WorldWideScience

Sample records for epitaxial cdse znse

  1. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    International Nuclear Information System (INIS)

    Mahapatra, Suddhasatta

    2008-01-01

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T G =300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T G D =230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  2. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Suddhasatta

    2008-01-16

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T{sub G}=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T{sub G}<{proportional_to}240 C. In the second variant technique, formation of large and distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (T{sub D}=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  3. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  4. Influence of CdTe sub-monolayer stressor on CdSe quantum dot self-assembling in ZnSe

    International Nuclear Information System (INIS)

    Sedova, I.V.; Lyublinskaya, O.G.; Sorokin, S.V.; Sitnikova, A.A.; Solnyshkov, D.D.; Rykhova, O.V.; Toropov, A.A.; Ivanov, S.V.

    2006-01-01

    This paper reports on the attempt to apply the stressor-controlled quantum dot (QD) fabrication technique to the conventional CdSe/ZnSe nanostructures. Super-strained CdTe fractional monolayer (Δa/a∝14% for CdTe/ZnSe) grown on top of the Te-stabilized ZnSe surface prior to deposition of the QD material (CdSe) has been used as a stressor which is expected to affect size, composition and density of CdSe QDs. The grown structures are studied by X-ray diffraction, transmission-electron microscopy, photoluminescence (PL) and PL excitation in comparison with conventional CdSe/ZnSe QDs obtained by a modified migration enhanced epitaxy technique. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    2016-09-01

    Full Text Available Colloidal cadmium selenide (CdSe and zinc selenide (ZnSe quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone, isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX was used to estimate the material composition of the samples, transmission electron microscopy (TEM was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.

  6. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  7. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm"3"+ ions in lead borate glasses

    International Nuclear Information System (INIS)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K.

    2017-01-01

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B_2O_3:0.5Sm_2O_3, x = 29.5–69.5 mol%, xPbO:(96.5-x) B_2O_3:0.5Sm_2O_3: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σ_p), and the area ratio of the electric dipole/magnetic dipole transitions of Sm"3"+. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σ_p for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σ_p when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm"3"+ in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σ_p values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  8. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm{sup 3+} ions in lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K., E-mail: PK-Babu@wiu.edu [Western Illinois University, Department of Physics (United States)

    2017-03-15

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B{sub 2}O{sub 3}:0.5Sm{sub 2}O{sub 3}, x = 29.5–69.5 mol%, xPbO:(96.5-x) B{sub 2}O{sub 3}:0.5Sm{sub 2}O{sub 3}: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σ{sub p}), and the area ratio of the electric dipole/magnetic dipole transitions of Sm{sup 3+}. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σ{sub p} for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σ{sub p} when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm{sup 3+} in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σ{sub p} values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  9. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    International Nuclear Information System (INIS)

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  10. Molecular beam epitaxy of CdSe epilayers and quantum wells on ZnTe substrate

    International Nuclear Information System (INIS)

    Park, Y.M.; Andre, R.; Kasprzak, J.; Dang, Le Si; Bellet-Amalric, E.

    2007-01-01

    We have grown zinc-blende cadmium selenide (CdSe) epilayers on ZnTe-(0 0 1) substrate by molecular beam epitaxy (MBE). By controlling the substrate temperature and beam-equivalent pressure (BEP) ratio, of Se to Cd, we determined the most suitable growth condition based on reflection high-energy electron diffraction (RHEED) pattern. At a substrate temperature of 280 deg. C and a BEP ratio of 3.6, the RHEED pattern showed a V-like feature, indicating a rough surface with facets. As the substrate temperature was increased to 360 deg. C at the same BEP ratio, a V-like RHEED pattern moved to a clear streaky pattern. Moreover when the BEP ratio was increased to 4.8 at 360 deg. C of substrate temperature, a clear (2 x 1) reconstruction of the CdSe layer was observed. A CdSe/CdMgSe single quantum well structure was also grown on ZnTe-(0 0 1) substrate by MBE. The RHEED pattern showed a clear (2 x 1) surface reconstruction during the growth. By photoluminescence measurement, a good optical property of the structure was obtained

  11. CdSe quantum dot in vertical ZnSe nanowire and photonic wire for efficient single-photon emission

    DEFF Research Database (Denmark)

    Cremel, Thibault; Bellet-Amalric, Edith; Cagnon, Laurent

    conformal dielectric coating of Al2O3 on the NW-QDs using Atomic Layer Deposition so that a photonic wire is formed with the CdSe QD deterministically positioned on its axis. The collection enhancement effect is studied by measuring the emission (with pulse excitation, at saturation intensity) of single...

  12. Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Wang, Hsiao-Hua; Ke, Han-Xiang; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Shen, Ji-Lin

    2013-01-01

    This work demonstrates the improvement of the molecular beam epitaxial growth of zinc-blende CdSe on (0 0 1) GaAs substrate with a large lattice mismatch by introducing a small amount of Te atoms. Exposing the growing surface to Te atoms changes the reflection high-energy electron diffraction pattern from spotty to streaky together with (2 × 1) surface reconstruction, and greatly reduces the full width at half maximum of the X-ray rocking curve and increases the integral intensity of room-temperature photoluminescence by a factor of about nine.

  13. Formation and reconstruction of Se nanoislands at the surface of thin epitaxial ZnSe layers grown on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovskiy, V. I.; Krivobok, V. S., E-mail: krivobok@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kuznetsov, P. I.; Nikolaev, S. N.; Onistchenko, E. E.; Pruchkina, A. A.; Temiryazev, A. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radio-Engineering and Electronics (Russian Federation)

    2016-05-15

    Strained epitaxial ZnSe layers are grown on GaAs substrates by the method of vapor-phase epitaxy from metal-organic compounds. It is found that Se nanoislands with a density of 10{sup 8} to 10{sup 9} cm{sup –2} are formed at the surface of such layers. It is established that an increase in the size of Se islands and a decrease in their density take place after completion of growth. Annealing in a H{sub 2} atmosphere at a temperature higher than 260°C leads to the disappearance of Se islands and to a decrease in the surface roughness. It is shown that annealing does not lead to deterioration of the structural perfection of the epitaxial ZnSe films; rather, annealing gives rise to a decrease in the intensity of impurity–defect luminescence and to an increase in the intensity of intrinsic radiation near the bottom of the exciton band.

  14. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernàndez-Altable, Víctor

    2015-03-10

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  15. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernà ndez-Altable, Ví ctor; Dalmases, Mariona; Falqui, Andrea; Casu, Alberto; Torruella, Pau; Estradé , Sò nia; Peiró , Francesca; Figuerola, Albert

    2015-01-01

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  16. Molecular beam epitaxial growth mechanism of ZnSe epilayers on (100) GaAs as determined by reflection high-energy electron diffraction, transmission electron microscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, P.; Hommel, D.; Behr, T.; Heinke, H.; Waag, A.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1994-04-14

    The properties of molecular beam epitaxial growth of ZnSe epilayers deposited directly on a GaAs substrate are compared to those grown on a GaAs buffer layer. The superior quality of the latter is confirmed by RHEED, TEM and X-ray diffraction. Based on RHEED oscillation studies, a model explaining the dependence of the ZnSe growth rate on Zn and Se fluxes and the substrate temperature is developed taking into account physisorbed and chemisorbed states. For partially relaxed epilayers, the correlation between the relaxation state and the crystalline mosaicity, as found by high resolution X-ray diffraction, is discussed

  17. Semiconductor laser with longitudinal electron-beam pumping and based on a quantum-well ZnCdSe/ZnSe structure grown on a ZnSe substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kozlovskii, Vladimir I; Korostelin, Yurii V; Skasyrsky, Yan K; Shapkin, P V; Trubenko, P A; Dianov, Evgenii M

    1998-01-01

    The method of molecular beam epitaxy on a ZnSe substrate was used to grow a ZnCdSe/ZnSe structure with 115 quantum wells. This structure was made up into a cavity which included part of the substrate. Lasing was excited by longitudinal pumping with a scanning electron beam of E e = 40 - 70 keV energy. At T = 80 K for E e = 65 keV the threshold current density was 60 A cm -2 and the output power was 0.15 W at the 465 nm wavelength. At T= 300 K the lasing (λ= 474 nm) occurred in the ZnSe substrate. (lasers)

  18. Blue-green ZnSe lasers with a new type of active region

    International Nuclear Information System (INIS)

    Ivanov, S.V.; Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Sedova, I.V.; Kop'ev, P.S.; Alferov, Zh.I.; Waag, A.; Lugauer, H.J.; Reuscher, G.; Keim, M.; Fischer, F.F.; Landwehr, G.

    1999-01-01

    We report the results of an experimental study of molecular-beam epitaxy of ZnSe-based laser heterostructures with a new structure of the active region, which contains a fractional-monolayer CdSe recombination region in an expanded ZnSe quantum well and a waveguide based on a variably-strained, short-period superlattice are reported. Growth of a fractional-monolayer CdSe region with a nominal thickness of 2-3 ML, i.e., less than the critical thickness, on a ZnSe surface (Δa/a∼7%) leads to the formation of self-organized, pseudomorphic, CdSe-enriched islands with lateral dimensions ∼10-30 nm and density ∼2x10 10 cm -2 , which serve as efficient centers of carrier localization, giving rise to effective spatial separation of defective regions and regions of radiative recombination and, as a result, a higher quantum efficiency. Laser structures for optical pumping in the (Zn, Mg) (S, Se) system with a record-low threshold power density (less than 4 kW/cm 2 at 300 K) and continuous-wave laser diodes in the system (Be, Mg, Zn) Se with a 2.5 to 2.8-ML-thick, fractional-monolayer CdSe active region have been obtained. The laser structures and diodes have an improved degradation resistance

  19. development of a hydrothermal method to synthesize spherical znse

    African Journals Online (AJOL)

    Preferred Customer

    nanoparticles have a zinc blend structure and in a spherical form with ... optoelectronic devices such as blue-green laser diodes and turnable mid-IR ... Solvothermal methods have also been developed for the synthesis of ZnSe and CdSe. The.

  20. Colloidal CdSe Quantum Rings.

    Science.gov (United States)

    Fedin, Igor; Talapin, Dmitri V

    2016-08-10

    Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.

  1. Optical properties of single wurtzite/zinc-blende ZnSe nanowires grown at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zannier, V. [IOM-CNR Laboratorio TASC, S. S. 14, Km. 163.5, I-34149 Trieste (Italy); Department of Physics, University of Trieste, Via Valerio 2, I-34127 Trieste (Italy); Cremel, T.; Kheng, K. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SP2M, « Nanophysique et Semiconducteurs » Group, F-38000 Grenoble (France); Artioli, A.; Ferrand, D. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut Néel, « Nanophysique et Semiconducteurs » Group, F-38000 Grenoble (France); Grillo, V. [IMEM-CNR, Parco Area delle Scienze 37/A, I-43010 Parma (Italy); S3 NANO-CNR, Via Campi 213/A, I-41125 Modena (Italy); Rubini, S. [IOM-CNR Laboratorio TASC, S. S. 14, Km. 163.5, I-34149 Trieste (Italy)

    2015-09-07

    ZnSe nanowires with a dominant wurtzite structure have been grown at low temperature (300 °C) by molecular beam epitaxy assisted by solid Au nanoparticles. The nanowires emission is polarized perpendicularly to their axis in agreement with the wurtzite selection rules. Alternations of wurtzite and zinc-blende regions have been observed by transmission electron microscopy, and their impact on the nanowires optical properties has been studied by microphotoluminescence. The nanowires show a dominant intense near-band-edge emission as well as the ZnSe wurtzite free exciton line. A type II band alignment between zinc-blende and wurtzite ZnSe is evidenced by time-resolved photoluminescence. From this measurement, we deduce values for the conduction and valence band offsets of 98 and 50 meV, respectively.

  2. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue-UV Photodetectors.

    Science.gov (United States)

    Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2015-07-15

    Perfectly aligned horizontal ZnSe nano-wires are obtained by guided growth, and easily integrated into high-performance blue-UV photodetectors. Their crystal phase and crystallographic orientation are controlled by the epitaxial relations with six different sapphire planes. Guided growth paves the way for the large-scale integration of nanowires into optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ZnSe MSM photodetectors prepared on GaAs and ZnSe substrates

    International Nuclear Information System (INIS)

    Lin, T.K.; Chang, S.J.; Su, Y.K.; Chiou, Y.Z.; Wang, C.K.; Chang, S.P.; Chang, C.M.; Tang, J.J.; Huang, B.R.

    2005-01-01

    Homoepitaxial and heteroepitaxial ZnSe metal-semiconductor-metal (MSM) photodetectors were both fabricated and characterized. It was found that homoepitaxial ZnSe MSM photodetector could provide us smaller dark current and large photocurrent. With an incident wavelength of 448 nm, it was found that the maximum responsivities for the homoepitaxial and heteroepitaxial ZnSe photodetectors were 0.128 and 0.045 A/W, which corresponds to a quantum efficiency of 36 and 12%, respectively. Furthermore, it was found that we achieved the minimum noise equivalent power (NEP) of 7.6 x 10 -13 W and the maximum normalized detectivity (D *) of 9.3 x 10 11 cm Hz 0.5 W -1 from our homoepitaxial ZnSe photodetector. In contrast, NEP and D * of the heteroepitaxial ZnSe photodetector were 2.9 x 10 -12 W and 2.44 x 10 11 cm Hz 0.5 W -1 , respectively

  4. Transmission electron microscopy investigations of the CdSe based quantum structures

    International Nuclear Information System (INIS)

    Roventa, E.

    2006-01-01

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  5. Transmission electron microscopy investigations of the CdSe based quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Roventa, E.

    2006-09-22

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  6. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-01-01

    . Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective

  7. The synthesis and photocatalytic activity of ZnSe microspheres

    International Nuclear Information System (INIS)

    Cao Huaqiang; Xiao Yujiang; Zhang Sichun

    2011-01-01

    This paper reports the synthesis of semiconductor ZnSe microspheres composed of nanoparticles via a solvothermal route between the organic molecule selenophene (C 4 H 4 Se) and ZnCl 2 without adding any surfactant. The ZnSe microspheres were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), specific surface area measurement, and photoluminescence (PL) spectra. A strong and broad blue PL emission at 443 nm in wavelength (∼2.79 eV in photon energy) is attributed to the near-band-edge (NBE) emission of ZnSe, while the 530 nm peak is a defect-related (DL) emission. The photocatalytic activity of the as-prepared ZnSe microspheres was evaluated by photodegradation of methyl orange (MO) dye under ultraviolet (UV) light and visible light irradiation. The degradations of MO reach 94% or 95.1%, close to 100%, in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 7 or 10 h under UV irradiation, respectively. Meanwhile the degradations of MO reach 94.3% or 60.6% in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 12 h, respectively. The degradation rate of ZnSe microspheres is twice that of ZnSe commercial powder under UV light irradiation, and three times under visible light irradiation. The degradation process of MO dye on ZnSe microspheres under UV or visible light is also discussed.

  8. Hot exciton relaxation in multiple layers CdSe/ZnSe self-assembled quantum dots separated by thick ZnSe barriers

    International Nuclear Information System (INIS)

    Eremenko, M; Budkin, G; Reznitsky, A

    2015-01-01

    We have studied PL and PLE spectra of two samples (A and B) of MBE grown CdSe/ZnSe asymmetric double quantum wells with different amount of deposited CdSe layers separated by 14 nm ZnSe barrier. It has been found that PLE spectra of the states forming short wavelength side of the PL spectra of both deep and shallow QWs of the sample A as well as that of deep QW of the sample B demonstrate oscillating structure in the spectral ranges corresponding to exciton states of self-assembled quantum dots only. Meanwhile PLE spectra of the short wavelength states of shallow QW the sample B revealed pronounced oscillating structure with energy period of ZnSe LO phonon under excitation with photons in a wide energy range both in the regions of quantum-dot states and in that of free states in the ZnSe barrier. In these spectra creating of excitons with kinetic energies more than 0.3 eV was observed which considerably exceed the exciton binding energy as well as LO phonon energy (both appr. 0.03 eV). It has been concluded that oscillating structure of the PLE spectra arises due to cascade relaxation of hot excitons. We discuss the model which explains these experimental findings. (paper)

  9. Hot exciton relaxation in multiple layers CdSe/ZnSe self-assembled quantum dots separated by thick ZnSe barriers

    Science.gov (United States)

    Eremenko, M.; Budkin, G.; Reznitsky, A.

    2015-11-01

    We have studied PL and PLE spectra of two samples (A and B) of MBE grown CdSe/ZnSe asymmetric double quantum wells with different amount of deposited CdSe layers separated by 14 nm ZnSe barrier. It has been found that PLE spectra of the states forming short wavelength side of the PL spectra of both deep and shallow QWs of the sample A as well as that of deep QW of the sample B demonstrate oscillating structure in the spectral ranges corresponding to exciton states of self-assembled quantum dots only. Meanwhile PLE spectra of the short wavelength states of shallow QW the sample B revealed pronounced oscillating structure with energy period of ZnSe LO phonon under excitation with photons in a wide energy range both in the regions of quantum-dot states and in that of free states in the ZnSe barrier. In these spectra creating of excitons with kinetic energies more than 0.3 eV was observed which considerably exceed the exciton binding energy as well as LO phonon energy (both appr. 0.03 eV). It has been concluded that oscillating structure of the PLE spectra arises due to cascade relaxation of hot excitons. We discuss the model which explains these experimental findings.

  10. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  11. Phase discrimination in CdSe structures by means of Raman scattering

    International Nuclear Information System (INIS)

    Cusco, R.; Artus, L.; Consonni, V.; Bellet-Amalric, E.; Andre, R.

    2017-01-01

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E 2 mode at 33 cm -1 unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Phase discrimination in CdSe structures by means of Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cusco, R.; Artus, L. [Institut Jaume Almera (ICTJA-CSIC), Consejo Superior de Investigaciones Cientificas, Lluis Sole i Sabaris s.n., 08028 Barcelona (Spain); Consonni, V. [Universite Grenoble Alpes and CNRS, LMGP, 38016 Grenoble (France); Bellet-Amalric, E. [Universite Grenoble Alpes and CEA, INAC-PHEILQS, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France); Andre, R. [Universite Grenoble Alpes and CNRS, Institut Neel, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France)

    2017-05-15

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E{sub 2} mode at 33 cm{sup -1} unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Nitrogen doping of ZnSe by OMVPE using a novel organometallic precursor

    International Nuclear Information System (INIS)

    Akram, S.; Bhat, I.B.; Melas, A.A.

    1994-01-01

    We have investigated phenylhydrazine (PhHz) as a potential nitrogen dopant source in organometallic vapor phase epitaxial growth of ZnSe. Dimethylzinc and dimethylselenide were the zinc and selenium precursors, respectively. Photoluminescence and secondary ion mass spectroscopy measurements indicate that high incorporation efficiency compared to ammonia can be achieved using this dopant source. For example, nitrogen incorporation in the 2.5 x 10 18 /cm -3 level was achieved at 350 degrees C under ultraviolet excitation when the PhHz partial pressure was 1 x 10 -8 atm. These layers had 1-2 x 10 15 /cm -3 electrically active acceptors. Films grown at higher partial pressures of PhHz were highly compensated. 9 refs., 5 figs

  14. Development of conductive nanotemplates on ZnSe

    International Nuclear Information System (INIS)

    Monaico, Eduard; Tiginyanu, Ion; Colibaba, Gleb; Nedeoglo, D.D.; Cojocaru, Ala; Foell, Helmut

    2011-01-01

    We demonstrate the possibility to fabricate arrays of pores oriented perpendicular and parallel to the top surface of the ZnSe nanotemplate. The control of material conductivity allows one to produce porous ZnSe samples with the mean pore diameter and characteristic skeleton wall thickness from several hundreds of nanometers to about 15 nm. In addition, electrochemical treatment of ZnSe single crystals using photoresist masks allows one to prepare buried porous structures with pores directed parallel to the top template surface, which is especially important for photonic applications.

  15. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  16. Fabrication and Photocatalytic Properties of ZnSe Nanorod Films

    Directory of Open Access Journals (Sweden)

    Jiajia Yin

    2016-01-01

    Full Text Available ZnSe nanorod films grown on fused quartz glass substrates via a simple two-step synthesis protocol were demonstrated to be environmentally safe and effective recyclable photocatalysts. These films showed greatly enhanced photocatalytic activity compared to pulsed laser deposition ZnSe films in the degradation of methyl orange dye solutions. The well-crystalized ZnSe nanorods had a length of 15 µm and a diameter of 200 nm and were densely grown on the substrate. The morphology, crystal structure, crystal phase, and photophysical properties of the ZnSe nanorod films were investigated using field-emission scanning electron microscopy (FE-SEM, UV-Vis spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, and high resolution transmission electron microscopy (HRTEM.

  17. Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe quantum structures

    DEFF Research Database (Denmark)

    Gindele, F.; Woggon, Ulrike; Langbein, Wolfgang Werner

    1999-01-01

    The optical properties of CdSe nanostructures grown by migration-enhanced epitaxy of CdSe on ZnSe are studied by time-, energy-, and temperature-dependent photoluminescence and excitation spectroscopy, as well as by polarization-dependent four-wave mixing and two-photon absorption experiments...

  18. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  19. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  20. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    International Nuclear Information System (INIS)

    Chi Tran, Thi Kim; Vu, Duc Chinh; Thuy Ung, Thi Dieu; Nguyen, Hai Yen; Nguyen, Ngoc Hai; Dao, Tran Cao; Pham, Thu Nga; Nguyen, Quang Liem

    2012-01-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor. (paper)

  1. Electroluminescence of colloidal ZnSe quantum dots

    International Nuclear Information System (INIS)

    Dey, S.C.; Nath, S.S.

    2011-01-01

    The article reports a green chemical synthesis of colloidal ZnSe quantum dots at a moderate temperature. The prepared colloid sample is characterised by UV-vis absorption spectroscopy and transmission electron microscopy. UV-vis spectroscopy reveals as-expected blue-shift with strong absorption edge at 400 nm and micrographs show a non-uniform size distribution of ZnSe quantum dots in the range 1-4 nm. Further, photoluminescence and electroluminescence spectroscopies are carried out to study optical emission. Each of the spectroscopies reveals two emission peaks, indicating band-to-band transition and defect related transition. From the luminescence studies, it can be inferred that the recombination of electrons and holes resulting from interband transition causes violet emission and the recombination of a photon generated hole with a charged state of Zn-vacancy gives blue emission. Meanwhile electroluminescence study suggests the application of ZnSe quantum dots as an efficient light emitting device with the advantage of colour tuning (violet-blue-violet). - Highlights: → Synthesis of ZnSe quantum dots by a green chemical route. → Characterisation: UV-vis absorption spectroscopy and transmission electron microscopy. → Analysis of UV-vis absorption spectrum and transmission electron micrographs. → Study of electro-optical properties by photoluminescence and electroluminescence. → Conclusion: ZnSe quantum dots can be used as LED with dual colour emission.

  2. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  3. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  4. Anisotropy in CdSe quantum rods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liang-shi [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  5. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  6. On the symmetry of phosphorous doped ZnSe

    Indian Academy of Sciences (India)

    The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest two possible symmetries T d and C 3 V . The reduction to C 3 V is attributed to the presence of natural impurity, Ga. Our calculations based on molecular model and Green's functions suggest that the symmetry C 3 V is possible ...

  7. On the symmetry of phosphorous doped ZnSe

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest two possible symmetries Td and C3V. The reduction to C3V is attributed to the presence of natural impurity,. Ga. Our calculations based on molecular model and Green's functions suggest that the symmetry C3V is.

  8. Low temperature scintillation in ZnSe crystals

    Czech Academy of Sciences Publication Activity Database

    Dafinei, I.; Fasoli, M.; Ferroni, F.; Mihóková, Eva; Orio, F.; Pirro, S.; Vedda, A.

    2010-01-01

    Roč. 57, č. 3 (2010), 1470-1474 ISSN 0018-9499 Institutional research plan: CEZ:AV0Z10100521 Keywords : bolometers * double beta decay * scintillation detectors * ZnSe Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2010

  9. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, 15 June 1979-14 June 1980

    International Nuclear Information System (INIS)

    Wessels, B.W.

    1980-01-01

    In an effort to understand the defect structure of the ternary II-VI compound zinc sulpho-selenide, the binary compound zinc selenide was investigated. Thin single crystalline films of zinc selenide were heteroepitaxially grown on (100) GaAs. Epitaxial layers from 5 to 50 microns thick could be readily grown using a chemical vapor transport technique. The layers had an excellent morphology with few stacking faults and hillocks. Detailed epitaxial growth kinetics were examined as a function of temperature and reactant concentration. It was found that hydrogen flow rate, source and substrate temperature affect the growth rate of the epitaxial films. Au - ZnSe Schottky barrier diodes and ZnSe - GaAs n-p heterojunctions were prepared from the epitaxial layers. Current-voltage characteristics were measured on both types of diodes. From capacitance-voltage measurements the residual doping density of the epitaxial layers were found to be of the order of 10 14 - 10 15 cm -3 . Finally, we have begun to measure the deep level spectrum of both the Schottky barrier diodes and the heterojunctions. Deep level transient spectroscopy appears to be well suited for determining trapping states in ZnSe provided the material has a low enough resistivity

  10. Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air

    Directory of Open Access Journals (Sweden)

    Hsuan I Wang

    2012-01-01

    Full Text Available We demonstrate an effective method to prepare wurtzite phase ZnSe nanoparticles from zincblende ZnSe single crystal using femtosecond pulse laser ablation. The fabricated ZnSe nanoparticles are in spherical shape and uncontaminated while synthesized under ambient environment. By controlling the laser fluences, the average size of ZnSe nanoparticles can be varied from ~16 nm to ~22 nm in diameter. In Raman spectra, the surface phonon mode becomes dominant in the smaller average particle size with uniform size distribution. The interesting phase transition from the zinc blende structure of ZnSe single crystal to wurtzite structure of ZnSe nanoparticles may have been induced by the ultrahigh ablation pressure at the local area due to the sudden injection of high energy leading to solid-solid transition.

  11. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Thin films of CdSe were deposited by potentiostatic mode on different substrates such as ... trodeposited from aqueous acidic baths, but very few ... washed with liquid detergent (labolene) followed by ul- .... increases the ionic mobilities and hence the conductivity ... A PEC cell of configuration, CdSe/1 M polysulphide/.

  12. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Takaaki Yamaguchi

    2016-10-01

    Full Text Available CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The results suggested that the amount of superoxide dismutase (SOD decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se4+ to Se2− and inhibit the aggregation of CdSe to make nanoparticles.

  13. Structural and optical properties of CdSe nanosheets

    Science.gov (United States)

    Solanki, Rekha Garg; Rajaram, P.; Arora, Aman

    2018-04-01

    Nanosheets of CdSe have been synthesized using a solvothermal route using citric acid as an additive. It is found that the citric acid effectively controls the structural and optical properties of CdSe nanostructures. XRD studies confirm the formation of hexagonal wurtzite phase of CdSe. The FESEM micrographs show that the obtained CdSe nanocrystals are in the form of very thin sheets (nanosheets). Optical absorption studies as well as Photoluminescence spectra show that the optical gap is around 1.76 eV which is close to the reported bulk value of 1.74 eV. The prepared CdSe nanosheets because of large surface area may be useful for catalytic activities in medicine, biotechnology and environmental chemistry and in biomedical imaging for in vitro detection of a breast cancer cells.

  14. Metal contacts on ZnSe and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Duxstad, Kristin Joy [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  15. Synthesis, field emission properties and optical properties of ZnSe nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, S.L., E-mail: slxue@dhu.edu.cn [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Wu, S.X.; Zeng, Q.Z.; Xie, P.; Gan, K.X.; Wei, J.; Bu, S.Y.; Ye, X.N.; Xie, L. [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Zou, R.J. [State Key Laboratory for Modification and Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Zhang, C.M.; Zhu, P.F. [Department of Physics, School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-03-01

    Graphical abstract: Unique ZnSe nanoflowers have been successfully synthesized by reaction of Se powder with Zn substrates. They are characterized by XRD, SEM, TEM, XPS, EDS and Raman spectroscopy and were single crystals with cubic zinc blende (ZB) structure. They also have excellent field emission properties and optical properties. - Highlights: • Novel ZnSe nanoflowers are grown on Zn foils. • ZnSe nanoflowers are characterized by XRD, SEM, TEM, XPS and Raman spectra. • ZnSe nanoflowers on Zn foils as cathodes possess good FE properties. - Abstract: ZnSe nanoflowers have been synthesized by reaction of Se powder with Zn substrates at low temperature. The as-prepared ZnSe nanoflowers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray energy dispersive spectroscope (EDS) and Raman spectroscopy measurements. It was found that the morphologies of the as-prepared samples highly depended on reaction time. ZnSe nanoclusters and nanoflowers formed at 573 K when the reaction time was 20 and 60 min, respectively. The as-prepared ZnSe nanoflowers were composed of radically aligned ZnSe nanorods with smooth surfaces. The results of XRD, XPS, EDS, TEM and Raman showed that the as-prepared ZnSe nanocrystals were single crystals with cubic zinc blende (ZB) structure. The formation mechanism of the as-prepared ZnSe nanoflowers was also discussed. In addition, the as-prepared ZnSe nanoflowers had excellent electron emission properties. The turn-on field of the as-prepared ZnSe nanoflowers was 3.5 V/μm and the enhancement factor was 3499. The optical properties of the as-prepared ZnSe nanoflowers were also investigated. The results demonstrated that the as-prepared ZnSe nanoflowers were potential candidates for optoelectronic devices.

  16. Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pushpendra, E-mail: push.nac@gmail.com [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Singh, Jai [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Pandey, Mukesh Kumar [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Jeyanthi, C.E. [Research and Development Centre, Bharathiar University, Coimbatore 641 046 (India); Siddheswaran, R. [Department of Materials Science and Engineering, University of Concepcion, Concepcion (Chile); Paulraj, M. [Department of Physics, Faculty of Physical sciences and Mathematics, University of Concepcion, Casilla 160, Concepcion (Chile); Hui, K.N. [Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2014-01-01

    Graphical abstract: - Highlights: • Template-free synthesis of ZnSe and ZnSe:La nanoparticles was developed at low temperature 100 °C. • Cubic ZnSe and ZnSe:La nanoparticles were obtained by chemical route. • As-synthesized ZnSe:La nanoparticles showed higher emission intensity than ZnSe nanoparticles. • Band gap (E{sub g}) of ZnSe nanoparticles was bigger than ZnSe nanoparticles due to nanosized effect. - Abstract: In this work, a simple, effective and reproducible chemical synthetic route for the production of high-quality, pure ZnSe nanoparticles (NPs), and lanthanum-doped ZnSe (ZnSe:La) NPs is presented. The wide bandgap, luminescent pure ZnSe and ZnSe:La NPs has been synthesized at a low temperature (100 °C) in a single template-free step. The size and optical bandgap of the NPs was analyzed from powder X-ray diffraction (XRD), UV–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). A broad photoluminescence (PL) emission across the visible spectrum has been demonstrated by a systematic blue-shift in emission due to the formation of small nanoparticles. Here, contribution to emission intensity from surface states of NPs increases with La doping. TEM data revealed that the average size of ZnSe and ZnSe:La NPs is 14 and 8 nm, respectively. On the other hand, band gap energy E{sub g} of ZnSe and ZnSe:La NPs were found to be 3.59 eV and 3.65 eV, respectively. Results showed that hydrazine hydrate played multiple roles in the formation of ZnSe and ZnSe:La NPs. A possible reaction mechanism for the growth of NPs is also discussed.

  17. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  18. Novel mechanical behaviors of wurtzite CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Bing [Shanghai Normal University, Department of Physics (China); Chen, Li [MCPHS University, School of Arts and Sciences (United States); Xie, Yiqun; Feng, Jie; Ye, Xiang, E-mail: yexiang@shnu.edu.cn [Shanghai Normal University, Department of Physics (China)

    2015-09-15

    As an important semiconducting nanomaterial, CdSe nanowires have attracted much attention. Although many studies have been conducted in the electronic and optical properties of CdSe NWs, the mechanical properties of Wurtzite (WZ) CdSe nanowires remain unclear. Using molecular dynamics simulations, we have studied the tensile mechanical properties and behaviors of [0001]-oriented Wurtzite CdSe nanowires. By monitoring the stretching processes of CdSe nanowires, three distinct structures are found: the WZ wire, a body-centered tetragonal structure with four-atom rings (denoted as BCT-4), and a structure that consists of ten-atom rings with two four-atom rings (denoted as TAR-4) which is observed for the first time. Not only the elastic tensile characteristics are highly reversible under unloading, but a reverse transition between TAR-4 and BCT-4 is also observed. The stretching processes also have a strong dependence on temperature. A tubular structure similar to carbon nanotubes is observed at 150 K, a single-atom chain is formed at 300, 350 and 450 K, and a double-atom chain is found at 600 K. Our findings on tensile mechanical properties of WZ CdSe nanowires does not only provide inspiration to future study on other properties of CdSe nanomaterials but also help design and build efficient nanoscale devices.

  19. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  20. Magnetic study of Fe-doped CdSe nanomaterials

    International Nuclear Information System (INIS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-01-01

    Nanoparticles of pure and iron (50 %) doped cadmium selenide (CdSe) have been synthesized by soft chemical route. EDAX analysis supports the inclusion of Fe into CdSe nanoparticles. The average particle size of pure and doped CdSe is found to be ∼50 nm from scanning electron microscopy (SEM). Magnetization of the samples are measured under the field cooled (FC) and zero field cooled (ZFC) modes in the temperature range from 5K to 300K applying a magnetic field of 500Oe. Field dependent magnetization (M-H) measurement indicates presence of room temperature (RT) paramagnetism and low temperature (5K) ferromagnetism of the sample.

  1. Substrate-Dependent Differences in the Crystal Structures and Optical Properties of ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Keumyoung Seo

    2015-01-01

    Full Text Available The optical and structural properties of ZnSe nanowires directly grown on three different substrates, SiO2, ITO, and graphene, were investigated. ZnSe nanowires grown on graphene and SiO2 were found to have cubic structures, while ZnSe nanowires grown on ITO had a mixed cubic and hexagonal structure. The main peaks in the photoluminescence spectra of ZnSe nanowires grown on SiO2, ITO, and graphene were located at 459, 627, and 627/460 nm, respectively. In addition, a field-emission light-emitting device was fabricated using ZnSe nanowires as a phosphor and graphene as an electrode. The device showed a red emission peak with Commission Internationale de L’Eclairage coordinates of (0.621, 0.315.

