WorldWideScience

Sample records for epitaxial films grown

  1. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    Science.gov (United States)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  2. Selective-Area Micropatterning of Liquid-Phase Epitaxy-Grown Iron Garnet Films

    Science.gov (United States)

    Park, Jae-Hyuk; Cho, Jae-kyeong; Nishimura, Kazuhiro; Uchida, Hironaga; Inoue, Mitsuteru

    2004-07-01

    We investigated selective-area micropatterning of iron garnet film grown by liquid-phase epitaxy (LPE). This method of producing a flat-surface structure overcomes the disadvantages of geometrical grooves, which are formed by wet or dry etching, with a limited resolution due to underetching and nonplanar structure. Moreover, patterned iron garnet films grown by selective-area LPE have better single-crystal properties than films grown by selective-area sputter epitaxy deposition. Thus, this method offers new possibilities for the fabrication of integrated magnetooptic light switch arrays, magnetic waveguides and other magnetooptic devices.

  3. Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces

    Science.gov (United States)

    Li, Qiming; Wang, George T

    2015-01-13

    A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.

  4. X-ray study of chromium oxide films epitaxially grown on MgO

    NARCIS (Netherlands)

    Du, XS; Hak, S; Rogojami, OC; Hibma, T

    2004-01-01

    Chromium oxide films grown by molecular beam epitaxy on MgO (001) substrates were characterized by x-ray diffraction (XRD) and x-ray reflectivity (XRR) measurements. The absence of random oriented peaks in the theta-2theta spectra indicated that the thin films were a single phase. Reciprocal space

  5. Antiperovskite Sr3 PbO thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Samal, Debakanta; Nakamura, Hiroyuki; Takagi, Hidenori

    Several antiperovskite compounds have recently been predicted to host bulk three dimensional Dirac dispersion as well as surface states protected by crystal symmetry. Here, we present fabrication of cubic antiperovskite Sr3PbO films epitaxially grown on LaAlO3 by molecular beam epitaxy. Fabricated films were capped with polymer without breaking vacuum to facilitate ex-situ transport characterization. All of the films showed metallic temperature dependence. The Hall effect measurement suggests that the carrier type is hole, whose density is around 5 ×1019 cm-3. Details of magnetotransport at low temperature is also described.

  6. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  7. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kushvaha, S. S., E-mail: kushvahas@nplindia.org; Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D. [CSIR- National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, India 110012 (India)

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  8. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  9. Lutetium-doped EuO films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Melville, A.; Heeg, T. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Mairoser, T.; Schmehl, A. [Zentrum fuer elektronische Korrelationen und Magnetismus, Universitaet Augsburg, Universitaetsstrasse 1, D-86159 Augsburg (Germany); Shai, D. E.; Monkman, E. J.; Harter, J. W. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Hollaender, B.; Schubert, J. [Peter Gruenberg Institute, PGI 9-IT, JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Shen, K. M. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Mannhart, J. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2012-05-28

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic carriers introduced by 5% lutetium doping.

  10. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mynbaev, K. D.; Shilyaev, A. V., E-mail: mynkad@mail.ioffe.ru; Bazhenov, N. L. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Izhnin, A. I.; Izhnin, I. I. [R& D Institute for Materials SRC Carat (Ukraine); Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  11. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  12. Eu-Doped GaN Films Grown by Phase Shift Epitaxy

    Science.gov (United States)

    Zhong, Mingyu; Steckl, Andrew J.

    2010-12-01

    Phase shift epitaxy (PSE) is a dynamic thin film growth technique wherein constituent fluxes are pulsed with an adjustable phase shift. PSE enables the introduction of dopants during the optimum segment of the growth cycle. Eu-doped GaN films were grown with Ga and Eu shutters periodically opened and closed (with varying phase shift) while keeping N flux constant, so that the Ga and Eu coverage on surface during each cycle varies in a controlled way. The Eu concentration and photoluminescence (PL) efficiency are strongly influenced by the PSE parameters. Eu ions doped during high Ga coverage exhibit strong PL efficiency.

  13. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    Science.gov (United States)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  14. Extremely smooth YBa 2Cu 3O 7- δ "thin" film grown by liquid phase epitaxy

    Science.gov (United States)

    Hao, Z.; Wu, Y.; Enomoto, Y.; Tanabe, K.; Koshizuka, N.

    2002-02-01

    Extremely smooth single crystal YBa 2Cu 3O 7- δ "thin" films, 1-3 μm thick, have been successfully grown on YBCO-seeded MgO substrates by liquid phase epitaxy. The morphology study on the as-grown samples has revealed a step-flow growth mechanism, with each step height of about 1.1 nm, i.e. the c-axis lattice constant of YBCO. The mean surface roughness in a large 25 μm×25 μm area is ˜0.76 nm, determined by an atomic force microscope. After annealing in pure oxygen, the ˜2 μm thick films exhibit high-quality high- Tc superconductivity with zero resistance transition temperature TC0≈91 K and critical current density JC=4.74×10 4 A/cm 2 (transport measurement with 1 μV/cm criterion) at 77 K.

  15. Optimized growth conditions of epitaxial SnSe films grown by pulsed laser deposition

    Science.gov (United States)

    Hara, Takamitsu; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi

    2017-12-01

    We have grown epitaxial tin monoselenide (SnSe) films on MgO or SrTiO3 (STO) substrates by pulsed laser deposition (PLD) at T s = 473 or 573 K, and investigated the optimized growth condition in terms of crystal orientation, crystallinity, and electrical resistivity. For the PLD procedure, a SnSe x (x = 1.0–1.6) target containing excess Se was used to compensate for the vaporization of Se. The crystal orientation and crystallinity of the SnSe films changed depending on the growth conditions, and the magnitude of the electrical resistivity ρ of the films was closely related to the crystalline nature. The SnSe film grown on the MgO substrate at T s = 573 K using the target with x = 1.4 was the most highly a-axis-oriented and highly crystalized among all of the films investigated in this study. However, the ρ of the film in the bc-plane was about one order of magnitude larger than those of the reported single crystal and the a-axis-oriented crystalline sample fabricated by spark plasma sintering. This larger ρ was suggested to result from the lattice mismatch and/or a small amount of nonstoichiometry in the film.

  16. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  17. AlN thin film grown on different substrates by hydride vapor phase epitaxy

    Science.gov (United States)

    Sun, M. S.; Zhang, J. C.; Huang, J.; Wang, J. F.; Xu, K.

    2016-02-01

    AlN thin films have been grown on GaN/sapphire templates, 6 H-SiC and sapphire by hydride vapor phase epitaxy. The influence of growth conditions and substrates on the crystal qualities and growth mode has been investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed that the low pressure was favorable for high-quality AlN thin film growth around 1000 °C. The full-width at half-maximum (FWHM) of (0002) XRD of 200-nm AlN thin film grown on GaN/sapphire, 6 H-SiC and sapphire are 220, 187 and 260 arc s, respectively. While the corresponding counterparts of (10-12) are 1300, 662 and 2650 arc s, respectively. Both suggested that low dislocation density in AlN grown on 6 H-SiC. The morphology of AlN thin film on sapphire showed islands without coalescence initially, and then changed to be coalescent with atomic steps at 1200 nm. However, those for samples on 6 H-SiC and GaN/sapphire showed smooth surface with clear atomic steps at thickness of 200 nm. The result indicated different growth modes of AlN on different substrates. It was believed that the different lattice mismatchs between AlN and substrates led to the different crystal qualities and growth modes.

  18. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  19. Ge films grown on Si substrates by molecular-beam epitaxy below 450 °C

    Science.gov (United States)

    Liu, J.; Kim, H. J.; Hul'ko, O.; Xie, Y. H.; Sahni, S.; Bandaru, P.; Yablonovitch, E.

    2004-07-01

    Ge thin films are grown on Si(001) substrates by molecular-beam epitaxy at 370 °C. The low-temperature epitaxial growth is compatible with the back-end thermal budget of current generation complementary metal-oxide-semiconductor technology, which is restricted to less than 450 °C. Reflection high-energy electron diffraction shows that single-crystal Ge thin films with smooth surfaces could be achieved below 450 °C. Double-axis x-ray θ/2θ scans also show that the epitaxial Ge films are almost fully strain-relaxed. As expected, cross-sectional transmission electron microscopy shows a network of dislocations at the interface. Hydrogen and oxide desorption techniques are proved to be necessary for improving the quality of the Ge films, which is reflected in improved minority carrier diffusion lengths and exceptionally low leakage currents.

  20. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices.

    Science.gov (United States)

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G

    2017-03-09

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.

  1. Microwave-assisted hydrothermally grown epitaxial ZnO films on MgAl2O4 substrate

    Science.gov (United States)

    Liew, Laura-Lynn; Le, Hong Quang; Goh, Gregory K. L.

    2012-05-01

    In this report, epitaxial ZnO films were grown on MgAl2O4 single crystal substrates using Microwave Assisted Hydrothermal (MAH) method with microwave radiation heating (2.45 GHz) at 90 °C in a short time (within 15 min). Scanning electron microscopy confirms that these films possess smooth surface morphology with fully coalesced grains. In addition, photoluminescence (PL) measurements exhibit strong ultraviolet emission at room temperature, indicating potential applications for short-wave light-emitting photonic devices. The PL properties were improved by a thermal annealing process without generating structural defects. Hall measurements after thermal treatment show the carrier concentration to be of the order of 1019 cm-3 which is comparable to those grown by conventional solution methods. The MAH method will offer a rapid route to synthesize epitaxial ZnO films with good optical and electrical properties for various applications.

  2. Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-09-15

    Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.

  3. Ultraviolet photodetectors based on aluminum gallium nitride films grown by molecular beam epitaxy

    Science.gov (United States)

    Misra, Mira

    2000-10-01

    GaN-AlN alloys are an important class of materials for ultraviolet photodetectors. The focus of this work was to develop photoconducting and photovoltaic detectors based on AlxGa1-xN films, grown by molecular beam epitaxy. GaN photoconducting detectors were fabricated and characterized. Mobility-lifetime products of the films were determined from measurement of photoconductive gain. They varied from 10-2cm2/V to 10 -7cm2/V as resistivity changed from 10 2W-cm to 107W-cm. Spectral response showed a sharp transition at 365nm and three orders of magnitude visible light rejection. Semi-insulating films exhibited fast response time of 20ns. Dynamic range was linear over five orders of magnitude. Low frequency noise spectra were dominated by l/f noise in the 0--100Hz range and by generation-recombination noise in the 100Hz--10KHz range. A trap at DE = 0.32eV was identified from the temperature dependence of the noise spectrum. The noise equivalent power was determined to be 3 x 10-14W/Hz 1/2 at 10KHz for the semi-insulating detectors. Solar-blind UV photoconductive detectors were fabricated using Al xGa1-xN films with Al mole fraction x = 0--0.45. Detectors fabricated on films with Al mole fraction x = 0.45, corresponding to true solar-blind detection, exhibited mobility-lifetime products of 10 -5cm2/V, which is two orders of magnitude higher than that of GaN films of comparable resistivity. These films also exhibited the highest degree of long range atomic ordering. The enhanced photoconductive gain is accounted for by a model, which considers band offsets between the ordered and random domains in the partially ordered alloys, causing spatial separation of photo-carriers and consequently, long recombination lifetimes. Schottky barrier photovoltaic detectors (n-GaN/Ni-Pt), with a mesa-etched vertical geometry, were fabricated. These photodiodes exhibit a responsivity of 0.18A/W at 325nm and NEP of 1.3 x 10-9W/Hz 1/2 at 1KHz. Doping concentrations and barrier heights were

  4. In situ RHEED analysis of epitaxial Gd{sub 2}O{sub 3} thin films grown on Si (001)

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, W.F. [China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Beijing (China); China University of Petroleum, Laboratory of Optic Sensing and Detecting Technology, Beijing (China); Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing (China); Ni, H. [China University of Petroleum, Laboratory of Optic Sensing and Detecting Technology, Beijing (China); Lu, H.B. [Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing (China)

    2013-02-15

    Epitaxial Gd{sub 2}O{sub 3} thin films were successfully grown on Si (001) substrates using a two-step approach by laser molecular-beam epitaxy. At the first step, a {proportional_to}0.8 nm thin layer was deposited at the temperature of 200 {sup circle} C as the buffer layer. Then the substrate temperature was increased to 650 {sup circle} C and in situ annealing for 5 min, and a second Gd{sub 2}O{sub 3} layer with a desired thickness was deposited. The whole growth process is monitored by in situ reflection high-energy electron diffraction (RHEED). In situ RHEED analysis of the growing film has revealed that the first Gd{sub 2}O{sub 3} layer deposition and in situ annealing are the critical processes for the epitaxial growth of Gd{sub 2}O{sub 3} film. The Gd{sub 2}O{sub 3} film has a monoclinic phase characterized by X-ray diffraction. The high-resolution transmission electron microscopy image showed all the Gd{sub 2}O{sub 3} layers have a little bending because of the stress. In addition, a 5-6 nm amorphous interfacial layer between the Gd{sub 2}O{sub 3} film and Si substrate is due to the in situ high temperature annealing for a long time. The successful Gd{sub 2}O{sub 3}/Si epitaxial growth predicted a possibility to develop the new functional microelectronics devices. (orig.)

  5. Zinc sulfide and terbium-doped zinc sulfide films grown by traveling wave reactor atomic layer epitaxy

    CERN Document Server

    Yun, S J; Nam, K S

    1998-01-01

    Zinc sulfide (ZnS) and terbium-doped ZnS (ZnS:Tb) thin films were grown by traveling wave reactor atomic layer epitaxy (ALE). In the present work, ZnCl sub 2 , H sub 2 S, and tris (2,2,6,6-tetramethyl-3,5-heptandionato) terbium (Tb(tmhd) sub 3) were used as the precursors. The dependence of crystallinity and Cl content of ZnS films was investigated on the growth temperature. ZnS and ZnS:Tb films grown at temperatures ranging from 400 to 500 .deg. C showed a hexagonal-2H crystalline structure. The crystallinity of ZnS film was greatly enhanced as the temperature increased. At growth temperatures higher than 450.deg.C, the films showed preferred orientation with mainly (002) diffraction peak. The Cl content decreased from approximately 9 to 1 at.% with the increase in growth temperature from 400 to 500 .deg. C. The segregation of Cl near the surface region and the incorporation of O from Tb(tmhd) sub 3 during ALE process were also observed using Auger electron spectroscopy. The ALE-grown ZnS and ZnS:Tb films re...

  6. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  7. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  8. Growth and Properties of molecular beam epitaxially grown ferromagnetic Fe-doped TiO2 rutile films on TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong J.; Thevuthasan, Suntharampillai; Droubay, Timothy C.; Lea, Alan S.; Wang, Chong M.; Shutthanandan, V.; Chambers, Scott A.; Sears, R.; Taylor, B.; Sinkovic, Boris

    2004-05-03

    We have grown epitaxial Fe-doped TiO₂ rutile films on rutile TiO₂(110) substrates, and have explored the resulting compositional, structural, morphological and magnetic properties. Clusters of mixed TiO₂ rutile and Fe₃O₄ form on the surface of a continuous rutile epitaxial film during growth. Room temperature ferromagnetism is observed, and is associated with the formation of secondary phase Fe₃O₄ rather than a true diluted magnetic oxide semiconductor.

  9. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  10. KTa0.65Nb0.35O3 thin films epitaxially grown by pulsed laser deposition on metallic and oxide epitaxial electrodes

    Science.gov (United States)

    Bouyasfi, A.; Mouttalie, M.; Demange, V.; Gautier, B.; Grandfond, A.; Députier, S.; Ollivier, S.; Hamedi, L.'H.; Guilloux-Viry, M.

    2012-09-01

    Ferroelectric KTa0.65Nb0.35O3 (KTN) thin films were grown by pulsed laser deposition on Pt and LaNiO3 epitaxial electrodes, on (1 0 0) and (1 1 0) SrTiO3 substrates. The effect of the nature of the electrode on structural and microstructural quality of KTN films was investigated. While epitaxial KTN thin films were successfully obtained on both electrodes, two orientations compete on Pt, whatever the main orientation of Pt is (1 0 0) or (1 1 0). On LaNiO3 in contrast, pure (1 0 0) and (1 1 0) oriented KTN films were achieved with a high crystalline quality illustrated by narrow ω-scans (Δω = 0.56° and Δω = 0.80° for (1 0 0) and (1 1 0) KTN, to be compared to 0.048° and 0.22° for (1 0 0) and (1 1 0) LaNiO3, respectively). Electrical measurements performed in tunneling atomic force microscopy (TUNA mode) on a KTN/Pt heterostructure showed a high asymmetry of the conduction mechanisms when a positive or a negative bias is applied on the sample. In particular leakage currents appear even at very low positive applied voltage. TUNA imaging operated at a moderate negative applied voltage of -3 V shows that some areas corresponding to grain boundaries seem to be more leaky than others.

  11. Strain in epitaxial high-index Bi{sub 2}Se{sub 3}(221) films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Chen, Weiguang [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Guo, Xin; Ho, Wingkin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Jia, Jinfeng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, Department of Physics and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Xie, Maohai, E-mail: mhxie@hku.hk [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-02-28

    Highlights: • High-index, off c-axis, Bi{sub 2}Se{sub 3} has been grown by molecular beam epitaxy on In{sub 2}Se{sub 3}. • A retarded strain relaxation process in such high-index Bi{sub 2}Se{sub 3} is observed, enabling experimentally probe strain effect on topological insulators. • It has been shown by calculation that the Dirac electrons participate in chemical bonding at the heterointerface. - Abstract: High-index Bi{sub 2}Se{sub 3}(221) film has been grown on In{sub 2}Se{sub 3}-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi{sub 2}Se{sub 3}(221) can be attributed to the layered structure of Bi{sub 2}Se{sub 3} crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi{sub 2}Se{sub 3} and In{sub 2}Se{sub 3} by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  12. Antimony segregation and n-type doping in Si/Si(111) films grown by molecular beam epitaxy

    Science.gov (United States)

    Yurasov, D. V.; Drozdov, M. N.; Schmagin, V. B.; Yunin, P. A.; Novikov, A. V.

    2017-10-01

    The temperature dependence of antimony segregation in Si/Si(111) films grown by molecular-beam epitaxy was investigated experimentally. The obtained results were found to be qualitatively similar to the previously reported data for Si(001) case, but rather significant quantitative differences were observed. It was obtained that segregation ratio, which is defined as surface-to-bulk impurity concentration ratio, varies by nearly 5 orders of magnitude in the relatively narrow temperature interval of 500-675 °C for Si(111). This finding allowed to disseminate the previously proposed technique of selective doping of Si(001) to the Si(111) case. Using this technique selectively n-type doped Si films were fabricated which have abrupt boundaries of the antimony concentration profiles. A profile abruptness as low as 1.5 nm/decade was obtained.

  13. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene

    Science.gov (United States)

    Rigosi, Albert F.; Hill, Heather M.; Glavin, Nicholas R.; Pookpanratana, Sujitra J.; Yang, Yanfei; Boosalis, Alexander G.; Hu, Jiuning; Rice, Anthony; Allerman, Andrew A.; Nguyen, Nhan V.; Hacker, Christina A.; Elmquist, Randolph E.; Hight Walker, Angela R.; Newell, David B.

    2018-01-01

    Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride (a-BN and h-BN) films. The a-BN is formed with pulsed laser deposition and the h-BN is grown with triethylboron (TEB) and NH3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a-BN, and h-BN within the energy range of 1 eV–8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h-BN heterostructure.

  14. Structural and magnetic phase transitions in chromium nitride thin films grown by rf nitrogen plasma molecular beam epitaxy

    Science.gov (United States)

    Alam, Khan; Disseler, Steven M.; Ratcliff, William D.; Borchers, Julie A.; Ponce-Pérez, Rodrigo; Cocoletzi, Gregorio H.; Takeuchi, Noboru; Foley, Andrew; Richard, Andrea; Ingram, David C.; Smith, Arthur R.

    2017-09-01

    A magnetostructural phase transition is investigated in single-crystal chromium nitride (CrN) thin films grown by rf plasma molecular beam epitaxy on MgO(001) substrates. While still within the vacuum environment following molecular beam epitaxy growth, in situ low-temperature scanning tunneling microscopy, and in situ variable low-temperature reflection high-energy electron diffraction are applied, revealing an atomically smooth and metallic CrN(001) surface, and an in-plane structural transition from 1 ×1 (primitive CrN unit cell) to √{2 }×√{2 }-R 45∘ with a transition temperature of (278 ±3 ) K, respectively. Ex situ temperature-dependent measurements using neutron diffraction are also performed, looking at the structural peaks and likewise revealing a first-order structural transition along the [111] out-of-plane direction, with transition temperatures of (268 ± 3) K. Turning to the magnetic peaks, neutron diffraction confirms a clear magnetic transition from paramagnetic at room temperature to antiferromagnetic at low temperatures with a sharp, first-order phase transition and a Néel temperature of (270 ±2 ) K or (280 ±2 ) K for two different films. In addition to the experimental measurements of structural and magnetic ordering, we also discuss results from first-principles theoretical calculations which explore various possible magnetostructural models.

  15. High Crystallinity CuScO2 Delafossite Films Exhibiting Ultraviolet Photoluminescence Grown by Vapor-Liquid-Solid Tri-phase Epitaxy

    Science.gov (United States)

    Matsubara, Yuya; Makino, Takayuki; Hiraga, Hiroki; Chen, Chunlin; Tsukimoto, Susumu; Ueno, Kazunori; Kozuka, Yusuke; Ikuhara, Yuichi; Kawasaki, Masashi

    2012-01-01

    We have grown direct wide-bandgap CuScO2 thin films on MgAl2O4(111) substrates by tri-phase epitaxy employing molten Bi-O flux on the growth surface. The full width at half maximum of (0006) rocking curve is as narrow as 0.005 degrees, an order of magnitude narrower than those grown by conventional pulsed laser deposition (PLD). Transmission electron microscopy confirms the scarcity of defect structures or precipitates, which are of high density in PLD films. The films exhibit sharp near-bandedge photoluminescence at 3.3 eV, which is absent in PLD films.

  16. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  17. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-03-01

    Full Text Available Vanadium dioxide (VO2 thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF-plasma assisted oxide molecular beam epitaxy (O-MBE. The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD, atomic force microscopy (AFM, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS analyses. An excellent reversible metal-to-insulator transition (MIT characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows.

  18. Luminescent and scintillation properties of CsI:Tl films grown by the liquid phase epitaxy method

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu. [Laboratory of Optoelectronic Materials (LOM), Electronics Department of Ivan Franko National University of Lviv, 107 Gen. Tarnawskogo Str., 70017 Lviv (Ukraine); Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Voznyak, T.; Turchak, R. [Laboratory of Optoelectronic Materials (LOM), Electronics Department of Ivan Franko National University of Lviv, 107 Gen. Tarnawskogo Str., 70017 Lviv (Ukraine); Fedorov, A. [Institute for Scintillation Materials of NAS of Ukraine, 60 Lenina Ave., 61001 Kharkiv (Ukraine); Wiesniewski, K.; Grinberg, M. [Institute of Experimental Physics of Gdansk University, 57 Wita Stwoza, 80-952 Gdansk (Poland)

    2010-10-15

    CsI:Tl films have been crystallized by the liquid phase epitaxy (LPE) method from CsI:Tl (0.3 mol.%) crystalline salt onto CsI substrates. The luminescent and scintillation properties of CsI:Tl films are systematically compared with the corresponding properties of CsI:Tl (0.3 and 0.03%) crystals grown from the melt. The luminescence of CsI:Tl films and CsI:Tl (0.03%) crystals in the bands peaked at 2.52 and 2.22 eV is related to the radiative relaxation from the weak-off and strong-off configurations of excitons localized around Tl{sup +} ions, respectively. Apart from single Tl{sup +} centers, in highly doped CsI:Tl (0.3%) crystals creation of Tl{sup +} dimer centers occurs. These centers form the additional emission bands peaked at 2.42 and 1.98 eV related to the weak-off and strong-off configurations of excitons localized around Tl{sup +} dimer centers. We found that the dominant mechanism of excitation of the strong-off luminescence of localized excitons in CsI:Tl films and crystals is the charge-transfer transition between I{sup -} anions and Tl{sup +} ions in single and dimer centers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy

    NARCIS (Netherlands)

    Fujii, T.; Groot, F.M.F. de; Sawatzky, G.A.; Voogt, F.C.; Hibma, T.; Okada, K.

    1999-01-01

    We report on a systematic analysis of x-ray photoelectron spectroscopy (XPS) core- and valence-level spectra of clean and well-characterized iron oxide films, i.e., a-Fe2O3, y-Fe2O3, Fe3- dO4, and Fe3O4. All iron oxide films were prepared epitaxially by NO2-assisted molecular-beam epitaxy on

  20. Epitaxial ZnO Thin Films on a-Plane Sapphire Substrates Grown by Ultrasonic Spray-Assisted Mist Chemical Vapor Deposition

    Science.gov (United States)

    Nishinaka, Hiroyuki; Kamada, Yudai; Kameyama, Naoki; Fujita, Shizuo

    2009-12-01

    High-quality epitaxial ZnO thin films were grown by an ultrasonic spray-assisted mist chemical vapor deposition (CVD) on a-plane sapphire substrates with ZnO buffer layers. The ZnO thin films were grown with c-axis orientation without notable rotational domains. Surface morphologies and electrical properties were markedly improved as an effect of the ZnO buffer layers. The mobility in the ZnO epitaxial (main) layer was estimated to be 90 cm2/(V·s), which is reasonably high compared with those in ZnO layers grown by CVD processes. Photoluminescence at a low temperature (4.5 K) revealed a free A-exiton peak, and that at room temperature showed a strong band-edge peak with little deep-level luminescence.

  1. Magnetic properties of single-crystal {110} iron films grown on GaAs by molecular beam epitaxy (invited)

    Science.gov (United States)

    Prinz, G. A.; Rado, G. T.; Krebs, J. J.

    1982-03-01

    Single-crystal {110} Fe films, grown for the first time by molecular beam epitaxy on GaAs, have been studied by a variety of techniques in order to determine the dependence of the magnetic properties upon film thickness L and quality, and an overview of these results is presented. The dependence of the ferromagnetic resonance (FMR) field upon its orientation in the (11¯0) plane was measured at 16.4 GHz and shows that the magnetically easy axis is [110] for L<50 Å and [001] for L≳150 Å. A theory of FMR which incorporates magnetocrystalline surface anisotropy is outlined. It successfully interprets the thickness dependence of the FMR data in the ultrathin (L≲50 Å) regime and shows them to be surface dominated. FMR data at 9.2 GHz, which contain both aligned and nonaligned resonance branches, are presented as a function L. In addition, the dependence of the branches on frequency f for 8 GHz

  2. Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition

    Science.gov (United States)

    Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi

    2018-02-01

    We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.

  3. Study of the optical absorption and photoluminescence in (Pb,Gd)3(Al,Ga)5O12: Ce epitaxial films grown from Pb-containing melt solutions

    Science.gov (United States)

    Vasil’ev, D. A.; Spassky, D. A.; Omelkov, S. I.; Vasil’eva, N. V.; Khakhalin, A. V.; Plotnichenko, V. G.

    2017-11-01

    The optical absorption and photoluminescence properties of cerium-activated (Pb,Gd)3(Al,Ga)5O12 epitaxial films are studied. The films are grown on single-crystal (111)-oriented Gd3Ga5O12 substrates by liquid-phase epitaxy from supercooled PbO – B2O3 melt solutions at different concentrations of gadolinium, cerium, and aluminium oxides in the charge. The photoluminescence band of Ce3+ ions is shown to peak at 532 nm. The highest cathodoluminescence yield of about 51500 photons MeV‑1 at a decay time of the slow component of 61.0 ns (light yield fraction 68%) is found for the Pb0.01Ce0.03Gd2.96Al3.14Ga1.86O12 film, grown from melt solution with gadolinium oxide, cerium oxide, and aluminium oxide concentrations of 0.4, 0.2, and 4.5 mol % in the charge, respectively. Epitaxial films with these spectroscopic characteristics are promising for application in scintillation screens.

  4. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  5. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  6. Correlation of growth temperature with stress, defect states and electronic structure in an epitaxial GaN film grown on c-sapphire via plasma MBE.

    Science.gov (United States)

    Krishna, Shibin; Aggarwal, Neha; Mishra, Monu; Maurya, K K; Singh, Sandeep; Dilawar, Nita; Nagarajan, Subramaniyam; Gupta, Govind

    2016-03-21

    The relationship of the growth temperature with stress, defect states, and electronic structure of molecular beam epitaxy grown GaN films on c-plane (0001) sapphire substrates is demonstrated. A minimum compressively stressed GaN film is grown by tuning the growth temperature. The correlation of dislocations/defects with the stress relaxation is scrutinized by high-resolution X-ray diffraction and photoluminescence measurements which show a high crystalline quality with significant reduction in the threading dislocation density and defect related bands. A substantial reduction in yellow band related defect states is correlated with the stress relaxation in the grown film. Temperature dependent Raman analysis shows the thermal stability of the stress relaxed GaN film which further reveals a downshift in the E2 (high) phonon frequency owing to the thermal expansion of the lattice at elevated temperatures. Electronic structure analysis reveals that the Fermi level of the films is pinned at the respective defect states; however, for the stress relaxed film it is located at the charge neutrality level possessing the lowest electron affinity. The analysis demonstrates that the generated stress not only affects the defect states, but also the crystal quality, surface morphology and electronic structure/properties.

  7. Investigation of the structural defects in GaN thin films grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Choi, J.-H.; Lim, S.-J.; Cho, M.-S.; Cho, N.-H.; Chung, S.-J.; Sohn, C.-S.

    2003-02-01

    GaN thin films were prepared on {0001} planes of sapphire substrates by organometallic vapor phase epitaxy (OMVPE) techniques. The crystall orgaphic relation between the film and the substrate as well as the structural features of the defects in the film were investigated by transmission electron microscopy (TEM). Epitaxial relationship was observed in the GaN/sapphire heterostructure prepared in this investigation; (0001) GaN//(0001) sapphire;[ {01bar 10} ] GaN//[ {bar 12bar 10} ] sapphire. Dislocations of Burgers vectorbar b = {1/3} [ {2bar 1bar 10} ] were observed in the film; the propagation behavior of the dislocations exhibits a slip system{ {10bar 10} }< {2bar 1bar 10} rangle is operative in the film. Inversion domain boundary (IDB) facets lying parallel to{ {01bar 10} } and{ {bar 12bar 10} } planes were observed; the type of anti-site bonds (Ga-Ga, N-N) is altemate along these IDB planes, keeping the simple stoichiometry of the compound.

  8. Crystalline domains in epitaxial Y(Ni0.5Mn0.5)O3 thin films grown by PLD on different STO substrates

    Science.gov (United States)

    Coy, L. E.; Rebled, J.; Ventura, J.; Yate, L.; Ferrater, C.; Langenberg, E.; Polo, M. C.; Xuriguera, E.; Peiro, F.; Varela, M.

    2015-01-01

    Thin films of ferromagnetic Y(Ni0.5Mn0.5)O3 (YNMO) perovskite were grown on different SrTiO3 (STO) substrate orientations [i.e. (0 0 1), (1 1 0) and (1 1 1)] by means of pulsed laser deposition (PLD) and their morphological and functional properties were studied and characterized. Optimal deposition parameters were identified and their individual influence on the quality of the films was also addressed. Films showed a single out-of-plane orientation in all the substrate scenarios, while the in-plane texture in STO(0 0 1) and STO(1 1 1) show two and three in plane domains, respectively. Growth mechanism and morphology were studied by HRTEM and AFM. As a result, a clear 3D growth mechanism was identified and a direct correlation between the two in-plane crystalline domains on the surface morphology of the sample was observed. Magnetic response of the films was investigated as a function of their crystalline properties. The films were found to have a paramagnetic to ferromagnetic transition around 90 K consistent with their bulk counterparts. Finally, the discrepancies on the epitaxial growth between YMnO3 (YMO) and YMNO thin films were clarified and tabulated, giving a clear picture of the effect of Ni substitution in the epitaxial and crystalline properties of manganites of this family.

  9. Helical-type surface defects in GaN thin films epitaxially grown on GaN templates at reduced temperatures

    Science.gov (United States)

    Miraglia, P. Q.; Preble, E. A.; Roskowski, A. M.; Einfeldt, S.; Davis, R. F.

    2003-06-01

    Surface pits in the form of v-shaped defects and resulting surface roughening, previously associated solely with InGaN films, were observed and investigated using atomic force microscopy on GaN films grown at 780°C via metalorganic vapor phase epitaxy on conventionally and pendeo-epitaxially deposited GaN thin film templates. The density of the v-shaped defects was similar to the density of threading dislocations of ˜3×10 9 cm -2 (that originate from the heteroepitaxial interface between the GaN template layer and the SiC substrate). Moreover, the v-defect density was diminished with decreases in the dislocation density via increases in the template layer thickness or the use of pendeo-epitaxial seed layers. A concomitant reduction in the full-width half-maxima of the X-ray rocking curves was also observed. A qualitative model is presented that describes the formation of v-shaped defects as a result of interactions between the movement of surface steps, screw-type dislocation cores, and clusters of atoms on the terraces that form under conditions of high surface undercooling.

  10. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    Science.gov (United States)

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  11. Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques

    Science.gov (United States)

    Adachi, N.; Denysenkov, V. P.; Khartsev, S. I.; Grishin, A. M.; Okuda, T.

    2000-09-01

    We report on processing and comparative characterization of epitaxial Bi3Fe5O12 (BIG) films grown onto Gd3(ScGa)5O12[GSGG,(001)] single crystal using pulsed laser deposition (PLD) and reactive ion beam sputtering (RIBS) techniques. A very high deposition rate of about 0.8 μm/h has been achieved in the PLD process. Comprehensive x-ray diffraction analyses reveal epitaxial quality both of the films: they are single phase, exclusively (001) oriented, the full width at half maximum of the rocking curve of (004) Bragg reflection is 0.06 deg for PLD and 0.05 deg for RIBS film, strongly in-plane textured with cube-on-cube film-to-substrate epitaxial relationship. Saturation magnetization 4πMs and Faraday rotation at 635 nm were found to be 1400 Gs and -7.8 deg/μm in PLD-BIG, and 1200 Gs and -6.9 deg/μm in RIBS-BIG. Ferromagnetic resonance (FMR) measurements performed at 9.25 GHz yielded the gyromagnetic ratio γ=1.797×107l/s Oe, 1.826×107 l/s Oe; the constants of uniaxial magnetic anisotropy were Ku*=-8.66×104erg/cm3, -8.60×104 erg/cm3; the cubic magnetic anisotropy K1=-2.7×103 erg/cm3,-3.8×103 erg/cm3; and the FMR linewidth ΔH=25 and 34 Oe for PLD and RIBS films correspondingly. High Faraday rotation, low microwave loss, and low coercive field ⩽40 Oe of BIG/GSGG(001) films promise their use in integrated magneto-optic applications.

  12. Domain formation due to surface steps in topological insulator Bi{sub 2}Te{sub 3} thin films grown on Si (111) by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, S.; Kampmeier, J.; Mussler, G.; Grützmacher, D. [Peter Grünberg Institute-9, Forschungszentrum Jülich, Jülich 52425 (Germany); Jülich Aachen Research Alliance, Fundamentals of Future Information Technologies, Jülich 52425 (Germany); Luysberg, M. [Peter Grünberg Institute-5 and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425 (Germany)

    2013-08-19

    The atomic structure of topological insulators Bi{sub 2}Te{sub 3} thin films on Si (111) substrates grown in van der Waals mode by molecular beam epitaxy has been investigated by in situ scanning tunneling microscopy and scanning transmission electron microscopy. Besides single and multiple quintuple layer (QL) steps, which are typical for the step-flow mode of growth, a number of 0.4 QL steps is observed. We determine that these steps originate from single steps at the substrate surface causing domain boundaries in the Bi{sub 2}Te{sub 3} film. Due to the peculiar structure of these domain boundaries the domains are stable and penetrate throughout the entire film.

  13. Self-starting mode locking in a Cr:forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films.

    Science.gov (United States)

    Prasankumar, R P; Chudoba, C; Fujimoto, J G; Mak, P; Ruane, M F

    2002-09-01

    We demonstrate RF sputtered, non-epitaxially-grown semiconductor nanocrystallite-doped silica films for mode locking a Cr:forsterite laser. We controlled the size and the optical properties of the nanocrystallites by varying the ratio of InAs to SiO(2) during fabrication. Femtosecond pump-probe measurements were performed to characterize the nonlinear optical properties of these films, revealing their lower saturation fluences. Using the InAs-doped silica films as saturable absorbers permitted self-starting Kerr-lens mode locking (KLM), generating pulses of 25-fs duration with 91-nm spectral bandwidth at 1.3 microm . We also describe saturable-absorber mode-locked operation without KLM and investigate its dependence on intracavity dispersion.

  14. Gallium and indium co-doping of epitaxial zinc oxide thin films grown in water at 90 °C

    Science.gov (United States)

    Quang Le, Hong; Chua, Soo Jin

    2011-03-01

    Zinc oxide (ZnO) thin films were intentionally co-doped with group III elements (gallium) in order to investigate and understand the effects of co-doping on the morphological, electrical and optical properties of gallium-doped ZnO (GZO) films. The co-doped films were grown on MgAl2O4 spinel substrates using a low-temperature solution-phase method known as hydrothermal synthesis. Gallium with indium co-doped ZnO (GIZO) films displayed a dramatic improvement in surface morphology as compared with the Ga-doped ZnO (GZO) films due to the compensation effect of gallium and indium doping which reduced the lattice strain. The 0.0033M gallium with 3.3 × 10-4M indium co-doped film exhibited an electron concentration of 3.14 × 1020 cm-3 and resistivity of 7.4 × 10-4 Ω cm which were both enhancements of 1.5 times over the GZO film. These films were comparable to the films fabricated by more expensive and complicated vapour-phase methods. The figure of merit for this film was determined to be 1.63 × 10-2 sq/Ω which was very close to the indium tin oxide conducting films currently used commercially. Finally, the GIZO film was hydrothermally grown on a p-GaN film to form an n-ZnO/p-GaN heterojunction light-emitting diode (LED). This LED showed diode I-V characteristics and exhibited strong cool-white light emission which signified the prospect of using GIZO as an effective and low-cost n-type layer in LEDs.

  15. The influence of oxygen flow rate on properties of SnO{sub 2} thin films grown epitaxially on c-sapphire by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.M. [I. Physics Institute, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University (China); Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei University (China); Faculty of Materials Science & Engineering, Hubei University (China); Jiang, J. [I. Physics Institute, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Xia, C. [Physical Chemistry Institute, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany); Kramm, B.; Polity, A. [I. Physics Institute, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); He, Y.B., E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University (China); Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei University (China); Faculty of Materials Science & Engineering, Hubei University (China); Klar, P.J.; Meyer, B.K. [I. Physics Institute, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany)

    2015-11-02

    Tin dioxide (SnO{sub 2}) thin films were grown on c-plane sapphire substrates by chemical vapor deposition using SnI{sub 2} and O{sub 2} as reactants. The growth experiments were carried out at a fixed substrate temperature of 510 °C and different O{sub 2} flow rates. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV–Vis–IR spectrophotometry and Hall-effect measurement were used to characterize the films. All films consisted of pure-phase SnO{sub 2} with a rutile structure and showed an epitaxial relationship with the substrate of SnO{sub 2}(100)||Al{sub 2}O{sub 3}(0001) and SnO{sub 2}[010]||Al{sub 2}O{sub 3}< 11–20 >. The crystalline quality and properties of the films were found to be sensitively dependent on the O{sub 2} flow rate during the film growth. The absolute average transmittance of the SnO{sub 2} films exceeded 85% in the visible and infrared spectral region. The films had optical band-gaps (3.72–3.89 eV) that are in line with the band gap of single-crystal SnO{sub 2}. The carrier concentration and Hall mobility of the films decreased from 3.3 × 10{sup 19} to 9 × 10{sup 17} cm{sup −3} and from 19 to 2 cm{sup 2} V{sup −1} s{sup −1}, respectively, while the resistivity increased from 0.01 to 3 Ω cm with increasing of the O{sub 2} flow rate from 5 to 60 sccm. - Highlights: • SnI{sub 2} (Sn{sup 2+}) was used as tin precursor to prepare tin oxide films by CVD. • Epitaxial SnO{sub 2} (100) films were obtained on c-sapphire with thickness more than 1 μm. • The epitaxial relationship is SnO{sub 2}(100)||Al{sub 2}O{sub 3}(0001) and SnO{sub 2}[010]||Al{sub 2}O{sub 3}< 11–20 >. • B{sub 2g} Raman mode was found to be absent in (100)-orientated SnO{sub 2} films on c-sapphire. • The crystal quality and properties of SnO{sub 2} films depended sensitively on the O{sub 2} flow rate.

  16. Electric field-tunable Ba{sub x}Sr{sub 1-x}TiO{sub 3} films with high figures of merit grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, Evgeny; Kajdos, Adam P.; Hauser, Adam J.; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2012-12-17

    We report on the dielectric properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST) films grown by molecular beam epitaxy on epitaxial Pt bottom electrodes. Paraelectric films (x Less-Than-Or-Equivalent-To 0.5) exhibit dielectric losses that are similar to those of BST single crystals and ceramics. Films with device quality factors greater than 1000 and electric field tunabilities exceeding 1:5 are demonstrated. The results provide evidence for the importance of stoichiometry control and the use of a non-energetic deposition technique for achieving high figures of merit of tunable devices with BST thin films.

  17. KTa{sub 0.65}Nb{sub 0.35}O{sub 3} thin films epitaxially grown by pulsed laser deposition on metallic and oxide epitaxial electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bouyasfi, A.; Mouttalie, M. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France); Laboratoire de Compatibilite Electromagnetique, Maintenance Industrielle et Nanostructures (LCEMINAS), Faculte des Sciences et Techniques, Route d' Imouzzer B.P. 2202 Fes 30000 (Morocco); Demange, V. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France); Gautier, B.; Grandfond, A. [Institut des Nanotechnologies de Lyon/INSA, 7 Avenue Capelle, 69621 Villeurbanne Cedex (France); Deputier, S.; Ollivier, S. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France); Hamedi, L' H. [Laboratoire de Compatibilite Electromagnetique, Maintenance Industrielle et Nanostructures (LCEMINAS), Faculte des Sciences et Techniques, Route d' Imouzzer B.P. 2202 Fes 30000 (Morocco); Guilloux-Viry, M., E-mail: maryline.guilloux-viry@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ferroelectric KTa{sub 0.65}Nb{sub 0.35}O{sub 3} thin films grown by pulsed laser deposition. Black-Right-Pointing-Pointer KTa{sub 0.65}Nb{sub 0.35}O{sub 3} epitaxially grown on Pt and LaNiO{sub 3} epitaxial electrodes. Black-Right-Pointing-Pointer Influence of oxide vs. metal electrode on ferroelectric's structural properties. Black-Right-Pointing-Pointer AFM/TUNA mode investigation of KTa{sub 0.65}Nb{sub 0.35}O{sub 3}/Pt heterostructure. Black-Right-Pointing-Pointer Asymmetry of the conduction mechanisms (positive vs. negative applied voltage). - Abstract: Ferroelectric KTa{sub 0.65}Nb{sub 0.35}O{sub 3} (KTN) thin films were grown by pulsed laser deposition on Pt and LaNiO{sub 3} epitaxial electrodes, on (1 0 0) and (1 1 0) SrTiO{sub 3} substrates. The effect of the nature of the electrode on structural and microstructural quality of KTN films was investigated. While epitaxial KTN thin films were successfully obtained on both electrodes, two orientations compete on Pt, whatever the main orientation of Pt is (1 0 0) or (1 1 0). On LaNiO{sub 3} in contrast, pure (1 0 0) and (1 1 0) oriented KTN films were achieved with a high crystalline quality illustrated by narrow {omega}-scans ({Delta}{omega} = 0.56 Degree-Sign and {Delta}{omega} = 0.80 Degree-Sign for (1 0 0) and (1 1 0) KTN, to be compared to 0.048 Degree-Sign and 0.22 Degree-Sign for (1 0 0) and (1 1 0) LaNiO{sub 3}, respectively). Electrical measurements performed in tunneling atomic force microscopy (TUNA mode) on a KTN/Pt heterostructure showed a high asymmetry of the conduction mechanisms when a positive or a negative bias is applied on the sample. In particular leakage currents appear even at very low positive applied voltage. TUNA imaging operated at a moderate negative applied voltage of -3 V shows that some areas corresponding to grain boundaries seem to be more leaky than others.

  18. Combined impact of strain and stoichiometry on the structural and ferroelectric properties of epitaxially grown N a1 +xNb O3 +δ films on (110) NdGa O3

    Science.gov (United States)

    Cai, Biya; Schwarzkopf, J.; Feldt, C.; Sellmann, J.; Markurt, T.; Wördenweber, R.

    2017-05-01

    We demonstrate that the strain of an epitaxially grown film, which is induced by the lattice mismatch between the crystalline substrate and film and relaxes with increasing film thickness, can be conserved beyond the critical thickness of plastic relaxation of the respective film/substrate heterostructure system by adding epitaxially embedded nanoprecipitates and/or nanopillars of a secondary phase. By doing so we modify the ferroelectric properties of the film in a very controlled way. For this purpose, strained N a1 +xNb O3 +δ films are epitaxially grown on (110 ) NdGa O3 and their structural and electronic properties are investigated. X-ray diffraction and transmission electron microscopy analysis indicate that in addition to the epitaxially grown majority phase NaNb O3 , a second phase N ayNb O3 +δ is present in the films and forms crystalline precipitates and vertically aligned pillars a few nanometers in diameter. For large enough concentrations, this secondary phase appears to be able to suppress the plastic relaxation of the NaNb O3 matrix. In contrast to stoichiometric films and films with small Na excess, which demonstrate strain relaxation for film thickness exceeding a few nanometers and relaxor-type ferroelectric behavior, the N a1 +xNb O3 +δ film with the largest off-stoichiometry (grown from a target with x =17 % ) exhibits the "classic" ferroelectric behavior of unstrained NaNb O3 with a hysteretic structural and ferroelectric transition. However, the temperature of this hysteretic transition is shifted from 616 K to 655 K for unstrained material to room temperature for the strained N a1 +xNb O3 +δ film grown from the off-stoichiometric target.

  19. Effect of thermal annealing on structural properties of GeSn thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z. P.; Song, Y. X.; Li, Y. Y.; Wu, X. Y.; Zhu, Z. Y. S.; Han, Y.; Zhang, L. Y.; Huang, H.; Wang, S. M.

    2017-10-01

    GeSn alloy with 7.68% Sn concentration grown by molecular beam epitaxy has been rapidly annealed at different temperatures from 300°C to 800°C. Surface morphology and roughness annealed below or equal to 500°C for 1 min have no obvious changes, while the strain relaxation rate increasing. When the annealing temperature is above or equal to 600°C, significant changes occur in surface morphology and roughness, and Sn precipitation is observed at 700°C. The structural properties are analyzed by reciprocal space mapping in the symmetric (004) and asymmetric (224) planes by high resolution X-ray diffraction. The lateral correlation length and the mosaic spread are extracted for the epi-layer peaks in the asymmetric (224) diffraction. The most suitable annealing temperature to improve both the GeSn lattice quality and relaxation rate is about 500°C.

  20. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Buriakov, A. M.; Bilyk, V. R.; Mishina, E. D. [Moscow Technological University “MIREA” (Russian Federation); Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Vasil’evskii, I. S. [National Research Nuclear University “MEPhI” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation)

    2017-04-15

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity of the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.

  1. Brookite TiO2 thin film epitaxially grown on (110) YSZ substrate by atomic layer deposition.

    Science.gov (United States)

    Kim, Dai-Hong; Kim, Won-Sik; Kim, Sungtae; Hong, Seong-Hyeon

    2014-08-13

    Epitaxial brookite TiO2 (B-TiO2) film was deposited on (110) yttria-stabilized zirconia (YSZ) substrate using plasma-enhanced atomic layer deposition, and its structural, optical, and gas sensing properties were investigated. As-deposited TiO2 film was a pure brookite and (120) oriented. The determined in-plane orientation relationships were [21̅0]B-TiO2//[1̅10]YSZ and [001]B-TiO2 //[001]YSZ. The B-TiO2 film showed ∼70% transmittance and the optical band gap energy was 3.29 eV. The B-TiO2 film-based gas sensor responded to H2 gas even at room temperature and the highest magnitude of the gas response was determined to be ∼150 toward 1000 ppm of H2/air at 150 °C. In addition, B-TiO2 sensor showed a high selectivity for H2 against CO, EtOH, and NH3.

  2. Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Ma, Y.; Du, G. T.; Yang, S. R.; Li, Z. T.; Zhao, B. J.; Yang, X. T.; Yang, T. P.; Zhang, Y. T.; Liu, D. L.

