 W can be coupled to the source plasma. The source has been operated with and without multicusp fields for different gases. In the case of hydrogen, ion current density of 200 mA/cm -2 with atomic ion species concentration as high as 80% has been extracted from the source

  10. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  11. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  12. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  13. Process characteristics for microwave assisted hydrothermal carbonization of cellulose.

    Science.gov (United States)

    Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming

    2018-07-01

    The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. RESEARCH OF MICROWAVE'S INFLUENCE ON QUALITY OF DELICIOUS PRODUCTS FROM BEEF

    Directory of Open Access Journals (Sweden)

    T. Kozlova

    2012-03-01

    Full Text Available Influence of time of microwave fluctuations on organoleptic indicators, chemical composition, exit and periods of storage of a meat product is investigated. It is established that the use of microwave technology in the beef delicacy reduces the salting by 3 times, and baking by 1,2 times. The yield of finished products increased by 2 times.

  15. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  16. Microwave stability at transition

    International Nuclear Information System (INIS)

    Holt, J.A.; Colestock, P.L.

    1995-05-01

    The question of microwave stability at transition is revisited using a Vlasov approach retaining higher order terms in the particle dynamics near the transition energy. A dispersion relation is derived which can be solved numerically for the complex frequency in terms of the longitudinal impedance and other beam parameters. Stability near transition is examined and compared with simulation results

  17. Commercial microwave space power

    International Nuclear Information System (INIS)

    Siambis, J.; Gregorwich, W.; Walmsley, S.; Shockey, K.; Chang, K.

    1991-01-01

    This paper reports on central commercial space power, generating power via large scale solar arrays, and distributing power to satellites via docking, tethering or beamed power such as microwave or laser beams, that is being investigated as a potentially advantageous alternative to present day technology where each satellite carries its own power generating capability. The cost, size and weight for electrical power service, together with overall mission requirements and flexibility are the principal selection criteria, with the case of standard solar array panels based on the satellite, as the reference point. This paper presents and investigates a current technology design point for beamed microwave commercial space power. The design point requires that 25 kW be delivered to the user load with 30% overall system efficiency. The key elements of the design point are: An efficient rectenna at the user end; a high gain, low beam width, efficient antenna at the central space power station end, a reliable and efficient cw microwave tube. Design trades to optimize the proposed near term design point and to explore characteristics of future systems were performed. Future development for making the beamed microwave space power approach more competitive against docking and tethering are discussed

  18. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  19. Open microwave cavities

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr; Rotter, I.; Mueller, M.; Persson, C.; Pichugin, Konstantin N.

    2001-01-01

    Roč. 9, - (2001), s. 484-487 ISSN 1386-9477 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : microwave cavity * resonances Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.009, year: 2001

  20. New applications of microwave

    International Nuclear Information System (INIS)

    Ejiri, A.; Tanaka, K.; Kawahata, K.; Ito, Y.; Tokuzawa, T.

    2000-01-01

    Interferometry and reflectometry measure phase of the transparent or the reflected wave to derive the information on plasma density. Homodyne reflectometry for an interlock and transmissiometry for sheet plasma measurements could be another class of microwave diagnostics, which does not measure the phase. (author)

  1. Hybrid Microwave Technology

    International Nuclear Information System (INIS)

    Wicks, G.G.

    2001-01-01

    A team associated with a Federal Laboratory, academia, and industry has been actively developing new microwave technology for treatment and remediation of a variety of potentially hazardous materials for almost a decade. This collaboration has resulted in unique equipment and processes with potential applicability to many fields, including disposition of electronic circuitry and components, medical wastes, radioactive materials and recycling of used tires

  2. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  3. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  4. Microwave plasmas generated in bubbles immersed in liquids for hydrocarbons reforming

    International Nuclear Information System (INIS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L

    2016-01-01

    We present a computational modeling study of microwave plasma generated in cluster of atmospheric-pressure argon bubbles immersed in a liquid. We demonstrate that the use of microwaves allows the generation of a dense chemically active non-equilibrium plasma along the gas–liquid interface. Also, microwaves allow generation of overdense plasma in all the bubbles considered in the cluster which is possible because the collisional skin depth of the wave exceeds the bubble dimension. These features of microwave plasma generation in bubbles immersed in liquids are highly desirable for the large-scale liquid hydrocarbon reforming technologies. (letter)

  5. Dynamic of ozone formation in nanosecond microwave discharges

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M.

    1995-01-01

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local open-quotes ozone holesclose quotes. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength λ = 0.8 and 3cm, pulse duration τ = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10 3 Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading

  6. Strain in epitaxial high-index Bi{sub 2}Se{sub 3}(221) films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Chen, Weiguang [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Guo, Xin; Ho, Wingkin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Jia, Jinfeng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, Department of Physics and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Xie, Maohai, E-mail: mhxie@hku.hk [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-02-28

    Highlights: • High-index, off c-axis, Bi{sub 2}Se{sub 3} has been grown by molecular beam epitaxy on In{sub 2}Se{sub 3}. • A retarded strain relaxation process in such high-index Bi{sub 2}Se{sub 3} is observed, enabling experimentally probe strain effect on topological insulators. • It has been shown by calculation that the Dirac electrons participate in chemical bonding at the heterointerface. - Abstract: High-index Bi{sub 2}Se{sub 3}(221) film has been grown on In{sub 2}Se{sub 3}-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi{sub 2}Se{sub 3}(221) can be attributed to the layered structure of Bi{sub 2}Se{sub 3} crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi{sub 2}Se{sub 3} and In{sub 2}Se{sub 3} by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  7. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  8. Epitaxy of advanced nanowire quantum devices

    Science.gov (United States)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  9. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  10. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC

    NARCIS (Netherlands)

    Iezhokin, I.; Offermans, P.; Brongersma, S.H.; Giesbers, A.J.M.; Flipse, C.F.J.