  2. Microwave-assisted synthesis of ZnSe of various morphologies using alkylamines as ligating solvent

    International Nuclear Information System (INIS)

    Han Dongmei; Song Chunfeng; Li Xiaoyu

    2009-01-01

    ZnSe nanoparticles were prepared using alkylamines as ligating solvent by microwave-irradiation method. The high-crystalline ZnSe nanomaterials were obtained within 20 min through a simple process. The differences of morphologies in the effect of alkylamines and microwave variables were investigated. The results show that there is an inverse relationship between the size of nanoparticles and the length of the alkylamine. The average sizes were increased with the duration of irradiation time. Microwave-irradiation power affects the sizes and shapes of ZnSe materials because of the movement and polarization of amine molecules under the rapidly changing electric field of the microwave reactor. A further characterization of binding condition on surface of ZnSe nanoparticles by the FTIR absorbance measurements indicates the presence of alkylamine molecules on the surface of ZnSe nanoparticles.

  3. Transport Properties of ZnSe- ITO Hetero Junction

    Science.gov (United States)

    Ichibakase, Tsuyoshi

    In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.

  4. Spectral structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V. Ya., E-mail: degoda@univ.kiev.ua [Taras Shevchenko Kyiv National University, Physics Department, 03680 Kyiv (Ukraine); Pavlova, N. Yu., E-mail: pavlovan7@gmail.com [The National Pedagogical Dragomanov University, Pyrogova 9, 01601 Kyiv (Ukraine); Podust, G.P., E-mail: vasylenkog379@gmail.com [Taras Shevchenko Kyiv National University, Physics Department, 03680 Kyiv (Ukraine); Sofiienko, A.O., E-mail: asofienko@gmail.com [University of Bergen, Allegaten 55, PO Box 7803, 5020 Bergen (Norway)

    2015-05-15

    This work presents the extensive experimental studies of the X-ray stimulated luminescence, conductivity, phosphorescence and electric current relaxation, and the thermally stimulated luminescence and conductivity of monocrystalline ZnSe. It was found that the luminescence emission band with a maximum at 635 nm is a combination of at least three emission bands and that the appropriate recombination centres implement both electronic and hole recombination mechanisms. We propose an energy model of the traps and recombination centres in monocrystalline ZnSe and show that the majority of the generated free electrons and holes recombine in the luminescence centres with an estimated probability of 94.3% and that only a small fraction (5.7%) of generated charge carriers are accumulated in traps during the X-ray excitation of the ZnSe sample. - Highlights: • ZnSe has intensive X-ray luminescence and phosphorescence in the spectral range from 600 nm to 1000 nm. • We measured the phosphorescence of ZnSe for different wavelengths of 591 nm, 635 nm and 679 nm. • The dominant emission band of ZnSe with a maximum at 635 nm is a combination of at least three emission bands. • We propose and verify an energy model of the traps and recombination centres in monocrystalline ZnSe.

  5. Spectroscopic studies on the interaction between ZnSe nanoparticles with bovine serum albumin

    International Nuclear Information System (INIS)

    Chen, Zhi; Wu, Dudu

    2012-01-01

    The interaction between ZnSe nanoparticles (NPs) and bovine serum albumin (BSA) was studied by UV–vis, fluorescence spectroscopic techniques. The results showed that the fluorescence of BSA was strongly quenched by ZnSe NPs and the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching constant (K q ). The recorded UV–vis data and the fluorescence data quenching by the ZnSe NPs showed that the interaction between them leads to the formation of ZnSe–BSA complex. Based on the synchronous fluorescence spectra, it was established that the conformational change of BSA was induced by the interaction of ZnSe with the tyrosine micro-region of the BSA molecules. Furthermore, the temperature effects on the structural and spectroscopic properties of individual ZnSe NPs and protein and their bioconjugates (ZnSe–BSA) were also researched. It was found that, compared to the monotonic decrease of the individual ZnSe NPs fluorescence intensity, the temperature dependence of the ZnSe–BSA emission had a much more complex behavior, which was highly sensitive to the conformational changes of the protein. - Highlights: ►Interaction between bovine serum albumin (BSA) and ZnSe nanoparticles was studied. ► UV–vis data and fluorescence data demonstrated the formation of ZnSe–BSA complex. ► Temperature dependence of ZnSe–BSA emission was sensitive to the conformational changes of protein.

  6. The first principles study of elastic and thermodynamic properties of ZnSe

    Science.gov (United States)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  7. Effects of tellurium concentration on the structure of melt-grown ZnSe crystals

    International Nuclear Information System (INIS)

    Atroshchenko, Lyubov V.; Galkin, Sergey N.; Rybalka, Irina A.; Voronkin, Evgeniy F.; Lalayants, Alexandr I.; Ryzhikov, Vladimir D.; Fedorov, Alexandr G.

    2005-01-01

    It has been shown that isovalent doping by tellurium positively affects the structural perfection of ZnSe crystals related to the completeness of the wurtzite-sphalerite phase transition. The optimum concentration range of tellurium in ZnSe crystals is 0.3-0.6 mass %. X-ray diffraction studies have shown that in ZnSe 1-x Te x crystals at tellurium concentrations below 0.3 mass % twinning and packing defects occur, while tellurium concentrations above 0.6 mass % lead to formation of tetragonal crystal lattice

  8. Composition-controlled optical properties of colloidal CdSe quantum dots

    International Nuclear Information System (INIS)

    Ayele, Delele Worku; Su, Wei-Nien; Chou, Hung-Lung; Pan, Chun-Jern; Hwang, Bing-Joe

    2014-01-01

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties

  9. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  10. A study of the conjugation of CdSe nanoparticles with functional polyoxometalates involving aminoacids

    International Nuclear Information System (INIS)

    Gutul, T.

    2013-01-01

    CdSe nanoparticles (CdSe NPs) are regarded as nano markers and an important component for biomedical applications. In this study, CdSe NPs and polyoxometalates were synthesized; surface modification with 1-thioglycerol and (β-Ala) was carried out. Polyoxometalates, which cause an inhibitory effect on cancer cells, were conjugated to the nanoparticles. UV- VIS, IR, XRD, and TEM studies were performed to characterize the resulting CdSe NPs, polyoxometalates, and conjugates. (author)

  11. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N S [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Wong, K W [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Li, Q [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Zheng, Z [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Lau, W M [Surface Science Western, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2007-10-17

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to {approx}60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version.

  12. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    International Nuclear Information System (INIS)

    Lam, N S; Wong, K W; Li, Q; Zheng, Z; Lau, W M

    2007-01-01

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to ∼60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version

  13. Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E. [PLANT PV, Inc., Oakland, CA (United States); Peters, Craig H. [PLANT PV, Inc., Oakland, CA (United States)

    2014-04-30

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  14. Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening

    International Nuclear Information System (INIS)

    Zhang Lihui; Yang Heqing; Xie Xiaoli; Zhang Fenghua; Li Li

    2009-01-01

    Hollow ZnSe microspheres were prepared via a facile hydrothermal reaction of Zn(AC) 2 .2H 2 O with Na 2 SeO 3 and ethylene glycol in NaOH solution at 180 deg. C for 12 h. The products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectrum. The hollow microspheres with the diameters of about 2 μm are constructed from ZnSe nanoparticles with the cubic zinc blende structure, the size of hollow interiors and constituent ZnSe nanodots can be tuned by changing the reaction time. The hollow microspheres are formed via an Ostwald ripening process. Photoluminescence and photocatalytic activity of the hollow ZnSe microspheres were studied at room temperature. The results indicate that the hollow microspheres constructed from ZnSe nanoparticles display a strong near-band edge emission at 479 nm and a very weak deep defect (DD) related emission at 556 nm and a high photocatalytic activity in the photodegradation of methyl orange. The photodegradation of methyl orange catalyzed by the ZnSe microspheres is a pseudo first-order reaction

  15. Optics of colloidal quantum-confined CdSe nanoscrolls

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, R B; Sokolikova, M S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Vitukhnovskii, A G; Ambrozevich, S A; Selyukov, A S; Lebedev, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-09-30

    Nanostructures in the form of 1.2-nm-thick colloidal CdSe nanoplatelets rolled into scrolls are investigated. The morphology of these scrolls is analysed and their basic geometric parameters are determined (diameter 29 nm, longitudinal size 100 – 150 nm) by TEM microscopy. Absorption and photoluminescence spectra of these objects are recorded, and the luminescence decay kinetics is studied. It is shown that the optical properties of CdSe nanoscrolls differ significantly from the properties of CdSe quantum dots and that these nanoscrolls are attractive for nanophotonic devices due to large oscillator strengths of the transition, small widths of excitonic peaks and short luminescence decay times. Nanoscrolls can be used to design hybrid organic–inorganic pure-color LEDs with a high luminescence quantum yield and low operating voltages. (optics and technology of nanostructures)

  16. SYNTHESIS AND CHARACTERIZATION OF CdSe COLLOIDAL QUANTUM DOTS IN ORGANIC SOLVENT

    Directory of Open Access Journals (Sweden)

    Ion Geru

    2014-06-01

    Full Text Available In this paper we present experimental results on preparation and characterization of colloidal CdSe quantum dots in organic solvent. CdSe QDs were synthesized following a modified literature method. CdSe QDs were isolated by adding acetone to the cooled solution followed by centrifugation. CdSe QDs have been characterized by UV-Vis absorption and photoluminescent (PL spectroscopy. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28-2.92 nm which is in good agreement with PL measurements.

  17. Seed-mediated direct growth of CdSe nanoclusters on substrates

    International Nuclear Information System (INIS)

    Pan Shangke; Ebrahim, Shaker; Soliman, Moataz; Qiao Qiquan

    2013-01-01

    Different shapes of CdSe nanostructures were obtained by hydrothermal method with varied Se sources and buffer layers. Hexagonal nanoparticles of CdSe with Wurtzite structure were synthesized from Se powder resource, while CdSe nanoclusters with Wurtzite structure were grown from Na 2 SeO 3 aqueous solution resources at 165 °C using cetyltrimethylammonium bromide as surfactant. Using ZnO nanoparticles as a seed layer, CdSe nanostructures only partially covered the indium tin oxide (ITO) substrates. With ZnO/CdSe quantum dots composite seed layer, CdSe nanostructures fully covered the ITO substrates.

  18. Controllable synthesis, growth mechanism and optical properties of the ZnSe quantum dots and nanoparticles with different crystalline phases

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Bo [Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern Nan-Hu Road, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Yang, Jinghai, E-mail: jhyang1@jlnu.edu.cn [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Cao, Jian; Yang, Lili; Gao, Ming; Wei, Maobin; Liu, Yang [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Song, Hang [Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern Nan-Hu Road, Changchun 130033 (China)

    2013-03-15

    Graphical abstract: The ZnSe quantum dots (3.5 nm) with the wurtzite structure exhibited a strong near band-edge emission (NBE) peak centered at 422 nm. The zinc blende ZnSe nanoparticles (21 nm) exhibited near-band-edge luminescence peak centered at 472 nm. Highlights: ► The results of TEM showed that the ZnSe quantum dots were about 3.5 nm. ► The ZnSe quantum dots exhibited a near band-edge emission peak centered at 422 nm. ► The ZnSe nanoparticles exhibited near-band-edge luminescence peak centered at 472 nm. - Abstract: ZnSe precursors were prepared by a solvothermal method at 180 °C without any surface-active agents. ZnSe quantum dots and nanoparticles were obtained by annealing the precursors at 300 °C for 2 h in argon atmosphere. The ZnSe quantum dots were about 3.5 nm, while the ZnSe nanoparticles were about 21 nm, as observed using TEM. The growth mechanisms for the two samples were discussed; this proved that the high coordination ability of ethylenediamine to zinc played an important role in the final phase of the products. The ZnSe quantum dots with the wurtzite structure exhibited a strong near band-edge emission (NBE) peak centered at 422 nm, which was blue-shifted in comparison to that of the bulk ZnSe, which was mainly caused by the quantum confinement effect. However, the zinc blende ZnSe nanoparticles exhibited a near-band-edge luminescence peak centered at 472 nm.

  19. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  20. Synthesis and photoluminescence of Cr-, Ni-, Co-, and Ti-doped ZnSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Bui The [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Nhatrang Institute of Technology and Research Application, 2 Hungvuong, Nhatrang (Viet Nam); Seo, Min-Ho; Kumar, Avvaru Praveen [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Jeong, Hyuk [Department of Chemistry, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2014-03-05

    Highlights: • The chain length, structure of surfactants operated the size nanoparticles. • Ni{sup 2+}, Co{sup 2+}, Cr{sup 3+}, and Ti{sup 3+} did not create any new centers in the structure of ZnSe. • Doping may have influenced the nanoparticles size because of the Zn replacement. • The TM ions change in ligand field caused the influence on fluorescence intensity. -- Abstract: We developed a facile strategy to synthesize transition metal (TM; Ni, Cr, Co, and Ti)-doped ZnSe nanoparticles (NPs) in aqueous media using a chemical co-precipitation method. Co-precipitation was performed in the presence of one of four different surfactants, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), thioglycerol (TGC), or (3-mercaptopropyl) trimethoxysilane (MPTMS). Surface morphology, chemical, and crystalline properties of the TM-doped ZnSe NPs were studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical features were characterized by UV–visible and photoluminescence spectroscopies. The influence of various experimental parameters, including the amount of TM and the ratio of precursors, as well as different types of surfactants on the photoluminescence properties of TM-doped ZnSe NPs was investigated systematically. TM-doped ZnSe NPs were excited in the UV region and exhibited photoluminescence in the visible region. Intensity was affected by the concentration of the TM. The results showed that MPA had a stronger influence on photoluminescence than MAA, TGC, and MPTMS. The photoluminescence intensity of TM-doped ZnSe NPs was 30% higher than that of undoped ZnSe NPs.

  1. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  2. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  3. Photoinduced interaction of CdSe quantum dot with coumarins

    Energy Technology Data Exchange (ETDEWEB)

    El-Kemary, Maged, E-mail: elkemary@sci.kfs.edu.eg [Nanotechnology Center, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh (Egypt); Gaber, Mohamed; El-Sayed, Y.S. [Chemistry Department, Faculty of Science, University of Tanta, Tanta (Egypt); Gheat, Youssef [Nanotechnology Center, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh (Egypt); Chemistry Department, Faculty of Science, University of Tanta, Tanta (Egypt)

    2015-03-15

    Cadmium selenide (CdSe) quantum dots (QDs) were synthesized with a cubic shape having a diameter of ∼5.24 nm. The prepared CdSe QDs were characterized by using UV–visible, Fourier transform infrared (FTIR), powder X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The UV–visible absorption spectra indicate that the optical band gap of CdSe QDs is ∼622 nm and the peak shift can mainly be due to the quantum size effects. The fluorescence decay kinetics for the synthesized QDs was followed by time-resolved fluorescence spectroscopy, and the spectra were analyzed in regard to a bi-exponential model to identify two lifetime values, that is, shorter-lifetime 1.37 ns (55%) and longer-lifetime 6.58 ns (45%). The interaction of coumarin 152 (C152) and coumarin 153 (C153) with QDs surface brings about further considerable changes in the absorption and fluorescence patterns. The calculated binding constant from fluorescence quenching method matches well with that determined from the absorption spectral changes. The static quenching mechanism was confirmed by large magnitude of K{sub SV} and unaltered fluorescence lifetime. - Highlights: • CdSe QDs were synthesized with a cubic shape having a diameter of ∼5.24 nm. • The UV–visible absorption spectra indicate that the optical band gap of CdSe QDs is ∼622 nm. • Picosecond fluorescence measurements of the QDs suggest bi-exponential function. • The calculated binding constant from fluorescence quenching method matches well with that determined from the absorption spectral changes. • The static quenching mechanism was confirmed by large magnitude of K{sub SV} and unaltered fluorescence lifetime.

  4. Controlled Growth of ZnSe Nanocrystals by Tuning Reactivity and Amount of Zinc Precursor

    Directory of Open Access Journals (Sweden)

    Lai-Jun Zhang

    2013-01-01

    Full Text Available Zinc selenide (ZnSe nanocrystals were synthesized via a phosphine-free route using the highly reactive alkylamine-H2Se complex as selenium precursor and zinc precursors with different reactivity. The reactivity of zinc precursor was tuned by using three kinds of zinc carboxylates with different alkyl chain lengths, including zinc acetate, zinc nonanoate, and zinc stearate. The effect of the reactivity and the amount of zinc precursor on nucleation and growth of ZnSe nanocrystals were investigated by ultraviolet-visible absorption and photoluminescence spectra. Result indicates that the growth and optical property of the resulting ZnSe nanocrystals are strongly dependent on the alkyl chain length and the amount of the zinc carboxylates and both shorter alkyl chain length, and more amount of zinc carboxylate will lead to faster growth of ZnSe nanocrystals. This allows that the controlled growth and excellent optical property of high-quality ZnSe nanocrystals can be achieved by combining the different reactivity and the used amount of zinc precursor, such as by using stoichiometric and reactive Zn precursor and Se precursor or by using larger amount of more unreactive Zn precursor relative to the highly reactive alkylamine-H2Se complex precursor.

  5. Structural and optical properties of Ni doped ZnSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Kanta; Dwivedi, Y.; Jaggi, Neena, E-mail: neena_jaggi@rediffmail.com

    2015-02-15

    In the present work synthesis of ZnSe:Ni nanoparticles using a simple solvothermal method has been discussed. The structural characterizations of as synthesized materials were done by powder X-ray diffraction (XRD), Transmission electron microscope (TEM) and High resolution transmission microscope (HRTEM) imaging techniques, which revealed formation of core–shell nanoparticles with crystallite size 2–4 nm. The structural parameters such as lattice constants, internal strain, dislocation density etc. of ZnSe and Ni doped ZnSe nanocrystals were estimated. Nickel doping in ZnSe host is verified by the Raman spectroscopy. Optical properties were diagnosed by UV–vis absorption and photoluminescence (PL) techniques. The observed blue-shift in UV–vis absorption edge of the prepared sample of ZnSe as compared to its value for the bulk counterpart indicates formation of nanosized particles. PL spectra of Ni{sup 2+} doped samples indicate red-shift and improved emission intensity. - Highlights: • Synthesis of core shell structures of the ZnSe by simple approach. • Enhancement of the photoluminescence emission with the increase in the concentration of Ni a transition metal into the host material. • Increase in the dislocation density and strain with decrease in grain size.

  6. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing; Kovalev, Valery; Chen, Wen

    2014-01-01

    Highlights: • ZnSe is employed as passivation layer in CuInS 2 quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS 2 based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS 2 quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS 2 quantum dot sensitized TiO 2 photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS 2 quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS 2 based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer

  7. Timely resolved measurements on CdSe nanoparticles; Zeitaufgeloeste Messungen an CdSe Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.E. von

    2006-06-06

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S{sub e} was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S{sub 3/2}-1S-e and 1P{sub 3/2}-1P{sub e} but not the intermediately lyingt transition 2S{sub 3/2}-1S{sub e} were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S{sub e} and 1P{sub e}. The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation

  8. Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Dongmei Han

    2010-01-01

    Full Text Available Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

  9. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  10. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  11. The photodiode of UV-range on the basis of ZnSe

    Directory of Open Access Journals (Sweden)

    Perevertailo V. L.

    2010-03-01

    Full Text Available The construction and technology of Shottky photodiode on the basis of ZnSe, sensible in the ultraviolet region of spectrum are considered. Researches of electrophysical and photo-electric descriptions of photodiodes of Shottky Nі–ZnSe(Te,O–Іn are conducted and it is shown, that they can be applied in devices for radiometry and dissymmetry UV radiations in the ranges UVA, UVB and UVC. Comparison of parameters of developed UV photodiodes based on ZnSe with analogues showed that small capacitance and low value of dark current is their substantial difference of other ones.

  12. Characterization of single crystalline ZnTe and ZnSe grown by vapor phase transport

    Energy Technology Data Exchange (ETDEWEB)

    Trigubo, A B; Di Stefano, M C [FRBA-UTN, (1179) Buenos Aires (Argentina); Aguirre, M H [Dpto de Quim Inorg, Fac de Cs Quim, Univ Complutense, (28040) Madrid (Spain); Martinez, A M; D' Elia, R; Canepa, H; Heredia, E, E-mail: atrigubo@citefa.gov.a [CINSO-CITEFA: (1603) Villa Martelli, Pcia de Buenos Aires (Argentina)

    2009-05-01

    Tubular furnaces were designed and built to obtain single crystalline ZnTe and ZnSe ingots using respectively physical and chemical transport methods. Different temperature profiles and growth rates were analyzed in order to optimize the necessary crystalline quality for device development. Optical and scanning electron micrographs of the corrosion figures produced by chemical etching were used to obtain the dislocation density and the misorientation between adjacent subgrains in ZnTe and ZnSe wafers. Structural quality of the single crystalline material was determined by transmission electronic microscopy. Optical transmittance was measured by infrared transmission spectrometry and the resulting values were compared to commercial samples.

  13. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  14. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Administrator

    3. Mobility activation in CdSe thin films. The trap depths were calculated by using the following simple decay law. It = Ioexp(–pt),. (1) where p is the probability of escape of an electron from the trap per second and is given by (Randall and Wilkins 1945) p = S exp (–E/kT),. (2) where E is the trap depth for electrons below the ...

  15. Transparent high-performance CDSE thin-film solar cells

    International Nuclear Information System (INIS)

    Mahawela, P.; Jeedigunta, S.; Vakkalanka, S.; Ferekides, C.S.; Morel, D.L.

    2005-01-01

    Simulations indicate that 25-30% efficiency can be achieved with a four-terminal thin-film tandem structure. The bottom low band gap cell can be CuIn 1-x Ga x Se 2 , and CdSe is proposed as the top cell, as it has an ideal band gap of 1.7 eV. In addition to the efficiency requirements, the top cell must also be transparent to effectively transmit sub band gap light to the bottom cell. We have developed CdSe devices that meet many of the requirements of this tandem structure. High electronic quality CdSe has been deposited on SnO 2 and ZnO, which serve as the transparent n-type contact. The p-type transparent contact is ZnSe/Cu. Voc's of 475 mV have been achieved and can be further improved with better contacts. However, record Jsc's in excess of 17 mA/cm 2 have been achieved. This is close to the target 18 mA/cm 2 to meet the efficiency objectives. Transmission of 80% of the sub band gap radiation has been demonstrated for 2-no. muno. m-thick absorber layers. This is also close to the 85% target to achieve the overall tandem efficiency objectives. Improvement of the contact layers to achieve the Voc target is the final challenge

  16. Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films

    Directory of Open Access Journals (Sweden)

    S.E. Al Garni

    Full Text Available In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25–100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50–100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains. Keywords: ZnSe, Nanosandwiching, Mechanical, Optical gap

  17. Random lasing of microporous surface of Cr2+:ZnSe crystal induced by femtosecond laser

    International Nuclear Information System (INIS)

    Yang, Xianheng; Feng, Guoying; Yao, Ke; Yi, Jiayu; Zhang, Hong; Zhou, Shouhuan

    2015-01-01

    We demonstrate a random lasing emission based on microporous surface of Cr 2+ :ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10 −4 Pa). The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr 2+ :ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm) pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr 2+ :ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr 2+ :ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength

  18. Relaxation of nonthermal hh and lh excitons in ZnSe quantum wells

    DEFF Research Database (Denmark)

    Kalt, H.; Hoffmann, J.; Umlauff, M.

    1998-01-01

    The strong exciton-LO phonon coupling in ZnSe QWs gives a direct access to the relaxation dynamics of nonthermal, free heavy-hole and light-hole excitons. Narrow hot-exciton distributions can be generated by LO-phonon assisted exciton formation. The thermalization of these excitons is monitored b...

  19. Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available A simple thermal treatment was used to synthesize ZnSe nanoparticles at different calcination temperatures in a nitrogen flowing. The samples of ZnSe nanoparticles were prepared by reacting zinc nitrate (source of zinc and selenium powder with Polyvinylpyrrolidone (capping agent. Analysis of their X-ray diffraction patterns suggested the formation of an amorphous phase of the unheated material before calcination, which then transformed into a cubic crystalline structure of ZnSe nanoparticles after calcination. The phase analyses using energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy confirmed the presence of Zn and Se as the original compounds of prepared ZnSe nanoparticle samples. The average particle size of the samples increased from 7 ± 5 to 18 ± 3 nm as the calcination temperature was increased from 450 to 700 °C, which is also supported by the transmission electron microscopy results. Diffuse UV–visible reflectance spectra were used to determine the optical band gap through the Kubelka–Munk equation; the energy band gap was found to decrease from 4.24 to 3.95 eV with increasing calcination temperature. Keywords: Metals, Calcination, Differential thermal analysis (DTA, Fourier transform infrared spectroscopy (FTIR

  20. High resistivity ZnSe coated substrates for microstrip gas chambers

    International Nuclear Information System (INIS)

    Sudharsanan, R.; Greenwald, A.C.; Vakerlis, G.; Yoganathan, M.; Cho, H.S.; Kadyk, J.; Dubeau, J.; Dixit, M.

    1998-01-01

    Microstrip gas chambers (MSGCs) require substrates with sheet resistance in the range of 10 13 --10 16 ohms/square to eliminate polarization and surface charging effects between the electrodes. Thin films of II-VI semiconductors deposited on glass or plastic substrates are attractive for this application since bulk resistivity of these semiconductors vary in the range 10 9 --10 12 ohm-cm and films with good uniformity can be deposited over large-areas using inexpensive deposition techniques. In this paper, deposition, characterization, and fabrication of MSGCs using ZnSe thin films are reported for the first time. ZnSe thin films were deposited on glass and plastic substrates by thermal evaporation. Sheet resistance of ZnSe varied in the range of 10 15 to 10 16 ohms/square depending on the deposition conditions. A MSGC detector fabricated using a 0.5 microm thick ZnSe layer on glass substrate exhibited best values; gas gain of 25,000 and an energy resolution of about 16.7% FWHM at a gain of 1,080 for a 55 Fe source

  1. Structural investigation of the ZnSe(001)-c(2×2) surface

    DEFF Research Database (Denmark)

    Weigand, W.; Müller, A.; Kilian, L.

    2003-01-01

    Zinc selenide is a model system for II-VI compound semiconductors. The geometric structure of the clean (001)-c(2x2) surface has recently been the subject of intense debate. We report here a surface x-ray-diffraction study on the ZnSe(001)-c(2x2) surface performed under ultrahigh vacuum using...

  2. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots

    NARCIS (Netherlands)

    Eilers, Joren; Van Hest, Jacobine; Meijerink, A; Donega, Celso De Mello

    2014-01-01

    We report on the temperature dependence of the band-edge photoluminescence decay of organically capped colloidal ZnSe quantum dots (QDs) in the size range from 4.0 to 7.5 nm. A similar trend is observed for all investigated sizes: the decay time is short (∼5 ns) above 20 K and increases sharply

  3. Passive Fe2+ : ZnSe single-crystal Q switch for 3-mu m lasers

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Polushkin, VG; Frolov, MP

    Passive Q-switching of 3-mu m lasers with the help of a Fe2+ : ZnSe single crystal is demonstrated. The 6-mJ, 50-ns giant pulses are obtained from a 2.9364-mu m Er : YAG laser by using this passive Q switch.

  4. Interaction and Dephasing of Excitons in ZnSe Quantum Wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    We study the coherent formation of biexcitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm by transient degenerate four-wave mixing. We observe an increase of the biexciton binding energy with decreasing wire width reaching 30% energy enhancement in the smallest wire structure...

  5. Room-temperature 1.2-J Fe{sup 2+}:ZnSe laser

    Energy Technology Data Exchange (ETDEWEB)

    Velikanov, S D; Zaretsky, N A; Zotov, E A; Maneshkin, A A; Yutkin, I M [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation); Kazantsev, S Yu; Kononov, I G; Firsov, K N [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Korostelin, Yu V; Frolov, M P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The characteristics of a laser based on a Fe{sup 2+}:ZnSe single crystal pumped by an electric-discharge HF laser at room temperature are studied. The HF laser beam diameter on the crystal surface was 17 mm. The achieved laser energy was 1.2 J with an efficiency of ∼ 25% with respect to the pump energy. (letters)

  6. Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study

    Science.gov (United States)

    El Amine Monir, Mohammed; Ullah, Hayat; Baltach, Hadj; Gulbahar Ashiq, M.; Khenata, R.

    2017-11-01

    In this article we have studied the structural, elastic, electronic and magnetic properties of Zn1-xTixSe and Cd1-xTixSe alloys at (x = 0.25, 0.50, 0.75) using first principles density functional theory calculations with local spin density approximation (LSDA) and generalized gradient approximation plus Hubbard parameter (GGA+U) as exchange-correlation potential. The physical properties of both alloys were investigated in the zinc-blend phase. The structural parameters at equilibrium are consistent with experimental and earlier theoretical predictions. The elastic constants are also computed and compared with the literature. The DOS curves of Zn1-xTixSe and Cd1-xTixSe alloys for all the concentrations show the existence of hybridization among Ti (3d) and Se (4p) states. The calculated exchange constants N0α(s-d) and N0β (p-d) are useful to determine the contribution in the valence band and conduction band and are also shows the magnetic character of these alloys. In addition, the p-d hybridization in the PDOS reduces local magnetic moment of Ti from its free space charge of 2 μB and results small magnetic moments on the nonmagnetic Zn, Cd and Se sites. The calculated negative values of formation energy (Ef) reveal that all the Zn1-xTixSe and Cd1-xTixSe alloys are thermodynamically stables. A larger/Smaller value of Curie temperature (TC) for all the Zn1-xTixSe and Cd1-xTixSe alloys shows the strong/low interaction among the magnetic atoms respectively.

  7. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  9. Annealing effects on the photoresponse properties of CdSe nanocrystal thin films

    International Nuclear Information System (INIS)

    Lou Shiyun; Zhou Changhua; Wang Hongzhe; Shen Huaibin; Cheng Gang; Du Zuliang; Zhou, Shaomin; Li Linsong

    2011-01-01

    Highlights: → The as-prepared CdSe nanocrystal films were treated at 500 deg. C for 3 h under continuous N 2 . → Annealing process removed the organic capping completely and eliminated oxide on the CdSe surface. → Thermal annealing resulted the increase of the crystallite sizes and necking the NCs. → The photoresponse speed of the CdSe nanocrystal films was improved. - Abstract: The photoresponse properties of the as-prepared and annealed close-packed CdSe nanocrystal (NC) films were investigated under laser illumination by Kelvin probe force microscopy. The annealing process improved the photoresponse speed of the CdSe NC films. The work function of the annealed CdSe NC films changed more rapidly than that of the non-annealed film in air at room temperature. Combined with X-ray photoelectron spectroscopy measurements and thermogravimetric analysis, the observed phenomena can be interpreted that annealing process removed the organic capping agents completely and eliminated oxide on the CdSe surface, which formed the tunnel barrier between NCs in the CdSe NC films. Consequently, it improved the separation rate of photoelectric charges and thus provided high speed photoresponse.

  10. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  11. Study of de-aggregation of mechanochemically synthesized ZnSe nanoparticles by re-milling in the presence of ZnCl2 solution

    Directory of Open Access Journals (Sweden)

    Marcela Achimovičová

    2013-12-01

    Full Text Available Conventional mechanochemical synthesis of zinc selenide, ZnSe nanoparticles was performed in a planetary ball mill by high-energy milling of zinc (Zn and selenium (Se powders. Mechanochemically synthesized ZnSe was subsequently re-milled in circulation mill in ZnCl2 solution in order to study de-aggregation, physical-chemical and optical properties of ZnSe nanoparticles. The mechanochemically synthesized and re-milled samples were characterized by X-ray diffraction analysis (XRD that confirmed the presence of cubic and hexagonal ZnSe phases. Size of crystallites calculated from XRD patterns has decreased from 50 to 19 nm for cubic ZnSe phase and from 145 to 2.5 nm for hexagonal ZnSe phase after re-milling for 110 min in ZnCl2 solution. Size, phase composition, morphology, and crystallinity of ZnSe nanoparticles were studied by transmission electron microscopy (TEM and selected area electron diffraction (SAED. UV-Vis optical spectroscopy has provided an evidence of blue shift of the re-milled nanocrystalline ZnSe particles from the direct band gap of 2.67 eV characteristic of bulk ZnSe crystals. Colloidal stability of ZnSe nanoparticles dispersions was studied by ? �potential measurements.

  12. Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

    Directory of Open Access Journals (Sweden)

    Sunghoon Park

    2014-10-01

    Full Text Available Reports of the gas sensing properties of ZnSe are few, presumably because of the decomposition and oxidation of ZnSe at high temperatures. In this study, ZnSe nanowires were synthesized by the thermal evaporation of ZnSe powders and the sensing performance of multiple-networked ZnSe nanowire sensors toward NO2 gas was examined. The results showed that ZnSe might be a promising gas sensor material if it is used at room temperature. The response of the ZnSe nanowires to 50 ppb–5 ppm NO2 at room temperature under dark and UV illumination conditions were 101–102% and 113–234%, respectively. The responses of the ZnSe nanowires to 5 ppm NO2 increased from 102 to 234% with increasing UV illumination intensity from 0 to 1.2 mW/cm2. The response of the ZnSe nanowires was stronger than or comparable to that of typical metal oxide semiconductors reported in the literature, which require higher NO2 concentrations and operate at higher temperatures. The origin of the enhanced response of the ZnSe nanowires towards NO2 under UV illumination is also discussed.

  13. Electrochemiluminescence Biosensor Based on Thioglycolic Acid-Capped CdSe QDs for Sensing Glucose

    Directory of Open Access Journals (Sweden)

    Eun-Young Jung

    2016-01-01

    Full Text Available In order to detect low level glucose concentration, an electrochemiluminescence (ECL biosensor based on TGA-capped CdSe quantum dots (QDs was fabricated by the immobilization of CdSe QDs after modifying the surface of a glassy carbon electrode (GCE with 4-aminothiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD was immobilized onto the fabricated CdSe QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped CdSe QDs was characterized using a scanning electron microscope (SEM, UV-vis spectrophotometry, transmission electron microscopy (TEM, a fluorescence spectrometer (PL, and cyclic voltammetry (CV. The fabricated ECL biosensor based on TGA-capped CdSe QDs is suitable for the detection of glucose concentrations in real human blood samples.

  14. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong

    2017-10-01

    In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.

  15. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  16. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  17. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    Science.gov (United States)

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  18. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    International Nuclear Information System (INIS)

    Hou Bo; Liu Yongjun; Li Yanjuan; Yuan Bo; Jia Mingfen; Jiang Fengzhi

    2012-01-01

    Highlights: ► Soft templates were found in the shape control synthesis of ZnSe nanocrystals. ► Micelle formation model in the soft templates system was proposed and proved. ► Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  19. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Bo [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Liu Yongjun [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Li Yanjuan [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Yuan Bo [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Jia Mingfen [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Jiang Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Soft templates were found in the shape control synthesis of ZnSe nanocrystals. Black-Right-Pointing-Pointer Micelle formation model in the soft templates system was proposed and proved. Black-Right-Pointing-Pointer Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  20. Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet

    Science.gov (United States)

    Zhang, Shuangfang; Yin, Xiaohong; Zheng, Yinan

    2018-02-01

    In this work ZnO/ZnSe composites were successfully synthesized via solvothermal method and characterized by a series of experiments for investigating into their compositions, morphologies, microstructures and the activities of photocatalytic reduction of CO2. The methanol rates of bare ZnO and ZnSe respectively were 763.9 μmol/gcat/h and 503.88 μmol/gcat/h. However, the sample of 3 wt% ZnO/ZnSe performed better photocatalytic activity up 1581.82 μmol/gcat/h compared to bare ZnO and ZnSe. In the as-prepared photocatalyst the nanosheet of ZnSe benefited the light harvest; suitable deposition of ZnO on the ZnSe nanosheet constructed a type II heterojunction for transferring the photo-generated electron to reduce CO2.