    2004-06-01

    The properties of the ZnO thin films prepared by metalorganic vapor phase epitaxy under various oxygen partial pressures were thoroughly studied. It was found that the conduction type in undoped ZnO epilayers could be controlled by adjusting the family VI precursor, oxygen partial pressure during growth. The films were characteristic of n-type conductivity under oxygen partial pressure lower than 45 Pa. With the increase of oxygen content, the crystallinity of the ZnO thin films was degraded to polycrystalline with additional (10-12) orientation and the intrinsic p-type ZnO was produced as the oxygen partial pressure was larger than 55 Pa. The hole concentration and mobility could reach to 1.59×1016 cm-3 and 9.23 cm2 V-1 s-1, and the resistivity was 42.7 Ω cm. The near-band-edge emission and the deep level emission in photoluminescence (PL) spectra at room temperature were influenced strongly by the oxygen partial pressure. Temperature-dependent PL spectra in n-type ZnO films showed a dominant neutral-donor bound exciton emission, while p-ZnO was dominated by neutral-acceptor bound exciton emission. Both peaks increased in intensity with the decrease of the temperature and shifted to the short-wavelength side. The band that originated from zinc vacancies emerged at a temperature lower than 155 K only in the p-type films. The origin of intrinsic p-type conductivity in ZnO thin films might be related to zinc vacancy.

  3. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  4. Role of dislocations and carrier concentration in limiting the electron mobility of InN films grown by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Tangi, Malleswararao; De, Arpan; Shivaprasad, S. M.

    2018-01-01

    We report the molecular beam epitaxy growth of device quality InN films on GaN epilayer and nano-wall network (NWN) templates deposited on c-sapphire by varying the film thickness up to 1 μm. The careful experiments are directed towards obtaining high mobility InN layers having a low band gap with improved crystal quality. The dislocation density is quantified by using high resolution X-ray diffraction rocking curve broadening values of symmetric and asymmetric reflections, respectively. We observe that the dislocation density of the InN films grown on GaN NWN is less than that of the films grown on the GaN epilayer. This is attributed to the nanoepitaxial lateral overlayer growth (ELOG) process, where the presence of voids at the interface of InN/GaN NWN prevents the propagation of dislocation lines into the InN epilayers, thereby causing less defects in the overgrown InN films. Thus, this new adaptation of the nano-ELOG growth process enables us to prepare InN layers with high electron mobility. The obtained electron mobility of 2121 cm2/Vs for 1 μm thick InN/GaN NWN is comparable with the literature values of similar thickness InN films. Furthermore, in order to understand the reasons that limit electron mobility, the charge neutrality condition is employed to study the variation of electron mobility as a function of dislocation density and carrier concentration. Overall, this study provides a route to attaining improved crystal quality and electronic properties of InN films.

  5. Morphological and microstructural stability of N-polar InAlN thin films grown on free-standing GaN substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Matthew T., E-mail: matthew.hardy.ctr@nrl.navy.mil; Storm, David F.; Downey, Brian P.; Katzer, D. Scott; Meyer, David J. [Electronics Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington DC 20375 (United States); McConkie, Thomas O.; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Nepal, Neeraj [Sotera Defense Solutions, 2200 Defense Hwy Suite 405, Crofton, Maryland 21114 (United States)

    2016-03-15

    The sensitivity of the surface morphology and microstructure of N-polar-oriented InAlN to variations in composition, temperature, and layer thickness for thin films grown by plasma-assisted molecular beam epitaxy (PAMBE) has been investigated. Lateral compositional inhomogeneity is present in N-rich InAlN films grown at low temperature, and phase segregation is exacerbated with increasing InN fraction. A smooth, step-flow surface morphology and elimination of compositional inhomogeneity can be achieved at a growth temperature 50 °C above the onset of In evaporation (650 °C). A GaN/AlN/GaN/200-nm InAlN heterostructure had a sheet charge density of 1.7 × 10{sup 13 }cm{sup −2} and no degradation in mobility (1760 cm{sup 2}/V s) relative to 15-nm-thick InAlN layers. Demonstration of thick-barrier high-electron-mobility transistors with good direct-current characteristics shows that device quality, thick InAlN layers can be successfully grown by PAMBE.

  6. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  7. Thermal stability and relaxation mechanisms in compressively strained Ge{sub 0.94}Sn{sub 0.06} thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, C.; Lieten, R. R.; Shimura, Y.; Vandervorst, W. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Hermann, P.; Hönicke, P.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Seidel, F. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Institut für Elektronik-und Sensormaterialien, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg (Germany); Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Zaima, S. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Uchida, N. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West SCR, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Temst, K.; Vantomme, A. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium)

    2016-08-28

    Strained Ge{sub 1-x}Sn{sub x} thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge{sub 0.94}Sn{sub 0.06} films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge{sub 0.94}Sn{sub 0.06} films grown by molecular beam epitaxy.

  8. Post deposition annealing of epitaxial Ce(1-x)Pr(x)O(2-δ) films grown on Si(111).

    Science.gov (United States)

    Wilkens, H; Spiess, W; Zoellner, M H; Niu, G; Schroeder, T; Wollschläger, J

    2015-04-21

    In this work the structural and morphological changes of Ce1-xPrxO2-δ (x = 0.20, 0.35 and 0.75) films grown on Si(111) due to post deposition annealing are investigated by low energy electron diffraction combined with a spot profile analysis. The surface of the oxide films exhibit mosaics with large terraces separated by monoatomic steps. It is shown that the Ce/Pr ratio and post deposition annealing temperature can be used to tune the mosaic spread, terrace size and step height of the grains. The morphological changes are accompanied by a phase transition from a fluorite type lattice to a bixbyite structure. Furthermore, at high PDA temperatures a silicate formation via a polycrystalline intermediate state is observed.

  9. Static and dynamic magnetic properties of B2 ordered Co{sub 2}MnAl film epitaxially grown on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jihong; Qiao, Shuang, E-mail: sqiao@hbu.edu.cn

    2015-11-05

    Co{sub 2}MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. However, on the premise of high polarization, the optimization of the magnetic damping constant is directly determined the critical current density for spin torque transfer switching and also the stability of spin polarization for spin injection transfer, thus research on damping constant is also very important. In this paper, we have systematically investigated the magnetic damping constant in Co{sub 2}MnAl film epitaxially grown on GaAs(100) substrate by FMR and TR-MOKE measurements, and found that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. While, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may provide important information for Co{sub 2}MnAl/GaAs heterostructure and its potential application in spintronics. - Graphical abstract: Co{sub 2}MnAl, considering its potential 100% spin polarization and high Curie temperature, is expected to be one of the most promising materials for realizing half metallicity. In this paper, we have successfully grown the B2-ordered Co{sub 2}MnAl film on GaAs (100) substrate and systematically investigated the magnetic damping constant in Co{sub 2}MnAl film epitaxially grown on GaAs(100) substrate by employing both FMR and TR-MOKE measurements. Our results show that the damping constant of 0.023 extracted by FMR is comparable with that of TR-MOKE at low field. However, considering field-dependent spin orientation, we think that the field-dependent damping constant deduced by TR-MOKE may be more useful for Co{sub 2}MnAl/GaAs heterostructure and its possible application in spintronics. - Highlights: • B2 ordered Co{sub 2}MnAl was successfully prepared and studied by LMOKE and ROT-MOKE. • Static magnetic measurements show clear cubic

  10. Electrical and optical properties of Sb-doped BaSnO{sub 3} epitaxial films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qinzhuang; Dai Jianming; Liu Zhongliang; Zhang Xiaobo; Zhu Guangping; Ding Guohua, E-mail: qzliu@mail.ustc.edu.c [Department of Physics, Huaibei Normal University, Huaibei 235000 (China)

    2010-11-17

    In this paper we report the structural, electrical and optical properties of epitaxial Ba(Sb{sub x}Sn{sub 1-x})O{sub 3} (x = 0-0.30) (BSSO) films grown on SrTiO{sub 3}(0 0 1) substrates by the pulsed laser deposition method. The investigation reveals that the transport and optical characteristics of BSSO films depend very sensitively on the Sb-doping content. Temperature-dependent resistivity measurements show that at low Sb contents (x = 0.03, 0.07) the metal-semiconductor transition occurs at 150 K and 80 K, respectively, and the semiconductor behaviour appears in high doped (x = 0.15, 0.30) films. The transmittance decreases significantly from about 80% to nearly zero in the visible region and the optical band gap shifts from 3.48 to 4.0 eV with increasing Sb content in the films. The lowest room-temperature resistivity of 2.43 m{Omega} cm with carrier density and mobility of 1.65 x 10{sup 21} cm{sup -3} and 1.75 cm{sup 2} V{sup -1} s{sup -1} was obtained in the films with doping at x = 0.07. By employing them as bottom electrodes we have fabricated transparent Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} ferroelectric capacitors showing square polarization-electric field hysteresis loops, indicating that these perovskite-type BSSO films at low doping can be potentially used in transparent devices especially based on all-perovskite heterostructures.

  11. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    Science.gov (United States)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  12. X-ray photoelectron diffraction study of thin Al2O3 films grown on Si(111) by molecular beam epitaxy

    Science.gov (United States)

    El Kazzi, M.; Grenet, G.; Merckling, C.; Saint-Girons, G.; Botella, C.; Marty, O.; Hollinger, G.

    2009-05-01

    The in-plane and out-of-plane crystallographic orientations of Al2O3 films grown by molecular beam epitaxy on Si(111) have been determined by combining x-ray photoelectron diffraction (XPD) with transmission electron microscopy (TEM). On the one hand, polar and azimuth XPD curves for Al2p , O1s , and Si2p core levels (recorded on a 6-nm-thick film) clearly indicate that Al2O3 grows (111) oriented on Si(111) but with two in-plane orientations: a “direct” one, i.e., [112¯]Al2O3//[112¯]Si(111) and a “mirror” one, i.e., [1¯1¯2]Al2O3(111)//[112¯]Si(111) . On the other hand, a close inspection of the 404¯Al2O3 TEM diffraction spots (recorded on a 2-nm-thick film) reveals that these two in-plane orientations are slightly rotated with respect to the Si(111) orientations. These two results are consistent with an oxygen plane as the interfacial plane between Al2O3(111) and Si(111).

  13. Giant Faraday rotation of blue light in epitaxial CexY3-xFe5O12 films grown by pulsed laser deposition

    Science.gov (United States)

    Kim, Hyonju; Grishin, Alex; Rao, K. V.

    2001-04-01

    We report crystalline, magnetic, and magneto-optic (MO) properties of Ce-substituted yttrium iron garnet (CexY3-xFe5O12) thin films epitaxially grown onto single crystal Gd3Ga5O12 (111) substrates using Nd:YAG pulsed laser deposition technique. Oxygen ambient pressure used for the growth is found to be the critical parameter to prepare CexY3-xFe5O12 films with good crystalline and magnetic properties as well as large MO effect. The film fabricated at 50 m Torr oxygen pressure exhibits a maximum Faraday rotation (FR) θF=1.78 and 4°/μm at λ=633 and 430 nm, respectively, a minimum in-plane coercivity Hc=35 Oe, and the narrowest full width at half maximum = 0.06° for the (444) x-ray Bragg reflection rocking curve. The analog of the Verdet constant V=θF/4πMs also found to be dependent on the oxygen ambient pressure reaches a value as high as 1.41°/μm kG at 633 nm, suggesting that this material is useful for MO applications. The energy dispersion FR spectra, measured over visible region 400 to 840 nm, clearly demonstrate that Ce substitution prominently enhances Faraday effect at 690 and at 430 nm blue-wavelength region.

  14. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David, E-mail: david.lederman@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Marcus, Matthew A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tarafder, Kartick [Department of Physics, BITS-Pilani Hyderabad Campus, Secunderabad, Andhra Pradesh 500078 (India)

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  15. Magnetic anisotropy and domain structure of manganese ferrite grown epitaxially on MgO

    NARCIS (Netherlands)

    van den Berg, Klaas; Lodder, J.C.; Mensinga, T.C.

    1976-01-01

    The properties of polycrystalline manganese ferrite thin films have been discussed in previous papers. The present study was undertaken to obtain supplementary information on the magnetic anisotropy and domain properties of the films. The ferrite films were grown epitaxially by an evaporation

  16. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Abhishek Kumar, A.K.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  17. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  18. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100 substrates

    Directory of Open Access Journals (Sweden)

    R. Cariou

    2014-07-01

    Full Text Available We report on unusual low temperature (175 °C heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM reveal a perfect crystalline quality of epitaxial germanium layers on (100 c-Ge wafers. In addition direct germanium crystal growth is achieved on (100 c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD values as low as 106 cm−2 are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  19. Terahertz photoconductivity of double acceptors in narrow gap HgCdTe epitaxial films grown by molecular beam epitaxy on GaAs(013) and Si(013) substrates

    Science.gov (United States)

    Rumyantsev, V. V.; Kozlov, D. V.; Morozov, S. V.; Fadeev, M. A.; Kadykov, A. M.; Teppe, F.; Varavin, V. S.; Yakushev, M. V.; Mikhailov, N. N.; Dvoretskii, S. A.; Gavrilenko, V. I.

    2017-09-01

    The energy spectra of the mercury vacancy, the most common acceptor in HgCdTe material, is studied via numerical calculations and low temperature photoconductivity (PC) measurements of ‘vacancy-doped’ HgCdTe films with low cadmium content. Since the Hg vacancy is known to be a double acceptor, the model for the helium atom was adopted for degerate valence band of zinc blende semiconductors to classify the observed PC bands. This approach provides a fairly good description of the photoionization of both neutral and singly-ionized vacancy when the central cell potential is taken into account.

  20. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  1. Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition

    Science.gov (United States)

    Senty, Tess; Joshi, Toyanath; Trappen, Robbyn; Zhou, Jinling; Chen, Song; Ferrari, Piero; Borisov, Pavel; Song, Xueyan; Holcomb, Mikel; Bristow, Alan; Cabrera, Alejandro; Lederman, David

    2015-03-01

    Growth of pure phase delafossite CuFeO2 thin films on Al2O3 (00.1) substrates by pulsed laser deposition was systematically investigated as function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO2 films demonstrated a phase transition at TC = 15K, which agrees with the first antiferromagnetic transition at 14K in the bulk CuFeO2. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract #2013-MA-2382) at WVU. Work at PUC was supported by FONDECyT.

  2. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    McHugo, S.A.; Krueger, J.; Kisielowski, C. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  3. Ultrathin epitaxial cobalt films formed under graphene

    Science.gov (United States)

    Gomoyunova, M. V.; Grebenyuk, G. S.; Smirnov, D. A.; Pronin, I. I.

    2017-10-01

    The intercalation of cobalt under a graphene monolayer grown on a Ni(111) single crystal film is studied. The experiments are conducted in ultrahigh vacuum. Samples are characterized in situ by low energy electron diffraction, high-energy-resolution photoelectron spectroscopy using synchrotron radiation, and magnetic linear dichroism in photoemission of Co 3 p electrons. New data are obtained on the evolution of the atomic and electronic structure and magnetic properties of the system with increasing thickness of the intercalated cobalt layer in the range up to 2 nm. It is shown that a pseudomorphic epitaxial film of Co(111) having magnetization perpendicular to the surface is formed under the grapheme layer during intercalation in an anomalously wide range of thicknesses.

  4. Epitaxial ferrite films with negative differential resistance

    Energy Technology Data Exchange (ETDEWEB)

    Karpasyuk, V.K.; Kartashev, V.S.; Lebedev, A.V.; Orlov, G.N.; Pimonov, P.Ya.; Shchepetkin, A.A.

    1988-02-01

    Epitaxial films based on nickel ferrite, grown by the method of chemical gas-transport reactions on magnesium oxide substrates, are distinguished by the nonuniformity of the composition over the thickness and the S-shaped current-voltage characteristic. The surface layers are enriched with iron and exhibit electronic conductivity, while near the substrate the films are characterized by an elevated magnesium and nickel concentration and should exhibit hole conductivity. The S-shaped current-voltage characteristic for measurement in air could be linked with the jump-like change in the valence state and chemical bonds of ions or with the appearance of double injection currents between layers with different types of conductivity.

  5. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO3 Thin Films Grown on Different Substrates

    Directory of Open Access Journals (Sweden)

    Tamas Varga

    2015-01-01

    Full Text Available Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, and Ni. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3 films were deposited on Al2O3, Fe2O3, and LiNbO3 substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3 is polarization induced. From the substrates studied here, the perovskite substrate LiNbO3 proved to be the most promising one for strong multiferroism.

  6. van der Waals epitaxy of Ge films on mica

    Science.gov (United States)

    Littlejohn, A. J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C.

    2017-11-01

    To date, many materials have been successfully grown on substrates through van der Waals epitaxy without adhering to the constraint of lattice matching as is required for traditional chemical epitaxy. However, for elemental semiconductors such as Ge, this has been challenging and therefore it has not been achieved thus far. In this paper, we report the observation of Ge epitaxially grown on mica at a narrow substrate temperature range around 425 °C. Despite the large lattice mismatch (23%) and the lack of high in-plane symmetry in the mica surface, an epitaxial Ge film with [111] out-of-plane orientation is observed. Crystallinity and electrical properties degrade upon deviation from the ideal growth temperature, as shown by Raman spectroscopy, X-ray diffraction, and Hall effect measurements. X-ray pole figure analysis reveals that there exist multiple rotational domains in the epitaxial Ge film with dominant in-plane orientations between Ge [" separators="|1 ¯10 ] and mica[100] of (20 n )°, where n = 0, 1, 2, 3, 4, 5. A superlattice area mismatch model was used to account for the likelihood of the in-plane orientation formation and was found to be qualitatively consistent with the observed dominant orientations. Our observation of Ge epitaxy with one out-of-plane growth direction through van der Waals forces is a step toward the growth of single crystal Ge films without the constraint in the lattice and symmetry matches with the substrates.

  7. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures

    Science.gov (United States)

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-01

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  8. On the evolution of InAs thin films grown by molecular beam epitaxy on the GaAs(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Jan

    2010-12-14

    Semiconductor nanostructures are currently of high interest for a wide variety of electronic and optoelectronic applications. A large number of devices, in particular for the optical data transmission in the long-wavelength range, essential in modern communication, are based on InAs/GaAs quantum dot (QD) structures. Though the properties of the InAs/GaAs QDs have been extensively studied, only little is known about the formation and structure of the wetting layer (WL) yet. In the present work, the pathway of the InAs WL evolution is studied in detail. For this purpose, InAs thin films in the range of one monolayer (ML) are deposited on the GaAs(001) surface by molecular beam epitaxy (MBE) and studied by reflection high energy electron diffraction (RHEED) and in particular by scanning tunneling microscopy (STM). The InAs thin films are grown in both typical growth regimes, on the GaAs-c(4 x 4) and the GaAs-{beta}2(2 x 4) reconstructed surface, in a variety of thicknesses starting from submonolayers with 0.09 ML of InAs up to 1.65 ML of InAs exceeding the critical thickness for QD growth. In principle, three growth stages are found. At low InAs coverages, the indium adsorbs in agglomerations of typically eight In atoms at energetically preferable surface sites. In the STM images, the signatures of these In agglomerations appear with a clear bright contrast. A structural model for the initial formation of these signatures is presented, and its electronic and strain related properties are discussed. At an InAs coverage of about 0.67ML the initial surface transforms into a (4 x 3) reconstructed In{sub 2/3}Ga{sub 1/3}As ML and the detailed structure and strain properties of this surface are unraveled. On top of the InGaAs ML further deposited InAs forms a second layer, characterized by a typical zig-zag alignment of (2 x 4) reconstructed unit cells, with an alternating {alpha}2/{alpha}2-m configuration. In contrast to the previous surface reconstructions, where

  9. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  10. Spin wave and percolation studies in epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ettayfi, A. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Colis, S.; Lenertz, M.; Dinia, A. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 UDS-CNRS (UDS-ECPM), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain chock, Université Hassan II de Casablanca, B.P. 5366 Casablanca (Morocco)

    2016-07-01

    We investigate the magnetic and transport properties of high quality La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films grown by pulsed laser deposition. X-ray diffraction shows that the deposited films are epitaxial with the expected pseudo-cubic structure. Using the spin wave theory, the temperature dependence of magnetization was satisfactory modeled at low temperature, in which several fundamental magnetic parameters were obtained (spin wave stiffness, exchange constants, Fermi wave-vector, Mn–Mn interatomic distance). The transport properties were studied via the temperature dependence of electrical resistivity [ρ(T)], which shows a peak at Curie temperature due to metal to insulator transition. The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases. Reasonable agreement with the experimental data is reported. - Highlights: • The magnetic and transport properties of epitaxial La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films are investigated. • The M(T) curve was modeled at low temperature, and several magnetic parameters were obtained using spin wave theory. • The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases.

  11. Epitaxial films of Heusler compound Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} with high crystalline quality grown by off-axis sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.; Hageman, Stephen J.; Yang, F. Y. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Alfonsov, A.; Blum, C. G. F. [Leibniz Institute for Solid State and Materials Research Dresden, IFW, D-01171 Dresden (Germany); Woodward, P. M. [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Wurmehl, S.; Büchner, B. [Leibniz Institute for Solid State and Materials Research Dresden, IFW, D-01171 Dresden (Germany); Institute for Solid State Physics, Technische Universität Dresden, D-01062 Dresden (Germany)

    2013-10-14

    Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films with a surface roughness of 0.12 nm have been grown epitaxially on lattice-matched MgAl{sub 2}O{sub 4} (001) substrates by off-axis sputtering. X-ray diffraction shows pronounced Laue oscillations, rocking curves as narrow as 0.0043°, and clear Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (111) peaks indicating L2{sub 1} ordering. Magnetic characterizations show a clear magnetocrystalline anisotropy comprising cubic and epitaxy-induced uniaxial terms. Nuclear magnetic resonance measurements reveal L2{sub 1} order of 81% in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films. Magnetotransport measurements show a distinct separation of anisotropic magnetoresistance and ordinary magnetoresistance. These results demonstrate the state-of-the-art crystalline quality and magnetic uniformity of the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films.

  12. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2017-10-01

    We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.

  13. Scanning Tunneling Microscopy Studies of Topological Insulators Grown by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Xue Qikun

    2012-03-01

    Full Text Available We summarize our recent scanning tunneling microscopy (STM study of topological insulator thin films grown by molecular beam epitaxy (MBE, which includes the observation of electron standing waves on topological insulator surface and the Landau quantization of topological surface states. The work has provided valuable information to the understanding of intriguing properties of topological insulators, as predicted by theory.

  14. Thick Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} Films Grown by Liquid-Phase Epitaxy for Josephson THz Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Y.; Vlasko-Vlasov, V.; Koshelev, A. E.; Benseman, T.; Hao, Y.; Kesgin, I.; Claus, H.; Pearson, J.; Kwok, W. -K.; Welp, U.

    2017-11-27

    Theoretical and experimental studies of intrinsic Josephson junctions that naturally occur in high-Tc superconducting Bi2Sr2CaCu2O8+δ (Bi-2212) have demonstrated their potential for novel types of compact devices for the generation and sensing of electromagnetic radiation in the THz range. Here, we show that the THz-on-a-chip concept may be realized in liquid phase epitaxial-grown (LPE) thick Bi-2212 films. We have grown μm-thick Bi-2212 LPE films on MgO substrates. These films display excellent c-axis alignment and single crystal grains of about 650 × 150 μm2 in size. A branched current-voltage characteristic was clearly observed in c-axis transport, which is a clear signature of underdamped intrinsic Josephson junctions, and a prerequisite for THz-generation. We discuss LPE growth conditions allowing improvement of the structural quality and superconducting properties of Bi-2212 films for THz applications.

  15. Magnetoimpedance spectroscopy of epitaxial multiferroic thin films

    Science.gov (United States)

    Schmidt, Rainer; Ventura, Jofre; Langenberg, Eric; Nemes, Norbert M.; Munuera, Carmen; Varela, Manuel; Garcia-Hernandez, Mar; Leon, Carlos; Santamaria, Jacobo

    2012-07-01

    The detection of true magnetocapacitance (MC) as a manifestation of magnetoelectric coupling (MEC) in multiferroic materials is a nontrivial task, because pure magnetoresistance (MR) of an extrinsic Maxwell-Wagner-type dielectric relaxation can lead to changes in capacitance [G. Catalan, Appl. Phys. Lett.APPLAB0003-695110.1063/1.2177543 88, 102902 (2006)]. In order to clarify such difficulties involved with dielectric spectroscopy on multiferroic materials, we have simulated the dielectric permittivity ɛ' of two dielectric relaxations in terms of a series of one intrinsic film-type and one extrinsic Maxwell-Wagner-type relaxation. Such a series of two relaxations was represented in the frequency- (f-) and temperature- (T-) dependent notations ɛ' vs f and ɛ' vs T by a circuit model consisting in a series of two ideal resistor-capacitor (RC) elements. Such simulations enabled rationalizing experimental f-, T-, and magnetic field- (H-) dependent dielectric spectroscopy data from multiferroic epitaxial thin films of BiMnO3 (BMO) and BiFeO3 (BFO) grown on Nb-doped SrTiO3. Concomitantly, the deconvolution of intrinsic film and extrinsic Maxwell-Wagner relaxations in BMO and BFO films was achieved by fitting f-dependent dielectric data to an adequate equivalent circuit model. Analysis of the H-dependent data in the form of determining the H-dependent values of the equivalent circuit resistors and capacitors then yielded the deconvoluted MC and MR values for the separated intrinsic dielectric relaxations in BMO and BFO thin films. Substantial intrinsic MR effects up to 65% in BMO films below the magnetic transition (TC≈100 K) and perceptible intrinsic MEC up to -1.5% near TC were identified unambiguously.

  16. High-mobility BaSnO3 grown by oxide molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Santosh Raghavan

    2016-01-01

    Full Text Available High-mobility perovskite BaSnO3 films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE approach, which supplies pre-oxidized SnOx. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO3. We demonstrate room temperature electron mobilities of 150 cm2 V−1 s−1 in films grown on PrScO3. The results open up a wide range of opportunities for future electronic devices.

  17. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  18. Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy

    Science.gov (United States)

    Oshima, Ryuji; Makita, Kikuo; Tayagaki, Takeshi; Sugaya, Takeyoshi

    2017-11-01

    Because InGaAsP alloys grown on InP substrates with 1.05 eV bandgap are often susceptible to compositional fluctuations owing to spinodal-like decomposition due to the miscibility gap, the corresponding open circuit voltage (VOC) for InGaAsP solar cells is typically smaller than the empirically expected value. In this study, we investigate the impact of the device structure on the VOC of In0.83Ga0.17As0.36P0.64 solar cells grown by solid-source molecular beam epitaxy. In comparison to the upright homojunction cell as a baseline, a reverse saturation current density (J0) for the upright heterojunction cell was effectively reduced from 3.2×10-4 to 1.5×10-6 mA/cm2 using the n-InP emitter with higher electron mobility, resulting in an enhancement of VOC from 0.557 to 0.568 V. Owing to the reduction of J0 to 2.8×10-7 mA/cm2, the VOC was further enhanced to 0.590 V for the inverted heterojunction cell. For the reduction of J0, a longer radiative lifetime of 20.2 ns obtained for the inverted heterojunction cell by photoluminescence decay at room temperature, presumably caused by light trapping, was responsible. Consequently, the efficiency was enhanced from 9.5% for the upright homojunction cell to 12.1% for the inverted heterojunction cell. Using the inverted InGaAsP cell, we demonstrated the mechanically stacked InGaP/GaAs//inverted-InGaAsP (// denotes the bonded interface) triple-junction solar cells with enhanced VOC of 2.64 V.

  19. Optical detection of carbon dioxide adsorption on epitaxial CuFe1 -xGaxO2 Delafossite film grown by pulse laser deposition

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Wheatley, R. A.; Sarabia, M.; Borisov, P.; Lederman, D.; Cabrera, A. L.

    2016-06-01

    A highly epitaxial delafossite CuFe1 -xGaxO2 film was made with pulse laser deposition in high vacuum. The sample thickness was around 48 nm and it was terminated with CuFeO2. This delafossite sample was exposed to a CO2 atmosphere under controlled conditions and chemisorption of CO2 on the surface was observed. Transmittance and reflectance spectroscopies were recorded for the sample post surface heat treatment held in a vacuum chamber (0.05 Kpa) and after exposure to CO2. Both spectra were recorded over a wavelength range of 350-1100 nm. Chemisorption of CO2 was correlated with an increase in transmittance and decrease in reflectance in the pressure range 0-60 kPa. These observations were confirmed with X-ray photoelectron spectroscopy and thermal programmed desorption data obtained in an independent experiment. The CO2 is bound to the surface forming a carboxylate structure via coordination of a bent CO2- δ molecule to a Cu center.

  20. GaN:Eu electroluminescent devices grown by interrupted growth epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Munasinghe, C. [Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, OH 45221-0030 (United States); Steckl, A.J. [Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, OH 45221-0030 (United States)]. E-mail: a.steckl@uc.edu

    2006-02-21

    In this paper we report on electroluminescent devices fabricated using Eu-doped GaN films grown by interrupted growth epitaxy (IGE). IGE is a combination of conventional molecular beam epitaxy and migration enhanced epitaxy. It consists of a sequence of ON/OFF cycles of the Ga and Eu beams, while the N{sub 2} plasma is kept constant during the entire growth time. IGE growth of GaN:Eu resulted in significant enhancement in the Eu emission intensity at 620.5 nm. The nitridation of the surface that occurs during the OFF cycle appears to be the dominant process producing the enhancement. Thick dielectric devices fabricated on glass substrates using IGE-grown GaN:Eu have resulted in luminance of {approx}1000 cd/m{sup 2} and luminous efficiency of {approx}0.15 lm/W.

  1. Stress relaxation in thick-film GaN grown by hydride vapor phase epitaxy on sapphire and spinel substrates as studied by photoluminescence and raman spectroscopy

    CERN Document Server

    Kim, S T; Lee, C; Kim, J E; Park, H Y

    1999-01-01

    The residual strains in thick-film GaN grown on both sapphire and spinel substrates has been evaluated by photoluminescence (PL) and raman spectroscopy . The strain-free shallow donor bound exciton recombination energy (I sub 2) is 3.468 eV at 10 K. The raman mode frequency shift with residual strain with estimated as DELTA w = 3.93 cm sup - sup 1 per one GPa for GaN layers on both substrates . The linear relationship between the PL I sub 2 line and the raman E sub 2 mode frequency is DELTA E/DELTA w = 5.12 meV/cm sup - sup 1 , which leads to a stress-induced PL line shift of DELTA E = 20 meV/GPa.

  2. Optical band gap of BiFeO3 grown by molecular-beam epitaxy

    Science.gov (United States)

    Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. B.; Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.; Schlom, D. G.

    2008-04-01

    BiFeO3 thin films have been deposited on (001) SrTiO3 substrates by adsorption-controlled reactive molecular-beam epitaxy. For a given bismuth overpressure and oxygen activity, single-phase BiFeO3 films can be grown over a range of deposition temperatures in accordance with thermodynamic calculations. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with ω rocking curve full width at half maximum values as narrow as 29arcsec (0.008°). Multiple-angle spectroscopic ellipsometry reveals a direct optical band gap at 2.74eV for stoichiometric as well as 5% bismuth-deficient single-phase BiFeO3 films.

  3. Extrinsic anomalous Hall effect in epitaxial Mn4N films

    Science.gov (United States)

    Meng, M.; Wu, S. X.; Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-01-01

    Anomalous Hall effect (AHE) in ferrimagnetic Mn4N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σx x is within the superclean regime, indicating Mn4N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρAH=a 'ρxx 0+b ρxx2 and σA H∝σx x . Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  4. Origin of yellow-band emission in epitaxially grown GaN nanowire arrays.

    Science.gov (United States)

    Liu, Baodan; Yuan, Fang; Dierre, Benjamin; Sekiguchi, Takashi; Zhang, Song; Xu, Yongkuan; Jiang, Xin

    2014-08-27

    Here, we report the origin of the yellow-band emission in epitaxial GaN nanowire arrays grown under carbon-free conditions. GaN nanowires directly grown on [0001]-oriented sapphire substrate exhibit an obvious and broad yellow-band in the visible range 400-800 nm, whereas the insertion of Al/Au layers in GaN-sapphire interface significantly depresses the visible emission, and only a sharp peak in the UV range (369 nm) can be observed. The persuasive differences in cathodoluminescence provide direct evidence for demonstrating that the origin of the yellow-band emission in GaN nanowire arrays arises from dislocation threading. The idea using buffering/barrier layers to isolate the dislocation threading in epitaxially grown GaN nanowires can be extended to the rational synthesis and structural defect controlling of a wide range of semiconductor films and nanostructures with superior crystal quality and excellent luminescence property.

  5. Epitaxial antiperovskite superconducting CuNNi3 thin films synthesized by chemical solution deposition.

    Science.gov (United States)

    Hui, Zhenzhen; Tang, Xianwu; Shao, Dingfu; Lei, Hechang; Yang, Jie; Song, Wenhai; Luo, Hongmei; Zhu, Xuebin; Sun, Yuping

    2014-10-28

    Epitaxial antiperovskite superconducting CuNNi3 thin films have been grown by chemical solution deposition. The film is a type II superconductor and shows a Tc of 3.2 K with a transition of 0.13 K. The Hc2(0) and ξ0 are estimated to be 8.1 kOe and 201 Å, respectively.

  6. Deposition of hetero-epitaxial In{sub 2}O{sub 3} thin films by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Taga, N.; Maekawa, M. [Asahi Glass Co., Ltd., Yokohama (Japan). Research Center; Shigesato, Y.; Yasui, I. [Univ. of Tokyo (Japan). Inst. of Industrial Science; Haynes, T.E. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1996-05-01

    Highly oriented thin film In{sub 2}O{sub 3} was heteroepitaxially grown on optically polished (100) plane of single crystalline yttria stabilized zirconia (YSZ) substrate using Molecular Beam Epitaxy (MBE). Full-width at half-maximum (FWHM) of X-ray rocking-curve showed 0.08{degree} for In{sub 2}O{sub 3} 200 nm thick layers indicating that excellent uniformity orientation compared with the heteroepitaxially-grown In{sub 2}O{sub 3} epitaxially deposited by the conventional methods such as electron-beam (e-beam) evaporation or sputtering method. The minimum yield ({chi}{sub min}) of the MBE grown in In{sub 2}O{sub 3} film of Rutherford Backscattering Spectrometry (RBS) was also extremely small value 3.1%, implying the very high crystallinity.

  7. Influence of gallium on infrared luminescence in Er{sup 3+} doped Yb{sub 3}Al{sub 5−y}Ga{sub y}O{sub 12} films grown by the liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hlásek, T., E-mail: hlasekt@vscht.cz [Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28 (Czech Republic); Rubešová, K.; Jakeš, V.; Nekvindová, P. [Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28 (Czech Republic); Oswald, J. [Institute of Physics v.v.i., Academy of Sciences of the Czech Republic, Cukrovarnická 10, Prague 6 162 00 (Czech Republic); Kučera, M.; Hanuš, M. [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, Prague 2 121 16 (Czech Republic)

    2015-08-15

    Erbium (Er{sup 3+}) doped ytterbium garnet Yb{sub 3}Al{sub 5−y}Ga{sub y}O{sub 12} (y=0, 0.55 and 1.1, YbAGG) thick films were grown by the isothermal liquid phase epitaxy method (LPE) on LuAG or YAG substrates. The influence of gallium on the photoluminescent properties of Er{sup 3+} is presented in this paper. Room temperature transmission and emission spectra were measured for the 0.5 at% Er{sup 3+}:YbAGG films with a different doping level of Ga. Also Er{sup 3+}:Yb{sub 3}Al{sub 3.9}Ga{sub 1.1}O{sub 12} (y=1.1) films with a different doping level of erbium (0.5, 1 and 2 at%) were tested. The presence of gallium significantly affects the fine splitting and total intensity of erbium emission in an infrared region (the transition {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2}). Even at the highest doping level of erbium (2 at%), no up-conversion luminescence was observed, resulting in a maximum efficiency of the infrared emission. The lifetime of luminescence at 1530 nm was studied for all samples. - Highlights: • The presence of gallium is necessary to obtain a waveguide structure. • The presence of Ga enhanced both the absorption of Yb{sup 3+} and IR emission of Er{sup 3+} ions.

  8. Single-domain epitaxial silicene on diboride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Gill, T. G. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Sadowski, J. T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Copel, M.; Tromp, R. M. [IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Hirjibehedin, C. F. [London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom)

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  9. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  10. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Directory of Open Access Journals (Sweden)

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  11. Hot-Dipped Metal Films as Epitaxial Substrates

    Science.gov (United States)

    Shlichta, P. J.

    1985-01-01

    Multistep process forms semiconductor devices on macrocrystalline films of cadmium or zinc. Solar-cell fabrication processes use hot-dipped macrocrystalline films on low-cost sheet-metal base as substrates for epitaxy. Epitaxial layers formed by variety of methods of alternative sequence paths. Solar cells made economically by forming desired surface substance directly on metal film by chemical reactions.

  12. Ferromagnetism in Mn-Implanted Epitaxially Grown Ge on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Guchhait, S.; Jamil, M.; Ohldag, H.; Mehta, A.; Arenholz, E.; Lian, G.; Li Fatou, A.; Ferrer, D. A.; Markert, J. T.; Colombo, L.; Banerjee, S. K.

    2011-01-05

    We have studied ferromagnetism of Mn-implanted epitaxial Ge films on silicon. The Ge films were grown by ultrahigh vacuum chemical vapor deposition using a mixture of germane (GeH{sub 4}) and methylgermane (CH{sub 3}GeH{sub 3}) gases with a carbon concentration of less than 1 at. %, and observed surface rms roughness of 0.5 nm, as measured by atomic force microscopy. Manganese ions were implanted in epitaxial Ge films grown on Si (100) wafers to an effective concentration of 16, 12, 6, and 2 at. %. Superconducting quantum interference device measurements showed that only the three highest Mn concentration samples are ferromagnetic, while the fourth sample, with [Mn] = 2 at. %, is paramagnetic. X-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements indicate that localized Mn moments are ferromagnetically coupled below the Curie temperature. Isothermal annealing of Mn-implanted Ge films with [Mn] = 16 at. % at 300 C for up to 1200 s decreases the magnetization but does not change the Curie temperature, suggesting that the amount of the magnetic phase slowly decreases with time at this anneal temperature. Furthermore, transmission electron microscopy and synchrotron grazing incidence x-ray diffraction experiments show that the Mn-implanted region is amorphous, and we believe that it is this phase that is responsible for the ferromagnetism. This is supported by our observation that high-temperature annealing leads to recrystallization and transformation of the material into a paramagnetic phase.

  13. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    increasing oscillator strength against thinner films was assumed to be due to confining. The grown thin films were structurally investigated with Reflection High-Energy Electron Diffraction (RHEED). It could be observed that the applied cubic systems like Sc{sub 2}O{sub 3}, In{sub 2}O{sub 3}, or YAG kept the orientation of the substrate, thus they are said to grow in an epitaxial way. Considering thin films of Cr:Sc{sub 2}O{sub 3}, one could observe epitaxial Frank-van der Merwe growth (layer-by-layer) even after the growth of films with thicknesses in a macroscopic scale. The appearance of particulates is a major drawback when preparing thin films by pulsed laser deposition. Within this thesis, the deposition process could considerably be improved by the implementation of a velocity filter. Despite the filter's installation one could still make use of the measurement equipment like pyrometer, reflectometer, and the RHEED system. Furthermore, the existing facility was improved in such a way that the growth of multilayered systems was possible with only little effort which significantly simplified the growth of the mentioned quantum well structures. (orig.)

  14. Scanning tunneling microscopy and spectroscopy of iron suicide epitaxially grown on Si(111)

    Science.gov (United States)

    Raunau, Werner; Niehus, Horst; Schilling, Thomas; Comsa, George

    1993-05-01

    Epitaxial iron suicide films have been grown on Si(111) by solid phase epitaxy (SPE) in UHV. Structural and electronic properties have been investigated with scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). For initial Fe deposition up to 3 Å and annealing at 850 K, metallic γ-FeSi 2 is formed. These films exhibit a perfect (2 × 2) superstructure, which is attributed to γ-FeSi 2(111) with Si termination. SPE at higher initial iron deposition (15 Å) and annealing at 800 K results in ɛ-FeSi showing a (√3 × √3) R30° superstructure. Subsequent annealing above 900 K leads to β-FeSi 2 formation. As by STS, β-FeSi 2 films are semiconducting with Eg = 0.85 eV. STM topographs show that SPE produces rough silicide surfaces wit β-FeSi 2(101) [and not β-FeSi 2(110)] epitaxy. The atomic structure on β-FeSi 2 terraces is complex, consisting domain boundaries and defects.

  15. Magnetic x-ray dichroism in ultrathin epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States); Cummins, T.R. [Univ. of Missouri, Rolla, MO (United States)] [and others

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of high resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.

  16. Chemically stabilized epitaxial wurtzite-BN thin film

    Science.gov (United States)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  17. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD

    Science.gov (United States)

    Mena, Josué; Carvajal, Joan J.; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Diaz, Francesc; Aguiló, Magdalena

    2017-09-01

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  18. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    Science.gov (United States)

    Lee, J. H.; Ke, X.; Misra, R.; Ihlefeld, J. F.; Xu, X. S.; Mei, Z. G.; Heeg, T.; Roeckerath, M.; Schubert, J.; Liu, Z. K.; Musfeldt, J. L.; Schiffer, P.; Schlom, D. G.

    2010-06-01

    We have developed the means to grow BiMnO3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003°). Optical absorption measurements reveal that BiMnO3 has a direct band gap of 1.1±0.1 eV.

  19. Structural properties and parameters of epitaxial silicon carbide films, grown by atomic substitution on the high-resistance (111) oriented silicon

    Science.gov (United States)

    Kukushkin, S. A.; Nussupov, K. Kh.; Osipov, A. V.; Beisenkhanov, N. B.; Bakranova, D. I.

    2017-11-01

    The structure, composition and physical parameters of multilayer silicon carbide system synthesized by atom substitution method on the surface of low-dislocation single-crystal (111) oriented silicon were studied by Raman spectroscopy, ellipsometry, X-ray reflectometry, electron diffraction, IR spectroscopy, X-ray diffraction, AFM and profilometry. It was revealed that SiC films consist of layers, differing in SiyC composition, structure and thickness. The upper layers is a single-crystal 3C-SiC and the lower layers lying in depth of the substrate contain silicon carbide nanocrystals with a high degree of structure perfection and average size of 3-7 nm capable of preferential orientation (311), as well as large crystals (60-260 μm). The presence of cubic (3C-SiC) and hexagonal (mainly, 2H-SiC) polytypes with largest content of crystalline SiC phases in films with the composition closest to stoichiometric was established. In all samples there is carbon in super stoichiometric state, and its structure depends on the synthesis conditions.

  20. Scintillation properties of Sc-, Pr-, and Ce-doped LuAG epitaxial garnet films

    Science.gov (United States)

    Prusa, P.; Kucera, M.; Mares, J. A.; Nikl, M.; Nitsch, K.; Hanus, M.; Onderisinova, Z.; Cechak, T.

    2011-03-01

    Lu3Al5O12 (LuAG) films were grown from the BaO-B2O3-BaF2 flux on LuAG and YAG substrates using the liquid phase epitaxy method (LPE). They were doped with Pr3+, Sc3+, and eventually still with Ce3+ ions. Photoelectron yield, its time dependence, and energy resolution were measured under α-particle excitation. A sample of the Czochralski-grown bulk LuAG:Pr single crystal was measured as a reference. The best performing epitaxial films had low Sc3+ concentration and appeared comparable or superior to the Czochralski-grown crystal in terms of photoelectron yield and relative intensity of the fast component of scintillation response. High concentration of Sc3+ ions results in slowdown of response and lower photoelectron yield. Some samples with lower photoelectron yield than that of the Czochralski-grown crystal did exhibit better energy resolution.

  1. Ferroelectric nanodomains in epitaxial PbTiO.sub.3./sub. films grown on SmScO.sub.3./sub. and TbScO.sub.3./sub. substrates

    Czech Academy of Sciences Publication Activity Database

    Borodavka, Fedir; Gregora, Ivan; Bartasyte, A.; Margueron, S.; Plausinaitiene, V.; Abrutis, A.; Hlinka, Jiří

    2013-01-01

    Roč. 113, č. 18 (2013), "187216-1"-"187216-7" ISSN 0021-8979 R&D Projects: GA ČR GD202/09/H041; GA ČR GAP204/10/0616 Grant - others:GA UK(CZ) SVV-2011-263303 Institutional support: RVO:68378271 Keywords : electric domains * epitaxial layers * ferroelectric thin films * lead compounds * MOCVD * phonons * Raman spectra * texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.185, year: 2013

  2. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Akbari-Sharbaf, Arash [Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7 (Canada); Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J. [Institute for Microstructural Sciences, National Research Council, Ottawa, ON, Canada K1A 0R6 (Canada); Fanchini, Giovanni, E-mail: gfanchin@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7 (Canada)

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10{sup 19} cm{sup −3} at 98 °C to ∼ 1 · 10{sup 18} cm{sup −3} at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults.

  3. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    component oxide films. Highly stoichiometric, nearly single crystal-like materials in the form of films can be made by PLD. Oxides which are synthesized at high oxygen pressure can be made into films at low oxygen partial pressure. Epitaxial thin films ...

  4. Hydrothermal epitaxial growth of ZnO films on sapphire substrates presenting epitaxial ZnAl{sub 2}O{sub 4} buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw; Wang, Chi-Wei; Tu, Zhi-Fan

    2014-03-01

    This article describes our investigation of the hydrothermal epitaxial growth of c-plane ZnO films on Al{sub 2}O{sub 3} substrates presenting ZnAl{sub 2}O{sub 4} buffer layers. We obtained (111) ZnAl{sub 2}O{sub 4} epitaxial layers on a-plane Al{sub 2}O{sub 3} substrates readily through solid phase epitaxy. Although the ZnAl{sub 2}O{sub 4} buffer layers grew epitaxially with a (111) out-of-plane orientation and comprised two coexisting equivalent azimuthal variants with relative 180° in-plane rotation, the ZnO epitaxial films grown upon them exhibited a c-plane orientation with unitary in-plane epitaxial orientation of <11{sup ¯}00>{sub ZnO}∥<11{sup ¯}0>{sub ZnAl{sub 2O{sub 4}}} on the two different ZnAl{sub 2}O{sub 4} variants. Taking the coincidence of the site lattices between the (0001) plane of ZnO and the (111) plane of ZnAl{sub 2}O{sub 4} into account, a reduction in lattice misfit was achieved through a 30° rotation between the lattices of the ZnO and the ZnAl{sub 2}O{sub 4}. We used X-ray diffraction and transmission electron microscopy to obtain detailed microstructural views of the hydrothermally grown ZnO epitaxial films on the ZnAl{sub 2}O{sub 4} buffer layers. - Highlights: • The c-plane ZnO films were epitaxially grown on Al{sub 2}O{sub 3} substrates presenting ZnAl{sub 2}O{sub 4} buffer layers. • We obtained (111) ZnAl{sub 2}O{sub 4} epitaxial layers on a-plane Al{sub 2}O{sub 3} substrates through solid phase epitaxy. • The ZnAl{sub 2}O{sub 4} layers comprised two equivalent azimuthal variants with relative 180° in-plane rotation. • The c-plane ZnO epitaxial films grown on ZnAl{sub 2}O{sub 4} layers with an in-plane relationship of <11{sup ¯}00>{sub ZnO}∥<11{sup ¯}0>{sub ZnAl{sub 2O{sub 4}}}.

  5. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  6. Double acceptor in p-type GaAsN grown by chemical beam epitaxy

    Science.gov (United States)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-12-01

    The properties of the acceptor states in GaAsN grown by chemical beam epitaxy (CBE) are studied by analyzing their charges based on the Poole-Frenkel model. Deep level transient spectroscopy (DLTS) shows two acceptor levels at 0.11 and 0.19 eV above the valence band maximum. The emission rates of carriers from these states are enhanced with increasing the electric field during the DLTS measurement, which indicates that the energies required for the emission are decreased. By analyzing this field-enhanced emission process, the polarizabilities of the levels at 0.11 and 0.19 eV are found to be -1 (±0.1) and -2 (±0.1), respectively. In addition, these states have almost the same concentration. Therefore, we conclude that they originate from the same defect, acting as a double acceptor in GaAsN film grown by CBE.

  7. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  8. The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces

    KAUST Repository

    Shekhah, Osama

    2013-01-01

    Highly-oriented ZIF-8 thin films with controllable thickness were grown on an -OH-functionalized Au substrate using the liquid phase epitaxy method at room temperature, as evidenced by SEM and PXRD. The adsorption-desorption properties of the resulting ZIF-8 thin film were investigated for various VOCs using the QCM technique. © The Royal Society of Chemistry 2013.

  9. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    Science.gov (United States)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  10. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    Energy Technology Data Exchange (ETDEWEB)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel [National Institute of Physics, University of the Philippines Diliman, Quezon City 1101 (Philippines); Que, Christopher T. [Physics Department, De La Salle University, 2401 Taft Avenue, Manila 1004 (Philippines); Yamamoto, Kohji; Tani, Masahiko [Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507 (Japan)

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  11. Multialkali photocathodes grown by molecular beam epitaxy technique

    Science.gov (United States)

    Dubovoi, I. A.; Chernikov, A. S.; Prokhorov, Alexander M.; Schelev, Mikhail Y.; Ushakov, Victor N.