    2013-01-01

    We have measured the electrical response to NO2, N2, NH3, and CO for epitaxial graphene and quasi freestanding epitaxial graphene on 6H-SiC substrates. Quasi freestanding epitaxial graphene shows a 6 fold increase in NO2 sensitivity compared to epitaxial graphene. Both samples show a sensitivity

  11. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  12. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    International Nuclear Information System (INIS)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-01-01

    We report the growth and characterization of III-nitride ternary thin films (Al x Ga 1−x N, In x Al 1−x N and In x Ga 1−x N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures

  13. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Directory of Open Access Journals (Sweden)

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  14. Microwave heat treatment as a substitute for conventional treatment of palm oil fruits

    International Nuclear Information System (INIS)

    Mujahid H Al-Fayadh; Nor Azura Masabbir Ali

    1996-01-01

    Microwave energy has become a sound method of heat treatment because of its high penetration power, cleanliness and possible economic significance. In this research, microwave heat was used as a substitute for conventional blanching method of palm oil fruits. Microwave treatment at 2450 MHz and 800 watts gave very close color and frn,frying characteristics to oil of blanched fruits after one minute exposure time. However, five minutes of microwave heat gave severe husk oil discoloration after 49 hours of deep frying, compared to all oils extracted from fruits treated by either low, microwave exposure time or conventional steam treatment. Kernel oil, after five minutes of microwave treatment, was less discolored than both steam or microwave-treated fruits for one minute. More carotenes and discoloration compounds may be contributed to discoloration during microwave treatments. Oil chemical constants of both husk and kernel oils treated by microwave heat were close to those treated by conventional heat. Further research is needed to investigate detailed oil characteristics and evaluate the feasibility study for using microwave energy, as a substitute for conventional heat in palm oil industry

  15. Contribution of numerical simulation to silicon carbide bulk growth and epitaxy

    International Nuclear Information System (INIS)

    Meziere, Jerome; Pons, Michel; Cioccio, Lea Di; Blanquet, Elisabeth; Ferret, Pierre; Dedulle, Jean-Marc; Baillet, Francis; Pernot, Etienne; Anikin, Michail; Madar, Roland; Billon, Thierry

    2004-01-01

    High temperature epitaxial processes for SiC bulk and thin films by physical vapour transport and chemical vapour deposition are reviewed from an academic point of view using heat and mass transfer modelling and simulation. The objective is to show that this modelling approach could provide information on fabrication and characterization for the improvement of the knowledge of the growth history. Recent results of our integrated research programme on SiC, taking into account the fabrication, process modelling and characterization, will be presented

  16. Atomistics of Ge deposition on Si(100) by atomic layer epitaxy.

    Science.gov (United States)

    Lin, D S; Wu, J L; Pan, S Y; Chiang, T C

    2003-01-31

    Chlorine termination of mixed Ge/Si(100) surfaces substantially enhances the contrast between Ge and Si sites in scanning tunneling microscopy observations. This finding enables a detailed investigation of the spatial distribution of Ge atoms deposited on Si(100) by atomic layer epitaxy. The results are corroborated by photoemission measurements aided by an unusually large chemical shift between Cl adsorbed on Si and Ge. Adsorbate-substrate atomic exchange during growth is shown to be important. The resulting interface is thus graded, but characterized by a very short length scale of about one monolayer.

  17. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    J. Wu

    2015-06-01

    Full Text Available Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  18. Real time ellipsometry for monitoring plasma-assisted epitaxial growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Brown, April S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, Tong-Ho [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, Soojeong [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States)

    2006-10-31

    GaN is grown on Si-face 4H-SiC(0 0 0 1) substrates using remote plasma-assisted methods including metalorganic chemical vapour deposition (RP-MOCVD) and molecular beam epitaxy (MBE). Real time spectroscopic ellipsometry is used for monitoring all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

  19. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-10-05

    We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.

  20. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin; DeFilippo, Anthony; Chen, Jyh-Yuan; Dibble, Robert; Nishiyama, Atsushi; Ikeda, Yuji

    2013-01-01

    -thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure

  1. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  2. Substrate-induced magnetism in epitaxial graphene buffer layers.

    Science.gov (United States)

    Ramasubramaniam, A; Medhekar, N V; Shenoy, V B

    2009-07-08

    Magnetism in graphene is of fundamental as well as technological interest, with potential applications in molecular magnets and spintronic devices. While defects and/or adsorbates in freestanding graphene nanoribbons and graphene sheets have been shown to cause itinerant magnetism, controlling the density and distribution of defects and adsorbates is in general difficult. We show from first principles calculations that graphene buffer layers on SiC(0001) can also show intrinsic magnetism. The formation of graphene-substrate chemical bonds disrupts the graphene pi-bonds and causes localization of graphene states near the Fermi level. Exchange interactions between these states lead to itinerant magnetism in the graphene buffer layer. We demonstrate the occurrence of magnetism in graphene buffer layers on both bulk-terminated as well as more realistic adatom-terminated SiC(0001) surfaces. Our calculations show that adatom density has a profound effect on the spin distribution in the graphene buffer layer, thereby providing a means of engineering magnetism in epitaxial graphene.

  3. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    International Nuclear Information System (INIS)

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-01-01

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10 -10 Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry

  4. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Chen, S.Y.; Chen, L.J.

    2006-01-01

    Self-assembled epitaxial NiSi 2 nanowires have been fabricated on Si(001) by reactive deposition epitaxy (RDE). The RDE method promoted nanowire growth since it provides deposited atoms sufficient kinetic energy for movement on the Si surface during the growth of silicide islands. The twin-related interface between NiSi 2 and Si is directly related to the nanowire formation since it breaks the symmetry of the surface and leads to the asymmetric growth. The temperature of RDE was found to greatly influence the formation of nanowires. By RDE at 750 deg. C, a high density of NiSi 2 nanowires was formed with an average aspect ratio of 30

  5. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).

    Science.gov (United States)

    Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick

    2018-03-26

    Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.

  6. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  7. Point defect balance in epitaxial GaSb

    International Nuclear Information System (INIS)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  8. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  9. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  10. One-step Ge/Si epitaxial growth.

    Science.gov (United States)

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  11. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  12. Characteristics of the epitaxy of InGaN-based light-emitting diodes grown by nanoscale epitaxial lateral overgrowth using a nitrided titanium buffer layer

    International Nuclear Information System (INIS)

    Shieh, Chen-Yu; Li, Zhen-Yu; Chang, Jenq-Yang; Chi, Gou-Chung

    2015-01-01

    In this work, a buffer layer of nitrided titanium (Ti) achieved through the nitridation of a Ti metal layer on a sapphire substrate was used for the epitaxial growth of InGaN-based light-emitting diodes (LEDs) achieved by low pressure metal-organic chemical vapor deposition. The effect of in-situ Ti metal nitridation on the performance of these InGaN-based LEDs was then investigated. It was very clear that the use of the nitrided Ti buffer layer (NTBL) induced the formation of a nanoscale epitaxial lateral overgrowth layer during the epitaxial growth. When evaluated by Raman spectroscopy, this epi-layer exhibited large in-plane compressive stress releasing with a Raman shift value of 567.9 cm -1 . Cathodoluminescence spectroscopy and transmission electron microscopy results indicated that the InGaN-based LEDs with an NTBL have improved crystal quality, with a low threading dislocations density being yielded via the strain relaxation in the InGaN-based LEDs. Based on the results mentioned above, the electroluminescence results indicate that the light performance of InGaN-based LEDs with an NTBL can be enhanced by 45% and 42% at 20 mA and 100 mA, respectively. These results suggest that the strain relaxation and quality improvement in the GaN epilayer could be responsible for the enhancement of emission power. - Highlights: • The crystal-quality of InGaN-based LEDs with NTBL by NELOG was improved. • The InGaN-based LEDs with NTBL have strain releases by NELOG. • The optical properties of InGaN-based LEDs were shown by CL and EL measurements

  13. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  14. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  15. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  16. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  17. Submicron FETs Using Molecular Beam Epitaxy.