  1. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal–semiconductor–metal nanostructure

    Directory of Open Access Journals (Sweden)

    Yu Tan

    2014-04-01

    Full Text Available The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW in the metal–semiconductor–metal (M–S–M nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M–S–M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  2. Development of a hydrothermal method to synthesize spherical ZnSe nanoparticles: Appropriate templates for hollow nanostructures

    Directory of Open Access Journals (Sweden)

    S. Gharibe

    2014-01-01

    Full Text Available Hydrothermal method was used to synthesize pure ZnSe nanosphere materials. The effects of the reducing agent amount, the reaction time and temperature were investigated on the purity of ZnSe. Also, the effects of surfactants such as sodium dodecyl sulfate (SDS (anionic and cetyl trimethylammonium bromide (CTAB (cationic were studied on the morphology of ZnSe. The prepared nanospheres were characterized using XRD, SEM, TEM and UV-Vis spectroscopy. Through these techniques, it was found that the pure ZnSe nanoparticles have a zinc blend structure and in a spherical form with average diameter of 30 nm. DOI: http://dx.doi.org/10.4314/bcse.v28i1.5

  3. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  4. Study on the optical properties of CdSe QDs with different ligands in specific matrix

    International Nuclear Information System (INIS)

    Lin Wei; Zou Wei; Du Zhongjie; Li Hangquan; Zhang Chen

    2013-01-01

    Different ligand structures of CdSe quantum dots were designed and synthesized for the specific matrix and the effect of the ligands on the photoluminescence and optical properties were further investigated. Ligand exchange reaction was used to synthesize thioglycolic acid-capped CdSe QDs and the process was characterized by FT-IR and titration. The influence of environmental pH value and storing time on the properties of thioglycolic acid-capped CdSe QDs in aqueous solution were studied by absorption and photoluminescence spectra. It was found that alkaline environment was more beneficial for the application of CdSe QDs. Therefore, the amino ligands with different molecular weight were grafted onto CdSe QDs for improving the compatibility with epoxy matrix and then amino-capped CdSe QDs/epoxy nanocomposites were fabricated. The morphologies and properties of the nanocomposites were characterized by DLS, HR-TEM, UV–Vis spectra, and photoluminescence spectra. As a result, amino ligands with short-molecular chain-capped CdSe QDs/epoxy nanocomposites exhibited good dispersion, high transparency and photoluminescence, and would be suitable for potential application in light-emitting diode device.

  5. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The potential cytotoxicity of cadmium selenide (CdSe quantum dots (QDs presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM increased cell viability in response to CdSe QDs (20 μM from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h, followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.

  6. CdSe nanoparticles grown via radiolytic methods in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shalini [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Rath, M.C., E-mail: madhab@barc.gov.i [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, A.K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Jayakumar, O.D.; Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sarkar, S.K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-06-15

    Cadmium selenide, CdSe, nanoparticles have been synthesized in aqueous solution containing equimolar ammoniated CdSO{sub 4} and Na{sub 2}SeSO{sub 3} as the starting materials without any capping agents, using gamma and electron beam irradiation under a reducing condition. The radiolytic processes occurring in water result in the formation of CdSe nanoparticles through the reactions mediated by hydrated electrons, e{sub aq}{sup -}. TEM measurements revealed that the CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. The as-grown nanoparticles were of cubic crystalline phase as supported by the XRD measurements. These bare CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. However, the RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation, which was attributed to their relatively smaller size (2-3 nm) and disordered structures as compared to those obtained in the later case (3-5 nm). -- Research highlights: {yields} CdSe nanoparticles could be synthesized in aqueous solutions containing equimolar ammoniated CdSO{sub 4} and Na{sub 2}SeSO{sub 3} as the starting materials using gamma and electron beam irradiation under a reducing condition. {yields} CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. {yields} CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. {yields} The RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation.

  7. CdSe nanoparticles grown via radiolytic methods in aqueous solutions

    International Nuclear Information System (INIS)

    Singh, Shalini; Rath, M.C.; Singh, A.K.; Mukherjee, T.; Jayakumar, O.D.; Tyagi, A.K.; Sarkar, S.K.

    2011-01-01

    Cadmium selenide, CdSe, nanoparticles have been synthesized in aqueous solution containing equimolar ammoniated CdSO 4 and Na 2 SeSO 3 as the starting materials without any capping agents, using gamma and electron beam irradiation under a reducing condition. The radiolytic processes occurring in water result in the formation of CdSe nanoparticles through the reactions mediated by hydrated electrons, e aq - . TEM measurements revealed that the CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. The as-grown nanoparticles were of cubic crystalline phase as supported by the XRD measurements. These bare CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. However, the RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation, which was attributed to their relatively smaller size (2-3 nm) and disordered structures as compared to those obtained in the later case (3-5 nm). -- Research highlights: → CdSe nanoparticles could be synthesized in aqueous solutions containing equimolar ammoniated CdSO 4 and Na 2 SeSO 3 as the starting materials using gamma and electron beam irradiation under a reducing condition. → CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. → CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. → The RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation.

  8. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  9. Spectral memory of photoconduction of high-resistance ZnSe

    International Nuclear Information System (INIS)

    Gorya, O.S.; Kovalev, L.E.; Korotkov, V.A.; Malikova, L.V.; Simashkevich, A.V.

    1989-01-01

    Relaxation of photoconductivity of ZnSr crystal in case of a photoconductivity burst when exposing a sample to light with quantum energy E=1.305 eV after preliminary excitation by light with quantum energy 2.61 eV. The phenomenon of nonequilibrium photoconductivity considered permitted to suggest a new method for determination of the energy position of local levels in the forbidden band of semiconductors. Investigations carried out permitted to detect in ZnSe acceptors, lying in the forbidden band, as well as deep centers. It is supposed that the effect of spectral memory of photoconductivity of high-ohmic crystals (ZnSe, ZnS, CdS) relates to the existence of defects with metastable states in them

  10. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    Science.gov (United States)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  11. Donor bound excitons in ZnSe nanoresonators - Applications in quantum information science

    Energy Technology Data Exchange (ETDEWEB)

    Pawlis, A. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany and Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States); Lischka, K. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn (Germany); Sanaka, K.; Yamamoto, Y. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA and National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Sleiter, D. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States)

    2014-05-15

    Here we summarize the advantages of excitons bound to isolated fluorine donor in ZnSe/ZnMgSe quantum well nano-structures. Devices based on these semiconductors, are particularly suited to implement concepts of the optical manipulation of quantum states in solid-state material. The fluorine donor in ZnSe provides a physical qubit with potential advantages over previously researched qubits. In this context we show several initial demonstrations of devices, such as a low-threshold microdisk laser and an indistinguishable single photon source. Additionally we demonstrate the realization of a controllable three-level-system qubit consisting of a single Fluorine donor in a ZnSe nano-pillar, which provides an optical accessible single electon spin qubit.

  12. Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    CERN Document Server

    Wolf, H; Ostheimer, V; Hamann, J; Lany, S; Wichert, T

    2000-01-01

    Using the radioactive acceptor $^{111}\\!$Ag for perturbed $\\gamma$-$\\gamma$-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities.

  13. Temperature dependence of the infrared luminescence of ZnSe grown

    International Nuclear Information System (INIS)

    Vakulenko, O.V.; Kravchenko, V.M.

    2000-01-01

    Photoluminescence (PL) spectra of undoped ZnSe crystals grown by the sublimation method are studied within the spectral range 500-1030 nm at T 100/330 K. PL was excited with N 2 , He - Cd, and Ar + lasers. Under Ar + laser excitation (h ν e xc g ), the IP 1.3 eV band is observed in addition to the red 1.9 eV band. The temperature dependences of the peak intensities (TD) of both bands are measured. The TD of IR band has a peak at 260 K and flattens out at T < 180. To interpret such a TD, two models are considered the model of multi charge donor as a luminescence center and the model of simple donor. It is suggested that the IR PL band may be due to intracentor transitions between some levels of multi charge donor-like defects of the ZnSe lattice

  14. ZnSe nanotrenches: formation mechanism and its role as a 1D template

    Directory of Open Access Journals (Sweden)

    Lok Shu Kin

    2011-01-01

    Full Text Available Abstract High-resolution transmission electron microscopy was used to characterize the microstructures of ZnSe nanotrenches induced by mobile Au-alloy droplets. The contact side interfaces between the AuZnδ alloy droplets and the ZnSe as well as the four side walls of the resulting <011>-oriented nanotrenches were found all belong to the {111} plane family, with the front and back walls being the {111}A planes while the other two side walls being the {111}B planes. These findings offer a deeper understanding on the formation mechanism of the nanotrenches. Pure Au nanodashes were formed upon further deposition of Au on the nanotrenches. PACS: 61.46.Df, Structure of nanocrystals and nanoparticles. 81.16.Rf, Micro and nanoscale pattern formation. 68.37.Og, High resolution transmission electron microscopy.

  15. Clustering and percolation threshold in diphase systems of random centered quantum dots of ZnSe

    International Nuclear Information System (INIS)

    Bondar', N.V.

    2009-01-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a 'dielectric trap' on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system

  16. Composition and performance of thin film CdSe electrodeposited from selenosulfite solution

    International Nuclear Information System (INIS)

    Szabo, J.P.; Simms, D.; Cocivera, M.

    1985-01-01

    Cathodic electrodeposition of thin film CdSe from aqueous selenosulfite solution has been studied as function of solution composition and electrode potential. The Cd/Se ratio has been analyzed using polarography and Rutherford backscattering spectroscopy. Polarography gives a compostion averaged over the whole film (2cm 2 ) while RBS gives local surface composition (1 mm 2 ). The average Cd/Se ratio is 1.1, but some variation was found to occur across the surface of film (0.82 to 1.2)

  17. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  18. Stability studies of CdSe nanocrystals in an aqueous environment

    DEFF Research Database (Denmark)

    Xi, Lifei; Lek, Jun Yan; Liang, Yen Nan

    2011-01-01

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH − ) while photo......-generated holes oxidize CdSe to Cd2 + and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments...

  19. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  20. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    International Nuclear Information System (INIS)

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Positron annihilation study of mechanochemical reaction between Zn+Se and Zn+S

    International Nuclear Information System (INIS)

    Kajcsos, Zs.; Horvath, D.; Tshakarov, C.G.; Gospodinov, G.G.; Vertes, A.

    1981-01-01

    Positron lifetime spectra were recorded and evaluated in mixtures of Zn+S and Zn+Se powders for various periods. The intensity of the long-lived positron lifetime component is shown to increase with grinding time until an abrupt decrease takes place at a specific grinding time, indicating the onset of the effective chemical reaction. The suitability of positron annihilation for investigating mechanochemical reactions is clearly demonstrated. (author)

  2. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  3. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Chen, Jiayi; Liang, Qiaowen [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Wu, Dudu [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); Zeng, Yuaner, E-mail: zengyuaner@126.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Jiang, Bin, E-mail: gzjiangbin@hotmail.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China)

    2014-01-15

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10{sup −7} mol L{sup −1}. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K{sub q} (1.02×10{sup 13} L mol{sup −1} s{sup −1}). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure.

  4. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Directory of Open Access Journals (Sweden)

    Tenconi M.

    2014-01-01

    Full Text Available As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  5. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    International Nuclear Information System (INIS)

    Chen, Zhi; Chen, Jiayi; Liang, Qiaowen; Wu, Dudu; Zeng, Yuaner; Jiang, Bin

    2014-01-01

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10 −7 mol L −1 . Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K q (1.02×10 13 L mol −1 s −1 ). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure

  6. Bound magnetic polaron in Zn-rich cobalt-doped ZnSe nanowires

    Science.gov (United States)

    Hou, Lipeng; Pan, Longfei; Liang, Bianbian; Liu, Yuting; Zhang, Li; Bukhtiar, Arfan; Shi, Lijie; Liu, Ruibin; Zou, Bingsuo

    2018-02-01

    The micro-luminescence spectra of the diluted magnetic semiconductor (DMS) can reflect the spin-exciton interaction and related relaxation process. Here the micro-photoluminescence (micro-PL) spectra and PL lifetime measurements have been done on an individual ferromagnetic (FM)-coupled cobalt (Co) doped zinc selenide (ZnSe) nanowire. There occurs a double-peak profile in its near bandedge emission spectrum: the first peak is from free exciton (FX) and the second comes from magnetic polaron (MP). In their temperature dependent PL spectra, the MP emission peak demonstrates obviously temperature-independent behavior, in contrast to the behaviors of FX and reported exciton MP in nanobelt. It is found that in this Co(II) doped ZnSe nanowires, this MP’s temperature-independent emission is related to the coupling between exciton and a FM nanocluster (↑↑↓). The nanocluster is likely due to the interaction of Se vacancies of the wide bandgap semiconductors with the antiferromagnetic (AFM) arrangement transition metal (TM) ions in these Se-deficient Co doped ZnSe nanowires. These results reflect that the AFM coupling TM ions pair can give rise to FM behavior with the involvement of positive charge defect, also indicating that the micro-luminescence detection can be used to study the magnetic coupling in DMS.

  7. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells

    International Nuclear Information System (INIS)

    Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N.

    2013-01-01

    Using pulsed-laser deposition method, crystalline ZnSe nano-needles have been grown on catalyst-coated silicon (100) substrates. The crystalline ZnSe nano-needles with the middle diameters of about 20–80 nm, and the lengths ranging from 100 to 600 nm can be grown densely on 300–400 °C substrates. The as-grown ZnSe nano-needles were well crystalline and base-grown. They are potential electron-capturing materials in polymer/inorganic hybrid solar cells for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nano-needle cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed and fabricated. The absorption spectra of the blend of regioregular poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), ZnSe nano-needles and the combination of P3HT:PCBM and ZnSe nano-needles were examined by ultraviolet–visible-infrared spectrophotometer, respectively. The absorption bands of the combination of P3HT:PCBM and ZnSe nano-needles fit well with the solar spectral distribution. - Highlights: ► Crystalline ZnSe nano-needles grown by pulsed laser deposition. ► A five-layer polymer/inorganic hybrid solar cell based on ZnSe nano-needles cathode. ► ZnSe nano-needles improve light absorption. ► Employment of ZnSe nano-needles increase the open-circuit voltage and fill factor

  8. Efficient n-type doping of CdTe epitaxial layers grown by photo-assisted molecular beam epitaxy with the use of chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, D.; Scholl, S.; Kuhn, T.A.; Ossau, W.; Waag, A.; Landwehr, G. (Univ. Wuerzburg, Physikalisches Inst. (Germany)); Bilger, G. (Univ. Stuttgart, Inst. fuer Physikalische Elektronik (Germany))

    1993-01-30

    Chlorine has been used successfully for the first time for n-type doping of CdTe epitaxial layers (epilayers) grown by photo-assisted molecular beam epitaxy. Similar to n-type doping of ZnSe layers, ZnCl[sub 2] has been used as source material. The free-carrier concentration can be varied over more than three orders of magnitude by changing the ZnCl[sub 2] oven temperature. Peak mobilities are 4700 cm[sup 2] V[sup -1] s[sup -1] for an electron concentration of 2x10[sup 16] cm[sup -3] and 525 cm[sup 2] V[sup -1] s[sup -1] for 2x10[sup 18] cm[sup -3]. The electrical transport data obtained by Van der Pauw configuration and Hall structure measurements are consistent with each other, indicating a good uniformity of the epilayers. In photoluminescence the donor-bound-exciton emission dominates for all chlorine concentrations. This contasts significantly with results obtained for indium doping, commonly used for obtaining n-type CdTe epilayers. The superiority of chlorine over indium doping and the influence of growth parameters on the behaviour of CdTe:Cl layers will be discussed on the basis of transport, luminescence, secondary ion mass spectroscopy and X-ray photoelectron spectroscopy data. (orig.).

  9. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  10. CdSe/ZnSe quantum dot structures grown by molecular beam epitaxy with a CdTe submonolayer stressor

    International Nuclear Information System (INIS)

    Sedova, I. V.; Lyublinskaya, O. G.; Sorokin, S. V.; Sitnikova, A. A.; Toropov, A. A.; Donatini, F.; Dang, Si Le; Ivanov, S. V.

    2007-01-01

    A procedure for formation of CdSe quantum dots (QDs) in a ZnSe matrix is suggested. The procedure is based on the introduction of a CdTe submonolayer stressor deposited on the matrix surface just before deposition of the material of the QDs. (For CdTe/ZnSe structure, the relative lattice mismatch is Δa/a ∼ 14%.) The stressor forms small strained islands at the ZnSe surface, thus producing local fields of high elastic stresses controlling the process of the self-assembling of the QDs. According to the data of transmission electron microscopy, this procedure allows a considerable increase in the surface density of QDs, with a certain decrease in their lateral dimensions (down to 4.5 ± 1.5 nm). In the photoluminescence spectra, a noticeable (∼150 meV) shift of the peak to longer wavelengths from the position of the reference CdSe/ZnSe QD structure is observed. The shift is due to some transformation of the morphology of the QDs and an increase in the Cd content in the QDs. Comprehensive studies of the nanostructures by recording and analyzing the excitation spectra of photoluminescence, the time-resolved photoluminescence spectra, and the cathodoluminescence spectra show that the emission spectra involve two types of optical transitions, namely, the type-I transitions in the CdSeTe/ZnSe QDs and the type-II transitions caused mainly by the low cadmium content (Zn,Cd)(Se,Te)/ZnSe layer formed between the QDs

  11. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped ... CdSe quantum dots; chemical bath deposition; capping; green chemistry; nanomaterials. 1. .... at high concentration of nanoparticles.

  12. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  13. Low Temperature Synthesis of CdSe Quantum Dots with Amine Derivative and Their Chemical Kinetics

    Science.gov (United States)

    Seongmi Hwang,; Youngmin Choi,; Sunho Jeong,; Hakyun Jung,; Chang Gyoun Kim,; Teak-Mo Chung,; Beyong-Hwan Ryu,

    2010-05-01

    The chemical kinetics of growing CdSe nanocrystals was studied in order to investigate the effects of amine capping agents on the size of resulting quantum dots (QDs). CdSe QDs were prepared in phenyl ether, and the amine ligand dependence of QD size was determined. The results show that the size of CdSe nanocrystals can be regulated by controlling reaction rate, with smaller QDs being formed in slower processes. The results of photoluminescence (PL) studies show that the emission wavelengths of the QDs well correlate with particle size. This simple process for forming different-sized QDs, which uses a cheap solvent and various capping agents, has the potential for preparing CdSe nanocrystals more economically.

  14. Structural, optical and magnetic properties of cobalt-doped CdSe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The ... Keywords. Nanoparticles; dilute magnetic semiconductor; ferromagnetism. ... dium dodecyl sulfate (SDS) was used as a surfactant in.

  15. Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device

    Science.gov (United States)

    Sohail, Muhammad; Shah, Zawar Hussain; Saeed, Shomaila; Bibi, Nasreen; Shahbaz, Sadia; Ahmed, Safeer; Shabbir, Saima; Siddiq, Muhammad; Iqbal, Azhar

    2018-05-01

    In view of realizing the economic viability, we fabricate a solar cell device containing low band gap and easily processable polymer 5-yl-8-(thiophene-2,5-diyl)-2,3-bis(3-(octyloxy)phenyl) quinoxaline (TQ1) and CdSe nanoparticles (NPs) and investigate its charge transport properties. When the TQ1 is combined with the CdSe NPs a strong photoluminescence quenching and shortening of photoluminescence lifetime of the TQ1 is observed indicating exciton transfer from TQ1 to the CdSe NPs. The time-resolved photoluminescence further reveals that the exciton transfer from the polymer to CdSe NPs is very efficient (68%) and it occurs in solar cell as compared to polymer only device. These observations suggest the importance of other II-VI semiconductor NPs to achieve higher efficiency for photovoltaic devices containing TQ1 polymer.

  16. Center for Development of Security Excellence (CDSE) 2013 Year End Report

    Science.gov (United States)

    2013-01-01

    Humphrey Deputy Director, CDSE CDSE STATEMENT Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc bibendum dapibus dui, at porta nunc. In eget...accumsan odio. Donec rutrum varius purus, vitae venenatis urna porttitor eget. Mauris lorem dolor , facilisis eget purus quis, adipiscing tincidunt...ac quam at gravida. Cras a ligula suscipit, lobortis dolor vel, feugiat diam. Proin mattis lectus sit amet pellentesque interdum. Cras porttitor

  17. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  18. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  19. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  20. Single-step in-situ synthesis and optical properties of ZnSe nanostructured dielectric nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chirantan; Rahaman Molla, Atiar; Tarafder, Anal; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, Glass Science and Technology Section, Glass Division, 196, Raja S. C. Mullick Road, 700032 Kolkata (India); Kr Mishra, Manish; De, Goutam [CSIR-Central Glass and Ceramic Research Institute, Nano-Structured Materials Division, 196, Raja S. C. Mullick Road, 700032 Kolkata (India); Goswami, Madhumita; Kothiyal, G. P. [Glass and Advanced Ceramics Division, Bhaba Atomic Research Centre, Trombay, 400085 Mumbai (India)

    2014-04-07

    This work provides the evidence of visible red photoluminescent light emission from ZnSe nanocrystals (NCs) grown within a dielectric (borosilicate glass) matrix synthesized by a single step in-situ technique for the first time and the NC sizes were controlled by varying only the concentration of ZnSe in glass matrix. The ZnSe NCs were investigated by UV-Vis optical absorption spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). The sizes of the ZnSe NCs estimated from the TEM images are found to alter in the range of 2–53 nm. Their smaller sizes of the NCs were also calculated by using the optical absorption spectra and the effective mass approximation model. The band gap enlargements both for carrier and exciton confinements were evaluated and found to be changed in the range of 0–1.0 eV. The Raman spectroscopic studies showed blue shifted Raman peaks of ZnSe at 295 and 315 cm{sup −1} indicating phonon confinement effect as well as compressive stress effect on the surface atoms of the NCs. Red photoluminescence in ZnSe-glass nanocomposite reveals a broad multiple-peak structure due to overlapping of emission from NC size related electron-hole recombination (∼707 nm) and emissions from defects to traps, which were formed due to Se and Zn vacancies signifying potential application in photonics.

  1. Chemical bath deposition of Hg doped CdSe thin films and their characterization

    International Nuclear Information System (INIS)

    Bhuse, V.M.

    2005-01-01

    The deliberate addition of Hg in CdSe thin film have been carried out using a simple, modified, chemical bath deposition technique with the objective to study the effect of Hg doping on properties of CdSe thin films. Synthesis was initiated at 278 K temperature using complexed cadmium sulphate, mercuric nitrate and sodium selenosulphate in an aqueous ammonical medium at pH 10. Films were characterized by XRD, SEM, optical absorption, electrical and thermoelectric techniques. The 'as deposited' films were uniform, well adherent, nearly stoichiometric and polycrystalline in a single cubic phase (zinc blende). Crystallite size determined from XRD and SEM was found to increase slightly with addition of Hg. The optical band gap of CdSe remains constant upto 0.05 mol% Hg doping, while it decreases monotonically with further increase in mercury content. Dark dc electrical resistivity and conduction activation energy of CdSe were found to decrease initially upto 0.05 mol% of Hg, thereafter increased for higher values of Hg but remains less than those of CdSe. All the films showed n-type of conductivity. A CdSe film containing 0.05 mol% of Hg showed higher absorption coefficient, and conductivity

  2. ZnSe passivation layer for the efficiency enhancement of CuInS{sub 2} quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Kovalev, Valery [Department of Mechanics and Mathematics, Moscow State University named after M.V. Lomonosov, Leninskie Gory 1, 119992 Moscow (Russian Federation); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2014-02-25

    Highlights: • ZnSe is employed as passivation layer in CuInS{sub 2} quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS{sub 2} based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS{sub 2} quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS{sub 2} quantum dot sensitized TiO{sub 2} photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS{sub 2} quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS{sub 2} based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer.

  3. Ultrasonic attenuation of CdSe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J., E-mail: braulio@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Calderon, E.; Bracho, D.B. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Perez, J.F. [Laboratorio de Instrumentacion Cientifica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2010-08-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter {gamma} is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter {gamma}, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  4. Ultrasonic attenuation of CdSe at low temperatures

    International Nuclear Information System (INIS)

    Fernandez, B.J.; Calderon, E.; Bracho, D.B.; Perez, J.F.

    2010-01-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter γ is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter γ, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  5. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Zillner, Elisabeth Franziska

    2013-01-01

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO 2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  6. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  7. Polytypism and band alignment in ZnSe nanowires revealed by photoluminescence spectroscopy of embedded (Zn,Cd)Se quantum dots

    Science.gov (United States)

    Bieker, S.; Pfeuffer, R.; Kiessling, T.; Tarakina, N.; Schumacher, C.; Ossau, W.; Molenkamp, L. W.; Karczewski, G.

    2015-03-01

    We report on the optical characterization of single (Zn,Cd)Se quantum dots (QDs) embedded in vapor-liquid-solid-grown ZnSe nanowires (NWs). The temperature dependent quenching of the QD luminescence demonstrates that their electronic structure is comparable to that of self-assembled (Zn,Cd)Se QDs in ZnSe matrices. The photoluminescence excitation (PLE) spectrum of single nanowire QDs reveals the presence of both zinc blende (ZB) and wurtzite (WZ) crystal modifications of ZnSe in the NW shafts. PLE provides, therefore, a complementary technique to transmission electron microscopy imaging to reveal polytypism in ZnSe NWs. A transient quenching of the PL emission suggests a type II staggered band alignment at the ZB/WZ interface in our ZnSe NWs.

  8. Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kale, R.B.; Lokhande, C.D.

    2004-01-01

    The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap 'E g ' for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 10 7 Ω cm

  9. Controlling the magic and normal sizes of white CdSe quantum dots

    Science.gov (United States)

    Su, Yu-Sheng; Chung, Shu-Ru

    2017-08-01

    In this study, we have demonstrated a facile chemical route to prepare CdSe QDs with white light emission, and the performance of white CdSe-based white light emitting diode (WLED) is also exploded. An organic oleic acid (OA) is used to form Cd-OA complex first and hexadecylamine (HDA) and 1-octadecene (ODE) is used as surfactants. Meanwhile, by varying the reaction time from 1 s to 60 min, CdSe QDs with white light can be obtained. The result shows that the luminescence spectra compose two obvious emission peaks and entire visible light from 400 to 700 nm, when the reaction time less than 10 min. The wide emission wavelength combine two particle sizes of CdSe, magic and normal, and the magic-CdSe has band-edge and surface-state emission, while normal size only possess band-edge emission. The TEM characterization shows that the two different sizes with diameter of 1.5 nm and 2.7 nm for magic and normal size CdSe QDs can be obtained when the reaction time is 4 min. We can find that the magic size of CdSe is produced when the reaction time is less than 3 min. In the time ranges from 3 to 10 min, two sizes of CdSe QDs are formed, and with QY from 20 to 60 %. Prolong the reaction time to 60 min, only normal size of CdSe QD can be observed due to the Ostwald repining, and its QYs is 8 %. Based on the results we can conclude that the two emission peaks are generated from the coexistence of magic size and normal size CdSe to form the white light QDs, and the QY and emission wavelength of CdSe QDs can be increased with prolonging reaction time. The sample reacts for 2 (QY 30 %), 4 (QY 32 %) and 60 min (QY 8 %) are choosing to mixes with transparent acrylic-based UV curable resin for WLED fabrication. The Commission International d'Eclairage (CIE) chromaticity, color rendering index (CRI), and luminous efficacy for magic, mix, and normal size CdSe are (0.49, 0.44), 81, 1.5 lm/W, (0.35, 0.30), 86, 1.9 lm/W, and (0.39, 0.25), 40, 0.3 lm/W, respectively.

  10. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  11. Hydrothermal assisted growth of CdSe nanoparticles and study on its dielectric properties

    Science.gov (United States)

    Jamble, Shweta N.; Ghoderao, Karuna P.; Kale, Rohidas B.

    2017-11-01

    In this work, we have synthesized cadmium selenide (CdSe) nanoparticles by using cadmium chloride (CdCl2) as cadmium ion and sodium selenosulfate (Na2SeSO3) as selenium ion sources through a simple, convenient and cost-effective hydrothermal route at 180 °C temperature for 24 h. Aqueous ammonia was employed as a complex reagent to adjust the pH of the solution. Structural analysis of the obtained product was carried out by using x-ray diffractometer, which revealed that the final product has a cubic structure of CdSe with average crystallite size 13.15 nm. The cauliflower-like CdSe nanostructures were confirmed from the scanning electron microscopy and high-resolution transmission electron microscopy. EDS analysis indicates that the obtained product has a good elemental stoichiometric ratio. The electron diffraction pattern reveals the polycrystalline nature of CdSe. From UV-visible absorption spectral analysis, the optical energy bandgap of CdSe nanoparticles was found to be 1.90 eV. XPS spectra presented Cd 3d3/2, Cd 3d5/2 and Se 3d3/2 peaks at 411.04, 404.29 and 53.52 eV respectively. The CdSe nanoparticles exhibit photoluminescence with two distinct emission bands at 632 nm and 720 nm. FTIR study was used towards the understanding of the formation mechanism and bonding on the surface of the resulting nanoparticles. The dielectric properties of a pelletized sample of CdSe nanoparticles were carried out at room temperature.

  12. Defect reactions of implanted Li in ZnSe observed by $\\beta$-NMR

    CERN Document Server

    Kroll, F; Füllgrabe, M; Mai, F; Marbach, K; Peters, D; Geithner, W; Kappertz, S; Keim, M; Kloos, S; Wilbert, S; Neugart, R; Lievens, P; Georg, U

    2001-01-01

    Using $\\beta$-radiation-detected nuclear magnetic resonance ($\\beta$-NMR), we investigated the microscopic behavior of implanted $^{8}$Li in nominally undoped ZnSe crystals. From the temperature-dependent amplitudes of high-resolution NMR spectra we conclude a gradual interstitial-to-substitutional site change between 200 and 350 K. This is in accordance with earlier emission channeling results. We argue that this conversion proceeds via Li$_{i}^+$ + V$_{\\textrm{Zn}}^{2-}$ to ${\\textrm{Li}}_{\\textrm{Zn}}^{-}$ and involves implantation-related Zn vacancies. (13 refs).

  13. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  14. Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Wang, Shutong; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    Micro/nano patterning of ZnSe wafer is demonstrated by femtosecond laser irradiation through a diffracting pinhole. The irradiation results obtained at fluences above the ablation threshold are characterized by scanning electron microscopy. The microsized structure with low spatial frequency has a good agreement with Fresnel diffraction theory. Laser induced periodic surface structures and laser-induced periodic curvelet surface structures with high spatial frequency have been found on the surfaces of microsized structures, such as spikes and valleys. We interpret its formation in terms of the interference between the reflected laser field on the surface of the valley and the incident laser pulse

  15. Timely resolved measurements on CdSe nanoparticles

    International Nuclear Information System (INIS)

    Holt, B.E. von

    2006-01-01

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S e was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S 3/2 -1S-e and 1P 3/2 -1P e but not the intermediately lyingt transition 2S 3/2 -1S e were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S e and 1P e . The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation of the 1S 3/2 -1S e and the 1P 3

  16. Quantum chemistry of the minimal CdSe clusters

    Science.gov (United States)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding

  17. On Some Physical Properties of GeSe3-Sb2Se3-ZnSe Thin Films and Their Radiation Response

    International Nuclear Information System (INIS)

    Hosni, H.M.M.A.

    2010-01-01

    Thin films of the chalcogenides GeSe 3 , Sb 2 Se 3 , ZnSe, (GeSe 3 )80(Sb 2 Se 3 )20 and (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20, are prepared by thermal evaporation onto glass substrates. The effect of ZnSe incorporation with both GeSe 3 , Sb 2 Se 3 results in amorphous (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20 composition as obtained from the X-ray analysis. Electrical measurements reveal a decrease in dc activation energy, ΔEdc, and an increase in ac activation energy, ΔEac, for (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20 as compared with (GeSe 3 )80(Sb 2 Se 3 )20. Optical energy gap, Eg, and band tail width, Ee, are estimated in UV/VIS spectral region for fresh and γ-irradiated films, revealing a decrease in Eg and an increase in Ee for ZnSe and (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20 compositions, with irradiation dose.

  18. Electrical and optical properties of spray - deposited CdSe thin films

    International Nuclear Information System (INIS)

    Bedir, M.; Oeztas, M.; Bakkaloglu, O. F.

    2002-01-01

    The CdSe thin films were developed by using spray-deposition technique at different substrate temperatures of 380C, 400C and, 420C on the glass substrate. All spraying processes involved CdCI 2 (0.05 moles/liter) and SeO 2 (0.05 moles/liter ) and were carried out in atmospheric condition. The CdSe thin film samples were characterized using x-ray diffractometer and optical absorption measurements. The electrical properties of the thin film samples were investigated via Wander Pauw method. XRD patterns indicated that the CdSe thin film samples have a hexagonal structure. The direct band gap of the CdSe thin film samples were determined from optical absorption and spectral response measurements of 1.76 eV. The resistivity of the CdSe thin film samples were found to vary in the range from 5.8x10''5 to 7.32x10''5 Ωcm depending to the substrate temperature

  19. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots

    Science.gov (United States)

    Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao

    2009-06-01

    Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.

  20. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  1. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  2. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter

    Science.gov (United States)

    Kurt, H. Hilal

    2018-05-01

    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  3. Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding

    Science.gov (United States)

    Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2018-04-01

    The characteristics of an Fe2+:ZnSe laser at room temperature and its active elements with undoped faces were studied. Polycrystalline elements with one or two diffusion-doped internal layers were obtained by the solid-state diffusion bonding technique applied to chemical vapor deposition grown ZnSe plates preliminary doped with Fe2+ ions in the process of hot isostatic pressing. A non-chain electric-discharge HF laser was used to pump the crystals. It was demonstrated that increasing the number of doped layers allows increasing the maximum diameter of the pump radiation spot and the pump energy without the appearance of transversal parasitic oscillation. For the two-layer-doped active element with a diameter of 20 mm an output energy of 480 mJ was achieved with 37% total efficiency with respect to the absorbed energy. The obtained results demonstrate the potential of the developed technology for fabrication of active elements by the solid-state diffusion bonding technique combined with the hot isostatic pressing treatment for efficient IR lasers based on chalcogenides doped with transition metal ions.