    1991-04-01

    A new technique of bialkali photocathodes growth by molecular beam epitaxy (MI3E) has been developed. The photocathode film was deposited onto the substrate from molecular beams produced by simultaneously operating molecular sources of Sb, Na and K. Thus suggested procedure is noticeably differed from the classical one. Growth rate was about 1 A/sec and complete cycle of photocathode fabrication was 15-20 minutes. A special ultra high vacuum (UHV) chamber for MBE of multialkali photocathodes has been designed. The chamber is a part of UHV system consisting of an analysis vessel supplied with Auger and ESCA electron spectrometer and low energy electron diffractometer (LEED), the MBE chamber itself and a chamber for cold sealing of photocathodes with device body through indium ring. The system gives a possibility to carry out investigations of multialkali photocathode physics and to produce commercial devices. Developed technique can be used for fabrication of vacuum devices including streak tubes.

  12. Growth of strontium ruthenate films by hybrid molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Patrick B. Marshall

    2017-09-01

    Full Text Available We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.

  13. Structural defects and epitaxial rotation of C-60 and C-70(111) films on GeS(001)

    DEFF Research Database (Denmark)

    Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.

    1996-01-01

    A transmission electron microscopy study of epitaxial C60 and C70 films grown on a GeS (001) surface is presented. The relationship between the orientation of the substrate and the films and structural defects in the films, such as grain boundaries, unknown in bulk C60 and C70 crystals, are studied....... Small misalignments of the overlayers with respect to the orientation of the substrate, so-called epitaxial rotations, exist mainly in C70 films, but also sporadically in the C60 overlayers. A simple symmetry model, previously used to predict the rotation of hexagonal overlayers on hexagonal substrates...

  14. Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Coux, P. de [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Bachelet, R.; Fontcuberta, J.; Sánchez, F., E-mail: fsanchez@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Warot-Fonrose, B. [CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain and Dep. de Física, Univ. Autònoma de Barcelona, 08193 Bellaterra (Spain); Lupina, L.; Niu, G.; Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2014-07-07

    A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

  15. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    Science.gov (United States)

    Polyakov, A. Y.; Smirnov, N. B.; Yakimov, E. B.; Lee, In-Hwan; Pearton, S. J.

    2016-01-01

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 106 cm-2, while in the seed region it was 108 cm-2. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 1015 cm-3 range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  16. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A. Y. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Smirnov, N. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Rare Metals, B. Tolmachevsky, 5, Moscow 119017 (Russian Federation); Yakimov, E. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Science, 6, Academician Ossipyan str., Chernogolovka, Moscow Region 142432 (Russian Federation); Lee, In-Hwan, E-mail: ihlee@jbnu.ac.kr [School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Pearton, S. J. [University of Florida, Gainesville, Florida 32611 (United States)

    2016-01-07

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 10{sup 6 }cm{sup −2}, while in the seed region it was 10{sup 8 }cm{sup −2}. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 10{sup 15 }cm{sup −3} range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  17. The in-plane anisotropic magnetic damping of ultrathin epitaxial Co2FeAl film

    Directory of Open Access Journals (Sweden)

    Shuang Qiao

    2015-08-01

    Full Text Available The in-plane orientation-dependent effective damping of ultrathin Co2FeAl film epitaxially grown on GaAs(001 substrate by molecular beam epitaxy (MBE has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co2FeAl thin films.

  18. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2017-05-01

    Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  19. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Science.gov (United States)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei

    2017-05-01

    We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  20. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  1. Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gálvez, S. [SpLine, Spanish CRG Beamline at the European Synchrotron Radiation Facility, B.P. 200, F-38043 Grenoble (France); Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.; Muñoz-Noval, A.; Castro, G. R. [SpLine, Spanish CRG Beamline at the European Synchrotron Radiation Facility, B.P. 200, F-38043 Grenoble (France); ICMM-CSIC Cantoblanco, E-28049 Madrid (Spain)

    2014-12-15

    Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.

  2. Epitaxial thin films for hyperbolic metamaterials

    Science.gov (United States)

    Fullager, D.; Alisafaee, H.; Tsu, R.; Fiddy, M. A.

    2014-02-01

    Recent progress in the area of hyperbolic metamaterials (HMMs) has sparked interest in transparent conducting oxides (TCOs) that behave as plasmonic media in the near-IR and at optical frequencies for imaging and sensing applications. It has been shown that by depositing alternating layers of negative-epsilon/positive-epsilon materials, a medium can be created with unusual index values such as near zero. HMMs support high-k waves corresponding to a diverging photonic density of states (PDOS), the quantity determining phenomena such as spontaneous and thermal emission. Also, modeling such structures allows evanescent fields containing sub-wavelength information to be coupled to propagating radiation. We investigate the optical, electronic, and physical properties of radio frequency plasma-assisted molecular beam epitaxial (RF-MBE) growth of alternating layers of ZnO and TCO of uniform thickness for HMM applications. Preliminary work creating HMMs with ZnO and Al-doped ZnO (AZO) has shown a negative real part of the permittivity at near-IR whose modulus is proportional to the number density of Al dopant. However, increasing the Al content of the AZO increases the transmission losses to unacceptable levels for device applications at industry standard wavelengths. A TCO with conductivity and physical structure superior to that of AZO is gallium-doped ZnO (GZO). Uniformly grown GZO has been demonstrated to possess improved crystal quality over AZO due to the higher diffusivity of Al in the ZnO. AZO and GZO HMM structures grown by RF-MBE are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Hall effect, four-point probing, deeplevel transient spectroscopy (DLTS), ellipsometry, visible and ultraviolet spectroscopy (UV-VIS) and in-situ reflection high energy electron diffraction (RHEED).

  3. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    Science.gov (United States)

    Wei, Hongling; Chen, Zhengwei; Wu, Zhenping; Cui, Wei; Huang, Yuanqi; Tang, Weihua

    2017-11-01

    Ga2O3 with a wide bandgap of ˜ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It's also demonstrated that the CuGa2O4 film has a bandgap of ˜ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.

  4. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Hongling Wei

    2017-11-01

    Full Text Available Ga2O3 with a wide bandgap of ∼ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It’s also demonstrated that the CuGa2O4 film has a bandgap of ∼ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.

  5. Suppression of vacancy defects in epitaxial La-doped SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Keeble, D. J.; Kanda, G. [Carnegie Laboratory of Physics, SUPA, School of Engineering, Physics, and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Jalan, B.; Stemmer, S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Ravelli, L.; Egger, W. [Universitaet Bundeswehr Muenchen, D-85577 Neubiberg (Germany)

    2011-12-05

    Variable energy positron annihilation lifetime spectroscopy of high-mobility La-doped SrTiO{sub 3} grown by molecular beam epitaxy found that the films contained sufficiently low concentrations of Sr vacancies and vacancy cluster defects to allow the observation of positron annihilation events from the perfect lattice. This enabled the concentrations of charged cation vacancies to be estimated, and these were found to be at least an order of magnitude below the La-dopant concentrations.

  6. Aluminum Gallium Nitride Alloys Grown via Metalorganic Vapor-Phase Epitaxy Using a Digital Growth Technique

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-04-01

    This work investigates the use of a digital growth technique as a viable method for achieving high-quality aluminum gallium nitride (Al x Ga1- x N) films via metalorganic vapor-phase epitaxy. Digital alloys are superlattice structures with period thicknesses of a few monolayers. Alloys with an AlN mole fraction ranging from 0.1 to 0.9 were grown by adjusting the thickness of the AlN layer in the superlattice. High-resolution x-ray diffraction was used to determine the superlattice period and c-lattice parameter of the structure, while reciprocal-space mapping was used to determine the a-lattice parameter and evaluate growth coherency. A comparison of the measured lattice parameter with both the nominal value and also the underlying buffer layer is discussed.

  7. Lateral epitaxial growth techniques for gallium nitride thin films on 6H-silicon carbide(0001) substrates via metalorganic vapor phase epitaxy

    Science.gov (United States)

    Thomson, Darren Brent

    Pendeo-epitaxy (PE) was developed as an alternative method to lateral epitaxial overgrowth (LEO) for the growth of GaN films with lower dislocation densities than that of conventionally grown films. In the PE technique, GaN is grown laterally from the sidewalls of etched stripes in previously deposited GaN seed layers grown on 6H-SiC(0001). The resulting GaN structure is suspended above the substrate and thereby avoids the formation of threading dislocations that arise from the lattice mismatch between the GAN film, buffer layer and substrate. The dislocation density in the laterally grown material is reduced by approximately five orders of magnitude. Uncoalesced and coalesced PE GaN structures have been successfully grown in this research. The growth mechanism for GaN via lateral epitaxy (LE) is described using a model of interpenetrating hexagonal pyramids. In contrast to the moderate rates of lateral growth of this compound from seed stripes oriented along [112¯0], analogous growth from stripes oriented parallel to [11¯00] can have high lateral growth rates due to the competition between adjacent (101¯1) and (011¯1) facets. When appropriate growth conditions are employed, the competing facets yield to the fast growing metastable (112¯0) vertical facet. In the absence of competing facets, which occurs at the ends of the stripes, the morphology of the lateral growth reverts to the stable {11¯01} facets. The formation of voids during the coalescence of GaN grown via lateral epitaxy is a common occurrence. These voids weaken the film and make it more susceptible to cracking. The interpenetrating hexagonal pyramid model is used to describe the growth mechanism leading to the formation of voids and their elimination. Experimental observations consistent with this model are presented. A novel method for the elimination of coalescence voids using an unconventional seed stripe orientation is also presented.

  8. Structural and electrical properties of single crystalline SrZrO 3 epitaxially grown on Ge (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Z. H.; Ahmadi-Majlan, K.; Grimley, E. D.; Du, Y.; Bowden, M.; Moghadam, R.; LeBeau, J. M.; Chambers, S. A.; Ngai, J. H.

    2017-08-28

    We present structural and electrical characterization of SrZrO3 that has been epitaxially grown on Ge(001) by oxide molecular beam epitaxy. Single crystalline SrZrO3 can be nucleated on Ge via deposition at low temperatures followed by annealing at 550 ºC in ultra-high vacuum. Photoemission spectroscopy measurements reveal that SrZrO3 exhibits a type-I band arrangement with respect to Ge, with conduction and valence band offsets of 1.4 eV and 3.65 eV, respectively. As a standalone film, SrZrO3 exhibits several characteristics that are ideal for applications as a gate dielectric on Ge. We find that 4 nm thick films exhibit low leakage current densities, and a dielectric constant of κ ~ 25 that corresponds to an equivalent oxide thickness of 0.70 nm.

  9. Characterization of anti-phase boundaries in epitaxial magnetite films

    NARCIS (Netherlands)

    Celotto, S.; Eerenstein, W.; Hibma, T

    2003-01-01

    The occurrence of anti-phase domain boundaries (APBs) in epitaxial Fe3O4 films has a strong influence on the resistivity, magnetic and magneto-resistance properties of these films. It is therefore important to understand the configuration and magnetic coupling across the boundary. We have studied

  10. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Unknown

    Among the large number of processes to fabricate thin films of materials, pulsed laser deposition (PLD) has emerged as a ... It is important to recognize that highly stoichiometric, nearly single crystal like epitaxial film is aimed for in the PLD .... This new class of Josephson junctions is attractive for novel phase devices.

  11. Synthesis of LiCoO2 epitaxial thin films using a sol-gel method

    Science.gov (United States)

    Kwon, Taeri; Ohnishi, Tsuyoshi; Mitsuishi, Kazutaka; Ozawa, Tadashi C.; Takada, Kazunori

    2015-01-01

    Epitaxial LiCoO2 films are synthesized using a sol-gel method. The precursors are aqueous solutions of acetates or nitrates of Li and Co with polyvinylpyrrolidone as a thickener. The LiCoO2 films prepared from the solutions by spin coating are epitaxially grown on sapphire (0001) substrates with c-axis orientation and in-plane alignment of LiCoO2 [ 1 1 bar 0 ] ‖sapphire [100]. A two-step heat treatment of the spin-coated films consisting of preheating on a hotplate at the crystallization temperature followed by a high-temperature treatment notably promotes the c-axis orientation. In addition, the crystal orientation is controllable on different planes of the SrTiO3 substrates; the LiCoO2 films are grown with epitaxial relationships of LiCoO2 (001)‖SrTiO3 (111), LiCoO2 (018)‖SrTiO3 (110), and LiCoO2 (104)‖SrTiO3 (100).

  12. Optical polarization properties of m-plane AlxGa1-xN epitaxial films grown on m-plane freestanding GaN substrates toward nonpolar ultraviolet LEDs.

    Science.gov (United States)

    Hazu, Kouji; Chichibu, Shigefusa F

    2011-07-04

    Light polarization characteristics of the near-band-edge optical transitions in m-plane AlxGa1-xN epilayers suffering from anisotropic stresses are quantitatively explained. The epilayers were grown on an m-plane freestanding GaN substrate by both ammonia-source molecular beam epitaxy and metalorganic vapor phase epitaxy methods. The light polarization direction altered from E [symbol see text]c to E//c at the AlN mole fraction, x, between 0.25 and 0.32, where E is the electric field component of the light and [symbol see text] and // represent perpendicular and parallel, respectively. To give a quantitative explanation for the result, energies and oscillator strengths of the exciton transitions involving three separate valence bands are calculated as functions of strains using the Bir-Pikus Hamiltonian. The calculation predicts that the lowest energy transition (E1) is polarized to the m-axis normal to the surface (X3) for 0< x ≤ 1, meaning that E1 emission is principally undetectable from the surface normal for any in-plane tensile strained AlxGa1-xN. The polarization direction of observable surface emission is predicted to alter from c-axis normal (X1) to c-axis parallel (X2) for the middle energy transition (E2) and X2 to X1 for the highest energy transition (E3) between x = 0.25 and 0.32. The experimental results are consistently reproduced by the calculation.

  13. Enhanced magnetization and anisotropy in Mn-Ga thin films grown on LSAT

    Science.gov (United States)

    Karel, J.; Casoli, F.; Nasi, L.; Lupo, P.; Sahoo, R.; Ernst, B.; Markou, A.; Kalache, A.; Cabassi, R.; Albertini, F.; Felser, C.

    2017-10-01

    Epitaxial thin films of MnxGa1-x (x = 0.70, 0.74) grown on single crystal (LaAlO3)0.3(Sr2TaAlO6)0.7 [LSAT] substrates exhibit an enhanced magnetic moment and magnetic anisotropy in comparison to films of the same composition grown epitaxially on SrTiO3 [STO] single crystal substrates. Atomic and magnetic force microscopy revealed films exhibiting uniform grains and magnetic domain structures, with only minor differences between the films grown on different substrates. High resolution transmission electron microscopy on the x = 0.74 sample grown on LSAT showed a well-ordered, faceted film structure with the tetragonal c-axis oriented out of the film plane. Further, misfit dislocations, accommodating the lattice mismatch, were evidenced at the film/substrate interface. The out of plane c lattice parameter is larger for all x in the films grown on LSAT, due to the smaller substrate lattice parameter compared to STO. The increase in c generates a larger distortion of the tetragonal lattice which promotes the enhanced magnetization and magnetocrystalline anisotropy. These results indicate that LSAT is a promising substrate for realizing highly tailored magnetic properties for future spintronic applications not only in MnxGa1-x but also in the broader class of tetragonal Mn-Z-Ga (Z = transition metal) materials.

  14. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    Science.gov (United States)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  15. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2012-04-18

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies that influence the effective mass of carriers in SLTO films can be tuned by varying the laser energy. The highest power factor of 0.433 W K−1 m−1 has been achieved at 636 K for a filmdeposited using the highest laser fluence of 7 J cm−2 pulse−1.

  16. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  17. Simultaneous epitaxial growth of anatase and rutile TiO 2 thin films by RF helicon magnetron sputtering

    Science.gov (United States)

    Miao, Lei; Tanemura, Sakae; Jin, Ping; Kaneko, Kenji; Terai, Asuka; Nabatova-Gabain, Nataliya

    2003-06-01

    Epitaxial films of TiO 2 with rutile structure on sapphire and anatase structure on SrTiO 3 were simultaneously grown by RF helicon magnetron sputtering of a TiO 2 target in Ar atmosphere. X-ray diffraction using θ-2 θ scan and pole figure plots confirmed the epitaxial relationship, which were rutile (1 0 1)∥sapphire (1 1 0), (0 1 0) f∥(0 0 1) s, and anatase (0 0 1)∥SrTiO 3(0 0 1), (1 0 0) f∥(1 0 0) s, where suffix f and s stand for the film and substrate, respectively. Moreover, observation by transmission electron microscopy identified the epitaxial film growth of single crystalline anatase and rutile structure with slight lattice distortion compared with bulk. The lattice constants of a and b, which were calculated from electron diffraction spots and lattice image in TEM of the films were contracted while that of c being expanded. According to the results of spectroscopic ellipsometry, the films show very high refractive indices ( n) at the designated wavelength range in comparison with the past reports on TiO 2 thin films. Although there are no bulk references in the anatase case, the values n of the rutile film are comparable to the bulk in the data-book. Such high refractive indices of the films indicate the compact texture of the epitaxial films fabricated by helicon sputtering.

  18. High energy storage responses in all-oxide epitaxial relaxor ferroelectric thin films with the coexistence of relaxor and antiferroelectric-like behaviors

    NARCIS (Netherlands)

    Nguyen, Chi T.Q.; Nguyen, Duc Minh; Vu, H.T.; Houwman, Evert Pieter; Vu, Hung N.; Rijnders, A.J.H.M.

    2017-01-01

    Relaxor ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films have been epitaxially grown via pulsed laser deposition on SrRuO3/SrTiO3 single crystal with different orientations. The high recoverable energy-storage density and energy-storage efficiency in the epitaxial PLZT thin films are

  19. Oxygen-dependent epitaxial growth of Pt(001) thin films on MgO(001) by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.Y., E-mail: qxy2001@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wang, R.X.; Li, G.Q.; Zhang, T.; Li, L.T.; Wei, M.L.; Meng, X.S. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Ji, H. [School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Zhang, Z.; Chan, C.H.; Dai, J.Y. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2017-06-01

    Highlights: • The optimized oxygen ratio for high-quality epitaxial Pt (001) thin films is 15%. • Platinum oxides is formed after the oxygen ratio is more than 30%. • Epitaxial growth of Pt on MgO(001) is cube to cube with Pt(001)//MgO(001). - Abstract: The roles of oxygen gas in crystal orientation, surface morphology and electrical resistivity of Pt thin films grown on MgO(001) substrate by magnetron sputtering are studied. With a well-controlled oxygen ratio (15% oxygen) during sputtering deposition with Ar-O{sub 2} mixture ambient, (001) epitaxial growth of Pt film on MgO substrate is achieved with an epitaxial orientation relationship of (001)Pt//(001)MgO and [100]Pt//[100]MgO. Microstructural and electrical characterizations reveal that the (001) Pt thin films possess very smooth surface and good conductivity. The formation and subsequent decomposition of platinum oxides in the Pt films grown with more than 30% oxygen result in an increase of surface roughness and electrical resistivity. The high-quality Pt(001) film has large potential for integrated electronic device applications.

  20. Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films

    Energy Technology Data Exchange (ETDEWEB)

    Meng, M.; Wu, S. X., E-mail: wushx3@mail.sysu.edu.cn; Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W., E-mail: stslsw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-01-19

    Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  1. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  2. Surface morphologies and quality of thick liquid phase epitaxial garnet films for magneto-optic devices

    Science.gov (United States)

    Hibiya, Taketoshi

    1983-06-01

    Surface morphologies of thick Gd : YIG garnet films grown by liquid phase epitaxy (LPE) are found to be classified into three types: "mirror", "striation" and "swirl". "Mirror" appears when films are grown at low temperature or when the film thickness is small. "Striation", which takes over the striation of the substrates, appears when the growth temperature or film thickness is medium. "Swirl" appears when the growth temperature is high or the film thickness is large. When "swirl" takes place, flux is included into the thick films. A mechanism for the morphological change with increase in film thickness is shown. An increase in half-width of the X-ray rocking curve with an increase in film thickness is found for the {111} films. This can be attributed to the generation of {110} and {211} facets which have larger lattice constants than the {111} and to crystallinity degradation due to flux inclusion. The {110} or the slightly misoriented {110} substrate is recommended to be employed so as to obtain inclusion-free thick films.

  3. Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hickey, M. C.; Holmes, S. N.

    2009-01-01

    systematic growth optimization the stoichiometry in the bulk Co2MnGa can be controlled to better than ±2%, although the interface is disordered and limits the spin-injection efficiency in a practical spintronic device irrespective of the half-metallic nature of the bulk metal. Molecular beam epitaxial growth......The interfacial, electrical, and magnetic properties of the Heusler alloy Co2MnGa grown epitaxially on GaAs(100) are presented with an emphasis on the use of this metal-semiconductor combination for a device that operates on the principles of spin-injection between the two materials. Through...... was monitored in situ by reflection high energy electron diffraction and the bulk composition was measured ex situ with inductively coupled plasma optical emission spectroscopy. The Co2MnGa L21 cubic structure is strained below a thickness of 20 nm on GaAs(100) but relaxed in films thicker than 20 nm...

  4. Peculiarly strong room-temperature ferromagnetism from low Mn-doping in ZnO grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Zheng Zuo

    2013-03-01

    Full Text Available Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO thin films grown by molecular beam epitaxy. Very low Mn doping concentration is investigated, and the measured magnetic moment is much larger than what is expected for an isolated ion based on Hund's rules. The ferromagnetic behavior evolves with Mn concentration. Both magnetic anisotropy and anomalous Hall effect confirm the intrinsic nature of ferromagnetism. While the Mn dopant plays a crucial role, another entity in the system is needed to explain the observed large magnetic moments.

  5. Pulsed laser deposition of epitaxial BeO thin films on sapphire and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, Thomas; Takahashi, Ryota; Lippmaa, Mikk, E-mail: mlippmaa@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, Chiba 277-8581 (Japan)

    2014-06-09

    Epitaxial beryllia thin films were grown by pulsed laser deposition on Al{sub 2}O{sub 3}(001) and SrTiO{sub 3}(111) substrates. Nearly relaxed epitaxial films were obtained on both substrates at growth temperatures of up to about 600 °C. Crystalline films with expanded lattice parameters were obtained even at room temperature. The maximum growth temperature was limited by a loss of beryllium from the film surface. The volatility of beryllium appeared to be caused by the slow oxidation kinetics at the film surface and the re-sputtering effect of high-energy Be and BeO species in the ablation plume. Time-of-flight plume composition analysis suggested that the target surface became Be metal rich at low oxygen pressures, reducing the growth rate of beryllia films.

  6. Pulsed laser ablation growth and doping of epitaxial compound semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D.H.; Rouleau, C.M.; Geohegan, D.B.; Budai, J.D.; Poker, D.B. [Oak Ridge National Lab., TN (United States). Solid State Div.; Puretzky, A.A. [Inst. of Spectroscopy, Troitsk (Russian Federation); Strauss, M.A.; Pedraza, A.J.; Park, J.W. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-12-01

    Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam assisted surface and/or gas-phase reactions. In this paper the authors describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II-VI, I-III-VI, and column-III nitride materials grown recently in this and other laboratories.

  7. Epitaxial Growth of Full-Heusler Alloy Co2MnSi Thin Films on MgO-Buffered MgO Substrates

    OpenAIRE

    Kijima, H; Ishikawa, T.; Marukame, T.; Koyama, H; Matsuda, K; Uemura, T.; Yamamoto, M.

    2006-01-01

    Full-Heusler alloy Co₂MnSi (CMS) thin films were epitaxially grown on MgO-buffered MgO substrates through magnetron sputtering. The films were deposited at room temperature and subsequently annealed in situ at 600℃. X-ray pole figure measurements of the annealed films showed 111 peaks with fourfold symmetry, providing direct evidence that these films were epitaxial and crystallized in the L2₁ structure. The annealed films had sufficiently flat surface morphologies with root-mean-squa...

  8. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  9. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Sekhar, M.; Singh, Mahi R. [Department of Physics and Astronomy, 1151, Richmond Street, Western University, London, Ontario N6A 3K7 (Canada)

    2012-10-15

    The Bi{sub x}Ce{sub 3-x}Fe{sub 5}O{sub 12} (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y{sub 3}Fe{sub 5}O{sub 12} that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra were measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H{sub 2}. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.

  10. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    Science.gov (United States)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [ 1 bar2 1 bar]CdTe//[1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  11. Heterogeneous distribution of B-site cations in BaZr{sub x}Ti{sub 1−x}O{sub 3} epitaxial thin films grown on (0 0 1) SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, J. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Polo, M.C., E-mail: mcpolo@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Ferrater, C. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Hernández, S. [Departament d’Electrònica, Universitat de Barcelona, Barcelona (Spain); Sancho-Parramón, J. [Ruđer Bošković Institute, Bijenička 54, Zagreb 1000 (Croatia); Coy, L.E. [NanoBioMedical Centre AMU, Umultowska 85, 61-614 Poznan (Poland); Rodríguez, L.; Canillas, A. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Fábrega, L. [Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, Barcelona (Spain); Varela, M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    Highlights: • Wide compositional range of BaZr{sub x}Ti{sub 1−x}O{sub 3} (BZT) thin films on SrTiO{sub 3} grown by PLD. • Heterogeneous distribution of B-site cations with local clustering. • Asymmetric nonparabolic dependence of band gap energy with composition. • Nonideal solid solution behaviour with inherent tendency to phase segregation. - Abstract: The isovalent susbstitution of Ti{sup 4+} by Zr{sup 4+} in BaZr{sub x}Ti{sub 1−x}O{sub 3} modifies the dielectric character of ferroelectric BaTiO{sub 3} yielding different behaviours such as relaxor, polar cluster, etc. The dynamic coupling between BaTiO{sub 3} polar nanoregions and BaZrO{sub 3} nonpolar ones as well as microstrain between them are thought to be behind such a rich phase diagram. However, these short-range compositonal variations are elusive to detect and this topic is thus rarely addressed. We have grown epitaxial thin films of BaZr{sub x}Ti{sub 1−x}O{sub 3} on (0 0 1)-oriented SrTiO{sub 3} substrates by pulsed laser deposition sweeping the entire composition range between BaTiO{sub 3} and BaZrO{sub 3} in increments of 0.1 in x. Several characterization techniques (AFM, TEM, XRD, Raman spectroscopy) were used for this research in order to understand the morphological and structural properties of the deposited films. Ellipsometric measurements allowed the calculation of the band gap energy of the films. This work demonstrates the existence of a heterogeneous distribution in the substitution of titanium by zirconium yielding relaxor and polar cluster nanoregions.

  12. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  13. Chiral habit selection on nanostructured epitaxial quartz films.

    Science.gov (United States)

    Carretero-Genevrier, Adrián; Gich, Martí; Picas, Laura; Sanchez, Clément; Rodriguez-Carvajal, Juan

    2015-01-01

    Understanding the crystallization of enantiomorphically pure systems can be relevant to diverse fields such as the study of the origins of life or the purification of racemates. Here we report on polycrystalline epitaxial thin films of quartz on Si substrates displaying two distinct types of chiral habits that never coexist in the same film. We combine Atomic Force Microscopy (AFM) analysis and computer-assisted crystallographic calculations to make a detailed study of these habits of quartz. By estimating the surface energies of the observed crystallites we argue that the films are enantiomorphically pure and we briefly outline a possible mechanism to explain the habit and chiral selection in this system.

  14. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, B., E-mail: b.schleicher@ifw-dresden.de; Niemann, R.; Schultz, L.; Fähler, S. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); TU Dresden, Institute for Solid State Physics, D-01062 Dresden (Germany); Diestel, A.; Hühne, R. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-08-07

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.72}Ti{sub 0.28}O{sub 3} substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  15. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  16. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  17. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  18. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  19. Uniaxial stress influence on electrical conductivity of thin epitaxial lanthanum-strontium manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Stankevič, V., E-mail: wstan@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Šimkevičius, Č.; Balevičius, S.; Žurauskienė, N. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Cimmperman, P. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Abrutis, A. [Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania); Plaušinaitienė, V. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania)

    2013-07-01

    This is a study of the influence of external uniaxial mechanical strains on the transport properties of thin epitaxial La{sub 0.83}Sr{sub 0.17}MnO{sub 3} (LSMO) films. Our measurements were carried out using standard isosceles triangle-shaped cantilever. Films which were tensed in-plane or compressed or were subjected to both tension and compression strains were grown onto SrTiO{sub 3} (STO), LaAlO{sub 3} (LAO) and (001) NdGaO{sub 3} (NGO) substrates, respectively. It was found that for thin films (less than 100 nm), the uniaxial compression of such films which were initially tensed in-plane (grown onto STO substrates) produces a decrease of their resistance, whereas the compression of initially compressed films (on LAO substrates) produces an increase of the films' resistance. The same results were obtained for LSMO films grown onto (001) NGO substrates when they were compressed along the [010] and [100] directions, respectively. For thicker films (more than 100 nm), the resistance behavior after uniaxial compression was found to be identical to that produced by hydrostatic compression, namely, the resistance decreases irrespective of the substrate. These experiments also reveal an increase of resistance and a shift of metal–insulator transition temperature T{sub m} to lower temperatures corresponding to a decrease of the film thickness. The occurrence of this effect is also independent of the kind of substrate used. Thus it was concluded that the influence of film thickness on its resistance as well as on the behavior of such films while under external uniaxial compression cannot be explained fully by only the presence of residual stress in these films. A possible reason is that the inhomogeneous distribution of the mechanical stresses in the films can lead to the appearance of two conductivity phases, each having a different mechanism. The results which were obtained when these films were subjected to hydrostatic compression were also explained by this

  20. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  1. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  2. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  3. Epitaxial growth of Bi ultra-thin films on GaAs by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, M. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Abuin, M. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid 28040 (Spain); Mascaraque, A., E-mail: arantzazu.mascaraque@fis.ucm.es [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid 28040 (Spain); Gonzalez-Barrio, M.A. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid 28040 (Spain); Perez, L. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Sistemas Optoelectronicos y Microtecnologia, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Bi films on GaAs substrates with different orientations. Black-Right-Pointing-Pointer Ultra thin films - 50 nm - are continuous and smooth. Black-Right-Pointing-Pointer Bi always grows with (0 1 L) orientations. Black-Right-Pointing-Pointer Epitaxial growth onto As terminated surfaces. Black-Right-Pointing-Pointer Proposed model based on structural and chemical considerations. - Abstract: We report on the growth of thin bismuth films on GaAs substrates with different orientations by means of electrochemical deposition. Atomic force microscopy reveals that the films are continuous and exhibit low roughness when they are grown under the appropriate overpotential. {omega}-2{theta} X-ray diffraction scans only show reflections that can be indexed as (0 1 L), meaning that Bi grows onto GaAs only in combinations of the (0 0 1) and (0 1 0) orientations. The matching between the GaAs substrate and the Bi layer has been studied by asymmetric X-ray scans, finding that Bi grows epitaxially on GaAs(1 1 0) and GaAs(1 1 1)B, both As-terminated surfaces. We explain these results by structural and chemical considerations.

  4. Growth and characterization of Hg1–xCdxTe epitaxial films by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Growth of Hg1–xCdxTe epitaxial films by a new technique called asymmetric vapour phase epitaxy. (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication.

  5. Epitaxial Growth and Band Structure of Te Film on Graphene.

    Science.gov (United States)

    Huang, Xiaochun; Guan, Jiaqi; Lin, Zijian; Liu, Bing; Xing, Shuya; Wang, Weihua; Guo, Jiandong

    2017-08-09

    Tellurium (Te) films with monolayer and few-layer thickness are obtained by molecular beam epitaxy on a graphene/6H-SiC(0001) substrate and investigated by in situ scanning tunneling microscopy and spectroscopy (STM/STS). We reveal that the Te films are composed of parallel-arranged helical Te chains flat-lying on the graphene surface, exposing the (1 × 1) facet of (101̅0) of the bulk crystal. The band gap of Te films increases monotonically with decreasing thickness, reaching the near-infrared band for the monolayer Te. An explicit band bending at the edge between the monolayer Te and graphene substrate is visualized. With the thickness controlled in the atomic scale, Te films show potential applications of electronics and optoelectronics.

  6. Magnetic vortex in epitaxially-grown Co{sub 2}(Fe,Mn)Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T., E-mail: tyamamoto@imr.tohoku.ac.jp; Takanashi, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Seki, T. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 322-0012 (Japan); Kotsugi, M. [Tokyo University of Science, Katsushika 125-8525 (Japan)

    2016-04-11

    We report magnetic vortex formation in epitaxially grown Co{sub 2}Fe{sub 0.4}Mn{sub 0.6}Si (CFMS) Heusler alloy discs that was confirmed using photoemission electron microscopy and the magneto-optical Kerr effect. The phase diagram of magnetic domain structures as functions of the disc thickness (t) and diameter (D) indicates that the magnetic vortex is stable in wide ranges of t and D even for the epitaxial CFMS. The annihilation field of vortex core depended not only on the disc aspect ratio but also on t. Numerical simulation suggests that this t dependence results from extrinsic pinning of a vortex core due to the epitaxial growth.

  7. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process

    Science.gov (United States)

    Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke

    2017-06-01

    Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.

  8. Large area lateral epitaxial overgrowth (LEO) of gallium nitride (GaN) thin films on silicon substrates and their characterization. Annual report, 1 March 1998--28 February 1999

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.; Carlson, E.P.; Gehrke, T.; Linthicum, K.; Smith, T.P.

    1999-03-01

    Gallium nitride films have been grown on 6H-SiC substrates employing a new form of selective lateral epitaxy, namely pendeo-epitaxy. This technique forces regrowth to start exclusively on sidewalls of GaN seed structures. Both discrete pendeo-epitaxial microstructures and coalesced single crystal layers of GaN have been achieved. Analysis by SEM and TEM are used to evaluate the morphology of the resulting GaN films. Process routes leading to GaN pendeo- epitaxial growth using silicon substrates have also been achieved and the preliminary results are discussed.

  9. Critical issues for homoepitaxial GaN growth by molecular beam epitaxy on hydride vapor-phase epitaxy-grown GaN substrates

    Science.gov (United States)

    Storm, D. F.; Hardy, M. T.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Meyer, D. J.; McConkie, Thomas O.; Zhou, Lin; Smith, David J.

    2016-12-01

    While the heteroepitaxial growth of gallium nitride-based materials and devices on substrates such as SiC, sapphire, and Si has been well-documented, the lack of a cost-effective source of bulk GaN crystals has hindered similar progress on homoepitaxy. Nevertheless, freestanding GaN wafers are becoming more widely available, and there is great interest in growing GaN films and devices on bulk GaN substrates, in order to take advantage of the greatly reduced density of threading dislocations, particularly for vertical devices. However, homoepitaxial GaN growth is far from a trivial task due to the reactivity and different chemical sensitivities of N-polar (0001) and Ga-polar (0001) GaN surfaces, which can affect the microstructure and concentrations of impurities in homoepitaxial GaN layers. In order to achieve high quality, high purity homoepitaxial GaN, it is necessary to investigate the effect of the ex situ wet chemical clean, the use of in situ cleaning procedures, the sensitivity of the GaN surface to thermal decomposition, and the effect of growth temperature. We review the current understanding of these issues with a focus on homoepitaxial growth of GaN by molecular beam epitaxy (MBE) on c-plane surfaces of freestanding GaN substrates grown by hydride vapor phase epitaxy (HVPE), as HVPE-grown substrates are most widely available. We demonstrate methods for obtaining homoepitaxial GaN layers by plasma-assisted MBE in which no additional threading dislocations are generated from the regrowth interface and impurity concentrations are greatly reduced.

  10. Nucleation and growth dynamics of MBE-grown topological insulator Bi{sub 2}Te{sub 3} films on Si (111)

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Svetlana; Krumrain, Julian; Mussler, Gregor; Grützmacher, Detlev [Peter Grünberg Institut - 9, Forschungszentrum Jülich, 52425 Jülich, Germany and JARA - Fundamentals of Future Information Technologies (Germany); Luysberg, Martina [Peter Grünberg Institut - 5 and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2013-12-04

    Topological insulator Bi{sub 2}Te{sub 3} films have been grown by molecular beam epitaxy on Si (111) substrates. The structural properties of the ultra-thin films and their evolution in morphology during the growth have been investigated. The growth starts by a nucleation of separate islands and subsequently turns into a layer-by-layer growth mode. Despite this, the grown film is found to be single crystalline and fully relaxed from the first atomic layer.

  11. Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO2 Films

    Directory of Open Access Journals (Sweden)

    L. V. Saraf

    2008-01-01

    Full Text Available Ultrathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin (∼10–12 unit cells thick epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM and substrate roughness of ∼1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.

  12. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-05-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results in a strained film and a high dislocation density—two effects that have been associated with efficiency droop, which is the disastrous drop in efficiency of a light-emitting diode (LED) as the input current increases. Heteroepitaxially grown nanowires have recently attracted great interest due to their property of eliminating the detrimental effects of the lattice mismatch and the corollary efficiency droop. In this study, InGaN nanowires were grown on a low-cost Si (111) substrate via molecular beam epitaxy. Unique nanostructures, taking the form of mushrooms, have been observed in localized regions on the samples. These nanomushrooms consist of a nanowire body with a wide cap on top. Photoluminescence characterization revealed that the nanowires emit violet-blue, whilst the nanomushrooms emit a broad yellow-orange-red luminescence. The simultaneous emission from the nanowires and nanomushrooms forms white light. Structural characterization of a single nanomushroom via transmission electron microscopy revealed a simultaneous increase in indium and decrease in gallium at the interface between the body and the cap. Furthermore, the cap itself was found to be indium-rich, confirming it as the source of the longer wavelength yellow-orange-red luminescence. It is believed that the nanomushroom cap formed as a consequence of the saturation of growth on the c-plane of the nanowire. It is proposed that the formation of an indium droplet on the tip of the nanowire saturated growth on the c-plane, forcing the indium and gallium adatoms to incorporate on the sidewall m-planes instead, but only at the nanowire tip. This resulted in the formation of a mushroom-like cap on the tip. How and why the indium droplets formed is not

  13. Conventional and pendeo-epitaxial growth of III-nitride thin films by molecular beam and metalorganic vapor phase techniques

    Science.gov (United States)

    Linthicum, Kevin James

    Reactive gas-source molecular beam epitaxy was employed for the growth of monocrystalline GaN(0001) thin films. On-surface cracking of ammonia at 800°C was the method of choice for obtaining reactive nitrogen-containing species and growth rates of 2500A/hr were achieved. Pendeo-epitaxy, a general form of selective lateral growth, was developed for the organometallic vapor phase epitaxy growth of GaN and AlGaN thin films on GaN/AlN/6H-SiC(0001) substrates. In this technique, selective lateral growth was forced to initiate from the (1120) sidewalls of etched GaN seed forms by incorporating a silicon nitride seed mask atop the forms and employing the SiC substrate as a pseudo-mask. Coalescence over and between the seed forms was achieved. Transmission electron microscopy revealed that all vertically threading defects stemming from the GaN/AlN and AlN/SiC interfaces were contained within the seed forms and that a substantial reduction in the dislocation density of the laterally grown GaN was achieved. To achieve pendeo-epitaxial growth of monocrystalline GaN films on Si(111) substrates, a series of additional process steps was required, including the formation of a SiC chemical/reaction barrier. Single-crystal beta-SiC(111) thin films were obtained via carburization of the near-surface regions of vicinal Si(111). The thickness of the converted layers was approximately 5nm. Thick (500nm), epitaxial 3C-SiC layers grown via atmospheric pressure chemical vapor deposition were also used in tandem with the carburized silicon substrates. Monocrystalline AlN(0001) layers were grown on the SiC/Si substrates at 1100°C via MOVPE. Single-crystal wurtzitic GaN(0001) seed layers were grown on the AlN(0001) layers. The FWHM of the GaN(0002) x-ray diffraction and the photoluminescence band-edge emission peaks were 1443 arcsec and 19 meV, respectively. Pendeo-epitaxial growth of GaN on GaN/AlN/3C-SiC/Si(111) raised stripes was achieved. Crystallographic tilting of 0.2°(720 arcsec

  14. Growth of layered superconductor β-PdBi{sub 2} films using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, N.V., E-mail: denisov@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Matetskiy, A.V.; Tupkalo, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-04-15

    Highlights: • Bulk β-PdBi{sub 2} is layered material with advanced properties of topological superconductor. • We present a method for growing β-PdBi{sub 2} films of a desired thickness. • Method utilizes MBE growth of β-PdBi{sub 2}, using Bi(111) film on Si(111) as a template. • Electronic and superconducting properties of the films are similar to those of bulk β-PdBi{sub 2}. - Abstract: Bulk β-PdBi{sub 2} layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi{sub 2} films from a single β-PdBi{sub 2} triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi{sub 2} crystals. Ability to grow the β-PdBi{sub 2} films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  15. Hopping conduction in GaAs layers grown by molecular-beam epitaxy at low temperatures

    OpenAIRE

    Shimogishi, F.; Mukai, K; Fukushima, S; Otsuka, N.

    2002-01-01

    The electrical conductivity of GaAs layers grown by molecular-beam epitaxy at low temperatures was studied by using the van der Pauw method. The electrical conductivity of thick GaAs layers grown at temperatures above 200 °C changes with the concentration of antisite As atoms following the nearest-neighbor hopping model. From the dependence of the conductivity on the average spacing of antisite As atoms, the Bohr radius of the donor wave function in the hydrogen like model was estimated to be...

  16. Ferromagnetism in epitaxial orthorhombic YMnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marti, X. [Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, Bellaterra 08193 (Spain); Skumryev, V. [Institut Catala de Recerca i Estudis Avancats, Barcelona (Spain); Departament de Fisica, Universitat Autonoma de Barcelona, Campus UAB, Bellaterra 08193 (Spain); Cattoni, A.; Bertacco, R. [L-NESS, Dipartimento di Fisica, Politecnico di Milano, via Anzani 42, Como 22100 (Italy); Laukhin, V. [Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, Bellaterra 08193 (Spain); Institut Catala de Recerca i Estudis Avancats, Barcelona (Spain); Ferrater, C.; Garcia-Cuenca, M.V.; Varela, M. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Sanchez, F. [Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, Bellaterra 08193 (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, Bellaterra 08193 (Spain)], E-mail: fontcuberta@icmab.es

    2009-06-15

    Epitaxial orthorhombic YMnO{sub 3} thin films, (0 0 1) oriented, have been grown by pulsed laser deposition on (0 0 1)SrTiO{sub 3} substrates. Their crystal structure and magnetic response have been studied in detail. Although bulk o-YMnO{sub 3} is antiferromagnetic, our magnetic measurements reveal intriguing thermal hysteresis between the zero-field-cooled and field-cooled curves below the onset of the antiferromagnetic ordering temperature, thus signaling a more complex magnetic structure with net ferromagnetic moments. We discuss on the possible origin of this net magnetization and we have found a correlation of the magnetic response with the strain state of the films. We propose that substrate-induced strain modifies the subtle competition of magnetic interactions and leads to a non-collinear magnetic state that can thus be tuned by strain engineering.

  17. Reversible loading of epitaxial Y(00.1) films with hydrogen

    Science.gov (United States)

    Remhof, A.; Song, G.; Sutter, Ch.; Theis-Bröhl, K.; Zabel, H.

    1998-03-01

    Yttrium can be loaded with hydrogen up to high concentrations causing dramatic structural and electronic changes of the host lattice. We report on the reversibility of hydrogen loading in thin, monocrystalline Y-films grown by MBE on Nb/Al_2O3 substrates. During hydrogen loading, the Yttrium film undergoes structural transitions from the cubic dihydride to the hexagonal trihydride phase, while the structural coherence and the in-plane epitaxial relation to the Nb buffer layer is maintained. The transition from YH2 to YH3 occurs at room temperature at a hydrogen pressure of 10 mbar and is completely reversible. Reversibility is also observed for deuteration of Y. However, the kinetics is more sluggish. Although the YH2 structure is chemically stable, isotope exchange with deuterium takes place rapidly. (A. Remhof, G. Song, K. Theis-Bröhl, H. Zabel, Phys. Rev. B 56) R2897 (1997)

  18. GaN-based LEDs grown by molecular beam epitaxy

    Science.gov (United States)

    Averbeck, Robert; Graber, A.; Tews, H.; Bernklau, D.; Barnhoefer, Ulrich; Riechert, Henning

    1998-04-01

    We report on the growth of GaN, InGaN and GaN/InGaN/GaN pn- junctions grown on sapphire by RF-plasma assisted MBE. MBE allows us to grow high quality nitrides with growth rates around 1 micrometers /h at relatively low temperatures. Thereby p- type doping with Mg and the incorporation of In in InGaN are greatly facilitated. Device-typical n- and p-type doping levels yield room temperature mobilities of 220 cm2/Vs and 10 cm2/Vs, respectively. InGaN with In contents of more than 40 percent is readily achieved. LEDs fabricated from heterostructures with a 4 nm InGaN layer show bright blue or green electroluminescence depending on the In content. Various effects in the electroluminescence caused by fluctuations in the conduction and valence band will be discussed, the most striking one a reduction in linewidth with increasing temperature.

  19. Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy.

    Science.gov (United States)

    Krichevtsov, Boris B; Gastev, Sergei V; Suturin, Sergey M; Fedorov, Vladimir V; Korovin, Alexander M; Bursian, Viktor E; Banshchikov, Alexander G; Volkov, Mikhail P; Tabuchi, Masao; Sokolov, Nikolai S

    2017-01-01

    Thin (4-20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD.

  20. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    Science.gov (United States)

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characteristics of stimulated emission from optically pumped freestanding GaN grown by hydride vapor-phase epitaxy

    CERN Document Server

    Lee, M H; Kim, S T; Chung, S H; Moon, D C

    1999-01-01

    In this study, we observed optically pumped stimulated emission at room temperature in quasi-bulk GaN prepared from thick-film GaN grown on a sapphire substrate by using hydride vapor-phase epitaxy and subsequent mechanical removal of the sapphire substrate. The stimulated emission from the surface and 1-mm-wide-cleaved cavity of the GaN was red-shifted compared to the spontaneous emission by increasing the optical pumping-power density, and the full width at half maximum (FWHM) of the peak decreased. The stimulated emission was demonstrated to have a highly TE-mode polarized nature, and the super-linear dependence of the integrated emission intensity on the excitation power indicated a threshold pump-power density of I sub t sub h = 2 MW/cm sup 2 for one set of stimulated emissions.

  2. Epitaxial growth and properties of zinc oxide thin films on silicon substrates

    Science.gov (United States)

    Guo, Wei

    ZnO is an attractive material for promising applications in short wavelength optoelectronic devices because of its wide band gap and large exciton binding energy at room temperature (RT). This dissertation is devoted to the development of high quality, single-crystalline ZnO-based light-emitting devices on Si substrates, involving thin film synthesis by pulsed laser deposition, structure-property characterization, prototype device fabrication, strain engineering of thick films, and p-type doping with antimony (Sb). ZnO epitaxy with exceptional quality was achieved on (111) Si substrates for the advantages of inexpensive large wafers, mature device technologies, and multifunctional device integration. Epitaxial bixbyite oxides M2O3 (M=Sc, Lu, Gd) were originally employed as the buffer layer between ZnO and Si. The single-crystalline ZnO films has superior structural, electrical, and optical qualities than all previous reports of ZnO on Si, such as narrow o-rocking curves, low dislocation densities, high electron mobilities at RT, and comparable photoluminescence characteristics to those of ZnO single crystal. The epitaxial orientation relationship, intrinsic donors, microstructural defects, and residual strain of the films were investigated. Prototype n-ZnO/ M2O3/p-Si devices were constructed, and ZnO near-band-edge emission was observed in electroluminescence at RT. Strain engineering of thick films by insertion of low-temperature grown ZnO interlayers was performed to improve the cracking critical thickness to ≥2 mum. Reliable ZnO p-type doping using large-size-mismatched Sb dopant was achieved for the films grown on both (0001) Al2O 3 and (100) Si substrates, with a resistivity of 4.2-60 O cm, a Hall mobility of 0.5-7.7 cm2/V s, and a hole concentration of 3.2x1016-2.2x1017 cm-3 . The origin of p-type conductivity was elucidated from conjugated effects of oxygen-rich growth condition, adequate doping concentration, and dislocation-facilitated formation of

  3. Epitaxial growth of solution deposited Bi2Sr2CaCu2Ox films

    NARCIS (Netherlands)

    Gobel, OF; Du, [No Value; Hibma, T; von Lampe, [No Value; Steiner, U

    The epitaxial growth of Bi2Sr2CaCu2Ox (Bi2212) high temperature superconducting thin films was studied. The films were solution-deposited from a polymer-containing precursor onto SrTiO3 (001) substrates. Bi2212 formed an epitaxial phase with the c-axis parallel to the substrate normal and an in-lane

  4. Enhanced UV detection by non-polar epitaxial GaN films

    Directory of Open Access Journals (Sweden)

    Shruti Mukundan

    2015-12-01

    Full Text Available Nonpolar a-GaN (11-20 epilayers were grown on r-plane (1-102 sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002 polar and (11-20 nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time.