    Science.gov (United States)

    1981-01-01

    2rin w2Cgs Req + 2(rw 2Cg2 Req + rin 2Reqgs Podell 9 has found empirically for one-micron gate length FETs that R =1.25 (10) eq gm Using Eq. (10) in...Transmission, Modulation, and Noise (McGraw- Hill, NY, 1959), p. 223. 9. A. Podell , to be published. 10. P. Wolf, "Microwave Properties of Schottky-Barrier

  18. Physico-chemical and mechanical modifications of polyethylene and polypropylene by ion implantation, micro-wave plasma, electron beam radiation and gamma ray irradiation; Modifications physico-chimiques et mecaniques du polyethylene et du polypropylene par implantation ionique, plasma micro-ondes, bombardement d`electrons et irradiation gamma

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J D

    1995-03-29

    A polyolefin surface becomes wettable when treated by micro-wave plasma or low-dose nitrogen ion implantation. A short time argon plasma treatment is sufficient to obtain polarizable peroxides on a polyolefin. X-ray photoelectron spectroscopy analyses, paramagnetic electronic resonance analyses, peroxides decomposition, wettability measurements and infrared active spectra analyses have shown that oxidized structures obtained from different treatment techniques play an important role in the interpretation of surface chemical properties of the polymer. Micro-wave plasma treatment, and in particular argon plasma treatment, yields more polarizable groups than ion implantation and is interesting for grafting. Hardness and elasticity modulus, measured by nano-indentation on a polyolefin, increase with an appropriate ion implantation dose. A 1.4 x 10{sup 17} ions.cm{sup -2} dose can multiply by 15 the hardness of high molecular weight polyethylene, and by 7 the elasticity modulus for a 30 nm depth. The viscous-plastic to quasi-elastic transition is shown. The thickness of the modified layer is over 300 nm. The study of friction between a metal sphere and a polyethylene cupula shows that ion implantation in the polymer creates a reticulated hard and elastic layer which improves its mechanical properties and reduces the erosion rate. Surface treatments on polymers used as biomaterials allow to adapt the surface properties to specific applications. 107 refs., 66 figs., 19 tabs., 4 annexes.

  19. Microwave solidification project overview

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  20. Microwave solidification project overview

    International Nuclear Information System (INIS)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included

  1. Thermoactivation of viruses by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mahnel, H.; von Brodorotti, H.S.

    1981-01-01

    Eight different viruses, suspended in drinking water, were examined for their ability to be inactivated by microwaves from a microwave oven. Up to a virus content of 10/sup 5/ TCID/sub 50//ml inactivation was successful within a few minutes of microwave treatment and occurred in parallel to the heat stability of the viruses. Evidence for direct effects of microwaves on viruses could not be detected. 7 of the viruses studied were inactivated rapidly when temperatures of 50 to 65/sup 0/C under microwave treatment were reached in the flowing water, while a bovine parvovirus was only inactivated by temperatures above 90/sup 0/C. The advantages of a thermal virus-decontamination of fluids and material by microwaves are discussed.

  2. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    Science.gov (United States)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  3. A multifunctional microwave plasma reaction apparatus and its applications

    International Nuclear Information System (INIS)

    Wang Xizhang; Wu Qiang; Hu Zheng; Xu Hua; Miao Shui; Chen Yi

    2000-01-01

    A multifunctional apparatus for microwave plasma reaction has been set up, which can be used in the fields such as chemical synthesis, surface modification, and heterogeneous catalysis. The apparatus has laid an experimental foundation for new methods, new technologies, and new train of thoughts to be explored

  4. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  5. Magnetic properties of novel epitaxial films

    International Nuclear Information System (INIS)

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc α-Fe and fcc γ-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk α-Fe. The controversial γ-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism

  6. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  7. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  8. Fluorine incorporation during Si solid phase epitaxy

    International Nuclear Information System (INIS)

    Impellizzeri, G.; Mirabella, S.; Romano, L.; Napolitani, E.; Carnera, A.; Grimaldi, M.G.; Priolo, F.

    2006-01-01

    We have investigated the F incorporation and segregation in preamorphized Si during solid phase epitaxy (SPE) at different temperatures and for several implanted-F energies and fluences. The Si samples were amorphized to a depth of 550 nm by implanting Si at liquid nitrogen temperature and then enriched with F at different energies (65-150 keV) and fluences (0.07-5 x 10 14 F/cm 2 ). Subsequently, the samples were regrown by SPE at different temperatures: 580, 700 and 800 deg. C. We have found that the amount of F incorporated after SPE strongly depends on the SPE temperature and on the energy and fluence of the implanted-F, opening the possibility to tailor the F profile during SPE

  9. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  10. Optical characterization of epitaxial semiconductor layers

    CERN Document Server

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  11. Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers

    DEFF Research Database (Denmark)

    Liu, Guangqing; Zhang, Qi; Huang, Hsin-Hui

    2016-01-01

    Polarization rotation engineering is a promising path to giant dielectric and electromechanical responses in ferroelectric materials and devices. This work demonstrates robust and reversible in- to out-of-plane polarization rotation in ultrathin (nanoscale) epitaxial (001) tetragonal PbZr0.3Ti0.7O3...... large-scale polarization rotation switching (≈60 μC cm−2) and an effective d 33 response 500% (≈250 pm V−1) larger than the PZT-R layer alone. Furthermore, this enhancement is stable for more than 107 electrical switching cycles. These bilayers present a simple and highly controllable means to design...... and optimize rotational polar systems as an alternate to traditional composition-based approaches. The precise control of the subtle interface-driven interactions between the lattice and the external factors that control polarization opens a new door to enhanced—or completely new—functional properties....

  12. Molecular beam epitaxy applications to key materials

    CERN Document Server

    Farrow, Robin F C

    1995-01-01

    In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.