  4. Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex

    International Nuclear Information System (INIS)

    Yang, G.; Lee, S.; Furdyna, J. K.

    2000-01-01

    This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society

  5. Vapor-phase synthesis and characterization of ZnSe nanoparticles

    Science.gov (United States)

    Sarigiannis, D.; Pawlowski, R. P.; Peck, J. D.; Mountziaris, T. J.; Kioseoglou, G.; Petrou, A.

    2002-06-01

    Compound semiconductor nanoparticles are an exciting class of materials whose unique optical and electronic properties can be exploited in a variety of applications, including optoelectronics, photovoltaics, and biophotonics. The most common route for synthesizing such nanoparticles has been via liquid-phase chemistry in reverse micelles. This paper discusses a flexible vapor-phase technique for synthesis of crystalline compound semiconductor nanoparticles using gas-phase condensation reactions near the stagnation point of a counterflow jet reactor. ZnSe nanoparticles were formed by reacting vapors of dimethylzinc: triethylamine adduct and hydrogen selenide at 120Torr and room temperature (28°C). No attempt was made to passivate the surface of the particles, which were collected as random aggregates on silicon wafers or TEM grids placed downstream of the reaction zone. Particle characterization using TEM, electron diffraction, Raman and EDAX revealed that the aggregates consisted of polycrystalline ZnSe nanoparticles, almost monodisperse in size (with diameters of ~40nm). The polycrystalline nanoparticles appear to have been formed by coagulation of smaller single-crystalline nanoparticles with characteristic size of 3-5 run.

  6. Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity

    Science.gov (United States)

    Chan, L.; DeCuir, E. A., Jr.; Fu, R.; Morse, D. E.; Gordon, M. J.

    2017-11-01

    Graded-index, moth eye-inspired anti-reflective features were fabricated in ZnS and ZnSe via nanosphere lithography using a Langmuir-Blodgett dip-coating method with plasma-based mask reduction and pattern transfer. Arrays of hexagonally close-packed conical frusta (top diameter = 300 nm, pitch = 690 nm, height = 2800 nm) were realized by isotropic etching (size-reduction) of the colloidal mask with CF4/Ar, followed by pattern transfer into the substrate using CH4/H2 plasma etching. Substantial increases in broadband transmission were achieved across the 2-20 μm range, yielding 23% and 26% single-side transmission improvement, and 92% and 88% absolute double-side transmission for ZnS and ZnSe, respectively, in excellent agreement with finite difference time domain (FDTD) optical simulations. Experimental differences in direct versus total transmission, and the general fall off of transmission at short wavelengths, were attributed to diffuse forward scattering and diffractive effects, as predicted by far-field scattering patterns using FDTD. The fabrication method presented can be used to enhance efficiency for multiple IR applications by minimizing reflective losses, while offering the further advantages of scalability and low cost.

  7. Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons

    Directory of Open Access Journals (Sweden)

    Lipeng Hou

    2016-12-01

    Full Text Available Spin-related emission properties have important applications in the future information technology; however, they involve microscopic ferromagnetic coupling, antiferromagnetic or ferrimagnetic coupling between transition metal ions and excitons, or d state coupling with phonons is not well understood in these diluted magnetic semiconductors (DMS. Fe3+ doped ZnSe nanoribbons, as a DMS example, have been successfully prepared by a thermal evaporation method. Their power-dependent micro-photoluminescence (PL spectra and temperature-dependent PL spectra of a single ZnSe:Fe nanoribbon have been obtained and demonstrated that alio-valence ion doping diminishes the exciton magnetic polaron (EMP effect by introducing exceeded charges. The d-d transition emission peaks of Fe3+ assigned to the 4T2 (G → 6A1 (S transition at 553 nm and 4T1 (G → 6A1 (S transition at 630 nm in the ZnSe lattice have been observed. The emission lifetimes and their temperature dependences have been obtained, which reflected different spin–phonon interactions. There exists a sharp decrease of PL lifetime at about 60 K, which hints at a magnetic phase transition. These spin–spin and spin–phonon interaction related PL phenomena are applicable in the future spin-related photonic nanodevices.

  8. ZnSe Light Emitting Diode Quantum Efficiency and Emission Characterization

    Directory of Open Access Journals (Sweden)

    Sahbudin U.K.

    2016-01-01

    Full Text Available ZnSe has demonstrated as a potential candidate in realizing advance LED in some appications for current and future works that utilize a cheaper preparation technique. Blue and white LEDs have been shown to spread across compound semiconductors. This II-VI compound semiconductor with a direct and wide band gap is used in the study which focused on a preparation and its characterization. The device is developed using a circular chip of ZnSe but only part of the active region is designed to allow shorter computation time. Analyses of the proposed LED are performed in an environment that allows optical transition and nonradiative recombination mechanisms. Voltage variation from 0 V to 1.5 V is maintained throughout the observation. The curent-voltage plot shows the p-n junction or diode behavior with central emissive layer. The two dimensions surface emission rate obtained indicates that voltage increment causes the emission concentration to become higher near the central pcontact. The LED efficiency is assessed in terms of internal quantum efficiency and emitting rate.

  9. Electronic structures and magnetism for carbon doped CdSe: Modified Becke–Johnson density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.W., E-mail: fansw1129@126.com; Song, T.; Huang, X.N.; Yang, L.; Ding, L.J.; Pan, L.Q.

    2016-09-15

    Utilizing the full potential linearized augment plane wave method, the electronic structures and magnetism for carbon doped CdSe are investigated. Calculations show carbon substituting selenium could induce CdSe to be a diluted magnetic semiconductor. Single carbon dopant could induce 2.00 μ{sub B} magnetic moment. Electronic structures show the long-range ferromagnetic coupling mainly originates from the p–d exchange-like p–p coupling interaction. Positive chemical pair interactions indicate carbon dopants would form homogeneous distribution in CdSe host. The formation energy implies the non-equilibrium fabricated technology is necessary during the samples fabricated. - Highlights: • The C{sub Se} defects could induce the CdSe to be typical diluted magnetic semiconductor. • Electronic structures show ferromagnetism come from p-d exchange-like p-p coupling. • Chemical pair interactions indicate C{sub Se} prefer homogenous distribution in CdSe host.

  10. Exciton fine structure in CdSe nanoclusters

    International Nuclear Information System (INIS)

    Leung, K.; Pokrant, S.; Whaley, K.B.

    1998-01-01

    The fine structure in the CdSe nanocrystal absorption spectrum is computed by incorporating two-particle electron-hole interactions and spin-orbit coupling into a tight-binding model, with an expansion in electron-hole single-particle states. The exchange interaction and spin-orbit coupling give rise to dark, low-lying states that are predominantly triplet in character, as well as to a manifold of exciton states that are sensitive to the nanocrystal shape. Near the band gap, the exciton degeneracies are in qualitative agreement with the effective mass approximation (EMA). However, instead of the infinite lifetimes for dark states characteristic of the EMA, we obtain finite radiative lifetimes for the dark states. In particular, for the lowest, predominantly triplet, states we obtain radiative lifetimes of microseconds, in qualitative agreement with the experimental measured lifetimes. The resonant Stokes shifts obtained from the splitting between the lowest dark and bright states are also in good agreement with experimental values for larger crystallites. Higher-lying states exhibit significantly more complex behavior than predicted by EMA, due to extensive mixing of electron-hole pair states. copyright 1998 The American Physical Society

  11. X-ray investigation of CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kurtulus, Oezguel [Physics Division, Dogus University, Istanbul (Turkey); Li, Zhen [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane (Australia); Mews, Alf [Physical Chemistry, University of Hamburg, Hamburg (Germany); Pietsch, Ullrich [Department of Physics, University of Siegen, Siegen (Germany)

    2009-08-15

    CdSe nanowires (NWs) have been prepared by a solution-liquid-solid (SLS) approach using Bi nanocatalysts. Structural characterization has been performed by X-ray powder diffraction providing an admixture of wurtzite and zinc-blende (ZB) structure units separated by different types of stacking faults. The relative contributions of ZB type stacking units within the NWs were determined to be in the order of 3-6% from a set of ratios of reflection intensities appearing in only wurtzite structure to those appearing in both ZB and wurtzite (W) structure. In addition, the anisotropy of domain size within the NWs was evaluated from the evolution of peak broadening for increasing scattering length. The coherence lengths along the growth direction are found to be changing between 16 and 21 nm, smaller than the results obtained from TEM measurement, while the NW diameters are determined to be between 5 and 8 nm which is in good agreement with TEM inspection. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    Science.gov (United States)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  13. Random lasing of microporous surface of Cr{sup 2+}:ZnSe crystal induced by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xianheng; Feng, Guoying, E-mail: guoing-feng@scu.edu.cn, E-mail: zhoush@scu.edu.cn; Yao, Ke; Yi, Jiayu; Zhang, Hong [College of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China); Zhou, Shouhuan, E-mail: guoing-feng@scu.edu.cn, E-mail: zhoush@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China); North China Research Institute of Electro-Optics, Beijing 100015 (China)

    2015-06-15

    We demonstrate a random lasing emission based on microporous surface of Cr{sup 2+}:ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10{sup −4} Pa). The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr{sup 2+}:ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm) pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr{sup 2+}:ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr{sup 2+}:ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength.

  14. Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Kühnelt, M.; Langbein, Wolfgang Werner

    1998-01-01

    We have measured the absolute values of the second-harmonic generation (SHG) coefficient \\d\\ for the zinc-blende II-VI semiconductors ZnTe, ZnSe, and ZnS at room temperature. The investigated spectral region of the fundamental radiation lambda(F) ranges from 520 to 1321 nm using various pulsed...

  15. Stability studies of CdSe nanocrystals in an aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Xi Lifei; Lek, Jun Yan; Liang, Yen Nan; Zhou Wenwen; Yan Qingyu; Hu Xiao; Chiang, Freddy Boey Yin; Lam, Yeng Ming [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore); Boothroyd, Chris, E-mail: ymlam@ntu.edu.sg [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-07-08

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH{sup -}) while photo-generated holes oxidize CdSe to Cd{sup 2+} and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments (bioimaging and dye-sensitized solar cells).

  16. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, Fakher, E-mail: fakher8laatar@gmail.com [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Science faculty of Bizerte–Carthage University (Tunisia); Hassen, Mohamed [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Amri, Chohdi [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Laatar, Fekri [Laboratory of Physical Chemistry of Minerals and Materials Applications, National Research Center for Materials Science, Technopole Borj Cedria (Tunisia); Smida, Alia; Ezzaouia, Hatem [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-10-15

    In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180 nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those

  17. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties

    International Nuclear Information System (INIS)

    Laatar, Fakher; Hassen, Mohamed; Amri, Chohdi; Laatar, Fekri; Smida, Alia; Ezzaouia, Hatem

    2016-01-01

    In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180 nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those

  18. Optical absorption of CdSe quantum dots on electrodes with different morphology

    Directory of Open Access Journals (Sweden)

    Witoon Yindeesuk

    2013-10-01

    Full Text Available We have studied the optical absorption of CdSe quantum dots (QDs adsorbed on inverse opal TiO2 (IO-TiO2 and nanoparticulate TiO2 (NP-TiO2 electrodes using photoacoustic (PA measurements. The CdSe QDs were grown directly on IO-TiO2 and NP-TiO2 electrodes by a successive ionic layer adsorption and reaction (SILAR method with different numbers of cycles. The average diameter of the QDs was estimated by applying an effective mass approximation to the PA spectra. The increasing size of the QDs with increasing number of cycles was confirmed by a redshift in the optical absorption spectrum. The average diameter of the CdSe QDs on the IO-TiO2 electrodes was similar to that on the NP-TiO2 ones, indicating that growth is independent of morphology. However, there were more CdSe QDs on the NP-TiO2 electrodes than on the IO-TiO2 ones, indicating that there were different amounts of active sites on each type of electrode. In addition, the Urbach parameter of the exponential optical absorption tail was also estimated from the PA spectrum. The Urbach parameter of CdSe QDs on IO-TiO2 electrodes was higher than that on NP-TiO2 ones, indicating that CdSe QDs on IO-TiO2 electrodes are more disordered states than those on NP-TiO2 electrodes. The Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to move toward a constant value.

  19. Molten-droplet synthesis of composite CdSe hollow nanoparticles

    KAUST Repository

    Gullapalli, Sravani; Grider, Jason M.; Bagaria, Hitesh G.; Lee, Kyusung; Cho, Minjung; Colvin, Vicki L.; Jabbour, Ghassan E.; Wong, Michael

    2012-01-01

    Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety. © 2012 IOP Publishing Ltd.

  20. Molten-droplet synthesis of composite CdSe hollow nanoparticles

    KAUST Repository

    Gullapalli, Sravani

    2012-11-16

    Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety. © 2012 IOP Publishing Ltd.

  1. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... of nanocrystals. STS measurements showed rectifying behaviour, with high currents at the opposite sample bias to that previously observed for CdSe nanocrystals adsorbed on Si substrates. We explain the rectifying behaviour by considering the interaction between the electronic states of the nanocrystals...

  2. The effect of Pb addition on the morphology of CdSe quantum dot

    Science.gov (United States)

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin

    2010-08-01

    CdSe quantum dots had been synthesized with a hot injection method. It was shown that the addition of Pb ions in the initial precursor solution changed the morphology of CdSe nanocrystals from slightly prolate ellipsoid to branched rod. Photoluminescence (PL) of the branched nanocrystals showed rapid depression of emission intensity due to the morphological development to the branched nanocrystal induced by Pb addition. Low temperature PL spectrum indicated that the surface recombination of charge carrier resulted in the large depression of emission from the branched nanocrystal.

  3. Colloidal nanocrystals in epitactical semiconductor structures; Kolloidale Nanokristalle in epitaktischen Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Arens, C.

    2007-10-15

    in this thesis for the first time a new method for the fabrication of semiconductor quantum-dot structures was successfully applied. thereby colloidal CdSe nanocrystals have been imbedded by means of molecular-beam epitaxy into an epitactical ZnSe crystal matrix. The properties of the epitactically overgrown nanocrystals are elaborated in this thesis. The distribution of the nanocrystals on ZnSe surfaces dependes on the stressed state of the ZnSe layer. Nanocrystals on stressed ZnSe grow in agglomerates on its surface. Individual nanocrystals however can only be deposited on relaxed ZnSe. In-situ studies by means of reflection of high-energetically diffracted electrons show in both cases that under stoichiometrical conditions the ZnSe covering layer grows two-dimensionally. It is epitactic what is proved by means of highly resolving X-ray diffraction and transmission electron microscopy. The nanocrystals are after the overgrowth with ZnSe optically activ.

  4. Comparative study of ZnSe thin films deposited from modified chemical bath solutions with ammonia-containing and ammonia-free precursors

    International Nuclear Information System (INIS)

    Chen Liangyan; Zhang Daoli; Zhai Guangmei; Zhang Jianbing

    2010-01-01

    Ammonia is one of the complexing agents which are the most commonly used in the precursors of ZnSe thin films by chemical bath deposition, but its high volatility may be harmful to human beings and environments. In our experiments, ZnSe films were obtained from modified chemical solutions with ammonia-containing and ammonia-free precursors. X-ray diffraction, field-emission scanning electron microscope (FSEM), and absorption spectrum were applied to investigate the microstructure, morphology and optical properties of the samples obtained from both growth conditions, which were investigated in this work. The ammonia-free chemical bath deposited ZnSe films showed comparable properties with the ammonia-containing ones, indicating that ZnSe films from ammonia-free chemical solution may be preferred buffer layer in thin film solar cells with less environmental contamination.

  5. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Fakher Laatar

    2017-12-01

    Full Text Available CdSe nanorods (NRs with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25 by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity, the CdSe/TiO2 heterostructured catalysts show high potential for real water decontamination.

  6. Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination

    International Nuclear Information System (INIS)

    Prudnikau, Anatol; Artemyev, Mikhail; Molinari, Michael; Troyon, Michel; Sukhanova, Alyona; Nabiev, Igor; Baranov, Alexandr V.; Cherevkov, Sergey A.; Fedorov, Anatoly V.

    2012-01-01

    Highlights: ► We studied cadmium-by-mercury chemical substitution in CdSe nanocrystals. ► Zinc blende CdSe quantum dots can be easily converted to isostructural Cd x Hg 1−x Se. ► Wurtzite CdSe QDs require longer time to convert to a zinc blende Cd x Hg 1−x Se. ► Wurtzite CdSe nanorods transform to nanoheterogeneous luminescent Cd x Hg 1−x Se rods. - Abstract: The chemical substitution of cadmium by mercury in colloidal CdSe quantum dots (QDs) and nanorods has been examined by absorption, photoluminescence and Raman spectroscopy. The crystalline structure of original CdSe QDs used for Cd/Hg substitution (zinc blende versus wurtzite) shows a strong impact on the optical and structural properties of resultant Cd x Hg 1−x Se nanocrystals. Substitution of Cd by Hg in isostructural zinc blende CdSe QDs converts them to ternary Cd x Hg 1−x Se zinc blende nanocrystals with significant NIR emission. Whereas, the wurtzite CdSe QDs transformed first to ternary nanocrystals with almost no emission followed by slow structural reorganization to a NIR-emitting zinc blende Cd x Hg 1−x Se QDs. CdSe nanorods with intrinsic wurtzite structure show unexpectedly intense NIR emission even at early Cd/Hg substitution stage with PL active zinc blende Cd x Hg 1−x Se regions.

  7. Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400032, M.S. (India); Lu, Shih-Yuan, E-mail: sylu@mx.nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30013, Taiwan (China)

    2015-08-15

    Highlights: • Nanocrystalline CdSe thin films were deposited using inexpensive CBD method. • Air annealing induced structural and interesting morphological transformation. • The as-deposited CdSe thin films showed a blue shift in its optical spectra. • The films showed a red shift in their optical spectra after annealing. - Abstract: CdSe thin films have been deposited onto glass substrates using a chemical bath deposition method at relatively low temperatures (40 °C). The precursors used for the deposition of the thin films are cadmium nitrate hexahydrate, freshly prepared sodium selenosulfate solution and aqueous ammonia solution as a complex as well as pH adjusting reagent. In order to study the influence of air annealing on their physicochemical properties, the as-deposited CdSe thin films were further annealed at 200 °C and 400 °C for 3 h in air atmosphere. Significant changes in the morphology and photonic properties were clearly observed after the thermal annealing of the CdSe thin films. The as-deposited CdSe films grow with the cubic phase that transforms into mixed cubic and hexagonal wurtzite phase with improved crystalline quality of the films after the air annealing. Morphological observation reveals that the as-deposited thin films grow with multilayer that consists of network or mesh like structure, uniformly deposited on the glass substrate over which microspheres are uniformly distributed. After air annealing, CdSe nanorods emerged from the microspheres along with conversion of few microspheres into micro-pyramids. The UV–visible study illustrates that the as-deposited thin film shows blue shifts in its optical spectrum and the spectrum was red-shifted after annealing the CdSe thin films. The band gap of the CdSe thin films were found to be decreased after the thermal treatment.

  8. Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M., E-mail: m.molaei@vru.ac.ir; Khezripour, A.R.; Karimipour, M.

    2014-10-30

    Highlights: • ZnSe nanocrystals were synthesized using a rapid microwave method. • Synthesized ZnSe NCs indicated an emission with two peaks. • For ZnSe:Cu NCs band edge emission of the ZnSe was completely disappeared. • Synthesized NCs can be dispersed in water therefore they are proper for biological applications. - Abstract: ZnSe nanocrystals (NCs) were synthesized using a microwave activated method. Synthesized NCs were characterized by means of X-ray diffraction (XRD), UV–visible (UV–vis) optical spectroscopy and photoluminescence (PL). XRD analysis demonstrated cubic zinc blende NCs. TEM image indicated round shape NCs and most of the particles had diameters of about 3 nm. Band gap of the NCs was obtained about 3.15 eV and PL spectra indicates a broad emission with two peaks located about 415 and 500 nm related to band edge and trap state respectively. For ZnSe:Cu NCs, PL intensity of band gap emission of ZnSe NCs at 415 nm decreased gradually with the increase in the concentration of Cu dopant ions and for precursor ratio of Cu:Zn 1% band gap emission at 415 nm disappeared completely. At the same conditions, PL QY was obtained about 2% and 8% for ZnSe and ZnSe:Cu (1%) NCs, respectively.

  9. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.; Belabbes, Abderrezak; Ferhat, M.; Bechstedt, F.

    2014-01-01

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  10. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.

    2014-06-23

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  11. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao, E-mail: chaoyangscu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Feng, Guoying, E-mail: guoing_feng@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Dai, Shenyu, E-mail: 232127079@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Wang, Shutong, E-mail: wangshutong.scu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Li, Guang, E-mail: 632524844@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhang, Hua [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhou, Shouhuan, E-mail: zhoush@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); North China Research Institute of Electro-Optics, 4 Jiuxianqiao Street, Chaoyang District, Beijing 100015 (China)

    2017-08-31

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  12. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    International Nuclear Information System (INIS)

    Yang, Chao; Feng, Guoying; Dai, Shenyu; Wang, Shutong; Li, Guang; Zhang, Hua; Zhou, Shouhuan

    2017-01-01

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  13. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  14. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  15. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Administrator

    tosuccinic acid-capped CdSe quantum dots (QDs) were prepared in aqueous solution by using SeO2 as selenium source and NaBH4 as reductant. Secondly, the commercial permutite was treated with acetic acid to induce a partial dealumnization, which can introduce a large number of intracrystal mesopores, and the.

  16. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    WINTEC

    ECMS Division, Central Electrochemical Research Institute, Karaikudi 630 006, India. † ... (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films ... CdSe is a direct band gap semiconductor belonging to the.

  17. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    International Nuclear Information System (INIS)

    Isnaeni,; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-01-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  18. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  19. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha [Research Center for Physics, Indonesian Institute of Sciences, Building 442, Kawasan Puspiptek, South Tangerang,Banten 15314 Indonesia (Indonesia)

    2016-03-11

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  20. Direct Observation of Electron-to-Hole Energy Transfer in CdSe Quantum Dots

    NARCIS (Netherlands)

    Hendry, E.; Koeberg, M.; Wang, F.; Zhang, H.; de Mello Donega, C.; Vanmaekelbergh, D.; Bonn, M.

    2006-01-01

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This

  1. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solu- tion at room temperature. We investigated the ... NCs dispersed in buffer solution (pH = 4⋅0). FTIR spectra were recorded on a ... the theory of acid-base equilibrium, the initial pH value of original solution determines the ...

  2. Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets

    NARCIS (Netherlands)

    Rabouw, F.T.; van der Bok, J.C.; Spinicelli, Piernicola; Mahler, B.; Nasilowski, M.; Pedetti, S.; Dubertret, B.; Vanmaekelbergh, Daniel

    2016-01-01

    Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few

  3. Ab Initio factorized LCAO calculations of the electronic band structure of ZnSe, ZnS, and the (ZnSe)1(ZnS)1 strained-layer superlattice

    International Nuclear Information System (INIS)

    Marshall, T.S.; Wilson, T.M.

    1992-01-01

    The authors report on the results of electronic band structure calculations of bulk ZnSe, bulk ZnS and the (ZnSe) 1 (ZnS) 1 , strained-layer superlattice (SLS) using the ab initio factorized linear combination of atomic orbitals method. The bulk calculations were done using the standard primitive nonrectangular 2-atom zinc blende unit cell, while the SLS calculation was done using a primitive tetragonal 4-atom unit cell modeled from the CuAu I structure. The analytic fit to the SLS crystalline potential was determined by using the nonlinear coefficients from the bulk fits. The CPU time saved by factorizing the energy matrix integrals and using a rectangular unit cell is discussed

  4. Electrical transport in n-type ZnMgSSe grown by molecular beam epitaxy on GaAs

    International Nuclear Information System (INIS)

    Marshall, T.; Petruzzello, J.A.; Herko, S.P.

    1994-01-01

    Significant progress in improving the Performance of blue-green II-VI semiconductor injection lasers has come about from advances in the epitaxial growth and doping of ZnMgSSe on GaAs substrates. This paper investigates electrical transport and its relation to structural quality in n-type Zn 1-y Mg y S x Se 1-x epilayers doped with Cl, grown by molecular beam epitaxy. The composition parameters x and y vary from about 0.12-0.18 and 0.08-0.15, respectively. The quaternary epilayers studied are lattice-matched (or nearly so) to the GaAs substrate. Temperature-dependent Hall-effect measurements are performed on seven n-type ZnMgSSe:Cl epilayers, and a technique is presented whereby the resulting mobility-vs-temperature data is compared with data for ZnSe to obtain a structural figure of merit that is useful in characterizing the quaternary epilayer. 29 refs., 4 figs

  5. Analysis of MBE-grown II-VI hetero-interfaces and quantum-dots by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Utz

    2012-10-16

    The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers.

  6. Analysis of MBE-grown II-VI hetero-interfaces and quantum-dots by Raman spectroscopy

    International Nuclear Information System (INIS)

    Bass, Utz

    2012-01-01

    The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers.

  7. White light emission from organic-inorganic hererostructure devices by using CdSe quantum dots as emitting layer

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Gao Yinhao; Li Dan; Zhao Suling; Liang Chunjun; Wang Yongsheng

    2007-01-01

    In this paper, white light emission was obtained from organic-inorganic heterostructure devices by using CdSe quantum dots as emitting layer, in which CdSe quantum dots were synthesized via a colloidal chemical approach by using CdO and Se powder as precursors. Photoluminescence of CdSe quantum dots demonstrated a white emission with a full wavelength at half maximum (FWHM) of about 200 nm under ambient conditions, and the white emission could be observed in both multilayer device ITO/PEDOT:PSS/CdSe/BCP/Alq 3 /Al and single-layer device: ITO/PEDOT:PSS/CdSe/Al. The broad emission was attributed to the inhomogeneous broadening. The CIE coordinates of the multilayer device were x=0.35 and y=0.40. The white-light-emitting diodes with CdSe quantum dots as the emitting layer are potentially useful in lighting applications

  8. CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties

    International Nuclear Information System (INIS)

    Prabakar, K; Minkyu, S; Inyoung, S; Heeje, K

    2010-01-01

    Cadmium selenide (CdSe) quantum dots (QDs) with different particle sizes have been used as an inorganic co-sensitizer in addition to organic dye for large band gap mesoporous TiO 2 dye sensitized solar cells. The QDs co-sensitized solar cells exhibited overall highest conversion efficiency of 3.65% at 1 sun irradiation for 3.3 nm particle size corresponding to a visible light absorption wavelength of 528 nm. The photovoltaic characteristics of CdSe QDs co-sensitized cells depend on the particle sizes rather than broad spectral light absorption as compared with CdSe QDs alone sensitized and standard dye-sensitized solar cells. Correlation between CdSe QDs adsorption on mesoporous TiO 2 surfaces and photoelectron injection into TiO 2 has been demonstrated. (fast track communication)

  9. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Masadeh, A S; Bozin, E S; Farrow, C L; Paglia, G; Juhas, P; Billinge, S J. L.; Karkamkar, A; Kanatzidis, M G [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1116 (United States)

    2007-09-15

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is {approx}50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

  10. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    International Nuclear Information System (INIS)

    Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.

    2016-01-01

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  11. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Qingsong; Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Lin, Yingying; Yin, Hua; Zhu, Ruiping [State Key Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Qinhuangdao 066004 (China); Xue, Zhenjie [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-07

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core–shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core–shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core–shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10{sup −8} to 2 × 10{sup −3} s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space–charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  12. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Science.gov (United States)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  13. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  14. Microwave-assisted synthesis of L-glutathione capped ZnSe QDs and its interaction with BSA by spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ling, E-mail: linda0911@163.com [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Zhou, Pei-Jiang, E-mail: zhoupj@whu.edu.cn [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Zhan, Hong-Ju [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Jingchu University of Technology, Jingmen 448000 (China); Chen, Chi [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Hu, Wei [Wuhan Humanwell Pharmaceutical Co. Ltd, Wuhan 430064 (China); Zhou, Teng-Fei; Lin, Chao-Wang [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China)

    2013-10-15

    Stable, water-soluble and biologically compatible ZnSe quantum dots (QDs) with L-glutathione (GSH) as a capping agent were synthesized in aqueous medium by microwave irradiation. The GSH/Zn/Se molar ratios, reaction temperature, time and pH are the crucial factors for properties of QDs. Fluorescence (FL) spectra, absorption spectra, transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectra studies showed that the optical properties of QDs were strong, shape of QDs was similar to spherical and the particle size was about 2–3 nm. The 42% quantum yield (QY) of QDs can be achieved without any post-preparative treatment. The interaction of QDs bioconjugated to bovine serum albumin (BSA) was also studied by absorption and FL spectra experiments. With addition of QDs, the FL intensity of BSA was largely quenched, which can be explained by static mechanism. The results suggested the QDs-BSA binding reaction was a static quenching. -- Highlights: • L-glutathione-capped ZnSe quantum dots were synthesized by microwave assisted in aqueous. • The facile synthesis of ZnSe QDs presented is simple and cost-effective. • Findings suggest the QDs possess highly quantum yield and narrow FWHM without any post-treatment. • The interaction mechanism between QDs and BSA is a static quenching.

  15. Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques

    International Nuclear Information System (INIS)

    Ju Peng; Fan Hai; Liu Tao; Cui Lin; Ai Shiyun

    2011-01-01

    The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (K A ) was 6.38, 3.27, and 1.90x10 4 M -1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH o =-77.48 kJ mol -1 , ΔS o =-168.17 J mol -1 K -1 ) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA-CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles. - Highlights: → Estimate the binding of flower-like CdSe NP to BSA by spectroscopic methods. → Hydrogen bonds and van der Waals forces were the major forces. →Addition of CdSe changed the micro-environmentl of BSA. → Decrease in α-helix of BSA secondary structure induced by CdSe.

  16. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Xue, Zhenjie

    2014-11-14

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ E{sub g,nano-CdSe}. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs.

  17. Electronic structure of epitaxial chalcopyrite surfaces and interfaces for photovoltaics

    International Nuclear Information System (INIS)

    Hofmann, Andreas

    2012-01-01

    electron states was observed, which can be understood as a higher localization of electronic states and lower crystal quality. In addition, a strong rearrangement of the copper partial density of states was shown. The intimate knowledge of the electric structure was then exploited to demonstrate the valence band discontinuity between CuInSe 2 and CuIn 3 Se 5 . The analysis by photoemission yielded a valence band offset of 0.28 eV, again in reasonable agreement with theoretical results. The p-n-junction in chalcopyrite solar cells is situated near the absorber-buffer interface, which is therefore crucial for the device performance. In this thesis, ZnO deposited from metal-organic precursors on epitaxial CuInSe 2 was investigated as cadmium-free buffer material. In the course of contact formation, the interfacial region of the absorber becomes depleted of copper. Additionally, a thin intrinsic ZnSe layer is formed, prior to the growth of ZnO. The derived band alignments show no dependence on the surface orientation of the chalcopyrite substrate and are consistent with theoretical results. The conduction band lineup is favorable for the application in solar cells.

  18. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Hasti [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States); Baxter, Jason B., E-mail: jbaxter@drexel.ed [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States)

    2011-02-15

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size {approx}5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of {approx}2 mA cm{sup -2} for nanowires with roughness factor of {approx}10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  19. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B.

    2011-01-01

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm -2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  20. Study of the photodissociation of a CdSe nanocrystal beam by means of photoluminescence and Raman scattering

    CERN Document Server

    Orii, T; Onari, S; Kaito, S I; Arai, T

    1997-01-01

    We developed an apparatus that enables us to perform optical measurements of nanocrystals suspended in vacuum. CdSe nanocrystals were produced by a gas evaporation method, and nanocrystal beams were then formed using an inert-gas flow with differential pumping. We measured photoluminescence spectra of the nanocrystal beams with excitations of various photon energies and powers. For a low excitation power, edge emission of the CdSe nanocrystal beam was observed. With increase of the laser power, Raman lines of Se dimers emitted due to the photodissociation of CdSe nanocrystals were observed. It was found that the thresholds of the excitation laser fluence for the photodissociation of CdSe nanocrystals were much smaller than the thresholds of laser fluence for the laser-induced emission of Se atoms from bulk CdSe. The electronic process is dominant in the photodissociation of CdSe nanocrystals whose surfaces are completely free. We suggest that the effective supply of carriers confined in nanocrystals to the su...

  1. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    International Nuclear Information System (INIS)

    Alaraby, Mohamed; Demir, Esref; Hernández, Alba; Marcos, Ricard

    2015-01-01

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl 2 . Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl 2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl 2

  2. Investigation of the structural, optical and electrical transport properties of n-doped CdSe thin films

    Science.gov (United States)

    Ali, H. M.; Abd El-Ghanny, H. A.

    2008-04-01

    Thin films of (CdSe)90(In2O3)10, (CdSe)90(SnO2)10 and (CdSe)90(ZnO)10 have been grown on glass substrates by the electron beam evaporation technique. It has been found that undoped and Sn or In doped CdSe films have two direct transitions corresponding to the energy gaps Eg and Eg+Δ due to spin-orbit splitting of the valence band. The electrical resistivity for n-doped CdSe thin films as a function of light exposure time has been studied. The influence of doping on the structural, optical and electrical characteristics of In doped CdSe films has been investigated in detail. The lattice parameters, grain size and dislocation were determined from x-ray diffraction patterns. The optical transmittance and band gap of these films were determined using a double beam spectrophotometer. The DC conductivity of the films was measured in vacuum using a two-probe technique.

  3. Effect of CdS/Mg-Doped CdSe Cosensitized Photoanode on Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Yingxiang Guan

    2015-01-01

    Full Text Available Quantum dots have emerged as a material platform for low-cost high-performance sensitized solar cells. And doping is an effective method to improve the performance of quantum dot sensitized solar cells (QDSSCs. Since Kwak et al. from South Korea proved the incorporation of Mg in the CdSe quantum dots (QDs in 2007, the Mg-doped CdSe QDs have been thoroughly studied. Here we report a new attempt on CdS/Mg-doped CdSe quantum dot cosensitized solar cells (QDCSSC. We analyzed the performance of CdS/Mg-doped CdSe quantum dot cosensitized solar cells via discussing the different doping concentration of Mg and the different SILAR cycles of CdS. And we studied the mechanism of CdS/Mg-doped CdSe QDs in detail for the reason why the energy conversion efficiency had been promoted. It is a significant instruction on the development of Mg-doped CdSe quantum dot sensitized solar cells (QDSSCs.

  4. An insight into the optical properties of CdSe quantum dots during their growth in bovine serum albumin solution

    International Nuclear Information System (INIS)

    Singh, Avinash; Ahmed, M.; Guleria, A.; Singh, A.K.; Adhikari, S.; Rath, M.C.