  5. Epitaxial growth and structure of monolayer cerium oxide films on Rh(111)

    Science.gov (United States)

    Chan, Lap Hong; Yuhara, Junji

    2017-07-01

    We prepared monolayer cerium (Ce) oxide films on Rh(111) to investigate their growth and structure using scanning tunneling microscopy (STM), low-energy electron diffraction, X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations. For quantitative analysis of Ce-oxide films, we used the combined techniques of XPS and Rutherford backscattering spectrometry to determine the concentration of Ce and O atoms. We prepared a monolayer (ML) Ce-oxide film by annealing a metallic Ce film at 0.3 ML coverage in an oxygen atmosphere. A well-ordered Ce-oxide phase with a (4×4) unit cell was obtained. The epitaxially grown Ce-oxide film aligned along the azimuthal direction of Rh(111). The number of Ce and O atoms in the (4×4) unit cell was estimated. The STM images indicated that the two-dimensional island growth of the p(4×4) phase with p3m1 symmetry can be explained using the missing Ce atoms model. A simulated STM image of the p(4×4) structural model was in good agreement with the experimental STM image. The formation of Ce-oxide films on Rh(111) at submonolayer coverage was discussed on the basis of the results of DFT+U calculations.

  6. Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC

    Directory of Open Access Journals (Sweden)

    H. Kuramochi

    2012-03-01

    Full Text Available Thermal decomposition of vicinal SiC substrates with self-organized periodic nanofacets is a promising method to produce large graphene sheets toward the commercial exploitation of graphene's superior electronic properties. The epitaxial graphene films grown on vicinal SiC comprise two distinct regions of terrace and step; and typically exhibit anisotropic electron transport behavior, although limited areas in the graphene film showed ballistic transport. To evaluate the role of terraces and steps in electron transport properties, we compared graphene samples with terrace and step regions grown on 4H-SiC(0001. Arrays of field effect transistors were fabricated on comparable graphene samples with their channels parallel or perpendicular to the nanofacets to identify the source of measured reduced mobility. Minimum conductivity and electron mobility increased with the larger proportional terrace region area; therefore, the terrace region has superior transport properties to step regions. The measured electron mobility in the terrace region, ∼1000 cm2/Vs, is 10 times larger than that in the step region, ∼100 cm2/Vs. We conclusively determine that parasitic effects originate in regions of graphene that grow over step edges in 4H-SiC(0001.

  7. Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation

    KAUST Repository

    Li, Peng

    2017-05-08

    The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across antiphase boundaries has been commonly employed to account for large magnetoresistance (MR) in ferrites, the magnetic anomalies, the two magnetic phases and enhanced molecular moment, are still unresolved. We observed a sizable MR in epitaxial spinel films (NiCo2O4-δ) that is much larger than that commonly observed in spinel ferrites. Detailed analysis reveals that this MR can be attributed to phase separation, in which the perfect ferrimagnetic metallic phase and ferrimagnetic insulating phase coexist. The magnetic insulating phase plays an important role in spin filtering in these phase separated spinel oxides, leading to a sizable MR effect. A spin filtering model based on Zeeman effect and direct tunneling is developed to account for MR of the phase separated films.

  8. Epitaxial growth of CuScO2 thin films on sapphire a-plane substrates by pulsed laser deposition

    Science.gov (United States)

    Kakehi, Yoshiharu; Satoh, Kazuo; Yotsuya, Tsutom; Nakao, Satoru; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi

    2005-04-01

    An epitaxial film of CuScO2, a transparent oxide semiconductor with a delafossite structure, was grown on an α -Al2O3(112¯0) substrate by a pulsed laser deposition method using a single-phase Cu2Sc2Oδ target. A two-dimensional x-ray reciprocal space mapping measurement revealed that the film was single phase with a rhombohedral crystal structure. The film showed six-fold rotational symmetry in the basal plane, indicating that the film had a twinned domain structure. The epitaxial growth of CuScO2[3R](0001) thin films on α -Al2O3(112¯0) substrates is caused by the uniaxial locked epitaxy mechanism along the ⟨1¯21¯0⟩ direction of the film, and the orientation relationships of the film with respect to the substrate were CuScO2[3R](0001)//α-Al2O3(112¯0) and CuScO2[3R][1¯21¯0]//α-Al2O3[88¯01]. The optical transmittance of the film was larger than 65% in the visible/near-infrared regions, while the energy gap for direct allowed transition was estimated as 3.7 eV. The resistivity of the film, 9.3×106Ωcm at room temperature, significantly decreased to 4.0 Ωcm after both substituting Mg2+ ions for Sc3+ and intercalating excess oxygen. The Mg-doped CuScO2+X(0001) thin film showed optical transmittance of larger than 65% in the visible region, and the Seebeck coefficient was positive, indicating a p-type conductivity.

  9. Topological Insulator Film Growth by Molecular Beam Epitaxy: A Review

    Directory of Open Access Journals (Sweden)

    Theresa P. Ginley

    2016-11-01

    Full Text Available In this article, we will review recent progress in the growth of topological insulator (TI thin films by molecular beam epitaxy (MBE. The materials we focus on are the V2-VI3 family of TIs. These materials are ideally bulk insulating with surface states housing Dirac excitations which are spin-momentum locked. These surface states are interesting for fundamental physics studies (such as the search for Majorana fermions as well as applications in spintronics and other fields. However, the majority of TI films and bulk crystals exhibit significant bulk conductivity, which obscures these states. In addition, many TI films have a high defect density. This review will discuss progress in reducing the bulk conductivity while increasing the crystal quality. We will describe in detail how growth parameters, substrate choice, and growth technique influence the resulting TI film properties for binary and ternary TIs. We then give an overview of progress in the growth of TI heterostructures. We close by discussing the bright future for TI film growth by MBE.

  10. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  11. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN

    Directory of Open Access Journals (Sweden)

    C. X. Quintela

    2017-09-01

    Full Text Available The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001[100]Cu3PdN||(001[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10−4 K−1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.

  12. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN

    Science.gov (United States)

    Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Xie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    2017-09-01

    The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.

  13. Growth, structure, surface topography and magnetic properties of GdMnO3 multiferroic epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Mukovskii Ya.

    2013-01-01

    Full Text Available Epitaxial GdMnO3 thin films were grown in various regimes on (001 NdGaO3 and (001 SrTiO3 substrates by RF magnetron sputtering. X-ray analysis revealed that the films grown at a substrate temperature of 650-900 °C are single phase (GdMnO3 with orthorhombic Pbnm structure. Films grown on NdGaO3 substrates at lower temperature (750 °C reveal two orientations, i.e. GdMnO3(001||NdGaO3(001 and GdMnO3(110||NdGaO3(001. These results are confirmed by transmission electron microscopy. Films grown on SrTiO3 substrates have two orientations, i.e. GdMnO3(001||SrTiO3(001 and GdMnO3(110||SrTiO3(001, in the whole temperature range in which the phase exists. Using atomic force microscopy the correlation between the topography of the films and their crystallographic structure was studied. The magnetic properties of the films differ from those of bulk samples and revealed spin-glass behavior.

  14. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  15. Synthesis and characterization of barium iron oxide and bismuth iron oxide epitaxial films

    Science.gov (United States)

    Callender Bennett, Charlee J.

    Much interest exists in perovskite oxide materials and the potential they have in possessing two or more functional properties. In recent years, research on developing new materials with simultaneous ferromagnetic and ferroelectric behavior is the key to addressing possible challenges of new storage information applications. This work examines the fundamental properties of a perovskite oxide, namely BaFeO3, and the investigation of properties of a solid solution between BaFeO3 and BiFeO3. The growth and properties of epitaxial BaFeO3 thin films in the metastable cubic perovskite phase are examined. BaFeO3 films were grown on (012) LaAlO3 and (001) SrTiO3 single crystal substrates by pulsed-laser deposition. X-ray diffraction shows that in situ growth at temperatures between 650-850°C yields an oxygen-deficient BaFeO 2.5+x pseudo-cubic perovskite phase that is insulating and paramagnetic. Magnetization measurements on the asdeposited BaFeO3 films indicate non-ferromagnetic behavior. Annealing these films in 1 atm oxygen ambient converts the films into a pseudo-cubic BaFeO3-x phase that is ferromagnetic with a Curie temperature of 235 K. The observation of ferromagnetism with increasing oxygen content is consistent with superexchange coupling of Fe +4-O-Fe+4. The effects of anneal conditions on BaFeO3 are studied. X-ray characterization, such as reciprocal space maps, show more complex structure for as-grown BaFeO3-x epitaxial films. Epitaxial films grown at low laser energies are highly crystalline. However, they decompose after annealing. When grown at high laser energies, films exhibit complex structure which "cleans up" to a single pseudocubic or tetragonal structure upon ex situ anneal in oxygen ambient environment. Superlattices of BaFeO 3/SrTiO3 were synthesized to explore the nature of "cracking" in annealed BaFeO3, which occurs due to large change in lattice parameter. Magnetization of ex situ annealed BaFeO3-x epitaxial films were examined as a function of

  16. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  17. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  18. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Quesada, Adrián [Instituto de Cerámica y Vidrio, CSIC, Madrid E-28049 (Spain); Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Prieto, Pilar; Muñoz-Martín, Ángel [Universidad Autónoma de Madrid, E-28049 (Spain); Aballe, Lucía [Alba Synchrotron Light Facility, CELLS, Barcelona (Spain); Marco, José F. [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain)

    2015-12-30

    Highlights: • Infrared pulsed deposition is used to grow single crystal mixed magnetite-cobalt ferrite films. • Distinct topography with two mound types on the surface of the film. • Suggested origin of segregation into two phases is oxygen deficiency during growth. • Mössbauer is required to quantify the two components. - Abstract: We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO{sub 3} by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  19. Dry Epitaxial Lift-Off for High Efficiency Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new method of transferring epitaxially grown active films onto an inexpensive polymeric flexible carrier. Specifically, for making thin lightweight high efficiency...

  20. Characterization of PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} epitaxial thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Anuj; Alexe, Marin; Ishwarrao Birajdar, Balaji; Vrejoiu, Ionela; Hesse, Dietrich [Max-Planck-Institute of Microstructure Physics, Halle (Germany)

    2009-07-01

    Epitaxial PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (100) (PST) thin films of thickness 70 nm were deposited on vicinal SrTiO{sub 3} (STO) (100) substrates with a layer of SrRuO{sub 3} (SRO) as a bottom electrode by pulsed laser deposition (PLD) at 823K. Their crystal orientation, topography and microstructure were analysed by X-ray diffraction, atomic force microscopy (AFM) and transmission electron microscopy (TEM), respectively. The films deposited at temperature higher than 823K showed the presence of pyrochlore phase whereas films grown at 823K were perovskites. The in-plane and out-of-plane epitaxial relationships were studied by {phi} and {theta}-2{theta} scans respectively. AFM revealed a smooth surface with RMS of 1.1nm. Superstructure reflections obtained in the TEM diffraction patterns of the films confirm cation ordering. The films were characterized by using polarization vs electric field (P-E) and switching current vs voltage (I-V) measurements. Polarization of the epitaxial films at zero electric field was 2{mu}C/cm{sup 2} at room temperature. Cation ordering with post annealing of the films is still under investigation. This work describes the preparation and characterization of epitaxial films of PST (100) for the first time and indicates PST as a potential candidate for infra-red image sensor applications.

  1. Transformation behaviour of freestanding epitaxial Ni–Mn–Ga films

    Energy Technology Data Exchange (ETDEWEB)

    Yeduru, S.R., E-mail: srinivasa.yeduru@kit.edu [Karlsruhe Institute of Technology, IMT, P.O. Box 3640, 76021 Karlsruhe (Germany); Backen, A.; Fähler, S.; Schultz, L. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Kohl, M., E-mail: manfred.kohl@kit.edu [Karlsruhe Institute of Technology, IMT, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2013-11-15

    Highlights: ► The complex martensite microstructure of free-standing epitaxial Ni–Mn–Ga films. ► A two-stage transformation in the temperature range between 40 °C and 160 °C. ► Temperature dependent mechanical properties of free-standing Ni–Mn–Ga films. ► With increasing temperature, the twinning stress decreases due to thermal activation of twin boundaries. ► Large superplastic strain increases from about 10% at 110 °C to 14% at RT. -- Abstract: We analyze the transformation behaviour of a 2 μm thick epitaxial Ni–Mn–Ga film by combining temperature dependent measurements of magnetization, electrical resistance, X-ray diffraction (XRD) and tensile stress–strain characteristics. While the magnetization measurements hint for a simple austenite–martensite transformation below the Curie temperature at about 90 °C, resistivity measurements reveal a two-stage transformation in the temperature regimes (I) of 40–80 °C and (II) of 140–160 °C. XRD and pseudoplastic behaviour prove the presence of martensite well above the Curie point. The combination of four independent methods suggests that the transformation at (II) may originate from a weakly first order transformation followed by an intermartensitic transformation at (I). This interpretation is in line with the large superplastic strain observed for the tensile direction parallel to the [1 0 0] direction of the Ni–Mn–Ga unit cell. The strain increases from about 10% at 110 °C to 14% at room temperature suggesting an increase in tetragonal distortion.

  2. Influence of layer thickness on the structure and the magnetic properties of Co/Pd epitaxial multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2012-03-15

    Co/Pd epitaxial multilayer films were prepared on Pd(111){sub fcc} underlayers hetero-epitaxially grown on MgO(111){sub B1} single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed. - Highlights: Black-Right-Pointing-Pointer Epitaxial Co/Pd multilayer films are prepared on Pd(111){sub fcc} underlayers. Black-Right-Pointing-Pointer Lattice strain in Co layer and CoPd-alloy formation are noted around the interface. Black-Right-Pointing-Pointer Magnetic property dependence on layer thickness is reported.

  3. The origin of optical gain in cubic InGaN grown by molecular beam epitaxy

    Science.gov (United States)

    Holst, J.-Chr.; Hoffmann, A.; Rudloff, D.; Bertram, F.; Riemann, T.; Christen, J.; Frey, T.; As, D. J.; Schikora, D.; Lischka, K.

    2000-05-01

    The optical properties of cubic InGaN samples with varying In content are investigated to provide insight into the processes responsible for optical amplification. The samples were grown by molecular beam epitaxy on GaAs substrates. The structural and optical properties were studied by means of time-resolved and time-integrated photoluminescence spectroscopy and cathodoluminescence microscopy, as well as gain measurements at various temperatures. From these measurements, localized states are proposed to be responsible as recombination mechanism. The cathodoluminescence measurements evidence a direct correlation of the degree of In fluctuation and the efficiency of optical amplification of the samples.

  4. Investigation of InN layers grown by molecular beam epitaxy on GaN templates

    Energy Technology Data Exchange (ETDEWEB)

    Vilalta-Clemente, A.; Mutta, G.R.; Chauvat, M.P.; Morales, M.; Doualan, J.L.; Ruterana, P. [CIMAP UMR 6252 CNRS-ENSICAEN-CEA-UCBN, Caen (France); Grandal, J.; Sanchez-Garcia, M.A.; Calle, F. [ISOM y Department de Ingenieria Electronica, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria (Spain); Valcheva, E.; Kirilov, K. [Faculty of Physics, Sofia University (Bulgaria)

    2010-05-15

    An investigation of InN layers grown on GaN templates by molecular beam epitaxy (MBE) has been carried out by X-ray diffraction (XRD), Raman spectroscopy (RS) and photoluminescence (PL). A good correlation is noticed between their crystalline quality and optical properties. The best samples exhibit a PL emission between 0.6 and 0.7 eV. The surface structure was quite different from one sample to the other, pointing out to a critical role of the growth conditions, which probably need to be tightly optimized for a good reproducibility. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  6. Highly crystalline MoS{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Serrao, Claudy R.; You, Long; Gadgil, Sushant; Hu, Chenming; Salahuddin, Sayeef [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Diamond, Anthony M.; Hsu, Shang-Lin; Clarkson, James [Department of Material Science and Engineering, University of California, Berkeley, California 94720 (United States); Carraro, Carlo; Maboudian, Roya [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States)

    2015-02-02

    Highly crystalline thin films of MoS{sub 2} were prepared over large area by pulsed laser deposition down to a single monolayer on Al{sub 2}O{sub 3} (0001), GaN (0001), and SiC-6H (0001) substrates. X-ray diffraction and selected area electron diffraction studies show that the films are quasi-epitaxial with good out-of-plane texture. In addition, the thin films were observed to be highly crystalline with rocking curve full width half maxima of 0.01°, smooth with a RMS roughness of 0.27 nm, and uniform in thickness based on Raman spectroscopy. From transport measurements, the as-grown films were found to be p-type.

  7. Anomalous Hall effect in epitaxial ferrimagnetic anti-perovskite Mn4-xDyxN films

    Science.gov (United States)

    Meng, M.; Wu, S. X.; Zhou, W. Q.; Ren, L. Z.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-08-01

    Anomalous Hall effect (AHE) has been studied for ferrimagnetic antiperovskite Mn4-xDyxN films grown by molecular-beam epitaxy. The introduction of Dy changes the AHE dramatically, even changes its sign, while the variations in magnetization are negligible. Two sign reversals of the AHE (negative-positive-negative) are ascribed to the variation of charge carriers as a result of Fermi surface reconstruction. We further demonstrate that the AHE current JAH is dissipationless (independent of the scattering rate), by confirming that anomalous Hall conductivity, σAH, is proportional to the carrier density n at 5 K. Our study may provide a route to further utilize antiperovskite manganese nitrides in spintronics.

  8. Detection of current induced spin polarization in epitaxial Bi2Te3 thin film

    Science.gov (United States)

    Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Rai, Amritesh; Heon Shin, Seung; Majumder, Sarmita; Register, Leonard F.; Banerjee, Sanjay K.

    2017-03-01

    We electrically detect charge current induced spin polarization on the surface of a molecular beam epitaxy grown Bi2Te3 thin film in a two-terminal device with a ferromagnetic MgO/Fe contact and a nonmagnetic Ti/Au contact. The two-point resistance, measured in an applied magnetic field, shows a hysteresis tracking the magnetization of Fe. A theoretical estimate is obtained for the change in resistance on reversing the magnetization direction of Fe from coupled spin-charge transport equations based on the quantum kinetic theory. The order of magnitude and the sign of the hysteresis are consistent with the spin-polarized surface state of Bi2Te3.

  9. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  10. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  11. Excitonic characteristics in direct wide-band-gap CuScO2 epitaxial thin films

    Science.gov (United States)

    Hiraga, H.; Makino, T.; Fukumura, T.; Ohtomo, A.; Kawasaki, M.

    2009-11-01

    Thin films of a delafossite compound CuScO2 were grown on spinel MgAl2O4 (111) substrates, yielding in highly crystalline and (0001)-oriented epitaxial structures. Absorption spectra at 20 K revealed a sharp exciton resonance at 3.97 eV, which persisted up to 300 K. Its direct transition band gap at 20 K and exciton binding energies were determined to be about 4.35 and 380 meV, both of which are considerably larger than those of ZnO. In view of its capability of naturally layered structure and p-type doping, this compound will be interesting for exciton physics as well as implementation of heterostructured devices.

  12. Evaluation of microindentation properties of epitaxial 3C–SiC/Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Geetha, D. [Department of Physics, Anna University, Chennai 600025 (India); Sophia, P. Joice [UIST, St. Paul the Apostle, Ohrid 6000 (Macedonia, The Former Yugoslav Republic of); Arivuoli, D. [Crystal Growth Centre, Anna University, Chennai 600025 (India)

    2016-06-01

    The microhardness characteristics of 3C–SiC/Si films grown by vapor phase epitaxy were investigated using Vickers and Knoop indenters. The observed hardness behavior at lower load range is being attributed to indentation size effect while the substrate hardness effect is found to be prominent at higher loads. The related mechanical properties such as fracture toughness, brittleness index, and yield stress were also evaluated. In order to study the nature and behavior of the surface topography during the deformation process for the applied load, detailed atomic force microscopy images were obtained around the indented regions of the samples. It revealed that the indents formed at higher loads showed fracture characteristics with a pattern of radial cracks propagating from the indent corners.

  13. A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, K. L.; Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-12-28

    GaAs growth by hydride vapor phase epitaxy (HVPE) has regained interest as a potential route to low cost, high efficiency thin film photovoltaics. In order to attain the highest efficiencies, deep level defect incorporation in these materials must be understood and controlled. The arsenic anti-site defect, As{sub Ga} or EL2, is the predominant deep level defect in HVPE-grown GaAs. In the present study, the relationships between HVPE growth conditions and incorporation of EL2 in GaAs epilayers were determined. Epitaxial n-GaAs layers were grown under a wide range of deposition temperatures (T{sub D}) and gallium chloride partial pressures (P{sub GaCl}), and the EL2 concentration, [EL2], was determined by deep level transient spectroscopy. [EL2] agreed with equilibrium thermodynamic predictions in layers grown under conditions in which the growth rate, R{sub G}, was controlled by conditions near thermodynamic equilibrium. [EL2] fell below equilibrium levels when R{sub G} was controlled by surface kinetic processes, with the disparity increasing as R{sub G} decreased. The surface chemical composition during growth was determined to have a strong influence on EL2 incorporation. Under thermodynamically limited growth conditions, e.g., high T{sub D} and/or low P{sub GaCl}, the surface vacancy concentration was high and the bulk crystal was close to equilibrium with the vapor phase. Under kinetically limited growth conditions, e.g., low T{sub D} and/or high P{sub GaCl}, the surface attained a high GaCl coverage, blocking As adsorption. This competitive adsorption process reduced the growth rate and also limited the amount of arsenic that incorporated as As{sub Ga}. A defect incorporation model which accounted for the surface concentration of arsenic as a function of the growth conditions, was developed. This model was used to identify optimal growth parameters for the growth of thin films for photovoltaics, conditions in which a high growth rate and low [EL2] could be

  14. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  15. Thin film growth of CaFe2As2 by molecular beam epitaxy

    Science.gov (United States)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  16. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    Science.gov (United States)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  17. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  18. Nucleation of domain walls in iron garnet single crystals grown from liquid phase epitaxy

    Science.gov (United States)

    Shirai, Kazushi; Ishikura, Kenji; Takeda, Norio

    1997-09-01

    When bismuth-substituted iron garnet (RBi)IG single crystals grown from liquid-phase-epitaxy (LPE) are magnetized, the magnetic domain structure gradually evolves. However the domain-wall nucleation that occurs during the demagnetization is not yet understood clearly. This phenomenon is important, because the working of some optical devices that utilize (RBi)IG single crystals depends directly on the formation of domains of opposite direction. In this paper, the authors present a theoretical description of domain-wall nucleation in LPE-grown (RBi)IG single crystals. It was found that the nucleation field is determined by the strength of the microscopic domain-wall which is fixed on the surface of the crystal. Furthermore, the nucleation field is modified by the addition of a magnetic field.

  19. The chemical states of As 3d in highly doped ZnO grown by Molecular Beam Epitaxy and annealed in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Przezdziecka, E., E-mail: eilczuk@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Stachowicz, M. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Lisowski, W. [Institute of Physical Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw (Poland); Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Sobczak, J.W. [Institute of Physical Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw (Poland); Jakieła, R. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Jablonski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw (Poland); Jarosz, D.; Kozanecki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-04-30

    Arsenic doped ZnO films were grown by plasma assisted molecular beam epitaxy and post-growth annealed at 700 °C in oxygen, nitrogen or argon atmosphere. The high resolution X-ray photoelectron spectroscopy (XPS) studies of the ZnO:As films revealed that the As3d core level spectra is formed by three components located at about 41 eV, 44.5 eV and 45.5 eV below the Fermi level which we ascribe to As{sub O}, As{sub Zn}‐2V{sub Zn} and As{sub Zn,} respectively. The relative intensity of the three XPS contributions strongly depends on an annealing atmosphere, but in any case none of the contributions clearly dominates, which is a fingerprint of complicated nature of arsenic states in ZnO. This conclusion is also confirmed by the temperature dependent photoluminescence (PL) studies. Differences in the dominant PL peak positions and in their relative intensities are present and suggest different acceptor states in the examined samples. - Highlights: • Arsenic-doped zinc oxide has been grown by molecular beam epitaxy. • The annealing atmosphere strongly affects the properties of ZnO:As thin films. • Three As-derived components have been observed by X-ray Photoelectron Spectroscopy. • Photoluminescence measurements confirm complex nature of As-acceptors.

  20. In situ photoelectron spectroscopy of molecular-beam-epitaxy grown surfaces

    CERN Document Server

    Oshima, M; Okabayashi, J; Ono, K

    2003-01-01

    Two in situ high-resolution synchrotron radiation photoelectron spectroscopy (SRPES) systems combined with a molecular beam epitaxy (MBE) chamber for III-V compound semiconductors and a laser MBE chamber for strongly correlated oxide films, respectively, have been designed and fabricated to analyze intrinsic and surface/interface electronic structures of these unique materials. The importance of the in situ SRPES has been demonstrated by the results of 1) Si surface nanostructures, 2) GaAs surfaces/interfaces and nanostructures, 3) MnAs magnetic nanostructures, and 4) strongly-correlated La sub 1 sub - sub x Sr sub x MnO sub 3 surfaces/interfaces and superstructures.

  1. Physicochemical analysis of Bi2Te3 - (Fe, Eu) - Bi2Te3 junctions grown by molecular beam epitaxy method

    Science.gov (United States)

    Balin, K.; Rapacz, R.; Weis, M.; Szade, J.

    2017-05-01

    Topological insulators (TI) are a class of materials gaining in importance due to their unique spin/electronic properties, which may allow for the generation of quasiparticles and electronic states which are not accessible in classical condensed-matter systems. Not surprisingly, TI are considered as promising materials for multiple applications in next generation electronic or spintronic devices, as well as for applications in energy conversion, such as thermo-electrics. In this study, we examined the practical challenges associated with the formation of a well-defined junction between a model 3D topological insulator, Bi2Te3, and a metal, Fe or Eu, from which spin injection could potentially be realized. The properties of multilayer systems grown by molecular beam epitaxy (MBE), with Fe or Eu thin films sandwiched between two Bi2Te3 layers, were studied in-situ using electron diffraction and photoelectron spectroscopy. Their magnetic properties were measured using a SQUID magnetometer, while the in-depth chemical structure was assessed using secondary ion mass spectroscopy. An examination of impact of Bi2Te3 structure on chemical stability of the junction area has been realized. For Fe, we found that despite room temperature growth, a reaction between the Fe film and Bi2Te3 takes place, leading to the formation of FeTe and also the precipitation of metallic Bi. For the Eu tri-layer, a reaction also occurs, but the Te chemical state remains intact.

  2. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Antony, Aldrin [Department of Applied Physics and Optics, University of Barcelona, Barcelona (Spain); Department of Energy Science and Engineering, IIT Bombay, Mumbai (India); Rojas, Fredy [Department of Applied Physics and Optics, University of Barcelona, Barcelona (Spain)

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BST thin films show significantly improved tunable performance over polycrystalline thin films.

  3. Epitaxial growth of Sc-doped ZnO films on Si by sol-gel route

    Science.gov (United States)

    Sharma, Ruchika; Sehrawat, Kiran; Wakahara, Akihiro; Mehra, R. M.

    2009-03-01

    The epitaxial growth of doped ZnO films is of great technological importance. Present paper reports a detailed investigation of Sc-doped ZnO films grown on (1 0 0) silicon p-type substrates. The films were deposited by sol-gel technique using zinc acetate dihydrate as precursor, 2-methoxyethanol as solvent and monoethanolamine (MEA) as a stabilizer. Scandium was introduced as dopant in the solution by taking 0.5 wt% of scandium nitrate hexahydrate. The effect of annealing on structural and photoluminescence properties of nano-textured Sc-doped films was investigated in the temperature range of 300-550 °C. Structural investigations were carried out using X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.21° are obtained at an annealing temperature of 400 °C. The SEM images of ZnO:Sc films have revealed that coalescence of ZnO grains occurs due to annealing. Ostwald ripening was found to be the dominant mass transport mechanism in the coalescence process. A surface roughness of 4.7 nm and packing density of 0.93 were observed for the films annealed at 400 °C. Room temperature photoluminescence (PL) measurements of ZnO:Sc films annealed at 400 °C showed ultraviolet peak at about (382 nm) with FWHM of 141 meV, which are comparable to those found in high-quality ZnO films. The films annealed below or above 400 °C exhibited green emission as well. The presence of green emission has been correlated with the structural changes due to annealing. Reflection high energy electron diffraction pattern confirmed the nearly epitaxial growth of the films. Ruchika Sharma, P. K. Shishodia, A. Wakahara and R. M. Mehra, Materials Science-Poland 27 (2009) Ist issue.

  4. Conventional and pendeo-epitaxial growth of GaN(0 0 0 1) thin films on Si(1 1 1) substrates

    Science.gov (United States)

    Davis, Robert F.; Gehrke, Thomas; Linthicum, Kevin J.; Preble, Edward; Rajagopal, Pradeep; Ronning, Carsten; Zorman, Christian; Mehregany, Mehran

    2001-10-01

    Single-crystal wurtzitic GaN(0 0 0 1) films have been grown via conventional methods on high-temperature AlN(0 0 0 1) buffer layers previously deposited on 3C-SiC(1 1 1)/Si(1 1 1) substrates using metal organic vapor phase epitaxy (MOVPE). Formation of the 3C-SiC transition layer employed a carburization step and the subsequent deposition of epitaxial 3C-SiC(1 1 1) on the Si(1 1 1) surface using atmospheric pressure chemical vapor deposition (APCVD) for both processes. Similar films, except with significantly reduced dislocation densities, have been grown via pendeo-epitaxy (PE) from the (1 1 2¯ 0) sidewalls of silicon nitride masked, raised, rectangular, and [1 1¯ 0 0] oriented GaN stripes etched from films conventionally grown on similarly prepared, Si-based, multilayer substrates. The FWHM of the (0 0 0 2) X-ray diffraction peak of the conventionally grown GaN was 1443 arcsec. The FWHM of the photoluminescence (PL) spectra for the near band-edge emission on these films was 19 meV. Tilting in the coalesced PE-grown GaN epilayers of 0.2° was confined to the areas of lateral overgrowth over the masks; no tilting was observed in the material suspended above the trenches. The strong, low-temperature PL band-edge peak at 3.456 eV with an FWHM of 17 meV in the PE films was comparable to that observed in PE GaN films grown on AlN/6H-SiC(0 0 0 1) substrates.

  5. How to enable bulk-like martensitic transformation in epitaxial films

    Directory of Open Access Journals (Sweden)

    Marius Wodniok

    2017-05-01

    Full Text Available The present study is dedicated to the influence of different substrate and buffer layer materials on the martensitic transformation in sputter deposited epitaxial shape memory Heusler alloys. For this, the magnetocaloric Heusler alloy Ni-Co-Mn-Al [N. Teichert et al., Phys. Rev. B 91, 184405 (2015] is grown on MgO(001, MgAl2O4(001, and MgO(001/V substrates, which exhibit a lattice misfit to the Ni-Co-Mn-Al between −1.2% and 3.6%. By temperature dependent X-ray diffraction measurements it is shown that the optimum buffer layer for shape memory Heusler films is not one with minimum lattice misfit, but one with minimum Young’s modulus and moderate misfit because an elastic buffer layer can deform during the martensitic transformation of the Heusler layer. Furthermore, epitaxial strain caused by a moderate lattice misfit does not significantly change the martensitic transformation temperatures.

  6. Support-Promoted Stabilization of the Metastable PZT Pyrochlore Phase by Epitaxial Thin Film Growth

    Science.gov (United States)

    Hamedi, L'H.; Guilloux-Viry, M.; Perrin, A.; Li, Z. Z.; Raffy, H.

    2001-04-01

    Thin films of lead zirconium titanium oxide with the Zr/Ti ratio close to 52/48 have been grown by pulsed laser deposition on epitaxial (100)CeO2 buffered R-plane sapphire substrates. Instead of the expected perovskite structure, these films are pure cubic metastable pyrochlore phase. From X-ray diffraction in θ-2θ mode and θ-scans it appears than the films are fully {100} oriented with a mosaicity in the range 0.8°-0.9°. In-plane characterizations, including RHEED photographs, electron-channeling patterns, XRD ϕ-scans, and near grazing incidence XRD, are indicative of high-quality epitaxial growth, cube-on-cube, on the CeO2 sublayer. RBS analyses show that increasing the deposition temperature in the range 560-650°C does not affect the Zr/Ti ratio, while the lead content drops significantly from Pb/(Zr+Ti)=0.7 to 0.3 (a stoichiometry close to the composition of "Pb(Zr0.52Ti0.48)3O7"); simultaneously, the unit-cell constant decreases monotically from 10.40 to 10.15 Å. A comparison with results obtained on a variety of other substrates suggests that the driving force that imposes the growth of the pyrochlore phase at the expense of the perovskite-like one is not related to the misfit, but to the nature of the interface at the atomic scale, due to the close structural relations between fluorite and pyrochlore. This hypothesis is confirmed by the obtention of the usual perovskite variant when a (111)CeO2 sublayer is used.

  7. Development of Epitaxial GaN Films for RF Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective of this SBIR is to develop epitaxial GaN films with threading dislocation density less than 10^6 cm^-2. We propose an innovative approach...

  8. Native defects affecting the Li atom distribution tune the optical emission of ZnO:Li epitaxial thin film

    Science.gov (United States)

    Sahu, R.; Dileep, K.; Loukya, B.; Datta, R.

    2014-02-01

    It is found that the oxygen vacancy (VO) defect concentration affecting the separation between individual species in LiZn-Lii complex influences the optical emission property of Li0.06Zn0.94O epitaxial thin film grown by pulsed laser deposition. The film grown under low oxygen partial pressure (n-type conductivity)/higher partial pressure (resistive-type) has broad emission at ˜2.99 eV/˜2.1 eV and a narrower emission at 3.63 eV/3.56 eV, respectively. First principle based mBJLDA electronic structure calculation suggests that the emission at 2.99 eV is due to the LiZn-Lii pair complex and the emission at 2.1 eV is when the component species are away from each other.

  9. Structure and magnetism of single-phase epitaxial gamma '-Fe4N

    NARCIS (Netherlands)

    Costa-Kramer, JL; Borsa, DM; Garcia-Martin, JM; Martin-Gonzalez, MS; Boerma, DO; Briones, F

    Single phase epitaxial pure gamma(')-Fe4N films are grown on MgO (001) by molecular beam epitaxy of iron in the presence of nitrogen obtained from a radio frequency atomic source. The epitaxial, single phase nature of the films is revealed by x-ray diffraction and by the local magnetic environment

  10. GaIn As Quantum Dots (QD) grown by Liquid Phase Epitaxy (LPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Vazquez, F E; Mishurnyi, V A; Gorbatchev, A Yu; De Anda, F [Universidad Autonoma de San Luis Potosi, Instituto de Investigation en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico); Elyukhin, V A, E-mail: fcoe_ov@prodigy.net.m, E-mail: andre@cactus.iico.uaslp.m [CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Mexico D.F., CP 07360 (Mexico)

    2009-05-01

    The majority of the semiconductor structures with QD today are grown by MBE and MOCVD. It is known that the best material quality can be achieved by LPE because, in contrast to MBE and MOCVD, this method is realized at near-equilibrium conditions. To develop QD LPE technology first of all it is necessary to find out a growth technique allowing the crystallization of epitaxial materials with very small volume. This can be done by means of different techniques. In this work we apply a low temperature short-time growth method, which allows the production not only of single, but also of multilayer heterostructures. We have grown Ga{sub x}In{sub 1-z}As QD on GaAs (100) substrates at 450 C. The details of the QD formation, depending on composition of the Ga{sub x}In{sub -x} As solid solutions, have been studied by atom-force microscopy. The photoluminescence spectra of investigated samples show, in addition to a short-wave GaAs related peak, a longer wavelength line, which disappears after removal of the grown GaInAs material using an etching solution. This fact, together with atom-force microscopy results can be interpreted as a proof that QD heterostructures were grown successfully by LPE.

  11. Vapor phase epitaxial liftoff of GaAs and silicon single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Kao, C.P.; Pike, G.A.; Slone, J.A.; Yablonovitch, E. [Electrical Engineering Department, University of California, Los Angeles, CA 90095-1594 (United States)

    1999-06-10

    Among the technologies for integrating GaAs devices with Si VLSI chips, epitaxial liftoff (ELO) is conspicuous for maintaining the quality of the single crystal epitaxial GaAs films. Traditionally, ELO is implemented in aqueous HF solution. It would be cleaner and simpler if ELO could be implemented in a vapor process. In this article, we will present the potential improvements in the ELO process by using a vapor phase etch to undercut thin films

  12. High-quality AlN films grown on chemical vapor-deposited graphene films

    Directory of Open Access Journals (Sweden)

    Chen Bin-Hao

    2016-01-01

    Full Text Available We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented AlN crystal structures are investigated based on the XRDpatterns observations.

  13. δ-Doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO3 films

    Directory of Open Access Journals (Sweden)

    Fengmiao Li

    2017-06-01

    Full Text Available Homoepitaxial SrTiO3(110 film is grown by molecular beam epitaxy in ultra-high vacuum with oxygen diffusing from substrate as the only oxidant. The resulted oxygen vacancies (VOs are found to be spatially confined within few subsurface layers only, forming a quasi-two-dimensional doped region with a tunable high concentration. Such a δ-function distribution of VOs is essentially determined by the thermodynamics associated with the surface reconstruction, and facilitated by the relatively high growth temperature. Our results demonstrate that it is feasible to tune VOs distribution at the atomic scale by controlling the lattice structure of oxide surfaces.

  14. Characterization of silicon carbide epitaxial films by differential reflectance spectroscopy

    Science.gov (United States)

    Shturbin, Anatoly V.; Titkov, Ilya E.; Panevin, Vadim Y.; Vorobjev, Leonid E.; Witman, Renata F.

    2000-01-01

    We are presenting a simple non-destructive method for characterizing SiC samples (Lely-crystals, CREE-substrates, and epitaxial films). With our method we observed ultraviolet differential reflection spectra of SiC samples and compared with pure Lely-crystal to estimate their structural quality. Our optical differential method is based on the experimental fact that doping of a crystal leads to appreciable changes of the optical fundamental absorption spectrum, which we interpreted as a uniform broadening and a shift of differential spectra. The broadening of absorption peaks can be caused not only by doping, but also by any defects of the crystal lattice (neutral impurities, clusters, micro-pipes and others), that destroy its periodicity. The shifts of these peaks inform us about the free carrier concentration. The experiment has shown we can detect minimum free carriers concentration up to nmin equals (ND-NA) equals 6 (DOT) 1015 cm-3. Besides we can detect minimal frequency of impacts with lattice defects as vmin equals 3 (DOT) 1012 s-1. Converting to charged centers concentration it equals (ND + NA) equals 5 (DOT) 1016 cm-3. Considering the small depth of light probe (less than 0.1 micrometers ) and delicacy of thin films, our contactless method is mostly applicable for its testing.

  15. GaSb film growth by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, M.L.; Martinez-Juarez, J.; Lopez-Salazar, P. [CIDS-ICUAP, BUAP, Av. 14 Sur y San Claudio, C.U. Edif.103C, Col. Sn Manuel, C.P. 72570, Puebla, Pue. (Mexico); Diaz, G.J. [Centro de Investigacion y Estudios Avanzados, IPN, Av. IPN 2508, Col. Sn. Pedro Zacatenco, C.P. 07360, D.F. (Mexico)

    2010-04-15

    Doped GaSb (Gallium Antimonide) films on p-GaSb substrates have been obtained by means of a low-cost and fast-growth method: the liquid phase epitaxy (LPE) technique. The growth temperature was 400 C, and the growth time was varied between1 and 5 min. Characterization of the films was performed by means of high resolution X-ray Diffraction, low temperature-photoluminescence and current-voltage curve measurements. The X-ray diffraction pattern confirms a zincblende-type crystal structure with a high-thin peak centred at 30.36 . The PL spectra at 27 K allowed to confirm the band-gap energy to be 0.8 eV and the I-V curves presented a PN junction behavior which corresponds to the obtained structured. Metal contacts of Au-Zn and Au-Ge were placed to perform electrical characterization (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    Science.gov (United States)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  17. Epitaxial growth of homogeneous single-crystalline AlN films on single-crystalline Cu (1 1 1) substrates

    Science.gov (United States)

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Lin, Yunhao; Zhou, Shizhong; Qian, Huirong; Gao, Fangliang; Yang, Hui; Li, Guoqiang

    2014-03-01

    The homogeneous and crack free single-crystalline AlN thin films have been epitaxially grown on single-crystalline Cu (1 1 1) substrates with an in-plane alignment of AlN [11-20]//Cu [1-10] by pulsed laser deposition (PLD) technology with an integrated laser rastering program. The as-grown AlN films are studied by spectroscopic ellipsometry, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), polarized light microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy (HRTEM). The spectroscopic ellipsometry reveals the excellent thickness uniformity of as-grown AlN films on the Cu (1 1 1) substrates with a root-mean-square (RMS) thickness inhomogeneity less than 2.6%. AFM and FESEM measurements indicate that very smooth and flat surface AlN films are obtained with a surface RMS roughness of 2.3 nm. The X-ray reflectivity image illustrates that there is a maximum of 1.2 nm thick interfacial layer existing between the as-grown AlN and Cu (1 1 1) substrates and is confirmed by HRTEM measurement, and reciprocal space mapping shows that almost fully relaxed AlN films are achieved only with a compressive strain of 0.48% within ∼321 nm thick films. This work demonstrates a possibility to obtain homogeneous and crack free single-crystalline AlN films on metallic substrates by PLD with optimized laser rastering program, and brings up a broad prospect for the application of acoustic filters that require abrupt hetero-interfaces between the AlN films and the metallic electrodes.

  18. Epitaxial growth of 2 inch diameter homogeneous AlN single-crystalline films by pulsed laser deposition

    Science.gov (United States)

    Yang, Hui; Wang, Wenliang; Liu, Zuolian; Li, Guoqiang

    2013-03-01

    2 inch diameter homogeneous AlN films are epitaxially grown on sapphire substrates by pulsed laser deposition (PLD). By optimizing laser rastering and PLD growth conditions, the 2 inch diameter single-crystalline AlN films exhibit excellent thickness uniformity with root-mean-square (RMS) inhomogeneity less than 4.5% and very smooth surface with RMS roughness less than 1.53 nm. There is a maximum of 1.5 nm thick interfacial layer, if there is any, existing between the as-grown AlN and the pre-nitrided sapphire substrate, and the as-grown AlN films are almost fully relaxed only with a 0.26% in-plane compressive strain. The achievement of high-quality large-scale AlN films with uniform thickness and atomically abrupt interface is of great interest for the commercial development of AlN-based devices, particularly acoustic filters where abrupt heterointerfaces with substrates and flat surfaces for AlN films are highly desired.

  19. Stabilisation of late transition metal and noble metal films in hexagonal and body centred tetragonal phases by epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Hueger, E.

    2005-08-26

    In this work ultrathin metallic films with a crystal phase different to their natural bulk structure were produced by hetero-epitaxial growth on metallic substrates. A further aim of this work was to understand the initiation, growth and stability of crystal phase modifications of these films. there exist cases where the films turn beyond the pseudomorphic-growth to a crystal phase different from their natural bulk structure. The present work presents and discusses such a case in addition to the general phenomenon of pseudomorphic-growth. In particular it is shown that metals whose natural phase is face centred cubic (fcc) can be grown in body centred tetragonal (bct) or hexagonal close packed (hcp) phases in the form of thin films on (001) surfaces of appropriate substrates. The growth behavior, electron diffraction analysis, appearance conditions, geometric fit considerations, examples and a discussion of the phase stability of non-covered films and superlattices is given reviewing all epitaxial-systems whose diffraction pattern can be explained by the hexagonal or pseudomorphic bct phase. (orig.)

  20. Growth of epitaxial Pt thin films on (0 0 1) SrTiO{sub 3} by rf magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kahsay, A. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Polo, M.C., E-mail: mcpolo@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Ferrater, C.; Ventura, J. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Rebled, J.M. [Departament d’Electrònica, Universitat de Barcelona Institut de Nanociència i Nanotecnologia IN 2UB, 08028 Barcelona (Spain); Varela, M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    The growth of platinum thin film by rf magnetron sputtering on SrTiO{sub 3}(0 0 1) substrates for oxide based devices was investigated. Platinum films grown at temperatures higher than 750 °C were epitaxial ([1 0 0]Pt(0 0 1)//[1 0 0]STO(0 0 1)), whereas at lower temperatures Pt(1 1 1) films were obtained. The surface morphology of the Pt films showed a strong dependence on the deposition temperature as was revealed by atomic force microscopy (AFM). At elevated temperatures there is a three-dimensional (3D) growth of rectangular atomically flat islands with deep boundaries between them. On the other hand, at low deposition temperatures, a two-dimensional (2D) layered growth was observed. The transition from 2D to 3D growth modes was observed that occurs for temperatures around 450 °C. The obtained epitaxial thin films also formed an atomically sharp interface with the SrTiO{sub 3}(0 0 1) substrate as confirmed by HRTEM.

  1. Epitaxial NiWO4 films on Ni(110): Experimental and theoretical study of surface stability

    Science.gov (United States)

    Doudin, N.; Pomp, S.; Blatnik, M.; Resel, R.; Vorokhta, M.; Goniakowski, J.; Noguera, C.; Netzer, F. P.; Surnev, S.

    2017-05-01

    Despite the application potential of nickel tungstate (NiWO4) in heterogeneous catalysis, humidity and gas sensing, etc, its surfaces have essentially remained unexplored. In this work, NiWO4 nanoparticles and films with the wolframite structure have been grown via a solid-state reaction of (WO3)3 clusters and a NiO(100) film on a Ni(110) crystal surface and characterized by a variety of experimental techniques, including x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM) and x-ray diffraction (XRD), combined with ab-initio density functional theory (DFT) calculations. NiWO4 grows initially as three-dimensional (3D) crystalline nanoparticles displaying mainly two crystalline facets vicinal to the (100) surface, which merge with increasing the (WO3)3 coverage into a quasi-continuous epitaxial film. The DFT results provide an account of the energetics of NiWO4 low index surfaces and highlight the role of faceting in the stabilization of extended polar (100) terraces. These combined experimental and theoretical results show that interaction with a metal substrate and vertical confinement may stabilize oxide nano-objects with high energy facets, able to enhance their reactivity.

  2. Improvement of thermoelectric properties of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films grown on graphene substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Wan [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Gun Hwan; Choi, Ji Woon; An, Ki-Seok; Lee, Young Kuk [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, Jin-Sang [Center for Electronic Materials, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Hyungjun [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2017-06-15

    A study of substrate effect on the thermoelectric (TE) properties of Bi{sub 2}Te{sub 3} (BT) and Sb{sub 2}Te{sub 3} (ST) thin films grown by plasma-enhanced chemical vapor deposition (PECVD) was performed. Graphene substrates which have small lattice mismatch with BT and ST were used for the preparation of highly oriented BT and ST thin films. Carrier mobility of the epitaxial BT and ST films grown on the graphene substrates increased as the deposition temperature increased, which was not observed in that of SiO{sub 2}/Si substrates. Seebeck coefficients of the as-grown BT and ST films were observed to be maintained even though carrier concentration increased in the epitaxial BT and ST films on graphene substrate. Although Seebeck coefficient was not improved, power factor of the as-grown BT and ST films was considerably enhanced due to the increase of electrical conductivity resulting from the high carrier mobility and moderate carrier concentration in the epitaxial BT and ST films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Void Shapes Controlled by Using Interruption-Free Epitaxial Lateral Overgrowth of GaN Films on Patterned SiO2 AlN/Sapphire Template

    OpenAIRE

    Yu-An Chen; Cheng-Huang Kuo; Li-Chuan Chang; Ji-Pu Wu

    2014-01-01

    GaN epitaxial layers with embedded air voids grown on patterned SiO2 AlN/sapphire templates were proposed. Using interruption-free epitaxial lateral overgrowth technology, we realized uninterrupted growth and controlled the shape of embedded air voids. These layers showed improved crystal quality using X-ray diffraction and measurement of etching pits density. Compared with conventional undoped-GaN film, the full width at half-maximum of the GaN (0 0 2) and (1 0 2) peaks decreased from 485 ar...

  4. Exploring the subsurface atomic structure of the epitaxially grown phase-change material Ge2Sb2Te5

    Science.gov (United States)

    Kellner, J.; Bihlmayer, G.; Deringer, V. L.; Liebmann, M.; Pauly, C.; Giussani, A.; Boschker, J. E.; Calarco, R.; Dronskowski, R.; Morgenstern, M.