  13. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  14. Twenty years of molecular beam epitaxy

    Science.gov (United States)

    Cho, A. Y.

    1995-05-01

    The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.

  15. Selective epitaxial growth of stepwise SiGe:B at the recessed sources and drains: A growth kinetics and strain distribution study

    Directory of Open Access Journals (Sweden)

    Sangmo Koo

    2016-09-01

    Full Text Available The selective epitaxial growth of Si1-xGex and the related strain properties were studied. Epitaxial Si1-xGex films were deposited on (100 and (110 orientation wafers and on patterned Si wafers with recessed source and drain structures via ultrahigh vacuum chemical vapor deposition using different growing steps and Ge concentrations. The stepwise process was split into more than 6 growing steps that ranged in thicknesses from a few to 120 nm in order to cover the wide stages of epitaxial growth. The growth rates of SiGe on the plane and patterned wafers were examined and a dependence on the surface orientation was identified. As the germanium concentration increased, defects were generated with thinner Si1-xGex growth. The defect generation was the result of the strain evolution which was examined for channel regions with a Si1-xGex source/drain (S/D structure.

  16. Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100/Si(100 substrates

    Directory of Open Access Journals (Sweden)

    Gogneau N

    2014-09-01

    Full Text Available Noelle Gogneau,1 Amira Ben Gouider Trabelsi,2 Mathieu G Silly,3 Mohamed Ridene,1 Marc Portail,4 Adrien Michon,4 Mehrezi Oueslati,2 Rachid Belkhou,3 Fausto Sirotti,3 Abdelkarim Ouerghi1 1Laboratoire de Photonique et de Nanostructures, Centre National de la Recherche Scientifique, Marcoussis, France; 2Unité des Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Université de Tunis El Manar Campus Universitaire, Tunis, Tunisia; 3Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France; 4Centre de Recherche sur l'HétéroEpitaxie et Ses Application, Centre National de la Recherche Scientifique, Valbonne, France Abstract: Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising properties. To achieve these prerequisites, many studies are being conducted on various SiC substrates. Here, we review 3C–SiC(100 epilayers grown by chemical vapor deposition on Si(100 substrates for producing graphene by solid state graphitization under ultrahigh-vacuum conditions. Based on various characterization techniques, the structural and electrical properties of epitaxial graphene layer grown on 3C–SiC(100/Si(100 are discussed. We establish that epitaxial graphene presents properties similar to those obtained using hexagonal SiC substrates, with the advantage of being compatible with current Si-processing technology. Keywords: epitaxial graphene, electronic properties, structural properties, silicon carbide 

  17. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, 15 June 1979-14 June 1980

    International Nuclear Information System (INIS)

    Wessels, B.W.

    1980-01-01

    In an effort to understand the defect structure of the ternary II-VI compound zinc sulpho-selenide, the binary compound zinc selenide was investigated. Thin single crystalline films of zinc selenide were heteroepitaxially grown on (100) GaAs. Epitaxial layers from 5 to 50 microns thick could be readily grown using a chemical vapor transport technique. The layers had an excellent morphology with few stacking faults and hillocks. Detailed epitaxial growth kinetics were examined as a function of temperature and reactant concentration. It was found that hydrogen flow rate, source and substrate temperature affect the growth rate of the epitaxial films. Au - ZnSe Schottky barrier diodes and ZnSe - GaAs n-p heterojunctions were prepared from the epitaxial layers. Current-voltage characteristics were measured on both types of diodes. From capacitance-voltage measurements the residual doping density of the epitaxial layers were found to be of the order of 10 14 - 10 15 cm -3 . Finally, we have begun to measure the deep level spectrum of both the Schottky barrier diodes and the heterojunctions. Deep level transient spectroscopy appears to be well suited for determining trapping states in ZnSe provided the material has a low enough resistivity

  18. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  19. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José ; Burriel, Mó nica

    2010-01-01

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation

  20. Synthesis of cocarboxylase: process intensification via microwave irradiation

    OpenAIRE

    Пинчукова, Наталия Александровна; Волошко, Александр Юрьевич; Горобец, Николай Юрьевич; Беликов, Константин Николаевич; Гудзенко, Людмила Васильевна; Чебанов, Валентин Анатольевич

    2013-01-01

    Energy saving is the key point in the development of new chemical technologies and industrial scaling of the processes of obtaining chemical reagents, functional materials, pharmaceutical substances, etc. The use of the non-classical process activation methods, including microwave radiation, known as effective heating source, allowing significant process acceleration, is a promising direction in the field of new energy-saving technologies.The paper gives the results of modeling of the process...

  1. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  2. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  3. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  4. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  5. Epitaxial patterning of thin-films: conventional lithographies and beyond

    International Nuclear Information System (INIS)

    Zhang, Wei; Krishnan, Kannan M

    2014-01-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. (topical review)

  6. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  7. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  8. Microwaves in chemistry: Another way of heating reaction mixtures

    Science.gov (United States)

    Berlan, J.

    1995-04-01

    The question of a possible "microwave activation" of chemical reaction is discussed. In fact two cases should be distinguished: homogeneous or heterogeneous reaction mixtures. In homogeneous mixtures there are no (or very low) rate enhancements compared to a conventional heating, but some influence on chemioselectivity has been observed. These effects derive from fast and mass heating of microwaves, and probably, especially under reflux, from different boiling rates and/or overheating. With heterogeneous mixtures non conventional effects probably derive from mass heating and selective overheating. This is illustrated with several reactions: Diels-Alder, naphthalene sulphonation, preparation of cyanuric acid, hydrolysis of nitriles, transposition reaction on solid support.

  9. Ceramic-glass-metal seal by microwave heating

    Science.gov (United States)

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  10. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Götsch, Thomas; Mayr, Lukas [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Stöger-Pollach, Michael [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2015-03-15

    Highlights: • Preparation of unsupported yttrium-stabilized zirconia films. • Control of ordering and epitaxy by temperature of deposition template. • Adjustment of film defectivity by deposition and post-oxidation temperature. • Reproducibility of target stoichiometry in the deposited films. • Lateral and vertical chemical homogeneity. - Abstract: Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films (“YSZ”, 8 mol% Y{sub 2}O{sub 3}) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  11. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    Microwave radiometry has shown its capabilities of observing and monitoring large-scale geophysical observables from space. Examples are sea surface temperature and surface wind over the ocean, sea ice extent, concentration and category and snow cover extent and water content. At low microwave fr...

  12. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  13. Computer-Generated Microwave Holograms.