    2016-01-01

    Bovine serum albumin (BSA) assisted synthesis of cadmium selenide (CdSe) quantum dots (QDs) exhibits remarkable changes in the optical properties of the QDs as well as BSA during their growth. The growth of these QDs was investigated by recording the UV–visible absorption spectra and room temperature steady state fluorescence at different time intervals after the mixing of the precursors. The growth of these QDs was associated with a quenching of the fluorescence from BSA. The fluorescence from these QDs was found to be associated with several features: (1) a gradual red-shift in its peak position, (2) increase in intensity with an isoemissive point up to few minutes from the time of mixing of the two precursors, and (3) subsequent decrease in intensity reaching a minimum value, which remains almost unchanged thereafter. The decrease and increase in the fluorescence from BSA and CdSe QDs, respectively have been explained on the basis of Förster resonance energy transfer (FRET) as well as the simultaneous growth of these QDs. - Highlights: • CdSe quantum dots were synthesized in the presence of bovine serum albumin (BSA). • Fluorescence from BSA was quenched by during the growth of CdSe quantum dots. • There was an energy transfer from BSA to CdSe quantum dots during their growth. • The emission from CdSe quantum dots was associated with a red-shift.

  5. MBE growth and design of II-VI heterostructures for epitaxial lift-off

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ian A.; Vallance, Erin C.; Prior, Kevin A. [School of Engineering and Physical Science, Heriot-Watt University, Edinburgh (United Kingdom); Moug, Richard T.; Tamargo, Maria C. [Department of Chemistry, City College of New York, New York, NY (United States)

    2012-08-15

    Epitaxial lift-off (ELO) is a post-growth process that allows the active part of a semiconductor structure to be transferred from its growth substrate to a new one. This is a well established technique for III-V semiconductors, and has previously been demonstrated for ZnSe-based alloys grown on GaAs using a metastable MgS sacrificial layer, taking advantage of the huge difference in etch rates of MgS and ZnSe. We report here the first successful extension of this process to II-VI layers grown on InP by using a MgSe sacrificial layer. By using the correct etching conditions, MgSe has been found to work effectively as a sacrificial layer. 5 x 5 mm{sup 2} square pieces of material can be lifted and deposited on glass substrates without any deterioration in the structural or optical properties; as confirmed by optical microscopy and photoluminescence (PL) measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M., E-mail: m.molaei@vru.ac.ir; Bahador, A.R.; Karimipour, M.

    2015-10-15

    In this work, ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) were synthesized using a one-pot, rapid and room temperature photochemical method. UV illumination provided the required energy for the chemical reactions. Synthesized NCs were characterized using X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence (PL) spectroscopy. XRD pattern indicated cubic zinc blende structure for ZnSe NCs and the TEM image indicated round-shaped particles, most of which had a diameter of about 3 nm. Band gap of ZnSe NCs was obtained as about 3.6 eV, which was decreased by increasing the illumination time. Synthesized NCs indicated intensive and narrow emission in the UV-blue area (370 nm) related to the excitonic recombination and a broad band emission with a peak located at about 490 nm originated from the DAP (donor–acceptor pairs) recombination. ZnS shell was grown on ZnSe cores using a reaction based on the photo-sensitivity of Na{sub 2}S{sub 2}O{sub 3}. For ZnSe@ZnS core–shell NCs, XRD diffraction peaks shifted to higher angles. TEM image indicated a shell around cores and most of the ZnSe@ZnS NCs have a diameter of about 5 nm. After the ZnS growth, ZnSe excitonic emission shifted to the longer wavelength and PL intensity was increased considerably. PL QY was obtained about 11% and 17% for ZnSe and ZnSe@ZnS core–shell QDs respectively. - Highlights: • A green photochemical approach was reported for synthesis of ZnSe NCs. • ZnS shell was grown around ZnSe using a new method. • Synthesis method was rapid, simple and at room temperature. • ZnSe NCs indicated a narrow UV-blue and a broad DAP emissions. • PL intensity was increased considerably by ZnS shell growth.

  7. Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach

    International Nuclear Information System (INIS)

    Molaei, M.; Bahador, A.R.; Karimipour, M.

    2015-01-01

    In this work, ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) were synthesized using a one-pot, rapid and room temperature photochemical method. UV illumination provided the required energy for the chemical reactions. Synthesized NCs were characterized using X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence (PL) spectroscopy. XRD pattern indicated cubic zinc blende structure for ZnSe NCs and the TEM image indicated round-shaped particles, most of which had a diameter of about 3 nm. Band gap of ZnSe NCs was obtained as about 3.6 eV, which was decreased by increasing the illumination time. Synthesized NCs indicated intensive and narrow emission in the UV-blue area (370 nm) related to the excitonic recombination and a broad band emission with a peak located at about 490 nm originated from the DAP (donor–acceptor pairs) recombination. ZnS shell was grown on ZnSe cores using a reaction based on the photo-sensitivity of Na 2 S 2 O 3 . For ZnSe@ZnS core–shell NCs, XRD diffraction peaks shifted to higher angles. TEM image indicated a shell around cores and most of the ZnSe@ZnS NCs have a diameter of about 5 nm. After the ZnS growth, ZnSe excitonic emission shifted to the longer wavelength and PL intensity was increased considerably. PL QY was obtained about 11% and 17% for ZnSe and ZnSe@ZnS core–shell QDs respectively. - Highlights: • A green photochemical approach was reported for synthesis of ZnSe NCs. • ZnS shell was grown around ZnSe using a new method. • Synthesis method was rapid, simple and at room temperature. • ZnSe NCs indicated a narrow UV-blue and a broad DAP emissions. • PL intensity was increased considerably by ZnS shell growth

  8. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  9. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  10. Irradiation route to aqueous synthesis of highly luminescent ZnSe quantum dots and its function as a copper ion fluorescence sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yeluri Narayana; Datta, Aparna [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India); Das, Satyendra K. [Radiochemistry Division, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064 (India); Saha, Abhijit, E-mail: abhijit@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India)

    2016-08-15

    Highlights: • Radiation chemical technique can provide a useful route for synthesis of ZnSe QDs. • Chelating nature of ethylene diamine is exploited for capping nanoparticles. • ZnSe QDs can be a suitable sensitive alternative to toxic cadmium-based system. • Cu(II) ion is probed by QDs in the presence of other physiologically relevant ions. - Abstract: Size-controlled synthesis of stable ZnSe QDs with narrow distribution in aqueous environment through conventional soft chemical method still poses a challenge. The proposed radiation assisted strategy demonstrates aqueous synthesis of stable, monodisperse and luminescent ZnSe QDs capped with chelating ethylene diamine under ambient conditions and at room temperature. Radiation chemical method facilitates in slow and in-situ release of selenium ion from sodium selenosulfate. The concentrations of precursors, such as zinc salt, selenium source, ethylene diamine and absorbed radiation (7–90 kGy) dose were optimized for obtaining good quality particles. Selective quenching of luminescence of as-synthesized quantum dots (QDs) by Cu{sup 2+} ions vis-à-vis other physiologically important cations provide evidence for use of ZnSe quantum dots as alternative to toxic Cd-based quantum dots to probe Cu{sup 2+} ions. The linear relation of ratio of loss in emission intensity as a function of concentration of Cu(II) indicates detection limit in nano-molar range.

  11. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    Directory of Open Access Journals (Sweden)

    Shougui Ning

    2018-02-01

    Full Text Available A mid-infrared (mid-IR semiconductor saturable absorber mirror (SESAM based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  12. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  13. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Yang Shihe; Ge Weikun; Wang Jiannong

    2009-01-01

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μAcm -2 from CdSe nano-tetrapods with different arm lengths are 22 Vμm -1 , 9 Vμm -1 , and 4 Vμm -1 , respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  14. Study of sub band gap absorption of Sn doped CdSe thin films

    International Nuclear Information System (INIS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-01-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively

  15. Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: yangzh08@gmail.com; Chakraborty, Ritun; Kudera, Stefan; Krahne, Roman, E-mail: roman.krahne@iit.it [Istituto Italiano di Tecnologia, Nanochemistry department (Italy)

    2015-11-15

    CdSe nanowires are popular building blocks for many optoelectronic devices mainly owing to their direct band gap in the visible range of the spectrum. Here we investigate the optoelectronic properties of single CdSe nanowires fabricated by colloidal synthesis, in terms of their photocurrent–voltage characteristics and photoconductivity spectra recorded at 300 and 18 K. The photocurrent is identified as the secondary photocurrent, which gives rise to a photoconductive gain of ∼35. We observe a saturation of the photocurrent beyond a certain voltage bias that can be related to the finite drift velocity of electrons. From the photoconductivity spectra, we determine the band gap energy of the nanowires as ∼1.728 eV, and we resolve low-energy peaks that can be associated with sub-bandgap states.Graphical Abstract.

  16. Electrodeposition and characterization of CdSe x-Te 1- x semiconducting thin films

    Science.gov (United States)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe xTe 1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe xTe 1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  17. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lijuan, E-mail: ljzhao@dhu.edu.c [Applied Physics Department, Donghua University, Shanghai 201620 (China); Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pang Qi [Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Yang Shihe [Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Ge Weikun; Wang Jiannong [Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2009-08-10

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of approx0.1 muAcm{sup -2} from CdSe nano-tetrapods with different arm lengths are 22 Vmum{sup -1}, 9 Vmum{sup -1}, and 4 Vmum{sup -1}, respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  18. Study of sub band gap absorption of Sn doped CdSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jagdish; Rani, Mamta [Department of Physics, Panjab University, Chandigarh- 160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  19. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    OpenAIRE

    Chepape, Kgobudi Frans; Mofokeng, Thapelo Prince; Nyamukamba, Pardon; Mubiayi, Kalenga Pierre; Moloto, Makwena Justice

    2017-01-01

    Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP) in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM) analysis of the samples showed that 50% PVP-capped Cd...

  20. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2013-01-01

    Full Text Available A polysulfide liquid electrolyte is developed for the application in CdSe quantum dot-sensitized solar cells (QDSSCs. A solvent consisting of ethanol and water in the ratio of 8 : 2 by volume has been found as the optimum solvent for preparing the liquid electrolytes. This solvent ratio appears to give higher cell efficiency compared to pure ethanol or water as a solvent. Na2S and S give rise to a good redox couple in the electrolyte for QDSSC operation, and the optimum concentrations required are 0.5 M and 0.1 M, respectively. Addition of guanidine thiocyanate (GuSCN to the electrolyte further enhances the performance. The QDSSC with CdSe sensitized electrode prepared using 7 cycles of successive ionic layer adsorption and reaction (SILAR produces an efficiency of 1.41% with a fill factor of 44% on using a polysulfide electrolyte of 0.5 M Na2S, 0.1 M S, and 0.05 M GuSCN in ethanol/water (8 : 2 by volume under the illumination of 100 mW/cm2 white light. Inclusion of small amount of TiO2 nanoparticles into the electrolyte helps to stabilize the polysulfide electrolyte and thereby improve the stability of the CdSe QDSSC. The CdSe QDs are also found to be stable in the optimized polysulfide liquid electrolyte.

  1. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NARCIS (Netherlands)

    van Huis, M.A.; van Veen, A.; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; de Hosson, J.T.M.

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10(16) Cd ions cm(-2) and 210 keV, 1 x 10(16) Se ions cm(-2) in single crystals of MgO(001) and subsequent thermal annealing at a temperature of 1300 K, The structural properties and the orientation relationship between

  2. Rate constant of free electrons and holes recombination in thin films CdSe

    International Nuclear Information System (INIS)

    Radychev, N.A.; Novikov, G.F.

    2006-01-01

    Destruction kinetics of electrons generated in thin films CdSe by laser impulse (wave length is 337 nm, period of impulse - 8 nc) is studied by the method of microwave photoconductivity (36 GHz) at 295 K. Model of the process was suggested using the analysis of kinetics of photo-responses decay, and it allowed determination of rate constant of recombination of free electrons and holes in cadmium selenide - (4-6)x10 -11 cm 3 s -1 [ru

  3. Mobility lifetime product in doped and undoped nanocrystalline CdSe

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Al-Kabbi, Alaa S.; Sharma, Kriti; Saini, G.S.S.

    2013-01-01

    This paper reports the effect of doping on the charge transport in nanocrystalline CdSe thin film. The X-ray study confirms that the doping is achieved and the physical properties are improved. The energy resolution of a semiconductor radiation detector depends on the charge transport properties of the semiconductor and the mobility-lifetime (μτ) product is a key figure of merit for the charge transport. μτ product in nanocrystalline CdSe, CdSe:In and CdSe:Zn thin films has been estimated from temperature dependence of the photoconductivity, which increases with increase in temperature and doping. Also, μτ product of electrons in pure and doped nanocrystalline CdSe thin films has been determined by spectral photoconductivity at different applied voltages. Both the μτ and photoconductivity increase linearly with the bias voltage but the wavelength dependence remains qualitatively similar in all samples. The μτ products increase at photon energies > energy gap, which indicates that the recombination process depends on the excitation energy. The doped CdSe thin films have higher drift length in comparison with undoped films which suggest that these thin films can be used in charge collecting devices. - Highlights: • The structure of thin films has been studied using X-ray diffraction. • Spectral dependence of μτ product in pure and doped nc-CdSe thin films is studied. • The mobility-lifetime product shows dependence on temperature and doping type. • The drift length increases linearly with increasing applied field and doping. • The transport properties of nc-CdSe thin films are enhanced with doping

  4. Two Stages of Impact Fracture of Polycrystalline ZnS and ZnSe Compounds

    Science.gov (United States)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel', A. E.

    2018-04-01

    Mechanoluminescence (ML) in ductile solids is caused by the motion of charged dislocations in the deformable material. Interatomic bond ruptures followed by electronic structure reconfiguration are the main source of ML in brittle bodies. We studied ML in ceramics composed of mixed ionic/covalent ZnS and ZnSe compounds, which are generated during impact loading higher than the limit deformation. Depending on synthesis method and thermal treatment, the resulting ceramics had different size and geometry of grains and intergrain boundary structure, which presumably may have a significant effect on the dislocation glide. In both materials, the time sweeps of ML pulses have two well-resolved peaks. The position of the peaks along the time axis is substantially dependent on the size of ceramic-forming grains and, to a smaller extent, on the barrier properties of intergrain boundaries. The first peak is associated with plastic deformation preceding disintegration of the crystal structure. The second peak emerges upon crack nucleation as interatomic bonds are ruptured and the material is undergoing local deformation in tips of propagating cracks. The distributions of ML pulse amplitudes (the dependences between the number of pulses and their amplitude) calculated for both peaks individually follow the power law, which demonstrates that the electronic processes having different excitation mechanisms (dislocation motion vs bond rupture) are correlated.

  5. Study of the mobility activation in ZnSe thin films deposited using inert gas condensation

    Directory of Open Access Journals (Sweden)

    Jeewan Sharma

    2017-12-01

    Full Text Available ZnSe thin films were synthesized on glass substrates using the inert gas condensation technique at substrate temperature ranging from 25 °C to 100 °C. The hexagonal structure and average crystallite size (6.1–8.4 nm were determined from X-ray diffraction data. The transient photoconductivity was investigated using white light of intensity 8450 lx to deduce the effective density of states (Neff in the order of 1.02 × 1010–13.90 × 1010 cm−3, the frequency factor (S in the range 2.5 × 105–24.6 × 105 s−1 and the trap depth (E ranging between 0.37–0.64 eV of these films. The trap depth study revealed three different types of levels with quasi-continuous distribution below the conduction band. An increase in the photoconductivity was observed as a result of the formation of potential barriers (Vb and of the increase of carrier mobility at the crystallite boundaries. The study of the dependence of various mobility activation parameters on the deposition temperature and the crystallite size has provided better understanding of the mobility activation mechanism.

  6. Luminescence and electrophysical characteristics of ZnSe implanted with acceptor impurities

    CERN Document Server

    Georgobiani, A N; Dravin, V A; Lepnev, L S; Mullabaev, I D; Ursaki, V V; Iljukhina, Z P

    1999-01-01

    The investigation of traps and recombination centres in structures based on ZnSe single crystals by means of the deep level transient spectroscopy, photoluminescence and electroluminescence methods are presented. The implantation of Ag sup + , Au sup + and N sup + ions was used for the creation of these centres. The activation energies equal to 0.26, 0.35 and 0.86 eV were determined from the temperature dependencies of the carriers emission rate from DLTS spectra for majority carriers (electrons). The levels 0.42 and 0.26 eV were observed only in the samples implanted with Ag and Au, respectively. In the case of minority carriers (holes), in all the diodes produced by Ag sup + ions implantation, the depth of the trap was 0.30 eV. Traps with a depth of about 0.72 eV were observed independently on various kind of impurities. In all the cases when these impurities are used together with nitrogen a hole trap with a depth of 0.47 eV is observed. The concentrations and capture cross-sections of the centres were cal...

  7. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, Manuel, E-mail: malgarra67@gmail.com [Centro de Geología da Universidade do Porto, Departamento de Geociências, Ambiente e Ordenamemto do Territorio do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Beograd (Serbia); Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071Málaga (Spain); Silva, Joaquim C.G. Esteves da [Centro de Investigação em Química (CIQ-UP). Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Guerrero-González, Juan José [Policía Científica, Cuerpo Nacional de Policía, Málaga (Spain)

    2014-02-17

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH{sub 2}@CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods.

  8. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    International Nuclear Information System (INIS)

    Algarra, Manuel; Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar; Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique; Silva, Joaquim C.G. Esteves da; Guerrero-González, Juan José

    2014-01-01

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH 2 @CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods

  9. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    International Nuclear Information System (INIS)

    Vibin, Muthunayagam; Vinayakan, Ramachandran; John, Annie; Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie

    2011-01-01

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  10. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Vibin, Muthunayagam [University of Kerala, Department of Biochemistry (India); Vinayakan, Ramachandran [National Institute for Interdisciplinary Science and Technology (CSIR), Photosciences and Photonics (India); John, Annie [Sree Chitra Tirunal Institute of Medical Sciences and Technology, Biomedical Technology Wing (India); Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie, E-mail: annieab2@yahoo.co.in [University of Kerala, Department of Biochemistry (India)

    2011-06-15

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0-72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  11. Optical performance evolutions of reductive glutathione coated CdSe quantum dots in different environments

    International Nuclear Information System (INIS)

    Wang Lili; Jiang Jisen

    2011-01-01

    Optical performances of reductive glutathione coated CdSe quantum dots were studied under different ageing conditions. The enhancements of luminescence were obviously occurred for the samples ageing under illumination. The quantum yield of CdSe was enhanced continuously over 44 days at room temperature, and reached as high as 36.6%. O 2 was proved to make a certain contribute to the enhancement. The evolutions of the systems during the ageing time were deduced according to the variations of pH values with ageing time and the XRD results of the samples ageing in air with illumination. We conferred that the reduction of surface defects resulted from the photo-induced decomposition of CdSe quantum dots was the main reason for the enhancement of fluorescence. The production of CdO as a result of the surface reaction with O 2 made contributions to the enhancement for a certain extent. The curves of quantum yield versus ageing time were fitted with a stretched exponential function. It was found that the course of fluorescence enhancement accorded with the dynamics of system with strongly coupled hierarchical degrees of freedom.

  12. X-ray investigations for determining the aspect ratio in CdSe nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Ullrich; Kurtulus, Oezguel [Festkoerperphysik, Universitaet Siegen (Germany)

    2008-07-01

    Semiconductor based 1D nanostructures are of high technological interest due to potential application in 1D conductivity measurements and optical devices. Catalyst assisted solution-liquid-solid synthesis is a new method where nanocrystal catalysts are used to grow CdSe nanorods (NR) from solution. The aim of this study is to investigate CdSe samples prepared with this new method by means of X-ray diffraction. The measurements have been performed at DELTA synchrotron using a beam of wavelength 1.127A and an image plate system. It is found that the CdSe NRs have a crystal structure of wurtzite with an aspect ratio changing between 2 and 10. This is in contradiction with the results obtained from TEM measurements, according to which the lengths of the NRs are in the order of 1 {mu} and the widths are around 20 nm. Presently the results are interpreted by the appearance of stacking faults which separate uniformly stacked AB, AB layers from each other. It is planned to measure an individual NR using a nanofocused X-ray beam. Once an individual NR could be observed, the next step is to measure the powder spectrum using a CCD as a function of the position of the beam spot along the nanorod. Depending on this information, the parameters affecting the structure of the NRs would be clear by making experiments with samples prepared in different conditions.

  13. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Benchaabane, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Universite Arabe des Sciences, Ecole Superieure d' Ingenieurs et des Etudes Technologiques, Tunis (Tunisia); Ben Hamed, Z.; Kouki, F.; Bouchriha, H. [Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Lahmar, A.; Zellama, K.; Zeinert, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Sanhoury, M.A. [Laboratoire de Chimie Organique Structurale, Synthese et Etudes Physicochimiques, Tunis (Tunisia)

    2016-08-15

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ε and absorption coefficient α. Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n{sub s} and permittivity ε{sub s}, plasma frequency ω{sub p}, carrier density N, optical band gap E{sub g} and oscillator and dispersion energies E{sub 0} and E{sub d}, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration. (orig.)

  14. Detection of CdSe quantum dot photoluminescence for security label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok [Research Center for Physics, Indonesian Institute of Science, Building 442 Puspiptek Serpong, South Tangerang, Banten, Indonesia 15314 (Indonesia); Bilqis, Ratu; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. Soedarto, Tembalang, Semarang, Indonesia 50275 (Indonesia)

    2016-02-08

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  15. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  16. Study on growth kinetics of hexadecylamine capped CdSe nanoparticles using its electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Oluwafemi, S.O., E-mail: tobi_55@yahoo.co [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa 3886 (South Africa); Revaprasadu, N. [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa 3886 (South Africa)

    2009-05-01

    The growth kinetics of hexadecylamine (HDA) capped CdSe synthesised via a novel, mild, effective, and facile non-organometallic route was studied using its electronic properties. The emission and optical maxima of all the nanoparticles synthesised are blue-shifted as the reaction time increases indicating decrease in particle size. The UV spectra show distinct excitonic features which can be attributed to the first electronic transition [1S{sub 3/2}(h)-1S(e)] occurring in CdSe nanoparticles with band-edge luminescence in their emission spectra. The extinction coefficient was determined for convenient and accurate measurements of the concentration of the nanocrystals. Nucleation is very fast and well separated from particle growth under this reaction condition. Two distinguishable stages of growth were observed: an early stage 0-10 min characterised by fast growth, with narrow size distribution and the late stage characterised by slow growth with slight defocusing of size distribution and large particle sizes. The diameter of the size ranges from 2.2 to 3.0 nm. About 94% of the available monomer concentration was consumed during the growth and the solubility of 3.0 nm CdSe in hexadecylamine is measured to be 9.216x10{sup -7} M{sup 2} at 433 deg. K.

  17. Properties of CdSe quantum dots coated with silica fabricated in a facile way

    International Nuclear Information System (INIS)

    Liao Yufeng; Li Wenjiang; He Sailing

    2007-01-01

    High quality quantum dots (QDs) CdSe were prepared using a novel and non-TOP method. Quantum dots of different sizes ranging from 2 to 4 nm could be obtained by removing aliquots of the reaction solution at different time intervals or by adjusting some reaction conditions. The CdSe quantum dots (core) were directly coated with silica (shell) using a microemulsion method. The design and preparation of a model QD/silica was described and characterized using transmission electron microscopy (TEM), UV-vis absorption, photoluminescence and laser confocal scanning microscopy. TEM images confirmed the well-monodispersed QDs and the silica shell around the CdSe core, respectively; laser confocal microscope images, UV-vis absorption and photoluminescence spectra clearly indicated that both the original QDs and the silica-coated QDs had good fluorescence properties. The quantum dots coated with silica shells were stable, water-soluble and less toxic (due to the silica shells), and are anticipated to be used as fluorescent probes for biosensing and imaging applications

  18. Epitaxial growth of CZT(S,Se) on silicon

    Science.gov (United States)

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  19. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    Directory of Open Access Journals (Sweden)

    R. Pässler

    2017-01-01

    Full Text Available Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic parts of heat capacities, CVh(T, are described within the frame of a properly devised four-oscillator hybrid model. Additional anharmonicity-related terms are included for comprehensive numerical fittings of the isobaric heat capacities, Cp(T. The contributions of Debye and non-Debye type due to the low-energy acoustical phonon sections are represented here for the first time by unprecedented, integral-free formulas. Indications for weak electronic contributions to the cryogenic heat capacities are found for both materials. A novel analytical framework has been constructed for high-accuracy evaluations of Debye function integrals via a couple of integral-free formulas, consisting of Debye’s conventional low-temperature series expansion in combination with an unprecedented high-temperature series representation for reciprocal values of the Debye function. The zero-temperature limits of Debye temperatures have been detected from published low-temperature Cp(T data sets to be significantly lower than previously estimated, namely, 270 (±3 K for ZnSe and 220 (±2 K for ZnTe. The high-temperature limits of the “true” (harmonic lattice Debye temperatures are found to be 317 K for ZnSe and 262 K for ZnTe.

  20. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  1. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    Science.gov (United States)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  2. A sensitive electrochemical chlorophenols sensor based on nanocomposite of ZnSe quantum dots and cetyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Li, Jianjun; Li, Xiao; Yang, Ran; Qu, Lingbo; Harrington, Peter de B.

    2013-01-01

    Graphical abstract: A very sensitive and simple electrochemical sensor for chlorophenols (CPs) based on nanocomposite of cetyltrimethylammonium bromide (CTAB) and ZnSe quantum dots (ZnSe–CTAB) through electrostatic self-assembly technology was built for the first time. The nanocomposite of ZnSe–CTAB introduced a favorable access for the electron transfer and showed excellent electrocatalytic activity for the oxidation of CPs. -- Highlights: •Nanocomposite based ZnSe QDs and CTAB was prepared and characterized. •A novel electrochemical sensor for the determination of CPs was built. •The proposed sensor was more sensitive, simple and environment-friendly. -- Abstract: In this work, a very sensitive and simple electrochemical sensor for chlorophenols (CPs) based on a nanocomposite of cetyltrimethylammonium bromide (CTAB) and ZnSe quantum dots (ZnSe–CTAB) through electrostatic self-assembly technology was built for the first time. The composite of ZnSe–CTAB introduced a favorable access for the electron transfer and gave superior electrocatalytic activity for the oxidation of CPs than ZnSe QDs and CTAB alone. Differential pulse voltammetry (DPV) was used for the quantitative determination of the CPs including 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP). Under the optimum conditions, the peak currents of the CPs were proportional to their concentrations in the range from 0.02 to 10.0 μM for 2-CP, 0.006 to 9.0 μM for 2,4-DCP, and 0.06 to 8.0 for PCP. The detection limits were 0.008 μM for 2-CP, 0.002 μM for 2,4-DCP, and 0.01 μM for PCP, respectively. The method was successfully applied for the determination of CPs in waste water with satisfactory recoveries. This ZnSe–CTAB electrode system provides operational access to design environment-friendly CPs sensors

  3. Direct growth of CdSe nanorods on ITO substrates by co-anchoring of ZnO nanoparticles and ethylenediamine

    International Nuclear Information System (INIS)

    Pan Shangke; Xu Tingting; Venkatesan, Swaminathan; Qiao Qiquan

    2012-01-01

    To grow CdSe nanorods directly onto indium tin oxide (ITO) substrates, a ZnO buffer layer composed of nanoparticles with diameter of ∼30–40 nm was prepared by spin coating ZnO sol–gel solution onto the ITO substrates. CdSe nanorods were then successfully in situ grown onto ITO substrates with diameter of ∼30–40 nm and length of ∼120–160 nm using solvothermal method in which CdSe·0.5en (en = ethylenediamine) acted as solution precursor. The in situ synthesized CdSe nanorods were conformed and characterized by atomic force microscope and electron microscopy. The mechanism of such in situ CdSe growth was understood as ZnO nanoparticles anchored en onto ITO substrates, while en linked CdSe with ZnO.

  4. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  5. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  6. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi; Liu Baoting

    2009-01-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  7. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu Baoting, E-mail: xyzh66@ysu.edu.c [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  8. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect.

    Science.gov (United States)

    Nikam, Pratibha R; Baviskar, Prashant K; Majumder, Sutripto; Sali, Jaydeep V; Sankapal, Babasaheb R

    2018-08-15

    Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  10. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  11. MnFe2O4/CdSe magneto-fluorescent nanocomposite for possible biomedical applications

    Science.gov (United States)

    Chandunika, R. K.; Vijayaraghavan, R.; Sahu, Niroj Kumar

    2018-04-01

    Acombined superparamagnetic and fluorescent MnFe2O4/CdSe multifunctional nanocompositehas been prepared by suitable surface functionalizationswith citric acid, polyethyleneimine(PEI) and thioglycolic acid (ThA).and the samples were characterized by XRD, FT-IR, TEM, Zeta Potential, VSM, UV-Vis and PL spectroscopy. MnFe2O4 crystalizes with average size of 38.6 nm whereas CdSe with average size of 2.03 nm. In composite, the CdSe quantum dots (QD) are homogeneously distributed in the matrix of porous MnFe2O4 nanoparticles. Thenanocomposites are well dispersed in aqueous solvent and possess significant magnetic and luminescence properties which may be utilised for magnetic resonance imaging and luminescence tagging of biomolecules.

  12. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  13. Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties

    International Nuclear Information System (INIS)

    Nose, Katsuhiro; Fujita, Hiroshi; Omata, Takahisa; Otsuka-Yao-Matsuo, Shinya; Nakamura, Hiroyuki; Maeda, Hideaki

    2007-01-01

    The role of organic amines in the colloidal synthesis of CdSe quantum dots (QDs) has been studied. CdSe QDs were synthesized from the source solutions containing 5 vol% of amines having various alkyl chain lengths, stereochemical sizes and electron donation abilities. The role of the additional amines was evaluated on the basis of the photoluminescence (PL) properties such as PL wavelength and intensity of the obtained CdSe QDs. The observed PL spectra were explained by the fact that the amines behaved as capping ligands on the surface of the QDs in the product colloidal solution and complex ligands for cadmium in the source solutions. It was shown that the particle size was controlled by the diffusion process depending on the mass and stereochemical shape of the amines, and the luminescence intensity increased with the increasing electron donation ability and capping density of the amines

  14. Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies

    International Nuclear Information System (INIS)

    Henriquez, R.; Badan, A.; Grez, P.; Munoz, E.; Vera, J.; Dalchiele, E.A.; Marotti, R.E.; Gomez, H.

    2011-01-01

    Highlights: → Electrodeposition of CdSe nanocrystalline semiconductor thin films. → Polycrystalline wurtzite structure with a slight (1010) preferred orientation. → Absorption edge shifts in the optical properties due to quantum confinement effects. - Abstract: Cadmium selenide (CdSe) nanocrystalline semiconductor thin films have been synthesized by electrodeposition at controlled potential based in the electrochemical reduction process of molecular selenium in dimethyl sulfoxide (DMSO) solution. The nucleation and growth mechanism of this process has been studied. The XRD pattern shows a characteristic polycrystalline hexagonal wurtzite structure with a slight (1 0 1 0) crystallographic preferred orientation. The crystallite size of nanocrystalline CdSe thin films can be simply controlled by the electrodeposition potential. A quantum size effect is deduced from the correlation between the band gap energy and the crystallite size.

  15. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    Energy Technology Data Exchange (ETDEWEB)

    Alaraby, Mohamed [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag (Egypt); Demir, Esref [Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya (Turkey); Hernández, Alba [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-10-15

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl{sub 2}. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl{sub 2} suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl{sub 2}.

  16. Layer-by-layer assembled porous CdSe films incorporated with plasmonic gold and improved photoelectrochemical behaviors

    International Nuclear Information System (INIS)

    Liu, Aiping; Ren, Qinghua; Yuan, Ming; Xu, Tao; Tan, Manlin; Zhao, Tingyu; Dong, Wenjun; Tang, Weihua

    2013-01-01

    Highlights: • A 3D porous CdSe film with plasmonic gold was fabricated by electrodeposition. • A prominent light absorption enhancement of CdSe films was attained by gold plasmon. • The photoelectrochemical response of CdSe was tunable by Au–CdSe bilayer number. • The porous Au–CdSe films had a potential application in energy conversion devices. -- Abstract: A simple method for creating three-dimensional porous wurtzite CdSe films incorporated with plasmonic gold by the electrochemical layer-by-layer assembly was proposed. A prominent enhancement in light absorption of CdSe films was attained by the efficient light scattering of gold plasmons as sub-wavelength antennas and concentrators and the near-field coupling of gold plasmons with the neighboring porous CdSe films. The broadband photocurrent enhancement of Au–CdSe composite systems in the visible light range and the local current maximum between 600 and 700 nm suggested the cooperative action of antenna effects and electromagnetic field enhancement resulting from localized surface plasmon excitation of gold. Furthermore, the photoelectrochemical response of porous Au–CdSe composite films was highly tunable with respect to the number of Au–CdSe bilayer. The optimal short-circuit current and open-circuit potential were obtained in a four-layer Au–CdSe system because the thicker absorber layer with less porous structure might limit the electrolyte diffusion into the hybrid electrode and impose a barrier for electron tunneling and transferring. The highly versatile and tunable properties of assembled porous Au–CdSe composite films demonstrated their potential application in energy conversion devices

  17. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    Science.gov (United States)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  18. Structural and optical properties of nanocrystalline CdSe and Al:CdSe thin films for photoelectrochemical application

    Energy Technology Data Exchange (ETDEWEB)

    Gawali, Sanjay A. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India); Bhosale, C.H., E-mail: bhosale_ch@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India)

    2011-10-03

    Highlights: {yields} The CdSe and Al:CdSe thin films have been successfully deposited by SPT. {yields} Hexagonal cubic structured CdSe and Al: CdSe thin films are observed. {yields} Large number of fine grains, Uniform and compact growth morphology. {yields} Hydrophilic surface nature. {yields} Al:CdSe have better PEC performance than CdSe. - Abstract: Nanocrystalline CdSe and Al:CdSe semiconductor thin films have been successfully synthesized onto amorphous and FTO glass substrates by spray pyrolysis technique. Aqueous solutions containing precursors of Cd and Se have been used to obtain good quality films. The optimized films have been characterized for their structural, morphological, wettability and optical properties. X-ray diffraction (XRD) studies show that the films are polycrystalline in nature with hexagonal crystal structure. Scanning electron microscopy (SEM) studies show that the film surface is smooth, uniform and compact in nature. Water wettability study reveals that the films are hydrophilic behavior. The formation of CdSe and Al:CdSe thin film were confirmed with the help of FTIR spectroscopy. UV-vis spectrophotometric measurement showed a direct allowed band gap lying in the range 1.673-1.87 eV. Output characteristics were studied by using cell configuration n- CdSe/Al:CdSe |1 M (NaOH + Na{sub 2} + S)|C. An efficient solar cell having a power conversion efficiency of 0.38% at illumination 25 mW cm{sup -2} was fabricated.