    2017-12-01

    Scanning tunneling microscopy (STM) and spectroscopy (STS) in combination with density functional theory (DFT) calculations are employed to study the surface and subsurface properties of the metastable phase of the phase-change material Ge2Sb2Te5 as grown by molecular beam epitaxy. The (111) surface is covered by an intact Te layer, which nevertheless permits the detection of the more disordered subsurface layer made of Ge and Sb atoms. Centrally, we find that the subsurface layer is significantly more ordered than expected for metastable Ge2Sb2Te5 . First, we show that vacancies are nearly absent within the subsurface layer. Secondly, the potential fluctuation, tracked by the spatial variation of the valence band onset, is significantly less than expected for a random distribution of atoms and vacancies in the subsurface layer. The strength of the fluctuation is compatible with the potential distribution of charged acceptors without being influenced by other types of defects. Thirdly, DFT calculations predict a partially tetrahedral Ge bonding within a disordered subsurface layer, exhibiting a clear fingerprint in the local density of states as a peak close to the conduction band onset. This peak is absent in the STS data implying the absence of tetrahedral Ge, which is likely due to the missing vacancies required for structural relaxation around the shorter tetrahedral Ge bonds. Finally, isolated defect configurations with a low density of 10-4nm-2 are identified by comparison of STM and DFT data, which corroborates the significantly improved order in the epitaxial films driven by the buildup of vacancy layers.

  5. Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    We report the growth of single-phase (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated ⟨001⟩ oriented SrTiO3 substrates by using pulsed laser deposition. Films grown at 600°C under low laser fluence exhibit a ⟨001⟩ textured columnar grained nanostructure, which coalesce with increasing deposition temperature, leading to a uniform fully epitaxial highly stoichiometric film at 750°C. However, films deposited at lower temperatures exhibit compositional fluctuations as verified by Rutherford backscattering spectroscopy. The epitaxial films of 400-600nm thickness have a room temperature relative permittivity of ˜750 and a loss tangent of ˜6% at 1kHz. The room temperature remnant polarization of the films is 4μC /cm2, while the saturation polarization is 7.1μC/cm2 at 24kV/cm and the coercive field is ˜7.3kV/cm. The results indicate that approximately 50% of the bulk permittivity and 20% of bulk spontaneous polarization can be retained in submicron epitaxial KNN-LT-LS thin film, respectively. The conductivity of the films remains to be a challenge as evidenced by the high loss tangent, leakage currents, and broad hysteresis loops.

  6. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    Science.gov (United States)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  7. Nucleation controlled surface oxidation epitaxy of thermally grown NiO on (0 0 1) Ni for coated conductor applications assisted by Mo or Mn microalloying

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A.; Huehne, R.; Tomov, R.; Holzapfel, B.; Glowacki, B.A.; Evetts, J.E

    2004-06-15

    High temperature oxidation of cube textured (1 0 0)Ni and (1 0 0)Ni-0.1wt%(Mo or Mn) was carried out in a wide temperature regime between 900 and 1400 deg. C in air. Special attention was paid to avoid pre-oxidation at lower temperatures, thus favouring nucleation controlled surface oxidation epitaxy (SOE) as opposed to SOE achieved by competitive grain growth. Consequently, cube textured epitaxial NiO layers, under 1 {mu}m in thickness, have been grown on pure Ni in a much wider working window than previously published. Furthermore, thin cube textured NiO layers have been grown on Ni-0.1%Mo tape in a still wider working window of {approx}200 deg. C between 1150 and 1350 deg. C. Preliminary results on Ni-0.1wt%Mn show a similar trend. An in-plane orientation of <5 deg. and out of plane orientation approaching 2 deg. was obtained. Single crystal like transparent NiO films were grown under optimal conditions.

  8. Enhanced photoluminescence of colloidal nanocrystals embedded in epitaxially grown semiconductor microstructures

    Science.gov (United States)

    Kampmeier, J.; Rashad, M.; Woggon, U.; Ruth, M.; Meier, C.; Schikora, D.; Lischka, K.; Pawlis, A.

    2012-04-01

    Colloidal nanocrystals (NCs) integrated in epitaxially grown semiconductors provide a flexible alternative to Stranski-Krastanow quantum dots for many different optoelectronic applications such as low-threshold lasers or single-photon emitters. We studied the optical properties of various CdSe core-only and core/shell NCs integrated in ZnSe epitaxial-chemical hybrid structures. Depending on the type and environment of the NCs, a blueshift of the photoluminescence energy and a strong reduction of the emission intensity are observed after overgrowth. We demonstrate that these effects are caused by a potential barrier at the interface between NCs and ZnSe. The application of an appropriate postgrowth laser annealing procedure removes this potential barrier and enhances charge transfer from the ZnSe into the NCs. Consequently, we observe a significant increase of the emission intensity and a redshift of the photoluminescence energy of the NCs after annealing. Three-dimensional quantum-mechanical model calculations of the band diagram of the NCs as synthesized in solution, after overgrowth with ZnSe and after laser annealing confirm the presence of this potential barrier and its reduction due to the annealing.

  9. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, M., E-mail: mousumi@cgcri.res.in; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-08-31

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu{sub 2}O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap.

  10. Structural properties of GaN grown by pendeo-epitaxy with In-doping

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Y.K.; Kim, C.S.; Jung, H.S.; Hong, C.H. [Chonbuk National Univ., Chonju (Korea). Semiconductor Physics Research Center; Chonbuk National Univ., Chonju (Korea). Dept. of Semiconductor Science and Technology; Kim, M.H.; Leem, S.J. [Dept. of OE Team, Device and Materials Lab., LG Electronics Inst. of Tech., Seoul (Korea); Cho, H.K.; Lee, J.Y. [Dept. of Materials Science and Engineering, Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2001-11-01

    We have studied the effect of isoelectronic In-doping on the structural properties of GaN grown by pendeo-epitaxy. From an analysis of cross-sectional transmission electron microscopy (TEM) images, the threading dislocation originating from the (0001) facet of GaN seed layer, thereafter propagating onto the top surface of regrown GaN layer, were reduced due to isoelectronic In-doping, which could enhance vacancy trapping. In addition, threading dislocations in the coalescence region were not observable. These results indicate that these dislocations are bent or terminated in the boundary of coalesced region. Also, the crystalline quality was improved from the results of high resolution X-ray diffraction and TEM measurements. (orig.)

  11. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  12. Reduction in the crystal defect density of Zn Se layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lopez L, M.; Perez C, A.; Luyo A, J.; Melendez L, M.; Tamura, M. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del instituto politecnico Nacional, A.P. 14-740, 07000 Mexico D.F. (Mexico); Mendez G, V.H.; Vidal, M.A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2000-07-01

    We present a study of the molecular beam epitaxial (MBE) grown of Zn Se layers on Ga-As and Si substrates. For the growth on GaAs substrates we investigated the effects of introducing buffer layers of Al{sub x}Ga{sub 1-x} As and In{sub x}Ga{sub 1-x} As with x = 0.01. Moreover, an analysis by secondary ion mass spectroscopy revealed that the use of AlGaAs buffer layers effectively suppress the Ga segregation onto the Zn Se layers surface. On the other hand, for the growth of Zn Se on Si substrates, we achieved a significant improvement in the crystal quality of Zn Se by irradiating the Si substrates with plasma of nitrogen prior to the growth. (Author)

  13. Temperature-induced increase in erbium electroluminescence of epitaxially grown Si:Er diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shmagin, V.B. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation)], E-mail: shm@ipm.sci-nnov.ru; Lyutov, A.V.; Remizov, D.Yu.; Kudryavtsev, K.E.; Stepikhova, M.V.; Krasilnik, Z.F. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation)

    2008-01-15

    Electroluminescence (EL) at 1.54 {mu}m of reverse biased Si:Er diodes grown by sublimation molecular-beam epitaxy has been investigated as a function of temperature in the range of 80-300 K. An erbium electroluminescence trend versus temperature is shown to be determined by the p-n junction breakdown mechanism: we observe the EL quenching in light emitting diodes (LEDs) exhibiting a tunnel p-n junction breakdown and EL increase with temperature in diodes exhibiting an avalanche one. LEDs exhibiting a mixed p-n junction breakdown show rather weak dependence of erbium EL on temperature. We connect the temperature-induced increase in erbium EL observed in the avalanche LEDs with increase in EL pumping efficiency due to improved p-n junction breakdown homogeneity at higher temperatures.

  14. Thermal stability of iron silicide nanowires epitaxially grown on Si(110) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Qiang, E-mail: zouzhq@shanghaitech.edu.cn [School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong, Shanghai, 201210 (China); Li, Xu; Liu, Xiao-Yong; Shi, Kai-Juan; Guo, Xin-Qiu [Analytical and Testing Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-03-31

    Highlights: • The α-FeSi{sub 2} nanowires epitaxially grown on Si(110) can be stable up to 750 °C. • The stable temperature of the nanowires is much lower than that of the bulk α-FeSi{sub 2} due to their small size and high relative surface area. • With increasing annealing temperature, the α-FeSi{sub 2} nanowires undergo an Ostwald ripening process and transform into large β-FeSi{sub 2} nanorods or three-dimensional nanocrystals. • The reduction in surface energy drives the transformation from metallic α-FeSi{sub 2} phase to semiconducting β-FeSi{sub 2} phase. - Abstract: Metallic α-FeSi{sub 2} nanowires (NWs) are epitaxially grown on Si(110) at 650 °C. Their evolution as a function of annealing temperature has been studied in situ by scanning tunneling microscopy. The NWs are stable up to 750 °C, which is much lower than that of the bulk α-FeSi{sub 2}. With further increasing the annealing temperature, some NWs begin to shrink in length and transform into wider and higher semiconducting β-FeSi{sub 2} nanorods or three-dimensional (3D) islands at 925 °C. The phase transformation is driven by the reduction in surface energy. On the other hand, some α-FeSi{sub 2} NWs begin to dissolve and become thinner until disappearing. The growth of the β-FeSi{sub 2} nanorods or 3D nanocrystals follows the Ostwald ripening mechanism, i.e., the large islands grow in size at the expense of the small ones. X-ray photoelectron spectroscopy study shows that the Fe 2p peaks of β-FeSi{sub 2} nanocrystals exhibit a negative shift of 0.2 eV with respect to the α-FeSi{sub 2} NWs.

  15. Upconversion photoluminescence of epitaxial Yb{sup 3+}/Er{sup 3+} codoped ferroelectric Pb(Zr,Ti)O{sub 3} films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: zhangy_acd@hotmail.com [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kämpfe, Thomas [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Bai, Gongxun [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Mietschke, Michael; Yuan, Feifei; Zopf, Michael [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Abel, Stefan [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Eng, Lukas M. [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Hühne, Ruben [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Fompeyrine, Jean [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Ding, Fei, E-mail: f.ding@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schmidt, Oliver G. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer strasse 70, 09107 Chemnitz (Germany)

    2016-05-31

    Thin films of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} (PZT:Yb/Er) have been epitaxially grown on the SrTiO{sub 3} buffered Si wafer by pulsed laser deposition. Strong upconversion photoluminescence was observed in the PZT:Yb/Er thin film. Using piezoresponse force microscopy, polar domains in the PZT:Yb/Er film can be reversibly switched with a phase change of 180°. Ferroelectric hysteresis loop shape with a well-saturated response was observed. The epitaxially grown lanthanide-doped PZT on silicon opens up a promising route to the integration of luminescent functional oxides on the silicon platform. - Highlights: • Epitaxial growth of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} films on SrTiO{sub 3} buffered silicon • Upconversion emissions were obtained from the lanthanide ion doped thin films. • Saturated ferroelectric hysteresis loops were observed. • Polar domains were switched by PFM with a phase change of 180°.

  16. Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm0.5Ca0.5MnO3 films

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Sun, J.R.; Zhao, J.L.

    2009-01-01

    We investigated the structure and magnetotransport properties of Sm0.5Ca0.5MnO3 (SCMO) films epitaxially grown on (011)-oriented SrTiO3 substrates, which exhibited clear charge/orbital ordering transition. A significant anisotropy of ~1000 in the colossal magnetoresistance (CMR) effect was observed...... in the films with a thickness between 50 and 80 nm, which was distinctly different from the basically isotropic CMR effect in bulk SCMO. The large anisotropy in the CMR can be ascribed to the intrinsic asymmetric strain in the film, which plays an important role in tuning the spin–orbit coupling in manganite...

  17. Epitaxial stabilization of ultra thin films of electron doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Middey, S., E-mail: smiddey@uark.edu; Kareev, M.; Meyers, D.; Liu, X.; Cao, Y.; Tripathi, S.; Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Yazici, D.; Maple, M. B. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Ryan, P. J.; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-05-19

    Ultra-thin films of the electron doped manganite La{sub 0.8}Ce{sub 0.2}MnO{sub 3} were grown in a layer-by-layer growth mode on SrTiO{sub 3} (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce{sup 4+} and Mn{sup 2+} ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-T{sub c} cuprates.

  18. Magneto-transport and thermoelectric properties of epitaxial FeSb{sub 2} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Anh Tuan; Rhim, S. H., E-mail: sonny@ulsan.ac.kr; Shin, Yooleemi; Nguyen, Van Quang; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2015-01-19

    We report magneto-transport and thermoelectric properties of FeSb{sub 2} thin film epitaxially grown on the MgO substrate using molecular beam epitaxy. The film exhibits compressive strain of 1.74% owing to large lattice mismatch, whose physical consequences are nontrivial. Magnetic phase has been changed from diamagnetic in bulk, as evidenced by anomalous Hall effect (AHE) and negative magneto-resistance (MR). The FeSb{sub 2} film is semiconducting without any metallic transition unlike the bulk counterpart. In particular, hysteresis in MR with distinct feature of AHE is evident with coercive field of 500 and 110 Oe for T = 20 and 50 K, respectively. Furthermore, from the Seebeck coefficients and temperature dependence of the resistivity, it is evident that the film is semiconducting with small band gap: 3.76 meV for T < 40 K and 13.48 meV for T > 40 K, respectively, where maximum thermoelectric power factor of 12 μV/cm·K at T = 50 K.

  19. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bazioti, C.; Kehagias, Th.; Pavlidou, E.; Komninou, Ph.; Karakostas, Th.; Dimitrakopulos, G. P., E-mail: gdim@auth.gr [Physics Department, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki (Greece); Papadomanolaki, E.; Iliopoulos, E. [Microelectronics Research Group (MRG), IESL, FORTH, P.O. Box 1385, 71110 Heraklion Crete, Greece and Physics Department, University of Crete, Heraklion Crete (Greece); Walther, T. [Department of Electronic & Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Smalc-Koziorowska, J. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland)

    2015-10-21

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults and threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.

  20. Substrate effects on the structure and optical properties of epitaxial PbTiO{sub 3} thin films prepared by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Foster, C.M.; Li, Z.; Bai, G.R.; You, H.; Guo, D.; Chang, H.L.M.

    1994-04-01

    Epitaxial PbTiO{sub 3} films were prepared by metal-organic chemical vapor deposition (MOCVD) on MgO(001), SrTiO{sub 3}(001) and LaAlO{sub 3}(001) surfaces. Four-circle X-ray diffraction and optical waveguiding experiments were performed to characterize the deposited films. The films on all three substrates were single-crystal; however, the domain structure of the films was strongly dependent on the substrate material. Films on MgO and LaAIO{sub 3} substrates showed a large amount of 90{degrees} domain structures, whereas, the degree of twinning was greatly suppressed for films on SrTiO{sub 3}. The refractive indices and optical birefringence of the films were measured as a function of wavelength using the film-prism coupling method. The authors found that for films on LaAIO{sub 3}(001), the ordinary index and for films on MgO(001) both the ordinary and extraordinary refractive indices were higher than those of bulk single-crystal PbTiO{sub 3}. For films grown on SrTiO{sub 3}(001), the ordinary refractive index was very close to that of single crystal PbTiO{sub 3}. They correlate the increased refractive index and the reduced birefringence to the degree of epitaxial strain and twinning in the samples, respectively.

  1. Linear and quadratic magneto-optical Kerr effect investigation of Co2Mn1.30Si0.84 epitaxially grown on MgO

    Science.gov (United States)

    Liu, Jihong; Qiao, Shuang; Wang, Shufang; Fu, Guangsheng

    2017-01-01

    We investigated the magneto-optical properties of a L21 ordered nonstoichiometric Co2Mn1.30Si0.84 film epitaxially grown on a MgO-buffered MgO (001) single-crystal substrate. Longitudinal magneto-optical Kerr effects (LMOKE) and rotating magneto-optical Kerr effect (ROT-MOKE) measurements suggest that the film exhibits a cubic magnetic anisotropy with the extracted cubic anisotropy constant of KC = 6.7 ×104 erg / cm3 . Orientation-dependent ROT-MOKE suggest that the quadratic magneto-optical Kerr effects (QMOKE) components also show fourfold symmetry with a modest amplitude of 3 mdeg, which is in accordance with complex Kerr angle expression for cubic symmetry systems. Our results suggest that ROT-MOKE is not only an efficient method to determine magnetic anisotropy parameters but also a good method to extract QMOKE components.

  2. Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3

    Directory of Open Access Journals (Sweden)

    Anja Herpers

    2014-10-01

    Full Text Available We investigated the impact of strain relaxation on the current transport of Pr0.48Ca0.52MnO3 (PCMO thin films grown epitaxially on SrTiO3 single crystals by pulsed laser deposition. The incorporation of misfit dislocations and the formation of cracks are identified as competing mechanisms for the relaxation of the biaxial tensile strain. Crack formation leads to a higher crystal quality within the domains but the cracks disable the macroscopic charge transport through the PCMO layer. Progressive strain relaxation by the incorporation of misfit dislocations, on the other hand, results in a significant decrease of the activation energy for polaron hopping with increasing film thickness.

  3. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    Science.gov (United States)

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-01

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn3.6Cu0.4N have been grown in the case of Cu-doping, and the pure Mn3N2 single crystal has been obtained without Cu-doping. The Mn3.6Cu0.4N exhibits ferrimagnetism, and the magnetization of Mn3.6Cu0.4N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn4N. The exchange bias (EB) effects emerge in the Mn3.6Cu0.4N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn3.6Cu0.4N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  4. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fengmei, E-mail: yufengmei401@126.com [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Automation College, Zhongkai University of Agriculture and Engineering, Guangzhou 510225 (China); Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei, E-mail: stslsw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  5. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhao, Chenglong [Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Van Quang, Nguyen; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Dung, Dang Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi (Viet Nam)

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  6. An insight into the epitaxial nanostructures of NiO and CeO{sub 2} thin film dielectrics for AlGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lo Nigro, Raffaella, E-mail: raffaella.lonigro@imm.cnr.it [Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche – (IMM-CNR), Strada VIII 5, 95121 Catania (Italy); Fisichella, Gabriele [Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche – (IMM-CNR), Strada VIII 5, 95121 Catania (Italy); Battiato, Sergio [Dipartimento di Scienze Chimiche, Università degli Studi di Catania, and INSTM udr Catania, viale Andrea Doria 6, 95125 Catania (Italy); Greco, Giuseppe; Fiorenza, Patrick; Roccaforte, Fabrizio [Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche – (IMM-CNR), Strada VIII 5, 95121 Catania (Italy); Malandrino, Graziella [Dipartimento di Scienze Chimiche, Università degli Studi di Catania, and INSTM udr Catania, viale Andrea Doria 6, 95125 Catania (Italy)

    2015-07-15

    Nickel oxide and cerium oxide thin films have been grown by metal-organic chemical vapor deposition on AlGaN/GaN heterostructures. Thin and epitaxial layers have been already obtained at low temperature (500 °C). Despite the two oxides possess the same crystal structure (face cubic centered compounds), different structural relationships have been observed with respect to the substrate. In particular, nickel oxide films were epitaxially grown along the <111> direction, while cerium oxide thin films showed <111> and <100> preferential orientations. These structural relationships have been justified by geometric and/or kinetics factors. In both cases, the epitaxial growth has been obtained at low temperature by the implementation of two second generation metal precursors, namely the nickel 2-thenoyl-trifluoroacetonate adduct with the tetramethylethylendiamine and cerium 1,1,1,5,5,5-hexafluoroacetlyacetonate adduct with bis(2-methoxyethyl) ether. Electrical characterization demonstrated that these films can be very promising as gate dielectrics for AlGaN/GaN transistors technology. In fact, the two oxide films showed really interesting electric properties such as dielectric constants (ε{sub NiO} = 11.7 and ε{sub CeO2} = 26) close to the bulk values. Finally, it is noteworthy that among the widely used physical deposition methods, in this paper a chemical based deposition technique has been addressed for the epitaxial growth at low temperature of oxide thin films to be implemented in microelectronics applications. - Highlights: • NiO and CeO{sub 2} films were grown as gate dielectric on GaN microelectronics devices. • <111>Epitaxial NiO growth was obtained at low temperature by MOCVD on GaN. • Oriented <111> and <100> CeO{sub 2} films were grown at low temperature by MOCVD on GaN. • Different orientations were explained by geometrical factors and theoretical models. • NiO and CeO{sub 2} electrical properties shown promising gate dielectric behaviours.

  7. Magnetic properties of Ni films deposited on MBE grown Bi2Se3 layers

    Directory of Open Access Journals (Sweden)

    Taehee Yoo

    2017-05-01

    Full Text Available We have investigated the magnetic properties of the Ni films deposited on a GaAs and a Bi2Se3 buffer grown by molecular beam epitaxy on a GaAs (001 substrate. The magnetization measurements at 4 K revealed that the coercivity of the Ni films decreases monotonically with increasing thickness up to 25 nm in both cases. However, the coercivity measured at 4 K was always larger in the Ni film deposited on the surface of Bi2Se3 than in the film deposited on the GaAs. Such enhancement of the coercivity decreases with increasing temperature and film thickness. This suggests that the Bi2Se3 surface alters the magnetic properties of the Ni film. The increase of the coercivity was more serious in an un-capped Ni/Bi2Se3 sample, which showed an exchange bias effect due to the oxidation of the top surface of the Ni film. These observations are important for the investigation of spin dependent phenomena in magnetic systems involving a ferromagnet/topological insulator interface.

  8. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  9. Process for forming epitaxial perovskite thin film layers using halide precursors

    Science.gov (United States)

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  10. Characterization of (211) and (100) CdTe Layers Grown on Si Substrates by Metalorganic Vapor-Phase Epitaxy

    Science.gov (United States)

    Yasuda, K.; Niraula, M.; Kojima, M.; Kitagawa, S.; Tsubota, S.; Yamaguchi, T.; Ozawa, J.; Agata, Y.

    2017-11-01

    Single-crystal (211) and (100) CdTe layers have been grown by metalorganic vapor-phase epitaxy using the same condition on (211) and (100) Si substrates, respectively. Prior to the growth, substrates of both orientations were pretreated using the same pretreatment procedure. The crystal qualities of the grown layers were evaluated by full-width at half-maximum values of double-crystal x-ray rocking curves, and photoluminescence spectra at 4.2 K. (211) CdTe layers showed better crystallinity than (100) layers. The crystal quality of the (100) CdTe layers was also compared with that of layers grown on an epitaxial (100) GaAs layer on Si substrate. The results suggest that (100) CdTe layers with improved crystal quality could be obtained by optimizing the procedure of the Si substrates.

  11. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001

    Directory of Open Access Journals (Sweden)

    Yakimova Rositza

    2011-01-01

    Full Text Available Abstract In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG layers grown on 4H-SiC (0001 8° off-axis, by annealing in inert gas ambient (Ar in a wide temperature range (Tgr from 1600 to 2000°C. For all the considered growth temperatures, few layers of graphene (FLG conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM. Tapping mode atomic force microscopy (t-AFM showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each Tgr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range.

  12. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001).

    Science.gov (United States)

    Vecchio, Carmelo; Sonde, Sushant; Bongiorno, Corrado; Rambach, Martin; Yakimova, Rositza; Raineri, Vito; Giannazzo, Filippo

    2011-03-29

    In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG) layers grown on 4H-SiC (0001) 8° off-axis, by annealing in inert gas ambient (Ar) in a wide temperature range (Tgr from 1600 to 2000°C). For all the considered growth temperatures, few layers of graphene (FLG) conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM). Tapping mode atomic force microscopy (t-AFM) showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each Tgr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range.

  13. Thin-film GaAs epitaxial life-off solar cells for space applications

    NARCIS (Netherlands)

    Schermer, J.J.; Mulder, P.; Bauhuis, G.J.; Larsen, P.K.; Oomen, G.; Bongers, E.

    2005-01-01

    In the present work the space compatibility of thin-film GaAs solar cells is studied. These cells are separated from their GaAs substrate by the epitaxial lift-off (ELO) technique and mounted behind a CMG cover glass which at the same time serves as a stable carrier for the thin film cells. In the

  14. Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon

    NARCIS (Netherlands)

    Nguyen, Duc Minh

    2010-01-01

    In this thesis, the integration of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) thin films into piezoelectric microelectromechanical systems (MEMS) based on silicon is studied. In these structures, all epitaxial oxide layers (thin film/electrode/buffer-layer(s)) were deposited by pulsed laser

  15. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); Ohshima, Takeshi [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24 eV), D3 (E{sub C}–0.60 eV), D4 (E{sub C}–0.69 eV), D5 (E{sub C}–0.96 eV), D7 (E{sub C}–1.19 eV), and D8, were observed. After 2 MeV electron irradiation at a fluence of 1 × 10{sup 14 }cm{sup −2}, three deep electron traps, labeled D1 (E{sub C}–0.12 eV), D5I (E{sub C}–0.89 eV), and D6 (E{sub C}–1.14 eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  16. Heterojunction Stripe Geometry Lead Salt Diode Lasers Grown By Molecular Beam Epitaxy

    Science.gov (United States)

    Partin, D. L.

    1985-04-01

    Abstract. Lead-rare earth-chalcogenide diode lasers have been grown by molecular beam epitaxy. Emission wavelengths shorter than 5 to 6 Am have been obtained from lead-europium-selenide-telluride (Pb1 -xEuxSeyTe1-y) double heterojunction diode lasers grown lattice-matched to PbTe substrates. Mesa diodes with -25 um wide stripes have been fabricated that have a wide range of single longitudinal mode emission at up to -1 mW/facet output power. These diodes have operated at up to 147 K cw, which to our knowledge is the highest cw operating temperature ever achieved with lead-chalcogenide diode lasers. The wavelength coverage of the PbTe system has so far been extended to 4.06 um cw. Longer wavelength coverage is obtained from double heterojunction diode lasers with Ma1-ySnyTe active regions lattice-matched to (Pb1-ySny)1-xYbxTe confinement layers. I n preliminary studies of diodes with x = 0.034, y = 0.14, the cw emission wavelength varied from 10.7 µm (at 10 K) to 7.1 µm (at 128 K).

  17. Ferromagnetic relaxation in LPE-grown Eu-Ga substituted yttrium iron garnet films

    Science.gov (United States)

    Rao, B. Uma Maheshwar; Mukhopadhyay, P.; Srivastava, C. M.

    1986-11-01

    The magnetization, geff and linewidth ΔH∥ and ΔH⊥ for liquid-phase-epitaxially grown thin films of EuxY3-xFe5-yGayO12 (0.2≤x≤1.2; y=1.0) have been investigated in the temperature range 85-420 K. ΔH versus temperature curves show maxima which occur at about the same temperature as that observed in bulk single crystals of EuIG, but the width of the curves is narrower in the LPE films. The temperature and composition dependence of geff and ΔH have been explained on the basis of the three sublattice model and a new relaxation mechanism based on anisotropic exchange.

  18. Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001).

    Science.gov (United States)

    Wiesner, M; Schulz, W-M; Kessler, C; Reischle, M; Metzner, S; Bertram, F; Christen, J; Roßbach, R; Jetter, M; Michler, P

    2012-08-24

    The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform. Mismatches in material properties, however, present a major challenge, leading to high defect densities in the epitaxial layers and adversely affecting radiative recombination processes. However, nanostructures, such as quantum dots, have been found to grow defect-free even in a suboptimal environment. Here we present the first realization of indium phosphide quantum dots on exactly oriented Si(001), grown by metal-organic vapour-phase epitaxy. We report electrically driven single-photon emission in the red spectral region, meeting the wavelength range of silicon avalanche photodiodes' highest detection efficiency.

  19. Oscillations in the exchange coupling for (111)-oriented Co/Cu magnetic multilayers grown by molecular-beam epitaxy

    Science.gov (United States)

    Howson, M. A.; Hickey, B. J.; Xu, J.; Greig, D.; Wiser, Nathan

    1993-07-01

    We present experimental evidence for oscillations in the strength of the exchange coupling between Co layers for (111)-oriented Co/Cu magnetic multilayers grown by molecular-beam epitaxy. The evidence comes from an analysis of the approach to saturation of the magnetization data for a series of epitaxial multilayers for which the Cu spacer thickness varies from 5 to 20 Å. We also find that, even for those samples having the maximum exchange coupling strength, only about 20% of the volume of the sample is antiferromagnetically coupled.

  20. Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films

    OpenAIRE

    Parkes, D. E.; Cavill, S. A.; Hindmarch, A. T.; Wadley, P.; McGee, F.; Staddon, C. R.; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.; Rushforth, A. W.

    2012-01-01

    We demonstrate reproducible voltage induced non-volatile switching of the magnetization in an epitaxial thin Fe81Ga19 film. Switching is induced at room temperature and without the aid of an external magnetic field. This is achieved by the modification of the magnetic anisotropy by mechanical strain induced by a piezoelectric transducer attached to the layer. Epitaxial Fe81Ga19 is shown to possess the favourable combination of cubic magnetic anisotropy and large magnetostriction necessary to ...

  1. Anomalous misfit strain relaxation in ultrathin YBa2Cu3O7 - delta epitaxial films

    Science.gov (United States)

    Kamigaki, K.; Terauchi, H.; Terashima, T.; Bando, Y.; Iijima, K.; Yamamoto, K.; Hirata, K.; Hayashi, K.; Nakagawa, I.; Tomii, Y.

    1991-03-01

    Ultrathin YBa2Cu3O7-δ epitaxial films were successfully grown in situ on (001) SrTiO3 and MgO substrates by means of ozone-incorporating activated reactive evaporation. The x-ray-diffraction study was carefully examined to determine the structural properties of the grown films. Excellent crystallinity with no interfacial disorders was revealed by the appearance of the Laue oscillations. It was found that in a well lattice-matched YBa2Cu3O7-δ/SrTiO3 system, the crystallinity was deteriorated due to defect introduction at the critical layer thickness hc ( ˜ 130 Å). Interestingly, also in a poorly lattice-matched YBa2Cu3O7-δ/MgO system, excellent crystallinity was revealed even at above hc ( < 24 Å). This implies that an anomalous misfit relaxation process exists in the YBa2Cu3O7-δ/MgO system. In such a system, no crystal imperfection of the MgO substrate caused by defect introduction was elucidated by the grazing incidence x-ray scattering, which indicated that the MgO substrate did not contribute to the anomalous misfit relaxation. The anomalous growth manner was also found in YBa2Cu3O7-δ/MgO according to surface morphology investigations. Below 40 Å( ≳ hc), island nucleation growth was found. Above 40 Å, it was observed that an atomically smooth surface was obtained and the crystallinity was simultaneously improved. It is suggested that YBa2Cu3O7-δ possesses an anomalous misfit relaxation mechanism, and that especially in the growth on MgO, it couples with the characteristic growth behavior at the initial stage.

  2. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  3. Flat epitaxial ferromagnetic CoFe{sub 2}O{sub 4} films on buffered Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, R. [Institut de Ciencia de Materials de Barcelona-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Coux, P. de [Institut de Ciencia de Materials de Barcelona-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Warot-Fonrose, B. [CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Skumryev, V. [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain, and Dep. de Fisica, Univ. Autonoma de Barcelona, 08193 Bellaterra (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Sanchez, F., E-mail: fsanchez@icmab.es [Institut de Ciencia de Materials de Barcelona-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona (Spain)

    2011-06-30

    Ferromagnetic films of spinel CoFe{sub 2}O{sub 4} have been grown epitaxially on Si(001) using CeO{sub 2}/YSZ double buffer layers. The heterostructures were built in a single process by pulsed laser deposition with real-time control by reflection high-energy electron diffraction. YSZ and CeO{sub 2} grow cube-on-cube on Si(001) and CoFe{sub 2}O{sub 4} grows with (111) out-of-plane orientation, presenting four in-plane crystal domains. The interface with the buffer layers is smooth and the CoFe{sub 2}O{sub 4} surface is atomically flat, with roughness below 0.3 nm. The films are ferromagnetic with saturation magnetization around 300 emu/cm{sup 3}. The properties signal that CoFe{sub 2}O{sub 4} is a good candidate for monolithic devices based on ferromagnetic insulating spinels.

  4. Epitaxial growth of wide-band-gap ZnGa2O4 films by mist chemical vapor deposition

    Science.gov (United States)

    Oshima, Takayoshi; Niwa, Mifuyu; Mukai, Akira; Nagami, Tomohito; Suyama, Toshihisa; Ohtomo, Akira

    2014-01-01

    ZnGa2O4 films were grown on (100) MgAl2O4 substrates by mist chemical vapor deposition. A growth window for obtaining single spinel phase was revealed by systematic variations of precursor Zn/Ga ratio and growth temperature, where the cation stoichiometry was maintained through sublimation of excess Zn species before crystalized into ZnO. The epitaxial relationship to the substrate was identified to be cube on cube with no rotation domain. The optical properties of the fully relaxed film were characterized by using cathodoluminescence (CL) and absorption spectroscopies. A large Stokes shift was found between the CL peak energy (3.4 eV) and fundamental absorption edge (4.6 eV), reflecting typical property of Ga-based wide-band-gap oxide semiconductors.

  5. Epitaxial growth of Fe-based superconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Sven; Haenisch, Jens; Holzapfel, Bernhard [Institut fuer Technische Physik, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    The Fe-based superconductors (FBS), discovered in 2008, are not only interesting for possible applications due to their large upper critical fields and low anisotropies, but also for basic understanding of unconventional superconductivity. With their properties, they constitute a link between the classic low-T{sub c} superconductors (low anisotropies, low thermal fluctuations, s-wave type symmetry) and the oxocuprates (T{sub c} up to 55 K, large H{sub c2}, unconventional pairing). Their multi-band nature reminds of MgB{sub 2}. We prepare thin films of FBS in the so called 122 family, namely Co- and P-doped BaFe{sub 2}As{sub 2} to investigate application relevant properties, such as critical current density J{sub c}, by pulsed laser deposition using a frequency-tripled Nd:YAG laser (λ = 355 nm). Microstructure and chemical composition will be investigated by XRD, AFM and SEM, and electrical transport using a 14 T PPMS. The results are compared to literature data on films grown at different wavelengths.

  6. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    Science.gov (United States)

    Wang, Qi [Littleton, CO; Stradins, Paul [Golden, CO; Teplin, Charles [Boulder, CO; Branz, Howard M [Boulder, CO

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  7. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films.

    Science.gov (United States)

    Jo, J Y; Yang, S M; Kim, T H; Lee, H N; Yoon, J-G; Park, S; Jo, Y; Jung, M H; Noh, T W

    2009-01-30

    We investigated the ferroelectric domain-wall propagation in epitaxial Pb(Zr,Ti)O3 thin film over a wide temperature range (3-300 K). We measured the domain-wall velocity under various electric fields and found that the velocity data is strongly nonlinear with electric fields, especially at low temperature. We found that, as one of surface growth issues, our domain-wall velocity data from ferroelectric epitaxial film could be classified into the creep, depinning, and flow regimes due to competition between disorder and elasticity. The measured values of velocity and dynamical exponents indicate that the ferroelectric domain walls in the epitaxial films are fractal and pinned by a disorder-induced local field.

  8. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  9. Erbium doping in InGaAsP grown by liquid-phase epitaxy

    Science.gov (United States)

    Wu, Meng-Chyi; Chen, En-Hsing; Chin, Tsung-Shune; Tu, Yuan-Kuang

    1992-01-01

    The Er-doped InGaAsP epitaxial layers lattice-matched to InP with wavelengths of 1.29 and 1.55 μm have been grown by liquid-phase epitaxy. When the Er amount doped in the InGaAsP growth solution is above 0.32 wt %, it will have a fairly rough surface morphology with many extensive deposits of erbium hydride and oxide. The lattice mismatch normal to the wafer surface between InGaAsP layer and InP substrate decreases linearly with the Er weight percent in the grown solution. From the wavelength-dispersive-x-ray-spectrometer analysis, we find the solid composition of the In1-xGaxAsyP1-y layer has been changed and may be due to the formation of microparticles of Er compounds, such as ErAs or ErP. This inference is also supported by photoluminescence (PL) measurements which show that the PL peak wavelength decreases with increasing Er wt %. The full width at half maximum of PL peak associated with the near band-gap transition has been effectively reduced and exhibits the narrowest value of 9.1 and 6.3 meV for the 1.29- and 1.55-μm-wavelength InGaAsP layers in the presence of Er. In addition, the carrier concentration of Er-doped InGaAsP layers are around 3-30×1014 cm-3 and is one to two orders of magnitude lower than those of undoped layers. These results can be attributed to the donor gettering by the rare-earth element of Er. The Er-related luminescence lines locate between 1.503 and 1.528 μm which differ from those previously reported at ˜1.54 μm and can only be observed for the 1.29-μm but not for the 1.55-μm-wavelength InGaAsP layers.

  10. Electrical transport properties and laser-induced voltage effect in La0.8Ca0.2MnO3 epitaxial thin films

    Science.gov (United States)

    Theingi, Mya; Ma, Ji; Zhang, Hui; Cui, Qi; Yi, Jianhong; Chen, Qingming

    2014-03-01

    La0.8Ca0.2MnO3 (LCMO) thin films about 200 nm thickness were grown on untilted and tilted (5°, 10° and 15°) LaAlO3 (100) single crystal substrates by pulsed laser deposition technique. Electrical properties of the epitaxial thin films were studied by conventional four-probe technique and the anisotropic thermoelectric properties of the films grown on the tilted substrates have been investigated by laser-induced voltage (LIV) measurements. X-ray diffraction analysis and atomic force microscopy results show that the prepared LCMO thin films have a single phase and high crystalline quality. The remarkably large temperature coefficient of resistance (TCR) values (above 11 %/K) are observed in the all films. TCR value reaches 18 %/K on the film grown on 10° tilted substrate. The intensity of LIV signals monotonously increases with the tilting angles, and the largest signal is 148 mV with the fast time response 229 ns for the film grown on 15° tilted substrate.

  11. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.

    2013-01-08

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation from metallic Cr2N to semiconducting CrN appears in both polycrystalline and epitaxial CrNx films. At fN2= 100 sccm, the low-temperature conductance mechanism is dominated by both Mott and Efros-Shklovskii variable-range hopping in either polycrystalline or epitaxial CrN films. In all of the polycrystalline and epitaxial films, only the polycrystalline CrNx films fabricated at fN2 = 30 and 50 sccm exhibit a discontinuity in ρ(T) curves at 260-280 K, indicating that both the N-vacancy concentration and grain boundaries play important roles in the metal-insulator transition. © 2013 American Institute of Physics.

  12. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO{sub 2}-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Kiliha [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Chiyoda, Tokyo 102-8554 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-04-07

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO{sub 1.5}-0.93HfO{sub 2} films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal–orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO{sub 2}-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O{sub 3} and BiFeO{sub 3}.

  13. Growth and structural characterization of III-V nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dheeraj, D.L.

    2010-10-15

    Heterostructured semiconductor nanowires (NWs) have attracted considerable attention in recent years because of their potential in future nano-electronic and nano-photonic device applications. NWs are usually grown by vapor-liquid-solid (VLS) growth mechanism using techniques such as metal-organic vapor phase epitaxy, chemical beam epitaxy and molecular beam epitaxy (MBE). Of all the available techniques, MBE is known to be the technique which yields highest purity materials. In this study, the growth of GaAs NWs, GaAsSb NWs, as well as GaAs/GaAsSb axial and GaAs/AlGaAs radial heterostructured NWs on GaAs(111)B substrates by MBE is demonstrated. The structural and optical properties of the NWs grown are characterized by electron microscopy techniques such as scanning and transmission electron microscopy, and micro-photoluminescence, respectively. Firstly, the optimum growth conditions to obtain rod shaped GaAs NWs on GaAs(111)B substrates by MBE is determined. It has been found that in-addition to the V/III ratio and substrate temperature, buffer growth conditions also play an important role on the orientation of the NWs. The effect of V/III ratio, substrate temperature, and the arsenic species (As{sub 2}/As{sub 4}) on the morphology of GaAs NWs has been determined. Transmission electron microscopy (TEM) characterization of NWs revealed that GaAs in NW form exhibit wurtzite (WZ) crystal phase in contrast to zinc blende (ZB) phase adapted in its bulk form. Since WZ crystal phase is a metastable phase of GaAs, the WZ GaAs NWs often exhibit stacking faults. The stacking faults are known to be a detrimental problem, if not properly controlled. To gain more insight on the growth kinetics of GaAs NWs grown by MBE, several samples such as GaAs NWs grown for different time durations, and GaAs NWs with three GaAsSb inserts, where GaAsSb inserts acts as markers, have been grown. Interestingly, the growth rates of the GaAs segments and GaAsSb inserts were observed to vary

  14. Hybrid liquid phase epitaxy processes for YBa{sub 2}Cu{sub 3}O{sub 7} film growth

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Tomov, R I [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huehne, R [Institut fuer Festkoerper-und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); MacManus-Driscoll, J L [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Glowacki, B A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2004-10-01

    A number of liquid phase epitaxy (LPE) related growth methods have been investigated. These hybrid-LPE processes enable high rate 'liquid assisted' growth of epitaxial YBa{sub 2}Cu{sub 3}O{sub 7} films without the many disadvantages of classical LPE. Growth occurs by diffusive transport of Y through a thin liquid flux layer. This layer may be pre-deposited onto the substrate by various means including vacuum and non-vacuum techniques, or deposited at the growth temperature. The composition of the liquid layer is maintained during film growth by feeding YBa{sub 2}Cu{sub 3}O{sub 7}, or the separate components, either from the vapour or by a powder route. Growth rates up to 10 nm s{sup -1} have been demonstrated. Deposition of c-axis oriented epitaxial YBa{sub 2}Cu{sub 3}O{sub 7} is reported on both seeded and non-seeded substrates; the process is tolerant of a high substrate mismatch. Films 1-2 {mu}m thick with T{sub c} {approx} 90K and a critical current density J{sub c}> 2 MA cm{sup -2} have been grown on a range of single crystal substrates as well as on buffered textured metallic tapes. The mechanism of nucleation and growth from a thin liquid layer is described within the general theoretical framework of crystal growth. Particular features of the growth are the short time constant for equilibration of transients in the deposition conditions, the wide range of relative supersaturation spanned by the process, and dominance of interface kinetic effects compared to volume diffusion in the liquid flux.

  15. Cubic GaN epilayers grown by molecular beam epitaxy on thin β-SiC/Si (001) substrates

    Science.gov (United States)

    As, D. J.; Frey, T.; Schikora, D.; Lischka, K.; Cimalla, V.; Pezoldt, J.; Goldhahn, R.; Kaiser, S.; Gebhardt, W.

    2000-03-01

    The molecular beam epitaxy of cubic GaN on Si(001) substrates, which were covered by a 4 nm thick β-SiC layer, is reported. The structural and optical properties of the cubic GaN epilayers were studied by transmission electron microscopy, high-resolution x-ray diffraction, and low-temperature photoluminescence measurements. We find clear evidence for the growth of cubic GaN layers almost free of hexagonal inclusions. The density of extended defects and the near band edge photoluminescence of the cubic GaN layers grown at substrate temperatures of 835 °C is comparable to that of high quality cubic GaN epilayers grown by molecular beam epitaxy on GaAs (001) substrates.

  16. Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si(111) for subsequent III-V nanowire growth

    Energy Technology Data Exchange (ETDEWEB)

    Paszuk, A.; Steidl, M.; Zhao, W.; Dobrich, A.; Kleinschmidt, P. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Brückner, S.; Supplie, O.; Hannappel, T. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institute for Solar Fuels, 14109 Berlin (Germany); Prost, W. [Center for Semiconductor Technology and Optoelectronics (ZHO), University of Duisburg-Essen, 47057 Duisburg (Germany)

    2015-06-08

    Nanowire growth on heteroepitaxial GaP/Si(111) by metalorganic vapor phase epitaxy requires the [-1-1-1] face, i.e., GaP(111) material with B-type polarity. Low-energy electron diffraction (LEED) allows us to identify the polarity of GaP grown on Si(111), since (2×2) and (1×1) surface reconstructions are associated with GaP(111)A and GaP(111)B, respectively. In dependence on the pre-growth treatment of the Si(111) substrates, we were able to control the polarity of the GaP buffers. GaP films grown on the H-terminated Si(111) surface exhibited A-type polarity, while GaP grown on Si surfaces terminated with arsenic exhibited a (1×1) LEED pattern, indicating B-type polarity. We obtained vertical GaAs nanowire growth on heteroepitaxial GaP with (1×1) surface reconstruction only, in agreement with growth experiments on homoepitaxially grown GaP(111)

  17. Tuning of thermally induced first-order semiconductor-to-metal transition in pulsed laser deposited VO2 epitaxial thin films

    Science.gov (United States)

    Behera, Makhes K.; Pradhan, Dhiren K.; Pradhan, Sangram K.; Pradhan, Aswini K.

    2017-12-01

    Vanadium oxide (VO2) thin films have drawn significant research and development interest in recent years because of their intriguing physical origin and wide range of functionalities useful for many potential applications, including infrared imaging, smart windows, and energy and information technologies. However, the growth of highly epitaxial films of VO2, with a sharp and distinct controllable transition, has remained a challenge. Here, we report the structural and electronic properties of high quality and reproducible epitaxial thin films of VO2, grown on c-axis oriented sapphire substrates using pulsed laser deposition at different deposition pressures and temperatures, followed by various annealing schedules. Our results demonstrate that the annealing of epitaxial VO2 films significantly enhances the Semiconductor to Metal Transition (SMT) to that of bulk VO2 transition. The effect of oxygen partial pressure during the growth of VO2 films creates a significant modulation of the SMT from around room temperature to as high as the theoretical value of 68 °C. We obtained a bulk order transition ≥104 while reducing the transition temperature close to 60 °C, which is comparatively less than the theoretical value of 68 °C, demonstrating a clear and drastic improvement in the SMT switching characteristics. The results reported here will open the door to fundamental studies of VO2, along with tuning of the transition temperatures for potential applications for multifunctional devices.

  18. InGaAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Nikhil; Simon, John; Schulte, Kevin L.; Dippo, Patricia; Young, Michelle; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Hydride vapor phase epitaxy (HVPE) has recently reemerged as a low-cost, high-throughput alternative to metalorganic chemical vapor deposition (MOCVD) for the growth of high-efficiency III-V solar cells. Quaternary InGaAsP solar cells in the bandgap range of ~1.7-1.8 eV are promising top-cell candidates for integration in Ill-V/Si tandem cells with projected one-sun efficiencies exceeding 30%. In this work, we report on the development of lattice-matched InGaAsP solar cells grown on GaAs substrates via HVPE at very high growth rates of ~0.7 um/min. We demonstrate prototype 1.7 eV InGaAsP solar cells with an open-circuit voltage of 1.11 V. The short-circuit current is limited by the lack of a window layer in these early stage devices. The photo response of 1.7 InGaAsP solar cell with ~1.1 um thick base layer is found to be nearly insensitive to variation in p-type base doping concentration in the range from Na - 4x1016 to - 1x1017 cm-3, indicating an effective carrier collection length on the order of - 1.1 um or higher in our devices. These initial InGaAsP cell results are encouraging and highlight the viability of HVPE to produce mixed arsenide-phosphide solar cells grown lattice-matched on GaAs.

  19. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  20. Successful Fabrication of GaN Epitaxial Layer on Non-Catalytically grown Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Won [Konkuk University, Chungju (Korea, Republic of); Choi, Suk-Ho [Kyung Hee University, Yongin (Korea, Republic of)

    2016-07-15

    Sapphire is widely used as a substrate for the growth of GaN epitaxial layer (EPI), but has several drawbacks such as high cost, large lattice mismatch, non-flexibility, and so on. Here, we first employ graphene directly grown on Si or sapphire substrate as a platform for the growth and lift-off of GaN-light-emitting diode (LED) EPI, useful for not only recycling the substrate but also transferring the GaN-LED EPI to other flexible substrates. Sequential standard processes of nucleation/recrystallization of GaN seeds and deposition of undoped (u-) GaN/AlN buffer layer were done on graphene/substrate before the growth of GaN-LED EPI, accompanied by taping and lift-off of u-GaN/AlN or GaN-LED EPI. This approach can overcome the limitations by the catalytic growth and transfer of graphene, and make the oxygen-plasma treatment of graphene for the growth of GaN EPI unnecessary.

  1. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire

    Science.gov (United States)

    Tsykaniuk, Bogdan I.; Nikolenko, Andrii S.; Strelchuk, Viktor V.; Naseka, Viktor M.; Mazur, Yuriy I.; Ware, Morgan E.; DeCuir, Eric A.; Sadovyi, Bogdan; Weyher, Jan L.; Jakiela, Rafal; Salamo, Gregory J.; Belyaev, Alexander E.