    Science.gov (United States)

    Leming, Charles W.; Hastings, Orestes Patterson, III

    1980-01-01

    Described is the phasor method of superposition of waves. The intensity pattern from a system of microwave sources is calculated point by point on a plane corresponding to a film emulsion, and then printed and directly converted to a hologram for 3-cm microwaves. Calculations, construction, and viewing of holograms are included. (Author/DS)

  14. The cosmic microwave background

    International Nuclear Information System (INIS)

    Silk, J.

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theories expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theorists. (orig.)

  15. 2-mm microwave interferometer

    International Nuclear Information System (INIS)

    Futch, A.H.; Mortensen, W.K.

    1977-01-01

    A 2-mm microwave interferometer has been developed, and phase shift measurements have been made on the Baseball II experiment. The interferometer system employs a 140-GHz receiver for double down conversion of the plasma signal to a 60-MHz, IF frequency. The 140-GHz references signal is also down-converted and compared with the plasma signal to provide the desired phase change of the signal passing through the plasma. A feedback voltage from a 60-MHz discriminator to a voltage-controlled oscillator in the receiver provides frequency stability of the 60-MHz IF signals

  16. Microwave warning device

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A device for warning a person carrying or wearing it of the presence of dangerous microwave radiation is fully powered by the radiations being detected. A very low-wattage gas-discharge lamp is energized by a broadly or a sharply tuned receiver circuit including dipole antennas or one antenna and a ''grounding'' casing element. The casing may be largely and uniformly transparent or have different areas gradedly light-transmissive to indicate varying radiation intensities. The casing can be made in the shape of a pocket watch, fountain pen, bracelet or finger ring, etc

  17. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  18. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  19. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    International Nuclear Information System (INIS)

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  20. Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO2 Films

    Directory of Open Access Journals (Sweden)

    L. V. Saraf

    2008-01-01

    Full Text Available Ultrathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin (∼10–12 unit cells thick epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM and substrate roughness of ∼1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.

  1. Influence of in-situ deposited SiNx interlayer on crystal quality of GaN epitaxial films

    Science.gov (United States)

    Fan, Teng; Jia, Wei; Tong, Guangyun; Zhai, Guangmei; Li, Tianbao; Dong, Hailiang; Xu, Bingshe

    2018-05-01

    GaN epitaxial films with SiNx interlayers were prepared by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. The influences of deposition times and locations of SiNx interlayers on crystal quality of GaN epitaxial films were studied. Under the optimal growth time of 120 s for the SiNx interlayer, the dislocation density of GaN film is reduced to 4.05 × 108 cm-2 proved by high resolution X-ray diffraction results. It is found that when the SiNx interlayer deposits on the GaN nucleation islands, the subsequent GaN film has the lowest dislocation density of only 2.89 × 108 cm-2. Moreover, a model is proposed to illustrate the morphological evolution and associated propagation processes of TDs in GaN epi-layers with SiNx interlayers for different deposition times and locations.

  2. On the existence of and mechanism for microwave-specific reaction rate enhancement.

    Science.gov (United States)

    Dudley, Gregory B; Richert, Ranko; Stiegman, A E

    2015-04-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of "selective heating" of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement.

  3. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  4. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  5. Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxy

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Wacaser, Brent A.; Petersen, Dirch Hjorth

    2008-01-01

    deposition (CVD) or metal organic VPE (MOVPE). However, VPE of semiconducting nanowires is not compatible with several microfabrication processes due to the high synthesis temperatures and issues such as cross-contamination interfering with the intended microsystem or the VPE process. By selectively heating...... a small microfabricated heater, growth of nanowires can be achieved locally without heating the entire microsystem, thereby reducing the compatibility problems. The first demonstration of epitaxial growth of silicon nanowires by this method is presented and shows that the microsystem can be used for rapid...

  6. Purchase of Microwave Reactors for Implementation of Small-scale Microwave-accelerated Organic Chemistry Laboratory Program in Undergraduate Curriculum and Synthetic Chemistry Research at HU

    Science.gov (United States)

    2015-05-16

    and S. Shaun Murphree Journal of Chemical Education 2009 86 (2), 227 19. Microwave-Assisted Synthesis of a Natural Insecticide on Basic...NMR Spectroscopy and Molecular Modeling Roosevelt Shaw, Ashika Severin, Miguel Balfour, and Columbus Nettles Journal of Chemical Education 2005 82

  7. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  8. Microwave systems design

    CERN Document Server

    Awang, Zaiki

    2014-01-01

    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  9. Microwave hematoma detector

    Science.gov (United States)

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  10. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  11. Aquecimento em forno de microondas / desenvolvimento de alguns conceitos fundamentais Heating in microwave ovens/ developing of basic concepts

    Directory of Open Access Journals (Sweden)

    Ana Claudia R. N. Barboza

    2001-12-01

    Full Text Available The microwave oven became a common domestic equipment, due mainly to the short time spent to heat foods. One of the most interesting characteristics of the microwave oven is the selective heating. Different from the conventional oven, where the heating is not selective, the heating by microwave depends on the chemical nature of the matter. Many Students of Chemistry have no knowledge of the principles involved in this selective heating, in spite of the daily microwave oven use. The heating by microwave is feasible for chemistry courses. In discussions about the microwave absorption by the matter it is possible to explore chemical properties like: heat capacity, chemical bound, molecular structure, dipole moments, polarization and dielectric constant. This paper presents the basic principles involved in the microwave heating. It is proposed a simple and inexpensive experiment that could be developed in general chemistry courses, to illustrate the relationship between heating and the chemical properties of some solvents. Experiments to check the power of the microwave oven are also proposed.

  12. A microwave-irradiated Streptococcus agalactiae vaccine provides partial protection against experimental challenge in Nile tilapia, Oreochromis niloticus

    Science.gov (United States)

    Microwave irradiation, as opposed to formalin exposure, has not routinely been used in the preparation of killed vaccines despite the advantages of decreased chemical toxicity, ability to kill cells quickly, ease of completion requiring only a standard microwave, and potential increased protein cons...