  19. Reassignment of oxygen-related defects in CdTe and CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, Dirk

    2015-05-22

    This thesis reassigns the O{sub Te}-V{sub Cd} complex in CdTe and the O{sub Se}-V{sub Cd} complex in CdSe to a sulfur-dioxygen complex SO{sub 2}*, and the O{sub Cd} defect in CdSe to a V{sub Cd}H{sub 2} complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν{sub 1}) and 1108.3 cm{sup -1} (ν{sub 2}) previously assigned to an O{sub Te}-V{sub Cd} complex are detected in CdTe single crystals doped with CdSO{sub 4} powder. Five weaker additional absorption lines accompanying ν{sub 1} and ν{sub 2} could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO{sub 2}* having two configurations labeled ν{sub 1} and ν{sub 2}. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν{sub 1} and ν{sub 2}, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ{sub 1}), 1107.5 (γ{sub 2}), and 1126.3 cm{sup -1} (γ{sub 3}) previously attributed to an O{sub Se}-V{sub Cd} complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO{sub 2}* having three configurations γ{sub 1}, γ{sub 2}, and γ{sub 3}. IR absorption measurements with uniaxial stress applied to the

  20. Reassignment of oxygen-related defects in CdTe and CdSe

    International Nuclear Information System (INIS)

    Bastin, Dirk

    2015-01-01

    This thesis reassigns the O_T_e-V_C_d complex in CdTe and the O_S_e-V_C_d complex in CdSe to a sulfur-dioxygen complex SO_2*, and the O_C_d defect in CdSe to a V_C_dH_2 complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν_1) and 1108.3 cm"-"1 (ν_2) previously assigned to an O_T_e-V_C_d complex are detected in CdTe single crystals doped with CdSO_4 powder. Five weaker additional absorption lines accompanying ν_1 and ν_2 could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO_2* having two configurations labeled ν_1 and ν_2. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν_1 and ν_2, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ_1), 1107.5 (γ_2), and 1126.3 cm"-"1 (γ_3) previously attributed to an O_S_e-V_C_d complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO_2* having three configurations γ_1, γ_2, and γ_3. IR absorption measurements with uniaxial stress applied to the CdSe crystal yield a monoclinic C_1_h symmetry for γ_1 and γ_2. The SO_2* complex is stable up to 600 C. This thesis assigns the ν-lines in

  1. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  2. Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

    Directory of Open Access Journals (Sweden)

    Hyeoung Woo Park

    2012-01-01

    Full Text Available We have investigated the effect of water (H2O cooling and heat treatment on the luminescence efficiency of core CdSe quantum dots (QDs. The photoluminescence (PL quantum yield of the CdSe QDs was enhanced up to ~85%, and some periodic bright points were observed in wide color ranges during the heat treatment of QDs mixed with H2O. The PL enhancement of QDs could be attributed to the recovery of QDs surface traps by unreacted ligands confined within the hydrophilic H2O molecule containers.

  3. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    OpenAIRE

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5...

  4. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    Science.gov (United States)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  5. Long-time Luminescence Kinetics of Localized excitons and conduction Band Edges Smearing in ZnSe(1-c)Tec Solid Solutions

    DEFF Research Database (Denmark)

    Klochikhin, O.; Ogloblin, S. G.; Permogorov, S.

    2000-01-01

    It is shown that the integrated luminescence intensity of localized excitons in solid solutions ZnSe(1 - c)Tec has a component slowly decaying with time. After the excitation above the mobility threshold, the long-time intensity decreases exponentially, with a fractional exponent changing from...

  6. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail: tajakashne@gmail.com; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.

    2014-03-15

    In principal, we described stability of the room temperature ZnSe thin films with thermal annealing deposited onto glass by pulsed laser deposition technique using third harmonic 355 nm of Nd: YAG laser beam. Optoelectronic analysis and stability with thermal annealing was described in terms of structural and optical properties. These properties were investigated via X-ray diffraction, atomic force microscope, scanning electron microscope, Raman, Fourier transform infrared and photoluminescence spectroscopies. From the strong reflection corresponding to the (1 1 1) plane (2θ=27.48°) and the longitudinal optical “LO” phonon modes at 250 cm{sup −1} and 500 cm{sup −1} in the X-ray diffraction and Raman spectra, a polycrystalline zincblende structure of the film was established. At 300 and 350 °C annealing temperatures, the film crystallites were preferentially oriented with the (1 1 1) plane parallel to the substrate and became amorphous at 400 °C. Atomic force microscopic images showed that the morphologies of ZnSe films became smooth with root mean squared roughness 9.86 nm after annealing at 300 and 350 °C while a rougher surface was observed for the amorphous film at 400 °C. Fourier transform infrared study illustrated the chemical nature and Zn–Se bonding in the deposited films. For the as-deposited and annealed samples at 300 and 350 °C, scanning electron micrographs revealed mono-dispersed indistinguishable ZnSe grains and smooth morphological structure which changed to a cracking and bumpy surface after annealing at 400 °C. The physical phenomenon of annealing induced morphological changes could be explained in terms of “structure zone model”. Excitonic emission at 456 nm was observed for both as-deposited and annealed film at 350 °C. The transmission spectrum shows oscillatory behavior because of the thin film interference and exhibited a high degree of transparency down to a wavelength ∼500 nm in the IR region. Energy band-gap was

  7. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  8. Radiative Properties of Carriers in Cdse-Cds Core-Shell Heterostructured Nanocrystals of Various Geometries

    Science.gov (United States)

    Zhou, S.; Dong, L.; Popov, S.; Friberg, A. T.

    2013-07-01

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

  9. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  10. Quantum Nanostructures by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  11. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  12. Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity: Enhanced photo induced carriers separation efficiency and mechanism insight.

    Science.gov (United States)

    Wen, Jiangsu; Ma, Changchang; Huo, Pengwei; Liu, Xinlin; Wei, Maobin; Liu, Yang; Yao, Xin; Ma, Zhongfei; Yan, Yongsheng

    2017-10-01

    Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle CdSe nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle CdSe nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of 78.824% was achieved by vesicle CdSe, which exhibited an increase of 31.779% compared to granular CdSe. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle CdSe nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle CdSe nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h + and O 2 - are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle CdSe nano-semiconductor had high efficiency and stability. Copyright © 2017. Published by Elsevier B.V.

  13. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    International Nuclear Information System (INIS)

    Laatar, F.; Harizi, A.; Smida, A.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E_o), dispersion energy (E_d), and static refractive index (n_o) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ_e) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  14. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, F., E-mail: fakher8laatar@gmail.com [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Harizi, A. [Photovoltaic and Semiconductor Materials Laboratory, Engineering Industrial Department, ENIT, Tunis El Manar University, BP 37, Le Belvédère, 1002 Tunis (Tunisia); Smida, A. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  15. Molecular beam epitaxy a short history

    CERN Document Server

    Orton, J W

    2015-01-01

    This volume describes the development of molecular beam epitaxy from its origins in the 1960s through to the present day. It begins with a short historical account of other methods of crystal growth, both bulk and epitaxial, to set the subject in context, emphasising the wide range of semiconductor materials employed. This is followed by an introduction to molecular beams and their use in the Stern-Gerlach experiment and the development of the microwave MASER.

  16. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  17. Opto-electrical energy conversion by thin electrolytic CdSe films on Ni substrates

    International Nuclear Information System (INIS)

    Glenis, G X; Athanassopoulou, M D; Argyropoulos, Th G; Dervos, C T

    2015-01-01

    Thin-films (300 nm) of zinc-blende (cubic structure) CdSe (111) electrolytically deposited on nickel substrates had their surface characteristics investigated by XRD, SEM, and profilometry scans. A metal-CdSe-metal structure was formed by positioning a Au electrode on top of CdSe and the I–V characteristics of the resulting device were investigated in the dark and under low intensities (≤0.2 mW cm −2 ) of diffused solar radiation. The experimental results show that the illuminated structure is an active device that produces electric power in the 2nd quadrant of the I–V curve. This response may be related to the Ni-to-CdSe interface, where carriers are effectively generated as a result of deep energy level formations, spatially confined in the interfacial region of the depletion layer width of the Ni-CdSe junction. A potential energy diagram is proposed to present the spatially and energetically confined deep-level parameters, the operation principles (carrier generation and transport processes) across the structure and link them to the obtained I–V response. A mathematical modeling based on the Schokley-Read-Hall recombination theory confirms the experimentally obtained current profiles of illuminated junctions. Such opto-electrical tranducers might be implemented in multilayer photovoltaic hetero-structures to enhance their conversion efficiencies and reduce their operating temperatures. (paper)

  18. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    International Nuclear Information System (INIS)

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control. (paper)

  19. Magnetic and dielectric study of Fe-doped CdSe nanoparticles

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad

    2018-01-01

    Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.

  20. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-01-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10 16 Cd ions cm -2 and 210 keV, 1 x 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions

  1. Opto-electrical energy conversion by thin electrolytic CdSe films on Ni substrates

    Science.gov (United States)

    Glenis, G. X.; Athanassopoulou, M. D.; Argyropoulos, Th G.; Dervos, C. T.

    2015-02-01

    Thin-films (300 nm) of zinc-blende (cubic structure) CdSe (111) electrolytically deposited on nickel substrates had their surface characteristics investigated by XRD, SEM, and profilometry scans. A metal-CdSe-metal structure was formed by positioning a Au electrode on top of CdSe and the I-V characteristics of the resulting device were investigated in the dark and under low intensities (≤0.2 mW cm-2) of diffused solar radiation. The experimental results show that the illuminated structure is an active device that produces electric power in the 2nd quadrant of the I-V curve. This response may be related to the Ni-to-CdSe interface, where carriers are effectively generated as a result of deep energy level formations, spatially confined in the interfacial region of the depletion layer width of the Ni-CdSe junction. A potential energy diagram is proposed to present the spatially and energetically confined deep-level parameters, the operation principles (carrier generation and transport processes) across the structure and link them to the obtained I-V response. A mathematical modeling based on the Schokley-Read-Hall recombination theory confirms the experimentally obtained current profiles of illuminated junctions. Such opto-electrical tranducers might be implemented in multilayer photovoltaic hetero-structures to enhance their conversion efficiencies and reduce their operating temperatures.

  2. Nonlinear spectroscopy of the bound exciton states in CdSe single crystals

    International Nuclear Information System (INIS)

    Lisitsa, M.P.; Onishchenko, N.A.; Stolyarenko, A.V.; Ananchenko, V.V.; Polishchuk, S.V.

    1989-01-01

    The study is devoted to the pulsed laser radiation effect on the time-resolved variations of free and bound exciton bands region at the helium temperature. A gradual disappearance of the bound I 2 exciton state is observed with increase of the excitation intensity I in CdSe transmission spectra. This phenomenon is explained by the fact that despite of the shorter life of I 2 excitons as compared to the free ones, the concentration of the centres on which they localize is rather low (≤10 16 cm -3 ) while the evolution of the light-generated electron-hole pairs is such as the most probable recombination through the bound excitons. The transmission spectrum kinetics is studied. The intensity limitation of the laser pulse transmitted through the crystal in the region of the exciton ground state region is shown to be related with two-photon absorption (TPA) in which the exciton state is an intermediate level. The calculation results are in good agreement with the experiment. The estimations show the giant TPA coefficient of ∼10 3 cm/MW. The evolution of photoexcited nonequilibrium electron-hole pairs is studied. The possibility of using CdSe single crystals as spectrum-selective limiters of the laser pulses is shown. (author)

  3. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    International Nuclear Information System (INIS)

    Lu, Y. F.; Cao, X. A.

    2014-01-01

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions

  4. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  5. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van E-mail: vanhuis@iri.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10{sup 16} Cd ions cm{sup -2} and 210 keV, 1 x 10{sup 16} Se ions cm{sup -2} in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  6. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  7. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  8. Cathodic deposition of CdSe films from dimethyl formamide solution at optimized temperature

    Energy Technology Data Exchange (ETDEWEB)

    Datta, J. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India)]. E-mail: jayati_datta@rediffmail.com; Bhattacharya, C. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India); Visiting Research Associate, School of Materials Science and Engineering, UNSW (Australia); Bandyopadhyay, S. [School of Materials Science and Engineering, UNSW, Sydney 2052 (Australia)

    2006-12-15

    In the present paper, thin film CdSe compound semiconductors have been electroplated on transparent conducting oxide coated glass substrates from nonaqueous dimethyl formamide bath containing CdCl{sub 2}, KI and Se under controlled temperature ranging from 100 to 140 deg. C. Thickness of the deposited films as obtained through focussed ion beam technique as well as their microstructural and photoelectrochemical properties have been found to depend on temperature. The film growth was therefore optimized at a bath temperature {approx}125 deg. C. The formation of crystallites in the range of 100-150 nm size has been ascertained through atomic force microscopy and scanning electron microscopy. Energy dispersive analysis of X-rays for the as deposited film confirmed the 1:1 composition of CdSe compound in the matrix exhibiting band-gap energy of 1.74 eV. Microstructural properties of the deposited films have been determined through X-ray diffraction studies, high-resolution transmission electron microscopy and electron diffraction pattern analysis. Electrochemical impedance spectroscopy and current-potential measurements have been performed to characterize the electrochemical behavior of the semiconductor-electrolyte interface. The photo-activity of the films have been recorded in polysulphide solution under illumination and solar conversion efficiency {>=}1% was achieved.

  9. Hyperbranched polyether hybrid nanospheres with CdSe quantum dots incorporated for selective detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Jin, Lanming; Chronakis, Ioannis S.

    2014-01-01

    In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties...

  10. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanfen; Han Min [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bai Hongyan [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); College of Biological and Chemical Engineering, Jiaxing College, Jiaxing 314001 (China); Wu Yong [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Dai Zhihui, E-mail: daizhihuii@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bao Jianchun, E-mail: baojianchun@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China)

    2011-08-01

    A novel aptamer biosensor with easy operation and good sensitivity, specificity, stability and reproducibility was developed by immobilizing the aptamer on water soluble CdSe quantum dots (QDs) modified on the top of the glassy carbon electrode (GCE). Methylene blue (MB) was intercalated into the aptamer sequence and used as an electrochemical marker. CdSe QDs improved the electrochemical signal because of their larger surface area and ion centers of CdSe QDs may also had a major role on amplifying the signal. The higher ion concentration caused more combination of aptamer which caused larger signal. The thrombin was detected by differential pulse voltammetry (DPV) quantitatively. Under optimal conditions, the two linear ranges were obtained from 3 to 13 {mu}g mL{sup -1} and from 14 to 31 {mu}g mL{sup -1}, respectively. The detection limit was 0.08 {mu}g mL{sup -1} at 3{sigma}. The constructed biosensor had better responses compared with that in the absence of the CdSe QDs immobilizing. The control experiment was also carried out by using BSA, casein and IgG in the absence of thrombin. The results showed that the aptasensor had good specificity, stability and reproducibility to the thrombin. Moreover, the aptasensor could be used for detection of real sample with consistent results in comparison with those obtained by fluorescence method which could provide a promising platform for fabrication of aptamer based biosensors.

  11. Photoluminescence of colloidal CdSe nano-tetrapods and quantum dots in oxygenic and oxygen-free environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lijuan [Donghua University, Applied Physics Department, Shanghai (China); Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Pang, Qi; Ge, Weikun; Wang, Jiannong [Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Yang, Shihe [Hong Kong University of Science and Technology, Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong (China)

    2011-05-15

    The effects of oxygenic versus oxygen-free environments on colloidal CdSe nano-tetrapods and quantum dots (QDs) were studied using both continuous and time-resolved photoluminescence (PL) measurements. The decays of PL intensities for tetrapods and QDs in oxygen-free solution (chloroform) and in air (on silicon) can be well fitted by a bi-exponential function. Based on the emission-energy dependence of carrier lifetimes and the amplitude ratio of the fast-decay component to the slow-decay component, the fast and slow PL decays of CdSe nanocrystals are attributed to the recombination of delocalized carriers in the core states and localized carriers in the surface states, respectively. The PL intensities of CdSe nano-tetrapods and QDs were found to be five times and an order of magnitude higher in air than in vacuum, respectively, which is explained by the passivation of surface defects by the polar gas (oxygen) absorption. The lower enhancement in PL intensities of CdSe nano-tetrapods is explained by the special morphology of the tetrapods. (orig.)

  12. The synthesis of CdSe quantum dots with carboxyl group and study on their optical characteristics

    International Nuclear Information System (INIS)

    Ye, Chen; Park, Sangjoon; Kim, Jongsung

    2009-01-01

    Quantum dots are nanocrystal semiconductors which attract lots of research interests due to their peculiar optical properties. CdSe/ZnS quantum dots have been synthesized via pyrolysis of organometallic reagents. The color of the quantum dot changes from yellow-green to red as their size increases with reaction time. Photoluminescence quantum efficiency of CdSe quantum dots have been enhanced by passivating the surface of CdSe quantum dots with ZnS layers. Quantum dots are nanocrystal semiconductors which attract lots of research interests due to their peculiar optical properties. CdSe/ZnS quantum dots have been synthesized via pyrolysis of organometallic reagents. The color of the quantum dot changes from yellow-green to red as their size increases with reaction time. Photoluminescence quantum efficiency of CdSe quantum dots have been enhanced by passivating the surface of CdSe quantum dots with ZnS layers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Calink Indiara do Livramento; Carvalho, Melissa Souza; Raphael, Ellen; Ferrari, Jefferson Luis; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil). Grupo de Pesquisa em Quimica de Materiais; Dantas, Clecio [Universidade Estadual do Maranhao (LQCINMETRIA/UEMA), Caxias, MA (Brazil). Lab. de Quimica Computacional Inorganica e Quimiometria

    2016-11-15

    In this work a colloidal approach to synthesize water-soluble CdSe quantum dots (QDs) bearing a surface ligand, such as thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), glutathione (GSH), or thioglycerol (TGH) was applied. The synthesized material was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-Vis), and fluorescence spectroscopy (PL). Additionally, a comparative study of the optical properties of different CdSe QDs was performed, demonstrating how the surface ligand affected crystal growth. The particles sizes were calculated from a polynomial function that correlates the particle size with the maximum fluorescence position. Curve resolution methods (EFA and MCR-ALS) were employed to decompose a series of fluorescence spectra to investigate the CdSe QDs size distribution and determine the number of fraction with different particle size. The results for the MPA-capped CdSe sample showed only two main fraction with different particle sizes with maximum emission at 642 and 686 nm. The calculated diameters from these maximum emission were, respectively, 2.74 and 3.05 nm. (author)

  14. Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots

    Czech Academy of Sciences Publication Activity Database

    Bielecka, Urszula; Lutsyk, P.; Nyk, M.; Janus, K.; Samoć, M.; Bartkowiak, W.; Nešpůrek, Stanislav

    2013-01-01

    Roč. 31, č. 2 (2013), s. 288-297 ISSN 2083-1331 EU Projects: European Commission(XE) 35859 - BIMORE Institutional research plan: CEZ:AV0Z40500505 Keywords : organic transistor * poly(3-hexylthiophene) * CdSe Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.327, year: 2013

  15. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  16. Photoenhanced atomic layer epitaxy. Hikari reiki genshiso epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y. (Toshiba corp., Tokyo (Japan))

    1991-10-01

    The growth temperature range was greatly expanded of atomic layer epitaxy (ALE) expected as the growth process of ultra-thin stacks. Ga layers and As layers were formed one after the other on a GaAs substrate in the atmosphere of trimethylgallium (TMG) or AsH{sub 2} supplied alternately, by KrF excimer laser irradiation normal to the substrate. As a result, the growth temperature range was 460-540{degree}C nearly 10 times that of 500 {plus minus} several degrees centigrade in conventional thermal growth method. Based on the experimental result where light absorption of source molecules adsorbed on a substrate surface was larger than that under gaseous phase condition, new adsorbed layer enhancement model was proposed to explain above irradiation effect verifying it by experiments. As this photoenhancement technique is applied to other materials, possible fabrication of new crystal structures as a super lattice with ultra-thin stacks of single atomic layers is expected because of a larger freedom in material combination for hetero-ALE. 11 refs., 7 figs.

  17. Photon- and electron-induced surface voltage in electron spectroscopies on ZnSe(0 0 1)

    International Nuclear Information System (INIS)

    Cantoni, M.; Bertacco, R.; Brambilla, A.; Ciccacci, F.

    2009-01-01

    The surface band bending in ZnSe(0 0 1), as a function of the temperature, is investigated both in the valence band (by photoemission) and in the conduction band (by inverse photoemission and absorbed current spectroscopies). Two different mechanisms are invoked for interpreting the experimental data: the band bending due to surface states, and the surface voltage induced by the incident beam. While the latter is well known in photoemission (surface photovoltage), we demonstrate the existence of a similar effect in inverse photoemission and absorbed current spectroscopies, induced by the incident electrons instead of photons. These results point to the importance of considering the surface voltage effect even in electron-in techniques for a correct evaluation of the band bending.

  18. Characterization of the CH4/H2/Ar high density plasma etching process for ZnSe

    Science.gov (United States)

    Eddy, C. R.; Leonhardt, D.; Shamamian, V. A.; Butler, J. E.

    2001-05-01

    High density plasma etching of zinc selenide using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry, using through-the-platen sampling, is used to identify and monitor etch products evolving from the surface during etching. The identifiable primary etch products are Zn, Se, ZnH2, SeH2, Zn(CH3)2, and Se(CH3)2. Their concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy, and substrate temperature are varied. General insights about the surface chemistry mechanisms of the etch process are given from these observations. Regions of process parameter space best suited for moderate rate, anisotropic, and low damage etching of ZnSe are proposed.

  19. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    Science.gov (United States)

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  20. Microstructure and optical studies of electron beam evaporated ZnSe1−xTex nanocrystalline thin films

    International Nuclear Information System (INIS)

    Emam-Ismail, M.; El-Hagary, M.; Shaaban, E.R.; Al-Hedeib, A.M.

    2012-01-01

    Highlights: ► The structural and optical properties of ZnSeTe thin films were studied. ► The micro structural parameters of the films have been determined. ► The room temperature reflectance and transmittance data are analyzed. ► The refractive index and energy gap are determined. ► The single oscillator parameters were calculated. - Abstract: Nanocrystalline thin films of ZnSe 1−x Te x (0.0 ≤ x ≤ 1.0) were deposited on glass substrate using electron beam deposition technique. The structure of the prepared films was examined using X-ray diffraction technique and revealed that the deposited films have polycrystalline zinc blend structure with lattice constant, a, increasing linearly from 0.55816 to 0.59989 nm as x varies from 0 to 1. The optical studies of the nanocrystalline ZnSe 1−x Te x films showed that the refractive index increases and fundamental band gap E g decreases from 2.58 to 2.21 eV as the tellurium concentration increases from 0 to 1. Furthermore, it was also found that the variation of E g with composition shows quadratic behavior with bowing parameter equal to 0.105. In addition, the thickness and annealing effects on the structure and optical properties of the deposited films were also investigated. The refractive index dispersion and its dependence on composition were discussed in terms of single oscillator model proposed by Wemple–DiDomenico.

  1. Discriminative detection of bivalent Cu by dual-emission ZnSe quantum dot fluorescence sensing via ratiometric fluorescence measurements

    International Nuclear Information System (INIS)

    Wang, Chunlei; Zhou, Shujie; Xu, Shuhong; Wang, Zhuyuan; Cui, Yiping

    2014-01-01

    In this work, we showed that 1-thioglycerol (TG)-capped ZnSe quantum dots (QDs) with dual-emission could perform ideal QD fluorescence sensing for ratiometric fluorescence measurements. By comparing the fluorescence ratios at two emission peaks before and after the addition of cations, the discriminative detection of Cu(II) was realized, even in the case of co-existing with large amounts of other sensitive cations, such as Ag(I). The discriminative detection of Cu(II) is accurate with co-existing Ag(I) below 10 μmol L −1 . By a joint investigation of the ionic diffuse dynamics and carrier recombination dynamics, we found that the adsorbed layer of QDs plays a key role in the discriminative detection of Cu(II) from Ag(I) or other sensitive cations. The moderate adsorption capacity with a QD adsorbed layer makes Cu(II) capable of travelling across the QD double-layer structure, following a surface doping process via chemical reactions between Cu(II) and the QD surface atoms. As a result of Cu(II) doping, there were three major carrier recombination channels: the non-radiation recombination between the QD conduction band to the Cu(II) energy level, together with the non-radiation recombination and radiation recombination between the trap state energy levels and the Cu(II) energy level. As for Ag(I) and other sensitive cations, they have a strong adsorption capacity with the QD adsorbed layer, making them mainly present on the adsorbed layer. Due to the blocking of the ligand layer, we only observed weak coupling of the ZnSe conduction band with the Ag(I) energy level via a non-radiation recombination channel. (paper)

  2. White random lasing in mixture of ZnSe, CdS and CdSSe micropowders

    Science.gov (United States)

    Alyamani, A. Y.; Leanenia, M. S.; Alanazi, L. M.; Aljohani, M. M.; Aljariwi, A. A.; Rzheutski, M. V.; Lutsenko, E. V.; Yablonskii, G. P.

    2016-03-01

    Room temperature random lasing with white light emission in a mixture of AIIBVI semiconductor powders was achieved for the first time. The scattering gain media was formed by the mixture of closely packed active micron sized crystallites of ZnSe, CdS, CdSSe semiconductors. The micropowders were produced by grinding bulk crystals of each compound. Optical excitation was performed by 10-nanosecond pulses of tuned Ti:Al2O3-laser at 390 nm. The lasing in the mixture of semiconductor powders was achieved simultaneously at four wavelengths in blue, green, yellow and red spectral regions after exceeding the threshold excitation power density. A drastic integral intensity increase, spectrum narrowing and appearance of mode structure accompanied the laser action. ZnSe crystallites produce the laser light at about 460 nm while CdS particles - at about 520 nm. Two types of CdSSe semiconductor micropowders with different sulfur content lase at 580 nm and 660 nm. The threshold excitation power densities for all laser lines in the emission spectrum are approximately the same of about 0.9 MW/cm2. The sum of the emission spectrum of the mixture of the micropowders forms white light with high brightness. Lasing is due to an appearance of random feedback for amplified radiation in the active medium of closely packed light scattering crystallites. The presented results may find their applications for visualization systems, lighting technology, data transmission, medicine as biosensors and in identification systems. The key feature of random lasers is low cost of its production and possibility to be deposited on any type of surface.

  3. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  4. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  5. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  6. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  7. Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing.

    Science.gov (United States)

    Figuerola, Albert; van Huis, Marijn; Zanella, Marco; Genovese, Alessandro; Marras, Sergio; Falqui, Andrea; Zandbergen, Henny W; Cingolani, Roberto; Manna, Liberato

    2010-08-11

    The thermal evolution of a collection of heterogeneous CdSe-Au nanosystems (Au-decorated CdSe nanorods, networks, vertical assemblies) prepared by wet-chemical approaches was monitored in situ in the transmission electron microscope. In contrast to interfaces that are formed during kinetically controlled wet chemical synthesis, heating under vacuum conditions results in distinct and well-defined CdSe/Au interfaces, located at the CdSe polar surfaces. The high quality of these interfaces should make the heterostructures more suitable for use in nanoscale electronic devices.

  8. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    Science.gov (United States)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  9. Assembly of CdSe onto mesoporous TiO{sub 2} films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Lai-Wan; Chien, Huei-Ting; Lee, Yuh-Lang [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101 (China)

    2010-08-01

    A self-assembled monolayer (SAM) of 3-mercaptopropyl-trimethyoxysilane (MPTMS) is pre-assembled onto a mesoporous TiO{sub 2} film and is used as a surface-modified layer to induce the growth of CdSe QDs in the successive ionic layer adsorption and reaction (SILAR) process. Due to the specific interaction of the terminal thiol groups to CdSe, the MPTMS SAM is found to increase the nucleation and growth rates of CdSe in the SILAR process, leading to a well covering and higher uniform CdSe layer which has a superior ability, compared with the electrode without MPTMS, in inhibiting the charge recombination at the electrode/electrolyte interface. Furthermore, the performance of the CdSe-sensitized TiO{sub 2} electrode can further be improved by an additional heat annealing after film deposition, attributable to a better interfacial connection between CdSe and TiO{sub 2}, as well as a better connection among CdSe QDs. The CdSe-sensitized solar cell prepared by the present strategy can achieve an energy conversion efficiency of 2.65% under the illumination of one sun (AM 1.5, 100 mW cm{sup -2}). (author)

  10. Investigation of the surface chemical and electronic states of pyridine-capped CdSe nanocrystal films after plasma treatments using H2, O2, and Ar gases

    International Nuclear Information System (INIS)

    Wang, Seok-Joo; Kim, Hyuncheol; Park, Hyung-Ho; Lee, Young-Su; Jeon, Hyeongtag; Chang, Ho Jung

    2010-01-01

    Surface chemical bonding and the electronic states of pyridine-capped CdSe nanocrystal films were evaluated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy before and after plasma treatments using H 2 , O 2 , and Ar gases from the viewpoint of studying the effects of surface capping organic molecules and surface oxidation. Surface capping organic molecules could be removed during the plasma treatment due to the chemical reactivity, ion energy transfer, and vacuum UV (VUV) of the plasma gases. With O 2 plasma treatment, surface capping organic molecules were effectively removed but substantial oxidation of CdSe occurred during the plasma treatment. The valence band maximum energy (E VBM ) of CdSe nanocrystal films mainly depends on the apparent size of pyridine-capped CdSe nanocrystals, which controls the interparticle distance, and also on the oxidation of CdSe nanocrystals. Cd-rich surface in O 2 and H 2 plasma treatments partially would compensate for the decrease in E VBM . After Ar plasma treatment, the smallest value of E VBM resulted from high VUV photon flux, short wavelength, and ion energy transfer. The surface bonding states of CdSe had a strong influence on the electronic structure with the efficient strip of capping molecules as well as different surface oxidations and surface capping molecule contents.

  11. Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots: Role of crystallite size and oxidation potential

    International Nuclear Information System (INIS)

    Sharma, Shailesh N.; Sharma, Himani; Singh, Gurmeet; Shivaprasad, S.M.

    2008-01-01

    This work reports the interaction of aliphatic (triethyl amine, butyl amine) and aromatic amines (PPD, aniline) with CdSe quantum dots of varied sizes. The emission properties and lifetime values of CdSe quantum dots were found to be dependent on the oxidation potential of amines and crystallite sizes. Smaller CdSe quantum dots (size ∼5 nm) ensure better surface coverage of amines and hence higher quenching efficiency of amines could be realized as compared to larger CdSe quantum dots (size ∼14 nm). Heterogeneous quenching of amines due to the presence of accessible and inaccessible set of CdSe fluorophores is indicated. PPD owing to its lowest oxidation potential (∼0.26 V) has been found to have higher quenching efficiency as compared to other amines TEA and aniline having oxidation potentials ∼0.66 and >1.0 V, respectively. Butyl amine on the other hand, plays a dual role: its post-addition acts as a quencher for smaller and enhances emission for larger CdSe quantum dots, respectively. The beneficial effect of butyl amine in enhancing emission intensity could be attributed to enhance capping effect and better passivation of surface-traps

  12. Facile synthesis, growth mechanism, and optical properties of CdSe nanoparticles in self-assembled micellar media and their efficient conjugation with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S. K., E-mail: skmehta@pu.ac.in; Chaudhary, Savita; Kumar, Sanjay; Singh, Sukhjinder [Panjab University, Department of Chemistry and Centre of Advanced Studies in Chemistry (India)

    2010-06-15

    This article demonstrates the influence of various surfactants of different polarities-anionic, sodium dodecyl sulfate, cationic, hexadecyltrimethylammonium bromide and non-ionic, and polyoxyethylene iso-octyl phenyl ether (TX-100)-on the formation of CdSe nanoparticles in aqueous solutions. The surfactant-stabilizing effect has been monitored using transmission electron microscopy. Spectral properties of CdSe nanoparticles have been investigated; the structure of the long-wave edge of the fundamental absorption band of CdSe nanoparticles has been analyzed. It has been shown that the variation of the synthesizing conditions (stabilizer's nature and concentration, CdSe concentration, etc.) allows the tailoring of the CdSe nanoparticle size in the range of 8-17 nm. Lifshitz-Slyrzov-Wagner kinetic analysis has also been performed using the size variation according to ripening temperature and time period. The differences in the stabilization ability of tested substances are discussed with respect to their structure and possible mechanism of the surface interaction with the nanoparticles. The flexible surface chemistry of the CdSe-micelles causes them to be water soluble and allows their further conjugation with protein molecules through electrostatic attraction. The interaction between functionalized CdSe nanoparticles with protein molecules have been investigated using fluorescence spectroscopy.

  13. Poly(3-hexylthiophene) - CdSe quantum dot bulk heterojunction solar cells: Influence of the functional end-group of the polymer

    KAUST Repository

    Palaniappan, Kumaranand

    2009-06-23

    The synthesis of H/thiol terminated P3HT from Br/allyl-terminated P3HT precursor was analyzed. The photovoltaic response of blends were prepared of H/thiol terminated P3HT with spherical CdSe quantum dots(QD) and compares the results with regioregular H/Br and Br/aryl-terminated P3HT. Phase segregation was carried by mixing relatively polar pyridine treated CdSe QD with nonpolar P3HT. The experiment revealed that a high loading of CdSe is necessary for an efficient charge transport and different loading ratios of CdSe has been investigated to correlate the photovoltaic response as a function of ration between donor H/thiol-P3ht polymer and acceptor Cdse QD. The results show that H/Br-P3HT, H/thiol- and Br/allyl-terminated P3HT exhibits better performance and Cdse quantum dots were used to obtain results.

  14. The effects of the impurity distribution on the electrical and optical properties of Cr2+:ZnSe nanowires: First-principles study

    Directory of Open Access Journals (Sweden)

    Shenyu Dai

    2018-03-01

    Full Text Available The structural, electrical and mid-infrared optical properties of wurtzite structured ZnSe nanowires with different Chromium impurity distribution are investigated using first-principles calculation based on density-functional theory (DFT. The formation energies have been calculated to study the relative stabilities of different Cr doping positions. It is shown that when the Cr doping position shifted from the center to the edge, the splitting energy between 5T2 and 5E levels of Cr d-orbitals is decreased and a redshift is observed in the calculated infrared absorption spectra. A probable reason for these effects of the impurity distribution is discussed. Keywords: First-principles, Nanowires, Impurity distribution, Cr-doped ZnSe

  15. Formation of clusters and the percolation threshold in a two-phase system with a random distribution of ZnSe quantum points

    Science.gov (United States)

    Bondar', N. V.

    2009-03-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a "dielectric trap" on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system.