    2017-06-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n+/n0/n+-GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  2. Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C., E-mail: saicheonglee86@yahoo.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ng, S.S.; Hassan, H. Abu; Hassan, Z.; Zainal, N. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Novikov, S.V.; Foxon, C.T.; Kent, A.J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-07-01

    Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. - Highlights: • First time experimental studies of IR optical phonons in bulk like, cubic GaN layer. • Detection of extra phonon modes of cubic GaN by polarized IR reflectance technique. • Revelation of IR multiphonon modes of cubic GaN by first derivative numerical method. • Observation of multiphonon modes requires very high angle of incidence. • Resonance splitting effect induced by third phonon mode is a qualitative indicator.

  3. Thermal stability of iron silicide nanowires epitaxially grown on Si(110) substrates

    Science.gov (United States)

    Zou, Zhi-Qiang; Li, Xu; Liu, Xiao-Yong; Shi, Kai-Juan; Guo, Xin-Qiu

    2017-03-01

    Metallic α-FeSi2 nanowires (NWs) are epitaxially grown on Si(110) at 650 °C. Their evolution as a function of annealing temperature has been studied in situ by scanning tunneling microscopy. The NWs are stable up to 750 °C, which is much lower than that of the bulk α-FeSi2. With further increasing the annealing temperature, some NWs begin to shrink in length and transform into wider and higher semiconducting β-FeSi2 nanorods or three-dimensional (3D) islands at 925 °C. The phase transformation is driven by the reduction in surface energy. On the other hand, some α-FeSi2 NWs begin to dissolve and become thinner until disappearing. The growth of the β-FeSi2 nanorods or 3D nanocrystals follows the Ostwald ripening mechanism, i.e., the large islands grow in size at the expense of the small ones. X-ray photoelectron spectroscopy study shows that the Fe 2p peaks of β-FeSi2 nanocrystals exhibit a negative shift of 0.2 eV with respect to the α-FeSi2 NWs.

  4. High-Resolution Structural and Electronic Properties of Epitaxial Topological Crystalline Insulator Films

    Science.gov (United States)

    Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric

    Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.

  5. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  6. Influence of Substrate-Film Reactions on YBCO Grown by Fluorine-Free MOD Route

    DEFF Research Database (Denmark)

    Zhao, Yue; Tang, Xiao; Wu, W.

    2017-01-01

    Recently, fluorine-free metal organic deposition routes (FF-MOD) for growth of YBCO superconducting films have attracted increased attentions. In this paper, a comparison study was performed on the YBCO-Ag superconducting thin films deposited on two types substrates, LaAlO3 and CSD-Ce0.9La0.1O2-y...... (CLO)/YSZ, respectively. Although conventional TFA-MOD derived YBCO films exhibit high performance on both substrates, the results vary when using the FF-MOD precursor. SEM and XRD results reveal that c-axis and a/b-axis orientations coexist in the YBCO-Ag films grown on the CSD-CLO/YSZ substrate......-Ag films from the FF-MOD solution. Because of the different chemical reaction path compared to conventional TFA-MOD routes, it seems that the polycrystalline BaCeO3 formation takes place prior to the YBCO-Ag epitaxial growth associated with the melting process, which results in structural deterioration...

  7. PLD Grown Polycrystalline Tungsten Disulphide (WS2 Films

    Directory of Open Access Journals (Sweden)

    Salman Alfihed

    2013-01-01

    Full Text Available Polycrystalline WS2 films were grown by pulsed laser deposition (PLD system at relatively low temperature. The main objective of this study is to optimize the growth conditions for polycrystalline WS2 films at relatively low temperature to use them for photovoltaics (PVs. Different growth conditions and substrates are used and examined systematically. It is found out that films grown on strontium titanate SrTiO3 (STO substrate have the best structural properties when compared to other substrates examined in this work. X-ray diffraction and optical characterizations of these films reveal crystallographic growth and very promising optical properties for PVs. Furthermore, it was observed that higher growth temperature (>300°C has an unfavorable effect on the layers by creating some tungsten metallic droplets.

  8. Analysis for positions of Sn atoms in epitaxial Ge{sub 1−x}Sn{sub x} film in low temperature depositions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji, E-mail: ejkamiyama@aol.com [Dept. of Comm. Eng., Okayama Pref. Univ., 111 Kuboki, Soja, Okayama 719-1197 (Japan); Sueoka, Koji [Dept. of Comm. Eng., Okayama Pref. Univ., 111 Kuboki, Soja, Okayama 719-1197 (Japan); Nakatsuka, Osamu; Taoka, Noriyuki; Zaima, Shigeaki [Dept. of Cryst. Mat. Sci., Grad. School of Eng., Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Izunome, Koji; Kashima, Kazuhiko [Technology, GlobalWafers Japan Corp. Ltd, 6-861-5 Higashiko, Seiro, Niigata 957-0197 (Japan)

    2014-04-30

    We investigated the position of Sn atoms in Ge{sub 1−x}Sn{sub x} film grown at a low temperature by using the Extended X-ray Absorption Fine Structure (EXAFS) method. Vacancies had been expected to be introduced near the growing surface vicinity of a Sn atom and located at a split-vacancy position due to the binding nature between a Sn atom and a vacancy, which was predicted by the calculation for a bulk model in the literature. However, the EXAFS showed that almost all Sn atoms were located at the substitutional position and did not form a split-vacancy. - Highlights: • Extended X-ray Absorption Fine Structure (EXAFS) study of epitaxial Ge{sub 1−x}Snx film • EXAFS shows that almost all Sn atoms are located at substitutional positions. • The amount of vacancies introduced in low-temperature epitaxial growth is small.

  9. Superparamagnetism and different growth mechanisms of Co/Au(111) and Co/Cu(111) multilayers grown by molecular-beam epitaxy

    Science.gov (United States)

    Xu, J.; Howson, M. A.; Hickey, B. J.; Greig, D.; Kolb, E.; Veillet, P.; Wiser, N.

    1997-01-01

    The magnetization of Co/Au(111) and Co/Cu(111) multilayers grown by molecular-beam epitaxy has been measured. For ultrathin Co layers, superparamagnetic behavior is observed, very similar to that reported previously for granular samples. For somewhat thicker Co layers, hysteresis effects occur, indicating the absence of superparamagnetism. The clear transition seen between these two modes of behavior is attributed to the growth of the Co particles from very small superparamagnetic clusters to larger islands and ultimately to a film, as the thickness of the Co layers is increased. Different magnetic properties are found for the Co/Au(111) and the Co/Cu(111) systems during the transition from granular to continuous layers. An investigation by reflection high-energy electron diffraction suggests that this difference is mainly due to the different growth modes of Co on Au(111) and on Cu(111).

  10. Magnetic and magneto-transport studies of MBE grown Cr2Te3 thin films with perpendicular magnetic anisotropy

    Science.gov (United States)

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay

    2015-03-01

    Cr2Te3 is one of the very intriguing compounds in chromium chalcogenides family because of its unusual magnetic and magneto-transport properties. Here we have presented studies of molecular beam epitaxy (MBE) grown (001)-oriented Cr2Te3 thin films on Al2O3(0001) and Si(111)-(7 ×7) surfaces. Reflection high energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry (VSM) and other physical property measurements are used to investigate the structure, morphology, magnetic and magneto-transport properties of as-grown films. Sharp streaks in RHEED patterns imply smooth film growth on both the substrates. STM studies show hexagonal arrangements of surface atoms and measured lattice parameters agree well with the bulk crystal structures. Magnetic studies confirm the film to be ferromagnetic having a Curie temperature of about 180 K and a spin glass-like behavior is observed below 35 K. The grown films are metallic and show perpendicular magnetic anisotropy (PMA). Magneto-transport measurements reveal that the film possesses a magnetic easy axis perpendicular to the surface and this may be very useful for spintronics applications. This work is funded by NRI-SWAN.

  11. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra

    2017-08-24

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  12. Correlation of Crystalline and Structural Properties of C60 Thin Films Grown at Various Temperature with Charge Carrier Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Singh,T.; Sarciftci, N.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H.

    2007-01-01

    Transistors fabricated from C{sub 60} films grown by hot wall epitaxy at higher substrate temperature, showed an order of magnitude increased charge carrier mobility up to 6 cm{sup 2}/V s. In this letter, the authors present an extensive study of morphology and crystallinity of the fullerene films using atomic force microscopy and grazing-incidence x-ray diffraction. A clear correlation of crystalline quality of the C{sub 60} film and charge carrier mobility was found. A higher substrate temperature leads to a single crystal-like faceted fullerene crystals. The high crystalline quality solely brings a drastic improvement in the charge carrier mobility. A gate voltage independent mobility is also observed in these devices which can be attributed to the highly conjugated nature of the C{sub 60} thin film.

  13. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Zhonghua; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The growth mechanism has been revealed for the ZnO buffers with different thickness. • The surface morphology has been determined as the key factor to affect the epitaxial growth. • The relation between the hexagonal pits from buffers and epi-films has been established. • The hexagonal pits formed in the epi-films have been attributed to the V-shaped defects inheriting from the dislocations in the buffers. • The structural and electrical properties of the V-defects have been presented and analyzed. - Abstract: In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  14. Dislocation propagation in GaN films formed by epitaxial lateral overgrowth

    Science.gov (United States)

    Sakai; Sunakawa; Kimura; Usui

    2000-01-01

    We have investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) the relationship between surface morphological evolution and dislocation propagation in GaN films formed by epitaxial lateral overgrowth (ELO) in hydride vapour phase epitaxy. The SEM observations revealed that step and terrace structures were formed on (0001) surfaces of the films both in the earlier and the later stages of growth, suggesting the occurrence of step-flow growth during ELO. Bending dislocations with laterally propagated segments were frequently observed in the ELO films and their morphology led to a reduction in threading dislocation density in the film surface regions. Systematic TEM observations were performed to reveal the detailed structure of the bending dislocations. Comparison between the SEM and the TEM results showed that the lateral propagation of the dislocation was closely related to the appearance of the [1101) facets. A mechanism for dislocation propagation is discussed that explains the observed dislocation structure and surface step morphology.

  15. Carrier dynamics and gain spectra at room-temperature in epitaxial ZNO thin films

    DEFF Research Database (Denmark)

    Yu, Ping; Hvam, Jørn Märcher; Wong, K. S.

    1999-01-01

    Carrier dynamics of epitaxial ZnO thin film was investigated using a frequency up-conversion tehcnique. At lower carrier densities, the decay time of free exciton recombination was measured to be 24 ps. Rapid decay times of a few picoseconds were observed at higher carrier densities, which show a...

  16. Electric field effect on epitaxial YBa2Cu3O7-x thin films

    NARCIS (Netherlands)

    Joosse, K.; Joosse, K.; Boguslavskij, Yu.M.; Boguslavskij, Y.M.; Gerritsma, G.J.; Rogalla, Horst

    1994-01-01

    By applying a strong electric field perpendicular to the surface of an ultrathin, highly uniform epitaxial YBa2Cu3O7¿x film, the critical current was depressed and enhanced over 20% at temperatures close to Tc, and 5% at lower temperatures. Careful analysis of the electric field dependent I-V

  17. Molecular beam epitaxy growth of InSb1−xBix thin films

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1−xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology...

  18. Band offsets of La2O3 on (0001) GaN grown by reactive molecular-beam epitaxy

    Science.gov (United States)

    Ihlefeld, Jon F.; Brumbach, Michael; Atcitty, Stanley

    2013-04-01

    La2O3 films were prepared on (0001)-oriented GaN substrates via reactive molecular-beam epitaxy. Film orientation and phase were assessed using reflection high-energy electron and X-ray diffraction. Films were observed to grow as predominantly hexagonal La2O3 for thicknesses less than 10 nm while film thickness greater than 10 nm favored mixed cubic and hexagonal symmetries. Band offsets were characterized by X-ray photoelectron spectroscopy on hexagonally symmetric films and valence band offsets of 0.63 ± 0.04 eV at the La2O3/GaN interface were measured. A conduction band offset of approximately 1.5 eV could be inferred from the measured valence band offset.

  19. Thermally grown thin nitride films as a gate dielectric

    CERN Document Server

    Shin, H C; Hwang, T K; Lee, K R

    1998-01-01

    High-quality very thin films ( <=6 nm) of silicon nitride were thermally grown in ammonia atmosphere with an IR (Infrared) gold image furnace. As-grown nitride film was analyzed using AES(Auger Emission Spectroscopy). Using MIS (Metal-Insulator-Semiconductor) devices, the growth rate was calculated using CV (Capacitance-Voltage) measurements and various electrical characteristics were obtained using CV, IV (Current-Voltage), trapping, time-dependent breakdown, high-field stress, constant current injection stress and dielectric breakdown techniques. These characteristics showed that very thin thermal silicon nitride films can be used as gate dielectrics for future highly scaled-down ULSI (Ultra Large Scale Integrated) devices, especially for EEPROM (Electrically Erasable and Programmable ROM)'s.

  20. Excitonic emission of colloidal nano-crystals embedded in Molecular Beam Epitaxy grown ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M; Pawlis, A; Schikora, D; Lischka, K [Department Physik, Universitaet Paderborn, Paderborn (Germany); Schoeps, O; Artemyev, M V; Woggon, U, E-mail: mahmed@mail.uni-paderborn.d [Technische Universitaet Berlin, Berlin (Germany)

    2010-09-01

    We combine ZnSe layers grown by molecular beam epitaxy with colloidal CdSe core, CdSe/ZnSe and CdSe/ZnS core/shell nano-crystals (NCs) to achieve monolithic NC-semiconductor heterostructures. The NCs are prepared in solution and deposited by spray-coating on ZnSe buffer layers and subsequently overgrown by ZnSe. We find a blue shift of the photoluminescence of core/shell dots when they are overgrown by ZnSe. Rapid thermal annealing is used to improve the interface region between the NCs and the ZnSe matrix. The effect of different annealing temperatures on the optical properties of CdSe core, CdSe/ZnSe and CdSe/ZnS core/shell NCs overgrown with a cap layer of ZnSe is investigated. After annealing at 673 K the photoluminescence of these samples is red-shifted as compared to unprocessed samples. All photoluminescence results are explained by a model calculation with the following assumption about the 3D confining potential of the NCs: (i) the shell of core/shell NCs dissolves during ZnSe overgrowth, (ii) after overgrowth NCs are separated from the ZnSe matrix by an interface barrier, (iii) the height of this barrier is significantly reduced by annealing. For all three types of NCs we find an excellent quantitative agreement between the experimental and calculated NC transition energies. The absence of the barrier after annealing is further demonstrated by low temperature photoluminescence data of annealed samples which show enhanced diffusion of electron-hole pairs from ZnSe into the NCs.

  1. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  2. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  3. Anisotropic strain relaxation in (Ba0.6Sr0.4)TiO3 epitaxial thin films

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2005-05-01

    We have studied the evolution of anisotropic epitaxial strains in ⟨110⟩-oriented (Ba0.60Sr0.40)TiO3 paraelectric (m3m) thin films grown on orthorhombic (mm2) ⟨100⟩-oriented NdGaO3 by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]m3m‖[001]mm2 and [1¯10]m3m‖[010]mm2 in the plane of the film, and [110]m3m‖[100]mm2 along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be ∣b ∣(001)=3/4∣b∣. Strain relief along the [1¯10] direction, on the other hand, has been determined to be due to a coupled mechanism given by ∣b∣(1¯10)=∣b∣ and ∣b∣(1¯10)=√3 /4∣b∣. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [1¯10] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as ˜2.9×106J/m3 at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [1¯10] are ˜6.5×105 and ˜6×105cm-1, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  4. Structural and morphological characterization of GaN(0001) layers grown on SiC by maskless pendeo-epitaxy via X-ray Microdiffraction

    Science.gov (United States)

    Barabash, R. I.; Einfeldt, S.; Roskovski, A. M.

    2005-03-01

    Novel white beam X-ray microdiffraction (WBD) together with high resolution monochromatic X-ray diffraction (HRXRD) and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. In traditional HRXRD the spot size of the X-ray beam is large (˜0.5 mm), i.e. it gives information averaged over 40-50 of stripes. In contrast, advanced WBD provides very local information and enables us to follow the local orientation at different locations across the stripe. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Sharp tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers

  5. Fabrication methods for InGaAsP/GaAs visible laser structure with AlGaAs burying layers grown by liquid-phase epitaxy

    Science.gov (United States)

    Takahashi, N. Shin-Ichi, N.; Fukushima, Akira; Sasaki, Tatsuya; Ishikawa, Joji; Ninomiya, Kazuhisa; Narui, Hironobu; Kurita, Shoichi

    1986-02-01

    Liquid-phase-epitaxial (LPE) growth of AlGaAs layers has been used in fabricating InGaAsP buried heterostructure visible lasers on GaAs substrate. InGaAsP/InGaAsP double heterostructure wafers were grown on the p-type GaAs substrates by means of the melt-back method prior to the LPE growth for eliminating phosphorus contamination. An SiO2 film mask was deposited on the epitaxial wafer surface by the rf sputtering, and photoetched with stripes of 7-10 μm width in the direction. After etching to the first p-InGaAsP cladding layer with a 3% Br-methanol solution, the second LPE growth of n-AlGaAs and p-GaAs layers was carried out. The InGaAsP active region is entirely surrounded by the InGaAsP cladding layers and the AlGaAs burying layer, therefore, it becomes possible to provide both lateral and vertical carrier and optical confinements. I-L characteristics were measured at room temperature under pulsed operation, but the lasing action was not obtained. The peak wavelength of the electroluminescence was 785 nm. The transverse mode behavior was analyzed by means of the effective refractive index approximation. And it seemed that this buried heterostructure is suitable for the transverse mode control of InGaAsP visible laser diodes.

  6. The growth and the electrical properties of epitaxial CrSi sub 2 films prepared on Si(111) substrates

    CERN Document Server

    Kim, K H; Lee, J J; Choi, C K; Lee, J Y; Lee, Y P

    1998-01-01

    About a 290-A-thick CrSi sub 2 film was epitaxially grown on a Si(111) substrate by Cr deposition on a Si(111)-7x7 substrate at approx 450 .deg. C followed by in suit annealing at approx 1000 .deg . C for 10 min. X-ray diffraction and transmission electron microscopy showed that the CrSi sub 2 (001) plane grew parallel to the Si(111) plane with a CrSi sub 2 llSi matching face relationship. CrSi sub 2 is a p-type degenerate semiconductor. The electrical resistivity at room temperature was approx 5 x approx 10 sup - sup 3 OMEGA cm, and the energy band gap deduced from the temperature dependence of resistivity was approx 0.3 eV.

  7. Effect of band filling on anomalous Hall conductivity and magneto-crystalline anisotropy in NiFe epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Zhong Shi

    2016-01-01

    Full Text Available The anomalous Hall effect (AHE and magneto-crystalline anisotropy (MCA are investigated in epitaxial NixFe1−x thin films grown on MgO (001 substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K1. When nickel content x decreasing, both b and K1 vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate NixFe1−x has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings, resulting in the increased b and K1. This remarkable correlation between b and K1 can be attributed to the effect of band filling near the Fermi surface.

  8. Nitrogen incorporation into GaAsN and InGaAsN layers grown by liquid-phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Milanova, Malina; Koleva, Greta; Popov, Georgy [Central Laboratory of Applied Physics, Plovdiv (Bulgaria); Vitanov, Petko [Central Laboratory of Solar Energy and New Energy Sources, Sofia (Bulgaria); Terziyska, Penka [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, Thunder Bay, ON (Canada)

    2013-04-15

    This paper presents the comparison of nitrogen incorporation in GaAsN and InGaAsN layers grown on GaAs substrate from Ga- and In-rich solution, respectively, by liquid-phase epitaxy. Polycrystalline GaN has been used as a source of nitrogen in two cases. The initial epitaxy temperature has been varied in the temperature range 600-550 C. Nitrogen content in Ga{sub 1-x}AsN{sub x} grown layers has been determined to be in the range 0.1-0.5%. Higher nitrogen incorporation efficiency has been found for quaternary InGaAsN layers grown under carefully chosen lattice matched conditions. The incorporation of nitrogen into GaAsN and InGaAsN layers has been study by vibrational mode absorption spectroscopy. Nitrogen-induced vibration mode near 472 cm{sup -1} has been registered in GaAsN samples. Preferential In-N bonds and the formation of N-centred In{sub 3}Ga{sub 1} clusters have been identified for lattice matched to GaAs epitaxial InGaAsN layers. Electrical properties of the samples have been characterized by temperature-dependent Hall effect measurements. Nominally undoped GaAsN and InGaAsN grown layers are n-type with Hall concentration about one order of magnitude higher in comparison to layers not containing nitrogen. Thermally activated increase in the free carrier concentration at temperatures higher than 150 K is observed which indicates the presence of N-related deep donor levels below dilute nitride conduction band edge. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Metalorganic chemical vapor growth and characterizations of epitaxial magnesium zinc oxide films on R-aluminum oxide substrates

    Science.gov (United States)

    Muthukumar, Sriram

    Wide energy bandgap semiconductor materials are of considerable interest for their use in short-wavelength light emitting diodes and lasers. ZnO has a direct energy bandgap of ˜3.3eV at room temperature. Its direct energy bandgap can be extended to ˜4.0eV by alloying it with MgO to form Mg xZn1-xO (0 ≤ x ≤ 0.33). Such materials are essential for the fabrication of ZnO/MgxZn1-xO heterostructures for energy band engineering. In this work, MgxZn1-x O thin films are epitaxially grown on (011¯2) R-Al2O 3 (sapphire) substrates by metalorganic chemical vapor deposition. A thin ZnO buffer layer of the order of 50A is found to be critical for the growth of single crystal MgxZn1-xO (0 ≤ x ≤ 0.33) films with a wurtzite-type structure. For Mg mole fractions of x > 0.5, the MgxZn1-xO films grow epitaxially with a cubic rocksalt-type structure. The epitaxial relationship between the wurtzite-type MgxZn1-xO films and the R-Al 2O3 substrates is determined to be (112¯0) Mgx Zn1-xO||(011¯2) Al2O3, and [0001] MgxZn1-xO||[01¯11] Al 2O3. The films appear to be dense and have a smooth surface morphology. The x-ray Deltapi(112¯0) rocking curve and Delta2θ(112¯0) full-width half maximum for Mg0.18Zn0.82O film are measured to be 0.275° and 0.175°, respectively, indicating a strong mosaicity and built in strain in the films. In-plane reflections show the lower lattice mismatch along the c-axis of the MgxZn1-xO films on R-Al2O3. High-Resolution Transmission Electron Microscopy analysis of the Mg0.3Zn0.7O/R-Al2O3 interface indicates the region in the film near the interface is crystalline though strained, and the film starts to relax farther away from the interface. The compressive in-plane residual strain in the MgxZn1-x O film, due to Mg incorporation, was calculated using moire fringes near the interface to be on the order of -0.36%. The energy bandgap of MgxZn1-xO films as a function of Mg composition is deduced using a UV-Visible spectrophotometer at room temperature

  10. Electron traps as major recombination centers in n-GaN films grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Lee, In-Hwan; Polyakov, Alexander Y.; Smirnov, Nikolai B.; Yakimov, Eugene B.; Tarelkin, Sergey A.; Turutin, Andery V.; Shemerov, Ivan V.; Pearton, Stephen J.

    2016-06-01

    For a group of n-GaN films grown by metalorganic chemical vapor deposition (MOCVD) using both straight MOCVD and epitaxial lateral overgrowth techniques (ELOG proper or pendeo overgrowth), the spectra of deep traps were measured by deep-level transient spectroscopy (DLTS) with electrical or optical injection (ODLTS). The results were compared with diffusion length measurement results obtained from electron-beam-induced current experiments. The results strongly indicate that deep electron traps near E c - 0.56 eV could be the major recombination centers determining the diffusion length values in pendeo samples.

  11. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    Science.gov (United States)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  12. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  13. Investigation of CuGaSe2/CuInSe2 double heterojunction interfaces grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Sathiabama Thiru

    2015-02-01

    Full Text Available In-situ reflection high-energy electron diffraction (RHEED observation and X-ray diffraction measurements were performed on heterojunction interfaces of CuGaSe2/CnInSe2/CuGaSe2 grown on GaAs (001 using migration-enhanced epitaxy. The streaky RHEED pattern and persistent RHEED intensity oscillations caused by the alternate deposition of migration-enhanced epitaxy sequence are observed and the growths of smooth surfaces are confirmed. RHEED observation results also confirmed constituent material interdiffusion at the heterointerface. Cross-sectional transmission electron microscopy showed a flat and abrupt heterointerface when the substrate temperature is as low as 400 °C. These have been confirmed even by X-ray diffraction and photoluminescence measurements.

  14. Epitaxial thin films of heavy-Fermion superconductor CeCoIn5

    Science.gov (United States)

    Shibauchi, T.; Shishido, H.; Yasu, K.; Mizukami, Y.; Terashima, T.; Matsuda, Y.

    2010-03-01

    Experimental studies of heavy-Fermion superconductors have been mainly concentrated in measurements using bulk crystals so far. Thin film fabrication process is a key to open new approaches to study fundamental physics, such as phase-sensitive measurements of order parameter using Josephson junctions, and controlling dimensionality of heavy Fermions by superlattices. Despite several attempts using different techniques and various substrates [1-3], epitaxial growth of Ce-based heavy-Fermion superconductors has been a challenging issue. Here we report on the first successful growth of epitaxial thin films of heavy-Fermion superconductor CeCoIn5. By the combination of a ultra-high vacuum deposition technique using molecular beam epitaxy and the choice of proper substrate material with very good lattice matching with CeCoIn5, we are able to fabricate epitaxial films whose transport properties reproduce the characteristic features of the bulk CeCoIn5, including a sharp superconducting transition at 2.3 K. [1] O.,. Soroka et al., J.,hys.: Condens.,atter 19, 056006 (2007). [2] M. Izaki et al., Appl. Phys. Lett. 91, 122507 (2007). [3] A.,. Zaitsev et al., Physica C 469, 52 (2009).

  15. Low-field tunnel-type magnetoresistance properties of polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 thin films

    CERN Document Server

    Shim, I B; Choi, S Y

    2000-01-01

    The low-field tunnel-type magnetoresistance (TMB) properties of sol-gel derived polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 (LSMO) thin films were investigated. The polycrystalline thin films were fabricated on Si (100) with a thermally oxidized SiO sub 2 layer while the epitaxial thin films were grown on LaAlO sub 3 (001) single-crystal substrates. The epitaxial thin films displayed both typical intrinsic colossal magnetoresistance (CMR) and abnormal extrinsic tunnel-type magnetoresistance behaviors. Tunnel-type MR ratio as high as 0.4% were observed in the polycrystalline thin films at a field of 120 Oe at room temperature (300 K) whereas the ratios were less than 0.1% for the epitaxial films in the same field range. The low-field tunnel-type MR of polycrystalline LSMO/SiO sub 2 ?Si (100) thin films originated from the behaviors of the grain-boundary properties.

  16. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  17. P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.W.; Lu, Y.M.; Shen, D.Z.; Liu, Y.C.; Yan, J.F.; Li, B.H.; Zhang, Z.Z.; Zhang, J.Y.; Fan, X.W. [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dongnanhu Road, Changchun 130033 (China); Shan, C.X. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2005-05-01

    N-doped p-type ZnO thin films were grown by plasma molecular beam epitaxy (P-MBE) on c-plane sapphire (Al{sub 2}O{sub 3}) using radical NO as oxygen source and nitrogen dopant. The reproducible ZnO thin films have maximum net hole concentration (N{sub A}-N{sub D}) of 1.2 x 10{sup 18} cm{sup -3} and minimum resistivity of 9.36 {omega} cm. The influence of N incorporation on the quality of the ZnO thin films was studied using X-ray diffraction and absorption spectra. The photoluminescence spectra at 77 K of p-type ZnO thin films are dominated by the emission from donor-acceptor pair recombination. The formation mechanism of p-type ZnO is explained by the optical emission spectra of radical N{sub 2} and radical NO. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Tunable band gap in epitaxial ferroelectric Ho(Mn,Ga)O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daesu; Noh, Tae Won, E-mail: twnoh@snu.ac.kr [Center for Correlated Electron Systems, Institute for Basic Science, Seoul 151-742 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Woo Seok [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-05-09

    Ferroelectrics have recently attracted attention as a new class of materials for use in optical and photovoltaic devices. We studied the electronic properties in epitaxially stabilized ferroelectric hexagonal Ho(Mn{sub 1−x}Ga{sub x})O{sub 3} (x = 0, 0.33, 0.67, and 1) thin films. Our films exhibited systematic changes in electronic structures, such as bandgap and optical transitions, according to the Ga concentration. In particular, the bandgap increased systematically from 1.4 to 3.2 eV, including the visible light region, with increasing Ga concentration from x = 0 to 1. These systematic changes, attributed to lattice parameter variations in epitaxial Ho(Mn{sub 1−x}Ga{sub x})O{sub 3} films, should prove useful for the design of optoelectronic devices based on ferroelectrics.

  19. Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO3 thin films

    Science.gov (United States)

    Singamaneni, Srinivasa Rao; Punugupati, Sandhyarani; Prater, John T.; Narayan, Jagdish

    2016-04-01

    We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO3 (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba0.4Sr0.6TiO3 (BST). The epitaxial integration of BST (˜800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A1TO3 mode (at 521.27 cm-1) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.

  20. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition.

    Science.gov (United States)

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-12-21

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.

  1. Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm(0.5)Ca(0.5)MnO(3) films.

    Science.gov (United States)

    Chen, Y Z; Sun, J R; Zhao, J L; Wang, J; Shen, B G; Pryds, N

    2009-11-04

    We investigated the structure and magnetotransport properties of Sm(0.5)Ca(0.5)MnO(3) (SCMO) films epitaxially grown on (011)-oriented SrTiO(3) substrates, which exhibited clear charge/orbital ordering transition. A significant anisotropy of ∼1000 in the colossal magnetoresistance (CMR) effect was observed in the films with a thickness between 50 and 80 nm, which was distinctly different from the basically isotropic CMR effect in bulk SCMO. The large anisotropy in the CMR can be ascribed to the intrinsic asymmetric strain in the film, which plays an important role in tuning the spin-orbit coupling in manganite films. The origin of the peculiar CMR effect is discussed.

  2. Layer-by-layer shuttered molecular-beam epitaxial growth of superconducting Sr{sub 1-x}La{sub x}CuO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Maritato, L. [Dipartimento di Ingegneria dell' Informazione, Ingegneria Elettrica e Matematica Applicata-DIEM,University of Salerno and CNR-SPIN, 84084 Fisciano (Italy); Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Galdi, A.; Orgiani, P. [Dipartimento di Ingegneria dell' Informazione, Ingegneria Elettrica e Matematica Applicata-DIEM, University of Salerno and CNR-SPIN, 84084 Fisciano (Italy); Harter, J. W. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Schubert, J. [Forschungszentrum Julich, Institute of Bio- and Nano-systems IBN, D-52425 Julich (Germany) and Forschungszentrum Julich, JARA Fundamentals of Future Information Technology, D-52425 Julich (Germany); Shen, K. M. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2013-02-07

    Superconducting Sr{sub 1-x}La{sub x}CuO{sub 2} thin films have been grown on GdScO{sub 3} substrates by reflection high-energy electron diffraction calibrated layer-by-layer molecular-beam epitaxy. X-ray diffraction analysis has confirmed the infinite layer structure after an in situ vacuum annealing step. In situ photoemission spectroscopy indicates that the vacuum annealing step employed immediately after film growth to achieve superconducting films results in oxygen loss from the films. The superconducting critical temperature depends on the La content x, with the highest value obtained for x{approx}0.10. Resistivity as a function of temperature {rho}(T) curves of optimally doped samples show a T{sup 2} temperature dependence characteristic of a scattering process where electron-electron interactions dominate.

  3. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R.; Comes, Ryan B.; Ramuhalli, Pradeep; Henager, Charles H.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-ray diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.

  4. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Klimov, E. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Vasiliev, A. L.; Imamov, R. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Trunkin, I. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2017-01-15

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.

  5. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  6. EuO and Gd-doped EuO thin films. Epitaxial growth and properties

    Energy Technology Data Exchange (ETDEWEB)

    Sutarto, Ronny

    2009-07-06

    this respect the quality of many of the doped EuO samples used in the past bulk studies. The focus of this thesis is on the preparation and the properties of high-quality single-crystalline EuO and Gd-doped EuO thin films. The so-called Eu-distillation-assisted molecular beam epitaxy (MBE) has been employed to achieve full control of the stoichiometry. The films have been epitaxially grown on yttria-stabilized cubic zirconia (YSZ) (001) substrates. By a systematic variation of the oxygen deposition rates, we have been able to observe sustained oscillations in the intensity of the reflection high-electron energy diffraction (RHEED) pattern during growth. We thus have demonstrated that layer-by-layer growth has been achieved for the first time. We also have confirmed that YSZ indeed supplies oxygen during the initial stages of growth, yet the EuO stoichiometry can still be well maintained. In the case of Gd-doped EuO films, the presence of Gd even helps to stabilize the layer-by-layer growth mode. It is important to achieve this growth mode, since it enables the preparation of films with very smooth and at surfaces. This in turn facilitates the capping of the films with a thin Al overlayer in order to protect the films against degradation under ambient conditions. More important, the smoothness of the lm will enable the preparation of high quality device structures. By using ex-situ soft x-ray absorption spectroscopy (XAS) at the Eu and Gd M{sub 4,5} edges, we have confirmed that the films are completely free from Eu{sup 3+} contaminants, and we were able to determine reliably the actual Gd concentration. This actual Gd concentration could in fact significantly deviate from the nominal Gd/Eu evaporation ratio. From magnetization and susceptibility measurements, we found the Curie temperature to increase smoothly as a function of doping from 69 K up to a maximum of 125 K, all with a saturation moment of 7 {mu}B. A threshold behavior was not observed for Gd concentrations

  7. Effects of Mn3O4 precipitates on the vibrational properties of epitaxial Ca-doped LaMnO3 films

    Science.gov (United States)

    Daoudi, Kais; Alawadhi, Hussain; El Helali, Saoussen; Boudard, Michel; Othmen, Zied; Gaidi, Mounir; Oueslati, Meherzi; Tsuchiya, Tetsuo

    2017-10-01

    This work presents a systematic study by Raman spectroscopy of the vibrational properties of La0.7Ca0.3MnO3 (LCMO70/30) thin films epitaxially grown on LaAlO3 single crystalline substrates. The epitaxial LCMO70/30 thin films were prepared using a metal organic deposition process with thermal annealing at 800 °C, 900 °C and 1000 °C, with thicknesses ranging from 20-80 nm. The evolution of the Raman modes versus film thickness and annealing temperature have been investigated. The Raman spectra of the obtained films are found to be mainly dominated by three Raman lines at 225, 440 and 661 cm-1. The first two Raman lines are assigned to the vibrational modes of the LCMO70/30 films. However, by combining magnetization, x-ray diffraction and transmission electron microscopy with Raman spectroscopy, we concluded that the 661 cm-1 Raman line is due to the existence of a precipitate of a Mn3O4 phase in the LCMO70/30 films.

  8. Ordering of defects induced by epitaxy in LaCoO3 films

    Science.gov (United States)

    Mehta, Virat; Biskup, Neven; Wong, Franklin; Arenholz, Elke; Varela, Maria; Suzuki, Yuri

    2012-02-01

    In the bulk, LaCoO3 (LCO) undergoes a spin state transition from a diamagnet to a paramagnet with increasing temperature. Recent studies of epitaxial LCO thin films have resulted in the stabilization of a higher spin state and ferromagnetic ordering at low temperatures. Here, we explore the effects of epitaxy on the electronic structure of LCO films with X-ray absorption spectroscopy (XAS) and scanning transmission electron microscopy (STEM). We find differences in XAS spectra in coherently strained thinner films compared to the thicker partially relaxed films which may be due to differences in Co valence and bonding. STEM and electron energy loss spectroscopy of thinner LCO films reveal ordered defect planes that appear to be associated with a change in the O and Co bonding environments. In films on LaAlO3 strained in compression periodic planes occur parallel to the substrate-film interface, while films on SrTiO3 strained in tension have perpendicular defect planes. Correlation with magnetic data suggests that defect rich regions may exhibit greater ferromagnetism.

  9. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    OpenAIRE

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separatio...

  10. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  11. Temperature dependence of exciton peak energies in ZnS, ZnSe, and ZnTe epitaxial films

    Science.gov (United States)

    Pässler, R.; Griebl, E.; Riepl, H.; Lautner, G.; Bauer, S.; Preis, H.; Gebhardt, W.; Buda, B.; As, D. J.; Schikora, D.; Lischka, K.; Papagelis, K.; Ves, S.

    1999-10-01

    High-quality ZnS, ZnSe, and ZnTe epitaxial films were grown on (001)-GaAs-substrates by molecular beam epitaxy. The 1s-exciton peak energy positions have been determined by absorption measurements from 2 K up to about room temperature. For ZnS and ZnSe additional high-temperature 1s-exciton energy data were obtained by reflectance measurements performed from 300 up to about 550 K. These complete E1s(T) data sets are fitted using a recently developed analytical model. The high-temperature slopes of the individual E1s(T) curves and the effective phonon temperatures of ZnS, ZnSe, and ZnTe are found to scale almost linearly with the corresponding zero-temperature energy gaps and the Debye temperatures, respectively. Various ad hoc formulas of Varshni type, which have been invoked in recent articles for numerical simulations of restricted E1s(T) data sets for cubic ZnS, are discussed.

  12. Epitaxial growth and electronic structure of oxyhydride SrVO{sub 2}H thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa; Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Yamada, Keisuke; Onozuka, Tomoya [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shigematsu, Kei [Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa 213-0012 (Japan); Minohara, Makoto; Kumigashira, Hiroshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Mikazuki-cho, Hyogo 679-5198 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa 213-0012 (Japan)

    2016-08-28

    Oxyhydride SrVO{sub 2}H epitaxial thin films were fabricated on SrTiO{sub 3} substrates via topotactic hydridation of oxide SrVO{sub 3} films using CaH{sub 2}. Structural and composition analyses suggested that the SrVO{sub 2}H film possessed one-dimensionally ordered V-H{sup −}-V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO{sub 2}H film was reversible to SrVO{sub 3} by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V{sup 3+} valence state in the SrVO{sub 2}H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  13. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  14. Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films

    Science.gov (United States)

    Schüffelgen, Peter; Rosenbach, Daniel; Neumann, Elmar; Stehno, Martin P.; Lanius, Martin; Zhao, Jialin; Wang, Meng; Sheehan, Brendan; Schmidt, Michael; Gao, Bo; Brinkman, Alexander; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev

    2017-11-01

    Topological insulator (Bi0.06Sb0.94)2Te3 thin films grown by molecular beam epitaxy have been capped in-situ with a 2 nm Al film to conserve the pristine topological surface states. Subsequently, a shadow mask - structured by means of focus ion beam - was in-situ placed underneath the sample to deposit a thick layer of Al on well-defined microscopically small areas. The 2 nm thin Al layer fully oxidizes after exposure to air and in this way protects the TI surface from degradation. The thick Al layer remains metallic underneath a 3-4 nm thick native oxide layer and therefore serves as (super-) conducting contacts. Superconductor-Topological Insulator-Superconductor junctions with lateral dimensions in the nm range have then been fabricated via an alternative stencil lithography technique. Despite the in-situ deposition, transport measurements and transmission electron microscope analysis indicate a low transparency, due to an intermixed region at the interface between topological insulator thin film and metallic Al.

  15. Substrate induced tuning of compressive strain and phonon modes in large area MoS2 and WS2 van der Waals epitaxial thin films

    Science.gov (United States)

    Sahu, Rajib; Radhakrishnan, Dhanya; Vishal, Badri; Negi, Devendra Singh; Sil, Anomitra; Narayana, Chandrabhas; Datta, Ranjan

    2017-07-01

    Large area MoS2 and WS2 van der Waals epitaxial thin films with control over number of layers including monolayer is grown by pulsed laser deposition utilizing slower growth kinetics. The films grown on c-plane sapphire show stiffening of A1g and E12g phonon modes with decreasing number of layers for both MoS2 and WS2. The observed stiffening translate into the compressive strain of 0.52% & 0.53% with accompanying increase in fundamental direct band gap to 1.74 and 1.68 eV for monolayer MoS2 and WS2, respectively. The strain decays with the number of layers. HRTEM imaging directly reveals the nature of atomic registry of van der Waals layers with the substrate and the associated compressive strain. The results demonstrate a practical route to stabilize and engineer strain for this class of material over large area device fabrication.

  16. Low-Temperature epitaxial growth of InGaAs films on InP(100) and InP(411) A substrates

    Science.gov (United States)

    Galiev, G. B.; Klimova, E. A.; Pushkarev, S. S.; Klochkov, A. N.; Trunkin, I. N.; Vasiliev, A. L.; Maltsev, P. P.

    2017-07-01

    The structural and electrical characteristics of In0.53Ga0.47As epitaxial films, grown in the low-temperature mode on InP substrates with (100) and (411) A crystallographic orientations at flow ratios of As4 molecules and In and Ga atoms of γ = 29 and 90, have been comprehensively studied. The use of InP(411) A substrates is shown to increase the probability of forming two-dimensional defects (twins, stacking faults, dislocations, and grain boundaries), thus reducing the mobility of free electrons, and AsGa point defects, which act as donors and increase the free-electron concentration. An increase in γ from 29 to 90 leads to transformation of single-crystal InGaAs films grown on (100) and (411) A substrates into polycrystalline ones.

  17. Optoelectrical properties for CuAlSe{sub 2} epilayers grown by using a hot wall epitaxy method

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seoungnam; Hong, Kwangjoon [Chosun University, Kwangju (Korea, Republic of)

    2006-06-15

    CuAlSe{sub 2}(112)/GaAs(100) heteroepitaxial layers were grown by using a hot wall epitaxy (HWE) method. From the measurements of the Laue patterns and the double crystal X-ray diffraction, the CuAlSe{sub 2} epilayer was confirmed to have been epitaxially grown along the <112> direction on the GaAs (100) substrate. The Hall mobility and the carrier density of the CuAlSe{sub 2} epilayer at 293 K were estimated to be 295 cm{sup 2}/V{center_dot}sec and 9.24 x 10{sup 16} cm{sup -3}, respectively. This mobility is about one order higher than the reported value. From the temperature dependence of the Hall mobility, the scattering at high temperatures was mainly due to the acoustic mode of the lattice vibration, and the scattering at low temperatures was predominantly due to the impurity effect. From the low-temperature PL experiment, we observed a sharp and intensive free-exciton peak at 2.7918 eV. That peak is usually not detected because of the difficulty in growing single crystals of high quality. Also, this peak existed at a much shorter wavelength than the 2.739 eV of the free exciton measured from an epilayer grown by using the metalorganic chemical-vapor deposition (MOCVD). These facts indicate that the CuAlSe{sub 2} epilayers grown by using the HWE method are higher quality crystals than those grown by using MOCVD or other methods.

  18. Long-range ordered self-assembled InAs quantum dots epitaxially grown on (110) GaAs

    Science.gov (United States)

    Bauer, J.; Schuh, D.; Uccelli, E.; Schulz, R.; Kress, A.; Hofbauer, F.; Finley, J. J.; Abstreiter, G.

    2004-11-01

    We report on a promising approach for positioning of self-assembled InAs quantum dots on (110) GaAs with nanometer precision. By combining self-assembly of quantum dots with molecular beam epitaxy on previously grown and in situ cleaved substrates (cleaved-edge overgrowth), arrays of long-range ordered InAs quantum dots have been fabricated. Both atomic force microscopy and micro-photoluminescence measurements demonstrate the ability to control size, position, and ordering of the quantum dots. Furthermore, single dot photoluminescence investigations confirm the high optical quality of the quantum dots fabricated.

  19. Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Lefebvre, P. [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Universite Montpellier 2, F-34095 Montpellier, Cedex 5 (France); Jahn, U.; Trampert, A. [Paul-Drude-Institut fuer Festkoeperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2011-09-26

    This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission.

  20. Growth of oriented rare-earth-transition-metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, E.E.; Sowers, C.H.; Bader, S.D. [Argonne National Lab., IL (United States); Wu, X.Z. [Argonne National Lab., IL (United States)]|[Northern Illinois Univ., DeKalb, IL (United States)

    1996-04-01

    Rare-earth-transition-metal thin films are successfully grown by magnetron sputtering onto single-crystal MgO substrates with epitaxial W buffer layers. The use of epitaxial W buffer layers allows oriented single-phase films to be grown. Sm-Co films grown onto W(100), have strong in-plane anisotropy and coercivities exceeding 5 T at 5 K whereas Fe-Sm films have strong perpendicular anisotropy and are magnetically soft.

  1. Tuning piezoelectric properties through epitaxy of La2Ti2O7and related thin films.

    Science.gov (United States)

    Kaspar, Tiffany C; Hong, Seungbum; Bowden, Mark E; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R; Comes, Ryan B; Ramuhalli, Pradeep; Henager, Charles H

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La 2 Ti 2 O 7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO 3 (001), SrTiO 3 (110), and rutile TiO 2 (110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO 2 (110) results in epitaxial La 2/3 TiO 3 , an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La 2/3 TiO 3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO 2 (110) is a promising route to realize La 2/3 TiO 3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

  2. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  3. Void Shapes Controlled by Using Interruption-Free Epitaxial Lateral Overgrowth of GaN Films on Patterned SiO2 AlN/Sapphire Template

    Directory of Open Access Journals (Sweden)

    Yu-An Chen

    2014-01-01

    Full Text Available GaN epitaxial layers with embedded air voids grown on patterned SiO2 AlN/sapphire templates were proposed. Using interruption-free epitaxial lateral overgrowth technology, we realized uninterrupted growth and controlled the shape of embedded air voids. These layers showed improved crystal quality using X-ray diffraction and measurement of etching pits density. Compared with conventional undoped-GaN film, the full width at half-maximum of the GaN (0 0 2 and (1 0 2 peaks decreased from 485 arcsec to 376 arcsec and from 600 arcsec to 322 arcsec, respectively. Transmission electron microscopy results showed that the coalesced GaN growth led to bending threading dislocation. We also proposed a growth model based on results of scanning electron microscopy.

  4. Transmission Electron Microscope Observation of Cubic GaN Grown by Metalorganic Vapor Phase Epitaxy with Dimethylhydrazine on (001) GaAs

    Science.gov (United States)

    Kuwano, Noriyuki; Nagatomo, Yoshiyuki; Kobayashi, Kenki; Oki, Kensuke; Miyoshi, Seiro; Yaguchi, Hiroyuki; Onabe, Kentaro; Shiraki, Yasuhiro

    1994-01-01

    Cross-sectional transmission electron microscope observation has been performed on the microstructure of GaN films grown on a (001) GaAs substrate by metalorgahic vapor phase epitaxy (MOVPE) using 1,1-dimethylhydrazine (DMHy) and trimethylgallium (TMG) as the sources of nitrogen and gallium, respectively. Before the deposition, the surface of the substrate was nitrided with DMHy. High-resolution images and electron diffraction patterns confirmed that the GaN films have a zincblende structure (β-GaN) with the lattice constant of a GaN=0.454 nm, and contain bands of stacking faults parallel to {111} planes. The interface between GaN and GaAs is made of {111} facets with no interlayer. Misfit dislocations are found to be inserted on the interface approximately every five atomic planes of GaAs. The nitridation treatment with only DMHy for 130 min is found to form a thick layer of β-GaN on the (001) GaAs substrate. Nuclei of β-GaN formed by the pretreatment of surface nitridation play an important role in growing GaN in a zincblende structure during the supply of DMHy and TMG. The formation of facets on the top surface of GaN and on the interface of GaN/GaAs is explained in terms of the diffusion of arsenic in β-GaN. The characteristics of the structure of GaN films grown at 600 and 650° C are also presented.

  5. Time-resolved X-ray diffraction study on superconducting YBa{sub 2}Cu{sub 3}O{sub 7} epitaxially grown on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luebcke, A.

    2007-07-01

    In this PhD thesis time-resolved X-ray diffraction in optical pump - X-ray probe scheme was applied for the first time to a High-Temperature Superconductor in the superconducting state. The aim was to study the possible lattice response to optical Cooper pair breaking. As sample a thin YBa{sub 2}Cu{sub 3}O{sub 7} film with a superconducting transition temperature of T{sub c}=90 K, epitaxially grown on a SrTiO{sub 3} single crystal was used. (orig.)

  6. Epitaxy of Ferroelectric P(VDF-TrFE) Films via Removable PTFE Templates and Its Application in Semiconducting/Ferroelectric Blend Resistive Memory.

    Science.gov (United States)

    Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong

    2017-04-05

    Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10(5).