  13. Structure and Properties of Epitaxial Dielectrics on gallium nitride

    Science.gov (United States)

    Wheeler, Virginia Danielle

    GaN is recognized as a possible material for metal oxide semiconductor field effect transistors (MOSFETs) used in high temperature, high power and high speed electronic applications. However, high gate leakage and low device breakdown voltages limit their use in these applications. The use of high-kappa dielectrics, which have both a high permittivity (ε) and high band gap energy (Eg), can reduce the leakage current density that adversely affects MOS devices. La2O3 and Sc2O 3 are rare earth oxides with a large Eg (6.18 eV and 6.3 eV respectively) and a relatively high ε (27 and 14.1 respectively), which make them good candidates for enhancing MOSFET performance. Epitaxial growth of oxides is a possible approach to reducing leakage current and Fermi level pinning related to a high density of interface states for dielectrics on compound semiconductors. In this work, La2O3 and Sc2O 3 were characterized structurally and electronically as potential epitaxial gate dielectrics for use in GaN based MOSFETs. GaN surface treatments were examined as a means for additional interface passivation and influencing subsequent oxide formation. Potassium persulfate (K2(SO4)2) and potassium hydroxide (KOH) were explored as a way to achieve improved passivation and desired surface termination for GaN films deposited on sapphire substrates by metal organic chemical vapor deposition (MOCVD). X-ray photoelectron spectroscopy (XPS) showed that KOH left a nitrogen-rich interface, while K2(SO 4)2 left a gallium-rich interface, which provides a way to control surface oxide formation. K2(SO4)2 exhibited a shift in the O1s peak indicating the formation of a gallium-rich GaOx at the surface with decreased carbon contaminants. GaO x acts as a passivating layer prior to dielectric deposition, which resulted in an order of magnitude reduction in leakage current, a reduced hysteresis window, and an overall improvement in device performance. Furthermore, K2(SO4)2 resulted in an additional 0.4 eV of

  14. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    Science.gov (United States)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  15. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  16. Molecular beam epitaxy of graphene on mica

    International Nuclear Information System (INIS)

    Lippert, G.; Dabrowski, J.; Yamamoto, Y.; Mehr, W.; Lupina, G.; Herziger, F.; Maultzsch, J.; Baringhaus, J.; Tegenkamp, C.; Lemme, M.C.

    2012-01-01

    Realization of graphene devices is often hindered by the fact that the known layer growth methods do not meet the requirements of the device fabrication in silicon mainstream technology. For example, the relatively straightforward method of decomposition of hexagonal SiC is not CMOS-compatible due to the high-thermal budget it requires [Moon et al., IEEE Electron Device Lett. 31, 260 (2010)]. Techniques based on layer transfer are restricted because of the uncertainty of residual metal contaminants, particles, and structural defects. Of interest is thus a method that would allow one to grow a graphene film directly in the device area where graphene is needed. Production of large area graphene is not necessarily required in this case, but high quality of the film and metal-free growth on an insulating substrate at temperatures below 1000 C are important requirements. We demonstrate direct growth of defect-free graphene on insulators at moderate temperatures by molecular beam epitaxy. The quality of the graphene was probed by high-resolution Raman spectroscopy, indicating a negligible density of defects. The spectra are compared with those from graphene flakes mechanically exfoliated from native graphite onto mica. These results are combined with insights from density functional theory calculations. A model of graphene growth on mica and similar substrates is proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. State memory in solution gated epitaxial graphene

    Science.gov (United States)

    Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.

    2018-06-01

    We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.

  18. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  19. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  20. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  1. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.; Buckley, M. R.; Gerbode, S. J.; Cohen, I.

    2010-01-01

    -scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics

  2. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  3. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  4. Microwave and pulsed power engineering

    International Nuclear Information System (INIS)

    Hofer, W.W.

    1984-01-01

    The Microwave and Pulsed Power Engineering Thrust Area is responsible for developing the short-term and long-term engineering resources required to support the growing microwave and pulsed power engineering requirements of several LLNL Programs. The responsibility of this Thrust Area is to initiate applicable research and development projects and to provide capabilities and facilities to permit engineers involved in these and other programs to make significant contributions. In this section, the principal projects are described: dielectric failure prediction using partial discharge analysis, coating dielectrics to increase surface flashover potential, and the microwave generator experiment

  5. Microwave Absorption Characteristics of Tire

    Science.gov (United States)

    Zhang, Yuzhe; Hwang, Jiann-Yang; Peng, Zhiwei; Andriese, Matthew; Li, Bowen; Huang, Xiaodi; Wang, Xinli

    The recycling of waste tires has been a big environmental problem. About 280 million waste tires are produced annually in the United States and more than 2 billion tires are stockpiled, which cause fire hazards and health issues. Tire rubbers are insoluble elastic high polymer materials. They are not biodegradable and may take hundreds of years to decompose in the natural environment. Microwave irradiation can be a thermal processing method for the decomposition of tire rubbers. In this study, the microwave absorption properties of waste tire at various temperatures are characterized to determine the conditions favorable for the microwave heating of waste tires.

  6. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  7. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  8. Converting a Microwave Oven into a Plasma Reactor: A Review

    Directory of Open Access Journals (Sweden)

    Victor J. Law

    2018-01-01

    Full Text Available This paper reviews the use of domestic microwave ovens as plasma reactors for applications ranging from surface cleaning to pyrolysis and chemical synthesis. This review traces the developments from initial reports in the 1980s to today’s converted ovens that are used in proof-of-principle manufacture of carbon nanostructures and batch cleaning of ion implant ceramics. Information sources include the US and Korean patent office, peer-reviewed papers, and web references. It is shown that the microwave oven plasma can induce rapid heterogeneous reaction (solid to gas and liquid to gas/solid plus the much slower plasma-induced solid state reaction (metal oxide to metal nitride. A particular focus of this review is the passive and active nature of wire aerial electrodes, igniters, and thermal/chemical plasma catalyst in the generation of atmospheric plasma. In addition to the development of the microwave oven plasma, a further aspect evaluated is the development of methodologies for calibrating the plasma reactors with respect to microwave leakage, calorimetry, surface temperature, DUV-UV content, and plasma ion densities.

  9. Numerical Analysis of Microwave Heating on Saponification Reaction

    Science.gov (United States)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  10. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  12. Microwave induced stimulation of 32Pi incorporation into phosphoinositides of rat brain synaptosomes

    International Nuclear Information System (INIS)

    Gandhi, C.R.; Ross, D.H.

    1989-01-01

    Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the 32 Pi-incorporation into phosphoinositides. The extent of 32 Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP 2 ) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate 32 Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP 2 , PIP and PI and increased PA labeling. Li + also inhibited the microwave stimulated PIP 2 , PIP and PI labeling but had no effect on PA labeling. Calcium inophore, A 23187 , inhibited the basal and microwave stimulated 32 Pi labeling of PIP and PIP 2 , stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP 2 labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings. (orig.)