  16. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  17. Excitons in semiconducting quantum filaments of CdS and CdSe with dielectric barriers

    CERN Document Server

    Dneprovskij, V S; Shalygina, O A; Lyaskovskij, V L; Mulyarov, E A; Gavrilov, S A; Masumoto, I

    2002-01-01

    The peculiarities of the luminescence spectra obtained by different polarization and intensity of the pumping excitation and luminescence kinetics of the CdS and CdSe nanocrystals are explained by the exciton transitions in the semiconducting quantum threads with dielectric barriers. The exciton transition energies correspond to the calculated ones with an account of both their dimensional quantization and the effect of the excitons dielectric intensification. It is shown that the excitons transition energies do not change by the change in the quantum threads diameter within the wide range, while the increase in the one-dimensional forbidden zone width of quantum thread by the decrease in its diameter is compensated through the decrease in the excitons binding energy

  18. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires

    KAUST Repository

    Chakraborty, Ritun; Greullet, Fanny; George, Chandramohan; Baranov, Dmitry; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    Metal-semiconductor hybrid nanostructures promise improved photoconductive performance due to plasmonic properties of the metal portions and intrinsic electric fields at the metal-semiconductor interface that possibly enhance charge separation. Here we report gold decorated CdSe nanowires as a novel functional material and investigate the influence of gold decoration on the lateral facets on the photoconductive properties. Gold decorated nanowires show typically an at least ten-fold higher photocurrent as compared to their bare counterparts. Interestingly, the photocurrent enhancement is wavelength independent, although the plasmon resonance related to the gold particles appears in the absorption spectra. Our experiments show that light scattering and Schottky fields associated with the metal-semiconductor interface are at the origin of the photocurrent enhancement. © 2013 The Royal Society of Chemistry.

  19. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Science.gov (United States)

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  20. Photorefractive performance of polymer composite sensitized by CdSe nanoparticles passivated by 1-hexadecylamine

    Science.gov (United States)

    Aslam, Farzana; Binks, David J.; Rahn, Mark D.; West, David P.; O'Brien, Paul; Pickett, Nigel

    2005-07-01

    The performance of a photorefractive polymer composite sensitized by 1-hexadecylamine capped CdSe nanoparticles is reported. The polymer composite also comprises the charge transporting matrix poly(N-vinylcarbazole) and the electro-optic chromophore 1-(2-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. At an applied field of 70?V?µ m-1 two beam coupling gain of 13.2?cm-1 was observed, confirming the photorefractive nature of the induced grating. At the same field, a holographic contrast of 9.12×10-4±6×10-6, a photorefractive sensitivity of 5.1×10-4 ±0.2×10-4?cm3?J-1 and a space-charge field rise time of 13±1?s were obtained.

  1. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Do, Thanh Nhut [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Ong, Xuanwei [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Chan, Yinthai [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Materials Research & Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634 (Singapore); Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2016-12-20

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  2. Optical properties and the use of CdSe quantum dot for biolabeling applications

    International Nuclear Information System (INIS)

    Tran Hong Nhung; Nguyen Thi Van; Vu Xuan Hoa; Pham Minh Tan; Tong Kim Thuan; Tran Thi Thu Thuy; Jean Claude Brochon; Patrick Tauc

    2008-01-01

    The quantum dots CdSe type Qtracker 565 and 605 of Quantum Dot Company have been investigated by size, chemical structure and optical properties. The Qtracker 605 QDs were introduced into Lipomyces Starkeyi yeast cells. It was found that for the young cells (36 h of culture), the labeling QDs are mainly located in vacuoles, and the emission remains narrow with the maximum is clearly around 605 nm. For age cells (96 h of culture), the labeling QDs are concentrated in the cell cytoplasm, the emission is broaden with the maximum shifted to 580 nm. The live cell image was still observed after two months of introduction. The Qtracker 605 QDs were also successfully introduced into mouse blood cancerous cells. (author)

  3. Role of polymer matrix on photo-sensitivity of CdSe polymer nanocomposites

    Science.gov (United States)

    Kaur, Ramneek; Tripathi, S. K.

    2018-04-01

    This paper reports the effect of three different polymer matrices (PVP, PMMA and PVK) and Ag doping on the photo-sensitivity of CdSe polymer nanocomposites. The results reveal that the photoconductivity is high for linear chain polymer nanocomposites as compared to aromatic ones with decreasing trend as: CdSe-PMMA > CdSe-PVP > CdSe-PVK. The large substituents or branches along the polymer backbone hinder the stacking sequences in CdSe-PVK nanocomposites resulting in lowest photoconductivity. On contrary, CdSe-PVK nanocomposite exhibit highest photosensitivity. The reason behind it is the low value of dark conductivity in CdSe-PVK nanocomposite and photoconductive PVK matrix. With Ag doping, no considerable effect on the value of photosensitivity has been observed. The obtained results indicate that the photo-conducting properties of these polymer nanocomposites can be tuned by using different polymer matrices.

  4. Properties of the ZnSe/ZnTe heterojunction prepared by a multi-source evaporation of ZnTe:Sb on ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, N [Parma Univ. (Italy). Ist. di Fisica; First, F [Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Fizyki; Seuret, D [Universidad de La Habana, (Cuba). Facultad de Fisica-Matematica

    1979-07-16

    A new method of preparation is described of a ZnSe/ZnTe heterojunction in which Sb-doped ZnTe is deposited by a multi-source apparatus on ZnSe monocrystals. The properties of the heterojunction was studied, esp. the I-U characteristic, the 1/C/sup 2/ plot as a function of applied voltage, the photocurrent spectrum, and the electroluminescence spectrum.

  5. Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core-shell quantum dots and their differential bioanalyte sensing potential

    Science.gov (United States)

    Mir, Irshad Ahmad; Rawat, Kamla; Bohidar, H. B.

    2016-10-01

    Herein we report a facile and cadmium-free approach to prepare water-soluble fluorescent ZnSe@ZnS core-shell quantum dots (QDs), using thioglycolic acid (TGA) ligand as a stabilizer and thiourea as a sulfur source. The optical properties and morphology of the obtained core-shell QDs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive x-ray analysis (EDX), x-ray diffraction (XRD), electrophoresis and dynamic light scattering (DLS) techniques. TEM analysis, and electrophoresis data showed that ZnSe core had an average size of 3.60 ± 0.12 nm and zeta potential of -38 mV; and for ZnSe@ZnS QDs, the mean size was 4.80 ± 0.20 nm and zeta potential was -45 mV. Compared to the core ZnSe QDs, the quantum yield of these core-shell structures was higher (13% versus 32%). These were interacted with five common bioanalytes such as, ascorbic acid, citric acid, oxalic acid, glucose and cholesterol which revealed fluorescence quenching due to concentration dependent binding of analytes to the core only, and core-shell QDs. The binding pattern followed the sequence: cholesterol ascorbic acid acid acid for ZnSe, and cholesterol acid ascorbic acid acid for core-shell QDs. Thus, enhanced binding was noticed for the analyte citric acid which may facilitate development of a fluorescence-based sensor based on the ZnSe core-only quantum dot platform. Further, the hydrophilic core-shell structure may find use in cell imaging applications.

  6. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  7. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  8. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  9. Direct assembly of in situ templated CdSe quantum dots via crystalline lamellae structure of polyamide 66

    Energy Technology Data Exchange (ETDEWEB)

    Cheval, Nicolas; Brooks, Richard [University of Nottingham, Division of Materials, Mechanics and Structures, Faculty of Engineering (United Kingdom); Fahmi, Amir, E-mail: Amir.Fahmi@hochschule-Rhein-waal.de [Rhein-Waal University of Applied Sciences, Faculty of Technology and Bionics (Germany)

    2012-03-15

    A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO{sub x} solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic-inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.

  10. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    Science.gov (United States)

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  11. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO

  12. Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  13. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  14. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells

    Directory of Open Access Journals (Sweden)

    Yitan Li

    2012-01-01

    Full Text Available Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO conductive glass using a hydrothermal method at low temperature. CdSe quantum dots (QDs were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition (CBD method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

  15. СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    M. V. Mukhina

    2015-11-01

    Full Text Available Here, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched samples of intrinsically chiral CdSe quantum dots were prepared by separation of initial racemic mixture of the nanocrystals using chiral phase transfer from chloroform to water driven by L- and D-cysteine. Chiral molecules of cysteine and penicillamine were substituted for achiral molecules of dodecanethiol on the surfaces of CdSe and CdS samples, respectively, via reverse phase transfer from water to chloroform. We estimated an efficiency of the hetero- (d-L or l-D and homocomplexes (l-L formation by comparing the extents of corresponding complexing reactions. Using circular dichroism spectroscopy data we show an ability of nanocrystals enantiomers to discriminate between left-handed and right-handed enantiomers of biomolecules via preferential formation of heterocomplexes. Development of approaches for obtaining chiral nanocrystals via chiral phase transfer offers opportunities for investigation of molecular recognition at the nano/bio interfaces.

  16. Chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications

    Directory of Open Access Journals (Sweden)

    K.B. Chaudhari

    2016-12-01

    Full Text Available CdSe thin films were deposited on the glass substrate by successive ionic layer adsorption and reaction (SILAR method. Different sets of the film are prepared by changing the number of immersion cycles as 30, 40, 50 and 60. Further the effect of a number of immersion cycles on the characteristic structural, morphological, optical and electrical properties of the films are studied. The XRD studies revealed that the deposited films showed hexagonal structure with most prominent reflection along (1 0 1 plane. Moreover, the peak intensity of (1 0 1 plane is found to be increased as the number of immersion cycles is increased. All the thin films look relatively smooth and homogeneous covering the entire surface area in FESEM image. Optical properties of the CdSe thin films for a different number of immersion cycles were studied, which indicates that the absorbance increases with the increase in the immersion cycles. Furthermore, the optical band-gap in conjunction with the electrical resistivity was found to get decreased with increase in the immersion cycles. A good correlation between the number of immersion cycles and the physical properties indicates a simple method to manipulate the CdSe material properties for optoelectronic applications.

  17. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  18. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  19. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  20. Highly photoluminescent and photostable CdSe quantum dot-nylon hybrid composites for efficient light conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying; Riehle, Frank-Stefan [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany); Nitschke, Roland [Life Imaging Center, Centre of Systems Biology, University of Freiburg Habsburgerstr. 49, D-79104 Freiburg (Germany); Centre for Biological Signalling Studies (BIOSS), University of Freiburg (Germany); Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A novel in situ synthesis approach for highly luminescent CdSe core QDs-nylon hybrid materials. Black-Right-Pointing-Pointer Potential applications for light and energy conversion are demonstrated. Black-Right-Pointing-Pointer Three dimensional structures out of this hybrid material are available. - Abstract: Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).

  1. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  2. Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing

    International Nuclear Information System (INIS)

    Shao, Cong; Meng, Xiangdong; Jing, Pengtao; Sun, Mingye; Zhao, Jialong; Li, Haibo

    2013-01-01

    We demonstrated the enhancement of electron transfer from CdSe/ZnS core/shell quantum dots (QDs) to TiO 2 films via thermal annealing by means of steady-state and time-resolved photoluminescence (PL) spectroscopy. The significant decrease in PL intensities and lifetimes of the QDs on TiO 2 films was clearly observed after thermal annealing at temperature ranging from 100 °C to 300 °C. The obtained rates of electron transfer from CdSe core/shell QDs with red, yellow, and green emissions to TiO 2 films were significantly enhanced from several times to an order of magnitude (from ∼10 7 s −1 to ∼10 8 s −1 ). The improvement in efficiencies of electron transfer in the TiO 2 /CdSe QD systems was also confirmed. The enhancement could be considered to result from the thermal annealing reduced distance between CdSe QDs and TiO 2 films. The experimental results revealed that thermal annealing would play an important role on improving performances of QD based optoelectronic devices. -- Highlights: • Annealing-induced enhancement of electron transfer from CdSe to TiO 2 is reported. • CdSe QDs on TiO 2 and SiO 2 films are annealed at various temperatures. • Steady-state and time-resolved PL spectroscopy of CdSe QDs is studied. • The enhancement is related to the reduced distance between CdSe QDs and TiO 2

  3. Theoretical investigation of electronic, magnetic and optical properties of ZnSe doped TM and co-doped with MnTM (TM: Fe, Cr, Co): AB-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Behloul, M. [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); Salmani, E., E-mail: elmehdisalmani@gmail.com [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); The Institute for Nanomaterials and Nanotechnology, MAScIR (Moroccan Fondation for Advanced Science, Innovation and Research), Rabat (Morocco)

    2016-12-01

    Based upon the first principal spin density functional calculation, the electronic, magnetic and optical properties of ZnTMSe and ZnMnTMSe where TM=Fe, Cr, Co are studied using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method within the local density (LDA)and the self-interaction-corrected(SIC) approximation. The purpose of this study is to determine the effect of different type of dopant and concentration on ferromagnetic and half metallic behavior of ZnSe. Therefore the magnetic disorder local moment (DLM) and the ferromagnetic state are investigated for different concentrations of Mn, Fe, Cr and Co; also the advantages of co-doped ZnSe with TM elements, behavior at room temperature are discussed. The electronic structure and optical properties are studied employing the local density (LDA) and the self-interaction-corrected (SIC) approximation. Moreover, the X-ray spectra modeling are in good agreement with the electronic and magnetic properties results. - Highlights: • The magnetic properties of ZnSe codoped with MnY(Y: Fe, Cr, Co) has been investigated. • The half-metallic appears in ZnSe codoped with impurities at low concentration. • The advantages of codoped ZnSe with impurities at room temperature are discussed.

  4. Manifestation of Crystal Lattice Distortions in the IR Reflection Spectra of Abrasion-Treated ZnSe Ceramics

    Science.gov (United States)

    Sitnikova, V. E.; Dunaev, A. A.; Mamalimov, R. I.; Pakhomov, P. M.; Khizhnyak, S. D.; Chmel, A. E.

    2017-07-01

    The Fourier IR reflection spectra of ZnSe ceramics prepared by hot pressing (HP), physical vapor deposition (PVD), and PVD combined with hot isostatic pressing (HIP) are presented. The optical constants of polished and dry-ground specimens were used for comparison. The grinding treatment simulated the erosion of the outer surface of optical elements made of zinc selenide under the influence of solid dust particles and deposits. In the polished specimens residual stresses showed up in the IR reflection spectra of the ZnSePVD and ZnSeHIP ceramics, which had well-defined orientation of grains, but were not present in the spectra of the ZnSeHIP ceramics as a result of mutual compensation of the stresses in the randomly oriented grains of the material. The stresses, which appeared as a shift of the absorption bands calculated by the Kramers-Kronig method, increased significantly after abrasive treatment of the specimens. For all the treated ceramics the intensity of the absorption bands resulting from the anharmonicity of the vibrations in the distorted crystal lattice increased by several times. The last effect also depends on the production prehistory of the ceramics.

  5. Comparative study of porosification in InAs, InP, ZnSe and ZnCdS

    International Nuclear Information System (INIS)

    Monaico, Eduard; Tiginyanu, Ion; Nielsch, Kornelius; Ursaki, Veaceslav; Colibaba, Gleb; Nedeoglo, Dmitrii; Cojocaru, Ala; Foell Helmut

    2013-01-01

    We report on a comparative study of the pore growth during anodization of a narrow-bandgap III-V compound (InAs), a medium-bandgap III-V one (InP) and wide-bandgap II-VI semiconductors (ZnSe and Zn 0,4 Cd 0,6 S). According to the obtained results, the morphology of the porous layers can be controlled by the composition of the electrolyte and the applied electrochemical parameters. It was evidenced that in the narrow bandgap semiconductor InAs it is difficult to control the mechanism of pore growth. Both current line oriented pores and crystallographically oriented pores were produced in the medium-bandgap material InP. The electrochemical nanostructuring of wide-bandgap semiconductors realized in single crystalline high conductivity samples evidenced only current-line oriented pores. This behavior is explained in terms of difference in the values of electronegativity of the constituent atoms and the degree of ionicity. (authors)

  6. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    Science.gov (United States)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-07

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.

  7. Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xue, Jinbo; Shen, Qianqian; Yang, Fei; Liang, Wei; Liu, Xuguang

    2014-01-01

    Highlights: • There-dimensional CdSe-TiO 2 multijunction was fabricated by electrochemical method. • CdSe nanoparticles had a good bonding with the walls of TiO 2 nanotube. • pH value played an important role in the quality of CdSe-TiO 2 interfaces. - Abstract: In this work, we fabricated CdSe/TiO 2 nanotube arrays (NTAs) by electrochemical method. In electrodeposition, the pH value of the electrolyte played an important role in formation of CdSe nanoparticles. As the pH value decreased, more CdSe deposited on TiO 2 NTAs. Scanning electron microscopy and transmission electron microscopy characterization shows that the CdSe nanoparticles were uniformly deposited on and into TiO 2 nanotubes when the pH value was 3, and this structure fully utilized the three-dimensional (3D) space of TiO 2 nanotubes to form 3D multijunction heterostructures. According to the photoelectrochemical test, the CdSe/TiO 2 NTAs sample prepared at pH = 3 exhibited maximum photocurrent and open circuit potential. This is because that the deposited CdSe nanoparticles had better bond with the walls of TiO 2 nanotube than the samples deposited at other pH values, which facilitated the propagation and kinetic separation of photogenerated charges

  8. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  9. Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route, controllable Mn doping and application in UV and near-visible light detection.

    Science.gov (United States)

    Li, Dong; Xing, Guanjie; Tang, Shilin; Li, Xiaohong; Fan, Louzhen; Li, Yunchao

    2017-10-12

    We report herein a heat-triggered precursor slow releasing route for the one-pot synthesis of ultrathin ZnSe nanowires (NWs), which relies on the gradual dissolving of Se powder into oleylamine containing a soluble Zn precursor under heating. This route allows the reaction system to maintain a high monomer concentration throughout the entire reaction process, thus enabling the generation of ZnSe NWs with diameter down to 2.1 nm and length approaching 400 nm. The size-dependent optical properties and band-edge energy levels of the ZnSe NWs were then explored in depth by UV-visible spectroscopy and cyclic voltammetry, respectively. Considering their unique absorption properties, these NWs were specially utilized for fabricating photoelectrochemical-type photodetectors (PDs). Impressively, the PDs based on the ZnSe NWs with diameters of 2.1 and 4.5 nm exhibited excellent responses to UVA and near-visible light, respectively: both possessed ultrahigh on/off ratios (5150 for UVA and 4213 for near-visible light) and ultrawide linear response ranges (from 2.0 to 9000 μW cm -2 for UVA and 5.0 to 8000 μW cm -2 for near-visible light). Furthermore, these ZnSe NWs were selectively doped with various amounts of Mn 2+ to tune their emission properties. As a result, ZnSe NW film-based photochromic cards were creatively developed for visually detecting UVA and near-visible radiation.

  10. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    Simurda, M.; Nemec, P.; Formanek, P.; Nemec, I.; Nemcova, Y.; Maly, P.

    2006-01-01

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  11. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  12. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    Science.gov (United States)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  13. Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals

    International Nuclear Information System (INIS)

    Bowers, Michael J.; McBride, James; Garrett, Maria Danielle; Sammons, Jessica A.; Dukes, Albert; Schreuder, Michael A.; Watt, Tony L.; Lupini, Andrew R.; Pennycook, Stephen J.; Rosenthal, Sandra

    2009-01-01

    White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals.

  14. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Paulo, Pedro M.R. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia-Fernandez, Emilio; Costa, Sílvia M.B. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2017-03-15

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  15. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Husain, M.; Zulfequar, M., E-mail: mzulfe@rediffmail.com [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India); Khan, Shamshad A. [Department of Physics St. Andrews College, Gorakhpur-273001,U.P,-India (India)

    2016-05-23

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  16. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Sergei, Ivanov A [Los Alamos National Laboratory; Victor, Klimov I [Los Alamos National Laboratory; Sergei, Tretiak [Los Alamos National Laboratory

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  17. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  18. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    International Nuclear Information System (INIS)

    Alejo, T.; Paulo, Pedro M.R.; Merchán, M.D.; Garcia-Fernandez, Emilio; Costa, Sílvia M.B.; Velázquez, M.M.

    2017-01-01

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  19. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  20. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  1. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  2. Synchrotron radiation excited silicon epitaxy using disilane

    International Nuclear Information System (INIS)

    Akazawa, Housei; Utsumi, Yuichi

    1995-01-01

    Synchrotron radiation (SR) excited chemical reactions provide new crystal growth methods suitable for low-temperature Si epitaxy. The growth kinetics and film properties were investigated by atomic layer epitaxy (ALE) and photochemical vapor deposition (CVD) modes using Si 2 H 6 . SR-ALE, isolating the surface growth channel mediated by photon stimulated hydrogen desorption, achieves digital growth independent of gas exposure time, SR irradiation time, and substrate temperature. On the other hand in SR-CVD, photolysis of Si 2 H 6 is predominant. In the nonirradiated region, Eley-Rideal type reaction between the photofragments and the surface deposit Si adatoms in a layer-by-layer fashion. In the irradiated region, however, multi-layer photolysis and rebounding occurs within the condensed Si 2 H 6 layer. The pertinent elementary processes were identified by using the high-resolution time-of-flight mass spectroscopy. The SR-CVD can grow a uniform and epitaxial Si film down to 200degC. The surface morphology is controlled by the surfactant effect of hydrogen atoms. (author)

  3. Growth of pseudomorphic structures through organic epitaxy

    International Nuclear Information System (INIS)

    Kaviyil, Sreejith Embekkat; Sassella, Adele; Borghesi, Alessandro; Campione, Marcello; Su Genbo; He Youping; Chen Chenjia

    2012-01-01

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor α-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  4. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    Science.gov (United States)

    Sukanya, D.; Sagayaraj, P.

    2015-06-01

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).

  5. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    International Nuclear Information System (INIS)

    Sukanya, D.; Sagayaraj, P.

    2015-01-01

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM)

  6. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C. [School of Physical Sciences, ITM University, Turari, Gwalior, MP 474001 (India); Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior MP 474011 (India)

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  7. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    Science.gov (United States)

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  8. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are ∼4% expanded uniformly in-plane (0001), and ∼9% and ∼4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs

  9. Synthesis of CdSe nanoparticles and their effect on the antioxidant activity of Spirulina platensis and Porphyridium cruentum cells

    International Nuclear Information System (INIS)

    Rudic, V.; Cepoi, L.; Rudi, L.; Chiriac, T.; Nicorici, A.; Todosiciuc, A.; Gutsul, T.

    2011-01-01

    Single-crystalline cadmium selenide nanoparticles were obtained using high-temperature solution phase synthesis (HTSPS) synthesis. X-Ray powder diffraction and transmission electron microscopy were used to confirm the crystallinity and morphology of the resulting nanoparticles. To study the action of CdSe on antioxidant activity, we selected two biotechnological important strains of microalgae: cyanobacteria Spirulina platensis and red microalgae Porphyridium cruentum. In the case of Porphyridium cruentum, the obtained results demonstrated an increase in the productivity. For Spirulina platensis, the presence of the compound in the cultivating medium decreased the productivity of cyanobacteria.

  10. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Mthethwa, T.P. [University of Johannesburg, Department of Chemical Technology, P.O. Box 17011, Doornfontein 2028 (South Africa); Moloto, M.J., E-mail: mmoloto@uj.ac.za [University of Johannesburg, Department of Chemical Technology, P.O. Box 17011, Doornfontein 2028 (South Africa); De Vries, A.; Matabola, K.P. [CSIR Materials Science and Manufacturing, 4 Gomery avenue, Summerstrand, Port Elizabeth 6000 (South Africa)

    2011-04-15

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the

  11. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    International Nuclear Information System (INIS)

    Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P.

    2011-01-01

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: → TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. → The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. → The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. → Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the polymer fibres at low

  12. Adsorption behavior and current-voltage characteristics of CdSe nanocrystals on hydrogen-passivated silicon

    DEFF Research Database (Denmark)

    Walzer, Karsten; Quaade, Ulrich; Ginger, D.S.

    2002-01-01

    Using scanning tunneling microscopy and spectroscopy we have studied both the geometric distribution and the conduction properties of organic shell capped CdSe nanocrystals adsorbed on hydrogen-passivated Si(100). At submonolayer concentrations, the nanocrystal distribution on the surface was found...... found that the current through the MIS junction is limited by the nanocrystals only in one bias direction, while in the other bias direction the current is limited by the semiconducting substrate. This property may be of relevance for the construction of hybrid electronic devices combining semiconductor...

  13. Light controlled spin properties and radiative coupling of CdSe based quantum dots

    International Nuclear Information System (INIS)

    Schmidt, T.; Worschech, L.; Scheibner, M.; Forchel, A.; Slobodskyy, T.; Schmidt, G.; Molenkamp, L.W.; Passow, T.; Hommel, D.

    2007-01-01

    The authors have studied the photoluminescence of large and small ensembles of CdSe based quantum dots (QDs) in magnetic fields for different polarizations and powers of the exciting laser light. By means of polarization spectroscopy the g factors and spin lifetimes were determined for semimagnetic CdMnSe QDs with nominal Mn contents of 0%, 1% and 2%. Also the corresponding exciton lifetimes were analyzed. A sign reversal of the QD exciton g factor was identified comparing the polarization of QD luminescence with 0% and 2% Mn. For small excitation powers QDs with 1% Mn have a vanishing small value of g. Interestingly, by ramping up the excitation power of the exciting laser the exciton g factor increases by up to a factor of 30. Different heating mechanism were identified by characteristic power dependencies. For low excitation powers indirect heating of the spin systems occurs whereas above a critical power direct heating due to photoexcited carriers dominates. It is also demonstrated that in CdMnSe QDs the circular polarization of the luminescence can be inverted solely controlled by the laser power. Applying mesa techniques, collective radiance of QDs is demonstrated. For that purpose the radiative lifetimes of QDs with such a density that there are many dots within an area proportional to the square of the optical wavelength were studied for different numbers of QDs removed from that area. A comparison of photoluminescence decay times obtained for non-resonant and quasi-resonant excitation conditions and different mesa sizes is given. Radiative coupling of QDs takes place at least on the order of 150 nm. This length is comparable to the dimensions of lithographically well definable nanostructures and may therefore provide a mechanism to couple discrete quantum objects on a large scale. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Photoluminescence and structural properties of CdSe quantum dot–gelatin composite films

    Energy Technology Data Exchange (ETDEWEB)

    Borkovska, L., E-mail: bork@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, Pr. Nauky 41, 03028 Kyiv (Ukraine); Korsunska, N.; Stara, T.; Gudymenko, O.; Kladko, V. [V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, Pr. Nauky 41, 03028 Kyiv (Ukraine); Stroyuk, O.; Raevskaya, A. [L. Pysarzhevsky Institute of Physical Chemistry of NAS of Ukraine, Pr. Nauky 31, 03028 Kyiv (Ukraine); Kryshtab, T. [Instituto Politécnico Nacional – ESFM, Av. IPN, Ed.9 U.P.A.L.M., 07738 Mexico D.F. (Mexico)

    2014-11-15

    Optical and structural properties of composite films of CdSe quantum dots (QDs) embedded in gelatin matrix have been investigated by photoluminescence (PL), optical absorption and X-ray diffraction (XRD) methods. The optical absorption of the composite in the visible spectral range is found to be determined mainly by light absorption in the QDs. The decrease of the film transparency and the shift of the absorption edge to lower energies observed upon thermal annealing of the films at 140–160 °C are ascribed to the formation of chromophore groups in gelatin matrix. XRD patterns of the composite revealed helix to coil transition in gelatin matrix under thermal annealing of the composite at 100–160 °C. It is found that PL spectra of the composite are dominated by exciton and defect-related emission of the QDs and also contain weak emission of gelatin matrix. It is found that thermal annealing of the composite at 100–160 °C changes PL intensity and produces the shift of the PL bands to lower energies. As the annealed composite was kept in air for several months, the shift of exciton-related PL band position restored partially and the PL intensity increased. It is proposed that the increase of the PL intensity upon the thermal annealing of composite at 140 °C can be used for enhancement of the QD-related PL. Changes that occurred in the PL spectra of composite are ascribed to structural and chemical transformations in gelatin matrix and at the QD/gelatin interface.

  15. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  16. Development of a Pump-Probe System using a Non-Coated ZnSe Beam Splitter Cube for an MIR-FEL

    CERN Document Server

    Heya, Manabu; Horiike, Hiroshi; Ishii, Katsonuri; Suzuki, Sachiko

    2004-01-01

    A pump-probe technique is essential for a proper understanding of laser interaction with tissue and material. Our pump-probe system divides the incident mid-infrared Free Electron Laser (MIR-FEL) into two beams with equal intensity, and crosses simultaneously the two incoming beams at the same position. One is for a pump beam, another is for a probe beam. Time-resolved absorption spectroscopy involving this technique gives us information on the vibrational dynamics of molecules. We have developed this system for an MIR-FEL using a non-coating ZnSe beam splitter cube. The beam splitter cube is composed of two ZnSe prisms in the shape like a trapezoid. The two pulses with equal intensity are generated due to Fresnel reflection and transmission at the boundary between two prisms, then are reflected due to total reflection at other side boundaries between each prism and air, and illuminate simultaneously the same spot. We have conducted a proof-of-concept of experiment of this system using an MIR-FEL. We showed t...

  17. Influence of pH on luminescence from water-soluble colloidal Mn-doped ZnSe quantum dots capped with different mercaptoacids

    International Nuclear Information System (INIS)

    Hardzei, Maryia; Artemyev, Mikhail

    2012-01-01

    Water-soluble ZnSe/ZnS core–shell quantum dots with ZnSe core doped by manganese ions show different luminescence response to pH changes in aqueous solutions depending on the type of solubilizing agents (thioglycolic acid, mercaptoundecanoic acid, sodium mercaptopropylsulfonate). In the case of long-chain mercaptoundecanoic acid only excitonic emission is affected by pH changes. Short-chain thioglycolic acid brings about equal excitonic/Mn emission variations with pH, while mercaptopropylsulfonate-stabilized quantum dots are insensitive to pH. The mechanism discussed here is based on the competition between different relaxation channels for excited excitons in ZnSe: excitonic radiative recombination, energy transfer to Mn ion and the photogenerated electron trapping due to the presence of protonated carboxyl group. ZnSe:Mn/ZnS quantum dots stabilized with long-chain mercaptoacids may be used as a new type of fluorescence ratiometric pH-sensor or indicator. - Highlights: ► Prepared ZnSe:Mn/ZnS quantum dots capped with different mercaptoacids in water. ► Photoluminescence intensity of ZnSe:Mn/ZnS quantum dots varied with pH. ► Character of luminescence variations depends on the sort of mercaptoacid capping. ► Competition between different excitonic relaxation channels for different caps.

  18. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    Science.gov (United States)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  19. Fabrication and testing of diamond-machined gratings in ZnSe, GaP, and bismuth germanate for the near infrared and visible

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, P J; Little, S L; Ikeda, Y; Kobayashi, N

    2008-06-22

    High quality immersion gratings for infrared applications have been demonstrated in silicon and germanium. To extend this technology to shorter wavelengths other materials must be investigated. We selected three materials, zinc selenide, gallium phosphide and bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}), based on high refractive index, good visible transmission and commercial availability in useful sizes. Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of feed rates to determine the optimal cutting conditions. For both ZnSe and GaP good surface quality was achieved at feed rates up to 1.0 cm/minute using a special compound angle diamond tool with negative rake angles on both cutting surfaces. The surface roughness of the groove facets was about 4 nm. A Zygo interferometer measured grating wavefront errors in reflection. For the ZnSe the RMS error was < {lambda}/20 at 633nm. More extensive testing was performed with a HeNe laser source and a cooled CCD camera. These measurements demonstrated high relative diffraction efficiency (> 80%), low random groove error (2.0 nm rms), and Rowland ghost intensities at < 0.1%. Preliminary tests on bismuth germanate show high tool wear.

  20. Interface relaxation and band gap shift in epitaxial layers

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  1. Molecular beam epitaxy for the future

    International Nuclear Information System (INIS)

    Takahashi, K.

    1984-01-01

    Molecular beam epitaxy (MBE) is most commonly used to fabricate super-lattices, high electron mobility transistors, multi-quantum well lasers and other new semiconductor devices by utilizing its excellent controlability. MBE for the future is presumed to include techniques such as metalorganic chemical vapor deposition, photochemical reaction process using gas sources and ion implantation. A report on the crystal growth of GaAs using metalorganics, trimethylgallium and triethylgallium, which are usually used in chemical vapor deposition, as gaseous sources of gallium in an MBE system is made. (Author) [pt

  2. Etch Pit Studies of II-VI-Wide Bandgap Semiconductor Materials ZnSe, ZnCdSe, and ZnCdMgSe Grown on InP

    National Research Council Canada - National Science Library

    Semendy, Fred

    1999-01-01

    Etch pit density (EPD) determination studies have been conducted on II-VI semiconductor materials ZnSe, ZnCdSe, and ZnCdMgSe grown on InP surfaces for the first time by using various etching solutions under different...

  3. Effect of annealing temperature on the crystalline quality and phase transformation of chemically deposited CdSe films

    International Nuclear Information System (INIS)

    Zapata-Torres, M.; Chale-Lara, F.; Caballero-Briones, F.; Calzadilla, O.

    2005-01-01

    Polycrystalline CdSe thin films were grown on glass substrates by chemical bath deposition at 50 C. The samples were annealed in air atmosphere at different temperatures and characterized by X-ray diffraction and Raman spectroscopy. It was found that the as-grown films have cubic structure. These samples maintain their cubic structure for annealing temperatures between 60 C and 300 C. For annealing temperatures higher than 300 C we obtain a mixture of cubic and hexagonal phases. The analysis made by X-ray diffraction and Raman dispersion show that the samples annealed at temperatures under the phase-transition temperature increase their crystalline quality. In order to determinate the temperature for the complete transition of the cubic phase, we used the precipitated material obtained during the grown of the CdSe films. This material was annealed on air atmosphere between 300 C and 500 C with 50 intervals. The samples were measured by X-ray diffraction. The samples maintained the cubic structure if the annealing temperature is under 300 C. For temperatures between 300 C and 450 C we found a mixture of cubic and hexagonal phase. For an annealing temperature of 500 C we obtain only the hexagonal phase. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Selyukov, A. S., E-mail: vslebedev.mobile@gmail.com; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Vasiliev, R. B.; Sokolikova, M. S. [Moscow State University (Russian Federation)

    2015-04-15

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  5. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    International Nuclear Information System (INIS)

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da; Ullah, Kefayat; Park, Chong-Yeon; Nikam, Vikram; Oh, Won-Chun

    2013-01-01

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites

  6. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    International Nuclear Information System (INIS)

    Selyukov, A. S.; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-01-01

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages

  7. Effects of increasing number of rings on the ion sensing ability of CdSe quantum dots: a theoretical study

    Science.gov (United States)

    Malik, Pragati; Kakkar, Rita

    2018-04-01

    A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II-VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n ( n = 3, 6, 9 which are in the size range of 0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.