  7. Growth of NaCl on thin epitaxial KCl films on Ag(100) studied by SPA-LEED

    Science.gov (United States)

    Marquardt, Christian; Paulheim, Alexander; Sokolowski, Moritz

    2015-11-01

    We investigated the growth of NaCl on thin (100)-oriented films of KCl by spot profile analysis of low energy electron diffraction (SPA-LEED). The underlying question of this investigation was how the system accommodates to the misfit of - 10% between the NaCl and KCl lattices. The KCl films (3 atomic layers thick) were epitaxially grown on a Ag(100) single crystal. We studied the heteroepitaxial growth of NaCl on KCl at 300 K and at 500 K, respectively. At 300 K, the first NaCl monolayer (ML) grows pseudomorphically on the KCl film. From the second layer onward, the NaCl lattice relaxes. The NaCl multilayers roughen, and a small rotational disorder (± 4°) of the NaCl domains is observed. The roughening results from the formation of multilayer islands of limited lateral size due to the misfit to the pseudomorphic first NaCl layer. At a growth temperature of 500 K, no pseudomorphic NaCl layer forms, instead relaxed multilayer island growth of NaCl is observed from the first layer onward. Similarly to the growth at 300 K, we find NaCl multilayer islands of limited lateral size. For both temperatures, we explain this growth behavior by the misfit that makes the adsorption sites at the island edges of the first relaxed NaCl layer less favorable for larger islands, promoting nucleation of multilayer islands.

  8. Raman scattering study of cubic GaN and GaMnN epilayers grown by plasma- assisted molecular beam epitaxy

    Science.gov (United States)

    Alarcón-Lladó, E.; Ibáñez, J.; Cuscó, R.; Artús, L.; Novikov, S. V.; Foxon, C. T.

    2009-11-01

    We perform visible and ultraviolet (UV) Raman-scattering experiments to study a series of undoped and Mn-doped c-GaN thin films grown by plasma-assisted molecular beam epitaxy under Ga-rich and N-rich conditions. The visible, non-resonant experiments confirm that the Ga-rich growth yields the improved crystal quality. New Raman features, most probably related to Mn-induced disorder, show up in the spectra of the c-GaMnN epilayers grown under N-rich conditions. We find that the introduction of an AlN buffer favors the growth of the hexagonal phase. In the UV spectra of the samples with better crystal quality, we detect multiphonon mA1(LO) peaks up to m = 4 together with strong PL signal from c-GaN. In the more disordered samples the PL emission is quenched, and this allows us to detect multiphonons up to m = 6. The intensity of the multiphonon peaks can be used to assess the crystal quality of the c-GaN and c-GaMnN samples.

  9. Highly c-axis-oriented one-inch square freestanding GaN grown by hydride vapor-phase epitaxy using an AIN deposited on Si

    CERN Document Server

    Lee, M H; Chung, S H; Moon, D C

    1999-01-01

    In this letter, we report on the growth and the properties of freestanding GaN substrates. Large areas of one-inch square with a thickness of a 0.5 mm were grown by the hydride vapor-phase epitaxy (HVPE) method after a thick film of GaN was grown on an AIN buffer layer deposited on a sacrificial Si substrate which was subsequently chemically removed. The GaN substrate showed intensified X-ray diffraction from the (00.2) and the (00.4) planes, and the full width at half maximum of the double-crystal X-ray diffraction curve was as large as 4.2 degrees. The photoluminescence spectra measured at 10 K and at 300 K exhibited a sharp and strong excitonic emission without deep-level emission. They also showed n-type conduction with an electron concentration of approx 1x10 sup 1 sup 8 cm sup - sup 3 and a Hall mobility of 50 cm sup 2 / Vsec. The highly c-axis oriented large-area freestanding GaN prepared using a Si sacrificial substrate by HVPE through this work can be used for homoepitaxial growth of GaN-based optoel...

  10. Self Organized Grown Stranski-Krastanow II-VI Quantum Dots Vs. Colloidal Nanocrystals Integrated In Epitaxial Nanostructures

    Science.gov (United States)

    Arens, Ch.; Schöps, O.; Artemyev, M. V.; Woggon, U.; Lischka, K.; Schikora, D.

    2007-04-01

    We have integrated colloidal CdSe nanocrystals (NC) in MBE-grown ZnSe layers. In this paper we compare their density, size, size distribution and their optical tuning range with that of self-organized grown Stranski-Krastanow (SK) CdSe-QDs which are used as a reference. We find that the density of epitaxially overgrown NCs can be varied in a wider range than the SK-QD density. The size and shape of NCs is variable and this leads to a wide optical tuning range of the NC emission. The size of SK-QD is fixed due to the thermodynamic formation process. Further we found, that the size distribution of overgrown NCs is in the range of the size distribution of SK-QDs or even smaller.

  11. Interfacial characteristics of Y2O3/GaSb(001) grown by molecular beam epitaxy and atomic layer deposition

    Science.gov (United States)

    Lin, Y. H.; Lin, K. Y.; Hsueh, W. J.; Young, L. B.; Chang, T. W.; Chyi, J. I.; Pi, T. W.; Kwo, J.; Hong, M.

    2017-11-01

    High quality Y2O3 on GaSb was achieved using both molecular beam epitaxy (MBE) and atomic layer deposition (ALD) with interfacial characteristics studied by in-situ X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor (MOS) electrical measurements. Ga-oxide and stoichiometric Sb-oxides were obtained in the MBE-Y2O3/GaSb and non-stoichiometric Sb2Ox (x<4) was found in the ALD-Y2O3/GaSb according to the XPS spectra. From the capacitance-voltage (CV) measurements, MBE-Y2O3 provides lower interfacial trap density (Dit) grown at elevated temperature of 200°C, while ALD-grown Y2O3 shows smaller hysteresis and higher dielectric constant.

  12. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  13. Thin film GaAs solar cells on glass substrates by epitaxial liftoff

    Energy Technology Data Exchange (ETDEWEB)

    Lee, X.Y.; Goertemiller, M.; Boroditsky, M.; Ragan, R.; Yablonovitch, E. [Electrical Engineering Dept., University of California, Los Angeles, California 90095-1594 (United States)

    1997-02-01

    In this work, we describe the fabrication and operating characteristics of GaAs/AlGaAs thin film solar cells processed by the epitaxial liftoff (ELO) technique. This technique allows the transfer of these cells onto glass substrates. The performance of the lifted-off solar cell is demonstrated by means of electrical measurements under both dark and illuminated conditions. We have also optimized the light trapping conditions in this direct-gap material. The results show that good solar absorption is possible in active layers as thin as 0.32 {mu}m. In such a thin solar cell, the open circuit voltage would be enhanced. We believe that the combination of an epitaxial liftoff thin GaAs film, and nano-texturing can lead to record breaking performance. {copyright} {ital 1997 American Institute of Physics.}

  14. Possible spin gapless semiconductor type behaviour in CoFeMnSi epitaxial thin films

    Science.gov (United States)

    Kushwaha, Varun K.; Rani, Jyoti; Tulapurkar, Ashwin; Tomy, C. V.

    2017-10-01

    Spin-gapless semiconductors with their unique band structure have recently attracted much attention due to their interesting transport properties that can be utilized in spintronics applications. We have deposited the thin films of a quaternary spin-gapless semiconductor CoFeMnSi Heusler alloy on MgO (001) substrates using a pulsed laser deposition system. These films show epitaxial growth along the (001) direction and display a uniform and smooth crystalline surface. The magnetic properties reveal that the film is ferromagnetically soft along the in-plane direction and its Curie temperature is well above 400 K. The electrical conductivity of the film is low and exhibits a nearly temperature independent semiconducting behaviour. The estimated temperature coefficient of resistivity for the film is -7 × 10-10 Ω m/K, which is comparable to the values reported for spin-gapless semiconductors.

  15. Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films

    Science.gov (United States)

    Teichert, N.; Kucza, D.; Yildirim, O.; Yuzuak, E.; Dincer, I.; Behler, A.; Weise, B.; Helmich, L.; Boehnke, A.; Klimova, S.; Waske, A.; Elerman, Y.; Hütten, A.

    2015-05-01

    The structural, magnetic, and magnetocaloric properties of epitaxial Ni-Co-Mn-Al thin films with different compositions have been studied. The films were deposited on MgO(001) substrates by co-sputtering on heated substrates. All films show a martensitic transformation, where the transformation temperatures are strongly dependent on the composition. The structure of the martensite phase is shown to be 14 M . The metamagnetic martensitic transformation occurs from strongly ferromagnetic austenite to weakly magnetic martensite. The structural properties of the films were investigated by atomic force microscopy and temperature dependent x-ray diffraction. Magnetic and magnetocaloric properties were analyzed using temperature dependent and isothermal magnetization measurements. We find that Ni41Co10.4Mn34.8Al13.8 films show giant inverse magnetocaloric effects with magnetic entropy change of 17.5 J kg-1K-1 for μ0Δ H =5 T.

  16. Growth and structure characterization of epitaxial Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub y} thermoelectric thin films on LaAlO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shufang, E-mail: swang2008@hotmail.co [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); He Liping [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Elhadj, Dogheche [Institut Electronique Microelectronique Nanotechnologie IEMN DOAE CNRS UMR 8520, Universite de Valenciennes, Le Mont Houy Valenciennes Cedex F-59309 (France); Chen Jingchun; Wang Jianglong; Chen Mingjing; Yu Wei; Fu Guangsheng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)

    2010-09-30

    Epitaxial Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub y} thin films with excellent c-axis and ab-plane alignments have been grown on (001) LaAlO{sub 3} substrates by chemical solution deposition using metal acetates as starting materials. Microstructure studies show that the resulting Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub y} films have a well-ordered layer structure with a flat and clear interface with the substrate. Scanning electron microscopy of the films reveals a step-terrace surface structure without any microcracks and pores. At room temperature, the epitaxial Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub y} films exhibit a resistivity of about 2 m{Omega} cm and a seebeck coefficient of about 115 {mu}V/K comparable to those of single crystals.

  17. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  18. PANIC: a 3D dislocation dynamics model for climb and glide in epitaxial films and heterostructures

    OpenAIRE

    Fu, Wai Yuen; Humphreys, Colin J.; Moram, Michelle A.

    2014-01-01

    This paper presents PANIC, a 3D discrete mesoscale dislocation dynamics model which includes a fully quantitative treatment of both dislocation climb and dislocation glide, including climb driven by both osmotic and mechanical stresses and climb enabled by both bulk and pipe diffusion, including full elastic anisotropy for materials with hexagonal symmetry. Efficient calculations can be performed for epitaxial thin films, multilayers and device structures with free surfaces, including those w...

  19. Intrinsic stability of ferroelectric and piezoelectric properties of epitaxial PbZr0.45Ti0.55O3 thin films on silicon in relation to grain tilt

    Directory of Open Access Journals (Sweden)

    Evert P Houwman, Minh D Nguyen, Matthijn Dekkers and Guus Rijnders

    2013-01-01

    Full Text Available Piezoelectric thin films of PbZr0.45Ti0.55O3 were grown on Si substrates in four different ways, resulting in different crystalline structures, as determined by x-ray analysis. The crystalline structures were different in the spread in tilt angle and the in-plane alignment of the crystal planes between different grains. It is found that the deviations of the ferroelectric polarization loop from that of the ideal rectangular loop (reduction of the remanent polarization with respect to the saturation polarization, dielectric constant of the film, slanting of the loop, coercive field value all scale with the average tilt angle. A model is derived based on the assumption that the tilted grain boundaries between grains affect the film properties locally. This model describes the observed trends. The effective piezoelectric coefficient d33,eff shows also a weak dependence on the average tilt angle for films grown in a single layer, whereas it is strongly reduced for the films deposited in multiple layers. The least affected properties are obtained for the most epitaxial films, i.e. grown on a SrTiO3 epitaxial seed layer, by pulsed laser deposition. These films are intrinsically stable and do not require poling to acquire these stable properties.

  20. Intrinsic stability of ferroelectric and piezoelectric properties of epitaxial PbZr0.45Ti0.55O3 thin films on silicon in relation to grain tilt

    Science.gov (United States)

    Houwman, Evert P.; Nguyen, Minh D.; Dekkers, Matthijn; Rijnders, Guus

    2013-08-01

    Piezoelectric thin films of PbZr0.45Ti0.55O3 were grown on Si substrates in four different ways, resulting in different crystalline structures, as determined by x-ray analysis. The crystalline structures were different in the spread in tilt angle and the in-plane alignment of the crystal planes between different grains. It is found that the deviations of the ferroelectric polarization loop from that of the ideal rectangular loop (reduction of the remanent polarization with respect to the saturation polarization, dielectric constant of the film, slanting of the loop, coercive field value) all scale with the average tilt angle. A model is derived based on the assumption that the tilted grain boundaries between grains affect the film properties locally. This model describes the observed trends. The effective piezoelectric coefficient d33,eff shows also a weak dependence on the average tilt angle for films grown in a single layer, whereas it is strongly reduced for the films deposited in multiple layers. The least affected properties are obtained for the most epitaxial films, i.e. grown on a SrTiO3 epitaxial seed layer, by pulsed laser deposition. These films are intrinsically stable and do not require poling to acquire these stable properties.

  1. p-type GaN grown by phase shift epitaxy

    Science.gov (United States)

    Zhong, M.; Roberts, J.; Kong, W.; Brown, A. S.; Steckl, A. J.

    2014-01-01

    Phase shift epitaxy (PSE) is a periodic growth scheme, which desynchronizes host material growth process from dopant incorporation, allowing independent optimization. p-type doping of GaN with Mg by PSE is accomplished with molecular beam epitaxy by periodic shutter action (in order to iterate between Ga- and N-rich surface conditions) and by adjusting time delays between dopant and Ga shutters. Optimum PSE growth was obtained by turning on the Mg flux in the N-rich condition. This suppresses Mg self-compensation at high Mg concentration and produces fairly high hole concentrations (2.4 × 1018 cm-3).

  2. TEM studies of GaN layers grown in non-polar direction: Laterally overgrown and pendeo-epitaxial layers

    Science.gov (United States)

    Liliental-Weber, Z.

    2008-08-01

    The formation of structural defects in GaN grown in non-polar directions is reviewed based on transmission electron microscopy (TEM) studies. Stacking faults (SFs) formed on c-planes and also on prismatic planes bounded by partial dislocations, in addition to full dislocations, are major defects in these layers. Since c-planes are arranged perpendicular to the substrate, these defects propagate to the sample surface through the active areas of the devices and become detrimental for device applications. An established method to decrease the defect density is lateral epitaxial overgrowth (LEO) and pendeo-epitaxy. The measured density of SFs in the seed areas is ˜1.3×10 6 cm -1and in the 'wing' areas ˜1.2×10 4 cm -1; a decrease of almost of two orders of magnitude. For overgrown samples, two opposite wings grow in opposite polar directions: [0 0 0 1] (Ga-growth polarity) and [0 0 0 1] (N-growth polarity) confirmed by convergent beam electron diffraction. Ga-polar wings are wider and often have different height than those grown with N-polarity, therefore planarity of these layers and cracking at the meeting front of two wings often occur. It is shown that two-step growth using MOCVD leads to satisfactory layer planarity.

  3. High-resolution hydrogen profiling in AlGaN/GaN heterostructures grown by different epitaxial methods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Posada Flores, F; Redondo-Cubero, A; Bengoechea, A; Brana, A F; Munoz, E [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM) and Dpto. IngenierIa Electronica (DIE), ETSI de Telecomunicacion, Universidad Politecnica de Madrid, E-28040 Madrid (Spain); Gago, R [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Jimenez, A [Dpto. Electronica, Escuela Politecnica Superior, Universidad de Alcala, E-28805 Alcala de Henares, Madrid (Spain); Grambole, D, E-mail: fposada@die.upm.e [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, PF 51019, D-01314 Dresden (Germany)

    2009-03-07

    Hydrogen (H) incorporation into AlGaN/GaN heterostructures used in high electron mobility transistors, grown by different methods, is studied by high-resolution depth profiling. Samples grown on sapphire and Si(1 1 1) substrates by molecular-beam epitaxy and metal-organic vapour phase epitaxy; involving H-free and H-containing precursors, were analysed to evaluate the eventual incorporation of H into the wafer. The amount of H was measured by means of nuclear reaction analysis (NRA) using the {sup 1}H({sup 15}N,{alpha}{gamma}){sup 12}C reaction up to a depth of {approx}110 nm into the heterostructures. Interestingly, the H profiles are similar in all the samples analysed, with an increasing H content towards the surface and a negligible H incorporation into the GaN layer (0.24 {+-} 0.08 at%) or at the AlGaN/GaN interface. Therefore, NRA shows that H uptake is not related to the growth process or technique employed and that H contamination may be due to external sources after growth. The eventual correlation between topographical defects on the AlGaN surface and the H concentration are also discussed.

  4. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Englhard, M.; Klemp, C.; Behringer, M.; Rudolph, A. [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Skibitzki, O.; Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Institute of Physics and Chemistry, BTU Cottbus-Senftenberg, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2016-07-28

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-ray diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.

  5. A submillimetre-wave SIS mixer using NbN/MgO/NbN trilayers grown epitaxially on an MgO substrate

    CERN Document Server

    Uzawa, Y; Saito, A; Takeda, M; Wang, Z

    2002-01-01

    We have designed, fabricated and tested a quasi-optical superconductor-insulator-superconductor (SIS) mixer employing distributed NbN/MgO/NbN tunnel junctions and NbN/MgO/NbN microstriplines at submillimetre-wave frequencies. These trilayers were fabricated by dc- and rf-magnetron sputtering on an MgO substrate at ambient temperature so that the NbN and MgO films were grown epitaxially. Our SIS mixer consists of an MgO hyperhemispherical lens with an antireflection cap and a self-complementary log-periodic antenna made of a single-crystal NbN film, on which the distributed SIS junctions and the two-section impedance transformers were mirror-symmetrically placed at the feed point of the antenna. As designed, the junctions are 0.6 mu m wide and 15.5 mu m long, which is sufficient to absorb the incoming signal along this lossy transmission line, assuming a current density of 10 kA cm sup - sup 2. The mixer showed good I-V characteristics, with subgap-to-normal resistance ratios of about 13, although weak-link br...

  6. Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films.

    Science.gov (United States)

    Pesquera, D; Herranz, G; Barla, A; Pellegrin, E; Bondino, F; Magnano, E; Sánchez, F; Fontcuberta, J

    2012-01-01

    The electron occupancy of 3d-orbitals determines the properties of transition metal oxides. This can be achieved, for example, through thin-film heterostructure engineering of ABO(3) oxides, enabling emerging properties at interfaces. Interestingly, epitaxial strain may break the degeneracy of 3d-e(g) and t(2g) orbitals, thus favoring a particular orbital filling with consequences for functional properties. Here we disclose the effects of symmetry breaking at free surfaces of ABO(3) perovskite epitaxial films and show that it can be combined with substrate-induced epitaxial strain to tailor at will the electron occupancy of in-plane and out-of-plane surface electronic orbitals. We use X-ray linear dichroism to monitor the relative contributions of surface, strain and atomic terminations to the occupancy of 3z(2)-r(2) and x(2)-y(2) orbitals in La(2/3)Sr(1/3)MnO(3) films. These findings open the possibility of an active tuning of surface electronic and magnetic properties as well as chemical properties (catalytic reactivity, wettability and so on).

  7. Room temperature photoluminescence from In{sub x}Al{sub (1−x)}N films deposited by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Mohanta, A. [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Roberts, A. T. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [Plasma Chemistry Research Center-CNR, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 10–12 nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1−x)}N were comparatively investigated for indium compositions ranging from x = 0.092 to 0.235, including x = 0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  8. Solid-phase epitaxial film growth and optical properties of a ferroelectric oxide, Sr2Nb2O7

    Science.gov (United States)

    Nezu, Yukio; Zhang, Yu-Qiao; Chen, Chunlin; Ikuhara, Yuichi; Ohta, Hiromichi

    2017-10-01

    High-quality epitaxial films of a ferroelectric oxide Sr2Nb2O7 were successfully fabricated by solid phase epitaxy (SPE) on (110) LaAlO3 single crystal substrates. In the SPE method, amorphous Sr-Nb-O films are first deposited by pulsed laser deposition at room temperature and then annealed in vacuum at elevated temperatures, resulting in the crystallization of Sr2Nb2O7 with highly ordered atomic arrangement and an atomically flat surface. The refractive index of the resultant film was 2.1, indicating that the dielectric permittivity of the film was in between 20 and 80, which corresponds well with that of single crystal Sr2Nb2O7, demonstrating the effectiveness of the SPE method for the fabrication of high-quality epitaxial films of Sr2Nb2O7.

  9. Characterization of Polar, Semi-Polar, and Non-Polar p-n Homo and Hetero-junctions grown by Ammonia Molecular Beam Epitaxy

    Science.gov (United States)

    Hurni, Christophe Antoine

    Widespread interest in the group III-Nitrides began with the achievement of p-type conductivity in the early 1990s in Mg-doped GaN films grown by metal organic chemical vapor deposition (MOCVD) by Nakamura et al. Indeed, MOCVD-grown Mg-doped GaN is insulating as-grown, because of the formation of neutral Mg-H complexes. Nakamura et al. showed that a rapid thermal anneal removes the hydrogen and enables p-conductivity. Shortly after this discovery, the first LEDs and lasers were demonstrated by Nakamura et al. The necessary annealing step is problematic for devices which need a buried p-layer, such as hetero-junction bipolar transistors. Ammonia molecular beam epitaxy (NH3-MBE) has a great potential for growing vertical III-Nitrides-based devices, thank to its N-rich growth conditions and all the usual advantages of MBE, which include a low-impurity growth environment, in situ monitoring techniques as well as the ability to grow sharp interfaces. We first investigated the growth of p-GaN by NH3-MBE. We found that the hole concentration strongly depends on the growth temperature. Thanks to comprehensive Hall and transfer length measurements, we found evidences for a compensating donor defects in NH3-MBE-grown Mg-doped GaN films. High-quality p-n junctions with very low reverse current and close to unity ideality factor were also grown and investigated. For the design of heterojunction devices such as laser diodes, light emitting diodes or heterojunction bipolar transistors, hetero-interface's characteristics such as the band offset or interface charges are fundamental. A technique developed by Kroemer et al. uses capacitance-voltage (C-V) profiling to extract band-offsets and charges at a hetero-interface. We applied this technique to the III-Nitrides. We discovered that for the polar III-Nitrides, the technique is not applicable because of the very large polarization charge. We nevertheless successfully measured the polarization charge at the AlGaN/GaN hetero

  10. Effect of domain structure on dielectric nonlinearity in epitaxial BiFeO3 films

    Science.gov (United States)

    Ihlefeld, J. F.; Folkman, C. M.; Baek, S. H.; Brennecka, G. L.; George, M. C.; Carroll, J. F.; Eom, C. B.

    2010-12-01

    Rayleigh analysis has been used to investigate dielectric nonlinearity in epitaxial (001)-oriented BiFeO3 films with engineered domain structures from single- to four-variant and stripe domain samples with 71° and 109° domain walls. Single-domain variant films display minimal irreversible contributions, whereas the ratio of irreversible to reversible contributions increases by approximately one order of magnitude as the number of variants increases to two- and four-variants, respectively. These measurements indicate that the density of domain walls and degree of domain wall complexity influence the number and strength of domain wall pinning sites.

  11. Robust Zero-Field Skyrmion Formation in FeGe Epitaxial Thin Films.

    Science.gov (United States)

    Gallagher, J C; Meng, K Y; Brangham, J T; Wang, H L; Esser, B D; McComb, D W; Yang, F Y

    2017-01-13

    B20 phase magnetic materials have been of significant interest because they enable magnetic Skyrmions. One major effort in this emerging field is the stabilization of Skyrmions at room temperature and zero magnetic field. We grow phase-pure, high crystalline quality FeGe epitaxial films on Si(111). Hall effect measurements reveal a strong topological Hall effect after subtracting the ordinary and anomalous Hall effects, demonstrating the formation of high density Skyrmions in FeGe films between 5 and 275 K. In particular, a substantial topological Hall effect was observed at a zero magnetic field, showing a robust Skyrmion phase without the need of an external magnetic field.

  12. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Directory of Open Access Journals (Sweden)

    Anna Behler

    2013-12-01

    Full Text Available A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  13. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Anna [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, 01171 Dresden (Germany); Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden (Germany); Teichert, Niclas; Auge, Alexander; Hütten, Andreas [Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33501 Bielefeld (Germany); Dutta, Biswanath; Hickel, Tilmann [Max-Planck Institut für Eisenforschung, 40237 Düsseldorf (Germany); Waske, Anja [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, 01171 Dresden (Germany); Eckert, Jürgen [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, 01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, 01062 Dresden (Germany)

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  14. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Science.gov (United States)

    Behler, Anna; Teichert, Niclas; Dutta, Biswanath; Waske, Anja; Hickel, Tilmann; Auge, Alexander; Hütten, Andreas; Eckert, Jürgen

    2013-12-01

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  15. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    Science.gov (United States)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  16. The growth of thin film epitaxial oxide-metal heterostructures

    CERN Document Server

    Wang, C

    1998-01-01

    films with lowest IR emissivity are those made from the purest targets despite their having comparable roughnesses to films from lower purity targets. The lowest emissivity achieved was in the range of 1.64% to 1.72% measured at 3.8 mu m for 1.5 to 1.8 mu m thick films. Modifications to standard idealized Drude theory have been made which, in a phenomenological way, take account of imperfections in the sputtered Al film, oxidation state and roughness. in electric properties of the Nb film and the reduction in crystalline quality of the MgO layer. The reduction of transition temperature to the superconducting state, Tc, and the similarly systematic increase in the Nb lattice parameter were observed consistent with oxygen content data reported in the literature, as the Nb became heavily oxidized. Examination of the surface of clean and oxidized Nb by atomic force microscopy, and deposition of MgO in UHV onto a previously oxidized Nb surface, suggested that the decrease in crystalline quality of the MgO can be a...

  17. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    Science.gov (United States)

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  18. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  19. Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Jonathan R.; Mitra, Chandrima; Jeen, Hyoungjeen; Choi, Woo Seok; Meyer, Tricia L.; Reboredo, Fernando A.; Freeland, John W.; Eres, Gyula; Lee, Ho Nyung

    2016-03-08

    The ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced temperatures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoOx) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 degrees C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by approximate to 30%, resulting in a tunable oxygen defi cient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.

  20. Microneedle crystals of cyano-substituted thiophene/phenylene co-oligomer epitaxially grown on KCl surface

    Science.gov (United States)

    Torii, Kazuki; Dokiya, Shohei; Tanaka, Yosuke; Yoshinaga, Shohei; Yanagi, Hisao

    2017-06-01

    A cyno-substituted thiophene/phenylene co-oligomer (TPCO), 5,5‧-bis(4‧-cyanobiphenyl-4-yl)-2,2‧-bithiophene (BP2T-CN), is vapor-deposited on KCl (001) surface kept at 220 °C by the mask-shadowing method. Transmission electron microscopy and fluorescence microscopy reveal that the deposited BP2T-CN crystallizes in two types of morphologies: microneedles and thin film crystallites. In particular, the predominant microneedles epitaxially grow in four directions in the manner that the BP2T-CN molecules align along the [110]KCl or [-110]KCl. X-ray diffraction patterns indicate that the BP2T-CN molecules in the microneedle lie parallel while those in the thin film crystallite obliquely stand on the KCl surface.

  1. Epitaxial growth and dielectric properties of Bi sub 2 VO sub 5 sub . sub 5 thin films on TiN/Si substrates with SrTiO sub 3 buffer layers

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Joseph, M; Tabata, H; Kawai, T

    2000-01-01

    Bi sub 2 VO sub 5 sub . sub 5 (BVO) thin films were epitaxially grown on SrTiO sub 3 /TiN/Si substrates by using pulsed laser ablation. A TiN thin film was prepared at 700 .deg. C as a bottom electrode. The TiN film exhibited a high alpha axis orientation and a very smooth morphology. Before the preparation of the BVO thin film, a crystallized SrTiO sub 3 thin film was deposited as a buffer layer on TiN/Si. The BVO thin film grown at a substrate temperature at 700 .deg. C and an oxygen pressure of 50 mTorr was found to be epitaxial along the c-axis. Also, BVO films were observed to have flat surfaces and the step-flow modes. The dielectric constant of the BVO film on STO/TiN/Si was constant at about 8 approx 4 in the applied frequency range between 10 sup 2 and 10 sup 6 Hz.

  2. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Hommel, D.; Roskowski, A.M.; Davis, R.F. (ORNL)

    2010-06-25

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  3. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, Rozaliya [ORNL; Ice, Gene E [ORNL; Liu, Wenjun [ORNL; Einfeldt, S. [University of Bremen, Bremen, Germany; Hommel, D. [University of Bremen, Bremen, Germany; Roskowski, A. M. [North Carolina State University; Davis, R. F. [North Carolina State University

    2005-01-01

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  4. Structural characteristics of single crystalline GaN films grown on (111) diamond with AlN buffer

    DEFF Research Database (Denmark)

    Pécz, Béla; Tóth, Lajos; Barna, Árpád

    2013-01-01

    , eliminated the inversion domains and reduced the density of threading dislocations in the GaN epilayers. The films have an in-plane epitaxial relationship [1010]GaN//[110]diamond. Thus GaN (0001) thin films of single epitaxial relationship and of single polarity were realised on diamond with AlN buffer....

  5. Growth and properties of ZnO films grown by the ultrasonic spray-assisted CVD.

    Science.gov (United States)

    Wang, Aiji; Chen, He; Chen, Tingfang; Wu, Zhenglong; Li, Yongliang; Wang, Yinshu

    2014-05-01

    ZnO films were successfully grown on the glass substrates employing an ultrasonic spray-assisted CVD method at 573-673 K. The optical properties, electrical characteristics and crystalline structures of the films were characterized. Effects of the growth temperatures on the film properties were studied. The film growth mode, morphology, transmittance, conductivity and emission properties are very sensitive to the growth temperatures. Growing at lower temperatures would improve both the preferential growth along c-axis and smoothness of the films. The conductivity and transmittance of the films grown at 573 K are also superior to that grown at higher temperatures. All films exhibit strong emission in the visible region and weak emission in UV region. However, the relative intensity of the UV emission to visible emission of the film grown at 573 K is obviously stronger than that grown at higher temperatures.

  6. Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications

    Science.gov (United States)

    Chen, Hsuan-An; Chen, Wei-Chan; Sun, Hsu; Lin, Chien-Chung; Lin, Shih-Yen

    2018-02-01

    Bi-layer graphene is grown directly on sapphire substrates by using ethane as the precursor without the assistance of a metal catalyst. A growth model of graphene flake formation in the furnace, followed by a complete film growth is also proposed. Using the graphene/sapphire sample as the new substrate, scalable MoS2 films with good layer number controllability can be grown directly on the substrate. After fabricating the MoS2/graphene hetero-structures into bottom-gate photo-transistors, a Dirac point shift is observed for the device under the light irradiation condition, which is attributed to the extraction of photo-excited electrons in the MoS2 layer to the graphene channel. The photo-voltaic response observed for the photo-transistors may provide a potential application of the 2D material hetero-structure in thin-film solar cells.

  7. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sadofyev, Yu. G., E-mail: sadofyev@hotmail.com; Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Averyanov, D. V.; Vasil’evskii, I. S. [National Research Nuclear University MEPhI (Russian Federation)

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  8. p-type GaN grown by phase shift epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, M.; Steckl, A. J., E-mail: a.steckl@uc.edu [Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221-0030 (United States); Roberts, J. [Nitronex Corporation, Raleigh, North Carolina 27606 (United States); Kong, W.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-01-06

    Phase shift epitaxy (PSE) is a periodic growth scheme, which desynchronizes host material growth process from dopant incorporation, allowing independent optimization. p-type doping of GaN with Mg by PSE is accomplished with molecular beam epitaxy by periodic shutter action (in order to iterate between Ga- and N-rich surface conditions) and by adjusting time delays between dopant and Ga shutters. Optimum PSE growth was obtained by turning on the Mg flux in the N-rich condition. This suppresses Mg self-compensation at high Mg concentration and produces fairly high hole concentrations (2.4 × 10{sup 18} cm{sup −3})

  9. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001 substrate

    Directory of Open Access Journals (Sweden)

    Srijani Mallik

    2014-09-01

    Full Text Available Epitaxial Fe thin films were grown on annealed MgO(001 substrates at oblique incidence by DC magnetron sputtering. Due to the oblique growth configuration, uniaxial anisotropy was found to be superimposed on the expected four-fold cubic anisotropy. A detailed study of in-plane magnetic hysteresis for Fe on MgO thin films has been performed by Magneto Optic Kerr Effect (MOKE magnetometer. Both single step and double step loops have been observed depending on the angle between the applied field and easy axis i.e. along ⟨100⟩ direction. Domain images during magnetization reversal were captured by Kerr microscope. Domain images clearly evidence two successive and separate 90° domain wall (DW nucleation and motion along cubic easy cum uniaxial easy axis and cubic easy cum uniaxial hard axis, respectively. However, along cubic hard axis two 180° domain wall motion dominate the magnetization reversal process. In spite of having four-fold anisotropy it is essential to explain magnetization reversal mechanism in 0°< ϕ < 90° span as uniaxial anisotropy plays a major role in this system. Also it is shown that substrate rotation can suppress the effect of uniaxial anisotropy superimposed on four-fold anisotropy.

  10. Reduction of threading dislocations in ZnO/(0001) sapphire film heterostructure by epitaxial lateral overgrowth of nanorods

    Science.gov (United States)

    Sun, Yuekui; Cherns, David; Doherty, Rachel P.; Warren, James L.; Heard, Peter J.

    2008-07-01

    Transmission electron microscopy was used to study threading dislocations (TDs) in epitaxial ZnO films on (0001) sapphire substrates produced by a two-step method. First, ZnO was deposited by pulsed laser deposition. It was found that the sample consisted of a continuous buffer layer with a high density, 7×1010/cm2, of TDs, with c-aligned nanorods on its top. The nanorods revealed few, if any, TDs. A further layer of ZnO was then grown under conditions favoring nanorod growth, using either chemical vapor deposition (CVD) or a hydrothermal method. In both cases the nanorods grew laterally and eventually coalesced to form a continuous overgrowth. The nanorods remained mostly free of dislocations until coalescence. New grain boundary dislocations were generated where nanorods coalesced, but many of these dislocations migrated laterally and interacted with other dislocations to form closed loops. The TD density at the top of the continuous film was thereby reduced to 1×109/cm2 and 7×109/cm2 in the cases of hydrothermal and CVD treatments, respectively. The mechanism of growth and the means by which TDs are reduced are explained.

  11. High Quality InAs/InSb nanowire heterostructrues grown by metalorganic vapour phase epitaxy

    DEFF Research Database (Denmark)

    Caroff, Philippe; Wagner, Jakob Birkedal; Dick, Kimberly A.

    2008-01-01

    Growth and structural analysis of epitaxial InAs/InSb nanowire heterostructures are demonstrated for the first time. InSb segments are found to be perfect crystals, free of stacking faults or other major defects, and have a sharp interface with InAs (see image). After growth the seed particle...... is a single crystal nearly lattice matched to the nanowire. InSb segments are n-type and form ohmic contacts with Ni/Au electrodes....

  12. Structural properties of cubic GaN epitaxial layers grown on β-SiC

    Science.gov (United States)

    Teles, L. K.; Scolfaro, L. M. R.; Enderlein, R.; Leite, J. R.; Josiek, A.; Schikora, D.; Lischka, K.

    1996-12-01

    Self-consistent tight-binding total energy calculations are performed to study the deposition of a few layers of cubic GaN on (100) β-SiC substrates. Cohesion energies, atomic displacements, dangling bond occupancies and surface reconstructions are calculated for a variety of epitaxial systems including monolayers of either Ga or N as well as single and double bilayers of GaN on either Si or C terminated substrates. The SiC substrates and Ga-N epitaxial layers are represented by 2×2 supercells of 9 Si and C monolayers plus the respective number of monolayers of Ga and N atoms. Depending on the system, surface atoms dimerize either symmetrically or asymmetrically resulting in either 2×1, c-2×2, or 2×2 surface reconstructions. At the substrate-epitaxial-layer interfaces, N binds stronger than Ga to either Si or C. Interface mixing is found to be energetically not advantageous for both C- and Si-terminated substrates, although for the latter the obtained small energy differences may suggest the possibility of mixing.

  13. Molecular-beam epitaxially grown spatial light modulators with charge-coupled-device addressing

    Science.gov (United States)

    Goodhue, W. D.; Burke, B. E.; Aull, B. F.; Nichols, K. B.

    1988-08-01

    Molecular-beam epitaxy has been used to grow the first spatial light modulators which combine charge-coupled-device addressing and electroabsorption effects in multiple quantum wells. Charge packets are used to control the electric field across an underlying multiple-quantum-well structure, causing a change in the optical absorption properties of the device. It was demonstrataed that the intensity of an optical signal propagating through the device normal to the quantum wells can be significantly modulated. Both 16- and 32-stage one-dimensional and 16 X 16-stage two-dimensional devices have been fabricated. Devices with GaAs and AlGaAs epitaxial layers have been operated in the 850-nm region, and devices with InGaAs and GaAs epitaxial layers have been operated above 900 nm. One-dimensional GaAs/AlGaAs devices exhibit an intensity modulation of 1.45 to 1 at 847 nm, and one-dimensional InGaAs/GaAs devices exhibit an intensity modulation of 1.18 to 1 at 965 nm. The large optical modulation achieved by these devices make them excellent candidates for use in optical signal processing and the emerging field of optical computing.

  14. Suppression of creep-regime dynamics in epitaxial ferroelectric BiFeO3 films.

    Science.gov (United States)

    Shin, Y J; Jeon, B C; Yang, S M; Hwang, I; Cho, M R; Sando, D; Lee, S R; Yoon, J-G; Noh, T W

    2015-05-27

    Switching dynamics of ferroelectric materials are governed by the response of domain walls to applied electric field. In epitaxial ferroelectric films, thermally-activated 'creep' motion plays a significant role in domain wall dynamics, and accordingly, detailed understanding of the system's switching properties requires that this creep motion be taken into account. Despite this importance, few studies have investigated creep motion in ferroelectric films under ac-driven force. Here, we explore ac hysteretic dynamics in epitaxial BiFeO3 thin films, through ferroelectric hysteresis measurements, and stroboscopic piezoresponse force microscopy. We reveal that identically-fabricated BiFeO3 films on SrRuO3 or La0.67Sr0.33MnO3 bottom electrodes exhibit markedly different switching behaviour, with BiFeO3/SrRuO3 presenting essentially creep-free dynamics. This unprecedented result arises from the distinctive spatial inhomogeneities of the internal fields, these being influenced by the bottom electrode's surface morphology. Our findings further highlight the importance of controlling interface and defect characteristics, to engineer ferroelectric devices with optimised performance.

  15. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  16. Defect formation and carrier doping in epitaxial films of the infinite layer compound

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, R.; Pennycook, S.J.; Chisholm, M.F. [Oak Ridge National Lab., TN (United States). Solid State Div.] [and others

    1996-02-01

    The correlation between defect formation and carrier doping in epitaxial films of the infinite layer compound SrCuO{sub 2} has been studied via molecular beam epitaxy controlled layer-by-layer growth experiments, chemically resolved scanning transmission electron microscopy, scanning tunneling microscopy, x-ray diffraction, electrical transport measurements, and post-growth oxidation-reduction annealing. Based on the complementary information provided by these experiments, it is concluded that the carrier doping is dominated by the formation of an electron-doped, Sr and O deficient matrix under mildly oxidizing growth conditions. Hole-doping is induced by extended defects containing excess Sr atoms and may lead to superconductivity after high-temperature oxidation.

  17. Epitaxial growth of delafossite CuFeO2 thin films by pulse laser deposition

    Science.gov (United States)

    Li, S. Z.; Liu, J.; Wang, X. Z.; Yan, B. W.; Li, H.; Liu, J.–M.

    2012-07-01

    CuFeO2 (CFO) is a delafossite-type compound and is a well known p-type semiconductor. Epitaxial CuFeO2 thin films were prepared on Al2O3 (0 0 0 1) substrates by pulsed laser deposition. The deposition, performed at 500 °C and 10 Pa leads to epitaxial phase with extremely low roughness and high density. The oxygen pressure modulates the band energy properties of Cu 2p, Fe 3p and O1s. The results show that the low deposition oxygen pressure contributes to the chemistry ingredient and magnetization properties. Furthermore, spin-glass behavior is identified and weak-ferromagnetization property is found at a low temperature about ∼5 K.

  18. Epitaxial growth of delafossite CuFeO{sub 2} thin films by pulse laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.Z. [School of Physics, Huangshi Institute of Technology, Huangshi 435003 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, J. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, X.Z [Department of Physics, Hubei Normal University, Huangshi 435000 (China); Yan, B.W.; Li, H. [School of Physics, Huangshi Institute of Technology, Huangshi 435003 (China); Liu, J.-M., E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2012-07-01

    CuFeO{sub 2} (CFO) is a delafossite-type compound and is a well known p-type semiconductor. Epitaxial CuFeO{sub 2} thin films were prepared on Al{sub 2}O{sub 3} (0 0 0 1) substrates by pulsed laser deposition. The deposition, performed at 500 Degree-Sign C and 10 Pa leads to epitaxial phase with extremely low roughness and high density. The oxygen pressure modulates the band energy properties of Cu 2p, Fe 3p and O1s. The results show that the low deposition oxygen pressure contributes to the chemistry ingredient and magnetization properties. Furthermore, spin-glass behavior is identified and weak-ferromagnetization property is found at a low temperature about {approx}5 K.

  19. Epitaxial growth and optical transitions of cubic GaN films

    Science.gov (United States)

    Schikora, D.; Hankeln, M.; As, D. J.; Lischka, K.; Litz, T.; Waag, A.; Buhrow, T.; Henneberger, F.

    1996-09-01

    Single-phase cubic GaN layers are grown by plasma-assisted molecular-beam epitaxy. The temperature dependence of the surface reconstruction is elaborated. The structural stability of the cubic growth in dependence of the growth stoichiometry is studied by RHEED measurements and numerical simulations of the experimental RHEED patterns. Growth oscillations on cubic GaN are recorded at higher substrate temperatures and nearly stoichiometric adatom coverage. Photoluminescence reveals the dominant optical transitions of cubic GaN and, by applying an external magnetic field, their characteristic g factors are determined.

  20. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Claudel, A., E-mail: arnaud.claudel@grenoble-inp.org [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Fellmann, V. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Gélard, I. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Coudurier, N. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Sauvage, D. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Balaji, M. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Crystal Growth Center, Anna University, Chennai 600025 (India); and others

    2014-12-31

    Thin (0001) epitaxial aluminum nitride (AlN) layers were grown on c-plane sapphire using high temperature hydride vapor phase epitaxy. The experimental set-up consists of a vertical cold-wall quartz reactor working at low pressure in which the reactions take place on a susceptor heated by induction. The reactants used are ammonia and aluminum chlorides in situ formed via hydrogen chloride reaction with high purity aluminum pellets. As-grown AlN layers have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence and Raman spectroscopies. The influence of the V/III ratio in the gas phase, from 1.5 to 15, on growth rate, surface morphology, roughness and crystalline quality is investigated in order to increase the quality of thin epitaxial AlN layers grown at high temperature. Typical growth rates of around 0.45 μm/h were obtained for such thin epitaxial AlN layers. The growth rate was unaffected by the V/III ratio. An optimum for roughness, crystalline quality and optical properties seems to exist at V/III = 7.5. As a matter of fact, for a V/III ratio of 7.5, best root mean square roughness and crystalline quality — measured on 0002 symmetric reflection — as low as 6.9 nm and 898 arcsec were obtained, respectively. - Highlights: • Growth of thin epitaxial AlN layers by high temperature hydride vapor phase epitaxy • Influence of V/III ratio on growth rate, morphology and crystalline quality • The effect of surface morphology on strain state and crystal quality is established.

  1. Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang Min; Xu Zhichun

    2004-03-01

    The novel Bi-substituted rare-earth iron garnet films were grown by the modified liquid phase epitaxy (LPE) technique for use as a 45 deg. Faraday rotator in optical isolators. First, single crystals of Y{sub 3}Fe{sub 5}O{sub 12} (YIG), with a lattice constant of 1.2378 nm, were grown by means of the Czochralski method. Using the seed crystal of YIG instead of the conventional non-magnetic garnet of Gd{sub 3}Ga{sub 5}O{sub 12} as a substrate, a film of BiYbIG was grown by means of the LPE method from Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} fluxes. The structural, magnetic and magneto-optical properties of BiYbIG LPE film/YIG crystal composite have been investigated using directional X-ray diffraction, electron probe microanalysis, vibrating sample magnetometer and near-infrared transmission spectrometry. The saturation magnetization 4{pi}M{sub s} has been estimated to be approximately 1200 G. The Faraday rotation spectrum was measured by the method of rotating analyzer ellipsometry with the wavelength varying from 800 to 1700 nm. The resultant Bi{sub 0.37}Yb{sub 2.63}Fe{sub 5}O{sub 12} LPE film/YIG crystal composite showed an increased Faraday rotation coefficient due to doping Bi{sup 3+} ions on the dodecahedral sites of the magnetic garnet without increasing absorption loss, therefore a good magneto-optic figure of merit, defined by the ratio of Faraday rotation and optical absorption loss, has been achieved of 21.5 deg/dB and 30.2 deg/dB at 1300 nm and 1550 nm wavelengths, respectively, at room temperature. Since Yb{sup 3+} ions and Y{sup 3+} ions provide the opposite contributes to the wideband and temperature characteristic of Faraday rotation, the values of Faraday rotation wavelength and temperature coefficients were reduced to 0.06%/nm and 0.007 deg/ deg. C at 1550 nm wavelength, respectively.

  2. Sn - Induced decomposition of SiGeSn alloys grown on Si by molecular-beam epitaxy

    Science.gov (United States)

    Talochkin, A. B.; Timofeev, V. A.; Gutakovskii, A. K.; Mashanov, V. I.

    2017-11-01

    Structural features of Si1-x-yGexSny alloy layers grown on Si by molecular-beam epitaxy are studied. These layers with the thickness of 2.0 nm, the nominal Ge composition of x0 ≈ 0.3, and the Sn-content of y ≈ 2-6 at.% have been grown at low temperatures (100-150 °C). We have used high-resolution transmission electron microscopy to analyze atomic structure of grown layers and Raman spectroscopy to evaluate the real Ge-content x from the observed optical phonon frequencies. It is found that the x value coincides with the nominal one at low Sn-content (2-3 at.%), and when it is increased (y ≥ 5 at.%), the decomposition of alloys into two fractions occurs. One of them is enriched by Ge with x up to 0.6 and the other fraction is Si-enriched. It is shown that the observed decomposition is Sn-induced and related to increase in Ge adatoms mobility in the growth process. This mechanism is similar to that theoretically predicted by Venezuela and Tersoff (Phys. Rev. 58, 10871 (1998)) for the case of high growth temperature.

  3. Magnetic structural effect (MSE in epitaxial films of cerium oxide and lanthanum zirconate

    Directory of Open Access Journals (Sweden)

    Fatima Kh. Chibirova

    2015-06-01

    Full Text Available Increasing the critical current density in the second generation high-temperature superconducting wires (2G HTS is the major challenge for researchers and manufacturers of 2G HTS wires all over the world. We proposed a new approach to increase the number of percolation paths for supercurrent, i.e. increasing the number of low angle grain boundaries (<5° in the epitaxial superconducting YBCO layer by magnetic structural processing (MSP of buffer layers. New experimental results have been presented on the application of MSP for improving the structure and increasing the texture sharpness of buffer in electrical conducting element of 2G HTS wire. The influence of MCO on the structural and textural properties has been investigated in a buffer consisting of epitaxial films of cerium oxide CeO2 and lanthanum zirconate La2Zr2O7 in the CeO2/4La2Zr2O7 architecture. The influence of the magnetic processing of the epitaxial La2Zr2O7 buffer film on the shape of grains has been found. An atomic force microscopical study has shown that after magnetic processing the shape of grains improved significantly. A multilayer CeO2/4La2Zr2O7 buffer each layer of which was processed in a magnetic field has a high degree of orientation: only one diffraction peak with (200 indexes is observed in the X-ray spectrum. The X-ray settings of the (200 diffraction peak indicate a well developed epitaxial structure of CeO2 and La2Zr2O7 layers. The texture of the buffer is by more than 2° sharper than that of the Ni–5 at% W substrate.

  4. Growth and characterization of InP ringlike quantum-dot molecules grown by solid-source molecular beam epitaxy.

    Science.gov (United States)

    Jevasuwan, Wipakorn; Boonpeng, Poonyasiri; Panyakeow, Somsak; Ratanathammaphan, Somchai

    2010-11-01

    In this paper, we have studied the fabrication of InP ringlike quantum-dot molecules on GaAs(001) substrate grown by solid-source molecular beam epitaxy using droplet epitaxy technique and the effect of In deposition rate on the physical and optical properties of InP ringlike quantum-dot molecules. The In deposition rate is varied from 0.2 ML/s to 0.4, 0.8 and 1.6 ML/s. The surface morphology and cross-section were examined by ex-situ atomic force microscope and transmission electron microscope, respectively. The increasing of In deposition rate results in the decreasing of outer and inner diameters of InP ringlike quantum-dot molecules and height of InP quantum dots but increases the InP quantum dot and ringlike quantum-dot molecule densities. The photoluminescence peaks of InP ringlike quantum-dot molecules are blue-shifted and FWHM is narrower when In deposition rate is bigger.

  5. Highly textured Gd2Zr2O7 films grown on textured Ni-5 at.%W substrates by solution deposition route: Growth, texture evolution, and microstructure dependency

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Napari, M.