  13. Element-specific ferromagnetic resonance in epitaxial Heusler spin valve systems

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, P; Jorge, E Arbelo; Jourdan, M; Elmers, H J [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Hoffmann, F; Woltersdorf, G; Back, C H, E-mail: elmers@uni-mainz.de [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2011-10-26

    Time-resolved x-ray magnetic circular dichroism was used to investigate epitaxial MgO(100)/Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al and MgO(100)/Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al/Cr/CoFe films. The precessional motion of the individual sublattice magnetization, excited by continuous microwave excitation in the range 2-10 GHz, was detected by tuning the x-ray photon energy to the L{sub 3} absorption edges of Cr, Fe and Co. The relative phase angle of the sublattice magnetization's response is smaller than the detection limit of 2{sup 0}. A weakly antiferromagnetically coupled CoFe layer causes an increase in the ferromagnetic resonance linewidth consisting of a constant offset and a component linearly increasing with frequency that we partly attribute to non-local damping due to spin pumping.

  14. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    Science.gov (United States)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a

  15. Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here the lateral epitaxial overgrowth (LEO) of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy (MBE) growth with radio frequency nitrogen plasma as a gas source. Two kinds of GaN nanostructures are defined by electron beam lithography and realized on a GaN substrate by fast atom beam etching. The epitaxial growth of GaN by MBE is performed on the prepared GaN template, and the selective growth of GaN takes place with the assistance of GaN nanostructures. The LEO of GaN produces novel GaN epitaxial structures which are dependent on the shape and the size of the processed GaN nanostructures. Periodic GaN hexagonal pyramids are generated inside the air holes, and GaN epitaxial strips with triangular section are formed in the grating region. This work provides a promising way for producing novel GaN-based devices by the LEO of GaN using the MBE technique

  16. Growth and characterization of Hg 1– Cd Te epitaxial films by ...

    Indian Academy of Sciences (India)

    Growth of Hg1–CdTe epitaxial films by a new technique called asymmetric vapour phase epitaxy (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication have ...

  17. Growth and characterization of Hg1–xCdxTe epitaxial films by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Growth of Hg1–xCdxTe epitaxial films by a new technique called asymmetric vapour phase epitaxy. (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication.

  18. Ion beam induced epitaxy in Ge- and B- coimplanted silicon

    International Nuclear Information System (INIS)

    Hayashi, N.; Hasegawa, M.; Tanoue, H.; Takahashi, H.; Shimoyama, K.; Kuriyama, K.

    1992-01-01

    The epitaxial regrowth of amorphous surface layers in and Si substrate has been studied under irradiation with 400 keV Ar + ions at the temperature range from 300 to 435degC. The amorphous layers were obtained by Ge + implantation, followed by B + implantation. The ion beam assisted epitaxy was found to be sensitive to both the substrate orientation and the implanted Ge concentration, and the layer-by-layer epitaxial regrowth seemed to be precluded in Si layers with high doses of Ge implants, e.g., 2.5 x 10 15 ions/cm 2 . Electrical activation of implanted dopant B was also measured in the recrystallized Si layer. (author)

  19. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhinav, E-mail: praka019@umn.edu; Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat, E-mail: bjalan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  20. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  1. Possibility of the use of intermediate carbidsiliconoxide nanolayers on polydiamond substrates for gallium nitride layers epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Averichkin, P. A., E-mail: P-Yugov@mail.ru; Donskov, A. A. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation); Dukhnovsky, M. P. [R & D Enterprise Istok (Russian Federation); Knyazev, S. N. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation); Kozlova, Yu. P. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Yugova, T. G.; Belogorokhov, I. A. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation)

    2016-04-15

    The results of using carbidsiliconoxide (a-C:SiO1{sub .5}) films with a thickness of 30–60 nm, produced by the pyrolysis annealing of oligomethylsilseskvioksana (CH{sub 3}–SiO{sub 1.5}){sub n} with cyclolinear (staircased) molecular structure, as intermediate films in the hydride vapor phase epitaxy of gallium nitride on polycrystalline CVD-diamond substrates are presented. In the pyrolysis annealing of (CH{sub 3}–SiO{sub 1.5}){sub n} films in an atmosphere of nitrogen at a temperature of 1060°C, methyl radicals are carbonized to yield carbon atoms chemically bound to silicon. In turn, these atoms form a SiC monolayer on the surface of a-C:SiO{sub 1.5} films via covalent bonding with silicon. It is shown that GaN islands grow on such an intermediate layer on CVD-polydiamond substrates in the process of hydride vapor phase epitaxy in a vertical reactor from the GaCl–NH{sub 3}–N{sub 2} gas mixture.

  2. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  3. The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide

    International Nuclear Information System (INIS)

    De Heer, Walt A

    2012-01-01

    Graphene electronics was officially invented at the Georgia Institute of Technology in 2003 after experimental and theoretical research on graphene properties starting from 2001. This paper focuses on the motivation and events leading to the invention of graphene electronics, as well as on recent developments. Graphene electronics was originally conceived as a new electronics paradigm to incorporate the room-temperature ballistic and coherent properties of carbon nanotubes in a patternable electronic material. Graphene on silicon carbide was chosen as the most suitable material. Other electronics schemes, involving transferred (exfoliated and chemical vapor deposition-produced) graphitic materials, that operate in the diffusive regime may not be competitive with standard methods and may therefore not significantly impact electronics. In recent years, epitaxial graphene has improved to the point where graphene electronics according to the original concept appears to be within reach. Beyond electronics, epitaxial graphene research has led to important developments in graphene physics in general and has become a leading platform for graphene science as well.

  4. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Science.gov (United States)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  5. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.

    Science.gov (United States)

    Kappe, C Oliver

    2013-07-16

    In the past few years, the use of microwave energy to heat chemical reactions has become an increasingly popular theme in the scientific community. This nonclassical heating technique has slowly progressed from a laboratory curiosity to an established method commonly used both in academia and in industry. Because of its efficiency, microwave heating dramatically reduces reaction times (from days and hours to minutes and seconds) and improves product purities or material properties among other advantages. Since the early days of microwave chemistry, researchers have observed rate-accelerations and, in some cases, altered product distributions as compared with reactions carried out using classical oil-bath heating. As a result, researchers have speculated that so-called specific or nonthermal microwave effects could be responsible for these differences. Much of the debate has centered on the question of whether the electromagnetic field can exert a direct influence on a chemical transformation outside of the simple macroscopic change in bulk reaction temperature. In 2009, our group developed a relatively simple "trick" that allows us to rapidly evaluate whether an observed effect seen in a microwave-assisted reaction results from a purely thermal phenomenon, or involves specific or nonthermal microwave effects. We use a microwave reaction vessel made from silicon carbide (SiC) ceramic. Because of its high microwave absorptivity, the vessel shields its contents from the electromagnetic field. As a result, we can easily mimic a conventionally heated autoclave experiment inside a microwave reactor under carefully controlled reaction conditions. The switch from an almost microwave transparent glass (Pyrex) to a strongly microwave absorbing SiC reaction vial under otherwise identical reaction conditions (temperature profiles, pressure, stirring speed) then allows us to carefully evaluate the influence of the electromagnetic field on the particular chemical transformation