  8. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  9. Inspection of single CdSe nanowires by use of micro-focused X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kurtulus, Oezguel [Dogus University, Istanbul (Turkey); Li, Zhen [University of Queensland, Brisbane (Australia); Arezki, Bahia; Biermanns, Andreas; Pietsch, Ullrich [University of Siegen (Germany)

    2010-07-01

    The morphology of CdSe nanowires (NW) can easily be controlled by various growth methods. In this study, CdSe NWs are prepared by solution-liquid-solid (SLS) approach providing needle-shaped wires of about 60nm in diameter and several microns in length. To make X-ray single NW inspection possible, the NWs were dispersed in toluene and hexadecylamine, homogenized by centrifugation and finally spin-coated on silicon substrate. SEM images revealed that the NWs are randomly oriented with length axis parallel to the substrate. However, at selected areas, the distance between neighboured NWs is in the order of one micron. These samples were investigated by X-ray diffraction using a 300 nm x 600 nm micro-focus at beamline ID1 of ESRF. Diffraction from 110W/2-20ZB basal plane was selected for single nanowire inspection. In order to measure various single objects subsequently, the sample was laterally scanned through the beam keeping the diffraction angle fixed. It was observed that the individual NWs differ slightly in peak position and peak width. From powder diffraction, it is known that NWs consist of an admixture of a wurtzite (W) and zinc-blende (ZB) structure units and the coherent illumination of sample by the micro-focus enables to visualize these zinc-blende and wurzite units separated by stacking faults.

  10. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    International Nuclear Information System (INIS)

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-01-01

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well

  11. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  12. Enhancement of the photoluminescence in CdSe quantum dot–polyvinyl alcohol composite by light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Borkovska, L., E-mail: bork@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, pr. Nauky 41, 03028 Kyiv (Ukraine); Korsunska, N.; Stara, T.; Gudymenko, O.; Venger, Ye. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, pr. Nauky 41, 03028 Kyiv (Ukraine); Stroyuk, O.; Raevska, O. [L. Pysarzhevsky Institute of Physical Chemistry, NAS of Ukraine, pr. Nauky 31, 03028 Kyiv (Ukraine); Kryshtab, T., E-mail: kryshtab@gmail.com [Instituto Politécnico Nacional – ESFM, Av. IPN, Ed.9 U.P.A.L.M., 07738 Mexico D.F. (Mexico)

    2013-09-15

    The effect of photo-induced enhancement (more than a tenfold) of room temperature deep-trap photoluminescence (PL) in CdSe quantum dots (QDs) embedded in polyvinyl alcohol (PVA) film has been found and investigated by the PL and X-ray diffraction methods. The effect is observed under illumination of the QD/PVA composite with LED's light of 409 or 470 nm at elevated temperatures and is shown to be caused by an increase of the activation energy of thermal quenching of defect-related PL. It is shown that thermal annealing of the composite by itself stimulates polymer crystallization and produces a small increase in the intensity of both the band-edge and defect-related PL bands of CdSe QDs. It is found that the effect of illumination decreases when the annealing temperature increases from 90 °C to 120 °C because thermal annealing at 120 °C per se results in strong enhancement of room temperature deep-trap PL. The effect of photo-induced enhancement of defect-related PL is found to be irreversible and is assumed to be related to the change of QD surface defect passivation or surface defect rearrangement. This is ascribed to partial destruction of PVA matrix as a result of interaction of QD/PVA interface with photocarriers generated in the QDs due to LED's light absorption.

  13. Poly(3-hexylthiophene) - CdSe quantum dot bulk heterojunction solar cells: Influence of the functional end-group of the polymer

    KAUST Repository

    Palaniappan, Kumaranand; Murphy, John W.; Khanam, Nadia; Horvath, Julius; Alshareef, Husam N.; Quevedo-Ló pez, Manuel Angel Quevedo; Biewer, Michael C.; Park, Seongyong; Kim, Moon; Gnade, Bruce E.; Stefan, Mihaela C.

    2009-01-01

    The synthesis of H/thiol terminated P3HT from Br/allyl-terminated P3HT precursor was analyzed. The photovoltaic response of blends were prepared of H/thiol terminated P3HT with spherical CdSe quantum dots(QD) and compares the results

  14. Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties

    NARCIS (Netherlands)

    de Girolamo, Julia; Reiss, Peter; Zagorska, Malgorzata; de Bettignies, Remi; Bailly, Severine; Mevellec, Jean-Yves; Lefrant, Serge; Travers, Jean-Pierre; Pron, Adam

    2008-01-01

    Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary

  15. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    DEFF Research Database (Denmark)

    Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.

    2009-01-01

    We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS, ...... with the measured radiative rates. Our results are relevant for applications of CdSe quantum dots in spontaneous emission control and cavity quantum electrodynamics.......We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS......, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...

  16. Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell

    Energy Technology Data Exchange (ETDEWEB)

    Ibnaouf, K.H., E-mail: kheo90@gmail.com [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia); Prasad, Saradh; Al Salhi, M.S.; Hamdan, A. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Research Chair for Laser Diagnosis of Cancer, King Saud University (Saudi Arabia); Zaman, M.B. [CEREM, College of Engineering, King Saud University (Saudi Arabia); Advanced Medical Research Institute of Canada, Sudbury (Canada); El Mir, L. [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia)

    2014-05-01

    The spectral properties of 5 nm size of bare CdSe and (CdSe)ZnS core–shell quantum dots (QDs) have been recorded and investigated under different solvent environments with different polarities and different concentrations. The results showed that the spectral profile of absorption did not change for both quantum dots in different solvents under a wide range of concentrations. On the other hand, the photoluminescence (PL) spectra of (CdSe)ZnS core–shell quantum dots in non-polar solvents showed two bands; the primary around 420 nm and the secondary around 620 nm. In contrast, the PL spectra of bare CdSe in non-polar solvents, showed a very strong band around 590 nm, with a total absence of the primary wavelength band at 420 nm. Under high polar solvent environments, bare CdSe showed a new peak around 420 nm, which was totally absent in non-polar solvent. Therefore, the solvent plays an important role in the PL spectra of bare CdSe and (CdSe)ZnS core–shell quantum dots.

  17. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal

    Science.gov (United States)

    Wang, Jian; Yuan, Ligang; Zhang, Yingwu; Chen, Guo; Cheng, Hongjuan; Gao, Yanzhao

    2018-06-01

    CdSe single crystal, with the sizes of ∼54 mm in diameter and ∼25 mm in length, was grown by a high pressure vertical gradient freeze (HPVGF) technique using (0 0 1)-oriented seed. The CdSe crystal was characterized with transmission spectrophotometer. The transmission spectra showed that the infrared transmission was above 68% and the mean absorption coefficient was 0.041 cm-1 in the range of 2.5-20 μm. Using fabricated CdSe crystal with the dimensions of 6 mm × 10 mm × 44 mm, we demonstrated an optical parametric oscillator (OPO) pumped by a 2.05 μm Ho:YLF laser at a pulse repetition frequency of 5 kHz. Up to 320 mW output was obtained at the idler wavelength of 10.20 μm with a pump power of 18.06 W. 320 mW at 10.20 μm, to our knowledge, was the highest power obtained with a 2.05 μm laser-pumped CdSe OPO.

  18. Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe, CdS, and ZnO

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1971-01-01

    Experimental results on the temperature dependence of the laser frequency and threshold pump power are presented in the range from liquid helium to room temperature for electron-beam-pumped CdSe, CdS, and ZnO lasers. A linear shift of the laser frequency at high temperatures and a relatively slow...

  19. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  20. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-01-01

    We investigated CdSe-sensitized TiO 2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO 2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO 2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( 2 –CdSe core–shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO 2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm −2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V oc = 485 mV, J sc = 4.26 mA cm −2 , ff=0.37). (paper)

  1. Epitaxy of advanced nanowire quantum devices

    Science.gov (United States)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  2. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  3. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC

    NARCIS (Netherlands)

    Iezhokin, I.; Offermans, P.; Brongersma, S.H.; Giesbers, A.J.M.; Flipse, C.F.J.

    2013-01-01

    We have measured the electrical response to NO2, N2, NH3, and CO for epitaxial graphene and quasi freestanding epitaxial graphene on 6H-SiC substrates. Quasi freestanding epitaxial graphene shows a 6 fold increase in NO2 sensitivity compared to epitaxial graphene. Both samples show a sensitivity

  4. Solid-state chemiluminescence assay for ultrasensitive detection of antimony using on-vial immobilization of CdSe quantum dots combined with liquid–liquid–liquid microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-state chemiluminescence based on CdSe QDs was developed. •QDs immobilization in a vial was achieved in a simple and fast way. •Antimony detection was achieved by inhibition of the CdSe QDs/H{sub 2}O{sub 2} CL reaction. •LLLME allowed improving the selectivity and sensitivity of the CL assay. •The capping ligand played a critical role in the selectivity of the CL system. -- Abstract: On-vial immobilized CdSe quantum dots (QDs) are applied for the first time as chemiluminescent probes for the detection of trace metal ions. Among 17 metal ions tested, inhibition of the chemiluminescence when CdSe QDs are oxidized by H{sub 2}O{sub 2} was observed for Sb, Se and Cu. Liquid–liquid–liquid microextraction was implemented in order to improve the selectivity and sensitivity of the chemiluminescent assay. Factors influencing both the CdSe QDs/H{sub 2}O{sub 2} chemiluminescent system and microextraction process were optimized for ultrasensitive detection of Sb(III) and total Sb. In order to investigate the mechanism by which Sb ions inhibit the chemiluminescence of the CdSe QDs/H{sub 2}O{sub 2} system, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis absorption and fluorescence measurements were performed. The selection of the appropriate CdSe QDs capping ligand was found to be a critical issue. Immobilization of QDs caused the chemiluminescence signal to be enhanced by a factor of 100 as compared to experiments carried out with QDs dispersed in the bulk aqueous phase. Under optimized conditions, the detection limit was 6 ng L{sup −1} Sb and the repeatability expressed as relative standard deviation (N = 7) was about 1.3%. An enrichment factor of 95 was achieved within only 3 min of microextraction. Several water samples including drinking, spring, and river waters were analyzed. The proposed method was validated against CRM NWTM-27.2 fortified lake water, and a recovery study was

  5. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Directory of Open Access Journals (Sweden)

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  6. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    Science.gov (United States)

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    International Nuclear Information System (INIS)

    Ung, Thi Dieu Thuy; Tran, Thi Kim Chi; Pham, Thu Nga; Nguyen, Quang Liem; Nguyen, Duc Nghia; Dinh, Duy Khang

    2012-01-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml −1 . For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl −1 with a detection limit of 3 ng μL −1 has been performed based on the antibody-antigen recognition. (review)

  8. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    International Nuclear Information System (INIS)

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-01-01

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10 -10 Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry

  9. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Chen, S.Y.; Chen, L.J.

    2006-01-01

    Self-assembled epitaxial NiSi 2 nanowires have been fabricated on Si(001) by reactive deposition epitaxy (RDE). The RDE method promoted nanowire growth since it provides deposited atoms sufficient kinetic energy for movement on the Si surface during the growth of silicide islands. The twin-related interface between NiSi 2 and Si is directly related to the nanowire formation since it breaks the symmetry of the surface and leads to the asymmetric growth. The temperature of RDE was found to greatly influence the formation of nanowires. By RDE at 750 deg. C, a high density of NiSi 2 nanowires was formed with an average aspect ratio of 30

  10. Point defect balance in epitaxial GaSb

    International Nuclear Information System (INIS)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  11. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  12. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  13. One-step Ge/Si epitaxial growth.

    Science.gov (United States)

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  14. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  15. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  16. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  17. Size-selective precipitation in colloidal semiconductor nanocrystals of CdTe and CdSe: a study by UV-VIS spectroscopy; Precipitacao seletiva de tamanhos em nanoparticulas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Viol, Livia Cristina de Souza; Silva, Fernanda Oliveira; Ferreira, Diego Lourenconi; Alves, Jose Luiz Aarestrup; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.b [Universidade Federal de Sao Joao del Rei, MG (Brazil). Dept. de Ciencias Naturais

    2011-07-01

    The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well. (author)

  18. Magnetic properties of novel epitaxial films

    International Nuclear Information System (INIS)

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc α-Fe and fcc γ-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk α-Fe. The controversial γ-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism

  19. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  20. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  1. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  2. Fluorine incorporation during Si solid phase epitaxy

    International Nuclear Information System (INIS)

    Impellizzeri, G.; Mirabella, S.; Romano, L.; Napolitani, E.; Carnera, A.; Grimaldi, M.G.; Priolo, F.

    2006-01-01

    We have investigated the F incorporation and segregation in preamorphized Si during solid phase epitaxy (SPE) at different temperatures and for several implanted-F energies and fluences. The Si samples were amorphized to a depth of 550 nm by implanting Si at liquid nitrogen temperature and then enriched with F at different energies (65-150 keV) and fluences (0.07-5 x 10 14 F/cm 2 ). Subsequently, the samples were regrown by SPE at different temperatures: 580, 700 and 800 deg. C. We have found that the amount of F incorporated after SPE strongly depends on the SPE temperature and on the energy and fluence of the implanted-F, opening the possibility to tailor the F profile during SPE

  3. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  4. Optical characterization of epitaxial semiconductor layers

    CERN Document Server

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  5. Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers

    DEFF Research Database (Denmark)

    Liu, Guangqing; Zhang, Qi; Huang, Hsin-Hui

    2016-01-01

    Polarization rotation engineering is a promising path to giant dielectric and electromechanical responses in ferroelectric materials and devices. This work demonstrates robust and reversible in- to out-of-plane polarization rotation in ultrathin (nanoscale) epitaxial (001) tetragonal PbZr0.3Ti0.7O3...... large-scale polarization rotation switching (≈60 μC cm−2) and an effective d 33 response 500% (≈250 pm V−1) larger than the PZT-R layer alone. Furthermore, this enhancement is stable for more than 107 electrical switching cycles. These bilayers present a simple and highly controllable means to design...... and optimize rotational polar systems as an alternate to traditional composition-based approaches. The precise control of the subtle interface-driven interactions between the lattice and the external factors that control polarization opens a new door to enhanced—or completely new—functional properties....

  6. Molecular beam epitaxy applications to key materials

    CERN Document Server

    Farrow, Robin F C

    1995-01-01

    In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.

  7. Electronic structure of epitaxial chalcopyrite surfaces and interfaces for photovoltaics; Elektronische Struktur epitaktischer Chalkopyrite und deren Heterokontakte fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Andreas

    2012-02-14

    valence band dispersion and a broadening of electron states was observed, which can be understood as a higher localization of electronic states and lower crystal quality. In addition, a strong rearrangement of the copper partial density of states was shown. The intimate knowledge of the electric structure was then exploited to demonstrate the valence band discontinuity between CuInSe{sub 2} and CuIn{sub 3}Se{sub 5}. The analysis by photoemission yielded a valence band offset of 0.28 eV, again in reasonable agreement with theoretical results. The p-n-junction in chalcopyrite solar cells is situated near the absorber-buffer interface, which is therefore crucial for the device performance. In this thesis, ZnO deposited from metal-organic precursors on epitaxial CuInSe{sub 2} was investigated as cadmium-free buffer material. In the course of contact formation, the interfacial region of the absorber becomes depleted of copper. Additionally, a thin intrinsic ZnSe layer is formed, prior to the growth of ZnO. The derived band alignments show no dependence on the surface orientation of the chalcopyrite substrate and are consistent with theoretical results. The conduction band lineup is favorable for the application in solar cells.

  8. Twenty years of molecular beam epitaxy

    Science.gov (United States)

    Cho, A. Y.

    1995-05-01

    The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.

  9. Synthesis of Si epitaxial layers from technical silicon by liquid-phase epitaxy method

    International Nuclear Information System (INIS)

    Ibragimov, Sh.I.; Saidov, A.S.; Sapaev, B.; Horvat, M.A.

    2004-01-01

    Full text: For today silicon is one of the most suitable materials because it is investigated, cheap and several its parameters are even just as good as those of connections A III B V . Disintegration of the USSR has led to the must difficult position of the industry of silicon instrument manufacture because of all industry of semiconductor silicon manufacture had generally concentrated in Ukraine. The importance of semiconductor silicon is rather great, because of, in opinion of expects, the nearest decade this material will dominate over not only on microelectronics but also in the majority of basic researches. Research of obtain of semiconductor silicon, power electronics and solar conversion, is topical interest of the science. In the work research of technological conditions of obtain and measurement of parameters of epitaxial layers obtained from technical silicon + stannum is resulted. Growth of silicon epitaxial layer with suitable parameters on thickness, cleanliness uniformity and structural perfection depends on the correct choice of condition of the growth and temperature. It is shown that in this case the growth occurring without preliminary clearing of materials (mix materials and substrates) at crystallization of epitaxial layer from technical silicon is accompanied by clearing of silicon film from majority of impurities order-of-magnitude. As starting raw material technical silicon of mark Kr.3 has been taken. By means of X-ray microanalyzer 'Jeol' JSM 5910 LV - Japan the quantitative analysis from the different points has been and from the different sides and from different points has been carried out. After corresponding chemical and mechanical processing the quantitative analysis of layer on chip has been carried out. Results of the quantitative analysis are shown. More effective clearing occurs that of the impurity atoms such as Al, P, Ca, Ti and Fe. The obtained material (epitaxial layer) has the parameters: specific resistance ρ∼0.1-4.0

  10. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  11. Jahn-Teller coupling of Cr2+ ion with degenerate modes in ZnS, ZnSe, and ZnTe crystals: microscopic treatment

    International Nuclear Information System (INIS)

    Natadze, A.L.; Ryskin, A.I.

    1980-01-01

    The Jahn-Teller (JT) interaction energy is calculated for 5 T 2 and 5 E states of the Cr 2+ ion in ZnS, ZnSe, and ZnTe crystals. The calculations are made within the framework of a particular microscopic model of the crystal field in the distorted crystal (model of point-like exchange charges), the multimode interaction is taken into account. For the 5 T 2 term the energies of interaction with tetragonal and trigonal modes are of the same order of magnitude. This circumstance results in a small height of the barriers that separate various minima of the adiabatic potential and is responsible for the dynamic aspect of the static JT effect in these systems. (author)

  12. Pressure dependence of elastic and dynamical properties of zinc-blende ZnS and ZnSe from first principle calculation

    Directory of Open Access Journals (Sweden)

    H.Y. Wang

    2012-03-01

    Full Text Available The density-functional theory (DFT and density-functional perturbation theory (DFPT are employed to study the pressure dependence of elastic and dynamical properties of zinc-blende ZnS and ZnSe. The calculated elastic constants and phonon spectra from 0 GPa to 15 GPa are compared with the available experimental data. Generally, our calculated values are overestimated with experimental data, but agree well with recent other theoretical values. The discrepancies with experimental data are due to the use of local density approximation (LDA and effect of temperature. In this work, in order to compare with experimental data, we calculated and discussed the pressure derivatives of elastic constants, the pressure dependence of dynamical effect charge, and mode Grüneisen parameter at Γ.

  13. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José ; Burriel, Mó nica

    2010-01-01

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation

  14. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  15. Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands

    KAUST Repository

    Voznyy, Oleksandr; Mokkath, Junais Habeeb; Jain, Ankit; Sargent, Edward H.; Schwingenschlö gl, Udo

    2016-01-01

    The electronic and optical properties of tetrahedral CdSe magic clusters (average diameter.5 nm) protected by carboxyl and amine ligands, which correspond to previously reported experimental structures, are studied using density functional theory. We find extreme ligand packing densities, capping every single dangling bond of the inorganic core, strong dependence of the Z-type metal carboxylate binding on the amount of excess amine, and potential for improved photoluminescence upon replacing phenyl ligands with alkanes. The computed absorption spectra of the Cd35Se20 cluster agree well with experiments, resolving the 0.2 eV splitting of the first exciton peak due to spin-orbit coupling. We discuss the origin of the significant broadening of the optical spectra as due to phonons and structural variations in the ligand configurations and inorganic core apexes. © 2016 American Chemical Society.

  16. Molecular limit of a bulk semiconductor: size dependent optical spectroscopy study of CdSe cluster molecules

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.N.; Banin, U. [Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry; Eichhoefer, A. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Fenske, D. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Steady state and time-resolved photoluminescence measurements of a homologous series of CdSe cluster molecules were performed over a broad temperature range (T = 5-200 K). The absorption and low temperature PLE onset of the clusters shifts systematically to the blue in smaller clusters, manifesting the quantum confinement effect. The emission in all cluster molecules is observed only at low temperatures and is red-shifted significantly from the absorption onset. It is assigned to optically forbidden transitions involving surface states, as substantiated by the {mu}s range of lifetimes and by the involvement of low frequency vibrations of capping selenophenol ligands in the nonradiative relaxation of excited cluster molecules. (orig.)

  17. Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands

    KAUST Repository

    Voznyy, Oleksandr

    2016-04-28

    The electronic and optical properties of tetrahedral CdSe magic clusters (average diameter.5 nm) protected by carboxyl and amine ligands, which correspond to previously reported experimental structures, are studied using density functional theory. We find extreme ligand packing densities, capping every single dangling bond of the inorganic core, strong dependence of the Z-type metal carboxylate binding on the amount of excess amine, and potential for improved photoluminescence upon replacing phenyl ligands with alkanes. The computed absorption spectra of the Cd35Se20 cluster agree well with experiments, resolving the 0.2 eV splitting of the first exciton peak due to spin-orbit coupling. We discuss the origin of the significant broadening of the optical spectra as due to phonons and structural variations in the ligand configurations and inorganic core apexes. © 2016 American Chemical Society.

  18. Photoconductivity of composite structures based on porous SnO2 sensitized with CdSe nanocrystals

    International Nuclear Information System (INIS)

    Drozdov, K. A.; Kochnev, V. I.; Dobrovolsky, A. A.; Vasiliev, R. B.; Babynina, A. V.; Rumyantseva, M. N.; Gaskov, A. M.; Ryabova, L. I.; Khokhlov, D. R.

    2013-01-01

    The introduction of CdSe nanocrystals (colloidal quantum dots) into a porous SnO 2 matrix brings about the appearance of photoconductivity in the structures. Sensitization is a consequence of charge exchange between the quantum dots and the matrix. Photoconductivity spectral measurements show that the nanocrystals embedded into the matrix are responsible for the optical activity of the structure. The photoconductivity of the structures sensitized with different-sized quantum dots is studied in the temperature range from 77 to 300 K. It is shown that the maximum photoconductivity is attained by introducing nanocrystals of the minimum size (2.7 nm). The mechanisms of charge-carrier transport in the matrix and the charge-exchange kinetics are discussed.

  19. Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [Department; Center; Fedin, Igor [Department; Diroll, Benjamin T. [Center; Liu, Yuzi [Center; Talapin, Dmitri V. [Center; Department; Schaller, Richard D. [Department; Center

    2018-01-03

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology up to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.

  20. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  1. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  2. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    International Nuclear Information System (INIS)

    Li, Fei; Li, Wan-Nan; Fu, Shao-Yun; Xiao, Hong-Mei

    2015-01-01

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac) 2 ·2H 2 O and Na 2 SeSO 3 are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H 2 O 2 as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light

  3. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Elisabetta, E-mail: elisabetta.morelli@pi.ibf.cnr.it [National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy); Cioni, Patrizia [National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy); Posarelli, Mauro [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy); Gabellieri, Edi [National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy)

    2012-10-15

    With the increasing use of nanotechnologies, it is expected that nanomaterials end up in natural aquatic systems, from freshwater to the sea. In this work we studied the chemical behaviour of water-soluble CdSe QDs in seawater and their effects on the marine diatom Phaeodactylum tricornutum, as a model of a biological receptor in the marine environment. We evaluated QD toxicity in terms of growth rate inhibition, oxidative stress and ROS accumulation. In addition, we used the synthesis of phytochelatins (PCs) as a biomarker of the presence of free Cd{sup 2+} ions released from QDs. The optical and chemical characterization demonstrated the propensity of QDs to aggregate after dispersion in raw seawater. In addition, bare CdSe QDs, lacking the ZnS shell, underwent a salinity-dependent degradation process. Short-term exposure experiments showed that the ease of degradation of QDs in seawater correlated with the synthesis of PCs in P. tricornutum cells. Long-term exposure experiments, carried out with the most stable CdSe/ZnS QDs, showed that algae accumulated Cd, but synthesized negligible amounts of PCs. Since the production of PCs is a specific signal of the presence of bioavailable metal ions, our findings suggest that QDs, associated to P. tricornutum cells, did not release PC-inducing metal species. Our data also showed a gradual decrease in algal growth rate at concentrations of QDs higher than 0.5 nM. Measurements of the activity of the antioxidant enzymes showed that superoxide dismutase (SOD) and catalase (CAT) activities were increased by exposure to [QDs] {>=} 0.5 nM, whereas ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not significantly affected. The increase in SOD and CAT activity can be considered a symptom of oxidative stress induced by an enhanced production of ROS. This hypothesis was confirmed by the concomitant increase in the intracellular ROS concentration.

  4. Epitaxial patterning of thin-films: conventional lithographies and beyond

    International Nuclear Information System (INIS)

    Zhang, Wei; Krishnan, Kannan M

    2014-01-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. (topical review)

  5. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  6. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  7. Methods for polarized light emission from CdSe quantum dot based monolithic pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Seyfried, Moritz; Kalden, Joachim; Sebald, Kathrin; Gutowski, Juergen; Kruse, Carsten; Hommel, Detlef [Institute of Solid State Physics, University of Bremen (Germany)

    2010-07-01

    A lifting of the polarization degeneracy of the fundamental cavity mode in pillar microcavities (MCs) would allow for controlling the polarization state of the emitted photons. Therefore, monolithic VCSEL structures were grown by molecular beam epitaxy containing either one CdSe/ZnSSe quantum dot layer or three quantum well layers as active material. By using focused-ion-beam etching, MC pillars with different geometries were prepared out of the planar samples. Among these are circularly shaped pillar MCs with diameters in the range from 500 nm up to 4 {mu}m and quality factors of up to 7860, elliptically shaped MCs, and so-called photonic molecules consisting of circular pillar MCs which are connected by small bars. Polarization dependent photoluminescence investigations of the fundamental cavity mode reveal a lifting of the polarization degeneracy for all three types of MCs. The energy splitting of up to 0.42 meV in the circularly shaped pillar MCs is probably caused by anisotropic strain conditions within the sample and directly dependent on the pillar diameter, whereas the larger energy splitting of up to 0.72 meV for the photonic molecules or even 4.5 meV for the elliptically shaped MC is based on their asymmetric cross sections.

  8. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    International Nuclear Information System (INIS)

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  9. Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxy

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Wacaser, Brent A.; Petersen, Dirch Hjorth

    2008-01-01

    deposition (CVD) or metal organic VPE (MOVPE). However, VPE of semiconducting nanowires is not compatible with several microfabrication processes due to the high synthesis temperatures and issues such as cross-contamination interfering with the intended microsystem or the VPE process. By selectively heating...... a small microfabricated heater, growth of nanowires can be achieved locally without heating the entire microsystem, thereby reducing the compatibility problems. The first demonstration of epitaxial growth of silicon nanowires by this method is presented and shows that the microsystem can be used for rapid...

  10. In situ observation of electron-beam-induced dewetting of CdSe thin film embedded in SiO2

    DEFF Research Database (Denmark)

    Fabrim, Zacarias Eduardo; Kjelstrup-Hansen, Jakob; Fichtner, Paulo F. P.

    In this work we show the dewetting process of the CdSe thin films induced by electron beam irradiation. A multilayer heterostructure of SiO2/CdSe/SiO2 was made by a magnetron sputtering process. A plan-view (PV) sample was irradiated with 200 kV electrons in the TEM with two current densities: 0.......33 A.cm2 and 1.0 A.cm2 and at 80 kV with 0.37 A.cm2. The dewetting of the CdSe film is inferred by a number of micrographs taken during the irradiation. The microstructural changes were analyzed under the assumption of being induced by ballistic collision effects in the absence of sample heating....

  11. Structural and electrical properties of polycrystalline CdSe thin films, before and after irradiation with 6 MeV accelerated electrons

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, V.A.; Tazlaoanu, C.; Antohe, S.; Scarlat, F.

    2004-01-01

    Structural and electrical properties of polycrystalline CdSe thin films irradiated with high-energy electrons are analyzed. The samples were prepared by vacuum deposition of CdSe powder onto optical glass substrate. Their structure and the temperature dependence of the electrical resistance were determined, both before and after irradiation with 6 MeV electrons at fluencies up to 10 16 electrons/cm 2 . There were no measurable changes in the crystalline structure of the films after irradiation. Electrical properties are controlled by the defect level of donor type, possibly a selenium vacancy, with two ionizing states having ionization energies of about 0.40 eV and 0.22 eV, respectively. The major effect of the irradiation is to increase significantly the concentration of these defects. (authors)

  12. Molecular beam epitaxy of graphene on mica

    International Nuclear Information System (INIS)

    Lippert, G.; Dabrowski, J.; Yamamoto, Y.; Mehr, W.; Lupina, G.; Herziger, F.; Maultzsch, J.; Baringhaus, J.; Tegenkamp, C.; Lemme, M.C.

    2012-01-01

    Realization of graphene devices is often hindered by the fact that the known layer growth methods do not meet the requirements of the device fabrication in silicon mainstream technology. For example, the relatively straightforward method of decomposition of hexagonal SiC is not CMOS-compatible due to the high-thermal budget it requires [Moon et al., IEEE Electron Device Lett. 31, 260 (2010)]. Techniques based on layer transfer are restricted because of the uncertainty of residual metal contaminants, particles, and structural defects. Of interest is thus a method that would allow one to grow a graphene film directly in the device area where graphene is needed. Production of large area graphene is not necessarily required in this case, but high quality of the film and metal-free growth on an insulating substrate at temperatures below 1000 C are important requirements. We demonstrate direct growth of defect-free graphene on insulators at moderate temperatures by molecular beam epitaxy. The quality of the graphene was probed by high-resolution Raman spectroscopy, indicating a negligible density of defects. The spectra are compared with those from graphene flakes mechanically exfoliated from native graphite onto mica. These results are combined with insights from density functional theory calculations. A model of graphene growth on mica and similar substrates is proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. State memory in solution gated epitaxial graphene

    Science.gov (United States)

    Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.

    2018-06-01

    We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.

  14. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots.

    Science.gov (United States)

    Lu, Xiaomei; Zhang, Jinyi; Xie, Ya-Ni; Zhang, Xinfeng; Jiang, Xiaoming; Hou, Xiandeng; Wu, Peng

    2018-02-20

    Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed a ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally resolved phosphorescence at 580 and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 μg/L, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum as well as in environmental water and soil samples was demonstrated.

  15. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2 SeO3 as Se source and investigating optical properties.

    Science.gov (United States)

    Khafajeh, R; Molaei, M; Karimipour, M

    2017-06-01

    In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Laser-induced luminescence of multilayer structures based on polyimides and CdSe and CdSe/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Chistyakov, A A; Dayneko, S V; Zakharchenko, K V; Kolesnikov, V A; Tedoradze, M G; Mochalov, K E; Oleinikov, V A

    2009-01-01

    Laser-induced luminescence of multilayer structures based on the solids of CdSe and CdSe/ZnS nanocrystals, different organic semiconductors and on the layers of organic semiconductors with embedded nanocrystals has been investigated. Drastic decrease of luminescence quantum yield is observed in the films of CdSe nanocrystals on organic semiconductors compared to those on optical glasses. The luminescence of the nanocrystals in the matrices of organic semiconductors and in multilayer structures is shown to be suppressed. The effects observed are explained by the transfer of photogenerated carriers from the nanocrystals to the molecules of organic semiconductors. The presence of the charge transfer is confirmed by a drastic increase in the conductivity (by 2 – 4 orders of magnitude) and in photovoltaic effect at the presence of CdSe and CdSe/ZnS nanocrystals in the structures under investigation. The prospects of using the multilayer structures for development new materials for solar cells are discussed

  17. The Role of Intrinsic and Surface States on the Emission Properties of Colloidal CdSe and CdSe/ZnS Quantum Dots

    Directory of Open Access Journals (Sweden)

    Morello Giovanni

    2007-01-01

    Full Text Available AbstractTime Resolved Photoluminescence (TRPL measurements on the picosecond time scale (temporal resolution of 17 ps on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs were performed. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak. By considering the characteristic decay times and by comparing the energetic separations among the states with those theoretically expected, we attribute the two higher energy peaks to ± 1Uand ± 1L bright states of the fine structure picture of spherical CdSe QDs, and the third one to surface states emission. We show that the contribution of surface emission to the PL results to be different for the two samples studied (67% in the CdSe QDs and 32% in CdSe/ZnS QDs, confirming the decisive role of the ZnS shell in the improvement of the surface passivation.

  18. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    Science.gov (United States)

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  19. Effect of impurity inhomogeneity of CdS and CdSe monocrystalline semiconductors on electron absorption of piezoactive ultrasonic waves

    International Nuclear Information System (INIS)

    Ketis, B.P.; Krivka, I.

    1986-01-01

    Relation of observed anomalies (deviations from predictions of theory for homogeneous piezosemiconductor) of electronic absorption coefficient (EAC) of volume, piezoactive acoustic waves (with 15 MHz frequency) in CdS and CdSe hexagonal crystals with electrical heterogeneity is shown experimentally. Results of electron microanalysis of CdS and CdSe piezosemiconductors confirmed their impurity heterogeneity are presented as well as data of investigations into high-frequency conduction and electronic absorption of ultrasonic waves pointing out to volume nature of impurity and electric heterogeneities of monocrystals investigated. Correlation between EAC anomalies and surface density of impurity aggregates (IA) is noted as well as coincidence of impurity and electrical heterogeneities in CdS and CdSe crystals. In CdS crystals the observed anisotropy of high-frequency conduction and volume radioactive ultrasonic waves EAC is attributed to high density and anisotropy of IA space distribution and shape. To explain EAC anomalies, a crystal is simulated with heterogeneous grid of resistances and condensators

  20. Optimization of charge transfer and transport processes at the CdSe quantum dots/TiO2 nanorod interface by TiO2 interlayer passivation

    International Nuclear Information System (INIS)

    Jaramillo-Quintero, O A; Rincon, M E; Triana, M A

    2017-01-01

    Surface trap states hinder charge transfer and transport properties in TiO 2 nanorods (NRs), limiting its application on optoelectronic devices. Here, we study the interfacial processes between rutile TiO 2 NR and CdSe quantum dots (QDs) using TiO 2 interlayer passivation treatments. Anatase or rutile TiO 2 thin layers were deposited on an NR surface by two wet-chemical deposition treatments. Reduced interfacial charge recombination between NRs and CdSe QDs was observed by electrochemical impedance spectroscopy with the introduction of TiO 2 thin film interlayers compared to bare TiO 2 NRs. These results can be ascribed to in-gap trap state passivation of the TiO 2 NR surface, which led to an increase in open circuit voltage. Moreover, the rutile thin layer was more efficient than anatase to promote a higher photo-excited electron transfer from CdSe QDs to TiO 2 NRs due to a large driving force for charge injection, as confirmed by surface photovoltage spectroscopy. (paper)