    2012-01-01

    or crystallization in the thicker films. This work not only demonstrates a route for producing textured Gd2Zr2O7 buffer layers with dense structure directly on technical substrates, but also provides some fundamental understandings related to chemical solution derived films grown on metallic substrates.......Growth, texture evolution and microstructure dependency of solution derived Gd2Zr2O7 films deposited on textured Ni-5 at.%W substrates have been extensively studied. Influence of processing parameters, in particular annealing temperature and dwell time, as well as thickness effect on film texture...... the difference of interfacial energy along two directions in the anisotropic metallic substrate. Growth of Gd2Zr2O7 films displays an ultrafast kinetics under optimized conditions. Independency of sharp epitaxial (004) and polycrystalline (222) orientation is revealed from further synchrotron diffraction studies...

  6. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Cirlin, G E; Reznik, R R; Shtrom, I V

    2017-01-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail...

  7. AC-photoconductivity measurement of C60 epitaxial film

    Energy Technology Data Exchange (ETDEWEB)

    Ohgami, T.; Shimada, Y.; Kubota, H.; Tanaka, H.; Matsuzaki, S.; Nagata, M. [Kumamoto Univ. (Japan). Dept. of Electr. Eng. and Comput. Sci.

    1997-08-01

    Band gap structure of C60 film coated by Au electrode is reported according to the AC-photoconductivity spectra. Applying bias voltage through the Au electrodes has verified Schottky barrier height of about 2 V. The spectra of the phase indicate that band gap has 1.85 eV at 300 K. With decreasing temperature, the magnitude of the gap expands to 1.91 eV at around 250 K corresponding to the structure change of C60 crystal. (orig.). 7 refs.

  8. 1.142 mu m GaAsBi/GaAs Quantum Well Lasers Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Wu, Xiaoyan; Pan, Wenwu; Zhang, Zhenpu

    2017-01-01

    As a promising new class of near-infrared light emitters, GaAsBi laser diodes (LDs) are considered to have a high energy efficiency and an insensitive temperature dependence of the band gap. In this paper, we realize the longest ever reported lasing wavelength up to 1.142 mu m at room temperature...... in GaAsBi0.058/GaAs quantum well LDs grown by molecular beam epitaxy. The output power is up to 127 mW at 300 K under pulsed mode. We also demonstrate continuous wave mode operation up to 273 K for the first time. The temperature coefficient of the GaAsBi/GaAs LD is 0.26 nm/K in the temperature range...

  9. Incorporation and optical properties of magnesium in cubic GaN epilayers grown by molecular beam epitaxy

    Science.gov (United States)

    As, D. J.; Simonsmeier, T.; Schöttker, B.; Frey, T.; Schikora, D.; Kriegseis, W.; Burkhardt, W.; Meyer, B. K.

    1998-09-01

    The incorporation and optical properties of Mg in cubic GaN (c-GaN) epilayers grown by rf plasma-assisted molecular beam epitaxy on (100) GaAs are investigated by secondary ion mass spectroscopy and low-temperature photoluminescence (PL). By varying the Mg flux by more than four orders of magnitude, the incorporation of Mg saturates at high Mg flux and is limited to a value of about 5×1018cm-3 due to the high volatility of Mg at growth temperature. In addition, we observe an accumulation of Mg at the GaN/GaAs interface due to a diffusion of Mg to the GaAs substrate. Low-temperature PL spectra reveal several well-separated lines. Besides a shallow acceptor level at EA≅0.230 eV, additional Mg-related deep defect levels indicate an incorporation of Mg at off-gallium sites or as complexes.

  10. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Ananta R., E-mail: aacharya@georgiasouthern.edu, E-mail: anantaach@gmail.com [Department of Physics, Georgia Southern University, Statesboro, Georgia 30460 (United States); Thoms, Brian D. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Nepal, Neeraj [American Association for Engineering Education, 1818 N Street NW, Washington, DC 20034 (United States); Eddy, Charles R. [Electronics Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  11. Tunnel magnetoresistance in epitaxially grown magnetic tunnel junctions using Heusler alloy electrode and MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tsunegi, S.; Sakuraba, Y.; Oogane, M.; Telling, N. D.; Shelford, L. R.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Takanashi, K.; Ando, Y.

    2009-07-01

    Epitaxially grown magnetic tunnel junctions (MTJs) with a stacking structure of Co{sub 2}MnSi/MgO/CoFe were fabricated. Their tunnel magnetoresistance (TMR) effects were investigated. The TMR ratio and tunnelling conductance characteristics of MTJs were considerably different between those with an MgO barrier prepared using sputtering (SP-MTJ) and those prepared using EB evaporation (EB-MTJ). The EB-MTJ exhibited a very large TMR ratio of 217% at room temperature and 753% at 2 K. The bias voltage dependence of the tunnelling conductance in the parallel magnetic configuration for the EB-MTJ suggests that the observed large TMR ratio at RT results from the coherent tunnelling process through the crystalline MgO barrier. The tunnelling conductance in the anti-parallel magnetic configuration suggests that the large temperature dependence of the TMR ratio results from the inelastic spin-flip tunnelling process.

  12. A detailed study of self-assembled (Al,Ga)InP quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Vasilij; Roedel, Reinhold; Heidemann, Matthias; Schneider, Christian; Kamp, Martin; Hoefling, Sven [Technische Physik, Physikalisches Institut, Wilhelm Conrad Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg (Germany)

    2014-11-15

    We report on the structural and optical properties of self-assembled (Al,Ga)InP quantum dots (QDs) with varying material composition embedded in a (Al{sub 0.30}Ga{sub 0.70}){sub 0.51}In{sub 0.49}P matrix. The samples were grown by gas-source molecular beam epitaxy. Atomic force microscopy was used to study the structural properties of the quantum dots, revealing a strong dependence of the morphology on the material composition. Low-temperature ensemble photoluminescence was observed between 590 nm and 720 nm. Temperature and excitation power dependent, as well as time resolved measurements were performed, indicating a significantly reduced electron confinement and a reduced overlap of the electron/hole wavefunctions for Al- and/or Ga-rich compositions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Massless Dirac Fermions in ZrTe2Semimetal Grown on InAs(111) by van der Waals Epitaxy.

    Science.gov (United States)

    Tsipas, Polychronis; Tsoutsou, Dimitra; Fragkos, Sotirios; Sant, Roberto; Alvarez, Carlos; Okuno, Hanako; Renaud, Gilles; Alcotte, Reynald; Baron, Thierry; Dimoulas, Athanasios

    2018-01-17

    Single and few layers of the two-dimensional (2D) semimetal ZrTe 2 are grown by molecular beam epitaxy on InAs(111)/Si(111) substrates. Excellent rotational commensurability, van der Waals gap at the interface and moiré pattern are observed indicating good registry between the ZrTe 2 epilayer and the substrate through weak van der Waals forces. The electronic band structure imaged by angle resolved photoelectron spectroscopy shows that valence and conduction bands cross at the Fermi level exhibiting abrupt linear dispersions. The latter indicates massless Dirac Fermions which are maintained down to the 2D limit suggesting that single-layer ZrTe 2 could be considered as the electronic analogue of graphene.

  14. Temperature dependence of electron density and electron-electron interactions in monolayer epitaxial graphene grown on SiC

    Science.gov (United States)

    Liu, Chieh-Wen; Chuang, Chiashain; Yang, Yanfei; Elmquist, Randolph E.; Ho, Yi-Ju; Lee, Hsin-Yen; Liang, Chi-Te

    2017-06-01

    We report carrier density measurements and electron-electron (e-e) interactions in monolayer epitaxial graphene grown on SiC. The temperature (T)-independent carrier density determined from the Shubnikov-de Haas (SdH) oscillations clearly demonstrates that the observed logarithmic temperature dependence of the Hall slope in our system must be due to e-e interactions. Since the electron density determined from conventional SdH measurements does not depend on e-e interactions based on Kohn’s theorem, SdH experiments appear to be more reliable compared with the classical Hall effect when one studies the T dependence of the carrier density in the low T regime. On the other hand, the logarithmic T dependence of the Hall slope δR xy /δB can be used to probe e-e interactions even when the conventional conductivity method is not applicable due to strong electron-phonon scattering.

  15. Strain compensation of InGaAs/GaAs SDL gain mirrors grown by molecular beam epitaxy

    Science.gov (United States)

    Ranta, S.; Leinonen, T.; Tavast, M.; Hakkarainen, T. V.; Suominen, I.; Guina, M.

    2012-03-01

    We analyze the effect of strain compensation on the crystalline quality of InGaAs/GaAs quantum well gain mirrors that are designed for emission above 1100 nm. The gain mirrors used in this study were grown by molecular beam epitaxy and they utilize GaAsP strain compensation. The effect of strain compensation has been assessed by measuring the curvature of the wafers and by mapping photoluminescence to identify non-emissive dark areas. We present that about 70 % strain compensation is sufficient to prevent dark line defect generation for gain mirrors designed for up to 1170 nm operation. Rapid thermal annealing studies revealed that the strain compensation is efficient in preventing appearance of dark lines even for samples that have been annealed at temperatures as high as 700 °C for a considerable time. Finally, we demonstrate multi-watt operation at 1115-1190 nm using 70-90 % strain compensated gain mirrors.

  16. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  17. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  18. Pendeo-epitaxial Growth and Characterization of III-Nitride Thin Films on SiC(0001) and Si(111) Substrates

    Science.gov (United States)

    Davis, Robert

    2002-03-01

    between the seed structures occurs, resulting in a single complete layer. Discrete and coalesced monocrystalline layers of pendeo-epitaxially grown GaN and AlGaN layers originating from side walls of GaN seed structures containing SiN top masks have been grown on GaN/AlN/6H-SiC(0001) and GaN(0001)/AlN(0001)/3C-SiC(111)/Si(111) substrates. Scanning and transmission electron microscopies were used to evaluate the external microstructures and the distribution of dislocations, respectively. The dislocation densities in the PE grown films was reduced by at least five orders of magnitude relative to the initial GaN seed layers. Tilting in the coalesced GaN epilayers was observed via X-ray diffraction. A tilt of 0.2° was confined to areas of mask overgrowth; however, no tilting was observed in the material suspended above the SiC substrate. The strong, low-temperature PL band-edge peak at 3.45 eV with a FWHM of 17 meV was comparable to that observed in PE GaN films grown on 6H-SiC(0001). The band-edge in the GaN grown on AlN(0001)/SiC(111)Si(111) substrates was shifted to a lower energy by 10 meV, indicative of a greater tensile stress.

  19. Epitaxial Zn{sub 0.9}Mn{sub 0.1}O thin films ablated from targets synthesized by wet chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Mera, J. [Centro de Investigaciones en Materiales, Facultad de Ingenieria, Universidad de Narino, Ciudad Universitaria Torobajo, Pasto (Colombia); Doria, J. [Laboratorio de Materiales Ceramicos y Vitreos, Departamento de Fisica, Universidad Nacional de Colombia, Sede Medellin, A.A. 568, Medellin (Colombia); Cordoba, C.; Paredes, O. [Centro de Investigaciones en Materiales, Facultad de Ingenieria, Universidad de Narino, Ciudad Universitaria Torobajo, Pasto (Colombia); Gomez, A. [Laboratorio de caracterizacion de materiales, Universidad Nacional de Colombia, Sede Medellin, A.A. 568, Medellin (Colombia); Paucar, C. [Laboratorio de Materiales Ceramicos y Vitreos, Departamento de Fisica, Universidad Nacional de Colombia, Sede Medellin, A.A. 568, Medellin (Colombia); Fuchs, D. [Karlsruhe Institute of Technology, Institut fuer Festkoerperphysik, Postfach 3640, Karlsruhe (Germany); Moran, O., E-mail: omoranc@unal.edu.c [Laboratorio de Materiales Ceramicos y Vitreos, Departamento de Fisica, Universidad Nacional de Colombia, Sede Medellin, A.A. 568, Medellin (Colombia)

    2010-08-15

    Zn{sub 0.9}Mn{sub 0.1}O thin films were prepared by pulsed laser deposition (PLD) on c-Al{sub 2}O{sub 3}(0 0 0 1) substrates. The polymeric precursor method was used to synthesize the powders from which the ablation targets were fabricated. Zn{sub 0.9}Mn{sub 0.1}O films ablated from these targets showed excellent epitaxial growth with a full-width at half-maximum (FWHM) {approx}0.07{sup o}. Probably, the purity offered by the soft chemistry methods to prepare ceramic-type polycrystalline compounds with nanometric particle size plays an important role in achieving high-quality films of novel oxides as Mn-doped ZnO. Interestingly, the Zn{sub 0.9}Mn{sub 0.1}O films displayed well-defined magnetic hysteresis loops both at room temperature and 5 K, which points out to the presence of ferromagnetic order in the films. Nevertheless, the mechanism leading to room temperature ferromagnetism in the Mn-doped ZnO is not fully established. Probably, unpaired electron spins responsible for ferromagnetism in the films have their origin in the oxygen vacancies, especially on the surfaces of the oxide nanoparticles. The oxygen deficiency would result from thin film growth conditions as the studied samples were grown in low-pressure oxygen atmosphere (1x10{sup -4} mbar).

  20. Optical and electrical properties of CuScO 2 epitaxial films prepared by combining two-step deposition and post-annealing techniques

    Science.gov (United States)

    Kakehi, Yoshiharu; Satoh, Kazuo; Yotsuya, Tsutom; Masuko, Keiichiro; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi

    2009-02-01

    A CuScO 2(0 0 0 1) epitaxial film with a thickness of a few hundred nanometers was successfully grown on an a-plane sapphire substrate by combining the two-step deposition and post-annealing techniques. The film was single-phase with a rhombohedral crystal structure and showed six-fold rotational symmetry in the basal plane, indicating that the film had a twinned domain structure. The orientation relationships of the film with respect to the substrate were CuScO 2[3R](0 0 0 1)//sapphire(1 1 2¯ 0) and CuScO 2[3R][1 1 2¯ 0]//sapphire[0 0 0 1]. The average optical transmittance of the film was higher than 60% in the visible/near-infrared regions, and the energy gap for direct allowed transition was estimated to be 3.7 eV. The p-type conduction of the film was confirmed by Hall measurement. The electrical conductivity, carrier concentration, Hall mobility, and Seebeck coefficient of the film at room temperature were 1.0×10 -3 S cm -1, 4.5×10 16 cm -3, 1.4×10 -1 cm 2 V -1 s -1, and +968 μV K -1, respectively. The activation energy estimated from the temperature dependence of the carrier concentration was 0.62 eV.

  1. Epitaxial strain induced atomic ordering in stoichiometric LaCoO3 thin films

    Science.gov (United States)

    Choi, Woo Seok; Kwon, Ji-Hwan; Jeen, Hyoungjeen; Sawatzky, George A.; Hinkov, Vladimir; Kim, Miyoung; Lee, Ho Nyung

    2015-03-01

    Heteroepitaxial strain imposed in complex transition metal oxide thin films is recognized as an effective tool for identifying and controlling emergent physical phenomena. Stoichiometric LaCoO3 is particularly interesting, since the thin film form of the material exhibits a robust macroscopic ferromagnetic ordering, while the bulk form of the material is a zero spin, nonmagnetic insulator. In this work, we show that the ferromagnetic ordering observed in LaCoO3 thin films is related to a lattice modulation in the atomic scale, originating from the epitaxial strain. The possibility of oxygen vacancies have been carefully ruled out using various macroscopic and microscopic spectroscopic techniques, and an unconventional strain relaxation behavior identified by strip-like lattice modulation pattern was responsible for the non-zero spin ground state of Co3+ ions. We further note that the unconventional strain relaxation did not involve any uncontrolled misfit dislocations.

  2. Light scattering by epitaxial VO{sub 2} films near the metal-insulator transition point

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, Sergiy, E-mail: sergiy.lysenko@upr.edu; Fernández, Felix; Rúa, Armando; Figueroa, Jose; Vargas, Kevin; Cordero, Joseph [Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico 00681 (United States); Aparicio, Joaquin [Department of Physics, University of Puerto Rico-Ponce, Ponce, Puerto Rico 00732 (United States); Sepúlveda, Nelson [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-05-14

    Experimental observation of metal-insulator transition in epitaxial films of vanadium dioxide is reported. Hemispherical angle-resolved light scattering technique is applied for statistical analysis of the phase transition processes on mesoscale. It is shown that the thermal hysteresis strongly depends on spatial frequency of surface irregularities. The transformation of scattering indicatrix depends on sample morphology and is principally different for the thin films with higher internal elastic strain and for the thicker films where this strain is suppressed by introduction of misfit dislocations. The evolution of scattering indicatrix, fractal dimension, surface power spectral density, and surface autocorrelation function demonstrates distinctive behavior which elucidates the influence of structural defects and strain on thermal hysteresis, twinning of microcrystallites, and domain formation during the phase transition.

  3. Investigation of strain relaxation mechanisms and transport properties in epitaxial SmNiO3 films

    Science.gov (United States)

    Conchon, F.; Boulle, A.; Guinebretière, R.; Dooryhée, E.; Hodeau, J.-L.; Girardot, C.; Pignard, S.; Kreisel, J.; Weiss, F.; Libralesso, L.; Lee, T. L.

    2008-06-01

    This article deals with strain relaxation in SmNiO3 epitaxial films deposited by chemical vapor deposition on SrTiO3 substrates. Thanks to x-ray reciprocal space mapping, we demonstrate that the strain relaxation is driven both "chemically" and "mechanically" by the formation of oxygen vacancies and misfit dislocations, respectively. Besides, a careful interpretation of the resistivity measurements allows us to highlight a correlation between the formation of oxygen vacancies, the stabilization of Ni3+, and the metal-insulator transition in the SmNiO3 films. Furthermore, using coplanar and grazing incidence diffraction, the shape of the strain gradient within the films is retrieved. This latter is calculated using a versatile scattering model involving B-spline functions. Finally, particular planar faults (Ruddlesden-Popper faults) that give rise to extended diffuse scattering on transverse scans are analyzed using a recent phenomenological model.

  4. Pendeo-epitaxial growth and characterization of thin films of gallium nitride and related materials on SiC(0001) and Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.; Zheleva, T.S. [North Carolina State Univ., Raleigh, NC (United States); Gehrke, T. [North Carolina State Univ., Raleigh, NC (United States); Nitronex Corp., Raleigh, NC (United States); Linthicum, K.J.; Rajagopal, P. [Nitronex Corp., Raleigh, NC (United States); Zorman, C.A.; Mehregany, M. [Case Western Reserve Univ., Cleveland, OH (United States)

    2001-02-01

    Monocrystalline GaN and Al{sub x}Ga{sub 1-x}N films have been grown via the pendeo-epitaxy (PE) technique with and without Si{sub 3}N{sub 4} masks on GaN/AlN/6H-SiC(0001) and GaN(0001)/AlN(0001)/3C-SiC(111)/Si(111) substrates using organometallic vapor phase deposition. Scanning and transmission electron microscopies were used to evaluate the external microstructures and the distribution of dislocations, respectively. The dislocation densities in the PE grown films were reduced at least five orders of magnitude relative to the initial GaN seed layers. Tilting to 0.2 in the portion of the coalesced GaN epilayers grown over the silicon nitride masks was observed via X-ray diffraction. Neither tilting nor low angle boundaries were observed within areas of coalescence in the material grown on substrates without the masks. (orig.)

  5. Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers

    Science.gov (United States)

    2010-01-01

    matched bulk CdZnTe substrates. Recent work6 on CdTe/Si has shown that in situ thermal cycle annealing (TCA), where annealing is performed intermittently...was grown on a bulk CdZnTe substrate for comparison. The HgCdTe was grown at 185C, with a growth rate of 2 lm/h. The typical HgCdTe layer...Cd composition. The HgCdTe layers grown on bulk CdZnTe samples, which were subjected to annealing condi- tions similar to those for the HgCdTe layers

  6. In-situ synchrotron x-ray studies of the microstructure and stability of In 2 O 3 epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.; Thompson, Carol; Fuoss, P. H.; Calvo-Almazan, I.; Maddali, S.; Ulvestad, A.; Nazaretski, E.; Huang, X.; Yan, H.; Chu, Y. S.; Zhou, H.; Baldo, P. M.; Eastman, J. A.

    2017-10-16

    We report on the synthesis, stability, and local structure of In2O3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In2O3 deposited onto (0 0 1)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski-Krastanov growth mode at a temperature of 850 degrees C, resulting in epitaxial, truncated square pyramids with (1 1 1) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In2O3 from the magnetron source. We also find that the internal lattice structure of one such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In2O3 nanostructures and films.

  7. Comparative study of electron transport mechanisms in epitaxial and polycrystalline zinc nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiang; Yamaguchi, Yuuki; Ninomiya, Yoshihiko; Yamada, Naoomi, E-mail: n-yamada@isc.chubu.ac.jp [Department of Applied Chemistry, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487–8501 (Japan)

    2016-01-14

    Zn{sub 3}N{sub 2} has been reported to have high electron mobility even in polycrystalline films. The high mobility in polycrystalline films is a striking feature as compared with group-III nitrides. However, the origins of the high mobility have not been elucidated to date. In this paper, we discuss the reason for high mobility in Zn{sub 3}N{sub 2}. We grew epitaxial and polycrystalline films of Zn{sub 3}N{sub 2}. Electron effective mass (m*) was determined optically and found to decrease with a decrease in electron density. Using a nonparabolic conduction band model, the m* at the bottom of the conduction band was derived to be (0.08 ± 0.03)m{sub 0} (m{sub 0} denotes the free electron mass), which is comparable to that in InN. Optically determined intra-grain mobility (μ{sub opt}) in the polycrystalline films was higher than 110 cm{sup 2} V{sup −1} s{sup −1}, resulting from the small m*. The Hall mobility (μ{sub H}) in the polycrystalline films was significantly smaller than μ{sub opt}, indicating that electron transport is impeded by scattering at the grain boundaries. Nevertheless, μ{sub H} higher than 70 cm{sup 2} V{sup −1} s{sup −1} was achievable owing to the beneficial effect of the high μ{sub opt}. As for the epitaxial films, we revealed that electron transport is hardly affected by grain boundary scattering and is governed solely by ionized impurity scattering. The findings in this study suggest that Zn{sub 3}N{sub 2} is a high-mobility semiconductor with small effective mass.

  8. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    Science.gov (United States)

    Saroj, R. K.; Dhar, S.

    2014-12-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima.

  9. Epitaxial growth of LiCoO2 thin films with (001) orientation

    Science.gov (United States)

    Okada, Koichi; Ohnishi, Tsuyoshi; Mitsuishi, Kazutaka; Takada, Kazunori

    2017-11-01

    The layered structure of LiCoO2 implies anisotropic ionic conduction; however, experimental data have never demonstrated this. The anisotropy can be observed clearly in epitaxial films with controlled orientations. Our previous study had reported that LiCoO2 grows epitaxially on Nb-doped SrTiO3 (100) and (110) substrates with complete (104) and (018) orientations, respectively. On the other hand, the growth on SrTiO3 (111) substrates with (001) orientation was accompanied by the inclusion of (012)-oriented domains, although the (012) orientation is higher in the energy state than the (001). The present study reveals that lower laser energy density (fluence) and lower substrate temperature decrease the amount of inclusions; that is, the occurrence of the (012) orientation in spite of its higher energy is governed by these factors. Higher fluence leading to higher deposition rates does not provide sufficient time for the cations to be rearranged into the (001) orientation, and the higher substrate temperature increases the nucleation frequency for the (012) orientation. A micrograph of the final (001)-oriented film reveals that the LiCoO2 film grows in an island growth mode.

  10. Structural properties of Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} topological insulators grown by molecular beam epitaxy on GaAs(001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Leiner, J.; Dobrowolska, M.; Furdyna, J. K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Smith, D. J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Fan, J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, Y.-H. [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States); School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Cao, H.; Chen, Y. P. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Kirby, B. J. [Center for Neutron Research, NIST, Gaithersburg, Maryland 20899 (United States)

    2011-10-24

    Thin films of Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} have been grown on deoxidized GaAs(001) substrates using molecular beam epitaxy. Cross-sectional transmission electron microscopy established the highly parallel nature of the Te(Se)-Bi-Te(Se)-Bi-Te(Se) quintuple layers deposited on the slightly wavy GaAs substrate surface and the different crystal symmetries of the two materials. Raman mapping confirmed the presence of the strong characteristic peaks reported previously for these materials in bulk form. The overall quality of these films reveals the potential of combining topological insulators with ferromagnetic semiconductors for future applications.

  11. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan

    2016-12-30

    We demonstrate a versatile top-down ion exchange process, done at ambient temperature, to form epitaxial chalcogenide films and devices, with nanometer scale thickness control. To demonstrate the versatility of our process we have synthesized (1) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115 times higher mobility than NiCo2S4 pellets (23 vs 0.2 cm(2) V-1 s(-1)) prepared by previous reports. By controlling the ion exchange process time, we made free-standing epitaxial films of NiCo2S4 and transferred them onto different substrates. We also demonstrate in situ formation of atomically sharp, lateral Schottky diodes based on NiCo2O4/NiCo2S4 heterojunction, using a single ion exchange step. Additionally, we show that our approach can be easily extended to other chalcogenide semiconductors. Specifically, we used our process to prepare Cu1.8S thin films with mobility that matches single crystal Cu1.8S (25 cm(2) V-1 s(-1)), which is ca. 28 times higher than the previously reported Cu1.8S thin film mobility (0.58 cm(2) V-1 s(-1)), thus demonstrating the universal nature of our process. This is the first report in which chalcogenide thin films retain the epitaxial nature of the precursor oxide films, an approach that will be useful in many applications.

  12. Two-dimensional antimonene single crystals grown by van der Waals epitaxy

    Science.gov (United States)

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-01-01

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327

  13. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    Science.gov (United States)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  14. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    Science.gov (United States)

    Zarifi, M.; Kameli, P.; Ehsani, M. H.; Ahmadvand, H.; Salamati, H.

    2016-12-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La0.5Ca0.5MnO3 (LCMO) thin films, grown on (100) SrTiO3 (STO) and LaAlO3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator-metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge-orbital order (CO-O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively.

  15. Novel UV-emitting single crystalline film phosphors grown by LPE method

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Y., E-mail: zorenko@electronics.wups.lviv.u [Laboratory of optoelectronic materials, Department of Electronic, Ivan Franko National University of Lviv, Gen. Tarnavsky 107, 79017 Lviv (Ukraine); Gorbenko, V.; Savchyn, V.; Voznyak, T. [Laboratory of optoelectronic materials, Department of Electronic, Ivan Franko National University of Lviv, Gen. Tarnavsky 107, 79017 Lviv (Ukraine); Nikl, M.; Mares, J.A. [Institute of Physics AS CR, Cukrovarnicka 10, 162 53 Prague (Czech Republic); Winnacker, A. [Department of Materials Science, University of Erlangen-Nuremberg, Martensstrasse 8, D-91058 Erlangen (Germany)

    2010-03-15

    This work reports the development of new types of UV-emitting phosphors based on single crystalline films (SCF) of aluminum garnet and perovskite compounds grown by the liquid phase epitaxy method. We consider peculiarities of the growth and the luminescent and scintillation properties of the following four types of UV SCF phosphors: i) Ce-doped SCF of Y-Lu-Al-perovskites with the Ce{sup 3+} emission in the 300-450 nm range of the decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets and perovskites with the Pr{sup 3+} emission in the 300-400 nm and 235-330 nm ranges with the decay time of 13-19 and 7-8 ns, respectively; iii) La{sup 3+} or Sc{sup 3+} doped SCF of Y-Lu-Al-garnets, emitting in the 280-400 nm range due to formation of the La{sub Y,Lu}, Sc{sub Y,Lu} and Sc{sub Al} centers with decay time of the order of several hundreds of nanoseconds; iv) Bi{sup 3+} doped SCF of garnets with Bi{sup 3+} emission in 275-350 nm with decay time of about 1.9 {mu}s.

  16. Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films

    KAUST Repository

    Liu, Xiang

    2017-12-26

    The anisotropic magnetoresistance (AMR) near the Verwey temperature (T-V) is investigated in charge ordered Fe3O4 epitaxial films. When the temperature continuously decreases below T-V, the symmetry of AMR in Fe3O4(100) film evolves from twofold to fourfold at a magnetic field of 50 kOe, where the magnetic field is parallel to the film surface, whereas AMR in Fe3O4(111) film maintains twofold symmetry. By analyzing AMR below T-V, it is found that the Verwey transition contains two steps, including a fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR at a lower temperature can be ascribed to the in-plane trimerons. By comparing the AMR in the films with two orientations, it is found that the trimeron shows a smaller resistivity in a parallel magnetic field. The field-dependent AMR results show that the trimeron-sensitive field has a minimum threshold of about 2 kOe.

  17. Zinc oxide epitaxial thin film deposited over carbon on various substrate by pulsed laser deposition technique.

    Science.gov (United States)

    Manikandan, E; Moodley, M K; Sinha Ray, S; Panigrahi, B K; Krishnan, R; Padhy, N; Nair, K G M; Tyagi, A K

    2010-09-01

    Zinc Oxide (ZnO) is a promising candidate material for optical and electronic devices due to its direct wide band gap (3.37 eV) and high exciton binding energy (60 meV). For applications in various fields such as light emitting diode (LED) and laser diodes, growth of p-type ZnO is a prerequisite. ZnO is an intrinsically n-type semiconductor. In this paper we report on the synthesis of Zinc Oxide-Carbon (ZnO:C) thin films using pulsed laser deposition technique (PLD). The deposition parameters were optimized to obtain high quality epitaxial ZnO films over a carbon layer. The structural and optical properties were studied by glazing index X-ray diffraction (GIXRD), photoluminescence (PL), optical absorption (OA), and Raman spectroscopy. Rutherford backscattering spectroscopy (RBS), scanning electron microscopy with energy dispersive spectroscopy (SEMEDS) and atomic force microscopy (AFM) were employed to determine the composition and surface morphology of these thin films. The GIXRD pattern of the synthesized films exhibited hexagonal wurtzite crystal structure with a preferred (002) orientation. PL spectroscopy results showed that the emission intensity was maximum at -380 nm at a deposition temperature of 573 K. In the Raman spectra, the E2 phonon frequency around at 438 cm(-1) is a characteristic peak of the wurtzite lattice and could be seen in all samples. Furthermore, the optical direct band gap of ZnO films was found to be in the visible region. The growth of the epitaxial layer is discussed in the light of carbon atoms from the buffer layer. Our work demonstrates that the carbon is a novel dopant in the group of doped ZnO semiconductor materials. The introduction of carbon impurities enhanced the visible emission of red-green luminescence. It is concluded that the carbon impurities promote the zinc related native defect in ZnO.

  18. Measurement of absolute density of N atom in sputtering plasma for epitaxial growth ZnO films via nitrogen mediated crystallization

    Science.gov (United States)

    Ide, Tomoaki; Matsushima, Koichi; Takasaki, Toshiyuki; Takeda, Keigo; Hori, Masaru; Yamashita, Daisuke; Seo, Hyuwoong; Koga, Kazunori; Shiratani, Masaharu; Itagaki, Naho

    2015-09-01

    ZnO has attracted attention as a potential alternative to GaN in light emitting diodes because of the wide band gap and large exciton binding energy. Recently, we have developed a fabrication method of ZnO by sputtering, nitrogen mediated crystallization (NMC), enabling us to make epitaxial films with low defect density. By utilizing the buffer layers fabricated by NMC method, we have succeeded in fabrication of single crystalline ZnO films even on 18% lattice mismatched substrates. Here, aiming to clarify effects of nitrogen during NMC process, we measured absolute density of N atom in sputtering plasma by means of vacuum ultra violet absorption spectroscopy. First, NMC-ZnO buffer layers were deposited in Ar/N2 atmosphere. Then, ZnO films were deposited in Ar/O2 atmosphere. With increasing N2 flow rate ratio from 4 to 12%, the N density increases from 3.2 × 1010 to 1.4 × 1011 cm-3. By utilizing the NMC-ZnO buffer layer fabricated at under these conditions, single crystalline ZnO films are grown. However, large number of pits are observed on the surface of ZnO films under N-rich conditions, indicating that N density is of importance in controlling the morphology of ZnO films. This work was supported in part by Japan Society for the Promotion of Science KAKENHI Grant Number 15H05431.

  19. Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jayathilaka, P.B. [Department of Physical Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale (Sri Lanka); Belyea, D.D. [Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Fawcett, T.J. [College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Miller, Casey W. [School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-05-15

    We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry. - Highlights: • Unintentional thermal gradients along surface normal mitigated via butt-mounting. • Longitudinal/transverse magnetothermopower measured on many systems. • Anomalous Nernst Effect reduced. • Importance of magnetic anisotropy identified with angle-dependent measurements.

  20. Effect of Sb in thick InGaAsSbN layers grown by liquid phase epitaxy

    Science.gov (United States)

    Donchev, V.; Milanova, M.; Asenova, I.; Shtinkov, N.; Alonso-Álvarez, D.; Mellor, A.; Karmakov, Y.; Georgiev, S.; Ekins-Daukes, N.

    2018-02-01

    Dilute nitride InGaAsSbN layers grown by low-temperature liquid phase epitaxy are studied in comparison with quaternary InGaAsN layers grown at the same growth conditions to understand the effect of Sb in the alloy. The lattice mismatch to the GaAs substrate is found to be slightly larger for the InGaAsSbN layers, which is explained by the large atomic radius of Sb. A reduction of the band gap energy with respect to InGaAsN is demonstrated by means of photoluminescence (PL), surface photovoltage (SPV) spectroscopy and tight-binding calculations. The band-gap energies determined from PL and ellipsometry measurements are in good agreement, while the SPV spectroscopy and the tight-binding calculations provide lower values. Possible reasons for these discrepancies are discussed. The PL spectra reveal localized electronic states in the band gap near the conduction band edge, which is confirmed by SPV spectroscopy. The analysis of the power dependence of the integrated PL has allowed determining the dominant radiative recombination mechanisms in the layers. The values of the refraction index in a wide spectral region are found to be higher for the Sb containing layers.

  1. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S

    2013-02-11

    Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

  2. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy

    OpenAIRE

    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi

    2017-01-01

    Abstract As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic?inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thic...

  3. Growth mode of tensile-strained Ge quantum dots grown by molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z. P.; Song, Y. X.; Chen, Q. M.; Wu, X. Y.; Zhu, Z. Y. S.; Zhang, L. Y.; Li, Y. Y.; Wang, S. M.

    2017-11-01

    Growth mode of tensile-strained Ge quantum dots on different III–V buffers by molecular beam epitaxy is studied by a combination of reflection high-energy electron diffraction, atomic force microscopy and transmission electron microscopy. The Ge-QDs growth on the InAlAs buffer lattice matched to InP and on InAs buffer on GaSb follows the Volmer–Weber growth mode with round Ge QDs and no Ge wetting layer, while it obeys the Stranski–Krastanov growth mode on GaSb, AlSb and AlGaSb on GaSb substrates, showing rectangular shaped platelets and a clear Ge wetting layer. The discovery of the Volmer–Weber growth mode is essential to avoid forming a wetting layer and the subsequent antiphase-domain defects when capping III–Vs on Ge-QDs, important for potential optoelectronic applications.

  4. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bocquel, J.; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Giddings, A. D.; Prosa, T. J.; Larson, D. J. [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, Wisconsin 53711 (United States); Mano, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  5. Deep levels in a-plane, high Mg-content Mg{sub x}Zn{sub 1-x}O epitaxial layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre [Department of Physics, Faculty of Science, Atatuerk University, Erzurum 25240 (Turkey); 205 Dreese Laboratory, Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210-1272 (United States); Tabares, G.; Hierro, A. [Dpto. Ingenieria Electronica and ISOM, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Arehart, A.; Ringel, S. A. [205 Dreese Laboratory, Department of Electrical and Computer Engineering, Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210-1272 (United States); Chauveau, J. M. [CRHEA-CNRS, 06560 Valbonne (France); University of Nice Sophia Antipolis, ParcValrose, 06102 Nice Cedex 2 (France)

    2012-12-15

    Deep level defects in n-type unintentionally doped a-plane Mg{sub x}Zn{sub 1-x}O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg{sub x}Zn{sub 1-x}O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E{sub c} - 1.4 eV, 2.1 eV, 2.6 V, and E{sub v} + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E{sub c} - 2.1 eV, E{sub v} + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E{sub v} + 0.3 eV and E{sub c} - 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E{sub v} + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E{sub c} - 1.4 eV and E{sub c} - 2.6 eV levels in Mg alloyed samples.

  6. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Hien Thu [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Houwman, Evert; Boota, Muhammad [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Dekkers, Matthijn [SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Vu, Hung Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Rijnders, Guus [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectric properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between

  7. Growth of ferroelectric Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} epitaxial films by ultraviolet pulsed laser irradiation of chemical solution derived precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Queraltó, A.; Pérez del Pino, A., E-mail: aperez@icmab.es; Mata, M. de la; Tristany, M.; Gómez, A.; Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Arbiol, J. [Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Catalonia (Spain)

    2015-06-29

    Highly crystalline epitaxial Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) thin-films are grown on (001)-oriented LaNiO{sub 3}-buffered LaAlO{sub 3} substrates by pulsed laser irradiation of solution derived barium-zirconium-titanium precursor layers using a UV Nd:YAG laser source at atmospheric conditions. The structural analyses of the obtained films, studied by X-ray diffractometry and transmission electron microscopy, demonstrate that laser processing allows the growth of tens of nm-thick BST epitaxial films with crystalline structure similar to that of films obtained through conventional thermal annealing methods. However, the fast pulsed nature of the laser employed leads to crystallization kinetic evolution orders of magnitude faster than in thermal treatments. The combination of specific photothermal and photochemical mechanisms is the main responsible for the ultrafast epitaxial laser-induced crystallization. Piezoresponse microscopy measurements demonstrate equivalent ferroelectric behavior in laser and thermally annealed films, being the piezoelectric constant ∼25 pm V{sup −1}.

  8. Thin film epitaxy, defects and interfaces in gallium nitride/sapphire and zinc oxide/sapphire heterostructures (polar and non-polar) for light emitting diodes

    Science.gov (United States)

    Pant, Punam

    There are three sources of strain in heteroepitaxial growth, lattice misfit; thermal misfit; and growth related defects. The primary aim of the present work was to do a fundamental study of strain and mechanisms for strain relaxation in epitaxial growth of polar-GaN and polar and nonpolar-ZnO thin films grown on sapphire substrates. We have shown that through the paradigm of domain matching epitaxy (DME) these large lattice misfit systems can be grown in a fully relaxed state at the growth temperature. As a result we need to deal with thermal and defect strains only. Growth of GaN and ZnO films on sapphire is characterized by structural inhomogeneities which are caused by impurities, variation in composition or strain. Depending on crystal structure and growth orientation of epitaxial layers, the presence of strain in epilayers can induce various phenomena which can affect device properties. The inhomogeneities due to strain have been favorably used to increase efficiency of solid state light devices based on GaN and ZnO. An understanding of the epitaxial growth mode and strain generation and relaxation processes in these systems is imperative to constructively exploit strain inhomogeneities. Working towards this end, my research work focused on a fundamental study of epitaxial growth and strain relaxation mechanisms in heteroepitaxy of GaN and ZnO and was conducted in the following three parts. Epitaxial Nucleation Layer (NL) for GaN based LEDs. This work addressed the formation of nanostructured GaN NL which is necessary to obtain smooth surface morphology and reduce defects in h-GaN layers for LEDs and lasers. From detailed X-ray and HR-TEM studies, it was determined that NL consists of nanostructured grains which were found to be faulted cubic GaN (c-GaN) with a small fraction of unfaulted c-GaN. From X-ray scans and modeling, we determined c-GaN fraction to be over 63% and rest h-GaN. From HRXRD and Raman spectroscopy it was determined that the NL contained in

  9. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  10. Thermodynamic guiding principles in selective synthesis of strontium iridate Ruddlesden-Popper epitaxial films

    Directory of Open Access Journals (Sweden)

    Kazunori Nishio

    2016-03-01

    Full Text Available We demonstrate the selective fabrication of Ruddlesden-Popper (RP type SrIrO3, Sr3Ir2O7, and Sr2IrO4 epitaxial thin films from a single SrIrO3 target using pulsed laser deposition (PLD. We identified that the growth conditions stabilizing each phase directly map onto the phase diagram expected from thermodynamic equilibria. This approach allows precise cation stoichiometry control as evidenced by the stabilization of single phase Sr3Ir2O7 for the first time, overcoming the close thermodynamic stability between neighboring RP phases. Despite the non-equilibrium nature of PLD, these results highlight the importance of thermodynamic guiding principles to strategically synthesize the targeted phase in complex oxide thin films.

  11. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom)

    2015-07-15

    We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, m{sub l}/m{sub s}. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  12. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Directory of Open Access Journals (Sweden)

    A. A. Baker

    2015-07-01

    Full Text Available We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, ml/ms. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  13. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  14. Crystallography and Growth of Epitaxial Oxide Films for Fundamental Studies of Cathode Materials Used in Advanced Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Leonid A. Bendersky

    2017-05-01

    Full Text Available Li-ion battery systems, synthesized as epitaxial thin films, can provide powerful insights into their electrochemical processes. Crystallographic analysis shows that many important cathode oxides have an underlying similarity: their structures can be considered as different ordering schemes of Li and transition metal ions within a pseudo-cubic sublattice of oxygen anions arranged in a face-center cubic (FCC fashion. This oxygen sublattice is compatible with SrTiO3 and similar perovskite oxides, thus perovskites can be used as supporting substrates for growing epitaxial cathode films. The predicted epitaxial growth and crystallographic relations were experimentally verified for different oxide films deposited by pulsed laser deposition (PLD on SrTiO3 or SrRuO3/SrTiO3 of different orientations. The results based on cross-sectional high-resolution TEM of the following films are presented in the paper: (a trigonal LiCoO2; (b orthorhombic LiMnO2; (c monoclinic Li2MnO3; (d compositionally-complex monoclinic Li1.2Mn0.55Ni0.15Co0.1O2. All results demonstrated the feasibility of epitaxial growth for these materials, with the growth following the predicted cube-on-cube orientation relationship between the cubic and pseudo-cubic oxygen sublattices of a substrate and a film, respectively.

  15. Tuning the magnetism of epitaxial cobalt oxide thin films by electron beam irradiation

    Science.gov (United States)

    Lan, Q. Q.; Zhang, X. J.; Shen, X.; Yang, H. W.; Zhang, H. R.; Guan, X. X.; Wang, W.; Yao, Y.; Wang, Y. G.; Peng, Y.; Liu, B. G.; Sun, J. R.; Yu, R. C.

    2017-07-01

    Tuning magnetic properties of perovskite thin films is a central topic of recent studies because of its fundamental significance. In this work, we demonstrated the modification of the magnetism of L a0.9C a0.1Co O3 (LCCO) thin films by introducing a stripelike superstructure in a controllable manner using electron beam irradiation (EBI) in a transmission electron microscope. The microstructure, electronic structure, strain change, and origin of magnetism of the LCCO thin films were studied in detail using aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations based on density functional theory. The results indicate that the EBI-induced unit cell volume expansion accompanies the formation of oxygen vacancies and leads to the spin state transition of Co ions. The low spin state of C o4 + ions depress the stripelike superstructure, while higher spin states of Co ions with lower valences are conductive to the formation of "dark stripes". Our work clarifies the origin of magnetism of epitaxial LCCO thin films, benefiting a comprehensive understanding of correlated physics in cobalt oxide thin films.

  16. Preparation and Optical Properties of GeBi Films by Using Molecular Beam Epitaxy Method

    Science.gov (United States)

    Zhang, Dainan; Liao, Yulong; Jin, Lichuan; Wen, Qi-Ye; Zhong, Zhiyong; Wen, Tianlong; Xiao, John Q.

    2017-12-01

    Ge-based alloys have drawn great interest as promising materials for their superior visible to infrared photoelectric performances. In this study, we report the preparation and optical properties of germanium-bismuth (Ge1-xBix) thin films by using molecular beam epitaxy (MBE). GeBi thin films belong to the n-type conductivity semiconductors, which have been rarely reported. With the increasing Bi-doping content from 2 to 22.2%, a series of Ge1-xBix thin film samples were obtained and characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. With the increase of Bi content, the mismatch of lattice constants increases, and the GeBi film shifts from direct energy band-gaps to indirect band-gaps. The moderate increase of Bi content reduces optical reflectance and promotes the transmittance of extinction coefficient in infrared wavelengths. The absorption and transmittance of GeBi films in THz band increase with the increase of Bi contents.

  17. Magnetic properties of epitaxial MnAs thin films on GaAs (001)

    CERN Document Server

    Park, Y S

    2000-01-01

    The magnetic properties of two types of epitaxial MnAs films on GaAs (001) substrates in the thickness range of 20 approx 200 nm were studied. Using longitudinal a magneto-optical Kerr-effect(MOKE) apparatus at lambda=632.8 nm, we determined the Curie temperatures of the 100-nm thick films to be 54.0+-0.5 .deg. C and 63.7+-0.5 .deg. C for type A films and type B films, respectively. The observed Curie temperatures corresponded to increases of 36.8 .deg. C and 33.9 .deg. C per one percent increase in the unit cell volume for type A and B, respectively. The normalized maximum MOKE signal from the type A film exhibited a first-order-like magnetic transition while that of type B underwent a second-order-like transition. These different behaviors between types A and B stem from different residual stresses being exerted on the hexagonal phase. Utilizing a Foner-type vibrating sample magnetometer at room temperature, we examined the thickness dependence of the coercive force and the saturation magnetization of the f...

  18. Magnetic properties of epitaxial MnAs thin films on GaAs (001)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Sik; Shin, Yong Jin [Chosun Univ., Kwangju (Korea, Republic of)

    2000-11-01

    The magnetic properties of two types of epitaxial MnAs films on GaAs (001) substrates in the thickness range of 20{approx}200 nm were studied. Using longitudinal a magneto-optical Kerr-effect(MOKE) apparatus at {lambda}=632.8 nm, we determined the Curie temperatures of the 100-nm thick films to be 54.0{+-}0.5 .deg. C and 63.7{+-}0.5 .deg. C for type A films and type B films, respectively. The observed Curie temperatures corresponded to increases of 36.8 .deg. C and 33.9 .deg. C per one percent increase in the unit cell volume for type A and B, respectively. The normalized maximum MOKE signal from the type A film exhibited a first-order-like magnetic transition while that of type B underwent a second-order-like transition. These different behaviors between types A and B stem from different residual stresses being exerted on the hexagonal phase. Utilizing a Foner-type vibrating sample magnetometer at room temperature, we examined the thickness dependence of the coercive force and the saturation magnetization of the film. The coercive force of films thicker than 10 nm decreased as the thickness increased, which was interpreted in terms of a decreasing magneto-static energy contribution to the Bloch domain wall energy, with increasing film thickness. The saturation magnetization had a maximum at a thickness of 50 nm. this observation reflects the dependence of the saturation magnetization on the a-constant of the hexagonal phase.

  19. Electrical properties of ZnO thin films grown on a-plane sapphire substrates using catalytically generated high-energy H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, N.; Takeuchi, T.; Nagatomi, E.; Kato, T.; Umemoto, H.; Yasui, K., E-mail: kyasui@vos.nagaokaut.ac.jp

    2013-12-31

    The electrical properties of zinc oxide (ZnO) epitaxial films grown by chemical vapor deposition (CVD) using high-energy H{sub 2}O generated by H{sub 2}–O{sub 2} reactions on Pt nanoparticles were evaluated. High-energy ZnO precursors formed by the reaction between dimethylzinc gas molecules and H{sub 2}O molecules were supplied to the substrate surface. The ZnO epitaxial films were grown directly on a-plane sapphire (a-Al{sub 2}O{sub 3}) substrates at 773 K without any buffer layer. The electron mobility (μ{sub H}) at room temperature increased from 30 to 190 cm{sup 2}V{sup −1} s{sup −1} with increasing film thickness from 100 nm to 2800 nm. The μ{sub H} increased significantly with decreasing temperature to approximately 100–150 K, but it decreased at temperatures less than 100 K for films thicker than 500 nm. The μ{sub H} of the ZnO film (189 cm{sup 2}V{sup −1} s{sup −1}) at 290 K increased to 660 cm{sup 2}V{sup −1} s{sup −1} at 100 K. In contrast, μ{sub H} hardly changed with temperature for films thinner than 500 nm. According to a two-layer Hall-effect model, the μ{sub H} and electron concentration of the upper layer were corrected based on the above results, assuming that the degenerate layer had a thickness of 100 nm. - Highlights: • ZnO films were grown by CVD using reaction of high-energy H{sub 2}O and dimethylzinc gas. • Films were grown on a-plane sapphire substrates at 773 K. • ZnO film at 2.8 µm thick exhibited a large electron mobility of 189 cm{sup 2}/Vs at room temperature. • From the crystallinity and the electrical properties for various film thicknesses, the structure of the ZnO films was estimated. • The electron mobility and electron concentration of the upper layer were corrected according to a two-layer Hall-effect model.

  20. Epitaxial graphene

    OpenAIRE

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gerard

    2007-01-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and l...