  6. Structural characteristics of pumpkin pectin extracted by microwave heating.

    Science.gov (United States)

    Yoo, Sang-Ho; Lee, Byeong-Hoo; Lee, Heungsook; Lee, Suyong; Bae, In Young; Lee, Hyeon Gyu; Fishman, Marshall L; Chau, Hoa K; Savary, Brett J; Hotchkiss, Arland T

    2012-11-01

    To improve extraction yield of pumpkin pectin, microwave heating was adopted in this study. Using hot acid extraction, pumpkin pectin yield decreased from 5.7% to 1.0% as pH increased from pH 1.0 to 2.0. At pH 2.5, no pectin was recovered from pumpkin flesh powder. After a pretreatment at pH 1.0 and 25 °C for 1 h, pumpkin powder was microwave-extracted at 120 °C for 3 min resulting in 10.5% of pectin yield. However, premicrowave treatment at 60 °C for 20 min did not improve extraction yield. When microwave heating at 80 °C for 10 min was applied after premicrowave treatment, final pectin yield increased to 11.3%. When pH was adjusted to 2.0, the yield dropped to 7.7% under the same extraction conditions. Molecular shape and properties as well as chemical composition of pumpkin pectin were significantly affected depending on extraction methods. Galacturonic acid content (51% to 58%) of pumpkin pectin was lower than that detected in commercial acid-extracted citrus pectin, while higher content of neutral sugars and acetyl esters existed in pumpkin pectin structure. Molecular weight (M(w) ) and intrinsic viscosity (η(w) ) determined for microwave-extracted pumpkin pectins were substantially lower than acid-extracted pectin, whereas polydispersity was greater. However, microwave-extracted pectin at pH 2.0 had more than 5 times greater M(w) than did the pectin extracted at pH 1.0. The η(w) of microwave-extracted pectin produced at pH 2.0 was almost twice that of other microwave-extracted pectins, which were comparable to that of acid-extracted pectin. These results indicate that extraction yield of pumpkin pectin would be improved by microwave extraction and different pectin structure and properties can be obtained compared to acid extraction. Pumpkin is a promising alternative source for pectin material. Pumpkin pectin has a unique chemical structure and physical properties, presumably providing different functional properties compared to conventional commercial

  7. Tracking Code for Microwave Instability

    International Nuclear Information System (INIS)

    Heifets, S.; SLAC

    2006-01-01

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability

  8. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately

  9. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  10. A Microwave-Assisted Diastereoselective Multicomponent Reaction To Access Dibenzo[c,e]azepinones: Synthesis and Biological Evaluation

    NARCIS (Netherlands)

    Mehta, V.P.; Modha, S.G.; Ruijter, E.; van Hecke, K.; van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R.V.A.; van der Eycken, E.

    2011-01-01

    An unprecedented microwave-assisted multicomponent strategy has been elaborated for the fast, efficient, and diastereoselective generation of the dibenzo[c,e]azepinone scaffold. The generated compounds were evaluated for their bioactivity. © 2011 American Chemical Society.

  11. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  12. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  13. Magnon transport through microwave pumping

    OpenAIRE

    Nakata Kouki; Simon Pascal; Loss Daniel

    2015-01-01

    We present a microscopic theory of magnon transport in ferromagnetic insulators (FIs). Using magnon injection through microwave pumping, we propose a way to generate magnon dc currents and show how to enhance their amplitudes in hybrid ferromagnetic insulating junctions. To this end focusing on a single FI, we first revisit microwave pumping at finite (room) temperature from the microscopic viewpoint of magnon injection. Next, we apply it to two kinds of hybrid ferromagnetic insulating juncti...

  14. Microwaves absorption in superconducting materials

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Fernandes, A.A.R.; Pereira, R.F.R.

    1989-01-01

    Microwaves absorption measures in two superconductors ceramics systems, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O are compared with similars datas obtained in the same band of temperature by a conventional method, mutual inductance. The results suggest that the microwaves absorption can be used as single and non-destructive method for investigating the properties of ceramics superconductors. (C.G.C.) [pt

  15. The use of domestic microwave oven in experimental classes of organic chemistry: salicylaldehyde nitration

    OpenAIRE

    Teixeira, Eurídes Francisco; Santos, Ana Paula Bernardo dos; Bastos, Renato Saldanha; Pinto, Angelo C.; Kümmerle, Arthur Eugen; Coelho, Roberto Rodrigues

    2010-01-01

    The use of microwave in chemistry has known benefits over conventional heating methods, e.g. reduced reaction times, chemical yield improvement and the possibility if reducing or eliminating the use of organic solvents. We describe herein a procedure for the nitration of salicylaldehyde in water using a domestic microwave oven, which can be used as an experiment in the undergraduate chemistry laboratory. The experiment involves safe and rapid preparation and identification of the position iso...

  16. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    Science.gov (United States)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  17. Microwave effects in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.; Berteaud, A.J.

    1979-01-01

    Experiments were set up to investigate the effects of open space microwave irradiation of the millimeter (73 GHz) and the centimeter (17 GHz) range in Drosophila melanogaster. We used the wild type strain Paris and the strain delta carrying melanitic tumors in the 3rd larval stage, in the pupae and the adults. The power densities were up to 100mW.cm -2 for 73 GHz and about 60 mW.cm -2 for microwaves at 17 GHz. After 2h exposure to microwaves of 17 GHz or 73 GHz the hatching of the irradiated eggs and their development were normal. In a few cases there was a tendency towards a diminution of the survival of eggs treated at different stages, of larvae treated in the stages 1, 2 and 3 and of treated pupae. However, this was not always statistically significant. The microwave treatment did not induce teratological changes in the adults. A statistical analysis brought about slight diminutions in the incidence and multiplicity of tumors in adult flies. When wild type females were exposed to microwaves of 17 GHz for 16 or 21 h and crossed with untreated males we observed a marked increase in fertility as compared to untreated samples. The viability and tumor incidence in the offspring was not affected. Similar results were obtained when microwaves treated males were crossed with untreated females

  18. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  19. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  20. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)